1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 static cl::opt<bool> 88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 89 cl::desc("Enable fast-math-flags for DAG nodes")); 90 91 /// Minimum jump table density for normal functions. 92 static cl::opt<unsigned> 93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 94 cl::desc("Minimum density for building a jump table in " 95 "a normal function")); 96 97 /// Minimum jump table density for -Os or -Oz functions. 98 static cl::opt<unsigned> 99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 100 cl::desc("Minimum density for building a jump table in " 101 "an optsize function")); 102 103 104 // Limit the width of DAG chains. This is important in general to prevent 105 // DAG-based analysis from blowing up. For example, alias analysis and 106 // load clustering may not complete in reasonable time. It is difficult to 107 // recognize and avoid this situation within each individual analysis, and 108 // future analyses are likely to have the same behavior. Limiting DAG width is 109 // the safe approach and will be especially important with global DAGs. 110 // 111 // MaxParallelChains default is arbitrarily high to avoid affecting 112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 113 // sequence over this should have been converted to llvm.memcpy by the 114 // frontend. It is easy to induce this behavior with .ll code such as: 115 // %buffer = alloca [4096 x i8] 116 // %data = load [4096 x i8]* %argPtr 117 // store [4096 x i8] %data, [4096 x i8]* %buffer 118 static const unsigned MaxParallelChains = 64; 119 120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 121 const SDValue *Parts, unsigned NumParts, 122 MVT PartVT, EVT ValueVT, const Value *V); 123 124 /// getCopyFromParts - Create a value that contains the specified legal parts 125 /// combined into the value they represent. If the parts combine to a type 126 /// larger than ValueVT then AssertOp can be used to specify whether the extra 127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 128 /// (ISD::AssertSext). 129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 130 const SDValue *Parts, unsigned NumParts, 131 MVT PartVT, EVT ValueVT, const Value *V, 132 Optional<ISD::NodeType> AssertOp = None) { 133 if (ValueVT.isVector()) 134 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 135 PartVT, ValueVT, V); 136 137 assert(NumParts > 0 && "No parts to assemble!"); 138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 139 SDValue Val = Parts[0]; 140 141 if (NumParts > 1) { 142 // Assemble the value from multiple parts. 143 if (ValueVT.isInteger()) { 144 unsigned PartBits = PartVT.getSizeInBits(); 145 unsigned ValueBits = ValueVT.getSizeInBits(); 146 147 // Assemble the power of 2 part. 148 unsigned RoundParts = NumParts & (NumParts - 1) ? 149 1 << Log2_32(NumParts) : NumParts; 150 unsigned RoundBits = PartBits * RoundParts; 151 EVT RoundVT = RoundBits == ValueBits ? 152 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 153 SDValue Lo, Hi; 154 155 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 156 157 if (RoundParts > 2) { 158 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 159 PartVT, HalfVT, V); 160 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 161 RoundParts / 2, PartVT, HalfVT, V); 162 } else { 163 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 165 } 166 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 170 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 171 172 if (RoundParts < NumParts) { 173 // Assemble the trailing non-power-of-2 part. 174 unsigned OddParts = NumParts - RoundParts; 175 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 176 Hi = getCopyFromParts(DAG, DL, 177 Parts + RoundParts, OddParts, PartVT, OddVT, V); 178 179 // Combine the round and odd parts. 180 Lo = Val; 181 if (DAG.getDataLayout().isBigEndian()) 182 std::swap(Lo, Hi); 183 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 184 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 185 Hi = 186 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 187 DAG.getConstant(Lo.getValueSizeInBits(), DL, 188 TLI.getPointerTy(DAG.getDataLayout()))); 189 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 190 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 191 } 192 } else if (PartVT.isFloatingPoint()) { 193 // FP split into multiple FP parts (for ppcf128) 194 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 195 "Unexpected split"); 196 SDValue Lo, Hi; 197 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 199 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 200 std::swap(Lo, Hi); 201 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 202 } else { 203 // FP split into integer parts (soft fp) 204 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 205 !PartVT.isVector() && "Unexpected split"); 206 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 208 } 209 } 210 211 // There is now one part, held in Val. Correct it to match ValueVT. 212 // PartEVT is the type of the register class that holds the value. 213 // ValueVT is the type of the inline asm operation. 214 EVT PartEVT = Val.getValueType(); 215 216 if (PartEVT == ValueVT) 217 return Val; 218 219 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 220 ValueVT.bitsLT(PartEVT)) { 221 // For an FP value in an integer part, we need to truncate to the right 222 // width first. 223 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 224 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 225 } 226 227 // Handle types that have the same size. 228 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 229 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 230 231 // Handle types with different sizes. 232 if (PartEVT.isInteger() && ValueVT.isInteger()) { 233 if (ValueVT.bitsLT(PartEVT)) { 234 // For a truncate, see if we have any information to 235 // indicate whether the truncated bits will always be 236 // zero or sign-extension. 237 if (AssertOp.hasValue()) 238 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 239 DAG.getValueType(ValueVT)); 240 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 241 } 242 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 243 } 244 245 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 246 // FP_ROUND's are always exact here. 247 if (ValueVT.bitsLT(Val.getValueType())) 248 return DAG.getNode( 249 ISD::FP_ROUND, DL, ValueVT, Val, 250 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 251 252 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 253 } 254 255 llvm_unreachable("Unknown mismatch!"); 256 } 257 258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 259 const Twine &ErrMsg) { 260 const Instruction *I = dyn_cast_or_null<Instruction>(V); 261 if (!V) 262 return Ctx.emitError(ErrMsg); 263 264 const char *AsmError = ", possible invalid constraint for vector type"; 265 if (const CallInst *CI = dyn_cast<CallInst>(I)) 266 if (isa<InlineAsm>(CI->getCalledValue())) 267 return Ctx.emitError(I, ErrMsg + AsmError); 268 269 return Ctx.emitError(I, ErrMsg); 270 } 271 272 /// getCopyFromPartsVector - Create a value that contains the specified legal 273 /// parts combined into the value they represent. If the parts combine to a 274 /// type larger than ValueVT then AssertOp can be used to specify whether the 275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 276 /// ValueVT (ISD::AssertSext). 277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 278 const SDValue *Parts, unsigned NumParts, 279 MVT PartVT, EVT ValueVT, const Value *V) { 280 assert(ValueVT.isVector() && "Not a vector value"); 281 assert(NumParts > 0 && "No parts to assemble!"); 282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 283 SDValue Val = Parts[0]; 284 285 // Handle a multi-element vector. 286 if (NumParts > 1) { 287 EVT IntermediateVT; 288 MVT RegisterVT; 289 unsigned NumIntermediates; 290 unsigned NumRegs = 291 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 292 NumIntermediates, RegisterVT); 293 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 294 NumParts = NumRegs; // Silence a compiler warning. 295 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 296 assert(RegisterVT.getSizeInBits() == 297 Parts[0].getSimpleValueType().getSizeInBits() && 298 "Part type sizes don't match!"); 299 300 // Assemble the parts into intermediate operands. 301 SmallVector<SDValue, 8> Ops(NumIntermediates); 302 if (NumIntermediates == NumParts) { 303 // If the register was not expanded, truncate or copy the value, 304 // as appropriate. 305 for (unsigned i = 0; i != NumParts; ++i) 306 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 307 PartVT, IntermediateVT, V); 308 } else if (NumParts > 0) { 309 // If the intermediate type was expanded, build the intermediate 310 // operands from the parts. 311 assert(NumParts % NumIntermediates == 0 && 312 "Must expand into a divisible number of parts!"); 313 unsigned Factor = NumParts / NumIntermediates; 314 for (unsigned i = 0; i != NumIntermediates; ++i) 315 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 316 PartVT, IntermediateVT, V); 317 } 318 319 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 320 // intermediate operands. 321 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 322 : ISD::BUILD_VECTOR, 323 DL, ValueVT, Ops); 324 } 325 326 // There is now one part, held in Val. Correct it to match ValueVT. 327 EVT PartEVT = Val.getValueType(); 328 329 if (PartEVT == ValueVT) 330 return Val; 331 332 if (PartEVT.isVector()) { 333 // If the element type of the source/dest vectors are the same, but the 334 // parts vector has more elements than the value vector, then we have a 335 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 336 // elements we want. 337 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 338 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 339 "Cannot narrow, it would be a lossy transformation"); 340 return DAG.getNode( 341 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 342 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 343 } 344 345 // Vector/Vector bitcast. 346 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 347 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 348 349 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 350 "Cannot handle this kind of promotion"); 351 // Promoted vector extract 352 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 353 354 } 355 356 // Trivial bitcast if the types are the same size and the destination 357 // vector type is legal. 358 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 359 TLI.isTypeLegal(ValueVT)) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 // Handle cases such as i8 -> <1 x i1> 363 if (ValueVT.getVectorNumElements() != 1) { 364 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 365 "non-trivial scalar-to-vector conversion"); 366 return DAG.getUNDEF(ValueVT); 367 } 368 369 if (ValueVT.getVectorNumElements() == 1 && 370 ValueVT.getVectorElementType() != PartEVT) 371 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 372 373 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 374 } 375 376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 377 SDValue Val, SDValue *Parts, unsigned NumParts, 378 MVT PartVT, const Value *V); 379 380 /// getCopyToParts - Create a series of nodes that contain the specified value 381 /// split into legal parts. If the parts contain more bits than Val, then, for 382 /// integers, ExtendKind can be used to specify how to generate the extra bits. 383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 384 SDValue *Parts, unsigned NumParts, MVT PartVT, 385 const Value *V, 386 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 387 EVT ValueVT = Val.getValueType(); 388 389 // Handle the vector case separately. 390 if (ValueVT.isVector()) 391 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 392 393 unsigned PartBits = PartVT.getSizeInBits(); 394 unsigned OrigNumParts = NumParts; 395 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 396 "Copying to an illegal type!"); 397 398 if (NumParts == 0) 399 return; 400 401 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 402 EVT PartEVT = PartVT; 403 if (PartEVT == ValueVT) { 404 assert(NumParts == 1 && "No-op copy with multiple parts!"); 405 Parts[0] = Val; 406 return; 407 } 408 409 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 410 // If the parts cover more bits than the value has, promote the value. 411 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 412 assert(NumParts == 1 && "Do not know what to promote to!"); 413 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 414 } else { 415 if (ValueVT.isFloatingPoint()) { 416 // FP values need to be bitcast, then extended if they are being put 417 // into a larger container. 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 419 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 } 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 } else if (PartBits == ValueVT.getSizeInBits()) { 430 // Different types of the same size. 431 assert(NumParts == 1 && PartEVT != ValueVT); 432 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 433 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 434 // If the parts cover less bits than value has, truncate the value. 435 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 436 ValueVT.isInteger() && 437 "Unknown mismatch!"); 438 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 439 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 440 if (PartVT == MVT::x86mmx) 441 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 442 } 443 444 // The value may have changed - recompute ValueVT. 445 ValueVT = Val.getValueType(); 446 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 447 "Failed to tile the value with PartVT!"); 448 449 if (NumParts == 1) { 450 if (PartEVT != ValueVT) { 451 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 452 "scalar-to-vector conversion failed"); 453 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 454 } 455 456 Parts[0] = Val; 457 return; 458 } 459 460 // Expand the value into multiple parts. 461 if (NumParts & (NumParts - 1)) { 462 // The number of parts is not a power of 2. Split off and copy the tail. 463 assert(PartVT.isInteger() && ValueVT.isInteger() && 464 "Do not know what to expand to!"); 465 unsigned RoundParts = 1 << Log2_32(NumParts); 466 unsigned RoundBits = RoundParts * PartBits; 467 unsigned OddParts = NumParts - RoundParts; 468 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 469 DAG.getIntPtrConstant(RoundBits, DL)); 470 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 471 472 if (DAG.getDataLayout().isBigEndian()) 473 // The odd parts were reversed by getCopyToParts - unreverse them. 474 std::reverse(Parts + RoundParts, Parts + NumParts); 475 476 NumParts = RoundParts; 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 } 480 481 // The number of parts is a power of 2. Repeatedly bisect the value using 482 // EXTRACT_ELEMENT. 483 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 484 EVT::getIntegerVT(*DAG.getContext(), 485 ValueVT.getSizeInBits()), 486 Val); 487 488 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 489 for (unsigned i = 0; i < NumParts; i += StepSize) { 490 unsigned ThisBits = StepSize * PartBits / 2; 491 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 492 SDValue &Part0 = Parts[i]; 493 SDValue &Part1 = Parts[i+StepSize/2]; 494 495 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 496 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 497 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 498 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 499 500 if (ThisBits == PartBits && ThisVT != PartVT) { 501 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 502 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 503 } 504 } 505 } 506 507 if (DAG.getDataLayout().isBigEndian()) 508 std::reverse(Parts, Parts + OrigNumParts); 509 } 510 511 512 /// getCopyToPartsVector - Create a series of nodes that contain the specified 513 /// value split into legal parts. 514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 515 SDValue Val, SDValue *Parts, unsigned NumParts, 516 MVT PartVT, const Value *V) { 517 EVT ValueVT = Val.getValueType(); 518 assert(ValueVT.isVector() && "Not a vector"); 519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 520 521 if (NumParts == 1) { 522 EVT PartEVT = PartVT; 523 if (PartEVT == ValueVT) { 524 // Nothing to do. 525 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 526 // Bitconvert vector->vector case. 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 530 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 531 EVT ElementVT = PartVT.getVectorElementType(); 532 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 533 // undef elements. 534 SmallVector<SDValue, 16> Ops; 535 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 536 Ops.push_back(DAG.getNode( 537 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 538 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 539 540 for (unsigned i = ValueVT.getVectorNumElements(), 541 e = PartVT.getVectorNumElements(); i != e; ++i) 542 Ops.push_back(DAG.getUNDEF(ElementVT)); 543 544 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 545 546 // FIXME: Use CONCAT for 2x -> 4x. 547 548 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 549 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 550 } else if (PartVT.isVector() && 551 PartEVT.getVectorElementType().bitsGE( 552 ValueVT.getVectorElementType()) && 553 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 554 555 // Promoted vector extract 556 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 557 } else{ 558 // Vector -> scalar conversion. 559 assert(ValueVT.getVectorNumElements() == 1 && 560 "Only trivial vector-to-scalar conversions should get here!"); 561 Val = DAG.getNode( 562 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 563 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 565 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Handle a multi-element vector. 573 EVT IntermediateVT; 574 MVT RegisterVT; 575 unsigned NumIntermediates; 576 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 577 IntermediateVT, 578 NumIntermediates, RegisterVT); 579 unsigned NumElements = ValueVT.getVectorNumElements(); 580 581 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 582 NumParts = NumRegs; // Silence a compiler warning. 583 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 584 585 // Split the vector into intermediate operands. 586 SmallVector<SDValue, 8> Ops(NumIntermediates); 587 for (unsigned i = 0; i != NumIntermediates; ++i) { 588 if (IntermediateVT.isVector()) 589 Ops[i] = 590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 591 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 else 594 Ops[i] = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 596 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 } 598 599 // Split the intermediate operands into legal parts. 600 if (NumParts == NumIntermediates) { 601 // If the register was not expanded, promote or copy the value, 602 // as appropriate. 603 for (unsigned i = 0; i != NumParts; ++i) 604 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 605 } else if (NumParts > 0) { 606 // If the intermediate type was expanded, split each the value into 607 // legal parts. 608 assert(NumIntermediates != 0 && "division by zero"); 609 assert(NumParts % NumIntermediates == 0 && 610 "Must expand into a divisible number of parts!"); 611 unsigned Factor = NumParts / NumIntermediates; 612 for (unsigned i = 0; i != NumIntermediates; ++i) 613 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 614 } 615 } 616 617 RegsForValue::RegsForValue() {} 618 619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 620 EVT valuevt) 621 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 622 623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 624 const DataLayout &DL, unsigned Reg, Type *Ty) { 625 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 626 627 for (EVT ValueVT : ValueVTs) { 628 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 629 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 630 for (unsigned i = 0; i != NumRegs; ++i) 631 Regs.push_back(Reg + i); 632 RegVTs.push_back(RegisterVT); 633 Reg += NumRegs; 634 } 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 const SDLoc &dl, SDValue &Chain, 644 SDValue *Flag, const Value *V) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 MVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (!Flag) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 if (NumZeroBits == RegSize) { 689 // The current value is a zero. 690 // Explicitly express that as it would be easier for 691 // optimizations to kick in. 692 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 693 continue; 694 } 695 696 // FIXME: We capture more information than the dag can represent. For 697 // now, just use the tightest assertzext/assertsext possible. 698 bool isSExt = true; 699 EVT FromVT(MVT::Other); 700 if (NumSignBits == RegSize) { 701 isSExt = true; // ASSERT SEXT 1 702 FromVT = MVT::i1; 703 } else if (NumZeroBits >= RegSize - 1) { 704 isSExt = false; // ASSERT ZEXT 1 705 FromVT = MVT::i1; 706 } else if (NumSignBits > RegSize - 8) { 707 isSExt = true; // ASSERT SEXT 8 708 FromVT = MVT::i8; 709 } else if (NumZeroBits >= RegSize - 8) { 710 isSExt = false; // ASSERT ZEXT 8 711 FromVT = MVT::i8; 712 } else if (NumSignBits > RegSize - 16) { 713 isSExt = true; // ASSERT SEXT 16 714 FromVT = MVT::i16; 715 } else if (NumZeroBits >= RegSize - 16) { 716 isSExt = false; // ASSERT ZEXT 16 717 FromVT = MVT::i16; 718 } else if (NumSignBits > RegSize - 32) { 719 isSExt = true; // ASSERT SEXT 32 720 FromVT = MVT::i32; 721 } else if (NumZeroBits >= RegSize - 32) { 722 isSExt = false; // ASSERT ZEXT 32 723 FromVT = MVT::i32; 724 } else { 725 continue; 726 } 727 // Add an assertion node. 728 assert(FromVT != MVT::Other); 729 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 730 RegisterVT, P, DAG.getValueType(FromVT)); 731 } 732 733 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 734 NumRegs, RegisterVT, ValueVT, V); 735 Part += NumRegs; 736 Parts.clear(); 737 } 738 739 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 740 } 741 742 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 743 /// specified value into the registers specified by this object. This uses 744 /// Chain/Flag as the input and updates them for the output Chain/Flag. 745 /// If the Flag pointer is NULL, no flag is used. 746 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 747 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 748 const Value *V, 749 ISD::NodeType PreferredExtendType) const { 750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 751 ISD::NodeType ExtendKind = PreferredExtendType; 752 753 // Get the list of the values's legal parts. 754 unsigned NumRegs = Regs.size(); 755 SmallVector<SDValue, 8> Parts(NumRegs); 756 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 757 EVT ValueVT = ValueVTs[Value]; 758 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 759 MVT RegisterVT = RegVTs[Value]; 760 761 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 762 ExtendKind = ISD::ZERO_EXTEND; 763 764 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 765 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 766 Part += NumParts; 767 } 768 769 // Copy the parts into the registers. 770 SmallVector<SDValue, 8> Chains(NumRegs); 771 for (unsigned i = 0; i != NumRegs; ++i) { 772 SDValue Part; 773 if (!Flag) { 774 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 775 } else { 776 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 777 *Flag = Part.getValue(1); 778 } 779 780 Chains[i] = Part.getValue(0); 781 } 782 783 if (NumRegs == 1 || Flag) 784 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 785 // flagged to it. That is the CopyToReg nodes and the user are considered 786 // a single scheduling unit. If we create a TokenFactor and return it as 787 // chain, then the TokenFactor is both a predecessor (operand) of the 788 // user as well as a successor (the TF operands are flagged to the user). 789 // c1, f1 = CopyToReg 790 // c2, f2 = CopyToReg 791 // c3 = TokenFactor c1, c2 792 // ... 793 // = op c3, ..., f2 794 Chain = Chains[NumRegs-1]; 795 else 796 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 797 } 798 799 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 800 /// operand list. This adds the code marker and includes the number of 801 /// values added into it. 802 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 803 unsigned MatchingIdx, const SDLoc &dl, 804 SelectionDAG &DAG, 805 std::vector<SDValue> &Ops) const { 806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 807 808 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 809 if (HasMatching) 810 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 811 else if (!Regs.empty() && 812 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 813 // Put the register class of the virtual registers in the flag word. That 814 // way, later passes can recompute register class constraints for inline 815 // assembly as well as normal instructions. 816 // Don't do this for tied operands that can use the regclass information 817 // from the def. 818 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 819 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 820 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 821 } 822 823 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 824 Ops.push_back(Res); 825 826 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 827 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 828 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 829 MVT RegisterVT = RegVTs[Value]; 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 832 unsigned TheReg = Regs[Reg++]; 833 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 834 835 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 836 // If we clobbered the stack pointer, MFI should know about it. 837 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 838 } 839 } 840 } 841 } 842 843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 844 const TargetLibraryInfo *li) { 845 AA = &aa; 846 GFI = gfi; 847 LibInfo = li; 848 DL = &DAG.getDataLayout(); 849 Context = DAG.getContext(); 850 LPadToCallSiteMap.clear(); 851 } 852 853 /// clear - Clear out the current SelectionDAG and the associated 854 /// state and prepare this SelectionDAGBuilder object to be used 855 /// for a new block. This doesn't clear out information about 856 /// additional blocks that are needed to complete switch lowering 857 /// or PHI node updating; that information is cleared out as it is 858 /// consumed. 859 void SelectionDAGBuilder::clear() { 860 NodeMap.clear(); 861 UnusedArgNodeMap.clear(); 862 PendingLoads.clear(); 863 PendingExports.clear(); 864 CurInst = nullptr; 865 HasTailCall = false; 866 SDNodeOrder = LowestSDNodeOrder; 867 StatepointLowering.clear(); 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 898 PendingLoads); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 928 PendingExports); 929 PendingExports.clear(); 930 DAG.setRoot(Root); 931 return Root; 932 } 933 934 void SelectionDAGBuilder::visit(const Instruction &I) { 935 // Set up outgoing PHI node register values before emitting the terminator. 936 if (isa<TerminatorInst>(&I)) { 937 HandlePHINodesInSuccessorBlocks(I.getParent()); 938 } 939 940 // Increase the SDNodeOrder if dealing with a non-debug instruction. 941 if (!isa<DbgInfoIntrinsic>(I)) 942 ++SDNodeOrder; 943 944 CurInst = &I; 945 946 visit(I.getOpcode(), I); 947 948 if (!isa<TerminatorInst>(&I) && !HasTailCall && 949 !isStatepoint(&I)) // statepoints handle their exports internally 950 CopyToExportRegsIfNeeded(&I); 951 952 CurInst = nullptr; 953 } 954 955 void SelectionDAGBuilder::visitPHI(const PHINode &) { 956 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 957 } 958 959 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 960 // Note: this doesn't use InstVisitor, because it has to work with 961 // ConstantExpr's in addition to instructions. 962 switch (Opcode) { 963 default: llvm_unreachable("Unknown instruction type encountered!"); 964 // Build the switch statement using the Instruction.def file. 965 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 966 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 967 #include "llvm/IR/Instruction.def" 968 } 969 } 970 971 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 972 // generate the debug data structures now that we've seen its definition. 973 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 974 SDValue Val) { 975 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 976 if (DDI.getDI()) { 977 const DbgValueInst *DI = DDI.getDI(); 978 DebugLoc dl = DDI.getdl(); 979 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 980 DILocalVariable *Variable = DI->getVariable(); 981 DIExpression *Expr = DI->getExpression(); 982 assert(Variable->isValidLocationForIntrinsic(dl) && 983 "Expected inlined-at fields to agree"); 984 uint64_t Offset = DI->getOffset(); 985 SDDbgValue *SDV; 986 if (Val.getNode()) { 987 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 988 Val)) { 989 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 990 DAG.AddDbgValue(SDV, Val.getNode(), false); 991 } 992 } else 993 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 994 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 995 } 996 } 997 998 /// getCopyFromRegs - If there was virtual register allocated for the value V 999 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1000 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1001 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1002 SDValue Result; 1003 1004 if (It != FuncInfo.ValueMap.end()) { 1005 unsigned InReg = It->second; 1006 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1007 DAG.getDataLayout(), InReg, Ty); 1008 SDValue Chain = DAG.getEntryNode(); 1009 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1010 resolveDanglingDebugInfo(V, Result); 1011 } 1012 1013 return Result; 1014 } 1015 1016 /// getValue - Return an SDValue for the given Value. 1017 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. It's important 1019 // to do this first, so that we don't create a CopyFromReg if we already 1020 // have a regular SDValue. 1021 SDValue &N = NodeMap[V]; 1022 if (N.getNode()) return N; 1023 1024 // If there's a virtual register allocated and initialized for this 1025 // value, use it. 1026 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1027 return copyFromReg; 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 // Return true if SDValue exists for the given Value 1037 bool SelectionDAGBuilder::findValue(const Value *V) const { 1038 return (NodeMap.find(V) != NodeMap.end()) || 1039 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) { 1048 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1049 // Remove the debug location from the node as the node is about to be used 1050 // in a location which may differ from the original debug location. This 1051 // is relevant to Constant and ConstantFP nodes because they can appear 1052 // as constant expressions inside PHI nodes. 1053 N->setDebugLoc(DebugLoc()); 1054 } 1055 return N; 1056 } 1057 1058 // Otherwise create a new SDValue and remember it. 1059 SDValue Val = getValueImpl(V); 1060 NodeMap[V] = Val; 1061 resolveDanglingDebugInfo(V, Val); 1062 return Val; 1063 } 1064 1065 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1066 /// Create an SDValue for the given value. 1067 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1069 1070 if (const Constant *C = dyn_cast<Constant>(V)) { 1071 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1072 1073 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1074 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1075 1076 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1077 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1078 1079 if (isa<ConstantPointerNull>(C)) { 1080 unsigned AS = V->getType()->getPointerAddressSpace(); 1081 return DAG.getConstant(0, getCurSDLoc(), 1082 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1083 } 1084 1085 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1086 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1087 1088 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1089 return DAG.getUNDEF(VT); 1090 1091 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1092 visit(CE->getOpcode(), *CE); 1093 SDValue N1 = NodeMap[V]; 1094 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1095 return N1; 1096 } 1097 1098 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1099 SmallVector<SDValue, 4> Constants; 1100 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1101 OI != OE; ++OI) { 1102 SDNode *Val = getValue(*OI).getNode(); 1103 // If the operand is an empty aggregate, there are no values. 1104 if (!Val) continue; 1105 // Add each leaf value from the operand to the Constants list 1106 // to form a flattened list of all the values. 1107 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1108 Constants.push_back(SDValue(Val, i)); 1109 } 1110 1111 return DAG.getMergeValues(Constants, getCurSDLoc()); 1112 } 1113 1114 if (const ConstantDataSequential *CDS = 1115 dyn_cast<ConstantDataSequential>(C)) { 1116 SmallVector<SDValue, 4> Ops; 1117 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1118 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1119 // Add each leaf value from the operand to the Constants list 1120 // to form a flattened list of all the values. 1121 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1122 Ops.push_back(SDValue(Val, i)); 1123 } 1124 1125 if (isa<ArrayType>(CDS->getType())) 1126 return DAG.getMergeValues(Ops, getCurSDLoc()); 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1128 VT, Ops); 1129 } 1130 1131 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1132 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1133 "Unknown struct or array constant!"); 1134 1135 SmallVector<EVT, 4> ValueVTs; 1136 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1137 unsigned NumElts = ValueVTs.size(); 1138 if (NumElts == 0) 1139 return SDValue(); // empty struct 1140 SmallVector<SDValue, 4> Constants(NumElts); 1141 for (unsigned i = 0; i != NumElts; ++i) { 1142 EVT EltVT = ValueVTs[i]; 1143 if (isa<UndefValue>(C)) 1144 Constants[i] = DAG.getUNDEF(EltVT); 1145 else if (EltVT.isFloatingPoint()) 1146 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 } 1150 1151 return DAG.getMergeValues(Constants, getCurSDLoc()); 1152 } 1153 1154 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1155 return DAG.getBlockAddress(BA, VT); 1156 1157 VectorType *VecTy = cast<VectorType>(V->getType()); 1158 unsigned NumElements = VecTy->getNumElements(); 1159 1160 // Now that we know the number and type of the elements, get that number of 1161 // elements into the Ops array based on what kind of constant it is. 1162 SmallVector<SDValue, 16> Ops; 1163 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1164 for (unsigned i = 0; i != NumElements; ++i) 1165 Ops.push_back(getValue(CV->getOperand(i))); 1166 } else { 1167 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1168 EVT EltVT = 1169 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1170 1171 SDValue Op; 1172 if (EltVT.isFloatingPoint()) 1173 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1174 else 1175 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1176 Ops.assign(NumElements, Op); 1177 } 1178 1179 // Create a BUILD_VECTOR node. 1180 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1181 } 1182 1183 // If this is a static alloca, generate it as the frameindex instead of 1184 // computation. 1185 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1186 DenseMap<const AllocaInst*, int>::iterator SI = 1187 FuncInfo.StaticAllocaMap.find(AI); 1188 if (SI != FuncInfo.StaticAllocaMap.end()) 1189 return DAG.getFrameIndex(SI->second, 1190 TLI.getPointerTy(DAG.getDataLayout())); 1191 } 1192 1193 // If this is an instruction which fast-isel has deferred, select it now. 1194 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1195 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1196 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1197 Inst->getType()); 1198 SDValue Chain = DAG.getEntryNode(); 1199 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1200 } 1201 1202 llvm_unreachable("Can't get register for value!"); 1203 } 1204 1205 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1206 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1207 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1208 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1209 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1210 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1211 if (IsMSVCCXX || IsCoreCLR) 1212 CatchPadMBB->setIsEHFuncletEntry(); 1213 1214 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1215 } 1216 1217 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1218 // Update machine-CFG edge. 1219 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1220 FuncInfo.MBB->addSuccessor(TargetMBB); 1221 1222 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1223 bool IsSEH = isAsynchronousEHPersonality(Pers); 1224 if (IsSEH) { 1225 // If this is not a fall-through branch or optimizations are switched off, 1226 // emit the branch. 1227 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1228 TM.getOptLevel() == CodeGenOpt::None) 1229 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1230 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1231 return; 1232 } 1233 1234 // Figure out the funclet membership for the catchret's successor. 1235 // This will be used by the FuncletLayout pass to determine how to order the 1236 // BB's. 1237 // A 'catchret' returns to the outer scope's color. 1238 Value *ParentPad = I.getCatchSwitchParentPad(); 1239 const BasicBlock *SuccessorColor; 1240 if (isa<ConstantTokenNone>(ParentPad)) 1241 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1242 else 1243 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1244 assert(SuccessorColor && "No parent funclet for catchret!"); 1245 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1246 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1247 1248 // Create the terminator node. 1249 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1250 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1251 DAG.getBasicBlock(SuccessorColorMBB)); 1252 DAG.setRoot(Ret); 1253 } 1254 1255 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1256 // Don't emit any special code for the cleanuppad instruction. It just marks 1257 // the start of a funclet. 1258 FuncInfo.MBB->setIsEHFuncletEntry(); 1259 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1260 } 1261 1262 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1263 /// many places it could ultimately go. In the IR, we have a single unwind 1264 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1265 /// This function skips over imaginary basic blocks that hold catchswitch 1266 /// instructions, and finds all the "real" machine 1267 /// basic block destinations. As those destinations may not be successors of 1268 /// EHPadBB, here we also calculate the edge probability to those destinations. 1269 /// The passed-in Prob is the edge probability to EHPadBB. 1270 static void findUnwindDestinations( 1271 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1272 BranchProbability Prob, 1273 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1274 &UnwindDests) { 1275 EHPersonality Personality = 1276 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1277 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1278 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1279 1280 while (EHPadBB) { 1281 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1282 BasicBlock *NewEHPadBB = nullptr; 1283 if (isa<LandingPadInst>(Pad)) { 1284 // Stop on landingpads. They are not funclets. 1285 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1286 break; 1287 } else if (isa<CleanupPadInst>(Pad)) { 1288 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1289 // personalities. 1290 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1291 UnwindDests.back().first->setIsEHFuncletEntry(); 1292 break; 1293 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1294 // Add the catchpad handlers to the possible destinations. 1295 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1296 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1297 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1298 if (IsMSVCCXX || IsCoreCLR) 1299 UnwindDests.back().first->setIsEHFuncletEntry(); 1300 } 1301 NewEHPadBB = CatchSwitch->getUnwindDest(); 1302 } else { 1303 continue; 1304 } 1305 1306 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1307 if (BPI && NewEHPadBB) 1308 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1309 EHPadBB = NewEHPadBB; 1310 } 1311 } 1312 1313 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1314 // Update successor info. 1315 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1316 auto UnwindDest = I.getUnwindDest(); 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 BranchProbability UnwindDestProb = 1319 (BPI && UnwindDest) 1320 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1321 : BranchProbability::getZero(); 1322 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1323 for (auto &UnwindDest : UnwindDests) { 1324 UnwindDest.first->setIsEHPad(); 1325 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1326 } 1327 FuncInfo.MBB->normalizeSuccProbs(); 1328 1329 // Create the terminator node. 1330 SDValue Ret = 1331 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1332 DAG.setRoot(Ret); 1333 } 1334 1335 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1336 report_fatal_error("visitCatchSwitch not yet implemented!"); 1337 } 1338 1339 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1341 auto &DL = DAG.getDataLayout(); 1342 SDValue Chain = getControlRoot(); 1343 SmallVector<ISD::OutputArg, 8> Outs; 1344 SmallVector<SDValue, 8> OutVals; 1345 1346 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1347 // lower 1348 // 1349 // %val = call <ty> @llvm.experimental.deoptimize() 1350 // ret <ty> %val 1351 // 1352 // differently. 1353 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1354 LowerDeoptimizingReturn(); 1355 return; 1356 } 1357 1358 if (!FuncInfo.CanLowerReturn) { 1359 unsigned DemoteReg = FuncInfo.DemoteRegister; 1360 const Function *F = I.getParent()->getParent(); 1361 1362 // Emit a store of the return value through the virtual register. 1363 // Leave Outs empty so that LowerReturn won't try to load return 1364 // registers the usual way. 1365 SmallVector<EVT, 1> PtrValueVTs; 1366 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1367 PtrValueVTs); 1368 1369 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1370 DemoteReg, PtrValueVTs[0]); 1371 SDValue RetOp = getValue(I.getOperand(0)); 1372 1373 SmallVector<EVT, 4> ValueVTs; 1374 SmallVector<uint64_t, 4> Offsets; 1375 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1376 unsigned NumValues = ValueVTs.size(); 1377 1378 // An aggregate return value cannot wrap around the address space, so 1379 // offsets to its parts don't wrap either. 1380 SDNodeFlags Flags; 1381 Flags.setNoUnsignedWrap(true); 1382 1383 SmallVector<SDValue, 4> Chains(NumValues); 1384 for (unsigned i = 0; i != NumValues; ++i) { 1385 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1386 RetPtr.getValueType(), RetPtr, 1387 DAG.getIntPtrConstant(Offsets[i], 1388 getCurSDLoc()), 1389 &Flags); 1390 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1391 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1392 // FIXME: better loc info would be nice. 1393 Add, MachinePointerInfo()); 1394 } 1395 1396 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1397 MVT::Other, Chains); 1398 } else if (I.getNumOperands() != 0) { 1399 SmallVector<EVT, 4> ValueVTs; 1400 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1401 unsigned NumValues = ValueVTs.size(); 1402 if (NumValues) { 1403 SDValue RetOp = getValue(I.getOperand(0)); 1404 1405 const Function *F = I.getParent()->getParent(); 1406 1407 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1408 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1409 Attribute::SExt)) 1410 ExtendKind = ISD::SIGN_EXTEND; 1411 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1412 Attribute::ZExt)) 1413 ExtendKind = ISD::ZERO_EXTEND; 1414 1415 LLVMContext &Context = F->getContext(); 1416 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1417 Attribute::InReg); 1418 1419 for (unsigned j = 0; j != NumValues; ++j) { 1420 EVT VT = ValueVTs[j]; 1421 1422 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1423 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1424 1425 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1426 MVT PartVT = TLI.getRegisterType(Context, VT); 1427 SmallVector<SDValue, 4> Parts(NumParts); 1428 getCopyToParts(DAG, getCurSDLoc(), 1429 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1430 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1431 1432 // 'inreg' on function refers to return value 1433 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1434 if (RetInReg) 1435 Flags.setInReg(); 1436 1437 // Propagate extension type if any 1438 if (ExtendKind == ISD::SIGN_EXTEND) 1439 Flags.setSExt(); 1440 else if (ExtendKind == ISD::ZERO_EXTEND) 1441 Flags.setZExt(); 1442 1443 for (unsigned i = 0; i < NumParts; ++i) { 1444 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1445 VT, /*isfixed=*/true, 0, 0)); 1446 OutVals.push_back(Parts[i]); 1447 } 1448 } 1449 } 1450 } 1451 1452 // Push in swifterror virtual register as the last element of Outs. This makes 1453 // sure swifterror virtual register will be returned in the swifterror 1454 // physical register. 1455 const Function *F = I.getParent()->getParent(); 1456 if (TLI.supportSwiftError() && 1457 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1458 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1459 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1460 Flags.setSwiftError(); 1461 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1462 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1463 true /*isfixed*/, 1 /*origidx*/, 1464 0 /*partOffs*/)); 1465 // Create SDNode for the swifterror virtual register. 1466 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1467 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1468 EVT(TLI.getPointerTy(DL)))); 1469 } 1470 1471 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1472 CallingConv::ID CallConv = 1473 DAG.getMachineFunction().getFunction()->getCallingConv(); 1474 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1475 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1476 1477 // Verify that the target's LowerReturn behaved as expected. 1478 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1479 "LowerReturn didn't return a valid chain!"); 1480 1481 // Update the DAG with the new chain value resulting from return lowering. 1482 DAG.setRoot(Chain); 1483 } 1484 1485 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1486 /// created for it, emit nodes to copy the value into the virtual 1487 /// registers. 1488 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1489 // Skip empty types 1490 if (V->getType()->isEmptyTy()) 1491 return; 1492 1493 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1494 if (VMI != FuncInfo.ValueMap.end()) { 1495 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1496 CopyValueToVirtualRegister(V, VMI->second); 1497 } 1498 } 1499 1500 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1501 /// the current basic block, add it to ValueMap now so that we'll get a 1502 /// CopyTo/FromReg. 1503 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1504 // No need to export constants. 1505 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1506 1507 // Already exported? 1508 if (FuncInfo.isExportedInst(V)) return; 1509 1510 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1511 CopyValueToVirtualRegister(V, Reg); 1512 } 1513 1514 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1515 const BasicBlock *FromBB) { 1516 // The operands of the setcc have to be in this block. We don't know 1517 // how to export them from some other block. 1518 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1519 // Can export from current BB. 1520 if (VI->getParent() == FromBB) 1521 return true; 1522 1523 // Is already exported, noop. 1524 return FuncInfo.isExportedInst(V); 1525 } 1526 1527 // If this is an argument, we can export it if the BB is the entry block or 1528 // if it is already exported. 1529 if (isa<Argument>(V)) { 1530 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1531 return true; 1532 1533 // Otherwise, can only export this if it is already exported. 1534 return FuncInfo.isExportedInst(V); 1535 } 1536 1537 // Otherwise, constants can always be exported. 1538 return true; 1539 } 1540 1541 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1542 BranchProbability 1543 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1544 const MachineBasicBlock *Dst) const { 1545 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1546 const BasicBlock *SrcBB = Src->getBasicBlock(); 1547 const BasicBlock *DstBB = Dst->getBasicBlock(); 1548 if (!BPI) { 1549 // If BPI is not available, set the default probability as 1 / N, where N is 1550 // the number of successors. 1551 auto SuccSize = std::max<uint32_t>( 1552 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1553 return BranchProbability(1, SuccSize); 1554 } 1555 return BPI->getEdgeProbability(SrcBB, DstBB); 1556 } 1557 1558 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1559 MachineBasicBlock *Dst, 1560 BranchProbability Prob) { 1561 if (!FuncInfo.BPI) 1562 Src->addSuccessorWithoutProb(Dst); 1563 else { 1564 if (Prob.isUnknown()) 1565 Prob = getEdgeProbability(Src, Dst); 1566 Src->addSuccessor(Dst, Prob); 1567 } 1568 } 1569 1570 static bool InBlock(const Value *V, const BasicBlock *BB) { 1571 if (const Instruction *I = dyn_cast<Instruction>(V)) 1572 return I->getParent() == BB; 1573 return true; 1574 } 1575 1576 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1577 /// This function emits a branch and is used at the leaves of an OR or an 1578 /// AND operator tree. 1579 /// 1580 void 1581 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1582 MachineBasicBlock *TBB, 1583 MachineBasicBlock *FBB, 1584 MachineBasicBlock *CurBB, 1585 MachineBasicBlock *SwitchBB, 1586 BranchProbability TProb, 1587 BranchProbability FProb, 1588 bool InvertCond) { 1589 const BasicBlock *BB = CurBB->getBasicBlock(); 1590 1591 // If the leaf of the tree is a comparison, merge the condition into 1592 // the caseblock. 1593 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1594 // The operands of the cmp have to be in this block. We don't know 1595 // how to export them from some other block. If this is the first block 1596 // of the sequence, no exporting is needed. 1597 if (CurBB == SwitchBB || 1598 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1599 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1600 ISD::CondCode Condition; 1601 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1602 ICmpInst::Predicate Pred = 1603 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1604 Condition = getICmpCondCode(Pred); 1605 } else { 1606 const FCmpInst *FC = cast<FCmpInst>(Cond); 1607 FCmpInst::Predicate Pred = 1608 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1609 Condition = getFCmpCondCode(Pred); 1610 if (TM.Options.NoNaNsFPMath) 1611 Condition = getFCmpCodeWithoutNaN(Condition); 1612 } 1613 1614 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1615 TBB, FBB, CurBB, TProb, FProb); 1616 SwitchCases.push_back(CB); 1617 return; 1618 } 1619 } 1620 1621 // Create a CaseBlock record representing this branch. 1622 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1623 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1624 nullptr, TBB, FBB, CurBB, TProb, FProb); 1625 SwitchCases.push_back(CB); 1626 } 1627 1628 /// FindMergedConditions - If Cond is an expression like 1629 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1630 MachineBasicBlock *TBB, 1631 MachineBasicBlock *FBB, 1632 MachineBasicBlock *CurBB, 1633 MachineBasicBlock *SwitchBB, 1634 Instruction::BinaryOps Opc, 1635 BranchProbability TProb, 1636 BranchProbability FProb, 1637 bool InvertCond) { 1638 // Skip over not part of the tree and remember to invert op and operands at 1639 // next level. 1640 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1641 Cond = cast<Instruction>(Cond)->getOperand(0); 1642 FindMergedConditions(Cond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1643 !InvertCond); 1644 return; 1645 } 1646 1647 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1648 // Compute the effective opcode for Cond, taking into account whether it needs 1649 // to be inverted, e.g. 1650 // and (not (or A, B)), C 1651 // gets lowered as 1652 // and (and (not A, not B), C) 1653 unsigned BOpc = 0; 1654 if (BOp) { 1655 BOpc = BOp->getOpcode(); 1656 if (InvertCond) { 1657 if (BOpc == Instruction::And) 1658 BOpc = Instruction::Or; 1659 else if (BOpc == Instruction::Or) 1660 BOpc = Instruction::And; 1661 } 1662 } 1663 1664 // If this node is not part of the or/and tree, emit it as a branch. 1665 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1666 BOpc != Opc || !BOp->hasOneUse() || 1667 BOp->getParent() != CurBB->getBasicBlock() || 1668 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1669 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1670 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1671 TProb, FProb, InvertCond); 1672 return; 1673 } 1674 1675 // Create TmpBB after CurBB. 1676 MachineFunction::iterator BBI(CurBB); 1677 MachineFunction &MF = DAG.getMachineFunction(); 1678 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1679 CurBB->getParent()->insert(++BBI, TmpBB); 1680 1681 if (Opc == Instruction::Or) { 1682 // Codegen X | Y as: 1683 // BB1: 1684 // jmp_if_X TBB 1685 // jmp TmpBB 1686 // TmpBB: 1687 // jmp_if_Y TBB 1688 // jmp FBB 1689 // 1690 1691 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1692 // The requirement is that 1693 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1694 // = TrueProb for original BB. 1695 // Assuming the original probabilities are A and B, one choice is to set 1696 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1697 // A/(1+B) and 2B/(1+B). This choice assumes that 1698 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1699 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1700 // TmpBB, but the math is more complicated. 1701 1702 auto NewTrueProb = TProb / 2; 1703 auto NewFalseProb = TProb / 2 + FProb; 1704 // Emit the LHS condition. 1705 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1706 NewTrueProb, NewFalseProb, InvertCond); 1707 1708 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1709 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1710 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1711 // Emit the RHS condition into TmpBB. 1712 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1713 Probs[0], Probs[1], InvertCond); 1714 } else { 1715 assert(Opc == Instruction::And && "Unknown merge op!"); 1716 // Codegen X & Y as: 1717 // BB1: 1718 // jmp_if_X TmpBB 1719 // jmp FBB 1720 // TmpBB: 1721 // jmp_if_Y TBB 1722 // jmp FBB 1723 // 1724 // This requires creation of TmpBB after CurBB. 1725 1726 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1727 // The requirement is that 1728 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1729 // = FalseProb for original BB. 1730 // Assuming the original probabilities are A and B, one choice is to set 1731 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1732 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1733 // TrueProb for BB1 * FalseProb for TmpBB. 1734 1735 auto NewTrueProb = TProb + FProb / 2; 1736 auto NewFalseProb = FProb / 2; 1737 // Emit the LHS condition. 1738 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1739 NewTrueProb, NewFalseProb, InvertCond); 1740 1741 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1742 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1743 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1744 // Emit the RHS condition into TmpBB. 1745 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1746 Probs[0], Probs[1], InvertCond); 1747 } 1748 } 1749 1750 /// If the set of cases should be emitted as a series of branches, return true. 1751 /// If we should emit this as a bunch of and/or'd together conditions, return 1752 /// false. 1753 bool 1754 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1755 if (Cases.size() != 2) return true; 1756 1757 // If this is two comparisons of the same values or'd or and'd together, they 1758 // will get folded into a single comparison, so don't emit two blocks. 1759 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1760 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1761 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1762 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1763 return false; 1764 } 1765 1766 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1767 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1768 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1769 Cases[0].CC == Cases[1].CC && 1770 isa<Constant>(Cases[0].CmpRHS) && 1771 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1772 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1773 return false; 1774 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1782 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1783 1784 // Update machine-CFG edges. 1785 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1786 1787 if (I.isUnconditional()) { 1788 // Update machine-CFG edges. 1789 BrMBB->addSuccessor(Succ0MBB); 1790 1791 // If this is not a fall-through branch or optimizations are switched off, 1792 // emit the branch. 1793 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1794 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1795 MVT::Other, getControlRoot(), 1796 DAG.getBasicBlock(Succ0MBB))); 1797 1798 return; 1799 } 1800 1801 // If this condition is one of the special cases we handle, do special stuff 1802 // now. 1803 const Value *CondVal = I.getCondition(); 1804 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1805 1806 // If this is a series of conditions that are or'd or and'd together, emit 1807 // this as a sequence of branches instead of setcc's with and/or operations. 1808 // As long as jumps are not expensive, this should improve performance. 1809 // For example, instead of something like: 1810 // cmp A, B 1811 // C = seteq 1812 // cmp D, E 1813 // F = setle 1814 // or C, F 1815 // jnz foo 1816 // Emit: 1817 // cmp A, B 1818 // je foo 1819 // cmp D, E 1820 // jle foo 1821 // 1822 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1823 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1824 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1825 !I.getMetadata(LLVMContext::MD_unpredictable) && 1826 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1827 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1828 Opcode, 1829 getEdgeProbability(BrMBB, Succ0MBB), 1830 getEdgeProbability(BrMBB, Succ1MBB), 1831 /*InvertCond=*/false); 1832 // If the compares in later blocks need to use values not currently 1833 // exported from this block, export them now. This block should always 1834 // be the first entry. 1835 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1836 1837 // Allow some cases to be rejected. 1838 if (ShouldEmitAsBranches(SwitchCases)) { 1839 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1840 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1841 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1842 } 1843 1844 // Emit the branch for this block. 1845 visitSwitchCase(SwitchCases[0], BrMBB); 1846 SwitchCases.erase(SwitchCases.begin()); 1847 return; 1848 } 1849 1850 // Okay, we decided not to do this, remove any inserted MBB's and clear 1851 // SwitchCases. 1852 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1853 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1854 1855 SwitchCases.clear(); 1856 } 1857 } 1858 1859 // Create a CaseBlock record representing this branch. 1860 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1861 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1862 1863 // Use visitSwitchCase to actually insert the fast branch sequence for this 1864 // cond branch. 1865 visitSwitchCase(CB, BrMBB); 1866 } 1867 1868 /// visitSwitchCase - Emits the necessary code to represent a single node in 1869 /// the binary search tree resulting from lowering a switch instruction. 1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1871 MachineBasicBlock *SwitchBB) { 1872 SDValue Cond; 1873 SDValue CondLHS = getValue(CB.CmpLHS); 1874 SDLoc dl = getCurSDLoc(); 1875 1876 // Build the setcc now. 1877 if (!CB.CmpMHS) { 1878 // Fold "(X == true)" to X and "(X == false)" to !X to 1879 // handle common cases produced by branch lowering. 1880 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1881 CB.CC == ISD::SETEQ) 1882 Cond = CondLHS; 1883 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1884 CB.CC == ISD::SETEQ) { 1885 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1886 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1887 } else 1888 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1889 } else { 1890 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1891 1892 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1893 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1894 1895 SDValue CmpOp = getValue(CB.CmpMHS); 1896 EVT VT = CmpOp.getValueType(); 1897 1898 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1899 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1900 ISD::SETLE); 1901 } else { 1902 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1903 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1904 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1905 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1906 } 1907 } 1908 1909 // Update successor info 1910 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1911 // TrueBB and FalseBB are always different unless the incoming IR is 1912 // degenerate. This only happens when running llc on weird IR. 1913 if (CB.TrueBB != CB.FalseBB) 1914 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1915 SwitchBB->normalizeSuccProbs(); 1916 1917 // If the lhs block is the next block, invert the condition so that we can 1918 // fall through to the lhs instead of the rhs block. 1919 if (CB.TrueBB == NextBlock(SwitchBB)) { 1920 std::swap(CB.TrueBB, CB.FalseBB); 1921 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1922 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1923 } 1924 1925 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1926 MVT::Other, getControlRoot(), Cond, 1927 DAG.getBasicBlock(CB.TrueBB)); 1928 1929 // Insert the false branch. Do this even if it's a fall through branch, 1930 // this makes it easier to do DAG optimizations which require inverting 1931 // the branch condition. 1932 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1933 DAG.getBasicBlock(CB.FalseBB)); 1934 1935 DAG.setRoot(BrCond); 1936 } 1937 1938 /// visitJumpTable - Emit JumpTable node in the current MBB 1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1940 // Emit the code for the jump table 1941 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1942 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1943 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1944 JT.Reg, PTy); 1945 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1946 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1947 MVT::Other, Index.getValue(1), 1948 Table, Index); 1949 DAG.setRoot(BrJumpTable); 1950 } 1951 1952 /// visitJumpTableHeader - This function emits necessary code to produce index 1953 /// in the JumpTable from switch case. 1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1955 JumpTableHeader &JTH, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 1959 // Subtract the lowest switch case value from the value being switched on and 1960 // conditional branch to default mbb if the result is greater than the 1961 // difference between smallest and largest cases. 1962 SDValue SwitchOp = getValue(JTH.SValue); 1963 EVT VT = SwitchOp.getValueType(); 1964 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1965 DAG.getConstant(JTH.First, dl, VT)); 1966 1967 // The SDNode we just created, which holds the value being switched on minus 1968 // the smallest case value, needs to be copied to a virtual register so it 1969 // can be used as an index into the jump table in a subsequent basic block. 1970 // This value may be smaller or larger than the target's pointer type, and 1971 // therefore require extension or truncating. 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1974 1975 unsigned JumpTableReg = 1976 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1977 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1978 JumpTableReg, SwitchOp); 1979 JT.Reg = JumpTableReg; 1980 1981 // Emit the range check for the jump table, and branch to the default block 1982 // for the switch statement if the value being switched on exceeds the largest 1983 // case in the switch. 1984 SDValue CMP = DAG.getSetCC( 1985 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1986 Sub.getValueType()), 1987 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1988 1989 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1990 MVT::Other, CopyTo, CMP, 1991 DAG.getBasicBlock(JT.Default)); 1992 1993 // Avoid emitting unnecessary branches to the next block. 1994 if (JT.MBB != NextBlock(SwitchBB)) 1995 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1996 DAG.getBasicBlock(JT.MBB)); 1997 1998 DAG.setRoot(BrCond); 1999 } 2000 2001 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2002 /// variable if there exists one. 2003 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2004 SDValue &Chain) { 2005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2006 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2007 MachineFunction &MF = DAG.getMachineFunction(); 2008 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2009 MachineSDNode *Node = 2010 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2011 if (Global) { 2012 MachinePointerInfo MPInfo(Global); 2013 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2014 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2015 MachineMemOperand::MODereferenceable; 2016 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2017 DAG.getEVTAlignment(PtrTy)); 2018 Node->setMemRefs(MemRefs, MemRefs + 1); 2019 } 2020 return SDValue(Node, 0); 2021 } 2022 2023 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2024 /// tail spliced into a stack protector check success bb. 2025 /// 2026 /// For a high level explanation of how this fits into the stack protector 2027 /// generation see the comment on the declaration of class 2028 /// StackProtectorDescriptor. 2029 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2030 MachineBasicBlock *ParentBB) { 2031 2032 // First create the loads to the guard/stack slot for the comparison. 2033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2034 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2035 2036 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2037 int FI = MFI.getStackProtectorIndex(); 2038 2039 SDValue Guard; 2040 SDLoc dl = getCurSDLoc(); 2041 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2042 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2043 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2044 2045 // Generate code to load the content of the guard slot. 2046 SDValue StackSlot = DAG.getLoad( 2047 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2048 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2049 MachineMemOperand::MOVolatile); 2050 2051 // Retrieve guard check function, nullptr if instrumentation is inlined. 2052 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2053 // The target provides a guard check function to validate the guard value. 2054 // Generate a call to that function with the content of the guard slot as 2055 // argument. 2056 auto *Fn = cast<Function>(GuardCheck); 2057 FunctionType *FnTy = Fn->getFunctionType(); 2058 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2059 2060 TargetLowering::ArgListTy Args; 2061 TargetLowering::ArgListEntry Entry; 2062 Entry.Node = StackSlot; 2063 Entry.Ty = FnTy->getParamType(0); 2064 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2065 Entry.isInReg = true; 2066 Args.push_back(Entry); 2067 2068 TargetLowering::CallLoweringInfo CLI(DAG); 2069 CLI.setDebugLoc(getCurSDLoc()) 2070 .setChain(DAG.getEntryNode()) 2071 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2072 getValue(GuardCheck), std::move(Args)); 2073 2074 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2075 DAG.setRoot(Result.second); 2076 return; 2077 } 2078 2079 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2080 // Otherwise, emit a volatile load to retrieve the stack guard value. 2081 SDValue Chain = DAG.getEntryNode(); 2082 if (TLI.useLoadStackGuardNode()) { 2083 Guard = getLoadStackGuard(DAG, dl, Chain); 2084 } else { 2085 const Value *IRGuard = TLI.getSDagStackGuard(M); 2086 SDValue GuardPtr = getValue(IRGuard); 2087 2088 Guard = 2089 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2090 Align, MachineMemOperand::MOVolatile); 2091 } 2092 2093 // Perform the comparison via a subtract/getsetcc. 2094 EVT VT = Guard.getValueType(); 2095 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2096 2097 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2098 *DAG.getContext(), 2099 Sub.getValueType()), 2100 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2101 2102 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2103 // branch to failure MBB. 2104 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2105 MVT::Other, StackSlot.getOperand(0), 2106 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2107 // Otherwise branch to success MBB. 2108 SDValue Br = DAG.getNode(ISD::BR, dl, 2109 MVT::Other, BrCond, 2110 DAG.getBasicBlock(SPD.getSuccessMBB())); 2111 2112 DAG.setRoot(Br); 2113 } 2114 2115 /// Codegen the failure basic block for a stack protector check. 2116 /// 2117 /// A failure stack protector machine basic block consists simply of a call to 2118 /// __stack_chk_fail(). 2119 /// 2120 /// For a high level explanation of how this fits into the stack protector 2121 /// generation see the comment on the declaration of class 2122 /// StackProtectorDescriptor. 2123 void 2124 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2126 SDValue Chain = 2127 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2128 None, false, getCurSDLoc(), false, false).second; 2129 DAG.setRoot(Chain); 2130 } 2131 2132 /// visitBitTestHeader - This function emits necessary code to produce value 2133 /// suitable for "bit tests" 2134 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2135 MachineBasicBlock *SwitchBB) { 2136 SDLoc dl = getCurSDLoc(); 2137 2138 // Subtract the minimum value 2139 SDValue SwitchOp = getValue(B.SValue); 2140 EVT VT = SwitchOp.getValueType(); 2141 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2142 DAG.getConstant(B.First, dl, VT)); 2143 2144 // Check range 2145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2146 SDValue RangeCmp = DAG.getSetCC( 2147 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2148 Sub.getValueType()), 2149 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2150 2151 // Determine the type of the test operands. 2152 bool UsePtrType = false; 2153 if (!TLI.isTypeLegal(VT)) 2154 UsePtrType = true; 2155 else { 2156 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2157 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2158 // Switch table case range are encoded into series of masks. 2159 // Just use pointer type, it's guaranteed to fit. 2160 UsePtrType = true; 2161 break; 2162 } 2163 } 2164 if (UsePtrType) { 2165 VT = TLI.getPointerTy(DAG.getDataLayout()); 2166 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2167 } 2168 2169 B.RegVT = VT.getSimpleVT(); 2170 B.Reg = FuncInfo.CreateReg(B.RegVT); 2171 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2172 2173 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2174 2175 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2176 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2177 SwitchBB->normalizeSuccProbs(); 2178 2179 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2180 MVT::Other, CopyTo, RangeCmp, 2181 DAG.getBasicBlock(B.Default)); 2182 2183 // Avoid emitting unnecessary branches to the next block. 2184 if (MBB != NextBlock(SwitchBB)) 2185 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2186 DAG.getBasicBlock(MBB)); 2187 2188 DAG.setRoot(BrRange); 2189 } 2190 2191 /// visitBitTestCase - this function produces one "bit test" 2192 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2193 MachineBasicBlock* NextMBB, 2194 BranchProbability BranchProbToNext, 2195 unsigned Reg, 2196 BitTestCase &B, 2197 MachineBasicBlock *SwitchBB) { 2198 SDLoc dl = getCurSDLoc(); 2199 MVT VT = BB.RegVT; 2200 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2201 SDValue Cmp; 2202 unsigned PopCount = countPopulation(B.Mask); 2203 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2204 if (PopCount == 1) { 2205 // Testing for a single bit; just compare the shift count with what it 2206 // would need to be to shift a 1 bit in that position. 2207 Cmp = DAG.getSetCC( 2208 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2209 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2210 ISD::SETEQ); 2211 } else if (PopCount == BB.Range) { 2212 // There is only one zero bit in the range, test for it directly. 2213 Cmp = DAG.getSetCC( 2214 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2215 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2216 ISD::SETNE); 2217 } else { 2218 // Make desired shift 2219 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2220 DAG.getConstant(1, dl, VT), ShiftOp); 2221 2222 // Emit bit tests and jumps 2223 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2224 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2225 Cmp = DAG.getSetCC( 2226 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2227 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2228 } 2229 2230 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2231 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2232 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2233 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2234 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2235 // one as they are relative probabilities (and thus work more like weights), 2236 // and hence we need to normalize them to let the sum of them become one. 2237 SwitchBB->normalizeSuccProbs(); 2238 2239 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2240 MVT::Other, getControlRoot(), 2241 Cmp, DAG.getBasicBlock(B.TargetBB)); 2242 2243 // Avoid emitting unnecessary branches to the next block. 2244 if (NextMBB != NextBlock(SwitchBB)) 2245 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2246 DAG.getBasicBlock(NextMBB)); 2247 2248 DAG.setRoot(BrAnd); 2249 } 2250 2251 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2252 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2253 2254 // Retrieve successors. Look through artificial IR level blocks like 2255 // catchswitch for successors. 2256 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 const BasicBlock *EHPadBB = I.getSuccessor(1); 2258 2259 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2260 // have to do anything here to lower funclet bundles. 2261 assert(!I.hasOperandBundlesOtherThan( 2262 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2263 "Cannot lower invokes with arbitrary operand bundles yet!"); 2264 2265 const Value *Callee(I.getCalledValue()); 2266 const Function *Fn = dyn_cast<Function>(Callee); 2267 if (isa<InlineAsm>(Callee)) 2268 visitInlineAsm(&I); 2269 else if (Fn && Fn->isIntrinsic()) { 2270 switch (Fn->getIntrinsicID()) { 2271 default: 2272 llvm_unreachable("Cannot invoke this intrinsic"); 2273 case Intrinsic::donothing: 2274 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2275 break; 2276 case Intrinsic::experimental_patchpoint_void: 2277 case Intrinsic::experimental_patchpoint_i64: 2278 visitPatchpoint(&I, EHPadBB); 2279 break; 2280 case Intrinsic::experimental_gc_statepoint: 2281 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2282 break; 2283 } 2284 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2285 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2286 // Eventually we will support lowering the @llvm.experimental.deoptimize 2287 // intrinsic, and right now there are no plans to support other intrinsics 2288 // with deopt state. 2289 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2290 } else { 2291 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2292 } 2293 2294 // If the value of the invoke is used outside of its defining block, make it 2295 // available as a virtual register. 2296 // We already took care of the exported value for the statepoint instruction 2297 // during call to the LowerStatepoint. 2298 if (!isStatepoint(I)) { 2299 CopyToExportRegsIfNeeded(&I); 2300 } 2301 2302 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2303 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2304 BranchProbability EHPadBBProb = 2305 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2306 : BranchProbability::getZero(); 2307 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2308 2309 // Update successor info. 2310 addSuccessorWithProb(InvokeMBB, Return); 2311 for (auto &UnwindDest : UnwindDests) { 2312 UnwindDest.first->setIsEHPad(); 2313 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2314 } 2315 InvokeMBB->normalizeSuccProbs(); 2316 2317 // Drop into normal successor. 2318 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2319 MVT::Other, getControlRoot(), 2320 DAG.getBasicBlock(Return))); 2321 } 2322 2323 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2324 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2325 } 2326 2327 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2328 assert(FuncInfo.MBB->isEHPad() && 2329 "Call to landingpad not in landing pad!"); 2330 2331 MachineBasicBlock *MBB = FuncInfo.MBB; 2332 addLandingPadInfo(LP, *MBB); 2333 2334 // If there aren't registers to copy the values into (e.g., during SjLj 2335 // exceptions), then don't bother to create these DAG nodes. 2336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2337 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2338 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2339 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2340 return; 2341 2342 // If landingpad's return type is token type, we don't create DAG nodes 2343 // for its exception pointer and selector value. The extraction of exception 2344 // pointer or selector value from token type landingpads is not currently 2345 // supported. 2346 if (LP.getType()->isTokenTy()) 2347 return; 2348 2349 SmallVector<EVT, 2> ValueVTs; 2350 SDLoc dl = getCurSDLoc(); 2351 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2352 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2353 2354 // Get the two live-in registers as SDValues. The physregs have already been 2355 // copied into virtual registers. 2356 SDValue Ops[2]; 2357 if (FuncInfo.ExceptionPointerVirtReg) { 2358 Ops[0] = DAG.getZExtOrTrunc( 2359 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2360 FuncInfo.ExceptionPointerVirtReg, 2361 TLI.getPointerTy(DAG.getDataLayout())), 2362 dl, ValueVTs[0]); 2363 } else { 2364 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2365 } 2366 Ops[1] = DAG.getZExtOrTrunc( 2367 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2368 FuncInfo.ExceptionSelectorVirtReg, 2369 TLI.getPointerTy(DAG.getDataLayout())), 2370 dl, ValueVTs[1]); 2371 2372 // Merge into one. 2373 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2374 DAG.getVTList(ValueVTs), Ops); 2375 setValue(&LP, Res); 2376 } 2377 2378 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2379 #ifndef NDEBUG 2380 for (const CaseCluster &CC : Clusters) 2381 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2382 #endif 2383 2384 std::sort(Clusters.begin(), Clusters.end(), 2385 [](const CaseCluster &a, const CaseCluster &b) { 2386 return a.Low->getValue().slt(b.Low->getValue()); 2387 }); 2388 2389 // Merge adjacent clusters with the same destination. 2390 const unsigned N = Clusters.size(); 2391 unsigned DstIndex = 0; 2392 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2393 CaseCluster &CC = Clusters[SrcIndex]; 2394 const ConstantInt *CaseVal = CC.Low; 2395 MachineBasicBlock *Succ = CC.MBB; 2396 2397 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2398 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2399 // If this case has the same successor and is a neighbour, merge it into 2400 // the previous cluster. 2401 Clusters[DstIndex - 1].High = CaseVal; 2402 Clusters[DstIndex - 1].Prob += CC.Prob; 2403 } else { 2404 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2405 sizeof(Clusters[SrcIndex])); 2406 } 2407 } 2408 Clusters.resize(DstIndex); 2409 } 2410 2411 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2412 MachineBasicBlock *Last) { 2413 // Update JTCases. 2414 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2415 if (JTCases[i].first.HeaderBB == First) 2416 JTCases[i].first.HeaderBB = Last; 2417 2418 // Update BitTestCases. 2419 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2420 if (BitTestCases[i].Parent == First) 2421 BitTestCases[i].Parent = Last; 2422 } 2423 2424 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2425 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2426 2427 // Update machine-CFG edges with unique successors. 2428 SmallSet<BasicBlock*, 32> Done; 2429 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2430 BasicBlock *BB = I.getSuccessor(i); 2431 bool Inserted = Done.insert(BB).second; 2432 if (!Inserted) 2433 continue; 2434 2435 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2436 addSuccessorWithProb(IndirectBrMBB, Succ); 2437 } 2438 IndirectBrMBB->normalizeSuccProbs(); 2439 2440 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2441 MVT::Other, getControlRoot(), 2442 getValue(I.getAddress()))); 2443 } 2444 2445 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2446 if (DAG.getTarget().Options.TrapUnreachable) 2447 DAG.setRoot( 2448 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2449 } 2450 2451 void SelectionDAGBuilder::visitFSub(const User &I) { 2452 // -0.0 - X --> fneg 2453 Type *Ty = I.getType(); 2454 if (isa<Constant>(I.getOperand(0)) && 2455 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2456 SDValue Op2 = getValue(I.getOperand(1)); 2457 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2458 Op2.getValueType(), Op2)); 2459 return; 2460 } 2461 2462 visitBinary(I, ISD::FSUB); 2463 } 2464 2465 /// Checks if the given instruction performs a vector reduction, in which case 2466 /// we have the freedom to alter the elements in the result as long as the 2467 /// reduction of them stays unchanged. 2468 static bool isVectorReductionOp(const User *I) { 2469 const Instruction *Inst = dyn_cast<Instruction>(I); 2470 if (!Inst || !Inst->getType()->isVectorTy()) 2471 return false; 2472 2473 auto OpCode = Inst->getOpcode(); 2474 switch (OpCode) { 2475 case Instruction::Add: 2476 case Instruction::Mul: 2477 case Instruction::And: 2478 case Instruction::Or: 2479 case Instruction::Xor: 2480 break; 2481 case Instruction::FAdd: 2482 case Instruction::FMul: 2483 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2484 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2485 break; 2486 LLVM_FALLTHROUGH; 2487 default: 2488 return false; 2489 } 2490 2491 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2492 unsigned ElemNumToReduce = ElemNum; 2493 2494 // Do DFS search on the def-use chain from the given instruction. We only 2495 // allow four kinds of operations during the search until we reach the 2496 // instruction that extracts the first element from the vector: 2497 // 2498 // 1. The reduction operation of the same opcode as the given instruction. 2499 // 2500 // 2. PHI node. 2501 // 2502 // 3. ShuffleVector instruction together with a reduction operation that 2503 // does a partial reduction. 2504 // 2505 // 4. ExtractElement that extracts the first element from the vector, and we 2506 // stop searching the def-use chain here. 2507 // 2508 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2509 // from 1-3 to the stack to continue the DFS. The given instruction is not 2510 // a reduction operation if we meet any other instructions other than those 2511 // listed above. 2512 2513 SmallVector<const User *, 16> UsersToVisit{Inst}; 2514 SmallPtrSet<const User *, 16> Visited; 2515 bool ReduxExtracted = false; 2516 2517 while (!UsersToVisit.empty()) { 2518 auto User = UsersToVisit.back(); 2519 UsersToVisit.pop_back(); 2520 if (!Visited.insert(User).second) 2521 continue; 2522 2523 for (const auto &U : User->users()) { 2524 auto Inst = dyn_cast<Instruction>(U); 2525 if (!Inst) 2526 return false; 2527 2528 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2529 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2530 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2531 return false; 2532 UsersToVisit.push_back(U); 2533 } else if (const ShuffleVectorInst *ShufInst = 2534 dyn_cast<ShuffleVectorInst>(U)) { 2535 // Detect the following pattern: A ShuffleVector instruction together 2536 // with a reduction that do partial reduction on the first and second 2537 // ElemNumToReduce / 2 elements, and store the result in 2538 // ElemNumToReduce / 2 elements in another vector. 2539 2540 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2541 if (ResultElements < ElemNum) 2542 return false; 2543 2544 if (ElemNumToReduce == 1) 2545 return false; 2546 if (!isa<UndefValue>(U->getOperand(1))) 2547 return false; 2548 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2549 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2550 return false; 2551 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2552 if (ShufInst->getMaskValue(i) != -1) 2553 return false; 2554 2555 // There is only one user of this ShuffleVector instruction, which 2556 // must be a reduction operation. 2557 if (!U->hasOneUse()) 2558 return false; 2559 2560 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2561 if (!U2 || U2->getOpcode() != OpCode) 2562 return false; 2563 2564 // Check operands of the reduction operation. 2565 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2566 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2567 UsersToVisit.push_back(U2); 2568 ElemNumToReduce /= 2; 2569 } else 2570 return false; 2571 } else if (isa<ExtractElementInst>(U)) { 2572 // At this moment we should have reduced all elements in the vector. 2573 if (ElemNumToReduce != 1) 2574 return false; 2575 2576 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2577 if (!Val || Val->getZExtValue() != 0) 2578 return false; 2579 2580 ReduxExtracted = true; 2581 } else 2582 return false; 2583 } 2584 } 2585 return ReduxExtracted; 2586 } 2587 2588 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2589 SDValue Op1 = getValue(I.getOperand(0)); 2590 SDValue Op2 = getValue(I.getOperand(1)); 2591 2592 bool nuw = false; 2593 bool nsw = false; 2594 bool exact = false; 2595 bool vec_redux = false; 2596 FastMathFlags FMF; 2597 2598 if (const OverflowingBinaryOperator *OFBinOp = 2599 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2600 nuw = OFBinOp->hasNoUnsignedWrap(); 2601 nsw = OFBinOp->hasNoSignedWrap(); 2602 } 2603 if (const PossiblyExactOperator *ExactOp = 2604 dyn_cast<const PossiblyExactOperator>(&I)) 2605 exact = ExactOp->isExact(); 2606 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2607 FMF = FPOp->getFastMathFlags(); 2608 2609 if (isVectorReductionOp(&I)) { 2610 vec_redux = true; 2611 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2612 } 2613 2614 SDNodeFlags Flags; 2615 Flags.setExact(exact); 2616 Flags.setNoSignedWrap(nsw); 2617 Flags.setNoUnsignedWrap(nuw); 2618 Flags.setVectorReduction(vec_redux); 2619 if (EnableFMFInDAG) { 2620 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2621 Flags.setNoInfs(FMF.noInfs()); 2622 Flags.setNoNaNs(FMF.noNaNs()); 2623 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2624 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2625 } 2626 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2627 Op1, Op2, &Flags); 2628 setValue(&I, BinNodeValue); 2629 } 2630 2631 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2632 SDValue Op1 = getValue(I.getOperand(0)); 2633 SDValue Op2 = getValue(I.getOperand(1)); 2634 2635 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2636 Op2.getValueType(), DAG.getDataLayout()); 2637 2638 // Coerce the shift amount to the right type if we can. 2639 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2640 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2641 unsigned Op2Size = Op2.getValueSizeInBits(); 2642 SDLoc DL = getCurSDLoc(); 2643 2644 // If the operand is smaller than the shift count type, promote it. 2645 if (ShiftSize > Op2Size) 2646 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2647 2648 // If the operand is larger than the shift count type but the shift 2649 // count type has enough bits to represent any shift value, truncate 2650 // it now. This is a common case and it exposes the truncate to 2651 // optimization early. 2652 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2653 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2654 // Otherwise we'll need to temporarily settle for some other convenient 2655 // type. Type legalization will make adjustments once the shiftee is split. 2656 else 2657 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2658 } 2659 2660 bool nuw = false; 2661 bool nsw = false; 2662 bool exact = false; 2663 2664 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2665 2666 if (const OverflowingBinaryOperator *OFBinOp = 2667 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2668 nuw = OFBinOp->hasNoUnsignedWrap(); 2669 nsw = OFBinOp->hasNoSignedWrap(); 2670 } 2671 if (const PossiblyExactOperator *ExactOp = 2672 dyn_cast<const PossiblyExactOperator>(&I)) 2673 exact = ExactOp->isExact(); 2674 } 2675 SDNodeFlags Flags; 2676 Flags.setExact(exact); 2677 Flags.setNoSignedWrap(nsw); 2678 Flags.setNoUnsignedWrap(nuw); 2679 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2680 &Flags); 2681 setValue(&I, Res); 2682 } 2683 2684 void SelectionDAGBuilder::visitSDiv(const User &I) { 2685 SDValue Op1 = getValue(I.getOperand(0)); 2686 SDValue Op2 = getValue(I.getOperand(1)); 2687 2688 SDNodeFlags Flags; 2689 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2690 cast<PossiblyExactOperator>(&I)->isExact()); 2691 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2692 Op2, &Flags)); 2693 } 2694 2695 void SelectionDAGBuilder::visitICmp(const User &I) { 2696 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2697 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2698 predicate = IC->getPredicate(); 2699 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2700 predicate = ICmpInst::Predicate(IC->getPredicate()); 2701 SDValue Op1 = getValue(I.getOperand(0)); 2702 SDValue Op2 = getValue(I.getOperand(1)); 2703 ISD::CondCode Opcode = getICmpCondCode(predicate); 2704 2705 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2706 I.getType()); 2707 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2708 } 2709 2710 void SelectionDAGBuilder::visitFCmp(const User &I) { 2711 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2712 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2713 predicate = FC->getPredicate(); 2714 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2715 predicate = FCmpInst::Predicate(FC->getPredicate()); 2716 SDValue Op1 = getValue(I.getOperand(0)); 2717 SDValue Op2 = getValue(I.getOperand(1)); 2718 ISD::CondCode Condition = getFCmpCondCode(predicate); 2719 2720 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2721 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2722 // further optimization, but currently FMF is only applicable to binary nodes. 2723 if (TM.Options.NoNaNsFPMath) 2724 Condition = getFCmpCodeWithoutNaN(Condition); 2725 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2726 I.getType()); 2727 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2728 } 2729 2730 // Check if the condition of the select has one use or two users that are both 2731 // selects with the same condition. 2732 static bool hasOnlySelectUsers(const Value *Cond) { 2733 return all_of(Cond->users(), [](const Value *V) { 2734 return isa<SelectInst>(V); 2735 }); 2736 } 2737 2738 void SelectionDAGBuilder::visitSelect(const User &I) { 2739 SmallVector<EVT, 4> ValueVTs; 2740 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2741 ValueVTs); 2742 unsigned NumValues = ValueVTs.size(); 2743 if (NumValues == 0) return; 2744 2745 SmallVector<SDValue, 4> Values(NumValues); 2746 SDValue Cond = getValue(I.getOperand(0)); 2747 SDValue LHSVal = getValue(I.getOperand(1)); 2748 SDValue RHSVal = getValue(I.getOperand(2)); 2749 auto BaseOps = {Cond}; 2750 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2751 ISD::VSELECT : ISD::SELECT; 2752 2753 // Min/max matching is only viable if all output VTs are the same. 2754 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2755 EVT VT = ValueVTs[0]; 2756 LLVMContext &Ctx = *DAG.getContext(); 2757 auto &TLI = DAG.getTargetLoweringInfo(); 2758 2759 // We care about the legality of the operation after it has been type 2760 // legalized. 2761 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2762 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2763 VT = TLI.getTypeToTransformTo(Ctx, VT); 2764 2765 // If the vselect is legal, assume we want to leave this as a vector setcc + 2766 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2767 // min/max is legal on the scalar type. 2768 bool UseScalarMinMax = VT.isVector() && 2769 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2770 2771 Value *LHS, *RHS; 2772 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2773 ISD::NodeType Opc = ISD::DELETED_NODE; 2774 switch (SPR.Flavor) { 2775 case SPF_UMAX: Opc = ISD::UMAX; break; 2776 case SPF_UMIN: Opc = ISD::UMIN; break; 2777 case SPF_SMAX: Opc = ISD::SMAX; break; 2778 case SPF_SMIN: Opc = ISD::SMIN; break; 2779 case SPF_FMINNUM: 2780 switch (SPR.NaNBehavior) { 2781 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2782 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2783 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2784 case SPNB_RETURNS_ANY: { 2785 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2786 Opc = ISD::FMINNUM; 2787 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2788 Opc = ISD::FMINNAN; 2789 else if (UseScalarMinMax) 2790 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2791 ISD::FMINNUM : ISD::FMINNAN; 2792 break; 2793 } 2794 } 2795 break; 2796 case SPF_FMAXNUM: 2797 switch (SPR.NaNBehavior) { 2798 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2799 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2800 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2801 case SPNB_RETURNS_ANY: 2802 2803 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2804 Opc = ISD::FMAXNUM; 2805 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2806 Opc = ISD::FMAXNAN; 2807 else if (UseScalarMinMax) 2808 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2809 ISD::FMAXNUM : ISD::FMAXNAN; 2810 break; 2811 } 2812 break; 2813 default: break; 2814 } 2815 2816 if (Opc != ISD::DELETED_NODE && 2817 (TLI.isOperationLegalOrCustom(Opc, VT) || 2818 (UseScalarMinMax && 2819 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2820 // If the underlying comparison instruction is used by any other 2821 // instruction, the consumed instructions won't be destroyed, so it is 2822 // not profitable to convert to a min/max. 2823 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2824 OpCode = Opc; 2825 LHSVal = getValue(LHS); 2826 RHSVal = getValue(RHS); 2827 BaseOps = {}; 2828 } 2829 } 2830 2831 for (unsigned i = 0; i != NumValues; ++i) { 2832 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2833 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2834 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2835 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2836 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2837 Ops); 2838 } 2839 2840 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2841 DAG.getVTList(ValueVTs), Values)); 2842 } 2843 2844 void SelectionDAGBuilder::visitTrunc(const User &I) { 2845 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2846 SDValue N = getValue(I.getOperand(0)); 2847 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2848 I.getType()); 2849 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2850 } 2851 2852 void SelectionDAGBuilder::visitZExt(const User &I) { 2853 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2854 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2855 SDValue N = getValue(I.getOperand(0)); 2856 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2857 I.getType()); 2858 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2859 } 2860 2861 void SelectionDAGBuilder::visitSExt(const User &I) { 2862 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2863 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2864 SDValue N = getValue(I.getOperand(0)); 2865 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2866 I.getType()); 2867 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2868 } 2869 2870 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2871 // FPTrunc is never a no-op cast, no need to check 2872 SDValue N = getValue(I.getOperand(0)); 2873 SDLoc dl = getCurSDLoc(); 2874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2875 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2876 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2877 DAG.getTargetConstant( 2878 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2879 } 2880 2881 void SelectionDAGBuilder::visitFPExt(const User &I) { 2882 // FPExt is never a no-op cast, no need to check 2883 SDValue N = getValue(I.getOperand(0)); 2884 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2885 I.getType()); 2886 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2887 } 2888 2889 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2890 // FPToUI is never a no-op cast, no need to check 2891 SDValue N = getValue(I.getOperand(0)); 2892 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2893 I.getType()); 2894 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2895 } 2896 2897 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2898 // FPToSI is never a no-op cast, no need to check 2899 SDValue N = getValue(I.getOperand(0)); 2900 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2901 I.getType()); 2902 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2903 } 2904 2905 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2906 // UIToFP is never a no-op cast, no need to check 2907 SDValue N = getValue(I.getOperand(0)); 2908 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2909 I.getType()); 2910 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2911 } 2912 2913 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2914 // SIToFP is never a no-op cast, no need to check 2915 SDValue N = getValue(I.getOperand(0)); 2916 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2917 I.getType()); 2918 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2919 } 2920 2921 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2922 // What to do depends on the size of the integer and the size of the pointer. 2923 // We can either truncate, zero extend, or no-op, accordingly. 2924 SDValue N = getValue(I.getOperand(0)); 2925 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2926 I.getType()); 2927 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2928 } 2929 2930 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2931 // What to do depends on the size of the integer and the size of the pointer. 2932 // We can either truncate, zero extend, or no-op, accordingly. 2933 SDValue N = getValue(I.getOperand(0)); 2934 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2935 I.getType()); 2936 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2937 } 2938 2939 void SelectionDAGBuilder::visitBitCast(const User &I) { 2940 SDValue N = getValue(I.getOperand(0)); 2941 SDLoc dl = getCurSDLoc(); 2942 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2943 I.getType()); 2944 2945 // BitCast assures us that source and destination are the same size so this is 2946 // either a BITCAST or a no-op. 2947 if (DestVT != N.getValueType()) 2948 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2949 DestVT, N)); // convert types. 2950 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2951 // might fold any kind of constant expression to an integer constant and that 2952 // is not what we are looking for. Only regcognize a bitcast of a genuine 2953 // constant integer as an opaque constant. 2954 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2955 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2956 /*isOpaque*/true)); 2957 else 2958 setValue(&I, N); // noop cast. 2959 } 2960 2961 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2963 const Value *SV = I.getOperand(0); 2964 SDValue N = getValue(SV); 2965 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2966 2967 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2968 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2969 2970 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2971 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2972 2973 setValue(&I, N); 2974 } 2975 2976 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2978 SDValue InVec = getValue(I.getOperand(0)); 2979 SDValue InVal = getValue(I.getOperand(1)); 2980 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2981 TLI.getVectorIdxTy(DAG.getDataLayout())); 2982 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2983 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2984 InVec, InVal, InIdx)); 2985 } 2986 2987 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2989 SDValue InVec = getValue(I.getOperand(0)); 2990 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2991 TLI.getVectorIdxTy(DAG.getDataLayout())); 2992 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2993 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2994 InVec, InIdx)); 2995 } 2996 2997 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2998 SDValue Src1 = getValue(I.getOperand(0)); 2999 SDValue Src2 = getValue(I.getOperand(1)); 3000 SDLoc DL = getCurSDLoc(); 3001 3002 SmallVector<int, 8> Mask; 3003 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3004 unsigned MaskNumElts = Mask.size(); 3005 3006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3007 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3008 EVT SrcVT = Src1.getValueType(); 3009 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3010 3011 if (SrcNumElts == MaskNumElts) { 3012 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3013 return; 3014 } 3015 3016 // Normalize the shuffle vector since mask and vector length don't match. 3017 if (SrcNumElts < MaskNumElts) { 3018 // Mask is longer than the source vectors. We can use concatenate vector to 3019 // make the mask and vectors lengths match. 3020 3021 if (MaskNumElts % SrcNumElts == 0) { 3022 // Mask length is a multiple of the source vector length. 3023 // Check if the shuffle is some kind of concatenation of the input 3024 // vectors. 3025 unsigned NumConcat = MaskNumElts / SrcNumElts; 3026 bool IsConcat = true; 3027 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3028 for (unsigned i = 0; i != MaskNumElts; ++i) { 3029 int Idx = Mask[i]; 3030 if (Idx < 0) 3031 continue; 3032 // Ensure the indices in each SrcVT sized piece are sequential and that 3033 // the same source is used for the whole piece. 3034 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3035 (ConcatSrcs[i / SrcNumElts] >= 0 && 3036 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3037 IsConcat = false; 3038 break; 3039 } 3040 // Remember which source this index came from. 3041 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3042 } 3043 3044 // The shuffle is concatenating multiple vectors together. Just emit 3045 // a CONCAT_VECTORS operation. 3046 if (IsConcat) { 3047 SmallVector<SDValue, 8> ConcatOps; 3048 for (auto Src : ConcatSrcs) { 3049 if (Src < 0) 3050 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3051 else if (Src == 0) 3052 ConcatOps.push_back(Src1); 3053 else 3054 ConcatOps.push_back(Src2); 3055 } 3056 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3057 return; 3058 } 3059 } 3060 3061 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3062 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3063 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3064 PaddedMaskNumElts); 3065 3066 // Pad both vectors with undefs to make them the same length as the mask. 3067 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3068 3069 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3070 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3071 MOps1[0] = Src1; 3072 MOps2[0] = Src2; 3073 3074 Src1 = Src1.isUndef() 3075 ? DAG.getUNDEF(PaddedVT) 3076 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3077 Src2 = Src2.isUndef() 3078 ? DAG.getUNDEF(PaddedVT) 3079 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3080 3081 // Readjust mask for new input vector length. 3082 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3083 for (unsigned i = 0; i != MaskNumElts; ++i) { 3084 int Idx = Mask[i]; 3085 if (Idx >= (int)SrcNumElts) 3086 Idx -= SrcNumElts - PaddedMaskNumElts; 3087 MappedOps[i] = Idx; 3088 } 3089 3090 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3091 3092 // If the concatenated vector was padded, extract a subvector with the 3093 // correct number of elements. 3094 if (MaskNumElts != PaddedMaskNumElts) 3095 Result = DAG.getNode( 3096 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3097 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3098 3099 setValue(&I, Result); 3100 return; 3101 } 3102 3103 if (SrcNumElts > MaskNumElts) { 3104 // Analyze the access pattern of the vector to see if we can extract 3105 // two subvectors and do the shuffle. The analysis is done by calculating 3106 // the range of elements the mask access on both vectors. 3107 int MinRange[2] = { static_cast<int>(SrcNumElts), 3108 static_cast<int>(SrcNumElts)}; 3109 int MaxRange[2] = {-1, -1}; 3110 3111 for (unsigned i = 0; i != MaskNumElts; ++i) { 3112 int Idx = Mask[i]; 3113 unsigned Input = 0; 3114 if (Idx < 0) 3115 continue; 3116 3117 if (Idx >= (int)SrcNumElts) { 3118 Input = 1; 3119 Idx -= SrcNumElts; 3120 } 3121 if (Idx > MaxRange[Input]) 3122 MaxRange[Input] = Idx; 3123 if (Idx < MinRange[Input]) 3124 MinRange[Input] = Idx; 3125 } 3126 3127 // Check if the access is smaller than the vector size and can we find 3128 // a reasonable extract index. 3129 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3130 // Extract. 3131 int StartIdx[2]; // StartIdx to extract from 3132 for (unsigned Input = 0; Input < 2; ++Input) { 3133 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3134 RangeUse[Input] = 0; // Unused 3135 StartIdx[Input] = 0; 3136 continue; 3137 } 3138 3139 // Find a good start index that is a multiple of the mask length. Then 3140 // see if the rest of the elements are in range. 3141 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3142 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3143 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3144 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3145 } 3146 3147 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3148 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3149 return; 3150 } 3151 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3152 // Extract appropriate subvector and generate a vector shuffle 3153 for (unsigned Input = 0; Input < 2; ++Input) { 3154 SDValue &Src = Input == 0 ? Src1 : Src2; 3155 if (RangeUse[Input] == 0) 3156 Src = DAG.getUNDEF(VT); 3157 else { 3158 Src = DAG.getNode( 3159 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3160 DAG.getConstant(StartIdx[Input], DL, 3161 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3162 } 3163 } 3164 3165 // Calculate new mask. 3166 SmallVector<int, 8> MappedOps; 3167 for (unsigned i = 0; i != MaskNumElts; ++i) { 3168 int Idx = Mask[i]; 3169 if (Idx >= 0) { 3170 if (Idx < (int)SrcNumElts) 3171 Idx -= StartIdx[0]; 3172 else 3173 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3174 } 3175 MappedOps.push_back(Idx); 3176 } 3177 3178 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3179 return; 3180 } 3181 } 3182 3183 // We can't use either concat vectors or extract subvectors so fall back to 3184 // replacing the shuffle with extract and build vector. 3185 // to insert and build vector. 3186 EVT EltVT = VT.getVectorElementType(); 3187 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3188 SmallVector<SDValue,8> Ops; 3189 for (unsigned i = 0; i != MaskNumElts; ++i) { 3190 int Idx = Mask[i]; 3191 SDValue Res; 3192 3193 if (Idx < 0) { 3194 Res = DAG.getUNDEF(EltVT); 3195 } else { 3196 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3197 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3198 3199 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3200 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3201 } 3202 3203 Ops.push_back(Res); 3204 } 3205 3206 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3207 } 3208 3209 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3210 const Value *Op0 = I.getOperand(0); 3211 const Value *Op1 = I.getOperand(1); 3212 Type *AggTy = I.getType(); 3213 Type *ValTy = Op1->getType(); 3214 bool IntoUndef = isa<UndefValue>(Op0); 3215 bool FromUndef = isa<UndefValue>(Op1); 3216 3217 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3218 3219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3220 SmallVector<EVT, 4> AggValueVTs; 3221 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3222 SmallVector<EVT, 4> ValValueVTs; 3223 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3224 3225 unsigned NumAggValues = AggValueVTs.size(); 3226 unsigned NumValValues = ValValueVTs.size(); 3227 SmallVector<SDValue, 4> Values(NumAggValues); 3228 3229 // Ignore an insertvalue that produces an empty object 3230 if (!NumAggValues) { 3231 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3232 return; 3233 } 3234 3235 SDValue Agg = getValue(Op0); 3236 unsigned i = 0; 3237 // Copy the beginning value(s) from the original aggregate. 3238 for (; i != LinearIndex; ++i) 3239 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3240 SDValue(Agg.getNode(), Agg.getResNo() + i); 3241 // Copy values from the inserted value(s). 3242 if (NumValValues) { 3243 SDValue Val = getValue(Op1); 3244 for (; i != LinearIndex + NumValValues; ++i) 3245 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3246 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3247 } 3248 // Copy remaining value(s) from the original aggregate. 3249 for (; i != NumAggValues; ++i) 3250 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3251 SDValue(Agg.getNode(), Agg.getResNo() + i); 3252 3253 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3254 DAG.getVTList(AggValueVTs), Values)); 3255 } 3256 3257 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3258 const Value *Op0 = I.getOperand(0); 3259 Type *AggTy = Op0->getType(); 3260 Type *ValTy = I.getType(); 3261 bool OutOfUndef = isa<UndefValue>(Op0); 3262 3263 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3264 3265 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3266 SmallVector<EVT, 4> ValValueVTs; 3267 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3268 3269 unsigned NumValValues = ValValueVTs.size(); 3270 3271 // Ignore a extractvalue that produces an empty object 3272 if (!NumValValues) { 3273 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3274 return; 3275 } 3276 3277 SmallVector<SDValue, 4> Values(NumValValues); 3278 3279 SDValue Agg = getValue(Op0); 3280 // Copy out the selected value(s). 3281 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3282 Values[i - LinearIndex] = 3283 OutOfUndef ? 3284 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3285 SDValue(Agg.getNode(), Agg.getResNo() + i); 3286 3287 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3288 DAG.getVTList(ValValueVTs), Values)); 3289 } 3290 3291 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3292 Value *Op0 = I.getOperand(0); 3293 // Note that the pointer operand may be a vector of pointers. Take the scalar 3294 // element which holds a pointer. 3295 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3296 SDValue N = getValue(Op0); 3297 SDLoc dl = getCurSDLoc(); 3298 3299 // Normalize Vector GEP - all scalar operands should be converted to the 3300 // splat vector. 3301 unsigned VectorWidth = I.getType()->isVectorTy() ? 3302 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3303 3304 if (VectorWidth && !N.getValueType().isVector()) { 3305 LLVMContext &Context = *DAG.getContext(); 3306 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3307 N = DAG.getSplatBuildVector(VT, dl, N); 3308 } 3309 3310 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3311 GTI != E; ++GTI) { 3312 const Value *Idx = GTI.getOperand(); 3313 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3314 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3315 if (Field) { 3316 // N = N + Offset 3317 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3318 3319 // In an inbouds GEP with an offset that is nonnegative even when 3320 // interpreted as signed, assume there is no unsigned overflow. 3321 SDNodeFlags Flags; 3322 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3323 Flags.setNoUnsignedWrap(true); 3324 3325 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3326 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3327 } 3328 } else { 3329 MVT PtrTy = 3330 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3331 unsigned PtrSize = PtrTy.getSizeInBits(); 3332 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3333 3334 // If this is a scalar constant or a splat vector of constants, 3335 // handle it quickly. 3336 const auto *CI = dyn_cast<ConstantInt>(Idx); 3337 if (!CI && isa<ConstantDataVector>(Idx) && 3338 cast<ConstantDataVector>(Idx)->getSplatValue()) 3339 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3340 3341 if (CI) { 3342 if (CI->isZero()) 3343 continue; 3344 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3345 LLVMContext &Context = *DAG.getContext(); 3346 SDValue OffsVal = VectorWidth ? 3347 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3348 DAG.getConstant(Offs, dl, PtrTy); 3349 3350 // In an inbouds GEP with an offset that is nonnegative even when 3351 // interpreted as signed, assume there is no unsigned overflow. 3352 SDNodeFlags Flags; 3353 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3354 Flags.setNoUnsignedWrap(true); 3355 3356 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3357 continue; 3358 } 3359 3360 // N = N + Idx * ElementSize; 3361 SDValue IdxN = getValue(Idx); 3362 3363 if (!IdxN.getValueType().isVector() && VectorWidth) { 3364 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3365 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3366 } 3367 3368 // If the index is smaller or larger than intptr_t, truncate or extend 3369 // it. 3370 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3371 3372 // If this is a multiply by a power of two, turn it into a shl 3373 // immediately. This is a very common case. 3374 if (ElementSize != 1) { 3375 if (ElementSize.isPowerOf2()) { 3376 unsigned Amt = ElementSize.logBase2(); 3377 IdxN = DAG.getNode(ISD::SHL, dl, 3378 N.getValueType(), IdxN, 3379 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3380 } else { 3381 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3382 IdxN = DAG.getNode(ISD::MUL, dl, 3383 N.getValueType(), IdxN, Scale); 3384 } 3385 } 3386 3387 N = DAG.getNode(ISD::ADD, dl, 3388 N.getValueType(), N, IdxN); 3389 } 3390 } 3391 3392 setValue(&I, N); 3393 } 3394 3395 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3396 // If this is a fixed sized alloca in the entry block of the function, 3397 // allocate it statically on the stack. 3398 if (FuncInfo.StaticAllocaMap.count(&I)) 3399 return; // getValue will auto-populate this. 3400 3401 SDLoc dl = getCurSDLoc(); 3402 Type *Ty = I.getAllocatedType(); 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 auto &DL = DAG.getDataLayout(); 3405 uint64_t TySize = DL.getTypeAllocSize(Ty); 3406 unsigned Align = 3407 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3408 3409 SDValue AllocSize = getValue(I.getArraySize()); 3410 3411 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3412 if (AllocSize.getValueType() != IntPtr) 3413 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3414 3415 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3416 AllocSize, 3417 DAG.getConstant(TySize, dl, IntPtr)); 3418 3419 // Handle alignment. If the requested alignment is less than or equal to 3420 // the stack alignment, ignore it. If the size is greater than or equal to 3421 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3422 unsigned StackAlign = 3423 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3424 if (Align <= StackAlign) 3425 Align = 0; 3426 3427 // Round the size of the allocation up to the stack alignment size 3428 // by add SA-1 to the size. This doesn't overflow because we're computing 3429 // an address inside an alloca. 3430 SDNodeFlags Flags; 3431 Flags.setNoUnsignedWrap(true); 3432 AllocSize = DAG.getNode(ISD::ADD, dl, 3433 AllocSize.getValueType(), AllocSize, 3434 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3435 3436 // Mask out the low bits for alignment purposes. 3437 AllocSize = DAG.getNode(ISD::AND, dl, 3438 AllocSize.getValueType(), AllocSize, 3439 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3440 dl)); 3441 3442 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3443 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3444 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3445 setValue(&I, DSA); 3446 DAG.setRoot(DSA.getValue(1)); 3447 3448 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3449 } 3450 3451 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3452 if (I.isAtomic()) 3453 return visitAtomicLoad(I); 3454 3455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3456 const Value *SV = I.getOperand(0); 3457 if (TLI.supportSwiftError()) { 3458 // Swifterror values can come from either a function parameter with 3459 // swifterror attribute or an alloca with swifterror attribute. 3460 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3461 if (Arg->hasSwiftErrorAttr()) 3462 return visitLoadFromSwiftError(I); 3463 } 3464 3465 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3466 if (Alloca->isSwiftError()) 3467 return visitLoadFromSwiftError(I); 3468 } 3469 } 3470 3471 SDValue Ptr = getValue(SV); 3472 3473 Type *Ty = I.getType(); 3474 3475 bool isVolatile = I.isVolatile(); 3476 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3477 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3478 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3479 unsigned Alignment = I.getAlignment(); 3480 3481 AAMDNodes AAInfo; 3482 I.getAAMetadata(AAInfo); 3483 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3484 3485 SmallVector<EVT, 4> ValueVTs; 3486 SmallVector<uint64_t, 4> Offsets; 3487 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3488 unsigned NumValues = ValueVTs.size(); 3489 if (NumValues == 0) 3490 return; 3491 3492 SDValue Root; 3493 bool ConstantMemory = false; 3494 if (isVolatile || NumValues > MaxParallelChains) 3495 // Serialize volatile loads with other side effects. 3496 Root = getRoot(); 3497 else if (AA->pointsToConstantMemory(MemoryLocation( 3498 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3499 // Do not serialize (non-volatile) loads of constant memory with anything. 3500 Root = DAG.getEntryNode(); 3501 ConstantMemory = true; 3502 } else { 3503 // Do not serialize non-volatile loads against each other. 3504 Root = DAG.getRoot(); 3505 } 3506 3507 SDLoc dl = getCurSDLoc(); 3508 3509 if (isVolatile) 3510 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3511 3512 // An aggregate load cannot wrap around the address space, so offsets to its 3513 // parts don't wrap either. 3514 SDNodeFlags Flags; 3515 Flags.setNoUnsignedWrap(true); 3516 3517 SmallVector<SDValue, 4> Values(NumValues); 3518 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3519 EVT PtrVT = Ptr.getValueType(); 3520 unsigned ChainI = 0; 3521 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3522 // Serializing loads here may result in excessive register pressure, and 3523 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3524 // could recover a bit by hoisting nodes upward in the chain by recognizing 3525 // they are side-effect free or do not alias. The optimizer should really 3526 // avoid this case by converting large object/array copies to llvm.memcpy 3527 // (MaxParallelChains should always remain as failsafe). 3528 if (ChainI == MaxParallelChains) { 3529 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3530 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3531 makeArrayRef(Chains.data(), ChainI)); 3532 Root = Chain; 3533 ChainI = 0; 3534 } 3535 SDValue A = DAG.getNode(ISD::ADD, dl, 3536 PtrVT, Ptr, 3537 DAG.getConstant(Offsets[i], dl, PtrVT), 3538 &Flags); 3539 auto MMOFlags = MachineMemOperand::MONone; 3540 if (isVolatile) 3541 MMOFlags |= MachineMemOperand::MOVolatile; 3542 if (isNonTemporal) 3543 MMOFlags |= MachineMemOperand::MONonTemporal; 3544 if (isInvariant) 3545 MMOFlags |= MachineMemOperand::MOInvariant; 3546 if (isDereferenceable) 3547 MMOFlags |= MachineMemOperand::MODereferenceable; 3548 3549 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3550 MachinePointerInfo(SV, Offsets[i]), Alignment, 3551 MMOFlags, AAInfo, Ranges); 3552 3553 Values[i] = L; 3554 Chains[ChainI] = L.getValue(1); 3555 } 3556 3557 if (!ConstantMemory) { 3558 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3559 makeArrayRef(Chains.data(), ChainI)); 3560 if (isVolatile) 3561 DAG.setRoot(Chain); 3562 else 3563 PendingLoads.push_back(Chain); 3564 } 3565 3566 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3567 DAG.getVTList(ValueVTs), Values)); 3568 } 3569 3570 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3572 assert(TLI.supportSwiftError() && 3573 "call visitStoreToSwiftError when backend supports swifterror"); 3574 3575 SmallVector<EVT, 4> ValueVTs; 3576 SmallVector<uint64_t, 4> Offsets; 3577 const Value *SrcV = I.getOperand(0); 3578 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3579 SrcV->getType(), ValueVTs, &Offsets); 3580 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3581 "expect a single EVT for swifterror"); 3582 3583 SDValue Src = getValue(SrcV); 3584 // Create a virtual register, then update the virtual register. 3585 auto &DL = DAG.getDataLayout(); 3586 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3587 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3588 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3589 // Chain can be getRoot or getControlRoot. 3590 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3591 SDValue(Src.getNode(), Src.getResNo())); 3592 DAG.setRoot(CopyNode); 3593 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3594 } 3595 3596 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3597 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3598 "call visitLoadFromSwiftError when backend supports swifterror"); 3599 3600 assert(!I.isVolatile() && 3601 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3602 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3603 "Support volatile, non temporal, invariant for load_from_swift_error"); 3604 3605 const Value *SV = I.getOperand(0); 3606 Type *Ty = I.getType(); 3607 AAMDNodes AAInfo; 3608 I.getAAMetadata(AAInfo); 3609 assert(!AA->pointsToConstantMemory(MemoryLocation( 3610 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3611 "load_from_swift_error should not be constant memory"); 3612 3613 SmallVector<EVT, 4> ValueVTs; 3614 SmallVector<uint64_t, 4> Offsets; 3615 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3616 ValueVTs, &Offsets); 3617 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3618 "expect a single EVT for swifterror"); 3619 3620 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3621 SDValue L = DAG.getCopyFromReg( 3622 getRoot(), getCurSDLoc(), 3623 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3624 3625 setValue(&I, L); 3626 } 3627 3628 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3629 if (I.isAtomic()) 3630 return visitAtomicStore(I); 3631 3632 const Value *SrcV = I.getOperand(0); 3633 const Value *PtrV = I.getOperand(1); 3634 3635 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3636 if (TLI.supportSwiftError()) { 3637 // Swifterror values can come from either a function parameter with 3638 // swifterror attribute or an alloca with swifterror attribute. 3639 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3640 if (Arg->hasSwiftErrorAttr()) 3641 return visitStoreToSwiftError(I); 3642 } 3643 3644 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3645 if (Alloca->isSwiftError()) 3646 return visitStoreToSwiftError(I); 3647 } 3648 } 3649 3650 SmallVector<EVT, 4> ValueVTs; 3651 SmallVector<uint64_t, 4> Offsets; 3652 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3653 SrcV->getType(), ValueVTs, &Offsets); 3654 unsigned NumValues = ValueVTs.size(); 3655 if (NumValues == 0) 3656 return; 3657 3658 // Get the lowered operands. Note that we do this after 3659 // checking if NumResults is zero, because with zero results 3660 // the operands won't have values in the map. 3661 SDValue Src = getValue(SrcV); 3662 SDValue Ptr = getValue(PtrV); 3663 3664 SDValue Root = getRoot(); 3665 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3666 SDLoc dl = getCurSDLoc(); 3667 EVT PtrVT = Ptr.getValueType(); 3668 unsigned Alignment = I.getAlignment(); 3669 AAMDNodes AAInfo; 3670 I.getAAMetadata(AAInfo); 3671 3672 auto MMOFlags = MachineMemOperand::MONone; 3673 if (I.isVolatile()) 3674 MMOFlags |= MachineMemOperand::MOVolatile; 3675 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3676 MMOFlags |= MachineMemOperand::MONonTemporal; 3677 3678 // An aggregate load cannot wrap around the address space, so offsets to its 3679 // parts don't wrap either. 3680 SDNodeFlags Flags; 3681 Flags.setNoUnsignedWrap(true); 3682 3683 unsigned ChainI = 0; 3684 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3685 // See visitLoad comments. 3686 if (ChainI == MaxParallelChains) { 3687 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3688 makeArrayRef(Chains.data(), ChainI)); 3689 Root = Chain; 3690 ChainI = 0; 3691 } 3692 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3693 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3694 SDValue St = DAG.getStore( 3695 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3696 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3697 Chains[ChainI] = St; 3698 } 3699 3700 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3701 makeArrayRef(Chains.data(), ChainI)); 3702 DAG.setRoot(StoreNode); 3703 } 3704 3705 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3706 bool IsCompressing) { 3707 SDLoc sdl = getCurSDLoc(); 3708 3709 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3710 unsigned& Alignment) { 3711 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3712 Src0 = I.getArgOperand(0); 3713 Ptr = I.getArgOperand(1); 3714 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3715 Mask = I.getArgOperand(3); 3716 }; 3717 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3718 unsigned& Alignment) { 3719 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3720 Src0 = I.getArgOperand(0); 3721 Ptr = I.getArgOperand(1); 3722 Mask = I.getArgOperand(2); 3723 Alignment = 0; 3724 }; 3725 3726 Value *PtrOperand, *MaskOperand, *Src0Operand; 3727 unsigned Alignment; 3728 if (IsCompressing) 3729 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3730 else 3731 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3732 3733 SDValue Ptr = getValue(PtrOperand); 3734 SDValue Src0 = getValue(Src0Operand); 3735 SDValue Mask = getValue(MaskOperand); 3736 3737 EVT VT = Src0.getValueType(); 3738 if (!Alignment) 3739 Alignment = DAG.getEVTAlignment(VT); 3740 3741 AAMDNodes AAInfo; 3742 I.getAAMetadata(AAInfo); 3743 3744 MachineMemOperand *MMO = 3745 DAG.getMachineFunction(). 3746 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3747 MachineMemOperand::MOStore, VT.getStoreSize(), 3748 Alignment, AAInfo); 3749 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3750 MMO, false /* Truncating */, 3751 IsCompressing); 3752 DAG.setRoot(StoreNode); 3753 setValue(&I, StoreNode); 3754 } 3755 3756 // Get a uniform base for the Gather/Scatter intrinsic. 3757 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3758 // We try to represent it as a base pointer + vector of indices. 3759 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3760 // The first operand of the GEP may be a single pointer or a vector of pointers 3761 // Example: 3762 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3763 // or 3764 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3765 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3766 // 3767 // When the first GEP operand is a single pointer - it is the uniform base we 3768 // are looking for. If first operand of the GEP is a splat vector - we 3769 // extract the spalt value and use it as a uniform base. 3770 // In all other cases the function returns 'false'. 3771 // 3772 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3773 SelectionDAGBuilder* SDB) { 3774 3775 SelectionDAG& DAG = SDB->DAG; 3776 LLVMContext &Context = *DAG.getContext(); 3777 3778 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3779 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3780 if (!GEP || GEP->getNumOperands() > 2) 3781 return false; 3782 3783 const Value *GEPPtr = GEP->getPointerOperand(); 3784 if (!GEPPtr->getType()->isVectorTy()) 3785 Ptr = GEPPtr; 3786 else if (!(Ptr = getSplatValue(GEPPtr))) 3787 return false; 3788 3789 Value *IndexVal = GEP->getOperand(1); 3790 3791 // The operands of the GEP may be defined in another basic block. 3792 // In this case we'll not find nodes for the operands. 3793 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3794 return false; 3795 3796 Base = SDB->getValue(Ptr); 3797 Index = SDB->getValue(IndexVal); 3798 3799 // Suppress sign extension. 3800 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3801 if (SDB->findValue(Sext->getOperand(0))) { 3802 IndexVal = Sext->getOperand(0); 3803 Index = SDB->getValue(IndexVal); 3804 } 3805 } 3806 if (!Index.getValueType().isVector()) { 3807 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3808 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3809 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3810 } 3811 return true; 3812 } 3813 3814 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3815 SDLoc sdl = getCurSDLoc(); 3816 3817 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3818 const Value *Ptr = I.getArgOperand(1); 3819 SDValue Src0 = getValue(I.getArgOperand(0)); 3820 SDValue Mask = getValue(I.getArgOperand(3)); 3821 EVT VT = Src0.getValueType(); 3822 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3823 if (!Alignment) 3824 Alignment = DAG.getEVTAlignment(VT); 3825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3826 3827 AAMDNodes AAInfo; 3828 I.getAAMetadata(AAInfo); 3829 3830 SDValue Base; 3831 SDValue Index; 3832 const Value *BasePtr = Ptr; 3833 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3834 3835 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3836 MachineMemOperand *MMO = DAG.getMachineFunction(). 3837 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3838 MachineMemOperand::MOStore, VT.getStoreSize(), 3839 Alignment, AAInfo); 3840 if (!UniformBase) { 3841 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3842 Index = getValue(Ptr); 3843 } 3844 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3845 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3846 Ops, MMO); 3847 DAG.setRoot(Scatter); 3848 setValue(&I, Scatter); 3849 } 3850 3851 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3852 SDLoc sdl = getCurSDLoc(); 3853 3854 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3855 unsigned& Alignment) { 3856 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3857 Ptr = I.getArgOperand(0); 3858 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3859 Mask = I.getArgOperand(2); 3860 Src0 = I.getArgOperand(3); 3861 }; 3862 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3863 unsigned& Alignment) { 3864 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3865 Ptr = I.getArgOperand(0); 3866 Alignment = 0; 3867 Mask = I.getArgOperand(1); 3868 Src0 = I.getArgOperand(2); 3869 }; 3870 3871 Value *PtrOperand, *MaskOperand, *Src0Operand; 3872 unsigned Alignment; 3873 if (IsExpanding) 3874 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3875 else 3876 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3877 3878 SDValue Ptr = getValue(PtrOperand); 3879 SDValue Src0 = getValue(Src0Operand); 3880 SDValue Mask = getValue(MaskOperand); 3881 3882 EVT VT = Src0.getValueType(); 3883 if (!Alignment) 3884 Alignment = DAG.getEVTAlignment(VT); 3885 3886 AAMDNodes AAInfo; 3887 I.getAAMetadata(AAInfo); 3888 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3889 3890 // Do not serialize masked loads of constant memory with anything. 3891 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3892 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3893 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3894 3895 MachineMemOperand *MMO = 3896 DAG.getMachineFunction(). 3897 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3898 MachineMemOperand::MOLoad, VT.getStoreSize(), 3899 Alignment, AAInfo, Ranges); 3900 3901 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3902 ISD::NON_EXTLOAD, IsExpanding); 3903 if (AddToChain) { 3904 SDValue OutChain = Load.getValue(1); 3905 DAG.setRoot(OutChain); 3906 } 3907 setValue(&I, Load); 3908 } 3909 3910 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3911 SDLoc sdl = getCurSDLoc(); 3912 3913 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3914 const Value *Ptr = I.getArgOperand(0); 3915 SDValue Src0 = getValue(I.getArgOperand(3)); 3916 SDValue Mask = getValue(I.getArgOperand(2)); 3917 3918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3919 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3920 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3921 if (!Alignment) 3922 Alignment = DAG.getEVTAlignment(VT); 3923 3924 AAMDNodes AAInfo; 3925 I.getAAMetadata(AAInfo); 3926 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3927 3928 SDValue Root = DAG.getRoot(); 3929 SDValue Base; 3930 SDValue Index; 3931 const Value *BasePtr = Ptr; 3932 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3933 bool ConstantMemory = false; 3934 if (UniformBase && 3935 AA->pointsToConstantMemory(MemoryLocation( 3936 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3937 AAInfo))) { 3938 // Do not serialize (non-volatile) loads of constant memory with anything. 3939 Root = DAG.getEntryNode(); 3940 ConstantMemory = true; 3941 } 3942 3943 MachineMemOperand *MMO = 3944 DAG.getMachineFunction(). 3945 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3946 MachineMemOperand::MOLoad, VT.getStoreSize(), 3947 Alignment, AAInfo, Ranges); 3948 3949 if (!UniformBase) { 3950 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3951 Index = getValue(Ptr); 3952 } 3953 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3954 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3955 Ops, MMO); 3956 3957 SDValue OutChain = Gather.getValue(1); 3958 if (!ConstantMemory) 3959 PendingLoads.push_back(OutChain); 3960 setValue(&I, Gather); 3961 } 3962 3963 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3964 SDLoc dl = getCurSDLoc(); 3965 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3966 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3967 SynchronizationScope Scope = I.getSynchScope(); 3968 3969 SDValue InChain = getRoot(); 3970 3971 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3972 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3973 SDValue L = DAG.getAtomicCmpSwap( 3974 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3975 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3976 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3977 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3978 3979 SDValue OutChain = L.getValue(2); 3980 3981 setValue(&I, L); 3982 DAG.setRoot(OutChain); 3983 } 3984 3985 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3986 SDLoc dl = getCurSDLoc(); 3987 ISD::NodeType NT; 3988 switch (I.getOperation()) { 3989 default: llvm_unreachable("Unknown atomicrmw operation"); 3990 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3991 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3992 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3993 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3994 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3995 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3996 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3997 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3998 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3999 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4000 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4001 } 4002 AtomicOrdering Order = I.getOrdering(); 4003 SynchronizationScope Scope = I.getSynchScope(); 4004 4005 SDValue InChain = getRoot(); 4006 4007 SDValue L = 4008 DAG.getAtomic(NT, dl, 4009 getValue(I.getValOperand()).getSimpleValueType(), 4010 InChain, 4011 getValue(I.getPointerOperand()), 4012 getValue(I.getValOperand()), 4013 I.getPointerOperand(), 4014 /* Alignment=*/ 0, Order, Scope); 4015 4016 SDValue OutChain = L.getValue(1); 4017 4018 setValue(&I, L); 4019 DAG.setRoot(OutChain); 4020 } 4021 4022 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4023 SDLoc dl = getCurSDLoc(); 4024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4025 SDValue Ops[3]; 4026 Ops[0] = getRoot(); 4027 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4028 TLI.getPointerTy(DAG.getDataLayout())); 4029 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 4030 TLI.getPointerTy(DAG.getDataLayout())); 4031 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4032 } 4033 4034 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4035 SDLoc dl = getCurSDLoc(); 4036 AtomicOrdering Order = I.getOrdering(); 4037 SynchronizationScope Scope = I.getSynchScope(); 4038 4039 SDValue InChain = getRoot(); 4040 4041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4042 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4043 4044 if (I.getAlignment() < VT.getSizeInBits() / 8) 4045 report_fatal_error("Cannot generate unaligned atomic load"); 4046 4047 MachineMemOperand *MMO = 4048 DAG.getMachineFunction(). 4049 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4050 MachineMemOperand::MOVolatile | 4051 MachineMemOperand::MOLoad, 4052 VT.getStoreSize(), 4053 I.getAlignment() ? I.getAlignment() : 4054 DAG.getEVTAlignment(VT), 4055 AAMDNodes(), nullptr, Scope, Order); 4056 4057 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4058 SDValue L = 4059 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4060 getValue(I.getPointerOperand()), MMO); 4061 4062 SDValue OutChain = L.getValue(1); 4063 4064 setValue(&I, L); 4065 DAG.setRoot(OutChain); 4066 } 4067 4068 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4069 SDLoc dl = getCurSDLoc(); 4070 4071 AtomicOrdering Order = I.getOrdering(); 4072 SynchronizationScope Scope = I.getSynchScope(); 4073 4074 SDValue InChain = getRoot(); 4075 4076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4077 EVT VT = 4078 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4079 4080 if (I.getAlignment() < VT.getSizeInBits() / 8) 4081 report_fatal_error("Cannot generate unaligned atomic store"); 4082 4083 SDValue OutChain = 4084 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4085 InChain, 4086 getValue(I.getPointerOperand()), 4087 getValue(I.getValueOperand()), 4088 I.getPointerOperand(), I.getAlignment(), 4089 Order, Scope); 4090 4091 DAG.setRoot(OutChain); 4092 } 4093 4094 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4095 /// node. 4096 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4097 unsigned Intrinsic) { 4098 // Ignore the callsite's attributes. A specific call site may be marked with 4099 // readnone, but the lowering code will expect the chain based on the 4100 // definition. 4101 const Function *F = I.getCalledFunction(); 4102 bool HasChain = !F->doesNotAccessMemory(); 4103 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4104 4105 // Build the operand list. 4106 SmallVector<SDValue, 8> Ops; 4107 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4108 if (OnlyLoad) { 4109 // We don't need to serialize loads against other loads. 4110 Ops.push_back(DAG.getRoot()); 4111 } else { 4112 Ops.push_back(getRoot()); 4113 } 4114 } 4115 4116 // Info is set by getTgtMemInstrinsic 4117 TargetLowering::IntrinsicInfo Info; 4118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4119 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4120 4121 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4122 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4123 Info.opc == ISD::INTRINSIC_W_CHAIN) 4124 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4125 TLI.getPointerTy(DAG.getDataLayout()))); 4126 4127 // Add all operands of the call to the operand list. 4128 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4129 SDValue Op = getValue(I.getArgOperand(i)); 4130 Ops.push_back(Op); 4131 } 4132 4133 SmallVector<EVT, 4> ValueVTs; 4134 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4135 4136 if (HasChain) 4137 ValueVTs.push_back(MVT::Other); 4138 4139 SDVTList VTs = DAG.getVTList(ValueVTs); 4140 4141 // Create the node. 4142 SDValue Result; 4143 if (IsTgtIntrinsic) { 4144 // This is target intrinsic that touches memory 4145 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4146 VTs, Ops, Info.memVT, 4147 MachinePointerInfo(Info.ptrVal, Info.offset), 4148 Info.align, Info.vol, 4149 Info.readMem, Info.writeMem, Info.size); 4150 } else if (!HasChain) { 4151 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4152 } else if (!I.getType()->isVoidTy()) { 4153 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4154 } else { 4155 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4156 } 4157 4158 if (HasChain) { 4159 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4160 if (OnlyLoad) 4161 PendingLoads.push_back(Chain); 4162 else 4163 DAG.setRoot(Chain); 4164 } 4165 4166 if (!I.getType()->isVoidTy()) { 4167 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4168 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4169 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4170 } else 4171 Result = lowerRangeToAssertZExt(DAG, I, Result); 4172 4173 setValue(&I, Result); 4174 } 4175 } 4176 4177 /// GetSignificand - Get the significand and build it into a floating-point 4178 /// number with exponent of 1: 4179 /// 4180 /// Op = (Op & 0x007fffff) | 0x3f800000; 4181 /// 4182 /// where Op is the hexadecimal representation of floating point value. 4183 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4184 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4185 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4186 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4187 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4188 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4189 } 4190 4191 /// GetExponent - Get the exponent: 4192 /// 4193 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4194 /// 4195 /// where Op is the hexadecimal representation of floating point value. 4196 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4197 const TargetLowering &TLI, const SDLoc &dl) { 4198 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4199 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4200 SDValue t1 = DAG.getNode( 4201 ISD::SRL, dl, MVT::i32, t0, 4202 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4203 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4204 DAG.getConstant(127, dl, MVT::i32)); 4205 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4206 } 4207 4208 /// getF32Constant - Get 32-bit floating point constant. 4209 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4210 const SDLoc &dl) { 4211 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4212 MVT::f32); 4213 } 4214 4215 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4216 SelectionDAG &DAG) { 4217 // TODO: What fast-math-flags should be set on the floating-point nodes? 4218 4219 // IntegerPartOfX = ((int32_t)(t0); 4220 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4221 4222 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4223 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4224 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4225 4226 // IntegerPartOfX <<= 23; 4227 IntegerPartOfX = DAG.getNode( 4228 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4229 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4230 DAG.getDataLayout()))); 4231 4232 SDValue TwoToFractionalPartOfX; 4233 if (LimitFloatPrecision <= 6) { 4234 // For floating-point precision of 6: 4235 // 4236 // TwoToFractionalPartOfX = 4237 // 0.997535578f + 4238 // (0.735607626f + 0.252464424f * x) * x; 4239 // 4240 // error 0.0144103317, which is 6 bits 4241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4242 getF32Constant(DAG, 0x3e814304, dl)); 4243 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4244 getF32Constant(DAG, 0x3f3c50c8, dl)); 4245 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4246 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4247 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4248 } else if (LimitFloatPrecision <= 12) { 4249 // For floating-point precision of 12: 4250 // 4251 // TwoToFractionalPartOfX = 4252 // 0.999892986f + 4253 // (0.696457318f + 4254 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4255 // 4256 // error 0.000107046256, which is 13 to 14 bits 4257 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4258 getF32Constant(DAG, 0x3da235e3, dl)); 4259 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4260 getF32Constant(DAG, 0x3e65b8f3, dl)); 4261 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4262 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4263 getF32Constant(DAG, 0x3f324b07, dl)); 4264 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4265 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4266 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4267 } else { // LimitFloatPrecision <= 18 4268 // For floating-point precision of 18: 4269 // 4270 // TwoToFractionalPartOfX = 4271 // 0.999999982f + 4272 // (0.693148872f + 4273 // (0.240227044f + 4274 // (0.554906021e-1f + 4275 // (0.961591928e-2f + 4276 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4277 // error 2.47208000*10^(-7), which is better than 18 bits 4278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4279 getF32Constant(DAG, 0x3924b03e, dl)); 4280 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4281 getF32Constant(DAG, 0x3ab24b87, dl)); 4282 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4283 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4284 getF32Constant(DAG, 0x3c1d8c17, dl)); 4285 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4286 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4287 getF32Constant(DAG, 0x3d634a1d, dl)); 4288 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4289 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4290 getF32Constant(DAG, 0x3e75fe14, dl)); 4291 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4292 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4293 getF32Constant(DAG, 0x3f317234, dl)); 4294 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4295 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4296 getF32Constant(DAG, 0x3f800000, dl)); 4297 } 4298 4299 // Add the exponent into the result in integer domain. 4300 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4301 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4302 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4303 } 4304 4305 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4306 /// limited-precision mode. 4307 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4308 const TargetLowering &TLI) { 4309 if (Op.getValueType() == MVT::f32 && 4310 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4311 4312 // Put the exponent in the right bit position for later addition to the 4313 // final result: 4314 // 4315 // #define LOG2OFe 1.4426950f 4316 // t0 = Op * LOG2OFe 4317 4318 // TODO: What fast-math-flags should be set here? 4319 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4320 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4321 return getLimitedPrecisionExp2(t0, dl, DAG); 4322 } 4323 4324 // No special expansion. 4325 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4326 } 4327 4328 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4329 /// limited-precision mode. 4330 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4331 const TargetLowering &TLI) { 4332 4333 // TODO: What fast-math-flags should be set on the floating-point nodes? 4334 4335 if (Op.getValueType() == MVT::f32 && 4336 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4337 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4338 4339 // Scale the exponent by log(2) [0.69314718f]. 4340 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4341 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4342 getF32Constant(DAG, 0x3f317218, dl)); 4343 4344 // Get the significand and build it into a floating-point number with 4345 // exponent of 1. 4346 SDValue X = GetSignificand(DAG, Op1, dl); 4347 4348 SDValue LogOfMantissa; 4349 if (LimitFloatPrecision <= 6) { 4350 // For floating-point precision of 6: 4351 // 4352 // LogofMantissa = 4353 // -1.1609546f + 4354 // (1.4034025f - 0.23903021f * x) * x; 4355 // 4356 // error 0.0034276066, which is better than 8 bits 4357 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4358 getF32Constant(DAG, 0xbe74c456, dl)); 4359 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4360 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4361 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4362 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4363 getF32Constant(DAG, 0x3f949a29, dl)); 4364 } else if (LimitFloatPrecision <= 12) { 4365 // For floating-point precision of 12: 4366 // 4367 // LogOfMantissa = 4368 // -1.7417939f + 4369 // (2.8212026f + 4370 // (-1.4699568f + 4371 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4372 // 4373 // error 0.000061011436, which is 14 bits 4374 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4375 getF32Constant(DAG, 0xbd67b6d6, dl)); 4376 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4377 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4378 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4379 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4380 getF32Constant(DAG, 0x3fbc278b, dl)); 4381 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4382 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4383 getF32Constant(DAG, 0x40348e95, dl)); 4384 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4385 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4386 getF32Constant(DAG, 0x3fdef31a, dl)); 4387 } else { // LimitFloatPrecision <= 18 4388 // For floating-point precision of 18: 4389 // 4390 // LogOfMantissa = 4391 // -2.1072184f + 4392 // (4.2372794f + 4393 // (-3.7029485f + 4394 // (2.2781945f + 4395 // (-0.87823314f + 4396 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4397 // 4398 // error 0.0000023660568, which is better than 18 bits 4399 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4400 getF32Constant(DAG, 0xbc91e5ac, dl)); 4401 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4402 getF32Constant(DAG, 0x3e4350aa, dl)); 4403 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4404 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4405 getF32Constant(DAG, 0x3f60d3e3, dl)); 4406 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4407 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4408 getF32Constant(DAG, 0x4011cdf0, dl)); 4409 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4410 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4411 getF32Constant(DAG, 0x406cfd1c, dl)); 4412 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4413 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4414 getF32Constant(DAG, 0x408797cb, dl)); 4415 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4416 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4417 getF32Constant(DAG, 0x4006dcab, dl)); 4418 } 4419 4420 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4421 } 4422 4423 // No special expansion. 4424 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4425 } 4426 4427 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4428 /// limited-precision mode. 4429 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4430 const TargetLowering &TLI) { 4431 4432 // TODO: What fast-math-flags should be set on the floating-point nodes? 4433 4434 if (Op.getValueType() == MVT::f32 && 4435 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4436 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4437 4438 // Get the exponent. 4439 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4440 4441 // Get the significand and build it into a floating-point number with 4442 // exponent of 1. 4443 SDValue X = GetSignificand(DAG, Op1, dl); 4444 4445 // Different possible minimax approximations of significand in 4446 // floating-point for various degrees of accuracy over [1,2]. 4447 SDValue Log2ofMantissa; 4448 if (LimitFloatPrecision <= 6) { 4449 // For floating-point precision of 6: 4450 // 4451 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4452 // 4453 // error 0.0049451742, which is more than 7 bits 4454 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4455 getF32Constant(DAG, 0xbeb08fe0, dl)); 4456 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4457 getF32Constant(DAG, 0x40019463, dl)); 4458 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4459 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4460 getF32Constant(DAG, 0x3fd6633d, dl)); 4461 } else if (LimitFloatPrecision <= 12) { 4462 // For floating-point precision of 12: 4463 // 4464 // Log2ofMantissa = 4465 // -2.51285454f + 4466 // (4.07009056f + 4467 // (-2.12067489f + 4468 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4469 // 4470 // error 0.0000876136000, which is better than 13 bits 4471 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4472 getF32Constant(DAG, 0xbda7262e, dl)); 4473 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4474 getF32Constant(DAG, 0x3f25280b, dl)); 4475 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4476 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4477 getF32Constant(DAG, 0x4007b923, dl)); 4478 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4479 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4480 getF32Constant(DAG, 0x40823e2f, dl)); 4481 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4482 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4483 getF32Constant(DAG, 0x4020d29c, dl)); 4484 } else { // LimitFloatPrecision <= 18 4485 // For floating-point precision of 18: 4486 // 4487 // Log2ofMantissa = 4488 // -3.0400495f + 4489 // (6.1129976f + 4490 // (-5.3420409f + 4491 // (3.2865683f + 4492 // (-1.2669343f + 4493 // (0.27515199f - 4494 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4495 // 4496 // error 0.0000018516, which is better than 18 bits 4497 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4498 getF32Constant(DAG, 0xbcd2769e, dl)); 4499 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4500 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4501 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4502 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4503 getF32Constant(DAG, 0x3fa22ae7, dl)); 4504 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4505 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4506 getF32Constant(DAG, 0x40525723, dl)); 4507 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4508 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4509 getF32Constant(DAG, 0x40aaf200, dl)); 4510 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4511 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4512 getF32Constant(DAG, 0x40c39dad, dl)); 4513 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4514 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4515 getF32Constant(DAG, 0x4042902c, dl)); 4516 } 4517 4518 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4519 } 4520 4521 // No special expansion. 4522 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4523 } 4524 4525 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4526 /// limited-precision mode. 4527 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4528 const TargetLowering &TLI) { 4529 4530 // TODO: What fast-math-flags should be set on the floating-point nodes? 4531 4532 if (Op.getValueType() == MVT::f32 && 4533 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4534 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4535 4536 // Scale the exponent by log10(2) [0.30102999f]. 4537 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4538 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4539 getF32Constant(DAG, 0x3e9a209a, dl)); 4540 4541 // Get the significand and build it into a floating-point number with 4542 // exponent of 1. 4543 SDValue X = GetSignificand(DAG, Op1, dl); 4544 4545 SDValue Log10ofMantissa; 4546 if (LimitFloatPrecision <= 6) { 4547 // For floating-point precision of 6: 4548 // 4549 // Log10ofMantissa = 4550 // -0.50419619f + 4551 // (0.60948995f - 0.10380950f * x) * x; 4552 // 4553 // error 0.0014886165, which is 6 bits 4554 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4555 getF32Constant(DAG, 0xbdd49a13, dl)); 4556 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4557 getF32Constant(DAG, 0x3f1c0789, dl)); 4558 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4559 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4560 getF32Constant(DAG, 0x3f011300, dl)); 4561 } else if (LimitFloatPrecision <= 12) { 4562 // For floating-point precision of 12: 4563 // 4564 // Log10ofMantissa = 4565 // -0.64831180f + 4566 // (0.91751397f + 4567 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4568 // 4569 // error 0.00019228036, which is better than 12 bits 4570 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4571 getF32Constant(DAG, 0x3d431f31, dl)); 4572 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4573 getF32Constant(DAG, 0x3ea21fb2, dl)); 4574 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4575 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4576 getF32Constant(DAG, 0x3f6ae232, dl)); 4577 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4578 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4579 getF32Constant(DAG, 0x3f25f7c3, dl)); 4580 } else { // LimitFloatPrecision <= 18 4581 // For floating-point precision of 18: 4582 // 4583 // Log10ofMantissa = 4584 // -0.84299375f + 4585 // (1.5327582f + 4586 // (-1.0688956f + 4587 // (0.49102474f + 4588 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4589 // 4590 // error 0.0000037995730, which is better than 18 bits 4591 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4592 getF32Constant(DAG, 0x3c5d51ce, dl)); 4593 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4594 getF32Constant(DAG, 0x3e00685a, dl)); 4595 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4596 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4597 getF32Constant(DAG, 0x3efb6798, dl)); 4598 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4599 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4600 getF32Constant(DAG, 0x3f88d192, dl)); 4601 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4602 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4603 getF32Constant(DAG, 0x3fc4316c, dl)); 4604 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4605 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4606 getF32Constant(DAG, 0x3f57ce70, dl)); 4607 } 4608 4609 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4610 } 4611 4612 // No special expansion. 4613 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4614 } 4615 4616 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4617 /// limited-precision mode. 4618 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4619 const TargetLowering &TLI) { 4620 if (Op.getValueType() == MVT::f32 && 4621 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4622 return getLimitedPrecisionExp2(Op, dl, DAG); 4623 4624 // No special expansion. 4625 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4626 } 4627 4628 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4629 /// limited-precision mode with x == 10.0f. 4630 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4631 SelectionDAG &DAG, const TargetLowering &TLI) { 4632 bool IsExp10 = false; 4633 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4634 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4635 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4636 APFloat Ten(10.0f); 4637 IsExp10 = LHSC->isExactlyValue(Ten); 4638 } 4639 } 4640 4641 // TODO: What fast-math-flags should be set on the FMUL node? 4642 if (IsExp10) { 4643 // Put the exponent in the right bit position for later addition to the 4644 // final result: 4645 // 4646 // #define LOG2OF10 3.3219281f 4647 // t0 = Op * LOG2OF10; 4648 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4649 getF32Constant(DAG, 0x40549a78, dl)); 4650 return getLimitedPrecisionExp2(t0, dl, DAG); 4651 } 4652 4653 // No special expansion. 4654 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4655 } 4656 4657 4658 /// ExpandPowI - Expand a llvm.powi intrinsic. 4659 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4660 SelectionDAG &DAG) { 4661 // If RHS is a constant, we can expand this out to a multiplication tree, 4662 // otherwise we end up lowering to a call to __powidf2 (for example). When 4663 // optimizing for size, we only want to do this if the expansion would produce 4664 // a small number of multiplies, otherwise we do the full expansion. 4665 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4666 // Get the exponent as a positive value. 4667 unsigned Val = RHSC->getSExtValue(); 4668 if ((int)Val < 0) Val = -Val; 4669 4670 // powi(x, 0) -> 1.0 4671 if (Val == 0) 4672 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4673 4674 const Function *F = DAG.getMachineFunction().getFunction(); 4675 if (!F->optForSize() || 4676 // If optimizing for size, don't insert too many multiplies. 4677 // This inserts up to 5 multiplies. 4678 countPopulation(Val) + Log2_32(Val) < 7) { 4679 // We use the simple binary decomposition method to generate the multiply 4680 // sequence. There are more optimal ways to do this (for example, 4681 // powi(x,15) generates one more multiply than it should), but this has 4682 // the benefit of being both really simple and much better than a libcall. 4683 SDValue Res; // Logically starts equal to 1.0 4684 SDValue CurSquare = LHS; 4685 // TODO: Intrinsics should have fast-math-flags that propagate to these 4686 // nodes. 4687 while (Val) { 4688 if (Val & 1) { 4689 if (Res.getNode()) 4690 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4691 else 4692 Res = CurSquare; // 1.0*CurSquare. 4693 } 4694 4695 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4696 CurSquare, CurSquare); 4697 Val >>= 1; 4698 } 4699 4700 // If the original was negative, invert the result, producing 1/(x*x*x). 4701 if (RHSC->getSExtValue() < 0) 4702 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4703 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4704 return Res; 4705 } 4706 } 4707 4708 // Otherwise, expand to a libcall. 4709 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4710 } 4711 4712 // getUnderlyingArgReg - Find underlying register used for a truncated or 4713 // bitcasted argument. 4714 static unsigned getUnderlyingArgReg(const SDValue &N) { 4715 switch (N.getOpcode()) { 4716 case ISD::CopyFromReg: 4717 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4718 case ISD::BITCAST: 4719 case ISD::AssertZext: 4720 case ISD::AssertSext: 4721 case ISD::TRUNCATE: 4722 return getUnderlyingArgReg(N.getOperand(0)); 4723 default: 4724 return 0; 4725 } 4726 } 4727 4728 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4729 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4730 /// At the end of instruction selection, they will be inserted to the entry BB. 4731 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4732 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4733 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4734 const Argument *Arg = dyn_cast<Argument>(V); 4735 if (!Arg) 4736 return false; 4737 4738 MachineFunction &MF = DAG.getMachineFunction(); 4739 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4740 4741 // Ignore inlined function arguments here. 4742 // 4743 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4744 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4745 return false; 4746 4747 Optional<MachineOperand> Op; 4748 // Some arguments' frame index is recorded during argument lowering. 4749 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4750 Op = MachineOperand::CreateFI(FI); 4751 4752 if (!Op && N.getNode()) { 4753 unsigned Reg = getUnderlyingArgReg(N); 4754 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4755 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4756 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4757 if (PR) 4758 Reg = PR; 4759 } 4760 if (Reg) 4761 Op = MachineOperand::CreateReg(Reg, false); 4762 } 4763 4764 if (!Op) { 4765 // Check if ValueMap has reg number. 4766 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4767 if (VMI != FuncInfo.ValueMap.end()) 4768 Op = MachineOperand::CreateReg(VMI->second, false); 4769 } 4770 4771 if (!Op && N.getNode()) 4772 // Check if frame index is available. 4773 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4774 if (FrameIndexSDNode *FINode = 4775 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4776 Op = MachineOperand::CreateFI(FINode->getIndex()); 4777 4778 if (!Op) 4779 return false; 4780 4781 assert(Variable->isValidLocationForIntrinsic(DL) && 4782 "Expected inlined-at fields to agree"); 4783 if (Op->isReg()) 4784 FuncInfo.ArgDbgValues.push_back( 4785 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4786 Op->getReg(), Offset, Variable, Expr)); 4787 else 4788 FuncInfo.ArgDbgValues.push_back( 4789 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4790 .add(*Op) 4791 .addImm(Offset) 4792 .addMetadata(Variable) 4793 .addMetadata(Expr)); 4794 4795 return true; 4796 } 4797 4798 /// Return the appropriate SDDbgValue based on N. 4799 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4800 DILocalVariable *Variable, 4801 DIExpression *Expr, int64_t Offset, 4802 const DebugLoc &dl, 4803 unsigned DbgSDNodeOrder) { 4804 SDDbgValue *SDV; 4805 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4806 if (FISDN && Expr->startsWithDeref()) { 4807 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4808 // stack slot locations as such instead of as indirectly addressed 4809 // locations. 4810 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4811 Expr->elements_end()); 4812 DIExpression *DerefedDIExpr = 4813 DIExpression::get(*DAG.getContext(), TrailingElements); 4814 int FI = FISDN->getIndex(); 4815 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4816 DbgSDNodeOrder); 4817 } else { 4818 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4819 Offset, dl, DbgSDNodeOrder); 4820 } 4821 return SDV; 4822 } 4823 4824 // VisualStudio defines setjmp as _setjmp 4825 #if defined(_MSC_VER) && defined(setjmp) && \ 4826 !defined(setjmp_undefined_for_msvc) 4827 # pragma push_macro("setjmp") 4828 # undef setjmp 4829 # define setjmp_undefined_for_msvc 4830 #endif 4831 4832 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4833 /// we want to emit this as a call to a named external function, return the name 4834 /// otherwise lower it and return null. 4835 const char * 4836 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4838 SDLoc sdl = getCurSDLoc(); 4839 DebugLoc dl = getCurDebugLoc(); 4840 SDValue Res; 4841 4842 switch (Intrinsic) { 4843 default: 4844 // By default, turn this into a target intrinsic node. 4845 visitTargetIntrinsic(I, Intrinsic); 4846 return nullptr; 4847 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4848 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4849 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4850 case Intrinsic::returnaddress: 4851 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4852 TLI.getPointerTy(DAG.getDataLayout()), 4853 getValue(I.getArgOperand(0)))); 4854 return nullptr; 4855 case Intrinsic::addressofreturnaddress: 4856 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4857 TLI.getPointerTy(DAG.getDataLayout()))); 4858 return nullptr; 4859 case Intrinsic::frameaddress: 4860 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4861 TLI.getPointerTy(DAG.getDataLayout()), 4862 getValue(I.getArgOperand(0)))); 4863 return nullptr; 4864 case Intrinsic::read_register: { 4865 Value *Reg = I.getArgOperand(0); 4866 SDValue Chain = getRoot(); 4867 SDValue RegName = 4868 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4869 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4870 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4871 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4872 setValue(&I, Res); 4873 DAG.setRoot(Res.getValue(1)); 4874 return nullptr; 4875 } 4876 case Intrinsic::write_register: { 4877 Value *Reg = I.getArgOperand(0); 4878 Value *RegValue = I.getArgOperand(1); 4879 SDValue Chain = getRoot(); 4880 SDValue RegName = 4881 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4882 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4883 RegName, getValue(RegValue))); 4884 return nullptr; 4885 } 4886 case Intrinsic::setjmp: 4887 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4888 case Intrinsic::longjmp: 4889 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4890 case Intrinsic::memcpy: { 4891 SDValue Op1 = getValue(I.getArgOperand(0)); 4892 SDValue Op2 = getValue(I.getArgOperand(1)); 4893 SDValue Op3 = getValue(I.getArgOperand(2)); 4894 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4895 if (!Align) 4896 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4897 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4898 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4899 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4900 false, isTC, 4901 MachinePointerInfo(I.getArgOperand(0)), 4902 MachinePointerInfo(I.getArgOperand(1))); 4903 updateDAGForMaybeTailCall(MC); 4904 return nullptr; 4905 } 4906 case Intrinsic::memset: { 4907 SDValue Op1 = getValue(I.getArgOperand(0)); 4908 SDValue Op2 = getValue(I.getArgOperand(1)); 4909 SDValue Op3 = getValue(I.getArgOperand(2)); 4910 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4911 if (!Align) 4912 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4913 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4914 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4915 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4916 isTC, MachinePointerInfo(I.getArgOperand(0))); 4917 updateDAGForMaybeTailCall(MS); 4918 return nullptr; 4919 } 4920 case Intrinsic::memmove: { 4921 SDValue Op1 = getValue(I.getArgOperand(0)); 4922 SDValue Op2 = getValue(I.getArgOperand(1)); 4923 SDValue Op3 = getValue(I.getArgOperand(2)); 4924 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4925 if (!Align) 4926 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4927 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4928 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4929 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4930 isTC, MachinePointerInfo(I.getArgOperand(0)), 4931 MachinePointerInfo(I.getArgOperand(1))); 4932 updateDAGForMaybeTailCall(MM); 4933 return nullptr; 4934 } 4935 case Intrinsic::memcpy_element_atomic: { 4936 SDValue Dst = getValue(I.getArgOperand(0)); 4937 SDValue Src = getValue(I.getArgOperand(1)); 4938 SDValue NumElements = getValue(I.getArgOperand(2)); 4939 SDValue ElementSize = getValue(I.getArgOperand(3)); 4940 4941 // Emit a library call. 4942 TargetLowering::ArgListTy Args; 4943 TargetLowering::ArgListEntry Entry; 4944 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4945 Entry.Node = Dst; 4946 Args.push_back(Entry); 4947 4948 Entry.Node = Src; 4949 Args.push_back(Entry); 4950 4951 Entry.Ty = I.getArgOperand(2)->getType(); 4952 Entry.Node = NumElements; 4953 Args.push_back(Entry); 4954 4955 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4956 Entry.Node = ElementSize; 4957 Args.push_back(Entry); 4958 4959 uint64_t ElementSizeConstant = 4960 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4961 RTLIB::Libcall LibraryCall = 4962 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4963 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4964 report_fatal_error("Unsupported element size"); 4965 4966 TargetLowering::CallLoweringInfo CLI(DAG); 4967 CLI.setDebugLoc(sdl) 4968 .setChain(getRoot()) 4969 .setCallee(TLI.getLibcallCallingConv(LibraryCall), 4970 Type::getVoidTy(*DAG.getContext()), 4971 DAG.getExternalSymbol( 4972 TLI.getLibcallName(LibraryCall), 4973 TLI.getPointerTy(DAG.getDataLayout())), 4974 std::move(Args)); 4975 4976 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4977 DAG.setRoot(CallResult.second); 4978 return nullptr; 4979 } 4980 case Intrinsic::dbg_declare: { 4981 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4982 DILocalVariable *Variable = DI.getVariable(); 4983 DIExpression *Expression = DI.getExpression(); 4984 const Value *Address = DI.getAddress(); 4985 assert(Variable && "Missing variable"); 4986 if (!Address) { 4987 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4988 return nullptr; 4989 } 4990 4991 // Check if address has undef value. 4992 if (isa<UndefValue>(Address) || 4993 (Address->use_empty() && !isa<Argument>(Address))) { 4994 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4995 return nullptr; 4996 } 4997 4998 SDValue &N = NodeMap[Address]; 4999 if (!N.getNode() && isa<Argument>(Address)) 5000 // Check unused arguments map. 5001 N = UnusedArgNodeMap[Address]; 5002 SDDbgValue *SDV; 5003 if (N.getNode()) { 5004 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5005 Address = BCI->getOperand(0); 5006 // Parameters are handled specially. 5007 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5008 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5009 if (isParameter && FINode) { 5010 // Byval parameter. We have a frame index at this point. 5011 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5012 FINode->getIndex(), 0, dl, SDNodeOrder); 5013 } else if (isa<Argument>(Address)) { 5014 // Address is an argument, so try to emit its dbg value using 5015 // virtual register info from the FuncInfo.ValueMap. 5016 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 5017 N); 5018 return nullptr; 5019 } else { 5020 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5021 true, 0, dl, SDNodeOrder); 5022 } 5023 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5024 } else { 5025 // If Address is an argument then try to emit its dbg value using 5026 // virtual register info from the FuncInfo.ValueMap. 5027 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 5028 N)) { 5029 // If variable is pinned by a alloca in dominating bb then 5030 // use StaticAllocaMap. 5031 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 5032 if (AI->getParent() != DI.getParent()) { 5033 DenseMap<const AllocaInst*, int>::iterator SI = 5034 FuncInfo.StaticAllocaMap.find(AI); 5035 if (SI != FuncInfo.StaticAllocaMap.end()) { 5036 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 5037 0, dl, SDNodeOrder); 5038 DAG.AddDbgValue(SDV, nullptr, false); 5039 return nullptr; 5040 } 5041 } 5042 } 5043 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5044 } 5045 } 5046 return nullptr; 5047 } 5048 case Intrinsic::dbg_value: { 5049 const DbgValueInst &DI = cast<DbgValueInst>(I); 5050 assert(DI.getVariable() && "Missing variable"); 5051 5052 DILocalVariable *Variable = DI.getVariable(); 5053 DIExpression *Expression = DI.getExpression(); 5054 uint64_t Offset = DI.getOffset(); 5055 const Value *V = DI.getValue(); 5056 if (!V) 5057 return nullptr; 5058 5059 SDDbgValue *SDV; 5060 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5061 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5062 SDNodeOrder); 5063 DAG.AddDbgValue(SDV, nullptr, false); 5064 } else { 5065 // Do not use getValue() in here; we don't want to generate code at 5066 // this point if it hasn't been done yet. 5067 SDValue N = NodeMap[V]; 5068 if (!N.getNode() && isa<Argument>(V)) 5069 // Check unused arguments map. 5070 N = UnusedArgNodeMap[V]; 5071 if (N.getNode()) { 5072 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5073 false, N)) { 5074 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5075 DAG.AddDbgValue(SDV, N.getNode(), false); 5076 } 5077 } else if (!V->use_empty() ) { 5078 // Do not call getValue(V) yet, as we don't want to generate code. 5079 // Remember it for later. 5080 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5081 DanglingDebugInfoMap[V] = DDI; 5082 } else { 5083 // We may expand this to cover more cases. One case where we have no 5084 // data available is an unreferenced parameter. 5085 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5086 } 5087 } 5088 5089 // Build a debug info table entry. 5090 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5091 V = BCI->getOperand(0); 5092 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5093 // Don't handle byval struct arguments or VLAs, for example. 5094 if (!AI) { 5095 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5096 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5097 return nullptr; 5098 } 5099 DenseMap<const AllocaInst*, int>::iterator SI = 5100 FuncInfo.StaticAllocaMap.find(AI); 5101 if (SI == FuncInfo.StaticAllocaMap.end()) 5102 return nullptr; // VLAs. 5103 return nullptr; 5104 } 5105 5106 case Intrinsic::eh_typeid_for: { 5107 // Find the type id for the given typeinfo. 5108 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5109 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5110 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5111 setValue(&I, Res); 5112 return nullptr; 5113 } 5114 5115 case Intrinsic::eh_return_i32: 5116 case Intrinsic::eh_return_i64: 5117 DAG.getMachineFunction().setCallsEHReturn(true); 5118 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5119 MVT::Other, 5120 getControlRoot(), 5121 getValue(I.getArgOperand(0)), 5122 getValue(I.getArgOperand(1)))); 5123 return nullptr; 5124 case Intrinsic::eh_unwind_init: 5125 DAG.getMachineFunction().setCallsUnwindInit(true); 5126 return nullptr; 5127 case Intrinsic::eh_dwarf_cfa: { 5128 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5129 TLI.getPointerTy(DAG.getDataLayout()), 5130 getValue(I.getArgOperand(0)))); 5131 return nullptr; 5132 } 5133 case Intrinsic::eh_sjlj_callsite: { 5134 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5135 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5136 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5137 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5138 5139 MMI.setCurrentCallSite(CI->getZExtValue()); 5140 return nullptr; 5141 } 5142 case Intrinsic::eh_sjlj_functioncontext: { 5143 // Get and store the index of the function context. 5144 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5145 AllocaInst *FnCtx = 5146 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5147 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5148 MFI.setFunctionContextIndex(FI); 5149 return nullptr; 5150 } 5151 case Intrinsic::eh_sjlj_setjmp: { 5152 SDValue Ops[2]; 5153 Ops[0] = getRoot(); 5154 Ops[1] = getValue(I.getArgOperand(0)); 5155 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5156 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5157 setValue(&I, Op.getValue(0)); 5158 DAG.setRoot(Op.getValue(1)); 5159 return nullptr; 5160 } 5161 case Intrinsic::eh_sjlj_longjmp: { 5162 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5163 getRoot(), getValue(I.getArgOperand(0)))); 5164 return nullptr; 5165 } 5166 case Intrinsic::eh_sjlj_setup_dispatch: { 5167 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5168 getRoot())); 5169 return nullptr; 5170 } 5171 5172 case Intrinsic::masked_gather: 5173 visitMaskedGather(I); 5174 return nullptr; 5175 case Intrinsic::masked_load: 5176 visitMaskedLoad(I); 5177 return nullptr; 5178 case Intrinsic::masked_scatter: 5179 visitMaskedScatter(I); 5180 return nullptr; 5181 case Intrinsic::masked_store: 5182 visitMaskedStore(I); 5183 return nullptr; 5184 case Intrinsic::masked_expandload: 5185 visitMaskedLoad(I, true /* IsExpanding */); 5186 return nullptr; 5187 case Intrinsic::masked_compressstore: 5188 visitMaskedStore(I, true /* IsCompressing */); 5189 return nullptr; 5190 case Intrinsic::x86_mmx_pslli_w: 5191 case Intrinsic::x86_mmx_pslli_d: 5192 case Intrinsic::x86_mmx_pslli_q: 5193 case Intrinsic::x86_mmx_psrli_w: 5194 case Intrinsic::x86_mmx_psrli_d: 5195 case Intrinsic::x86_mmx_psrli_q: 5196 case Intrinsic::x86_mmx_psrai_w: 5197 case Intrinsic::x86_mmx_psrai_d: { 5198 SDValue ShAmt = getValue(I.getArgOperand(1)); 5199 if (isa<ConstantSDNode>(ShAmt)) { 5200 visitTargetIntrinsic(I, Intrinsic); 5201 return nullptr; 5202 } 5203 unsigned NewIntrinsic = 0; 5204 EVT ShAmtVT = MVT::v2i32; 5205 switch (Intrinsic) { 5206 case Intrinsic::x86_mmx_pslli_w: 5207 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5208 break; 5209 case Intrinsic::x86_mmx_pslli_d: 5210 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5211 break; 5212 case Intrinsic::x86_mmx_pslli_q: 5213 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5214 break; 5215 case Intrinsic::x86_mmx_psrli_w: 5216 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5217 break; 5218 case Intrinsic::x86_mmx_psrli_d: 5219 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5220 break; 5221 case Intrinsic::x86_mmx_psrli_q: 5222 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5223 break; 5224 case Intrinsic::x86_mmx_psrai_w: 5225 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5226 break; 5227 case Intrinsic::x86_mmx_psrai_d: 5228 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5229 break; 5230 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5231 } 5232 5233 // The vector shift intrinsics with scalars uses 32b shift amounts but 5234 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5235 // to be zero. 5236 // We must do this early because v2i32 is not a legal type. 5237 SDValue ShOps[2]; 5238 ShOps[0] = ShAmt; 5239 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5240 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5241 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5242 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5243 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5244 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5245 getValue(I.getArgOperand(0)), ShAmt); 5246 setValue(&I, Res); 5247 return nullptr; 5248 } 5249 case Intrinsic::powi: 5250 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5251 getValue(I.getArgOperand(1)), DAG)); 5252 return nullptr; 5253 case Intrinsic::log: 5254 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5255 return nullptr; 5256 case Intrinsic::log2: 5257 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5258 return nullptr; 5259 case Intrinsic::log10: 5260 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5261 return nullptr; 5262 case Intrinsic::exp: 5263 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5264 return nullptr; 5265 case Intrinsic::exp2: 5266 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5267 return nullptr; 5268 case Intrinsic::pow: 5269 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5270 getValue(I.getArgOperand(1)), DAG, TLI)); 5271 return nullptr; 5272 case Intrinsic::sqrt: 5273 case Intrinsic::fabs: 5274 case Intrinsic::sin: 5275 case Intrinsic::cos: 5276 case Intrinsic::floor: 5277 case Intrinsic::ceil: 5278 case Intrinsic::trunc: 5279 case Intrinsic::rint: 5280 case Intrinsic::nearbyint: 5281 case Intrinsic::round: 5282 case Intrinsic::canonicalize: { 5283 unsigned Opcode; 5284 switch (Intrinsic) { 5285 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5286 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5287 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5288 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5289 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5290 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5291 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5292 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5293 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5294 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5295 case Intrinsic::round: Opcode = ISD::FROUND; break; 5296 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5297 } 5298 5299 setValue(&I, DAG.getNode(Opcode, sdl, 5300 getValue(I.getArgOperand(0)).getValueType(), 5301 getValue(I.getArgOperand(0)))); 5302 return nullptr; 5303 } 5304 case Intrinsic::minnum: { 5305 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5306 unsigned Opc = 5307 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5308 ? ISD::FMINNAN 5309 : ISD::FMINNUM; 5310 setValue(&I, DAG.getNode(Opc, sdl, VT, 5311 getValue(I.getArgOperand(0)), 5312 getValue(I.getArgOperand(1)))); 5313 return nullptr; 5314 } 5315 case Intrinsic::maxnum: { 5316 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5317 unsigned Opc = 5318 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5319 ? ISD::FMAXNAN 5320 : ISD::FMAXNUM; 5321 setValue(&I, DAG.getNode(Opc, sdl, VT, 5322 getValue(I.getArgOperand(0)), 5323 getValue(I.getArgOperand(1)))); 5324 return nullptr; 5325 } 5326 case Intrinsic::copysign: 5327 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5328 getValue(I.getArgOperand(0)).getValueType(), 5329 getValue(I.getArgOperand(0)), 5330 getValue(I.getArgOperand(1)))); 5331 return nullptr; 5332 case Intrinsic::fma: 5333 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5334 getValue(I.getArgOperand(0)).getValueType(), 5335 getValue(I.getArgOperand(0)), 5336 getValue(I.getArgOperand(1)), 5337 getValue(I.getArgOperand(2)))); 5338 return nullptr; 5339 case Intrinsic::experimental_constrained_fadd: 5340 case Intrinsic::experimental_constrained_fsub: 5341 case Intrinsic::experimental_constrained_fmul: 5342 case Intrinsic::experimental_constrained_fdiv: 5343 case Intrinsic::experimental_constrained_frem: 5344 visitConstrainedFPIntrinsic(I, Intrinsic); 5345 return nullptr; 5346 case Intrinsic::fmuladd: { 5347 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5348 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5349 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5350 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5351 getValue(I.getArgOperand(0)).getValueType(), 5352 getValue(I.getArgOperand(0)), 5353 getValue(I.getArgOperand(1)), 5354 getValue(I.getArgOperand(2)))); 5355 } else { 5356 // TODO: Intrinsic calls should have fast-math-flags. 5357 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5358 getValue(I.getArgOperand(0)).getValueType(), 5359 getValue(I.getArgOperand(0)), 5360 getValue(I.getArgOperand(1))); 5361 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5362 getValue(I.getArgOperand(0)).getValueType(), 5363 Mul, 5364 getValue(I.getArgOperand(2))); 5365 setValue(&I, Add); 5366 } 5367 return nullptr; 5368 } 5369 case Intrinsic::convert_to_fp16: 5370 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5371 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5372 getValue(I.getArgOperand(0)), 5373 DAG.getTargetConstant(0, sdl, 5374 MVT::i32)))); 5375 return nullptr; 5376 case Intrinsic::convert_from_fp16: 5377 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5378 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5379 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5380 getValue(I.getArgOperand(0))))); 5381 return nullptr; 5382 case Intrinsic::pcmarker: { 5383 SDValue Tmp = getValue(I.getArgOperand(0)); 5384 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5385 return nullptr; 5386 } 5387 case Intrinsic::readcyclecounter: { 5388 SDValue Op = getRoot(); 5389 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5390 DAG.getVTList(MVT::i64, MVT::Other), Op); 5391 setValue(&I, Res); 5392 DAG.setRoot(Res.getValue(1)); 5393 return nullptr; 5394 } 5395 case Intrinsic::bitreverse: 5396 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5397 getValue(I.getArgOperand(0)).getValueType(), 5398 getValue(I.getArgOperand(0)))); 5399 return nullptr; 5400 case Intrinsic::bswap: 5401 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5402 getValue(I.getArgOperand(0)).getValueType(), 5403 getValue(I.getArgOperand(0)))); 5404 return nullptr; 5405 case Intrinsic::cttz: { 5406 SDValue Arg = getValue(I.getArgOperand(0)); 5407 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5408 EVT Ty = Arg.getValueType(); 5409 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5410 sdl, Ty, Arg)); 5411 return nullptr; 5412 } 5413 case Intrinsic::ctlz: { 5414 SDValue Arg = getValue(I.getArgOperand(0)); 5415 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5416 EVT Ty = Arg.getValueType(); 5417 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5418 sdl, Ty, Arg)); 5419 return nullptr; 5420 } 5421 case Intrinsic::ctpop: { 5422 SDValue Arg = getValue(I.getArgOperand(0)); 5423 EVT Ty = Arg.getValueType(); 5424 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5425 return nullptr; 5426 } 5427 case Intrinsic::stacksave: { 5428 SDValue Op = getRoot(); 5429 Res = DAG.getNode( 5430 ISD::STACKSAVE, sdl, 5431 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5432 setValue(&I, Res); 5433 DAG.setRoot(Res.getValue(1)); 5434 return nullptr; 5435 } 5436 case Intrinsic::stackrestore: { 5437 Res = getValue(I.getArgOperand(0)); 5438 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5439 return nullptr; 5440 } 5441 case Intrinsic::get_dynamic_area_offset: { 5442 SDValue Op = getRoot(); 5443 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5444 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5445 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5446 // target. 5447 if (PtrTy != ResTy) 5448 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5449 " intrinsic!"); 5450 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5451 Op); 5452 DAG.setRoot(Op); 5453 setValue(&I, Res); 5454 return nullptr; 5455 } 5456 case Intrinsic::stackguard: { 5457 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5458 MachineFunction &MF = DAG.getMachineFunction(); 5459 const Module &M = *MF.getFunction()->getParent(); 5460 SDValue Chain = getRoot(); 5461 if (TLI.useLoadStackGuardNode()) { 5462 Res = getLoadStackGuard(DAG, sdl, Chain); 5463 } else { 5464 const Value *Global = TLI.getSDagStackGuard(M); 5465 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5466 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5467 MachinePointerInfo(Global, 0), Align, 5468 MachineMemOperand::MOVolatile); 5469 } 5470 DAG.setRoot(Chain); 5471 setValue(&I, Res); 5472 return nullptr; 5473 } 5474 case Intrinsic::stackprotector: { 5475 // Emit code into the DAG to store the stack guard onto the stack. 5476 MachineFunction &MF = DAG.getMachineFunction(); 5477 MachineFrameInfo &MFI = MF.getFrameInfo(); 5478 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5479 SDValue Src, Chain = getRoot(); 5480 5481 if (TLI.useLoadStackGuardNode()) 5482 Src = getLoadStackGuard(DAG, sdl, Chain); 5483 else 5484 Src = getValue(I.getArgOperand(0)); // The guard's value. 5485 5486 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5487 5488 int FI = FuncInfo.StaticAllocaMap[Slot]; 5489 MFI.setStackProtectorIndex(FI); 5490 5491 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5492 5493 // Store the stack protector onto the stack. 5494 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5495 DAG.getMachineFunction(), FI), 5496 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5497 setValue(&I, Res); 5498 DAG.setRoot(Res); 5499 return nullptr; 5500 } 5501 case Intrinsic::objectsize: { 5502 // If we don't know by now, we're never going to know. 5503 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5504 5505 assert(CI && "Non-constant type in __builtin_object_size?"); 5506 5507 SDValue Arg = getValue(I.getCalledValue()); 5508 EVT Ty = Arg.getValueType(); 5509 5510 if (CI->isZero()) 5511 Res = DAG.getConstant(-1ULL, sdl, Ty); 5512 else 5513 Res = DAG.getConstant(0, sdl, Ty); 5514 5515 setValue(&I, Res); 5516 return nullptr; 5517 } 5518 case Intrinsic::annotation: 5519 case Intrinsic::ptr_annotation: 5520 case Intrinsic::invariant_group_barrier: 5521 // Drop the intrinsic, but forward the value 5522 setValue(&I, getValue(I.getOperand(0))); 5523 return nullptr; 5524 case Intrinsic::assume: 5525 case Intrinsic::var_annotation: 5526 // Discard annotate attributes and assumptions 5527 return nullptr; 5528 5529 case Intrinsic::init_trampoline: { 5530 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5531 5532 SDValue Ops[6]; 5533 Ops[0] = getRoot(); 5534 Ops[1] = getValue(I.getArgOperand(0)); 5535 Ops[2] = getValue(I.getArgOperand(1)); 5536 Ops[3] = getValue(I.getArgOperand(2)); 5537 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5538 Ops[5] = DAG.getSrcValue(F); 5539 5540 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5541 5542 DAG.setRoot(Res); 5543 return nullptr; 5544 } 5545 case Intrinsic::adjust_trampoline: { 5546 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5547 TLI.getPointerTy(DAG.getDataLayout()), 5548 getValue(I.getArgOperand(0)))); 5549 return nullptr; 5550 } 5551 case Intrinsic::gcroot: { 5552 MachineFunction &MF = DAG.getMachineFunction(); 5553 const Function *F = MF.getFunction(); 5554 (void)F; 5555 assert(F->hasGC() && 5556 "only valid in functions with gc specified, enforced by Verifier"); 5557 assert(GFI && "implied by previous"); 5558 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5559 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5560 5561 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5562 GFI->addStackRoot(FI->getIndex(), TypeMap); 5563 return nullptr; 5564 } 5565 case Intrinsic::gcread: 5566 case Intrinsic::gcwrite: 5567 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5568 case Intrinsic::flt_rounds: 5569 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5570 return nullptr; 5571 5572 case Intrinsic::expect: { 5573 // Just replace __builtin_expect(exp, c) with EXP. 5574 setValue(&I, getValue(I.getArgOperand(0))); 5575 return nullptr; 5576 } 5577 5578 case Intrinsic::debugtrap: 5579 case Intrinsic::trap: { 5580 StringRef TrapFuncName = 5581 I.getAttributes() 5582 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5583 .getValueAsString(); 5584 if (TrapFuncName.empty()) { 5585 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5586 ISD::TRAP : ISD::DEBUGTRAP; 5587 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5588 return nullptr; 5589 } 5590 TargetLowering::ArgListTy Args; 5591 5592 TargetLowering::CallLoweringInfo CLI(DAG); 5593 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5594 CallingConv::C, I.getType(), 5595 DAG.getExternalSymbol(TrapFuncName.data(), 5596 TLI.getPointerTy(DAG.getDataLayout())), 5597 std::move(Args)); 5598 5599 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5600 DAG.setRoot(Result.second); 5601 return nullptr; 5602 } 5603 5604 case Intrinsic::uadd_with_overflow: 5605 case Intrinsic::sadd_with_overflow: 5606 case Intrinsic::usub_with_overflow: 5607 case Intrinsic::ssub_with_overflow: 5608 case Intrinsic::umul_with_overflow: 5609 case Intrinsic::smul_with_overflow: { 5610 ISD::NodeType Op; 5611 switch (Intrinsic) { 5612 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5613 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5614 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5615 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5616 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5617 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5618 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5619 } 5620 SDValue Op1 = getValue(I.getArgOperand(0)); 5621 SDValue Op2 = getValue(I.getArgOperand(1)); 5622 5623 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5624 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5625 return nullptr; 5626 } 5627 case Intrinsic::prefetch: { 5628 SDValue Ops[5]; 5629 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5630 Ops[0] = getRoot(); 5631 Ops[1] = getValue(I.getArgOperand(0)); 5632 Ops[2] = getValue(I.getArgOperand(1)); 5633 Ops[3] = getValue(I.getArgOperand(2)); 5634 Ops[4] = getValue(I.getArgOperand(3)); 5635 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5636 DAG.getVTList(MVT::Other), Ops, 5637 EVT::getIntegerVT(*Context, 8), 5638 MachinePointerInfo(I.getArgOperand(0)), 5639 0, /* align */ 5640 false, /* volatile */ 5641 rw==0, /* read */ 5642 rw==1)); /* write */ 5643 return nullptr; 5644 } 5645 case Intrinsic::lifetime_start: 5646 case Intrinsic::lifetime_end: { 5647 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5648 // Stack coloring is not enabled in O0, discard region information. 5649 if (TM.getOptLevel() == CodeGenOpt::None) 5650 return nullptr; 5651 5652 SmallVector<Value *, 4> Allocas; 5653 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5654 5655 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5656 E = Allocas.end(); Object != E; ++Object) { 5657 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5658 5659 // Could not find an Alloca. 5660 if (!LifetimeObject) 5661 continue; 5662 5663 // First check that the Alloca is static, otherwise it won't have a 5664 // valid frame index. 5665 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5666 if (SI == FuncInfo.StaticAllocaMap.end()) 5667 return nullptr; 5668 5669 int FI = SI->second; 5670 5671 SDValue Ops[2]; 5672 Ops[0] = getRoot(); 5673 Ops[1] = 5674 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5675 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5676 5677 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5678 DAG.setRoot(Res); 5679 } 5680 return nullptr; 5681 } 5682 case Intrinsic::invariant_start: 5683 // Discard region information. 5684 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5685 return nullptr; 5686 case Intrinsic::invariant_end: 5687 // Discard region information. 5688 return nullptr; 5689 case Intrinsic::clear_cache: 5690 return TLI.getClearCacheBuiltinName(); 5691 case Intrinsic::donothing: 5692 // ignore 5693 return nullptr; 5694 case Intrinsic::experimental_stackmap: { 5695 visitStackmap(I); 5696 return nullptr; 5697 } 5698 case Intrinsic::experimental_patchpoint_void: 5699 case Intrinsic::experimental_patchpoint_i64: { 5700 visitPatchpoint(&I); 5701 return nullptr; 5702 } 5703 case Intrinsic::experimental_gc_statepoint: { 5704 LowerStatepoint(ImmutableStatepoint(&I)); 5705 return nullptr; 5706 } 5707 case Intrinsic::experimental_gc_result: { 5708 visitGCResult(cast<GCResultInst>(I)); 5709 return nullptr; 5710 } 5711 case Intrinsic::experimental_gc_relocate: { 5712 visitGCRelocate(cast<GCRelocateInst>(I)); 5713 return nullptr; 5714 } 5715 case Intrinsic::instrprof_increment: 5716 llvm_unreachable("instrprof failed to lower an increment"); 5717 case Intrinsic::instrprof_value_profile: 5718 llvm_unreachable("instrprof failed to lower a value profiling call"); 5719 case Intrinsic::localescape: { 5720 MachineFunction &MF = DAG.getMachineFunction(); 5721 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5722 5723 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5724 // is the same on all targets. 5725 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5726 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5727 if (isa<ConstantPointerNull>(Arg)) 5728 continue; // Skip null pointers. They represent a hole in index space. 5729 AllocaInst *Slot = cast<AllocaInst>(Arg); 5730 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5731 "can only escape static allocas"); 5732 int FI = FuncInfo.StaticAllocaMap[Slot]; 5733 MCSymbol *FrameAllocSym = 5734 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5735 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5736 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5737 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5738 .addSym(FrameAllocSym) 5739 .addFrameIndex(FI); 5740 } 5741 5742 return nullptr; 5743 } 5744 5745 case Intrinsic::localrecover: { 5746 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5747 MachineFunction &MF = DAG.getMachineFunction(); 5748 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5749 5750 // Get the symbol that defines the frame offset. 5751 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5752 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5753 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5754 MCSymbol *FrameAllocSym = 5755 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5756 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5757 5758 // Create a MCSymbol for the label to avoid any target lowering 5759 // that would make this PC relative. 5760 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5761 SDValue OffsetVal = 5762 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5763 5764 // Add the offset to the FP. 5765 Value *FP = I.getArgOperand(1); 5766 SDValue FPVal = getValue(FP); 5767 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5768 setValue(&I, Add); 5769 5770 return nullptr; 5771 } 5772 5773 case Intrinsic::eh_exceptionpointer: 5774 case Intrinsic::eh_exceptioncode: { 5775 // Get the exception pointer vreg, copy from it, and resize it to fit. 5776 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5777 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5778 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5779 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5780 SDValue N = 5781 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5782 if (Intrinsic == Intrinsic::eh_exceptioncode) 5783 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5784 setValue(&I, N); 5785 return nullptr; 5786 } 5787 5788 case Intrinsic::experimental_deoptimize: 5789 LowerDeoptimizeCall(&I); 5790 return nullptr; 5791 } 5792 } 5793 5794 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I, 5795 unsigned Intrinsic) { 5796 SDLoc sdl = getCurSDLoc(); 5797 unsigned Opcode; 5798 switch (Intrinsic) { 5799 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5800 case Intrinsic::experimental_constrained_fadd: 5801 Opcode = ISD::STRICT_FADD; 5802 break; 5803 case Intrinsic::experimental_constrained_fsub: 5804 Opcode = ISD::STRICT_FSUB; 5805 break; 5806 case Intrinsic::experimental_constrained_fmul: 5807 Opcode = ISD::STRICT_FMUL; 5808 break; 5809 case Intrinsic::experimental_constrained_fdiv: 5810 Opcode = ISD::STRICT_FDIV; 5811 break; 5812 case Intrinsic::experimental_constrained_frem: 5813 Opcode = ISD::STRICT_FREM; 5814 break; 5815 } 5816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5817 SDValue Chain = getRoot(); 5818 SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)), 5819 getValue(I.getArgOperand(1)) }; 5820 SmallVector<EVT, 4> ValueVTs; 5821 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5822 ValueVTs.push_back(MVT::Other); // Out chain 5823 5824 SDVTList VTs = DAG.getVTList(ValueVTs); 5825 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops); 5826 5827 assert(Result.getNode()->getNumValues() == 2); 5828 SDValue OutChain = Result.getValue(1); 5829 DAG.setRoot(OutChain); 5830 SDValue FPResult = Result.getValue(0); 5831 setValue(&I, FPResult); 5832 } 5833 5834 std::pair<SDValue, SDValue> 5835 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5836 const BasicBlock *EHPadBB) { 5837 MachineFunction &MF = DAG.getMachineFunction(); 5838 MachineModuleInfo &MMI = MF.getMMI(); 5839 MCSymbol *BeginLabel = nullptr; 5840 5841 if (EHPadBB) { 5842 // Insert a label before the invoke call to mark the try range. This can be 5843 // used to detect deletion of the invoke via the MachineModuleInfo. 5844 BeginLabel = MMI.getContext().createTempSymbol(); 5845 5846 // For SjLj, keep track of which landing pads go with which invokes 5847 // so as to maintain the ordering of pads in the LSDA. 5848 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5849 if (CallSiteIndex) { 5850 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5851 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5852 5853 // Now that the call site is handled, stop tracking it. 5854 MMI.setCurrentCallSite(0); 5855 } 5856 5857 // Both PendingLoads and PendingExports must be flushed here; 5858 // this call might not return. 5859 (void)getRoot(); 5860 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5861 5862 CLI.setChain(getRoot()); 5863 } 5864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5865 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5866 5867 assert((CLI.IsTailCall || Result.second.getNode()) && 5868 "Non-null chain expected with non-tail call!"); 5869 assert((Result.second.getNode() || !Result.first.getNode()) && 5870 "Null value expected with tail call!"); 5871 5872 if (!Result.second.getNode()) { 5873 // As a special case, a null chain means that a tail call has been emitted 5874 // and the DAG root is already updated. 5875 HasTailCall = true; 5876 5877 // Since there's no actual continuation from this block, nothing can be 5878 // relying on us setting vregs for them. 5879 PendingExports.clear(); 5880 } else { 5881 DAG.setRoot(Result.second); 5882 } 5883 5884 if (EHPadBB) { 5885 // Insert a label at the end of the invoke call to mark the try range. This 5886 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5887 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5888 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5889 5890 // Inform MachineModuleInfo of range. 5891 if (MF.hasEHFunclets()) { 5892 assert(CLI.CS); 5893 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5894 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5895 BeginLabel, EndLabel); 5896 } else { 5897 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5898 } 5899 } 5900 5901 return Result; 5902 } 5903 5904 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5905 bool isTailCall, 5906 const BasicBlock *EHPadBB) { 5907 auto &DL = DAG.getDataLayout(); 5908 FunctionType *FTy = CS.getFunctionType(); 5909 Type *RetTy = CS.getType(); 5910 5911 TargetLowering::ArgListTy Args; 5912 TargetLowering::ArgListEntry Entry; 5913 Args.reserve(CS.arg_size()); 5914 5915 const Value *SwiftErrorVal = nullptr; 5916 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5917 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5918 i != e; ++i) { 5919 const Value *V = *i; 5920 5921 // Skip empty types 5922 if (V->getType()->isEmptyTy()) 5923 continue; 5924 5925 SDValue ArgNode = getValue(V); 5926 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5927 5928 // Skip the first return-type Attribute to get to params. 5929 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5930 5931 // Use swifterror virtual register as input to the call. 5932 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5933 SwiftErrorVal = V; 5934 // We find the virtual register for the actual swifterror argument. 5935 // Instead of using the Value, we use the virtual register instead. 5936 Entry.Node = 5937 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5938 EVT(TLI.getPointerTy(DL))); 5939 } 5940 5941 Args.push_back(Entry); 5942 5943 // If we have an explicit sret argument that is an Instruction, (i.e., it 5944 // might point to function-local memory), we can't meaningfully tail-call. 5945 if (Entry.isSRet && isa<Instruction>(V)) 5946 isTailCall = false; 5947 } 5948 5949 // Check if target-independent constraints permit a tail call here. 5950 // Target-dependent constraints are checked within TLI->LowerCallTo. 5951 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5952 isTailCall = false; 5953 5954 // Disable tail calls if there is an swifterror argument. Targets have not 5955 // been updated to support tail calls. 5956 if (TLI.supportSwiftError() && SwiftErrorVal) 5957 isTailCall = false; 5958 5959 TargetLowering::CallLoweringInfo CLI(DAG); 5960 CLI.setDebugLoc(getCurSDLoc()) 5961 .setChain(getRoot()) 5962 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5963 .setTailCall(isTailCall) 5964 .setConvergent(CS.isConvergent()); 5965 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5966 5967 if (Result.first.getNode()) { 5968 const Instruction *Inst = CS.getInstruction(); 5969 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5970 setValue(Inst, Result.first); 5971 } 5972 5973 // The last element of CLI.InVals has the SDValue for swifterror return. 5974 // Here we copy it to a virtual register and update SwiftErrorMap for 5975 // book-keeping. 5976 if (SwiftErrorVal && TLI.supportSwiftError()) { 5977 // Get the last element of InVals. 5978 SDValue Src = CLI.InVals.back(); 5979 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5980 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5981 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5982 // We update the virtual register for the actual swifterror argument. 5983 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5984 DAG.setRoot(CopyNode); 5985 } 5986 } 5987 5988 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5989 /// value is equal or not-equal to zero. 5990 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5991 for (const User *U : V->users()) { 5992 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5993 if (IC->isEquality()) 5994 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5995 if (C->isNullValue()) 5996 continue; 5997 // Unknown instruction. 5998 return false; 5999 } 6000 return true; 6001 } 6002 6003 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6004 Type *LoadTy, 6005 SelectionDAGBuilder &Builder) { 6006 6007 // Check to see if this load can be trivially constant folded, e.g. if the 6008 // input is from a string literal. 6009 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6010 // Cast pointer to the type we really want to load. 6011 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6012 PointerType::getUnqual(LoadTy)); 6013 6014 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6015 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6016 return Builder.getValue(LoadCst); 6017 } 6018 6019 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6020 // still constant memory, the input chain can be the entry node. 6021 SDValue Root; 6022 bool ConstantMemory = false; 6023 6024 // Do not serialize (non-volatile) loads of constant memory with anything. 6025 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 6026 Root = Builder.DAG.getEntryNode(); 6027 ConstantMemory = true; 6028 } else { 6029 // Do not serialize non-volatile loads against each other. 6030 Root = Builder.DAG.getRoot(); 6031 } 6032 6033 SDValue Ptr = Builder.getValue(PtrVal); 6034 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6035 Ptr, MachinePointerInfo(PtrVal), 6036 /* Alignment = */ 1); 6037 6038 if (!ConstantMemory) 6039 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6040 return LoadVal; 6041 } 6042 6043 /// processIntegerCallValue - Record the value for an instruction that 6044 /// produces an integer result, converting the type where necessary. 6045 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6046 SDValue Value, 6047 bool IsSigned) { 6048 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6049 I.getType(), true); 6050 if (IsSigned) 6051 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6052 else 6053 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6054 setValue(&I, Value); 6055 } 6056 6057 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 6058 /// If so, return true and lower it, otherwise return false and it will be 6059 /// lowered like a normal call. 6060 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6061 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 6062 if (I.getNumArgOperands() != 3) 6063 return false; 6064 6065 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6066 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 6067 !I.getArgOperand(2)->getType()->isIntegerTy() || 6068 !I.getType()->isIntegerTy()) 6069 return false; 6070 6071 const Value *Size = I.getArgOperand(2); 6072 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6073 if (CSize && CSize->getZExtValue() == 0) { 6074 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6075 I.getType(), true); 6076 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6077 return true; 6078 } 6079 6080 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6081 std::pair<SDValue, SDValue> Res = 6082 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6083 getValue(LHS), getValue(RHS), getValue(Size), 6084 MachinePointerInfo(LHS), 6085 MachinePointerInfo(RHS)); 6086 if (Res.first.getNode()) { 6087 processIntegerCallValue(I, Res.first, true); 6088 PendingLoads.push_back(Res.second); 6089 return true; 6090 } 6091 6092 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6093 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6094 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 6095 bool ActuallyDoIt = true; 6096 MVT LoadVT; 6097 Type *LoadTy; 6098 switch (CSize->getZExtValue()) { 6099 default: 6100 LoadVT = MVT::Other; 6101 LoadTy = nullptr; 6102 ActuallyDoIt = false; 6103 break; 6104 case 2: 6105 LoadVT = MVT::i16; 6106 LoadTy = Type::getInt16Ty(CSize->getContext()); 6107 break; 6108 case 4: 6109 LoadVT = MVT::i32; 6110 LoadTy = Type::getInt32Ty(CSize->getContext()); 6111 break; 6112 case 8: 6113 LoadVT = MVT::i64; 6114 LoadTy = Type::getInt64Ty(CSize->getContext()); 6115 break; 6116 /* 6117 case 16: 6118 LoadVT = MVT::v4i32; 6119 LoadTy = Type::getInt32Ty(CSize->getContext()); 6120 LoadTy = VectorType::get(LoadTy, 4); 6121 break; 6122 */ 6123 } 6124 6125 // This turns into unaligned loads. We only do this if the target natively 6126 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6127 // we'll only produce a small number of byte loads. 6128 6129 // Require that we can find a legal MVT, and only do this if the target 6130 // supports unaligned loads of that type. Expanding into byte loads would 6131 // bloat the code. 6132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6133 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 6134 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6135 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6136 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6137 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6138 // TODO: Check alignment of src and dest ptrs. 6139 if (!TLI.isTypeLegal(LoadVT) || 6140 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 6141 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 6142 ActuallyDoIt = false; 6143 } 6144 6145 if (ActuallyDoIt) { 6146 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 6147 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 6148 6149 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 6150 ISD::SETNE); 6151 processIntegerCallValue(I, Res, false); 6152 return true; 6153 } 6154 } 6155 6156 6157 return false; 6158 } 6159 6160 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 6161 /// form. If so, return true and lower it, otherwise return false and it 6162 /// will be lowered like a normal call. 6163 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6164 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 6165 if (I.getNumArgOperands() != 3) 6166 return false; 6167 6168 const Value *Src = I.getArgOperand(0); 6169 const Value *Char = I.getArgOperand(1); 6170 const Value *Length = I.getArgOperand(2); 6171 if (!Src->getType()->isPointerTy() || 6172 !Char->getType()->isIntegerTy() || 6173 !Length->getType()->isIntegerTy() || 6174 !I.getType()->isPointerTy()) 6175 return false; 6176 6177 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6178 std::pair<SDValue, SDValue> Res = 6179 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6180 getValue(Src), getValue(Char), getValue(Length), 6181 MachinePointerInfo(Src)); 6182 if (Res.first.getNode()) { 6183 setValue(&I, Res.first); 6184 PendingLoads.push_back(Res.second); 6185 return true; 6186 } 6187 6188 return false; 6189 } 6190 6191 /// 6192 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to 6193 /// to adjust the dst pointer by the size of the copied memory. 6194 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6195 6196 // Verify argument count: void *mempcpy(void *, const void *, size_t) 6197 if (I.getNumArgOperands() != 3) 6198 return false; 6199 6200 SDValue Dst = getValue(I.getArgOperand(0)); 6201 SDValue Src = getValue(I.getArgOperand(1)); 6202 SDValue Size = getValue(I.getArgOperand(2)); 6203 6204 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6205 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6206 unsigned Align = std::min(DstAlign, SrcAlign); 6207 if (Align == 0) // Alignment of one or both could not be inferred. 6208 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6209 6210 bool isVol = false; 6211 SDLoc sdl = getCurSDLoc(); 6212 6213 // In the mempcpy context we need to pass in a false value for isTailCall 6214 // because the return pointer needs to be adjusted by the size of 6215 // the copied memory. 6216 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6217 false, /*isTailCall=*/false, 6218 MachinePointerInfo(I.getArgOperand(0)), 6219 MachinePointerInfo(I.getArgOperand(1))); 6220 assert(MC.getNode() != nullptr && 6221 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6222 DAG.setRoot(MC); 6223 6224 // Check if Size needs to be truncated or extended. 6225 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6226 6227 // Adjust return pointer to point just past the last dst byte. 6228 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6229 Dst, Size); 6230 setValue(&I, DstPlusSize); 6231 return true; 6232 } 6233 6234 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 6235 /// optimized form. If so, return true and lower it, otherwise return false 6236 /// and it will be lowered like a normal call. 6237 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6238 // Verify that the prototype makes sense. char *strcpy(char *, char *) 6239 if (I.getNumArgOperands() != 2) 6240 return false; 6241 6242 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6243 if (!Arg0->getType()->isPointerTy() || 6244 !Arg1->getType()->isPointerTy() || 6245 !I.getType()->isPointerTy()) 6246 return false; 6247 6248 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6249 std::pair<SDValue, SDValue> Res = 6250 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6251 getValue(Arg0), getValue(Arg1), 6252 MachinePointerInfo(Arg0), 6253 MachinePointerInfo(Arg1), isStpcpy); 6254 if (Res.first.getNode()) { 6255 setValue(&I, Res.first); 6256 DAG.setRoot(Res.second); 6257 return true; 6258 } 6259 6260 return false; 6261 } 6262 6263 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6264 /// If so, return true and lower it, otherwise return false and it will be 6265 /// lowered like a normal call. 6266 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6267 // Verify that the prototype makes sense. int strcmp(void*,void*) 6268 if (I.getNumArgOperands() != 2) 6269 return false; 6270 6271 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6272 if (!Arg0->getType()->isPointerTy() || 6273 !Arg1->getType()->isPointerTy() || 6274 !I.getType()->isIntegerTy()) 6275 return false; 6276 6277 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6278 std::pair<SDValue, SDValue> Res = 6279 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6280 getValue(Arg0), getValue(Arg1), 6281 MachinePointerInfo(Arg0), 6282 MachinePointerInfo(Arg1)); 6283 if (Res.first.getNode()) { 6284 processIntegerCallValue(I, Res.first, true); 6285 PendingLoads.push_back(Res.second); 6286 return true; 6287 } 6288 6289 return false; 6290 } 6291 6292 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6293 /// form. If so, return true and lower it, otherwise return false and it 6294 /// will be lowered like a normal call. 6295 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6296 // Verify that the prototype makes sense. size_t strlen(char *) 6297 if (I.getNumArgOperands() != 1) 6298 return false; 6299 6300 const Value *Arg0 = I.getArgOperand(0); 6301 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6302 return false; 6303 6304 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6305 std::pair<SDValue, SDValue> Res = 6306 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6307 getValue(Arg0), MachinePointerInfo(Arg0)); 6308 if (Res.first.getNode()) { 6309 processIntegerCallValue(I, Res.first, false); 6310 PendingLoads.push_back(Res.second); 6311 return true; 6312 } 6313 6314 return false; 6315 } 6316 6317 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6318 /// form. If so, return true and lower it, otherwise return false and it 6319 /// will be lowered like a normal call. 6320 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6321 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6322 if (I.getNumArgOperands() != 2) 6323 return false; 6324 6325 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6326 if (!Arg0->getType()->isPointerTy() || 6327 !Arg1->getType()->isIntegerTy() || 6328 !I.getType()->isIntegerTy()) 6329 return false; 6330 6331 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6332 std::pair<SDValue, SDValue> Res = 6333 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6334 getValue(Arg0), getValue(Arg1), 6335 MachinePointerInfo(Arg0)); 6336 if (Res.first.getNode()) { 6337 processIntegerCallValue(I, Res.first, false); 6338 PendingLoads.push_back(Res.second); 6339 return true; 6340 } 6341 6342 return false; 6343 } 6344 6345 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6346 /// operation (as expected), translate it to an SDNode with the specified opcode 6347 /// and return true. 6348 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6349 unsigned Opcode) { 6350 // Sanity check that it really is a unary floating-point call. 6351 if (I.getNumArgOperands() != 1 || 6352 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6353 I.getType() != I.getArgOperand(0)->getType() || 6354 !I.onlyReadsMemory()) 6355 return false; 6356 6357 SDValue Tmp = getValue(I.getArgOperand(0)); 6358 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6359 return true; 6360 } 6361 6362 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6363 /// operation (as expected), translate it to an SDNode with the specified opcode 6364 /// and return true. 6365 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6366 unsigned Opcode) { 6367 // Sanity check that it really is a binary floating-point call. 6368 if (I.getNumArgOperands() != 2 || 6369 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6370 I.getType() != I.getArgOperand(0)->getType() || 6371 I.getType() != I.getArgOperand(1)->getType() || 6372 !I.onlyReadsMemory()) 6373 return false; 6374 6375 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6376 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6377 EVT VT = Tmp0.getValueType(); 6378 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6379 return true; 6380 } 6381 6382 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6383 // Handle inline assembly differently. 6384 if (isa<InlineAsm>(I.getCalledValue())) { 6385 visitInlineAsm(&I); 6386 return; 6387 } 6388 6389 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6390 computeUsesVAFloatArgument(I, MMI); 6391 6392 const char *RenameFn = nullptr; 6393 if (Function *F = I.getCalledFunction()) { 6394 if (F->isDeclaration()) { 6395 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6396 if (unsigned IID = II->getIntrinsicID(F)) { 6397 RenameFn = visitIntrinsicCall(I, IID); 6398 if (!RenameFn) 6399 return; 6400 } 6401 } 6402 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6403 RenameFn = visitIntrinsicCall(I, IID); 6404 if (!RenameFn) 6405 return; 6406 } 6407 } 6408 6409 // Check for well-known libc/libm calls. If the function is internal, it 6410 // can't be a library call. Don't do the check if marked as nobuiltin for 6411 // some reason. 6412 LibFunc Func; 6413 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6414 LibInfo->getLibFunc(F->getName(), Func) && 6415 LibInfo->hasOptimizedCodeGen(Func)) { 6416 switch (Func) { 6417 default: break; 6418 case LibFunc_copysign: 6419 case LibFunc_copysignf: 6420 case LibFunc_copysignl: 6421 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6422 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6423 I.getType() == I.getArgOperand(0)->getType() && 6424 I.getType() == I.getArgOperand(1)->getType() && 6425 I.onlyReadsMemory()) { 6426 SDValue LHS = getValue(I.getArgOperand(0)); 6427 SDValue RHS = getValue(I.getArgOperand(1)); 6428 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6429 LHS.getValueType(), LHS, RHS)); 6430 return; 6431 } 6432 break; 6433 case LibFunc_fabs: 6434 case LibFunc_fabsf: 6435 case LibFunc_fabsl: 6436 if (visitUnaryFloatCall(I, ISD::FABS)) 6437 return; 6438 break; 6439 case LibFunc_fmin: 6440 case LibFunc_fminf: 6441 case LibFunc_fminl: 6442 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6443 return; 6444 break; 6445 case LibFunc_fmax: 6446 case LibFunc_fmaxf: 6447 case LibFunc_fmaxl: 6448 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6449 return; 6450 break; 6451 case LibFunc_sin: 6452 case LibFunc_sinf: 6453 case LibFunc_sinl: 6454 if (visitUnaryFloatCall(I, ISD::FSIN)) 6455 return; 6456 break; 6457 case LibFunc_cos: 6458 case LibFunc_cosf: 6459 case LibFunc_cosl: 6460 if (visitUnaryFloatCall(I, ISD::FCOS)) 6461 return; 6462 break; 6463 case LibFunc_sqrt: 6464 case LibFunc_sqrtf: 6465 case LibFunc_sqrtl: 6466 case LibFunc_sqrt_finite: 6467 case LibFunc_sqrtf_finite: 6468 case LibFunc_sqrtl_finite: 6469 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6470 return; 6471 break; 6472 case LibFunc_floor: 6473 case LibFunc_floorf: 6474 case LibFunc_floorl: 6475 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6476 return; 6477 break; 6478 case LibFunc_nearbyint: 6479 case LibFunc_nearbyintf: 6480 case LibFunc_nearbyintl: 6481 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6482 return; 6483 break; 6484 case LibFunc_ceil: 6485 case LibFunc_ceilf: 6486 case LibFunc_ceill: 6487 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6488 return; 6489 break; 6490 case LibFunc_rint: 6491 case LibFunc_rintf: 6492 case LibFunc_rintl: 6493 if (visitUnaryFloatCall(I, ISD::FRINT)) 6494 return; 6495 break; 6496 case LibFunc_round: 6497 case LibFunc_roundf: 6498 case LibFunc_roundl: 6499 if (visitUnaryFloatCall(I, ISD::FROUND)) 6500 return; 6501 break; 6502 case LibFunc_trunc: 6503 case LibFunc_truncf: 6504 case LibFunc_truncl: 6505 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6506 return; 6507 break; 6508 case LibFunc_log2: 6509 case LibFunc_log2f: 6510 case LibFunc_log2l: 6511 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6512 return; 6513 break; 6514 case LibFunc_exp2: 6515 case LibFunc_exp2f: 6516 case LibFunc_exp2l: 6517 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6518 return; 6519 break; 6520 case LibFunc_memcmp: 6521 if (visitMemCmpCall(I)) 6522 return; 6523 break; 6524 case LibFunc_mempcpy: 6525 if (visitMemPCpyCall(I)) 6526 return; 6527 break; 6528 case LibFunc_memchr: 6529 if (visitMemChrCall(I)) 6530 return; 6531 break; 6532 case LibFunc_strcpy: 6533 if (visitStrCpyCall(I, false)) 6534 return; 6535 break; 6536 case LibFunc_stpcpy: 6537 if (visitStrCpyCall(I, true)) 6538 return; 6539 break; 6540 case LibFunc_strcmp: 6541 if (visitStrCmpCall(I)) 6542 return; 6543 break; 6544 case LibFunc_strlen: 6545 if (visitStrLenCall(I)) 6546 return; 6547 break; 6548 case LibFunc_strnlen: 6549 if (visitStrNLenCall(I)) 6550 return; 6551 break; 6552 } 6553 } 6554 } 6555 6556 SDValue Callee; 6557 if (!RenameFn) 6558 Callee = getValue(I.getCalledValue()); 6559 else 6560 Callee = DAG.getExternalSymbol( 6561 RenameFn, 6562 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6563 6564 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6565 // have to do anything here to lower funclet bundles. 6566 assert(!I.hasOperandBundlesOtherThan( 6567 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6568 "Cannot lower calls with arbitrary operand bundles!"); 6569 6570 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6571 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6572 else 6573 // Check if we can potentially perform a tail call. More detailed checking 6574 // is be done within LowerCallTo, after more information about the call is 6575 // known. 6576 LowerCallTo(&I, Callee, I.isTailCall()); 6577 } 6578 6579 namespace { 6580 6581 /// AsmOperandInfo - This contains information for each constraint that we are 6582 /// lowering. 6583 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6584 public: 6585 /// CallOperand - If this is the result output operand or a clobber 6586 /// this is null, otherwise it is the incoming operand to the CallInst. 6587 /// This gets modified as the asm is processed. 6588 SDValue CallOperand; 6589 6590 /// AssignedRegs - If this is a register or register class operand, this 6591 /// contains the set of register corresponding to the operand. 6592 RegsForValue AssignedRegs; 6593 6594 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6595 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6596 } 6597 6598 /// Whether or not this operand accesses memory 6599 bool hasMemory(const TargetLowering &TLI) const { 6600 // Indirect operand accesses access memory. 6601 if (isIndirect) 6602 return true; 6603 6604 for (const auto &Code : Codes) 6605 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6606 return true; 6607 6608 return false; 6609 } 6610 6611 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6612 /// corresponds to. If there is no Value* for this operand, it returns 6613 /// MVT::Other. 6614 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6615 const DataLayout &DL) const { 6616 if (!CallOperandVal) return MVT::Other; 6617 6618 if (isa<BasicBlock>(CallOperandVal)) 6619 return TLI.getPointerTy(DL); 6620 6621 llvm::Type *OpTy = CallOperandVal->getType(); 6622 6623 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6624 // If this is an indirect operand, the operand is a pointer to the 6625 // accessed type. 6626 if (isIndirect) { 6627 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6628 if (!PtrTy) 6629 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6630 OpTy = PtrTy->getElementType(); 6631 } 6632 6633 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6634 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6635 if (STy->getNumElements() == 1) 6636 OpTy = STy->getElementType(0); 6637 6638 // If OpTy is not a single value, it may be a struct/union that we 6639 // can tile with integers. 6640 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6641 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6642 switch (BitSize) { 6643 default: break; 6644 case 1: 6645 case 8: 6646 case 16: 6647 case 32: 6648 case 64: 6649 case 128: 6650 OpTy = IntegerType::get(Context, BitSize); 6651 break; 6652 } 6653 } 6654 6655 return TLI.getValueType(DL, OpTy, true); 6656 } 6657 }; 6658 6659 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6660 6661 } // end anonymous namespace 6662 6663 /// Make sure that the output operand \p OpInfo and its corresponding input 6664 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6665 /// out). 6666 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6667 SDISelAsmOperandInfo &MatchingOpInfo, 6668 SelectionDAG &DAG) { 6669 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6670 return; 6671 6672 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6673 const auto &TLI = DAG.getTargetLoweringInfo(); 6674 6675 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6676 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6677 OpInfo.ConstraintVT); 6678 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6679 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6680 MatchingOpInfo.ConstraintVT); 6681 if ((OpInfo.ConstraintVT.isInteger() != 6682 MatchingOpInfo.ConstraintVT.isInteger()) || 6683 (MatchRC.second != InputRC.second)) { 6684 // FIXME: error out in a more elegant fashion 6685 report_fatal_error("Unsupported asm: input constraint" 6686 " with a matching output constraint of" 6687 " incompatible type!"); 6688 } 6689 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6690 } 6691 6692 /// Get a direct memory input to behave well as an indirect operand. 6693 /// This may introduce stores, hence the need for a \p Chain. 6694 /// \return The (possibly updated) chain. 6695 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6696 SDISelAsmOperandInfo &OpInfo, 6697 SelectionDAG &DAG) { 6698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6699 6700 // If we don't have an indirect input, put it in the constpool if we can, 6701 // otherwise spill it to a stack slot. 6702 // TODO: This isn't quite right. We need to handle these according to 6703 // the addressing mode that the constraint wants. Also, this may take 6704 // an additional register for the computation and we don't want that 6705 // either. 6706 6707 // If the operand is a float, integer, or vector constant, spill to a 6708 // constant pool entry to get its address. 6709 const Value *OpVal = OpInfo.CallOperandVal; 6710 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6711 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6712 OpInfo.CallOperand = DAG.getConstantPool( 6713 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6714 return Chain; 6715 } 6716 6717 // Otherwise, create a stack slot and emit a store to it before the asm. 6718 Type *Ty = OpVal->getType(); 6719 auto &DL = DAG.getDataLayout(); 6720 uint64_t TySize = DL.getTypeAllocSize(Ty); 6721 unsigned Align = DL.getPrefTypeAlignment(Ty); 6722 MachineFunction &MF = DAG.getMachineFunction(); 6723 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6724 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6725 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6726 MachinePointerInfo::getFixedStack(MF, SSFI)); 6727 OpInfo.CallOperand = StackSlot; 6728 6729 return Chain; 6730 } 6731 6732 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6733 /// specified operand. We prefer to assign virtual registers, to allow the 6734 /// register allocator to handle the assignment process. However, if the asm 6735 /// uses features that we can't model on machineinstrs, we have SDISel do the 6736 /// allocation. This produces generally horrible, but correct, code. 6737 /// 6738 /// OpInfo describes the operand. 6739 /// 6740 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6741 const SDLoc &DL, 6742 SDISelAsmOperandInfo &OpInfo) { 6743 LLVMContext &Context = *DAG.getContext(); 6744 6745 MachineFunction &MF = DAG.getMachineFunction(); 6746 SmallVector<unsigned, 4> Regs; 6747 6748 // If this is a constraint for a single physreg, or a constraint for a 6749 // register class, find it. 6750 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6751 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6752 OpInfo.ConstraintCode, 6753 OpInfo.ConstraintVT); 6754 6755 unsigned NumRegs = 1; 6756 if (OpInfo.ConstraintVT != MVT::Other) { 6757 // If this is a FP input in an integer register (or visa versa) insert a bit 6758 // cast of the input value. More generally, handle any case where the input 6759 // value disagrees with the register class we plan to stick this in. 6760 if (OpInfo.Type == InlineAsm::isInput && 6761 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6762 // Try to convert to the first EVT that the reg class contains. If the 6763 // types are identical size, use a bitcast to convert (e.g. two differing 6764 // vector types). 6765 MVT RegVT = *PhysReg.second->vt_begin(); 6766 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6767 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6768 RegVT, OpInfo.CallOperand); 6769 OpInfo.ConstraintVT = RegVT; 6770 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6771 // If the input is a FP value and we want it in FP registers, do a 6772 // bitcast to the corresponding integer type. This turns an f64 value 6773 // into i64, which can be passed with two i32 values on a 32-bit 6774 // machine. 6775 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6776 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6777 RegVT, OpInfo.CallOperand); 6778 OpInfo.ConstraintVT = RegVT; 6779 } 6780 } 6781 6782 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6783 } 6784 6785 MVT RegVT; 6786 EVT ValueVT = OpInfo.ConstraintVT; 6787 6788 // If this is a constraint for a specific physical register, like {r17}, 6789 // assign it now. 6790 if (unsigned AssignedReg = PhysReg.first) { 6791 const TargetRegisterClass *RC = PhysReg.second; 6792 if (OpInfo.ConstraintVT == MVT::Other) 6793 ValueVT = *RC->vt_begin(); 6794 6795 // Get the actual register value type. This is important, because the user 6796 // may have asked for (e.g.) the AX register in i32 type. We need to 6797 // remember that AX is actually i16 to get the right extension. 6798 RegVT = *RC->vt_begin(); 6799 6800 // This is a explicit reference to a physical register. 6801 Regs.push_back(AssignedReg); 6802 6803 // If this is an expanded reference, add the rest of the regs to Regs. 6804 if (NumRegs != 1) { 6805 TargetRegisterClass::iterator I = RC->begin(); 6806 for (; *I != AssignedReg; ++I) 6807 assert(I != RC->end() && "Didn't find reg!"); 6808 6809 // Already added the first reg. 6810 --NumRegs; ++I; 6811 for (; NumRegs; --NumRegs, ++I) { 6812 assert(I != RC->end() && "Ran out of registers to allocate!"); 6813 Regs.push_back(*I); 6814 } 6815 } 6816 6817 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6818 return; 6819 } 6820 6821 // Otherwise, if this was a reference to an LLVM register class, create vregs 6822 // for this reference. 6823 if (const TargetRegisterClass *RC = PhysReg.second) { 6824 RegVT = *RC->vt_begin(); 6825 if (OpInfo.ConstraintVT == MVT::Other) 6826 ValueVT = RegVT; 6827 6828 // Create the appropriate number of virtual registers. 6829 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6830 for (; NumRegs; --NumRegs) 6831 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6832 6833 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6834 return; 6835 } 6836 6837 // Otherwise, we couldn't allocate enough registers for this. 6838 } 6839 6840 static unsigned 6841 findMatchingInlineAsmOperand(unsigned OperandNo, 6842 const std::vector<SDValue> &AsmNodeOperands) { 6843 // Scan until we find the definition we already emitted of this operand. 6844 unsigned CurOp = InlineAsm::Op_FirstOperand; 6845 for (; OperandNo; --OperandNo) { 6846 // Advance to the next operand. 6847 unsigned OpFlag = 6848 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6849 assert((InlineAsm::isRegDefKind(OpFlag) || 6850 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6851 InlineAsm::isMemKind(OpFlag)) && 6852 "Skipped past definitions?"); 6853 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6854 } 6855 return CurOp; 6856 } 6857 6858 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6859 /// \return true if it has succeeded, false otherwise 6860 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6861 MVT RegVT, SelectionDAG &DAG) { 6862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6863 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6864 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6865 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6866 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6867 else 6868 return false; 6869 } 6870 return true; 6871 } 6872 6873 class ExtraFlags { 6874 unsigned Flags = 0; 6875 6876 public: 6877 explicit ExtraFlags(ImmutableCallSite CS) { 6878 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6879 if (IA->hasSideEffects()) 6880 Flags |= InlineAsm::Extra_HasSideEffects; 6881 if (IA->isAlignStack()) 6882 Flags |= InlineAsm::Extra_IsAlignStack; 6883 if (CS.isConvergent()) 6884 Flags |= InlineAsm::Extra_IsConvergent; 6885 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6886 } 6887 6888 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6889 // Ideally, we would only check against memory constraints. However, the 6890 // meaning of an Other constraint can be target-specific and we can't easily 6891 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6892 // for Other constraints as well. 6893 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6894 OpInfo.ConstraintType == TargetLowering::C_Other) { 6895 if (OpInfo.Type == InlineAsm::isInput) 6896 Flags |= InlineAsm::Extra_MayLoad; 6897 else if (OpInfo.Type == InlineAsm::isOutput) 6898 Flags |= InlineAsm::Extra_MayStore; 6899 else if (OpInfo.Type == InlineAsm::isClobber) 6900 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6901 } 6902 } 6903 6904 unsigned get() const { return Flags; } 6905 }; 6906 6907 /// visitInlineAsm - Handle a call to an InlineAsm object. 6908 /// 6909 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6910 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6911 6912 /// ConstraintOperands - Information about all of the constraints. 6913 SDISelAsmOperandInfoVector ConstraintOperands; 6914 6915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6916 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6917 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6918 6919 bool hasMemory = false; 6920 6921 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6922 ExtraFlags ExtraInfo(CS); 6923 6924 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6925 unsigned ResNo = 0; // ResNo - The result number of the next output. 6926 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6927 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6928 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6929 6930 MVT OpVT = MVT::Other; 6931 6932 // Compute the value type for each operand. 6933 if (OpInfo.Type == InlineAsm::isInput || 6934 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6935 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6936 6937 // Process the call argument. BasicBlocks are labels, currently appearing 6938 // only in asm's. 6939 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6940 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6941 } else { 6942 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6943 } 6944 6945 OpVT = 6946 OpInfo 6947 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6948 .getSimpleVT(); 6949 } 6950 6951 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6952 // The return value of the call is this value. As such, there is no 6953 // corresponding argument. 6954 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6955 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6956 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6957 STy->getElementType(ResNo)); 6958 } else { 6959 assert(ResNo == 0 && "Asm only has one result!"); 6960 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6961 } 6962 ++ResNo; 6963 } 6964 6965 OpInfo.ConstraintVT = OpVT; 6966 6967 if (!hasMemory) 6968 hasMemory = OpInfo.hasMemory(TLI); 6969 6970 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6971 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6972 auto TargetConstraint = TargetConstraints[i]; 6973 6974 // Compute the constraint code and ConstraintType to use. 6975 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6976 6977 ExtraInfo.update(TargetConstraint); 6978 } 6979 6980 SDValue Chain, Flag; 6981 6982 // We won't need to flush pending loads if this asm doesn't touch 6983 // memory and is nonvolatile. 6984 if (hasMemory || IA->hasSideEffects()) 6985 Chain = getRoot(); 6986 else 6987 Chain = DAG.getRoot(); 6988 6989 // Second pass over the constraints: compute which constraint option to use 6990 // and assign registers to constraints that want a specific physreg. 6991 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6992 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6993 6994 // If this is an output operand with a matching input operand, look up the 6995 // matching input. If their types mismatch, e.g. one is an integer, the 6996 // other is floating point, or their sizes are different, flag it as an 6997 // error. 6998 if (OpInfo.hasMatchingInput()) { 6999 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7000 patchMatchingInput(OpInfo, Input, DAG); 7001 } 7002 7003 // Compute the constraint code and ConstraintType to use. 7004 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7005 7006 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7007 OpInfo.Type == InlineAsm::isClobber) 7008 continue; 7009 7010 // If this is a memory input, and if the operand is not indirect, do what we 7011 // need to to provide an address for the memory input. 7012 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7013 !OpInfo.isIndirect) { 7014 assert((OpInfo.isMultipleAlternative || 7015 (OpInfo.Type == InlineAsm::isInput)) && 7016 "Can only indirectify direct input operands!"); 7017 7018 // Memory operands really want the address of the value. 7019 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7020 7021 // There is no longer a Value* corresponding to this operand. 7022 OpInfo.CallOperandVal = nullptr; 7023 7024 // It is now an indirect operand. 7025 OpInfo.isIndirect = true; 7026 } 7027 7028 // If this constraint is for a specific register, allocate it before 7029 // anything else. 7030 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7031 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7032 } 7033 7034 // Third pass - Loop over all of the operands, assigning virtual or physregs 7035 // to register class operands. 7036 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7037 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7038 7039 // C_Register operands have already been allocated, Other/Memory don't need 7040 // to be. 7041 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7042 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7043 } 7044 7045 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7046 std::vector<SDValue> AsmNodeOperands; 7047 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7048 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7049 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7050 7051 // If we have a !srcloc metadata node associated with it, we want to attach 7052 // this to the ultimately generated inline asm machineinstr. To do this, we 7053 // pass in the third operand as this (potentially null) inline asm MDNode. 7054 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7055 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7056 7057 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7058 // bits as operand 3. 7059 AsmNodeOperands.push_back(DAG.getTargetConstant( 7060 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7061 7062 // Loop over all of the inputs, copying the operand values into the 7063 // appropriate registers and processing the output regs. 7064 RegsForValue RetValRegs; 7065 7066 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7067 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 7068 7069 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7070 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7071 7072 switch (OpInfo.Type) { 7073 case InlineAsm::isOutput: { 7074 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7075 OpInfo.ConstraintType != TargetLowering::C_Register) { 7076 // Memory output, or 'other' output (e.g. 'X' constraint). 7077 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7078 7079 unsigned ConstraintID = 7080 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7081 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7082 "Failed to convert memory constraint code to constraint id."); 7083 7084 // Add information to the INLINEASM node to know about this output. 7085 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7086 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7087 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7088 MVT::i32)); 7089 AsmNodeOperands.push_back(OpInfo.CallOperand); 7090 break; 7091 } 7092 7093 // Otherwise, this is a register or register class output. 7094 7095 // Copy the output from the appropriate register. Find a register that 7096 // we can use. 7097 if (OpInfo.AssignedRegs.Regs.empty()) { 7098 emitInlineAsmError( 7099 CS, "couldn't allocate output register for constraint '" + 7100 Twine(OpInfo.ConstraintCode) + "'"); 7101 return; 7102 } 7103 7104 // If this is an indirect operand, store through the pointer after the 7105 // asm. 7106 if (OpInfo.isIndirect) { 7107 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7108 OpInfo.CallOperandVal)); 7109 } else { 7110 // This is the result value of the call. 7111 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7112 // Concatenate this output onto the outputs list. 7113 RetValRegs.append(OpInfo.AssignedRegs); 7114 } 7115 7116 // Add information to the INLINEASM node to know that this register is 7117 // set. 7118 OpInfo.AssignedRegs 7119 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7120 ? InlineAsm::Kind_RegDefEarlyClobber 7121 : InlineAsm::Kind_RegDef, 7122 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7123 break; 7124 } 7125 case InlineAsm::isInput: { 7126 SDValue InOperandVal = OpInfo.CallOperand; 7127 7128 if (OpInfo.isMatchingInputConstraint()) { 7129 // If this is required to match an output register we have already set, 7130 // just use its register. 7131 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7132 AsmNodeOperands); 7133 unsigned OpFlag = 7134 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7135 if (InlineAsm::isRegDefKind(OpFlag) || 7136 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7137 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7138 if (OpInfo.isIndirect) { 7139 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7140 emitInlineAsmError(CS, "inline asm not supported yet:" 7141 " don't know how to handle tied " 7142 "indirect register inputs"); 7143 return; 7144 } 7145 7146 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7147 SmallVector<unsigned, 4> Regs; 7148 7149 if (!createVirtualRegs(Regs, 7150 InlineAsm::getNumOperandRegisters(OpFlag), 7151 RegVT, DAG)) { 7152 emitInlineAsmError(CS, "inline asm error: This value type register " 7153 "class is not natively supported!"); 7154 return; 7155 } 7156 7157 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7158 7159 SDLoc dl = getCurSDLoc(); 7160 // Use the produced MatchedRegs object to 7161 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7162 Chain, &Flag, CS.getInstruction()); 7163 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7164 true, OpInfo.getMatchedOperand(), dl, 7165 DAG, AsmNodeOperands); 7166 break; 7167 } 7168 7169 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7170 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7171 "Unexpected number of operands"); 7172 // Add information to the INLINEASM node to know about this input. 7173 // See InlineAsm.h isUseOperandTiedToDef. 7174 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7175 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7176 OpInfo.getMatchedOperand()); 7177 AsmNodeOperands.push_back(DAG.getTargetConstant( 7178 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7179 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7180 break; 7181 } 7182 7183 // Treat indirect 'X' constraint as memory. 7184 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7185 OpInfo.isIndirect) 7186 OpInfo.ConstraintType = TargetLowering::C_Memory; 7187 7188 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7189 std::vector<SDValue> Ops; 7190 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7191 Ops, DAG); 7192 if (Ops.empty()) { 7193 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7194 Twine(OpInfo.ConstraintCode) + "'"); 7195 return; 7196 } 7197 7198 // Add information to the INLINEASM node to know about this input. 7199 unsigned ResOpType = 7200 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7201 AsmNodeOperands.push_back(DAG.getTargetConstant( 7202 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7203 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7204 break; 7205 } 7206 7207 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7208 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7209 assert(InOperandVal.getValueType() == 7210 TLI.getPointerTy(DAG.getDataLayout()) && 7211 "Memory operands expect pointer values"); 7212 7213 unsigned ConstraintID = 7214 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7215 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7216 "Failed to convert memory constraint code to constraint id."); 7217 7218 // Add information to the INLINEASM node to know about this input. 7219 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7220 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7221 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7222 getCurSDLoc(), 7223 MVT::i32)); 7224 AsmNodeOperands.push_back(InOperandVal); 7225 break; 7226 } 7227 7228 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7229 OpInfo.ConstraintType == TargetLowering::C_Register) && 7230 "Unknown constraint type!"); 7231 7232 // TODO: Support this. 7233 if (OpInfo.isIndirect) { 7234 emitInlineAsmError( 7235 CS, "Don't know how to handle indirect register inputs yet " 7236 "for constraint '" + 7237 Twine(OpInfo.ConstraintCode) + "'"); 7238 return; 7239 } 7240 7241 // Copy the input into the appropriate registers. 7242 if (OpInfo.AssignedRegs.Regs.empty()) { 7243 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7244 Twine(OpInfo.ConstraintCode) + "'"); 7245 return; 7246 } 7247 7248 SDLoc dl = getCurSDLoc(); 7249 7250 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7251 Chain, &Flag, CS.getInstruction()); 7252 7253 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7254 dl, DAG, AsmNodeOperands); 7255 break; 7256 } 7257 case InlineAsm::isClobber: { 7258 // Add the clobbered value to the operand list, so that the register 7259 // allocator is aware that the physreg got clobbered. 7260 if (!OpInfo.AssignedRegs.Regs.empty()) 7261 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7262 false, 0, getCurSDLoc(), DAG, 7263 AsmNodeOperands); 7264 break; 7265 } 7266 } 7267 } 7268 7269 // Finish up input operands. Set the input chain and add the flag last. 7270 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7271 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7272 7273 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7274 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7275 Flag = Chain.getValue(1); 7276 7277 // If this asm returns a register value, copy the result from that register 7278 // and set it as the value of the call. 7279 if (!RetValRegs.Regs.empty()) { 7280 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7281 Chain, &Flag, CS.getInstruction()); 7282 7283 // FIXME: Why don't we do this for inline asms with MRVs? 7284 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7285 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7286 7287 // If any of the results of the inline asm is a vector, it may have the 7288 // wrong width/num elts. This can happen for register classes that can 7289 // contain multiple different value types. The preg or vreg allocated may 7290 // not have the same VT as was expected. Convert it to the right type 7291 // with bit_convert. 7292 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7293 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7294 ResultType, Val); 7295 7296 } else if (ResultType != Val.getValueType() && 7297 ResultType.isInteger() && Val.getValueType().isInteger()) { 7298 // If a result value was tied to an input value, the computed result may 7299 // have a wider width than the expected result. Extract the relevant 7300 // portion. 7301 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7302 } 7303 7304 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7305 } 7306 7307 setValue(CS.getInstruction(), Val); 7308 // Don't need to use this as a chain in this case. 7309 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7310 return; 7311 } 7312 7313 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7314 7315 // Process indirect outputs, first output all of the flagged copies out of 7316 // physregs. 7317 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7318 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7319 const Value *Ptr = IndirectStoresToEmit[i].second; 7320 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7321 Chain, &Flag, IA); 7322 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7323 } 7324 7325 // Emit the non-flagged stores from the physregs. 7326 SmallVector<SDValue, 8> OutChains; 7327 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7328 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7329 getValue(StoresToEmit[i].second), 7330 MachinePointerInfo(StoresToEmit[i].second)); 7331 OutChains.push_back(Val); 7332 } 7333 7334 if (!OutChains.empty()) 7335 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7336 7337 DAG.setRoot(Chain); 7338 } 7339 7340 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7341 const Twine &Message) { 7342 LLVMContext &Ctx = *DAG.getContext(); 7343 Ctx.emitError(CS.getInstruction(), Message); 7344 7345 // Make sure we leave the DAG in a valid state 7346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7347 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7348 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7349 } 7350 7351 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7352 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7353 MVT::Other, getRoot(), 7354 getValue(I.getArgOperand(0)), 7355 DAG.getSrcValue(I.getArgOperand(0)))); 7356 } 7357 7358 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7360 const DataLayout &DL = DAG.getDataLayout(); 7361 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7362 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7363 DAG.getSrcValue(I.getOperand(0)), 7364 DL.getABITypeAlignment(I.getType())); 7365 setValue(&I, V); 7366 DAG.setRoot(V.getValue(1)); 7367 } 7368 7369 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7370 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7371 MVT::Other, getRoot(), 7372 getValue(I.getArgOperand(0)), 7373 DAG.getSrcValue(I.getArgOperand(0)))); 7374 } 7375 7376 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7377 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7378 MVT::Other, getRoot(), 7379 getValue(I.getArgOperand(0)), 7380 getValue(I.getArgOperand(1)), 7381 DAG.getSrcValue(I.getArgOperand(0)), 7382 DAG.getSrcValue(I.getArgOperand(1)))); 7383 } 7384 7385 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7386 const Instruction &I, 7387 SDValue Op) { 7388 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7389 if (!Range) 7390 return Op; 7391 7392 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7393 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7394 return Op; 7395 7396 APInt Lo = CR.getUnsignedMin(); 7397 if (!Lo.isMinValue()) 7398 return Op; 7399 7400 APInt Hi = CR.getUnsignedMax(); 7401 unsigned Bits = Hi.getActiveBits(); 7402 7403 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7404 7405 SDLoc SL = getCurSDLoc(); 7406 7407 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7408 DAG.getValueType(SmallVT)); 7409 unsigned NumVals = Op.getNode()->getNumValues(); 7410 if (NumVals == 1) 7411 return ZExt; 7412 7413 SmallVector<SDValue, 4> Ops; 7414 7415 Ops.push_back(ZExt); 7416 for (unsigned I = 1; I != NumVals; ++I) 7417 Ops.push_back(Op.getValue(I)); 7418 7419 return DAG.getMergeValues(Ops, SL); 7420 } 7421 7422 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7423 /// the call being lowered. 7424 /// 7425 /// This is a helper for lowering intrinsics that follow a target calling 7426 /// convention or require stack pointer adjustment. Only a subset of the 7427 /// intrinsic's operands need to participate in the calling convention. 7428 void SelectionDAGBuilder::populateCallLoweringInfo( 7429 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7430 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7431 bool IsPatchPoint) { 7432 TargetLowering::ArgListTy Args; 7433 Args.reserve(NumArgs); 7434 7435 // Populate the argument list. 7436 // Attributes for args start at offset 1, after the return attribute. 7437 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7438 ArgI != ArgE; ++ArgI) { 7439 const Value *V = CS->getOperand(ArgI); 7440 7441 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7442 7443 TargetLowering::ArgListEntry Entry; 7444 Entry.Node = getValue(V); 7445 Entry.Ty = V->getType(); 7446 Entry.setAttributes(&CS, AttrI); 7447 Args.push_back(Entry); 7448 } 7449 7450 CLI.setDebugLoc(getCurSDLoc()) 7451 .setChain(getRoot()) 7452 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7453 .setDiscardResult(CS->use_empty()) 7454 .setIsPatchPoint(IsPatchPoint); 7455 } 7456 7457 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7458 /// or patchpoint target node's operand list. 7459 /// 7460 /// Constants are converted to TargetConstants purely as an optimization to 7461 /// avoid constant materialization and register allocation. 7462 /// 7463 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7464 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7465 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7466 /// address materialization and register allocation, but may also be required 7467 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7468 /// alloca in the entry block, then the runtime may assume that the alloca's 7469 /// StackMap location can be read immediately after compilation and that the 7470 /// location is valid at any point during execution (this is similar to the 7471 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7472 /// only available in a register, then the runtime would need to trap when 7473 /// execution reaches the StackMap in order to read the alloca's location. 7474 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7475 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7476 SelectionDAGBuilder &Builder) { 7477 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7478 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7479 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7480 Ops.push_back( 7481 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7482 Ops.push_back( 7483 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7484 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7485 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7486 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7487 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7488 } else 7489 Ops.push_back(OpVal); 7490 } 7491 } 7492 7493 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7494 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7495 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7496 // [live variables...]) 7497 7498 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7499 7500 SDValue Chain, InFlag, Callee, NullPtr; 7501 SmallVector<SDValue, 32> Ops; 7502 7503 SDLoc DL = getCurSDLoc(); 7504 Callee = getValue(CI.getCalledValue()); 7505 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7506 7507 // The stackmap intrinsic only records the live variables (the arguemnts 7508 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7509 // intrinsic, this won't be lowered to a function call. This means we don't 7510 // have to worry about calling conventions and target specific lowering code. 7511 // Instead we perform the call lowering right here. 7512 // 7513 // chain, flag = CALLSEQ_START(chain, 0) 7514 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7515 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7516 // 7517 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7518 InFlag = Chain.getValue(1); 7519 7520 // Add the <id> and <numBytes> constants. 7521 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7522 Ops.push_back(DAG.getTargetConstant( 7523 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7524 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7525 Ops.push_back(DAG.getTargetConstant( 7526 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7527 MVT::i32)); 7528 7529 // Push live variables for the stack map. 7530 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7531 7532 // We are not pushing any register mask info here on the operands list, 7533 // because the stackmap doesn't clobber anything. 7534 7535 // Push the chain and the glue flag. 7536 Ops.push_back(Chain); 7537 Ops.push_back(InFlag); 7538 7539 // Create the STACKMAP node. 7540 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7541 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7542 Chain = SDValue(SM, 0); 7543 InFlag = Chain.getValue(1); 7544 7545 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7546 7547 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7548 7549 // Set the root to the target-lowered call chain. 7550 DAG.setRoot(Chain); 7551 7552 // Inform the Frame Information that we have a stackmap in this function. 7553 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7554 } 7555 7556 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7557 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7558 const BasicBlock *EHPadBB) { 7559 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7560 // i32 <numBytes>, 7561 // i8* <target>, 7562 // i32 <numArgs>, 7563 // [Args...], 7564 // [live variables...]) 7565 7566 CallingConv::ID CC = CS.getCallingConv(); 7567 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7568 bool HasDef = !CS->getType()->isVoidTy(); 7569 SDLoc dl = getCurSDLoc(); 7570 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7571 7572 // Handle immediate and symbolic callees. 7573 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7574 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7575 /*isTarget=*/true); 7576 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7577 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7578 SDLoc(SymbolicCallee), 7579 SymbolicCallee->getValueType(0)); 7580 7581 // Get the real number of arguments participating in the call <numArgs> 7582 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7583 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7584 7585 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7586 // Intrinsics include all meta-operands up to but not including CC. 7587 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7588 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7589 "Not enough arguments provided to the patchpoint intrinsic"); 7590 7591 // For AnyRegCC the arguments are lowered later on manually. 7592 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7593 Type *ReturnTy = 7594 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7595 7596 TargetLowering::CallLoweringInfo CLI(DAG); 7597 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7598 true); 7599 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7600 7601 SDNode *CallEnd = Result.second.getNode(); 7602 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7603 CallEnd = CallEnd->getOperand(0).getNode(); 7604 7605 /// Get a call instruction from the call sequence chain. 7606 /// Tail calls are not allowed. 7607 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7608 "Expected a callseq node."); 7609 SDNode *Call = CallEnd->getOperand(0).getNode(); 7610 bool HasGlue = Call->getGluedNode(); 7611 7612 // Replace the target specific call node with the patchable intrinsic. 7613 SmallVector<SDValue, 8> Ops; 7614 7615 // Add the <id> and <numBytes> constants. 7616 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7617 Ops.push_back(DAG.getTargetConstant( 7618 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7619 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7620 Ops.push_back(DAG.getTargetConstant( 7621 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7622 MVT::i32)); 7623 7624 // Add the callee. 7625 Ops.push_back(Callee); 7626 7627 // Adjust <numArgs> to account for any arguments that have been passed on the 7628 // stack instead. 7629 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7630 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7631 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7632 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7633 7634 // Add the calling convention 7635 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7636 7637 // Add the arguments we omitted previously. The register allocator should 7638 // place these in any free register. 7639 if (IsAnyRegCC) 7640 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7641 Ops.push_back(getValue(CS.getArgument(i))); 7642 7643 // Push the arguments from the call instruction up to the register mask. 7644 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7645 Ops.append(Call->op_begin() + 2, e); 7646 7647 // Push live variables for the stack map. 7648 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7649 7650 // Push the register mask info. 7651 if (HasGlue) 7652 Ops.push_back(*(Call->op_end()-2)); 7653 else 7654 Ops.push_back(*(Call->op_end()-1)); 7655 7656 // Push the chain (this is originally the first operand of the call, but 7657 // becomes now the last or second to last operand). 7658 Ops.push_back(*(Call->op_begin())); 7659 7660 // Push the glue flag (last operand). 7661 if (HasGlue) 7662 Ops.push_back(*(Call->op_end()-1)); 7663 7664 SDVTList NodeTys; 7665 if (IsAnyRegCC && HasDef) { 7666 // Create the return types based on the intrinsic definition 7667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7668 SmallVector<EVT, 3> ValueVTs; 7669 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7670 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7671 7672 // There is always a chain and a glue type at the end 7673 ValueVTs.push_back(MVT::Other); 7674 ValueVTs.push_back(MVT::Glue); 7675 NodeTys = DAG.getVTList(ValueVTs); 7676 } else 7677 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7678 7679 // Replace the target specific call node with a PATCHPOINT node. 7680 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7681 dl, NodeTys, Ops); 7682 7683 // Update the NodeMap. 7684 if (HasDef) { 7685 if (IsAnyRegCC) 7686 setValue(CS.getInstruction(), SDValue(MN, 0)); 7687 else 7688 setValue(CS.getInstruction(), Result.first); 7689 } 7690 7691 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7692 // call sequence. Furthermore the location of the chain and glue can change 7693 // when the AnyReg calling convention is used and the intrinsic returns a 7694 // value. 7695 if (IsAnyRegCC && HasDef) { 7696 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7697 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7698 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7699 } else 7700 DAG.ReplaceAllUsesWith(Call, MN); 7701 DAG.DeleteNode(Call); 7702 7703 // Inform the Frame Information that we have a patchpoint in this function. 7704 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7705 } 7706 7707 /// Returns an AttributeSet representing the attributes applied to the return 7708 /// value of the given call. 7709 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7710 SmallVector<Attribute::AttrKind, 2> Attrs; 7711 if (CLI.RetSExt) 7712 Attrs.push_back(Attribute::SExt); 7713 if (CLI.RetZExt) 7714 Attrs.push_back(Attribute::ZExt); 7715 if (CLI.IsInReg) 7716 Attrs.push_back(Attribute::InReg); 7717 7718 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7719 Attrs); 7720 } 7721 7722 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7723 /// implementation, which just calls LowerCall. 7724 /// FIXME: When all targets are 7725 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7726 std::pair<SDValue, SDValue> 7727 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7728 // Handle the incoming return values from the call. 7729 CLI.Ins.clear(); 7730 Type *OrigRetTy = CLI.RetTy; 7731 SmallVector<EVT, 4> RetTys; 7732 SmallVector<uint64_t, 4> Offsets; 7733 auto &DL = CLI.DAG.getDataLayout(); 7734 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7735 7736 SmallVector<ISD::OutputArg, 4> Outs; 7737 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7738 7739 bool CanLowerReturn = 7740 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7741 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7742 7743 SDValue DemoteStackSlot; 7744 int DemoteStackIdx = -100; 7745 if (!CanLowerReturn) { 7746 // FIXME: equivalent assert? 7747 // assert(!CS.hasInAllocaArgument() && 7748 // "sret demotion is incompatible with inalloca"); 7749 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7750 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7751 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7752 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7753 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7754 7755 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7756 ArgListEntry Entry; 7757 Entry.Node = DemoteStackSlot; 7758 Entry.Ty = StackSlotPtrType; 7759 Entry.isSExt = false; 7760 Entry.isZExt = false; 7761 Entry.isInReg = false; 7762 Entry.isSRet = true; 7763 Entry.isNest = false; 7764 Entry.isByVal = false; 7765 Entry.isReturned = false; 7766 Entry.isSwiftSelf = false; 7767 Entry.isSwiftError = false; 7768 Entry.Alignment = Align; 7769 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7770 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7771 7772 // sret demotion isn't compatible with tail-calls, since the sret argument 7773 // points into the callers stack frame. 7774 CLI.IsTailCall = false; 7775 } else { 7776 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7777 EVT VT = RetTys[I]; 7778 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7779 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7780 for (unsigned i = 0; i != NumRegs; ++i) { 7781 ISD::InputArg MyFlags; 7782 MyFlags.VT = RegisterVT; 7783 MyFlags.ArgVT = VT; 7784 MyFlags.Used = CLI.IsReturnValueUsed; 7785 if (CLI.RetSExt) 7786 MyFlags.Flags.setSExt(); 7787 if (CLI.RetZExt) 7788 MyFlags.Flags.setZExt(); 7789 if (CLI.IsInReg) 7790 MyFlags.Flags.setInReg(); 7791 CLI.Ins.push_back(MyFlags); 7792 } 7793 } 7794 } 7795 7796 // We push in swifterror return as the last element of CLI.Ins. 7797 ArgListTy &Args = CLI.getArgs(); 7798 if (supportSwiftError()) { 7799 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7800 if (Args[i].isSwiftError) { 7801 ISD::InputArg MyFlags; 7802 MyFlags.VT = getPointerTy(DL); 7803 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7804 MyFlags.Flags.setSwiftError(); 7805 CLI.Ins.push_back(MyFlags); 7806 } 7807 } 7808 } 7809 7810 // Handle all of the outgoing arguments. 7811 CLI.Outs.clear(); 7812 CLI.OutVals.clear(); 7813 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7814 SmallVector<EVT, 4> ValueVTs; 7815 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7816 Type *FinalType = Args[i].Ty; 7817 if (Args[i].isByVal) 7818 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7819 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7820 FinalType, CLI.CallConv, CLI.IsVarArg); 7821 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7822 ++Value) { 7823 EVT VT = ValueVTs[Value]; 7824 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7825 SDValue Op = SDValue(Args[i].Node.getNode(), 7826 Args[i].Node.getResNo() + Value); 7827 ISD::ArgFlagsTy Flags; 7828 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7829 7830 if (Args[i].isZExt) 7831 Flags.setZExt(); 7832 if (Args[i].isSExt) 7833 Flags.setSExt(); 7834 if (Args[i].isInReg) { 7835 // If we are using vectorcall calling convention, a structure that is 7836 // passed InReg - is surely an HVA 7837 if (CLI.CallConv == CallingConv::X86_VectorCall && 7838 isa<StructType>(FinalType)) { 7839 // The first value of a structure is marked 7840 if (0 == Value) 7841 Flags.setHvaStart(); 7842 Flags.setHva(); 7843 } 7844 // Set InReg Flag 7845 Flags.setInReg(); 7846 } 7847 if (Args[i].isSRet) 7848 Flags.setSRet(); 7849 if (Args[i].isSwiftSelf) 7850 Flags.setSwiftSelf(); 7851 if (Args[i].isSwiftError) 7852 Flags.setSwiftError(); 7853 if (Args[i].isByVal) 7854 Flags.setByVal(); 7855 if (Args[i].isInAlloca) { 7856 Flags.setInAlloca(); 7857 // Set the byval flag for CCAssignFn callbacks that don't know about 7858 // inalloca. This way we can know how many bytes we should've allocated 7859 // and how many bytes a callee cleanup function will pop. If we port 7860 // inalloca to more targets, we'll have to add custom inalloca handling 7861 // in the various CC lowering callbacks. 7862 Flags.setByVal(); 7863 } 7864 if (Args[i].isByVal || Args[i].isInAlloca) { 7865 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7866 Type *ElementTy = Ty->getElementType(); 7867 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7868 // For ByVal, alignment should come from FE. BE will guess if this 7869 // info is not there but there are cases it cannot get right. 7870 unsigned FrameAlign; 7871 if (Args[i].Alignment) 7872 FrameAlign = Args[i].Alignment; 7873 else 7874 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7875 Flags.setByValAlign(FrameAlign); 7876 } 7877 if (Args[i].isNest) 7878 Flags.setNest(); 7879 if (NeedsRegBlock) 7880 Flags.setInConsecutiveRegs(); 7881 Flags.setOrigAlign(OriginalAlignment); 7882 7883 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7884 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7885 SmallVector<SDValue, 4> Parts(NumParts); 7886 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7887 7888 if (Args[i].isSExt) 7889 ExtendKind = ISD::SIGN_EXTEND; 7890 else if (Args[i].isZExt) 7891 ExtendKind = ISD::ZERO_EXTEND; 7892 7893 // Conservatively only handle 'returned' on non-vectors for now 7894 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7895 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7896 "unexpected use of 'returned'"); 7897 // Before passing 'returned' to the target lowering code, ensure that 7898 // either the register MVT and the actual EVT are the same size or that 7899 // the return value and argument are extended in the same way; in these 7900 // cases it's safe to pass the argument register value unchanged as the 7901 // return register value (although it's at the target's option whether 7902 // to do so) 7903 // TODO: allow code generation to take advantage of partially preserved 7904 // registers rather than clobbering the entire register when the 7905 // parameter extension method is not compatible with the return 7906 // extension method 7907 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7908 (ExtendKind != ISD::ANY_EXTEND && 7909 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7910 Flags.setReturned(); 7911 } 7912 7913 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7914 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7915 7916 for (unsigned j = 0; j != NumParts; ++j) { 7917 // if it isn't first piece, alignment must be 1 7918 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7919 i < CLI.NumFixedArgs, 7920 i, j*Parts[j].getValueType().getStoreSize()); 7921 if (NumParts > 1 && j == 0) 7922 MyFlags.Flags.setSplit(); 7923 else if (j != 0) { 7924 MyFlags.Flags.setOrigAlign(1); 7925 if (j == NumParts - 1) 7926 MyFlags.Flags.setSplitEnd(); 7927 } 7928 7929 CLI.Outs.push_back(MyFlags); 7930 CLI.OutVals.push_back(Parts[j]); 7931 } 7932 7933 if (NeedsRegBlock && Value == NumValues - 1) 7934 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7935 } 7936 } 7937 7938 SmallVector<SDValue, 4> InVals; 7939 CLI.Chain = LowerCall(CLI, InVals); 7940 7941 // Update CLI.InVals to use outside of this function. 7942 CLI.InVals = InVals; 7943 7944 // Verify that the target's LowerCall behaved as expected. 7945 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7946 "LowerCall didn't return a valid chain!"); 7947 assert((!CLI.IsTailCall || InVals.empty()) && 7948 "LowerCall emitted a return value for a tail call!"); 7949 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7950 "LowerCall didn't emit the correct number of values!"); 7951 7952 // For a tail call, the return value is merely live-out and there aren't 7953 // any nodes in the DAG representing it. Return a special value to 7954 // indicate that a tail call has been emitted and no more Instructions 7955 // should be processed in the current block. 7956 if (CLI.IsTailCall) { 7957 CLI.DAG.setRoot(CLI.Chain); 7958 return std::make_pair(SDValue(), SDValue()); 7959 } 7960 7961 #ifndef NDEBUG 7962 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7963 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7964 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7965 "LowerCall emitted a value with the wrong type!"); 7966 } 7967 #endif 7968 7969 SmallVector<SDValue, 4> ReturnValues; 7970 if (!CanLowerReturn) { 7971 // The instruction result is the result of loading from the 7972 // hidden sret parameter. 7973 SmallVector<EVT, 1> PVTs; 7974 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7975 7976 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7977 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7978 EVT PtrVT = PVTs[0]; 7979 7980 unsigned NumValues = RetTys.size(); 7981 ReturnValues.resize(NumValues); 7982 SmallVector<SDValue, 4> Chains(NumValues); 7983 7984 // An aggregate return value cannot wrap around the address space, so 7985 // offsets to its parts don't wrap either. 7986 SDNodeFlags Flags; 7987 Flags.setNoUnsignedWrap(true); 7988 7989 for (unsigned i = 0; i < NumValues; ++i) { 7990 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7991 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7992 PtrVT), &Flags); 7993 SDValue L = CLI.DAG.getLoad( 7994 RetTys[i], CLI.DL, CLI.Chain, Add, 7995 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7996 DemoteStackIdx, Offsets[i]), 7997 /* Alignment = */ 1); 7998 ReturnValues[i] = L; 7999 Chains[i] = L.getValue(1); 8000 } 8001 8002 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8003 } else { 8004 // Collect the legal value parts into potentially illegal values 8005 // that correspond to the original function's return values. 8006 Optional<ISD::NodeType> AssertOp; 8007 if (CLI.RetSExt) 8008 AssertOp = ISD::AssertSext; 8009 else if (CLI.RetZExt) 8010 AssertOp = ISD::AssertZext; 8011 unsigned CurReg = 0; 8012 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8013 EVT VT = RetTys[I]; 8014 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 8015 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 8016 8017 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8018 NumRegs, RegisterVT, VT, nullptr, 8019 AssertOp)); 8020 CurReg += NumRegs; 8021 } 8022 8023 // For a function returning void, there is no return value. We can't create 8024 // such a node, so we just return a null return value in that case. In 8025 // that case, nothing will actually look at the value. 8026 if (ReturnValues.empty()) 8027 return std::make_pair(SDValue(), CLI.Chain); 8028 } 8029 8030 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8031 CLI.DAG.getVTList(RetTys), ReturnValues); 8032 return std::make_pair(Res, CLI.Chain); 8033 } 8034 8035 void TargetLowering::LowerOperationWrapper(SDNode *N, 8036 SmallVectorImpl<SDValue> &Results, 8037 SelectionDAG &DAG) const { 8038 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8039 Results.push_back(Res); 8040 } 8041 8042 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8043 llvm_unreachable("LowerOperation not implemented for this target!"); 8044 } 8045 8046 void 8047 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8048 SDValue Op = getNonRegisterValue(V); 8049 assert((Op.getOpcode() != ISD::CopyFromReg || 8050 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8051 "Copy from a reg to the same reg!"); 8052 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8053 8054 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8055 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8056 V->getType()); 8057 SDValue Chain = DAG.getEntryNode(); 8058 8059 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8060 FuncInfo.PreferredExtendType.end()) 8061 ? ISD::ANY_EXTEND 8062 : FuncInfo.PreferredExtendType[V]; 8063 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8064 PendingExports.push_back(Chain); 8065 } 8066 8067 #include "llvm/CodeGen/SelectionDAGISel.h" 8068 8069 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8070 /// entry block, return true. This includes arguments used by switches, since 8071 /// the switch may expand into multiple basic blocks. 8072 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8073 // With FastISel active, we may be splitting blocks, so force creation 8074 // of virtual registers for all non-dead arguments. 8075 if (FastISel) 8076 return A->use_empty(); 8077 8078 const BasicBlock &Entry = A->getParent()->front(); 8079 for (const User *U : A->users()) 8080 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8081 return false; // Use not in entry block. 8082 8083 return true; 8084 } 8085 8086 void SelectionDAGISel::LowerArguments(const Function &F) { 8087 SelectionDAG &DAG = SDB->DAG; 8088 SDLoc dl = SDB->getCurSDLoc(); 8089 const DataLayout &DL = DAG.getDataLayout(); 8090 SmallVector<ISD::InputArg, 16> Ins; 8091 8092 if (!FuncInfo->CanLowerReturn) { 8093 // Put in an sret pointer parameter before all the other parameters. 8094 SmallVector<EVT, 1> ValueVTs; 8095 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8096 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8097 8098 // NOTE: Assuming that a pointer will never break down to more than one VT 8099 // or one register. 8100 ISD::ArgFlagsTy Flags; 8101 Flags.setSRet(); 8102 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8103 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8104 ISD::InputArg::NoArgIndex, 0); 8105 Ins.push_back(RetArg); 8106 } 8107 8108 // Set up the incoming argument description vector. 8109 unsigned Idx = 1; 8110 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 8111 I != E; ++I, ++Idx) { 8112 SmallVector<EVT, 4> ValueVTs; 8113 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 8114 bool isArgValueUsed = !I->use_empty(); 8115 unsigned PartBase = 0; 8116 Type *FinalType = I->getType(); 8117 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8118 FinalType = cast<PointerType>(FinalType)->getElementType(); 8119 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8120 FinalType, F.getCallingConv(), F.isVarArg()); 8121 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8122 Value != NumValues; ++Value) { 8123 EVT VT = ValueVTs[Value]; 8124 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8125 ISD::ArgFlagsTy Flags; 8126 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8127 8128 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8129 Flags.setZExt(); 8130 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8131 Flags.setSExt(); 8132 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8133 // If we are using vectorcall calling convention, a structure that is 8134 // passed InReg - is surely an HVA 8135 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8136 isa<StructType>(I->getType())) { 8137 // The first value of a structure is marked 8138 if (0 == Value) 8139 Flags.setHvaStart(); 8140 Flags.setHva(); 8141 } 8142 // Set InReg Flag 8143 Flags.setInReg(); 8144 } 8145 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8146 Flags.setSRet(); 8147 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8148 Flags.setSwiftSelf(); 8149 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8150 Flags.setSwiftError(); 8151 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8152 Flags.setByVal(); 8153 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8154 Flags.setInAlloca(); 8155 // Set the byval flag for CCAssignFn callbacks that don't know about 8156 // inalloca. This way we can know how many bytes we should've allocated 8157 // and how many bytes a callee cleanup function will pop. If we port 8158 // inalloca to more targets, we'll have to add custom inalloca handling 8159 // in the various CC lowering callbacks. 8160 Flags.setByVal(); 8161 } 8162 if (F.getCallingConv() == CallingConv::X86_INTR) { 8163 // IA Interrupt passes frame (1st parameter) by value in the stack. 8164 if (Idx == 1) 8165 Flags.setByVal(); 8166 } 8167 if (Flags.isByVal() || Flags.isInAlloca()) { 8168 PointerType *Ty = cast<PointerType>(I->getType()); 8169 Type *ElementTy = Ty->getElementType(); 8170 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8171 // For ByVal, alignment should be passed from FE. BE will guess if 8172 // this info is not there but there are cases it cannot get right. 8173 unsigned FrameAlign; 8174 if (F.getParamAlignment(Idx)) 8175 FrameAlign = F.getParamAlignment(Idx); 8176 else 8177 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8178 Flags.setByValAlign(FrameAlign); 8179 } 8180 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8181 Flags.setNest(); 8182 if (NeedsRegBlock) 8183 Flags.setInConsecutiveRegs(); 8184 Flags.setOrigAlign(OriginalAlignment); 8185 8186 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8187 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8188 for (unsigned i = 0; i != NumRegs; ++i) { 8189 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8190 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8191 if (NumRegs > 1 && i == 0) 8192 MyFlags.Flags.setSplit(); 8193 // if it isn't first piece, alignment must be 1 8194 else if (i > 0) { 8195 MyFlags.Flags.setOrigAlign(1); 8196 if (i == NumRegs - 1) 8197 MyFlags.Flags.setSplitEnd(); 8198 } 8199 Ins.push_back(MyFlags); 8200 } 8201 if (NeedsRegBlock && Value == NumValues - 1) 8202 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8203 PartBase += VT.getStoreSize(); 8204 } 8205 } 8206 8207 // Call the target to set up the argument values. 8208 SmallVector<SDValue, 8> InVals; 8209 SDValue NewRoot = TLI->LowerFormalArguments( 8210 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8211 8212 // Verify that the target's LowerFormalArguments behaved as expected. 8213 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8214 "LowerFormalArguments didn't return a valid chain!"); 8215 assert(InVals.size() == Ins.size() && 8216 "LowerFormalArguments didn't emit the correct number of values!"); 8217 DEBUG({ 8218 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8219 assert(InVals[i].getNode() && 8220 "LowerFormalArguments emitted a null value!"); 8221 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8222 "LowerFormalArguments emitted a value with the wrong type!"); 8223 } 8224 }); 8225 8226 // Update the DAG with the new chain value resulting from argument lowering. 8227 DAG.setRoot(NewRoot); 8228 8229 // Set up the argument values. 8230 unsigned i = 0; 8231 Idx = 1; 8232 if (!FuncInfo->CanLowerReturn) { 8233 // Create a virtual register for the sret pointer, and put in a copy 8234 // from the sret argument into it. 8235 SmallVector<EVT, 1> ValueVTs; 8236 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8237 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8238 MVT VT = ValueVTs[0].getSimpleVT(); 8239 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8240 Optional<ISD::NodeType> AssertOp = None; 8241 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8242 RegVT, VT, nullptr, AssertOp); 8243 8244 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8245 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8246 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8247 FuncInfo->DemoteRegister = SRetReg; 8248 NewRoot = 8249 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8250 DAG.setRoot(NewRoot); 8251 8252 // i indexes lowered arguments. Bump it past the hidden sret argument. 8253 // Idx indexes LLVM arguments. Don't touch it. 8254 ++i; 8255 } 8256 8257 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 8258 ++I, ++Idx) { 8259 SmallVector<SDValue, 4> ArgValues; 8260 SmallVector<EVT, 4> ValueVTs; 8261 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 8262 unsigned NumValues = ValueVTs.size(); 8263 8264 // If this argument is unused then remember its value. It is used to generate 8265 // debugging information. 8266 bool isSwiftErrorArg = 8267 TLI->supportSwiftError() && 8268 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8269 if (I->use_empty() && NumValues && !isSwiftErrorArg) { 8270 SDB->setUnusedArgValue(&*I, InVals[i]); 8271 8272 // Also remember any frame index for use in FastISel. 8273 if (FrameIndexSDNode *FI = 8274 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8275 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8276 } 8277 8278 for (unsigned Val = 0; Val != NumValues; ++Val) { 8279 EVT VT = ValueVTs[Val]; 8280 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8281 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8282 8283 // Even an apparant 'unused' swifterror argument needs to be returned. So 8284 // we do generate a copy for it that can be used on return from the 8285 // function. 8286 if (!I->use_empty() || isSwiftErrorArg) { 8287 Optional<ISD::NodeType> AssertOp; 8288 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8289 AssertOp = ISD::AssertSext; 8290 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8291 AssertOp = ISD::AssertZext; 8292 8293 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 8294 NumParts, PartVT, VT, 8295 nullptr, AssertOp)); 8296 } 8297 8298 i += NumParts; 8299 } 8300 8301 // We don't need to do anything else for unused arguments. 8302 if (ArgValues.empty()) 8303 continue; 8304 8305 // Note down frame index. 8306 if (FrameIndexSDNode *FI = 8307 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8308 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8309 8310 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8311 SDB->getCurSDLoc()); 8312 8313 SDB->setValue(&*I, Res); 8314 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8315 if (LoadSDNode *LNode = 8316 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8317 if (FrameIndexSDNode *FI = 8318 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8319 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8320 } 8321 8322 // Update the SwiftErrorVRegDefMap. 8323 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8324 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8325 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8326 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8327 FuncInfo->SwiftErrorArg, Reg); 8328 } 8329 8330 // If this argument is live outside of the entry block, insert a copy from 8331 // wherever we got it to the vreg that other BB's will reference it as. 8332 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8333 // If we can, though, try to skip creating an unnecessary vreg. 8334 // FIXME: This isn't very clean... it would be nice to make this more 8335 // general. It's also subtly incompatible with the hacks FastISel 8336 // uses with vregs. 8337 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8338 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8339 FuncInfo->ValueMap[&*I] = Reg; 8340 continue; 8341 } 8342 } 8343 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8344 FuncInfo->InitializeRegForValue(&*I); 8345 SDB->CopyToExportRegsIfNeeded(&*I); 8346 } 8347 } 8348 8349 assert(i == InVals.size() && "Argument register count mismatch!"); 8350 8351 // Finally, if the target has anything special to do, allow it to do so. 8352 EmitFunctionEntryCode(); 8353 } 8354 8355 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8356 /// ensure constants are generated when needed. Remember the virtual registers 8357 /// that need to be added to the Machine PHI nodes as input. We cannot just 8358 /// directly add them, because expansion might result in multiple MBB's for one 8359 /// BB. As such, the start of the BB might correspond to a different MBB than 8360 /// the end. 8361 /// 8362 void 8363 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8364 const TerminatorInst *TI = LLVMBB->getTerminator(); 8365 8366 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8367 8368 // Check PHI nodes in successors that expect a value to be available from this 8369 // block. 8370 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8371 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8372 if (!isa<PHINode>(SuccBB->begin())) continue; 8373 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8374 8375 // If this terminator has multiple identical successors (common for 8376 // switches), only handle each succ once. 8377 if (!SuccsHandled.insert(SuccMBB).second) 8378 continue; 8379 8380 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8381 8382 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8383 // nodes and Machine PHI nodes, but the incoming operands have not been 8384 // emitted yet. 8385 for (BasicBlock::const_iterator I = SuccBB->begin(); 8386 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8387 // Ignore dead phi's. 8388 if (PN->use_empty()) continue; 8389 8390 // Skip empty types 8391 if (PN->getType()->isEmptyTy()) 8392 continue; 8393 8394 unsigned Reg; 8395 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8396 8397 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8398 unsigned &RegOut = ConstantsOut[C]; 8399 if (RegOut == 0) { 8400 RegOut = FuncInfo.CreateRegs(C->getType()); 8401 CopyValueToVirtualRegister(C, RegOut); 8402 } 8403 Reg = RegOut; 8404 } else { 8405 DenseMap<const Value *, unsigned>::iterator I = 8406 FuncInfo.ValueMap.find(PHIOp); 8407 if (I != FuncInfo.ValueMap.end()) 8408 Reg = I->second; 8409 else { 8410 assert(isa<AllocaInst>(PHIOp) && 8411 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8412 "Didn't codegen value into a register!??"); 8413 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8414 CopyValueToVirtualRegister(PHIOp, Reg); 8415 } 8416 } 8417 8418 // Remember that this register needs to added to the machine PHI node as 8419 // the input for this MBB. 8420 SmallVector<EVT, 4> ValueVTs; 8421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8422 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8423 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8424 EVT VT = ValueVTs[vti]; 8425 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8426 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8427 FuncInfo.PHINodesToUpdate.push_back( 8428 std::make_pair(&*MBBI++, Reg + i)); 8429 Reg += NumRegisters; 8430 } 8431 } 8432 } 8433 8434 ConstantsOut.clear(); 8435 } 8436 8437 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8438 /// is 0. 8439 MachineBasicBlock * 8440 SelectionDAGBuilder::StackProtectorDescriptor:: 8441 AddSuccessorMBB(const BasicBlock *BB, 8442 MachineBasicBlock *ParentMBB, 8443 bool IsLikely, 8444 MachineBasicBlock *SuccMBB) { 8445 // If SuccBB has not been created yet, create it. 8446 if (!SuccMBB) { 8447 MachineFunction *MF = ParentMBB->getParent(); 8448 MachineFunction::iterator BBI(ParentMBB); 8449 SuccMBB = MF->CreateMachineBasicBlock(BB); 8450 MF->insert(++BBI, SuccMBB); 8451 } 8452 // Add it as a successor of ParentMBB. 8453 ParentMBB->addSuccessor( 8454 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8455 return SuccMBB; 8456 } 8457 8458 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8459 MachineFunction::iterator I(MBB); 8460 if (++I == FuncInfo.MF->end()) 8461 return nullptr; 8462 return &*I; 8463 } 8464 8465 /// During lowering new call nodes can be created (such as memset, etc.). 8466 /// Those will become new roots of the current DAG, but complications arise 8467 /// when they are tail calls. In such cases, the call lowering will update 8468 /// the root, but the builder still needs to know that a tail call has been 8469 /// lowered in order to avoid generating an additional return. 8470 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8471 // If the node is null, we do have a tail call. 8472 if (MaybeTC.getNode() != nullptr) 8473 DAG.setRoot(MaybeTC); 8474 else 8475 HasTailCall = true; 8476 } 8477 8478 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8479 const SmallVectorImpl<unsigned> &TotalCases, 8480 unsigned First, unsigned Last, 8481 unsigned Density) const { 8482 assert(Last >= First); 8483 assert(TotalCases[Last] >= TotalCases[First]); 8484 8485 const APInt &LowCase = Clusters[First].Low->getValue(); 8486 const APInt &HighCase = Clusters[Last].High->getValue(); 8487 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8488 8489 // FIXME: A range of consecutive cases has 100% density, but only requires one 8490 // comparison to lower. We should discriminate against such consecutive ranges 8491 // in jump tables. 8492 8493 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8494 uint64_t Range = Diff + 1; 8495 8496 uint64_t NumCases = 8497 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8498 8499 assert(NumCases < UINT64_MAX / 100); 8500 assert(Range >= NumCases); 8501 8502 return NumCases * 100 >= Range * Density; 8503 } 8504 8505 static inline bool areJTsAllowed(const TargetLowering &TLI, 8506 const SwitchInst *SI) { 8507 const Function *Fn = SI->getParent()->getParent(); 8508 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8509 return false; 8510 8511 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8512 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8513 } 8514 8515 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8516 unsigned First, unsigned Last, 8517 const SwitchInst *SI, 8518 MachineBasicBlock *DefaultMBB, 8519 CaseCluster &JTCluster) { 8520 assert(First <= Last); 8521 8522 auto Prob = BranchProbability::getZero(); 8523 unsigned NumCmps = 0; 8524 std::vector<MachineBasicBlock*> Table; 8525 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8526 8527 // Initialize probabilities in JTProbs. 8528 for (unsigned I = First; I <= Last; ++I) 8529 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8530 8531 for (unsigned I = First; I <= Last; ++I) { 8532 assert(Clusters[I].Kind == CC_Range); 8533 Prob += Clusters[I].Prob; 8534 const APInt &Low = Clusters[I].Low->getValue(); 8535 const APInt &High = Clusters[I].High->getValue(); 8536 NumCmps += (Low == High) ? 1 : 2; 8537 if (I != First) { 8538 // Fill the gap between this and the previous cluster. 8539 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8540 assert(PreviousHigh.slt(Low)); 8541 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8542 for (uint64_t J = 0; J < Gap; J++) 8543 Table.push_back(DefaultMBB); 8544 } 8545 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8546 for (uint64_t J = 0; J < ClusterSize; ++J) 8547 Table.push_back(Clusters[I].MBB); 8548 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8549 } 8550 8551 unsigned NumDests = JTProbs.size(); 8552 if (isSuitableForBitTests(NumDests, NumCmps, 8553 Clusters[First].Low->getValue(), 8554 Clusters[Last].High->getValue())) { 8555 // Clusters[First..Last] should be lowered as bit tests instead. 8556 return false; 8557 } 8558 8559 // Create the MBB that will load from and jump through the table. 8560 // Note: We create it here, but it's not inserted into the function yet. 8561 MachineFunction *CurMF = FuncInfo.MF; 8562 MachineBasicBlock *JumpTableMBB = 8563 CurMF->CreateMachineBasicBlock(SI->getParent()); 8564 8565 // Add successors. Note: use table order for determinism. 8566 SmallPtrSet<MachineBasicBlock *, 8> Done; 8567 for (MachineBasicBlock *Succ : Table) { 8568 if (Done.count(Succ)) 8569 continue; 8570 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8571 Done.insert(Succ); 8572 } 8573 JumpTableMBB->normalizeSuccProbs(); 8574 8575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8576 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8577 ->createJumpTableIndex(Table); 8578 8579 // Set up the jump table info. 8580 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8581 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8582 Clusters[Last].High->getValue(), SI->getCondition(), 8583 nullptr, false); 8584 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8585 8586 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8587 JTCases.size() - 1, Prob); 8588 return true; 8589 } 8590 8591 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8592 const SwitchInst *SI, 8593 MachineBasicBlock *DefaultMBB) { 8594 #ifndef NDEBUG 8595 // Clusters must be non-empty, sorted, and only contain Range clusters. 8596 assert(!Clusters.empty()); 8597 for (CaseCluster &C : Clusters) 8598 assert(C.Kind == CC_Range); 8599 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8600 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8601 #endif 8602 8603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8604 if (!areJTsAllowed(TLI, SI)) 8605 return; 8606 8607 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8608 8609 const int64_t N = Clusters.size(); 8610 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8611 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8612 const unsigned MaxJumpTableSize = 8613 OptForSize || TLI.getMaximumJumpTableSize() == 0 8614 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8615 8616 if (N < 2 || N < MinJumpTableEntries) 8617 return; 8618 8619 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8620 SmallVector<unsigned, 8> TotalCases(N); 8621 for (unsigned i = 0; i < N; ++i) { 8622 const APInt &Hi = Clusters[i].High->getValue(); 8623 const APInt &Lo = Clusters[i].Low->getValue(); 8624 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8625 if (i != 0) 8626 TotalCases[i] += TotalCases[i - 1]; 8627 } 8628 8629 const unsigned MinDensity = 8630 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8631 8632 // Cheap case: the whole range may be suitable for jump table. 8633 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8634 Clusters[0].Low->getValue()) 8635 .getLimitedValue(UINT_MAX - 1) + 1; 8636 if (JumpTableSize <= MaxJumpTableSize && 8637 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8638 CaseCluster JTCluster; 8639 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8640 Clusters[0] = JTCluster; 8641 Clusters.resize(1); 8642 return; 8643 } 8644 } 8645 8646 // The algorithm below is not suitable for -O0. 8647 if (TM.getOptLevel() == CodeGenOpt::None) 8648 return; 8649 8650 // Split Clusters into minimum number of dense partitions. The algorithm uses 8651 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8652 // for the Case Statement'" (1994), but builds the MinPartitions array in 8653 // reverse order to make it easier to reconstruct the partitions in ascending 8654 // order. In the choice between two optimal partitionings, it picks the one 8655 // which yields more jump tables. 8656 8657 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8658 SmallVector<unsigned, 8> MinPartitions(N); 8659 // LastElement[i] is the last element of the partition starting at i. 8660 SmallVector<unsigned, 8> LastElement(N); 8661 // PartitionsScore[i] is used to break ties when choosing between two 8662 // partitionings resulting in the same number of partitions. 8663 SmallVector<unsigned, 8> PartitionsScore(N); 8664 // For PartitionsScore, a small number of comparisons is considered as good as 8665 // a jump table and a single comparison is considered better than a jump 8666 // table. 8667 enum PartitionScores : unsigned { 8668 NoTable = 0, 8669 Table = 1, 8670 FewCases = 1, 8671 SingleCase = 2 8672 }; 8673 8674 // Base case: There is only one way to partition Clusters[N-1]. 8675 MinPartitions[N - 1] = 1; 8676 LastElement[N - 1] = N - 1; 8677 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8678 8679 // Note: loop indexes are signed to avoid underflow. 8680 for (int64_t i = N - 2; i >= 0; i--) { 8681 // Find optimal partitioning of Clusters[i..N-1]. 8682 // Baseline: Put Clusters[i] into a partition on its own. 8683 MinPartitions[i] = MinPartitions[i + 1] + 1; 8684 LastElement[i] = i; 8685 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8686 8687 // Search for a solution that results in fewer partitions. 8688 for (int64_t j = N - 1; j > i; j--) { 8689 // Try building a partition from Clusters[i..j]. 8690 JumpTableSize = (Clusters[j].High->getValue() - 8691 Clusters[i].Low->getValue()) 8692 .getLimitedValue(UINT_MAX - 1) + 1; 8693 if (JumpTableSize <= MaxJumpTableSize && 8694 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8695 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8696 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8697 int64_t NumEntries = j - i + 1; 8698 8699 if (NumEntries == 1) 8700 Score += PartitionScores::SingleCase; 8701 else if (NumEntries <= SmallNumberOfEntries) 8702 Score += PartitionScores::FewCases; 8703 else if (NumEntries >= MinJumpTableEntries) 8704 Score += PartitionScores::Table; 8705 8706 // If this leads to fewer partitions, or to the same number of 8707 // partitions with better score, it is a better partitioning. 8708 if (NumPartitions < MinPartitions[i] || 8709 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8710 MinPartitions[i] = NumPartitions; 8711 LastElement[i] = j; 8712 PartitionsScore[i] = Score; 8713 } 8714 } 8715 } 8716 } 8717 8718 // Iterate over the partitions, replacing some with jump tables in-place. 8719 unsigned DstIndex = 0; 8720 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8721 Last = LastElement[First]; 8722 assert(Last >= First); 8723 assert(DstIndex <= First); 8724 unsigned NumClusters = Last - First + 1; 8725 8726 CaseCluster JTCluster; 8727 if (NumClusters >= MinJumpTableEntries && 8728 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8729 Clusters[DstIndex++] = JTCluster; 8730 } else { 8731 for (unsigned I = First; I <= Last; ++I) 8732 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8733 } 8734 } 8735 Clusters.resize(DstIndex); 8736 } 8737 8738 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8739 // FIXME: Using the pointer type doesn't seem ideal. 8740 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8741 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8742 return Range <= BW; 8743 } 8744 8745 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8746 unsigned NumCmps, 8747 const APInt &Low, 8748 const APInt &High) { 8749 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8750 // range of cases both require only one branch to lower. Just looking at the 8751 // number of clusters and destinations should be enough to decide whether to 8752 // build bit tests. 8753 8754 // To lower a range with bit tests, the range must fit the bitwidth of a 8755 // machine word. 8756 if (!rangeFitsInWord(Low, High)) 8757 return false; 8758 8759 // Decide whether it's profitable to lower this range with bit tests. Each 8760 // destination requires a bit test and branch, and there is an overall range 8761 // check branch. For a small number of clusters, separate comparisons might be 8762 // cheaper, and for many destinations, splitting the range might be better. 8763 return (NumDests == 1 && NumCmps >= 3) || 8764 (NumDests == 2 && NumCmps >= 5) || 8765 (NumDests == 3 && NumCmps >= 6); 8766 } 8767 8768 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8769 unsigned First, unsigned Last, 8770 const SwitchInst *SI, 8771 CaseCluster &BTCluster) { 8772 assert(First <= Last); 8773 if (First == Last) 8774 return false; 8775 8776 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8777 unsigned NumCmps = 0; 8778 for (int64_t I = First; I <= Last; ++I) { 8779 assert(Clusters[I].Kind == CC_Range); 8780 Dests.set(Clusters[I].MBB->getNumber()); 8781 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8782 } 8783 unsigned NumDests = Dests.count(); 8784 8785 APInt Low = Clusters[First].Low->getValue(); 8786 APInt High = Clusters[Last].High->getValue(); 8787 assert(Low.slt(High)); 8788 8789 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8790 return false; 8791 8792 APInt LowBound; 8793 APInt CmpRange; 8794 8795 const int BitWidth = DAG.getTargetLoweringInfo() 8796 .getPointerTy(DAG.getDataLayout()) 8797 .getSizeInBits(); 8798 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8799 8800 // Check if the clusters cover a contiguous range such that no value in the 8801 // range will jump to the default statement. 8802 bool ContiguousRange = true; 8803 for (int64_t I = First + 1; I <= Last; ++I) { 8804 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8805 ContiguousRange = false; 8806 break; 8807 } 8808 } 8809 8810 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8811 // Optimize the case where all the case values fit in a word without having 8812 // to subtract minValue. In this case, we can optimize away the subtraction. 8813 LowBound = APInt::getNullValue(Low.getBitWidth()); 8814 CmpRange = High; 8815 ContiguousRange = false; 8816 } else { 8817 LowBound = Low; 8818 CmpRange = High - Low; 8819 } 8820 8821 CaseBitsVector CBV; 8822 auto TotalProb = BranchProbability::getZero(); 8823 for (unsigned i = First; i <= Last; ++i) { 8824 // Find the CaseBits for this destination. 8825 unsigned j; 8826 for (j = 0; j < CBV.size(); ++j) 8827 if (CBV[j].BB == Clusters[i].MBB) 8828 break; 8829 if (j == CBV.size()) 8830 CBV.push_back( 8831 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8832 CaseBits *CB = &CBV[j]; 8833 8834 // Update Mask, Bits and ExtraProb. 8835 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8836 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8837 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8838 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8839 CB->Bits += Hi - Lo + 1; 8840 CB->ExtraProb += Clusters[i].Prob; 8841 TotalProb += Clusters[i].Prob; 8842 } 8843 8844 BitTestInfo BTI; 8845 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8846 // Sort by probability first, number of bits second. 8847 if (a.ExtraProb != b.ExtraProb) 8848 return a.ExtraProb > b.ExtraProb; 8849 return a.Bits > b.Bits; 8850 }); 8851 8852 for (auto &CB : CBV) { 8853 MachineBasicBlock *BitTestBB = 8854 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8855 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8856 } 8857 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8858 SI->getCondition(), -1U, MVT::Other, false, 8859 ContiguousRange, nullptr, nullptr, std::move(BTI), 8860 TotalProb); 8861 8862 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8863 BitTestCases.size() - 1, TotalProb); 8864 return true; 8865 } 8866 8867 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8868 const SwitchInst *SI) { 8869 // Partition Clusters into as few subsets as possible, where each subset has a 8870 // range that fits in a machine word and has <= 3 unique destinations. 8871 8872 #ifndef NDEBUG 8873 // Clusters must be sorted and contain Range or JumpTable clusters. 8874 assert(!Clusters.empty()); 8875 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8876 for (const CaseCluster &C : Clusters) 8877 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8878 for (unsigned i = 1; i < Clusters.size(); ++i) 8879 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8880 #endif 8881 8882 // The algorithm below is not suitable for -O0. 8883 if (TM.getOptLevel() == CodeGenOpt::None) 8884 return; 8885 8886 // If target does not have legal shift left, do not emit bit tests at all. 8887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8888 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8889 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8890 return; 8891 8892 int BitWidth = PTy.getSizeInBits(); 8893 const int64_t N = Clusters.size(); 8894 8895 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8896 SmallVector<unsigned, 8> MinPartitions(N); 8897 // LastElement[i] is the last element of the partition starting at i. 8898 SmallVector<unsigned, 8> LastElement(N); 8899 8900 // FIXME: This might not be the best algorithm for finding bit test clusters. 8901 8902 // Base case: There is only one way to partition Clusters[N-1]. 8903 MinPartitions[N - 1] = 1; 8904 LastElement[N - 1] = N - 1; 8905 8906 // Note: loop indexes are signed to avoid underflow. 8907 for (int64_t i = N - 2; i >= 0; --i) { 8908 // Find optimal partitioning of Clusters[i..N-1]. 8909 // Baseline: Put Clusters[i] into a partition on its own. 8910 MinPartitions[i] = MinPartitions[i + 1] + 1; 8911 LastElement[i] = i; 8912 8913 // Search for a solution that results in fewer partitions. 8914 // Note: the search is limited by BitWidth, reducing time complexity. 8915 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8916 // Try building a partition from Clusters[i..j]. 8917 8918 // Check the range. 8919 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8920 Clusters[j].High->getValue())) 8921 continue; 8922 8923 // Check nbr of destinations and cluster types. 8924 // FIXME: This works, but doesn't seem very efficient. 8925 bool RangesOnly = true; 8926 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8927 for (int64_t k = i; k <= j; k++) { 8928 if (Clusters[k].Kind != CC_Range) { 8929 RangesOnly = false; 8930 break; 8931 } 8932 Dests.set(Clusters[k].MBB->getNumber()); 8933 } 8934 if (!RangesOnly || Dests.count() > 3) 8935 break; 8936 8937 // Check if it's a better partition. 8938 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8939 if (NumPartitions < MinPartitions[i]) { 8940 // Found a better partition. 8941 MinPartitions[i] = NumPartitions; 8942 LastElement[i] = j; 8943 } 8944 } 8945 } 8946 8947 // Iterate over the partitions, replacing with bit-test clusters in-place. 8948 unsigned DstIndex = 0; 8949 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8950 Last = LastElement[First]; 8951 assert(First <= Last); 8952 assert(DstIndex <= First); 8953 8954 CaseCluster BitTestCluster; 8955 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8956 Clusters[DstIndex++] = BitTestCluster; 8957 } else { 8958 size_t NumClusters = Last - First + 1; 8959 std::memmove(&Clusters[DstIndex], &Clusters[First], 8960 sizeof(Clusters[0]) * NumClusters); 8961 DstIndex += NumClusters; 8962 } 8963 } 8964 Clusters.resize(DstIndex); 8965 } 8966 8967 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8968 MachineBasicBlock *SwitchMBB, 8969 MachineBasicBlock *DefaultMBB) { 8970 MachineFunction *CurMF = FuncInfo.MF; 8971 MachineBasicBlock *NextMBB = nullptr; 8972 MachineFunction::iterator BBI(W.MBB); 8973 if (++BBI != FuncInfo.MF->end()) 8974 NextMBB = &*BBI; 8975 8976 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8977 8978 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8979 8980 if (Size == 2 && W.MBB == SwitchMBB) { 8981 // If any two of the cases has the same destination, and if one value 8982 // is the same as the other, but has one bit unset that the other has set, 8983 // use bit manipulation to do two compares at once. For example: 8984 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8985 // TODO: This could be extended to merge any 2 cases in switches with 3 8986 // cases. 8987 // TODO: Handle cases where W.CaseBB != SwitchBB. 8988 CaseCluster &Small = *W.FirstCluster; 8989 CaseCluster &Big = *W.LastCluster; 8990 8991 if (Small.Low == Small.High && Big.Low == Big.High && 8992 Small.MBB == Big.MBB) { 8993 const APInt &SmallValue = Small.Low->getValue(); 8994 const APInt &BigValue = Big.Low->getValue(); 8995 8996 // Check that there is only one bit different. 8997 APInt CommonBit = BigValue ^ SmallValue; 8998 if (CommonBit.isPowerOf2()) { 8999 SDValue CondLHS = getValue(Cond); 9000 EVT VT = CondLHS.getValueType(); 9001 SDLoc DL = getCurSDLoc(); 9002 9003 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9004 DAG.getConstant(CommonBit, DL, VT)); 9005 SDValue Cond = DAG.getSetCC( 9006 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9007 ISD::SETEQ); 9008 9009 // Update successor info. 9010 // Both Small and Big will jump to Small.BB, so we sum up the 9011 // probabilities. 9012 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9013 if (BPI) 9014 addSuccessorWithProb( 9015 SwitchMBB, DefaultMBB, 9016 // The default destination is the first successor in IR. 9017 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9018 else 9019 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9020 9021 // Insert the true branch. 9022 SDValue BrCond = 9023 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9024 DAG.getBasicBlock(Small.MBB)); 9025 // Insert the false branch. 9026 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9027 DAG.getBasicBlock(DefaultMBB)); 9028 9029 DAG.setRoot(BrCond); 9030 return; 9031 } 9032 } 9033 } 9034 9035 if (TM.getOptLevel() != CodeGenOpt::None) { 9036 // Order cases by probability so the most likely case will be checked first. 9037 std::sort(W.FirstCluster, W.LastCluster + 1, 9038 [](const CaseCluster &a, const CaseCluster &b) { 9039 return a.Prob > b.Prob; 9040 }); 9041 9042 // Rearrange the case blocks so that the last one falls through if possible 9043 // without without changing the order of probabilities. 9044 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9045 --I; 9046 if (I->Prob > W.LastCluster->Prob) 9047 break; 9048 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9049 std::swap(*I, *W.LastCluster); 9050 break; 9051 } 9052 } 9053 } 9054 9055 // Compute total probability. 9056 BranchProbability DefaultProb = W.DefaultProb; 9057 BranchProbability UnhandledProbs = DefaultProb; 9058 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9059 UnhandledProbs += I->Prob; 9060 9061 MachineBasicBlock *CurMBB = W.MBB; 9062 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9063 MachineBasicBlock *Fallthrough; 9064 if (I == W.LastCluster) { 9065 // For the last cluster, fall through to the default destination. 9066 Fallthrough = DefaultMBB; 9067 } else { 9068 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9069 CurMF->insert(BBI, Fallthrough); 9070 // Put Cond in a virtual register to make it available from the new blocks. 9071 ExportFromCurrentBlock(Cond); 9072 } 9073 UnhandledProbs -= I->Prob; 9074 9075 switch (I->Kind) { 9076 case CC_JumpTable: { 9077 // FIXME: Optimize away range check based on pivot comparisons. 9078 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9079 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9080 9081 // The jump block hasn't been inserted yet; insert it here. 9082 MachineBasicBlock *JumpMBB = JT->MBB; 9083 CurMF->insert(BBI, JumpMBB); 9084 9085 auto JumpProb = I->Prob; 9086 auto FallthroughProb = UnhandledProbs; 9087 9088 // If the default statement is a target of the jump table, we evenly 9089 // distribute the default probability to successors of CurMBB. Also 9090 // update the probability on the edge from JumpMBB to Fallthrough. 9091 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9092 SE = JumpMBB->succ_end(); 9093 SI != SE; ++SI) { 9094 if (*SI == DefaultMBB) { 9095 JumpProb += DefaultProb / 2; 9096 FallthroughProb -= DefaultProb / 2; 9097 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9098 JumpMBB->normalizeSuccProbs(); 9099 break; 9100 } 9101 } 9102 9103 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9104 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9105 CurMBB->normalizeSuccProbs(); 9106 9107 // The jump table header will be inserted in our current block, do the 9108 // range check, and fall through to our fallthrough block. 9109 JTH->HeaderBB = CurMBB; 9110 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9111 9112 // If we're in the right place, emit the jump table header right now. 9113 if (CurMBB == SwitchMBB) { 9114 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9115 JTH->Emitted = true; 9116 } 9117 break; 9118 } 9119 case CC_BitTests: { 9120 // FIXME: Optimize away range check based on pivot comparisons. 9121 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9122 9123 // The bit test blocks haven't been inserted yet; insert them here. 9124 for (BitTestCase &BTC : BTB->Cases) 9125 CurMF->insert(BBI, BTC.ThisBB); 9126 9127 // Fill in fields of the BitTestBlock. 9128 BTB->Parent = CurMBB; 9129 BTB->Default = Fallthrough; 9130 9131 BTB->DefaultProb = UnhandledProbs; 9132 // If the cases in bit test don't form a contiguous range, we evenly 9133 // distribute the probability on the edge to Fallthrough to two 9134 // successors of CurMBB. 9135 if (!BTB->ContiguousRange) { 9136 BTB->Prob += DefaultProb / 2; 9137 BTB->DefaultProb -= DefaultProb / 2; 9138 } 9139 9140 // If we're in the right place, emit the bit test header right now. 9141 if (CurMBB == SwitchMBB) { 9142 visitBitTestHeader(*BTB, SwitchMBB); 9143 BTB->Emitted = true; 9144 } 9145 break; 9146 } 9147 case CC_Range: { 9148 const Value *RHS, *LHS, *MHS; 9149 ISD::CondCode CC; 9150 if (I->Low == I->High) { 9151 // Check Cond == I->Low. 9152 CC = ISD::SETEQ; 9153 LHS = Cond; 9154 RHS=I->Low; 9155 MHS = nullptr; 9156 } else { 9157 // Check I->Low <= Cond <= I->High. 9158 CC = ISD::SETLE; 9159 LHS = I->Low; 9160 MHS = Cond; 9161 RHS = I->High; 9162 } 9163 9164 // The false probability is the sum of all unhandled cases. 9165 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9166 UnhandledProbs); 9167 9168 if (CurMBB == SwitchMBB) 9169 visitSwitchCase(CB, SwitchMBB); 9170 else 9171 SwitchCases.push_back(CB); 9172 9173 break; 9174 } 9175 } 9176 CurMBB = Fallthrough; 9177 } 9178 } 9179 9180 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9181 CaseClusterIt First, 9182 CaseClusterIt Last) { 9183 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9184 if (X.Prob != CC.Prob) 9185 return X.Prob > CC.Prob; 9186 9187 // Ties are broken by comparing the case value. 9188 return X.Low->getValue().slt(CC.Low->getValue()); 9189 }); 9190 } 9191 9192 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9193 const SwitchWorkListItem &W, 9194 Value *Cond, 9195 MachineBasicBlock *SwitchMBB) { 9196 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9197 "Clusters not sorted?"); 9198 9199 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9200 9201 // Balance the tree based on branch probabilities to create a near-optimal (in 9202 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9203 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9204 CaseClusterIt LastLeft = W.FirstCluster; 9205 CaseClusterIt FirstRight = W.LastCluster; 9206 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9207 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9208 9209 // Move LastLeft and FirstRight towards each other from opposite directions to 9210 // find a partitioning of the clusters which balances the probability on both 9211 // sides. If LeftProb and RightProb are equal, alternate which side is 9212 // taken to ensure 0-probability nodes are distributed evenly. 9213 unsigned I = 0; 9214 while (LastLeft + 1 < FirstRight) { 9215 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9216 LeftProb += (++LastLeft)->Prob; 9217 else 9218 RightProb += (--FirstRight)->Prob; 9219 I++; 9220 } 9221 9222 for (;;) { 9223 // Our binary search tree differs from a typical BST in that ours can have up 9224 // to three values in each leaf. The pivot selection above doesn't take that 9225 // into account, which means the tree might require more nodes and be less 9226 // efficient. We compensate for this here. 9227 9228 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9229 unsigned NumRight = W.LastCluster - FirstRight + 1; 9230 9231 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9232 // If one side has less than 3 clusters, and the other has more than 3, 9233 // consider taking a cluster from the other side. 9234 9235 if (NumLeft < NumRight) { 9236 // Consider moving the first cluster on the right to the left side. 9237 CaseCluster &CC = *FirstRight; 9238 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9239 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9240 if (LeftSideRank <= RightSideRank) { 9241 // Moving the cluster to the left does not demote it. 9242 ++LastLeft; 9243 ++FirstRight; 9244 continue; 9245 } 9246 } else { 9247 assert(NumRight < NumLeft); 9248 // Consider moving the last element on the left to the right side. 9249 CaseCluster &CC = *LastLeft; 9250 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9251 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9252 if (RightSideRank <= LeftSideRank) { 9253 // Moving the cluster to the right does not demot it. 9254 --LastLeft; 9255 --FirstRight; 9256 continue; 9257 } 9258 } 9259 } 9260 break; 9261 } 9262 9263 assert(LastLeft + 1 == FirstRight); 9264 assert(LastLeft >= W.FirstCluster); 9265 assert(FirstRight <= W.LastCluster); 9266 9267 // Use the first element on the right as pivot since we will make less-than 9268 // comparisons against it. 9269 CaseClusterIt PivotCluster = FirstRight; 9270 assert(PivotCluster > W.FirstCluster); 9271 assert(PivotCluster <= W.LastCluster); 9272 9273 CaseClusterIt FirstLeft = W.FirstCluster; 9274 CaseClusterIt LastRight = W.LastCluster; 9275 9276 const ConstantInt *Pivot = PivotCluster->Low; 9277 9278 // New blocks will be inserted immediately after the current one. 9279 MachineFunction::iterator BBI(W.MBB); 9280 ++BBI; 9281 9282 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9283 // we can branch to its destination directly if it's squeezed exactly in 9284 // between the known lower bound and Pivot - 1. 9285 MachineBasicBlock *LeftMBB; 9286 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9287 FirstLeft->Low == W.GE && 9288 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9289 LeftMBB = FirstLeft->MBB; 9290 } else { 9291 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9292 FuncInfo.MF->insert(BBI, LeftMBB); 9293 WorkList.push_back( 9294 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9295 // Put Cond in a virtual register to make it available from the new blocks. 9296 ExportFromCurrentBlock(Cond); 9297 } 9298 9299 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9300 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9301 // directly if RHS.High equals the current upper bound. 9302 MachineBasicBlock *RightMBB; 9303 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9304 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9305 RightMBB = FirstRight->MBB; 9306 } else { 9307 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9308 FuncInfo.MF->insert(BBI, RightMBB); 9309 WorkList.push_back( 9310 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9311 // Put Cond in a virtual register to make it available from the new blocks. 9312 ExportFromCurrentBlock(Cond); 9313 } 9314 9315 // Create the CaseBlock record that will be used to lower the branch. 9316 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9317 LeftProb, RightProb); 9318 9319 if (W.MBB == SwitchMBB) 9320 visitSwitchCase(CB, SwitchMBB); 9321 else 9322 SwitchCases.push_back(CB); 9323 } 9324 9325 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9326 // Extract cases from the switch. 9327 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9328 CaseClusterVector Clusters; 9329 Clusters.reserve(SI.getNumCases()); 9330 for (auto I : SI.cases()) { 9331 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9332 const ConstantInt *CaseVal = I.getCaseValue(); 9333 BranchProbability Prob = 9334 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9335 : BranchProbability(1, SI.getNumCases() + 1); 9336 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9337 } 9338 9339 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9340 9341 // Cluster adjacent cases with the same destination. We do this at all 9342 // optimization levels because it's cheap to do and will make codegen faster 9343 // if there are many clusters. 9344 sortAndRangeify(Clusters); 9345 9346 if (TM.getOptLevel() != CodeGenOpt::None) { 9347 // Replace an unreachable default with the most popular destination. 9348 // FIXME: Exploit unreachable default more aggressively. 9349 bool UnreachableDefault = 9350 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9351 if (UnreachableDefault && !Clusters.empty()) { 9352 DenseMap<const BasicBlock *, unsigned> Popularity; 9353 unsigned MaxPop = 0; 9354 const BasicBlock *MaxBB = nullptr; 9355 for (auto I : SI.cases()) { 9356 const BasicBlock *BB = I.getCaseSuccessor(); 9357 if (++Popularity[BB] > MaxPop) { 9358 MaxPop = Popularity[BB]; 9359 MaxBB = BB; 9360 } 9361 } 9362 // Set new default. 9363 assert(MaxPop > 0 && MaxBB); 9364 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9365 9366 // Remove cases that were pointing to the destination that is now the 9367 // default. 9368 CaseClusterVector New; 9369 New.reserve(Clusters.size()); 9370 for (CaseCluster &CC : Clusters) { 9371 if (CC.MBB != DefaultMBB) 9372 New.push_back(CC); 9373 } 9374 Clusters = std::move(New); 9375 } 9376 } 9377 9378 // If there is only the default destination, jump there directly. 9379 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9380 if (Clusters.empty()) { 9381 SwitchMBB->addSuccessor(DefaultMBB); 9382 if (DefaultMBB != NextBlock(SwitchMBB)) { 9383 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9384 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9385 } 9386 return; 9387 } 9388 9389 findJumpTables(Clusters, &SI, DefaultMBB); 9390 findBitTestClusters(Clusters, &SI); 9391 9392 DEBUG({ 9393 dbgs() << "Case clusters: "; 9394 for (const CaseCluster &C : Clusters) { 9395 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9396 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9397 9398 C.Low->getValue().print(dbgs(), true); 9399 if (C.Low != C.High) { 9400 dbgs() << '-'; 9401 C.High->getValue().print(dbgs(), true); 9402 } 9403 dbgs() << ' '; 9404 } 9405 dbgs() << '\n'; 9406 }); 9407 9408 assert(!Clusters.empty()); 9409 SwitchWorkList WorkList; 9410 CaseClusterIt First = Clusters.begin(); 9411 CaseClusterIt Last = Clusters.end() - 1; 9412 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9413 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9414 9415 while (!WorkList.empty()) { 9416 SwitchWorkListItem W = WorkList.back(); 9417 WorkList.pop_back(); 9418 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9419 9420 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9421 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9422 // For optimized builds, lower large range as a balanced binary tree. 9423 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9424 continue; 9425 } 9426 9427 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9428 } 9429 } 9430