xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 9f7d4150b9ec638a048c183c21a355195fdc4942)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         IntermediateVT.isVector()
419             ? EVT::getVectorVT(
420                   *DAG.getContext(), IntermediateVT.getScalarType(),
421                   IntermediateVT.getVectorElementCount() * NumParts)
422             : EVT::getVectorVT(*DAG.getContext(),
423                                IntermediateVT.getScalarType(),
424                                NumIntermediates);
425     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
426                                                 : ISD::BUILD_VECTOR,
427                       DL, BuiltVectorTy, Ops);
428   }
429 
430   // There is now one part, held in Val.  Correct it to match ValueVT.
431   EVT PartEVT = Val.getValueType();
432 
433   if (PartEVT == ValueVT)
434     return Val;
435 
436   if (PartEVT.isVector()) {
437     // If the element type of the source/dest vectors are the same, but the
438     // parts vector has more elements than the value vector, then we have a
439     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
440     // elements we want.
441     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
442       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
443              "Cannot narrow, it would be a lossy transformation");
444       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
445                          DAG.getVectorIdxConstant(0, DL));
446     }
447 
448     // Vector/Vector bitcast.
449     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
450       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
451 
452     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
453       "Cannot handle this kind of promotion");
454     // Promoted vector extract
455     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
456 
457   }
458 
459   // Trivial bitcast if the types are the same size and the destination
460   // vector type is legal.
461   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
462       TLI.isTypeLegal(ValueVT))
463     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464 
465   if (ValueVT.getVectorNumElements() != 1) {
466      // Certain ABIs require that vectors are passed as integers. For vectors
467      // are the same size, this is an obvious bitcast.
468      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
469        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
470      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
471        // Bitcast Val back the original type and extract the corresponding
472        // vector we want.
473        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
474        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
475                                            ValueVT.getVectorElementType(), Elts);
476        Val = DAG.getBitcast(WiderVecType, Val);
477        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
478                           DAG.getVectorIdxConstant(0, DL));
479      }
480 
481      diagnosePossiblyInvalidConstraint(
482          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
483      return DAG.getUNDEF(ValueVT);
484   }
485 
486   // Handle cases such as i8 -> <1 x i1>
487   EVT ValueSVT = ValueVT.getVectorElementType();
488   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
489     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
490       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
491     else
492       Val = ValueVT.isFloatingPoint()
493                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
494                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
495   }
496 
497   return DAG.getBuildVector(ValueVT, DL, Val);
498 }
499 
500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
501                                  SDValue Val, SDValue *Parts, unsigned NumParts,
502                                  MVT PartVT, const Value *V,
503                                  Optional<CallingConv::ID> CallConv);
504 
505 /// getCopyToParts - Create a series of nodes that contain the specified value
506 /// split into legal parts.  If the parts contain more bits than Val, then, for
507 /// integers, ExtendKind can be used to specify how to generate the extra bits.
508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
509                            SDValue *Parts, unsigned NumParts, MVT PartVT,
510                            const Value *V,
511                            Optional<CallingConv::ID> CallConv = None,
512                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
513   EVT ValueVT = Val.getValueType();
514 
515   // Handle the vector case separately.
516   if (ValueVT.isVector())
517     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518                                 CallConv);
519 
520   unsigned PartBits = PartVT.getSizeInBits();
521   unsigned OrigNumParts = NumParts;
522   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
523          "Copying to an illegal type!");
524 
525   if (NumParts == 0)
526     return;
527 
528   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
529   EVT PartEVT = PartVT;
530   if (PartEVT == ValueVT) {
531     assert(NumParts == 1 && "No-op copy with multiple parts!");
532     Parts[0] = Val;
533     return;
534   }
535 
536   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537     // If the parts cover more bits than the value has, promote the value.
538     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539       assert(NumParts == 1 && "Do not know what to promote to!");
540       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541     } else {
542       if (ValueVT.isFloatingPoint()) {
543         // FP values need to be bitcast, then extended if they are being put
544         // into a larger container.
545         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
546         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547       }
548       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549              ValueVT.isInteger() &&
550              "Unknown mismatch!");
551       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553       if (PartVT == MVT::x86mmx)
554         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555     }
556   } else if (PartBits == ValueVT.getSizeInBits()) {
557     // Different types of the same size.
558     assert(NumParts == 1 && PartEVT != ValueVT);
559     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561     // If the parts cover less bits than value has, truncate the value.
562     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563            ValueVT.isInteger() &&
564            "Unknown mismatch!");
565     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567     if (PartVT == MVT::x86mmx)
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569   }
570 
571   // The value may have changed - recompute ValueVT.
572   ValueVT = Val.getValueType();
573   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574          "Failed to tile the value with PartVT!");
575 
576   if (NumParts == 1) {
577     if (PartEVT != ValueVT) {
578       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
579                                         "scalar-to-vector conversion failed");
580       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581     }
582 
583     Parts[0] = Val;
584     return;
585   }
586 
587   // Expand the value into multiple parts.
588   if (NumParts & (NumParts - 1)) {
589     // The number of parts is not a power of 2.  Split off and copy the tail.
590     assert(PartVT.isInteger() && ValueVT.isInteger() &&
591            "Do not know what to expand to!");
592     unsigned RoundParts = 1 << Log2_32(NumParts);
593     unsigned RoundBits = RoundParts * PartBits;
594     unsigned OddParts = NumParts - RoundParts;
595     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
597 
598     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599                    CallConv);
600 
601     if (DAG.getDataLayout().isBigEndian())
602       // The odd parts were reversed by getCopyToParts - unreverse them.
603       std::reverse(Parts + RoundParts, Parts + NumParts);
604 
605     NumParts = RoundParts;
606     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608   }
609 
610   // The number of parts is a power of 2.  Repeatedly bisect the value using
611   // EXTRACT_ELEMENT.
612   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
613                          EVT::getIntegerVT(*DAG.getContext(),
614                                            ValueVT.getSizeInBits()),
615                          Val);
616 
617   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618     for (unsigned i = 0; i < NumParts; i += StepSize) {
619       unsigned ThisBits = StepSize * PartBits / 2;
620       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621       SDValue &Part0 = Parts[i];
622       SDValue &Part1 = Parts[i+StepSize/2];
623 
624       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628 
629       if (ThisBits == PartBits && ThisVT != PartVT) {
630         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632       }
633     }
634   }
635 
636   if (DAG.getDataLayout().isBigEndian())
637     std::reverse(Parts, Parts + OrigNumParts);
638 }
639 
640 static SDValue widenVectorToPartType(SelectionDAG &DAG,
641                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
642   if (!PartVT.isVector())
643     return SDValue();
644 
645   EVT ValueVT = Val.getValueType();
646   unsigned PartNumElts = PartVT.getVectorNumElements();
647   unsigned ValueNumElts = ValueVT.getVectorNumElements();
648   if (PartNumElts > ValueNumElts &&
649       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
650     EVT ElementVT = PartVT.getVectorElementType();
651     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
652     // undef elements.
653     SmallVector<SDValue, 16> Ops;
654     DAG.ExtractVectorElements(Val, Ops);
655     SDValue EltUndef = DAG.getUNDEF(ElementVT);
656     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
657       Ops.push_back(EltUndef);
658 
659     // FIXME: Use CONCAT for 2x -> 4x.
660     return DAG.getBuildVector(PartVT, DL, Ops);
661   }
662 
663   return SDValue();
664 }
665 
666 /// getCopyToPartsVector - Create a series of nodes that contain the specified
667 /// value split into legal parts.
668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
669                                  SDValue Val, SDValue *Parts, unsigned NumParts,
670                                  MVT PartVT, const Value *V,
671                                  Optional<CallingConv::ID> CallConv) {
672   EVT ValueVT = Val.getValueType();
673   assert(ValueVT.isVector() && "Not a vector");
674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
675   const bool IsABIRegCopy = CallConv.hasValue();
676 
677   if (NumParts == 1) {
678     EVT PartEVT = PartVT;
679     if (PartEVT == ValueVT) {
680       // Nothing to do.
681     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
682       // Bitconvert vector->vector case.
683       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
684     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
685       Val = Widened;
686     } else if (PartVT.isVector() &&
687                PartEVT.getVectorElementType().bitsGE(
688                  ValueVT.getVectorElementType()) &&
689                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
690 
691       // Promoted vector extract
692       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
693     } else {
694       if (ValueVT.getVectorNumElements() == 1) {
695         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
696                           DAG.getVectorIdxConstant(0, DL));
697       } else {
698         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
699                "lossy conversion of vector to scalar type");
700         EVT IntermediateType =
701             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
702         Val = DAG.getBitcast(IntermediateType, Val);
703         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
704       }
705     }
706 
707     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
708     Parts[0] = Val;
709     return;
710   }
711 
712   // Handle a multi-element vector.
713   EVT IntermediateVT;
714   MVT RegisterVT;
715   unsigned NumIntermediates;
716   unsigned NumRegs;
717   if (IsABIRegCopy) {
718     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
719         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
720         NumIntermediates, RegisterVT);
721   } else {
722     NumRegs =
723         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
724                                    NumIntermediates, RegisterVT);
725   }
726 
727   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
728   NumParts = NumRegs; // Silence a compiler warning.
729   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
730 
731   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
732     IntermediateVT.getVectorNumElements() : 1;
733 
734   // Convert the vector to the appropriate type if necessary.
735   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
736 
737   EVT BuiltVectorTy = EVT::getVectorVT(
738       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
739   if (ValueVT != BuiltVectorTy) {
740     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
741       Val = Widened;
742 
743     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
744   }
745 
746   // Split the vector into intermediate operands.
747   SmallVector<SDValue, 8> Ops(NumIntermediates);
748   for (unsigned i = 0; i != NumIntermediates; ++i) {
749     if (IntermediateVT.isVector()) {
750       Ops[i] =
751           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
752                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
753     } else {
754       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
755                            DAG.getVectorIdxConstant(i, DL));
756     }
757   }
758 
759   // Split the intermediate operands into legal parts.
760   if (NumParts == NumIntermediates) {
761     // If the register was not expanded, promote or copy the value,
762     // as appropriate.
763     for (unsigned i = 0; i != NumParts; ++i)
764       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
765   } else if (NumParts > 0) {
766     // If the intermediate type was expanded, split each the value into
767     // legal parts.
768     assert(NumIntermediates != 0 && "division by zero");
769     assert(NumParts % NumIntermediates == 0 &&
770            "Must expand into a divisible number of parts!");
771     unsigned Factor = NumParts / NumIntermediates;
772     for (unsigned i = 0; i != NumIntermediates; ++i)
773       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
774                      CallConv);
775   }
776 }
777 
778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
779                            EVT valuevt, Optional<CallingConv::ID> CC)
780     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
781       RegCount(1, regs.size()), CallConv(CC) {}
782 
783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
784                            const DataLayout &DL, unsigned Reg, Type *Ty,
785                            Optional<CallingConv::ID> CC) {
786   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
787 
788   CallConv = CC;
789 
790   for (EVT ValueVT : ValueVTs) {
791     unsigned NumRegs =
792         isABIMangled()
793             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
794             : TLI.getNumRegisters(Context, ValueVT);
795     MVT RegisterVT =
796         isABIMangled()
797             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
798             : TLI.getRegisterType(Context, ValueVT);
799     for (unsigned i = 0; i != NumRegs; ++i)
800       Regs.push_back(Reg + i);
801     RegVTs.push_back(RegisterVT);
802     RegCount.push_back(NumRegs);
803     Reg += NumRegs;
804   }
805 }
806 
807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
808                                       FunctionLoweringInfo &FuncInfo,
809                                       const SDLoc &dl, SDValue &Chain,
810                                       SDValue *Flag, const Value *V) const {
811   // A Value with type {} or [0 x %t] needs no registers.
812   if (ValueVTs.empty())
813     return SDValue();
814 
815   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
816 
817   // Assemble the legal parts into the final values.
818   SmallVector<SDValue, 4> Values(ValueVTs.size());
819   SmallVector<SDValue, 8> Parts;
820   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
821     // Copy the legal parts from the registers.
822     EVT ValueVT = ValueVTs[Value];
823     unsigned NumRegs = RegCount[Value];
824     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
825                                           *DAG.getContext(),
826                                           CallConv.getValue(), RegVTs[Value])
827                                     : RegVTs[Value];
828 
829     Parts.resize(NumRegs);
830     for (unsigned i = 0; i != NumRegs; ++i) {
831       SDValue P;
832       if (!Flag) {
833         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
834       } else {
835         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
836         *Flag = P.getValue(2);
837       }
838 
839       Chain = P.getValue(1);
840       Parts[i] = P;
841 
842       // If the source register was virtual and if we know something about it,
843       // add an assert node.
844       if (!Register::isVirtualRegister(Regs[Part + i]) ||
845           !RegisterVT.isInteger())
846         continue;
847 
848       const FunctionLoweringInfo::LiveOutInfo *LOI =
849         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
850       if (!LOI)
851         continue;
852 
853       unsigned RegSize = RegisterVT.getScalarSizeInBits();
854       unsigned NumSignBits = LOI->NumSignBits;
855       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
856 
857       if (NumZeroBits == RegSize) {
858         // The current value is a zero.
859         // Explicitly express that as it would be easier for
860         // optimizations to kick in.
861         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
862         continue;
863       }
864 
865       // FIXME: We capture more information than the dag can represent.  For
866       // now, just use the tightest assertzext/assertsext possible.
867       bool isSExt;
868       EVT FromVT(MVT::Other);
869       if (NumZeroBits) {
870         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
871         isSExt = false;
872       } else if (NumSignBits > 1) {
873         FromVT =
874             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
875         isSExt = true;
876       } else {
877         continue;
878       }
879       // Add an assertion node.
880       assert(FromVT != MVT::Other);
881       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
882                              RegisterVT, P, DAG.getValueType(FromVT));
883     }
884 
885     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
886                                      RegisterVT, ValueVT, V, CallConv);
887     Part += NumRegs;
888     Parts.clear();
889   }
890 
891   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
892 }
893 
894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
895                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
896                                  const Value *V,
897                                  ISD::NodeType PreferredExtendType) const {
898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
899   ISD::NodeType ExtendKind = PreferredExtendType;
900 
901   // Get the list of the values's legal parts.
902   unsigned NumRegs = Regs.size();
903   SmallVector<SDValue, 8> Parts(NumRegs);
904   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
905     unsigned NumParts = RegCount[Value];
906 
907     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
908                                           *DAG.getContext(),
909                                           CallConv.getValue(), RegVTs[Value])
910                                     : RegVTs[Value];
911 
912     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
913       ExtendKind = ISD::ZERO_EXTEND;
914 
915     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
916                    NumParts, RegisterVT, V, CallConv, ExtendKind);
917     Part += NumParts;
918   }
919 
920   // Copy the parts into the registers.
921   SmallVector<SDValue, 8> Chains(NumRegs);
922   for (unsigned i = 0; i != NumRegs; ++i) {
923     SDValue Part;
924     if (!Flag) {
925       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
926     } else {
927       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
928       *Flag = Part.getValue(1);
929     }
930 
931     Chains[i] = Part.getValue(0);
932   }
933 
934   if (NumRegs == 1 || Flag)
935     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
936     // flagged to it. That is the CopyToReg nodes and the user are considered
937     // a single scheduling unit. If we create a TokenFactor and return it as
938     // chain, then the TokenFactor is both a predecessor (operand) of the
939     // user as well as a successor (the TF operands are flagged to the user).
940     // c1, f1 = CopyToReg
941     // c2, f2 = CopyToReg
942     // c3     = TokenFactor c1, c2
943     // ...
944     //        = op c3, ..., f2
945     Chain = Chains[NumRegs-1];
946   else
947     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
948 }
949 
950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
951                                         unsigned MatchingIdx, const SDLoc &dl,
952                                         SelectionDAG &DAG,
953                                         std::vector<SDValue> &Ops) const {
954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
955 
956   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
957   if (HasMatching)
958     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
959   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
960     // Put the register class of the virtual registers in the flag word.  That
961     // way, later passes can recompute register class constraints for inline
962     // assembly as well as normal instructions.
963     // Don't do this for tied operands that can use the regclass information
964     // from the def.
965     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
966     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
967     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
968   }
969 
970   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
971   Ops.push_back(Res);
972 
973   if (Code == InlineAsm::Kind_Clobber) {
974     // Clobbers should always have a 1:1 mapping with registers, and may
975     // reference registers that have illegal (e.g. vector) types. Hence, we
976     // shouldn't try to apply any sort of splitting logic to them.
977     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
978            "No 1:1 mapping from clobbers to regs?");
979     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
980     (void)SP;
981     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
982       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
983       assert(
984           (Regs[I] != SP ||
985            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
986           "If we clobbered the stack pointer, MFI should know about it.");
987     }
988     return;
989   }
990 
991   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
992     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
993     MVT RegisterVT = RegVTs[Value];
994     for (unsigned i = 0; i != NumRegs; ++i) {
995       assert(Reg < Regs.size() && "Mismatch in # registers expected");
996       unsigned TheReg = Regs[Reg++];
997       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
998     }
999   }
1000 }
1001 
1002 SmallVector<std::pair<unsigned, unsigned>, 4>
1003 RegsForValue::getRegsAndSizes() const {
1004   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1005   unsigned I = 0;
1006   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1007     unsigned RegCount = std::get<0>(CountAndVT);
1008     MVT RegisterVT = std::get<1>(CountAndVT);
1009     unsigned RegisterSize = RegisterVT.getSizeInBits();
1010     for (unsigned E = I + RegCount; I != E; ++I)
1011       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1012   }
1013   return OutVec;
1014 }
1015 
1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1017                                const TargetLibraryInfo *li) {
1018   AA = aa;
1019   GFI = gfi;
1020   LibInfo = li;
1021   DL = &DAG.getDataLayout();
1022   Context = DAG.getContext();
1023   LPadToCallSiteMap.clear();
1024   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1025 }
1026 
1027 void SelectionDAGBuilder::clear() {
1028   NodeMap.clear();
1029   UnusedArgNodeMap.clear();
1030   PendingLoads.clear();
1031   PendingExports.clear();
1032   PendingConstrainedFP.clear();
1033   PendingConstrainedFPStrict.clear();
1034   CurInst = nullptr;
1035   HasTailCall = false;
1036   SDNodeOrder = LowestSDNodeOrder;
1037   StatepointLowering.clear();
1038 }
1039 
1040 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1041   DanglingDebugInfoMap.clear();
1042 }
1043 
1044 // Update DAG root to include dependencies on Pending chains.
1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1046   SDValue Root = DAG.getRoot();
1047 
1048   if (Pending.empty())
1049     return Root;
1050 
1051   // Add current root to PendingChains, unless we already indirectly
1052   // depend on it.
1053   if (Root.getOpcode() != ISD::EntryToken) {
1054     unsigned i = 0, e = Pending.size();
1055     for (; i != e; ++i) {
1056       assert(Pending[i].getNode()->getNumOperands() > 1);
1057       if (Pending[i].getNode()->getOperand(0) == Root)
1058         break;  // Don't add the root if we already indirectly depend on it.
1059     }
1060 
1061     if (i == e)
1062       Pending.push_back(Root);
1063   }
1064 
1065   if (Pending.size() == 1)
1066     Root = Pending[0];
1067   else
1068     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1069 
1070   DAG.setRoot(Root);
1071   Pending.clear();
1072   return Root;
1073 }
1074 
1075 SDValue SelectionDAGBuilder::getMemoryRoot() {
1076   return updateRoot(PendingLoads);
1077 }
1078 
1079 SDValue SelectionDAGBuilder::getRoot() {
1080   // Chain up all pending constrained intrinsics together with all
1081   // pending loads, by simply appending them to PendingLoads and
1082   // then calling getMemoryRoot().
1083   PendingLoads.reserve(PendingLoads.size() +
1084                        PendingConstrainedFP.size() +
1085                        PendingConstrainedFPStrict.size());
1086   PendingLoads.append(PendingConstrainedFP.begin(),
1087                       PendingConstrainedFP.end());
1088   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1089                       PendingConstrainedFPStrict.end());
1090   PendingConstrainedFP.clear();
1091   PendingConstrainedFPStrict.clear();
1092   return getMemoryRoot();
1093 }
1094 
1095 SDValue SelectionDAGBuilder::getControlRoot() {
1096   // We need to emit pending fpexcept.strict constrained intrinsics,
1097   // so append them to the PendingExports list.
1098   PendingExports.append(PendingConstrainedFPStrict.begin(),
1099                         PendingConstrainedFPStrict.end());
1100   PendingConstrainedFPStrict.clear();
1101   return updateRoot(PendingExports);
1102 }
1103 
1104 void SelectionDAGBuilder::visit(const Instruction &I) {
1105   // Set up outgoing PHI node register values before emitting the terminator.
1106   if (I.isTerminator()) {
1107     HandlePHINodesInSuccessorBlocks(I.getParent());
1108   }
1109 
1110   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1111   if (!isa<DbgInfoIntrinsic>(I))
1112     ++SDNodeOrder;
1113 
1114   CurInst = &I;
1115 
1116   visit(I.getOpcode(), I);
1117 
1118   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1119     // ConstrainedFPIntrinsics handle their own FMF.
1120     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1121       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1122       // maps to this instruction.
1123       // TODO: We could handle all flags (nsw, etc) here.
1124       // TODO: If an IR instruction maps to >1 node, only the final node will have
1125       //       flags set.
1126       if (SDNode *Node = getNodeForIRValue(&I)) {
1127         SDNodeFlags IncomingFlags;
1128         IncomingFlags.copyFMF(*FPMO);
1129         if (!Node->getFlags().isDefined())
1130           Node->setFlags(IncomingFlags);
1131         else
1132           Node->intersectFlagsWith(IncomingFlags);
1133       }
1134     }
1135   }
1136 
1137   if (!I.isTerminator() && !HasTailCall &&
1138       !isStatepoint(&I)) // statepoints handle their exports internally
1139     CopyToExportRegsIfNeeded(&I);
1140 
1141   CurInst = nullptr;
1142 }
1143 
1144 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1145   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1146 }
1147 
1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1149   // Note: this doesn't use InstVisitor, because it has to work with
1150   // ConstantExpr's in addition to instructions.
1151   switch (Opcode) {
1152   default: llvm_unreachable("Unknown instruction type encountered!");
1153     // Build the switch statement using the Instruction.def file.
1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1155     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1156 #include "llvm/IR/Instruction.def"
1157   }
1158 }
1159 
1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1161                                                 const DIExpression *Expr) {
1162   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1163     const DbgValueInst *DI = DDI.getDI();
1164     DIVariable *DanglingVariable = DI->getVariable();
1165     DIExpression *DanglingExpr = DI->getExpression();
1166     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1167       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1168       return true;
1169     }
1170     return false;
1171   };
1172 
1173   for (auto &DDIMI : DanglingDebugInfoMap) {
1174     DanglingDebugInfoVector &DDIV = DDIMI.second;
1175 
1176     // If debug info is to be dropped, run it through final checks to see
1177     // whether it can be salvaged.
1178     for (auto &DDI : DDIV)
1179       if (isMatchingDbgValue(DDI))
1180         salvageUnresolvedDbgValue(DDI);
1181 
1182     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1183   }
1184 }
1185 
1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1187 // generate the debug data structures now that we've seen its definition.
1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1189                                                    SDValue Val) {
1190   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1191   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1192     return;
1193 
1194   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1195   for (auto &DDI : DDIV) {
1196     const DbgValueInst *DI = DDI.getDI();
1197     assert(DI && "Ill-formed DanglingDebugInfo");
1198     DebugLoc dl = DDI.getdl();
1199     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1200     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1201     DILocalVariable *Variable = DI->getVariable();
1202     DIExpression *Expr = DI->getExpression();
1203     assert(Variable->isValidLocationForIntrinsic(dl) &&
1204            "Expected inlined-at fields to agree");
1205     SDDbgValue *SDV;
1206     if (Val.getNode()) {
1207       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1208       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1209       // we couldn't resolve it directly when examining the DbgValue intrinsic
1210       // in the first place we should not be more successful here). Unless we
1211       // have some test case that prove this to be correct we should avoid
1212       // calling EmitFuncArgumentDbgValue here.
1213       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1214         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1215                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1216         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1217         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1218         // inserted after the definition of Val when emitting the instructions
1219         // after ISel. An alternative could be to teach
1220         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1221         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1222                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1223                    << ValSDNodeOrder << "\n");
1224         SDV = getDbgValue(Val, Variable, Expr, dl,
1225                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1226         DAG.AddDbgValue(SDV, Val.getNode(), false);
1227       } else
1228         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1229                           << "in EmitFuncArgumentDbgValue\n");
1230     } else {
1231       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1232       auto Undef =
1233           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1234       auto SDV =
1235           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1236       DAG.AddDbgValue(SDV, nullptr, false);
1237     }
1238   }
1239   DDIV.clear();
1240 }
1241 
1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1243   Value *V = DDI.getDI()->getValue();
1244   DILocalVariable *Var = DDI.getDI()->getVariable();
1245   DIExpression *Expr = DDI.getDI()->getExpression();
1246   DebugLoc DL = DDI.getdl();
1247   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1248   unsigned SDOrder = DDI.getSDNodeOrder();
1249 
1250   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1251   // that DW_OP_stack_value is desired.
1252   assert(isa<DbgValueInst>(DDI.getDI()));
1253   bool StackValue = true;
1254 
1255   // Can this Value can be encoded without any further work?
1256   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1257     return;
1258 
1259   // Attempt to salvage back through as many instructions as possible. Bail if
1260   // a non-instruction is seen, such as a constant expression or global
1261   // variable. FIXME: Further work could recover those too.
1262   while (isa<Instruction>(V)) {
1263     Instruction &VAsInst = *cast<Instruction>(V);
1264     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1265 
1266     // If we cannot salvage any further, and haven't yet found a suitable debug
1267     // expression, bail out.
1268     if (!NewExpr)
1269       break;
1270 
1271     // New value and expr now represent this debuginfo.
1272     V = VAsInst.getOperand(0);
1273     Expr = NewExpr;
1274 
1275     // Some kind of simplification occurred: check whether the operand of the
1276     // salvaged debug expression can be encoded in this DAG.
1277     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1278       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1279                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1280       return;
1281     }
1282   }
1283 
1284   // This was the final opportunity to salvage this debug information, and it
1285   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1286   // any earlier variable location.
1287   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1288   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1289   DAG.AddDbgValue(SDV, nullptr, false);
1290 
1291   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1292                     << "\n");
1293   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1294                     << "\n");
1295 }
1296 
1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1298                                            DIExpression *Expr, DebugLoc dl,
1299                                            DebugLoc InstDL, unsigned Order) {
1300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1301   SDDbgValue *SDV;
1302   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1303       isa<ConstantPointerNull>(V)) {
1304     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1305     DAG.AddDbgValue(SDV, nullptr, false);
1306     return true;
1307   }
1308 
1309   // If the Value is a frame index, we can create a FrameIndex debug value
1310   // without relying on the DAG at all.
1311   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1312     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1313     if (SI != FuncInfo.StaticAllocaMap.end()) {
1314       auto SDV =
1315           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1316                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1317       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1318       // is still available even if the SDNode gets optimized out.
1319       DAG.AddDbgValue(SDV, nullptr, false);
1320       return true;
1321     }
1322   }
1323 
1324   // Do not use getValue() in here; we don't want to generate code at
1325   // this point if it hasn't been done yet.
1326   SDValue N = NodeMap[V];
1327   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1328     N = UnusedArgNodeMap[V];
1329   if (N.getNode()) {
1330     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1331       return true;
1332     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1333     DAG.AddDbgValue(SDV, N.getNode(), false);
1334     return true;
1335   }
1336 
1337   // Special rules apply for the first dbg.values of parameter variables in a
1338   // function. Identify them by the fact they reference Argument Values, that
1339   // they're parameters, and they are parameters of the current function. We
1340   // need to let them dangle until they get an SDNode.
1341   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1342                        !InstDL.getInlinedAt();
1343   if (!IsParamOfFunc) {
1344     // The value is not used in this block yet (or it would have an SDNode).
1345     // We still want the value to appear for the user if possible -- if it has
1346     // an associated VReg, we can refer to that instead.
1347     auto VMI = FuncInfo.ValueMap.find(V);
1348     if (VMI != FuncInfo.ValueMap.end()) {
1349       unsigned Reg = VMI->second;
1350       // If this is a PHI node, it may be split up into several MI PHI nodes
1351       // (in FunctionLoweringInfo::set).
1352       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1353                        V->getType(), None);
1354       if (RFV.occupiesMultipleRegs()) {
1355         unsigned Offset = 0;
1356         unsigned BitsToDescribe = 0;
1357         if (auto VarSize = Var->getSizeInBits())
1358           BitsToDescribe = *VarSize;
1359         if (auto Fragment = Expr->getFragmentInfo())
1360           BitsToDescribe = Fragment->SizeInBits;
1361         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1362           unsigned RegisterSize = RegAndSize.second;
1363           // Bail out if all bits are described already.
1364           if (Offset >= BitsToDescribe)
1365             break;
1366           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1367               ? BitsToDescribe - Offset
1368               : RegisterSize;
1369           auto FragmentExpr = DIExpression::createFragmentExpression(
1370               Expr, Offset, FragmentSize);
1371           if (!FragmentExpr)
1372               continue;
1373           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1374                                     false, dl, SDNodeOrder);
1375           DAG.AddDbgValue(SDV, nullptr, false);
1376           Offset += RegisterSize;
1377         }
1378       } else {
1379         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1380         DAG.AddDbgValue(SDV, nullptr, false);
1381       }
1382       return true;
1383     }
1384   }
1385 
1386   return false;
1387 }
1388 
1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1390   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1391   for (auto &Pair : DanglingDebugInfoMap)
1392     for (auto &DDI : Pair.second)
1393       salvageUnresolvedDbgValue(DDI);
1394   clearDanglingDebugInfo();
1395 }
1396 
1397 /// getCopyFromRegs - If there was virtual register allocated for the value V
1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1400   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1401   SDValue Result;
1402 
1403   if (It != FuncInfo.ValueMap.end()) {
1404     unsigned InReg = It->second;
1405 
1406     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1407                      DAG.getDataLayout(), InReg, Ty,
1408                      None); // This is not an ABI copy.
1409     SDValue Chain = DAG.getEntryNode();
1410     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1411                                  V);
1412     resolveDanglingDebugInfo(V, Result);
1413   }
1414 
1415   return Result;
1416 }
1417 
1418 /// getValue - Return an SDValue for the given Value.
1419 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1420   // If we already have an SDValue for this value, use it. It's important
1421   // to do this first, so that we don't create a CopyFromReg if we already
1422   // have a regular SDValue.
1423   SDValue &N = NodeMap[V];
1424   if (N.getNode()) return N;
1425 
1426   // If there's a virtual register allocated and initialized for this
1427   // value, use it.
1428   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1429     return copyFromReg;
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 // Return true if SDValue exists for the given Value
1439 bool SelectionDAGBuilder::findValue(const Value *V) const {
1440   return (NodeMap.find(V) != NodeMap.end()) ||
1441     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1442 }
1443 
1444 /// getNonRegisterValue - Return an SDValue for the given Value, but
1445 /// don't look in FuncInfo.ValueMap for a virtual register.
1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1447   // If we already have an SDValue for this value, use it.
1448   SDValue &N = NodeMap[V];
1449   if (N.getNode()) {
1450     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1451       // Remove the debug location from the node as the node is about to be used
1452       // in a location which may differ from the original debug location.  This
1453       // is relevant to Constant and ConstantFP nodes because they can appear
1454       // as constant expressions inside PHI nodes.
1455       N->setDebugLoc(DebugLoc());
1456     }
1457     return N;
1458   }
1459 
1460   // Otherwise create a new SDValue and remember it.
1461   SDValue Val = getValueImpl(V);
1462   NodeMap[V] = Val;
1463   resolveDanglingDebugInfo(V, Val);
1464   return Val;
1465 }
1466 
1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1468 /// Create an SDValue for the given value.
1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1471 
1472   if (const Constant *C = dyn_cast<Constant>(V)) {
1473     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1474 
1475     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1476       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1477 
1478     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1479       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1480 
1481     if (isa<ConstantPointerNull>(C)) {
1482       unsigned AS = V->getType()->getPointerAddressSpace();
1483       return DAG.getConstant(0, getCurSDLoc(),
1484                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1485     }
1486 
1487     if (match(C, m_VScale(DAG.getDataLayout())))
1488       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1489 
1490     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1491       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1492 
1493     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1494       return DAG.getUNDEF(VT);
1495 
1496     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1497       visit(CE->getOpcode(), *CE);
1498       SDValue N1 = NodeMap[V];
1499       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1500       return N1;
1501     }
1502 
1503     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1504       SmallVector<SDValue, 4> Constants;
1505       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1506            OI != OE; ++OI) {
1507         SDNode *Val = getValue(*OI).getNode();
1508         // If the operand is an empty aggregate, there are no values.
1509         if (!Val) continue;
1510         // Add each leaf value from the operand to the Constants list
1511         // to form a flattened list of all the values.
1512         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1513           Constants.push_back(SDValue(Val, i));
1514       }
1515 
1516       return DAG.getMergeValues(Constants, getCurSDLoc());
1517     }
1518 
1519     if (const ConstantDataSequential *CDS =
1520           dyn_cast<ConstantDataSequential>(C)) {
1521       SmallVector<SDValue, 4> Ops;
1522       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1523         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1524         // Add each leaf value from the operand to the Constants list
1525         // to form a flattened list of all the values.
1526         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1527           Ops.push_back(SDValue(Val, i));
1528       }
1529 
1530       if (isa<ArrayType>(CDS->getType()))
1531         return DAG.getMergeValues(Ops, getCurSDLoc());
1532       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1533     }
1534 
1535     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1536       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1537              "Unknown struct or array constant!");
1538 
1539       SmallVector<EVT, 4> ValueVTs;
1540       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1541       unsigned NumElts = ValueVTs.size();
1542       if (NumElts == 0)
1543         return SDValue(); // empty struct
1544       SmallVector<SDValue, 4> Constants(NumElts);
1545       for (unsigned i = 0; i != NumElts; ++i) {
1546         EVT EltVT = ValueVTs[i];
1547         if (isa<UndefValue>(C))
1548           Constants[i] = DAG.getUNDEF(EltVT);
1549         else if (EltVT.isFloatingPoint())
1550           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1551         else
1552           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1553       }
1554 
1555       return DAG.getMergeValues(Constants, getCurSDLoc());
1556     }
1557 
1558     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1559       return DAG.getBlockAddress(BA, VT);
1560 
1561     VectorType *VecTy = cast<VectorType>(V->getType());
1562     unsigned NumElements = VecTy->getNumElements();
1563 
1564     // Now that we know the number and type of the elements, get that number of
1565     // elements into the Ops array based on what kind of constant it is.
1566     SmallVector<SDValue, 16> Ops;
1567     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1568       for (unsigned i = 0; i != NumElements; ++i)
1569         Ops.push_back(getValue(CV->getOperand(i)));
1570     } else {
1571       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1572       EVT EltVT =
1573           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1574 
1575       SDValue Op;
1576       if (EltVT.isFloatingPoint())
1577         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1578       else
1579         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1580       Ops.assign(NumElements, Op);
1581     }
1582 
1583     // Create a BUILD_VECTOR node.
1584     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1585   }
1586 
1587   // If this is a static alloca, generate it as the frameindex instead of
1588   // computation.
1589   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1590     DenseMap<const AllocaInst*, int>::iterator SI =
1591       FuncInfo.StaticAllocaMap.find(AI);
1592     if (SI != FuncInfo.StaticAllocaMap.end())
1593       return DAG.getFrameIndex(SI->second,
1594                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1595   }
1596 
1597   // If this is an instruction which fast-isel has deferred, select it now.
1598   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1599     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1600 
1601     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1602                      Inst->getType(), getABIRegCopyCC(V));
1603     SDValue Chain = DAG.getEntryNode();
1604     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1605   }
1606 
1607   llvm_unreachable("Can't get register for value!");
1608 }
1609 
1610 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1611   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1612   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1613   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1614   bool IsSEH = isAsynchronousEHPersonality(Pers);
1615   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1616   if (!IsSEH)
1617     CatchPadMBB->setIsEHScopeEntry();
1618   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1619   if (IsMSVCCXX || IsCoreCLR)
1620     CatchPadMBB->setIsEHFuncletEntry();
1621 }
1622 
1623 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1624   // Update machine-CFG edge.
1625   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1626   FuncInfo.MBB->addSuccessor(TargetMBB);
1627 
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   bool IsSEH = isAsynchronousEHPersonality(Pers);
1630   if (IsSEH) {
1631     // If this is not a fall-through branch or optimizations are switched off,
1632     // emit the branch.
1633     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1634         TM.getOptLevel() == CodeGenOpt::None)
1635       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1636                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1637     return;
1638   }
1639 
1640   // Figure out the funclet membership for the catchret's successor.
1641   // This will be used by the FuncletLayout pass to determine how to order the
1642   // BB's.
1643   // A 'catchret' returns to the outer scope's color.
1644   Value *ParentPad = I.getCatchSwitchParentPad();
1645   const BasicBlock *SuccessorColor;
1646   if (isa<ConstantTokenNone>(ParentPad))
1647     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1648   else
1649     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1650   assert(SuccessorColor && "No parent funclet for catchret!");
1651   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1652   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1653 
1654   // Create the terminator node.
1655   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1656                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1657                             DAG.getBasicBlock(SuccessorColorMBB));
1658   DAG.setRoot(Ret);
1659 }
1660 
1661 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1662   // Don't emit any special code for the cleanuppad instruction. It just marks
1663   // the start of an EH scope/funclet.
1664   FuncInfo.MBB->setIsEHScopeEntry();
1665   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1666   if (Pers != EHPersonality::Wasm_CXX) {
1667     FuncInfo.MBB->setIsEHFuncletEntry();
1668     FuncInfo.MBB->setIsCleanupFuncletEntry();
1669   }
1670 }
1671 
1672 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1673 // the control flow always stops at the single catch pad, as it does for a
1674 // cleanup pad. In case the exception caught is not of the types the catch pad
1675 // catches, it will be rethrown by a rethrow.
1676 static void findWasmUnwindDestinations(
1677     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1678     BranchProbability Prob,
1679     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1680         &UnwindDests) {
1681   while (EHPadBB) {
1682     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1683     if (isa<CleanupPadInst>(Pad)) {
1684       // Stop on cleanup pads.
1685       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1686       UnwindDests.back().first->setIsEHScopeEntry();
1687       break;
1688     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1689       // Add the catchpad handlers to the possible destinations. We don't
1690       // continue to the unwind destination of the catchswitch for wasm.
1691       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1692         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1693         UnwindDests.back().first->setIsEHScopeEntry();
1694       }
1695       break;
1696     } else {
1697       continue;
1698     }
1699   }
1700 }
1701 
1702 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1703 /// many places it could ultimately go. In the IR, we have a single unwind
1704 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1705 /// This function skips over imaginary basic blocks that hold catchswitch
1706 /// instructions, and finds all the "real" machine
1707 /// basic block destinations. As those destinations may not be successors of
1708 /// EHPadBB, here we also calculate the edge probability to those destinations.
1709 /// The passed-in Prob is the edge probability to EHPadBB.
1710 static void findUnwindDestinations(
1711     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1712     BranchProbability Prob,
1713     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1714         &UnwindDests) {
1715   EHPersonality Personality =
1716     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1717   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1718   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1719   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1720   bool IsSEH = isAsynchronousEHPersonality(Personality);
1721 
1722   if (IsWasmCXX) {
1723     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1724     assert(UnwindDests.size() <= 1 &&
1725            "There should be at most one unwind destination for wasm");
1726     return;
1727   }
1728 
1729   while (EHPadBB) {
1730     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1731     BasicBlock *NewEHPadBB = nullptr;
1732     if (isa<LandingPadInst>(Pad)) {
1733       // Stop on landingpads. They are not funclets.
1734       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1735       break;
1736     } else if (isa<CleanupPadInst>(Pad)) {
1737       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1738       // personalities.
1739       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1740       UnwindDests.back().first->setIsEHScopeEntry();
1741       UnwindDests.back().first->setIsEHFuncletEntry();
1742       break;
1743     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1744       // Add the catchpad handlers to the possible destinations.
1745       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1746         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1747         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1748         if (IsMSVCCXX || IsCoreCLR)
1749           UnwindDests.back().first->setIsEHFuncletEntry();
1750         if (!IsSEH)
1751           UnwindDests.back().first->setIsEHScopeEntry();
1752       }
1753       NewEHPadBB = CatchSwitch->getUnwindDest();
1754     } else {
1755       continue;
1756     }
1757 
1758     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1759     if (BPI && NewEHPadBB)
1760       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1761     EHPadBB = NewEHPadBB;
1762   }
1763 }
1764 
1765 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1766   // Update successor info.
1767   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1768   auto UnwindDest = I.getUnwindDest();
1769   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1770   BranchProbability UnwindDestProb =
1771       (BPI && UnwindDest)
1772           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1773           : BranchProbability::getZero();
1774   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1775   for (auto &UnwindDest : UnwindDests) {
1776     UnwindDest.first->setIsEHPad();
1777     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1778   }
1779   FuncInfo.MBB->normalizeSuccProbs();
1780 
1781   // Create the terminator node.
1782   SDValue Ret =
1783       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1784   DAG.setRoot(Ret);
1785 }
1786 
1787 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1788   report_fatal_error("visitCatchSwitch not yet implemented!");
1789 }
1790 
1791 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1793   auto &DL = DAG.getDataLayout();
1794   SDValue Chain = getControlRoot();
1795   SmallVector<ISD::OutputArg, 8> Outs;
1796   SmallVector<SDValue, 8> OutVals;
1797 
1798   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1799   // lower
1800   //
1801   //   %val = call <ty> @llvm.experimental.deoptimize()
1802   //   ret <ty> %val
1803   //
1804   // differently.
1805   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1806     LowerDeoptimizingReturn();
1807     return;
1808   }
1809 
1810   if (!FuncInfo.CanLowerReturn) {
1811     unsigned DemoteReg = FuncInfo.DemoteRegister;
1812     const Function *F = I.getParent()->getParent();
1813 
1814     // Emit a store of the return value through the virtual register.
1815     // Leave Outs empty so that LowerReturn won't try to load return
1816     // registers the usual way.
1817     SmallVector<EVT, 1> PtrValueVTs;
1818     ComputeValueVTs(TLI, DL,
1819                     F->getReturnType()->getPointerTo(
1820                         DAG.getDataLayout().getAllocaAddrSpace()),
1821                     PtrValueVTs);
1822 
1823     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1824                                         DemoteReg, PtrValueVTs[0]);
1825     SDValue RetOp = getValue(I.getOperand(0));
1826 
1827     SmallVector<EVT, 4> ValueVTs, MemVTs;
1828     SmallVector<uint64_t, 4> Offsets;
1829     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1830                     &Offsets);
1831     unsigned NumValues = ValueVTs.size();
1832 
1833     SmallVector<SDValue, 4> Chains(NumValues);
1834     for (unsigned i = 0; i != NumValues; ++i) {
1835       // An aggregate return value cannot wrap around the address space, so
1836       // offsets to its parts don't wrap either.
1837       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1838 
1839       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1840       if (MemVTs[i] != ValueVTs[i])
1841         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1842       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1843           // FIXME: better loc info would be nice.
1844           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1845     }
1846 
1847     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1848                         MVT::Other, Chains);
1849   } else if (I.getNumOperands() != 0) {
1850     SmallVector<EVT, 4> ValueVTs;
1851     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1852     unsigned NumValues = ValueVTs.size();
1853     if (NumValues) {
1854       SDValue RetOp = getValue(I.getOperand(0));
1855 
1856       const Function *F = I.getParent()->getParent();
1857 
1858       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1859           I.getOperand(0)->getType(), F->getCallingConv(),
1860           /*IsVarArg*/ false);
1861 
1862       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1863       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1864                                           Attribute::SExt))
1865         ExtendKind = ISD::SIGN_EXTEND;
1866       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1867                                                Attribute::ZExt))
1868         ExtendKind = ISD::ZERO_EXTEND;
1869 
1870       LLVMContext &Context = F->getContext();
1871       bool RetInReg = F->getAttributes().hasAttribute(
1872           AttributeList::ReturnIndex, Attribute::InReg);
1873 
1874       for (unsigned j = 0; j != NumValues; ++j) {
1875         EVT VT = ValueVTs[j];
1876 
1877         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1878           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1879 
1880         CallingConv::ID CC = F->getCallingConv();
1881 
1882         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1883         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1884         SmallVector<SDValue, 4> Parts(NumParts);
1885         getCopyToParts(DAG, getCurSDLoc(),
1886                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1887                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1888 
1889         // 'inreg' on function refers to return value
1890         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1891         if (RetInReg)
1892           Flags.setInReg();
1893 
1894         if (I.getOperand(0)->getType()->isPointerTy()) {
1895           Flags.setPointer();
1896           Flags.setPointerAddrSpace(
1897               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1898         }
1899 
1900         if (NeedsRegBlock) {
1901           Flags.setInConsecutiveRegs();
1902           if (j == NumValues - 1)
1903             Flags.setInConsecutiveRegsLast();
1904         }
1905 
1906         // Propagate extension type if any
1907         if (ExtendKind == ISD::SIGN_EXTEND)
1908           Flags.setSExt();
1909         else if (ExtendKind == ISD::ZERO_EXTEND)
1910           Flags.setZExt();
1911 
1912         for (unsigned i = 0; i < NumParts; ++i) {
1913           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1914                                         VT, /*isfixed=*/true, 0, 0));
1915           OutVals.push_back(Parts[i]);
1916         }
1917       }
1918     }
1919   }
1920 
1921   // Push in swifterror virtual register as the last element of Outs. This makes
1922   // sure swifterror virtual register will be returned in the swifterror
1923   // physical register.
1924   const Function *F = I.getParent()->getParent();
1925   if (TLI.supportSwiftError() &&
1926       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1927     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1928     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1929     Flags.setSwiftError();
1930     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1931                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1932                                   true /*isfixed*/, 1 /*origidx*/,
1933                                   0 /*partOffs*/));
1934     // Create SDNode for the swifterror virtual register.
1935     OutVals.push_back(
1936         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1937                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1938                         EVT(TLI.getPointerTy(DL))));
1939   }
1940 
1941   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1942   CallingConv::ID CallConv =
1943     DAG.getMachineFunction().getFunction().getCallingConv();
1944   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1945       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1946 
1947   // Verify that the target's LowerReturn behaved as expected.
1948   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1949          "LowerReturn didn't return a valid chain!");
1950 
1951   // Update the DAG with the new chain value resulting from return lowering.
1952   DAG.setRoot(Chain);
1953 }
1954 
1955 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1956 /// created for it, emit nodes to copy the value into the virtual
1957 /// registers.
1958 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1959   // Skip empty types
1960   if (V->getType()->isEmptyTy())
1961     return;
1962 
1963   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1964   if (VMI != FuncInfo.ValueMap.end()) {
1965     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1966     CopyValueToVirtualRegister(V, VMI->second);
1967   }
1968 }
1969 
1970 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1971 /// the current basic block, add it to ValueMap now so that we'll get a
1972 /// CopyTo/FromReg.
1973 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1974   // No need to export constants.
1975   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1976 
1977   // Already exported?
1978   if (FuncInfo.isExportedInst(V)) return;
1979 
1980   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1981   CopyValueToVirtualRegister(V, Reg);
1982 }
1983 
1984 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1985                                                      const BasicBlock *FromBB) {
1986   // The operands of the setcc have to be in this block.  We don't know
1987   // how to export them from some other block.
1988   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1989     // Can export from current BB.
1990     if (VI->getParent() == FromBB)
1991       return true;
1992 
1993     // Is already exported, noop.
1994     return FuncInfo.isExportedInst(V);
1995   }
1996 
1997   // If this is an argument, we can export it if the BB is the entry block or
1998   // if it is already exported.
1999   if (isa<Argument>(V)) {
2000     if (FromBB == &FromBB->getParent()->getEntryBlock())
2001       return true;
2002 
2003     // Otherwise, can only export this if it is already exported.
2004     return FuncInfo.isExportedInst(V);
2005   }
2006 
2007   // Otherwise, constants can always be exported.
2008   return true;
2009 }
2010 
2011 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2012 BranchProbability
2013 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2014                                         const MachineBasicBlock *Dst) const {
2015   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2016   const BasicBlock *SrcBB = Src->getBasicBlock();
2017   const BasicBlock *DstBB = Dst->getBasicBlock();
2018   if (!BPI) {
2019     // If BPI is not available, set the default probability as 1 / N, where N is
2020     // the number of successors.
2021     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2022     return BranchProbability(1, SuccSize);
2023   }
2024   return BPI->getEdgeProbability(SrcBB, DstBB);
2025 }
2026 
2027 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2028                                                MachineBasicBlock *Dst,
2029                                                BranchProbability Prob) {
2030   if (!FuncInfo.BPI)
2031     Src->addSuccessorWithoutProb(Dst);
2032   else {
2033     if (Prob.isUnknown())
2034       Prob = getEdgeProbability(Src, Dst);
2035     Src->addSuccessor(Dst, Prob);
2036   }
2037 }
2038 
2039 static bool InBlock(const Value *V, const BasicBlock *BB) {
2040   if (const Instruction *I = dyn_cast<Instruction>(V))
2041     return I->getParent() == BB;
2042   return true;
2043 }
2044 
2045 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2046 /// This function emits a branch and is used at the leaves of an OR or an
2047 /// AND operator tree.
2048 void
2049 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2050                                                   MachineBasicBlock *TBB,
2051                                                   MachineBasicBlock *FBB,
2052                                                   MachineBasicBlock *CurBB,
2053                                                   MachineBasicBlock *SwitchBB,
2054                                                   BranchProbability TProb,
2055                                                   BranchProbability FProb,
2056                                                   bool InvertCond) {
2057   const BasicBlock *BB = CurBB->getBasicBlock();
2058 
2059   // If the leaf of the tree is a comparison, merge the condition into
2060   // the caseblock.
2061   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2062     // The operands of the cmp have to be in this block.  We don't know
2063     // how to export them from some other block.  If this is the first block
2064     // of the sequence, no exporting is needed.
2065     if (CurBB == SwitchBB ||
2066         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2067          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2068       ISD::CondCode Condition;
2069       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2070         ICmpInst::Predicate Pred =
2071             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2072         Condition = getICmpCondCode(Pred);
2073       } else {
2074         const FCmpInst *FC = cast<FCmpInst>(Cond);
2075         FCmpInst::Predicate Pred =
2076             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2077         Condition = getFCmpCondCode(Pred);
2078         if (TM.Options.NoNaNsFPMath)
2079           Condition = getFCmpCodeWithoutNaN(Condition);
2080       }
2081 
2082       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2083                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2084       SL->SwitchCases.push_back(CB);
2085       return;
2086     }
2087   }
2088 
2089   // Create a CaseBlock record representing this branch.
2090   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2091   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2092                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2093   SL->SwitchCases.push_back(CB);
2094 }
2095 
2096 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2097                                                MachineBasicBlock *TBB,
2098                                                MachineBasicBlock *FBB,
2099                                                MachineBasicBlock *CurBB,
2100                                                MachineBasicBlock *SwitchBB,
2101                                                Instruction::BinaryOps Opc,
2102                                                BranchProbability TProb,
2103                                                BranchProbability FProb,
2104                                                bool InvertCond) {
2105   // Skip over not part of the tree and remember to invert op and operands at
2106   // next level.
2107   Value *NotCond;
2108   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2109       InBlock(NotCond, CurBB->getBasicBlock())) {
2110     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2111                          !InvertCond);
2112     return;
2113   }
2114 
2115   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2116   // Compute the effective opcode for Cond, taking into account whether it needs
2117   // to be inverted, e.g.
2118   //   and (not (or A, B)), C
2119   // gets lowered as
2120   //   and (and (not A, not B), C)
2121   unsigned BOpc = 0;
2122   if (BOp) {
2123     BOpc = BOp->getOpcode();
2124     if (InvertCond) {
2125       if (BOpc == Instruction::And)
2126         BOpc = Instruction::Or;
2127       else if (BOpc == Instruction::Or)
2128         BOpc = Instruction::And;
2129     }
2130   }
2131 
2132   // If this node is not part of the or/and tree, emit it as a branch.
2133   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2134       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2135       BOp->getParent() != CurBB->getBasicBlock() ||
2136       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2137       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2138     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2139                                  TProb, FProb, InvertCond);
2140     return;
2141   }
2142 
2143   //  Create TmpBB after CurBB.
2144   MachineFunction::iterator BBI(CurBB);
2145   MachineFunction &MF = DAG.getMachineFunction();
2146   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2147   CurBB->getParent()->insert(++BBI, TmpBB);
2148 
2149   if (Opc == Instruction::Or) {
2150     // Codegen X | Y as:
2151     // BB1:
2152     //   jmp_if_X TBB
2153     //   jmp TmpBB
2154     // TmpBB:
2155     //   jmp_if_Y TBB
2156     //   jmp FBB
2157     //
2158 
2159     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2160     // The requirement is that
2161     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2162     //     = TrueProb for original BB.
2163     // Assuming the original probabilities are A and B, one choice is to set
2164     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2165     // A/(1+B) and 2B/(1+B). This choice assumes that
2166     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2167     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2168     // TmpBB, but the math is more complicated.
2169 
2170     auto NewTrueProb = TProb / 2;
2171     auto NewFalseProb = TProb / 2 + FProb;
2172     // Emit the LHS condition.
2173     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2174                          NewTrueProb, NewFalseProb, InvertCond);
2175 
2176     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2177     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2178     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2179     // Emit the RHS condition into TmpBB.
2180     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2181                          Probs[0], Probs[1], InvertCond);
2182   } else {
2183     assert(Opc == Instruction::And && "Unknown merge op!");
2184     // Codegen X & Y as:
2185     // BB1:
2186     //   jmp_if_X TmpBB
2187     //   jmp FBB
2188     // TmpBB:
2189     //   jmp_if_Y TBB
2190     //   jmp FBB
2191     //
2192     //  This requires creation of TmpBB after CurBB.
2193 
2194     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2195     // The requirement is that
2196     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2197     //     = FalseProb for original BB.
2198     // Assuming the original probabilities are A and B, one choice is to set
2199     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2200     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2201     // TrueProb for BB1 * FalseProb for TmpBB.
2202 
2203     auto NewTrueProb = TProb + FProb / 2;
2204     auto NewFalseProb = FProb / 2;
2205     // Emit the LHS condition.
2206     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2207                          NewTrueProb, NewFalseProb, InvertCond);
2208 
2209     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2210     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2211     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2212     // Emit the RHS condition into TmpBB.
2213     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2214                          Probs[0], Probs[1], InvertCond);
2215   }
2216 }
2217 
2218 /// If the set of cases should be emitted as a series of branches, return true.
2219 /// If we should emit this as a bunch of and/or'd together conditions, return
2220 /// false.
2221 bool
2222 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2223   if (Cases.size() != 2) return true;
2224 
2225   // If this is two comparisons of the same values or'd or and'd together, they
2226   // will get folded into a single comparison, so don't emit two blocks.
2227   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2228        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2229       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2230        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2231     return false;
2232   }
2233 
2234   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2235   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2236   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2237       Cases[0].CC == Cases[1].CC &&
2238       isa<Constant>(Cases[0].CmpRHS) &&
2239       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2240     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2241       return false;
2242     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2243       return false;
2244   }
2245 
2246   return true;
2247 }
2248 
2249 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2250   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2251 
2252   // Update machine-CFG edges.
2253   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2254 
2255   if (I.isUnconditional()) {
2256     // Update machine-CFG edges.
2257     BrMBB->addSuccessor(Succ0MBB);
2258 
2259     // If this is not a fall-through branch or optimizations are switched off,
2260     // emit the branch.
2261     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2262       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2263                               MVT::Other, getControlRoot(),
2264                               DAG.getBasicBlock(Succ0MBB)));
2265 
2266     return;
2267   }
2268 
2269   // If this condition is one of the special cases we handle, do special stuff
2270   // now.
2271   const Value *CondVal = I.getCondition();
2272   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2273 
2274   // If this is a series of conditions that are or'd or and'd together, emit
2275   // this as a sequence of branches instead of setcc's with and/or operations.
2276   // As long as jumps are not expensive, this should improve performance.
2277   // For example, instead of something like:
2278   //     cmp A, B
2279   //     C = seteq
2280   //     cmp D, E
2281   //     F = setle
2282   //     or C, F
2283   //     jnz foo
2284   // Emit:
2285   //     cmp A, B
2286   //     je foo
2287   //     cmp D, E
2288   //     jle foo
2289   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2290     Instruction::BinaryOps Opcode = BOp->getOpcode();
2291     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2292         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2293         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2294       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2295                            Opcode,
2296                            getEdgeProbability(BrMBB, Succ0MBB),
2297                            getEdgeProbability(BrMBB, Succ1MBB),
2298                            /*InvertCond=*/false);
2299       // If the compares in later blocks need to use values not currently
2300       // exported from this block, export them now.  This block should always
2301       // be the first entry.
2302       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2303 
2304       // Allow some cases to be rejected.
2305       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2306         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2307           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2308           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2309         }
2310 
2311         // Emit the branch for this block.
2312         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2313         SL->SwitchCases.erase(SL->SwitchCases.begin());
2314         return;
2315       }
2316 
2317       // Okay, we decided not to do this, remove any inserted MBB's and clear
2318       // SwitchCases.
2319       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2320         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2321 
2322       SL->SwitchCases.clear();
2323     }
2324   }
2325 
2326   // Create a CaseBlock record representing this branch.
2327   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2328                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2329 
2330   // Use visitSwitchCase to actually insert the fast branch sequence for this
2331   // cond branch.
2332   visitSwitchCase(CB, BrMBB);
2333 }
2334 
2335 /// visitSwitchCase - Emits the necessary code to represent a single node in
2336 /// the binary search tree resulting from lowering a switch instruction.
2337 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2338                                           MachineBasicBlock *SwitchBB) {
2339   SDValue Cond;
2340   SDValue CondLHS = getValue(CB.CmpLHS);
2341   SDLoc dl = CB.DL;
2342 
2343   if (CB.CC == ISD::SETTRUE) {
2344     // Branch or fall through to TrueBB.
2345     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2346     SwitchBB->normalizeSuccProbs();
2347     if (CB.TrueBB != NextBlock(SwitchBB)) {
2348       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2349                               DAG.getBasicBlock(CB.TrueBB)));
2350     }
2351     return;
2352   }
2353 
2354   auto &TLI = DAG.getTargetLoweringInfo();
2355   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2356 
2357   // Build the setcc now.
2358   if (!CB.CmpMHS) {
2359     // Fold "(X == true)" to X and "(X == false)" to !X to
2360     // handle common cases produced by branch lowering.
2361     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2362         CB.CC == ISD::SETEQ)
2363       Cond = CondLHS;
2364     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2365              CB.CC == ISD::SETEQ) {
2366       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2367       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2368     } else {
2369       SDValue CondRHS = getValue(CB.CmpRHS);
2370 
2371       // If a pointer's DAG type is larger than its memory type then the DAG
2372       // values are zero-extended. This breaks signed comparisons so truncate
2373       // back to the underlying type before doing the compare.
2374       if (CondLHS.getValueType() != MemVT) {
2375         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2376         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2377       }
2378       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2379     }
2380   } else {
2381     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2382 
2383     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2384     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2385 
2386     SDValue CmpOp = getValue(CB.CmpMHS);
2387     EVT VT = CmpOp.getValueType();
2388 
2389     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2390       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2391                           ISD::SETLE);
2392     } else {
2393       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2394                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2395       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2396                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2397     }
2398   }
2399 
2400   // Update successor info
2401   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2402   // TrueBB and FalseBB are always different unless the incoming IR is
2403   // degenerate. This only happens when running llc on weird IR.
2404   if (CB.TrueBB != CB.FalseBB)
2405     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2406   SwitchBB->normalizeSuccProbs();
2407 
2408   // If the lhs block is the next block, invert the condition so that we can
2409   // fall through to the lhs instead of the rhs block.
2410   if (CB.TrueBB == NextBlock(SwitchBB)) {
2411     std::swap(CB.TrueBB, CB.FalseBB);
2412     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2413     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2414   }
2415 
2416   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2417                                MVT::Other, getControlRoot(), Cond,
2418                                DAG.getBasicBlock(CB.TrueBB));
2419 
2420   // Insert the false branch. Do this even if it's a fall through branch,
2421   // this makes it easier to do DAG optimizations which require inverting
2422   // the branch condition.
2423   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2424                        DAG.getBasicBlock(CB.FalseBB));
2425 
2426   DAG.setRoot(BrCond);
2427 }
2428 
2429 /// visitJumpTable - Emit JumpTable node in the current MBB
2430 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2431   // Emit the code for the jump table
2432   assert(JT.Reg != -1U && "Should lower JT Header first!");
2433   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2434   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2435                                      JT.Reg, PTy);
2436   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2437   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2438                                     MVT::Other, Index.getValue(1),
2439                                     Table, Index);
2440   DAG.setRoot(BrJumpTable);
2441 }
2442 
2443 /// visitJumpTableHeader - This function emits necessary code to produce index
2444 /// in the JumpTable from switch case.
2445 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2446                                                JumpTableHeader &JTH,
2447                                                MachineBasicBlock *SwitchBB) {
2448   SDLoc dl = getCurSDLoc();
2449 
2450   // Subtract the lowest switch case value from the value being switched on.
2451   SDValue SwitchOp = getValue(JTH.SValue);
2452   EVT VT = SwitchOp.getValueType();
2453   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2454                             DAG.getConstant(JTH.First, dl, VT));
2455 
2456   // The SDNode we just created, which holds the value being switched on minus
2457   // the smallest case value, needs to be copied to a virtual register so it
2458   // can be used as an index into the jump table in a subsequent basic block.
2459   // This value may be smaller or larger than the target's pointer type, and
2460   // therefore require extension or truncating.
2461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2462   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2463 
2464   unsigned JumpTableReg =
2465       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2466   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2467                                     JumpTableReg, SwitchOp);
2468   JT.Reg = JumpTableReg;
2469 
2470   if (!JTH.OmitRangeCheck) {
2471     // Emit the range check for the jump table, and branch to the default block
2472     // for the switch statement if the value being switched on exceeds the
2473     // largest case in the switch.
2474     SDValue CMP = DAG.getSetCC(
2475         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2476                                    Sub.getValueType()),
2477         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2478 
2479     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2480                                  MVT::Other, CopyTo, CMP,
2481                                  DAG.getBasicBlock(JT.Default));
2482 
2483     // Avoid emitting unnecessary branches to the next block.
2484     if (JT.MBB != NextBlock(SwitchBB))
2485       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2486                            DAG.getBasicBlock(JT.MBB));
2487 
2488     DAG.setRoot(BrCond);
2489   } else {
2490     // Avoid emitting unnecessary branches to the next block.
2491     if (JT.MBB != NextBlock(SwitchBB))
2492       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2493                               DAG.getBasicBlock(JT.MBB)));
2494     else
2495       DAG.setRoot(CopyTo);
2496   }
2497 }
2498 
2499 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2500 /// variable if there exists one.
2501 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2502                                  SDValue &Chain) {
2503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2504   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2505   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2506   MachineFunction &MF = DAG.getMachineFunction();
2507   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2508   MachineSDNode *Node =
2509       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2510   if (Global) {
2511     MachinePointerInfo MPInfo(Global);
2512     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2513                  MachineMemOperand::MODereferenceable;
2514     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2515         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2516     DAG.setNodeMemRefs(Node, {MemRef});
2517   }
2518   if (PtrTy != PtrMemTy)
2519     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2520   return SDValue(Node, 0);
2521 }
2522 
2523 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2524 /// tail spliced into a stack protector check success bb.
2525 ///
2526 /// For a high level explanation of how this fits into the stack protector
2527 /// generation see the comment on the declaration of class
2528 /// StackProtectorDescriptor.
2529 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2530                                                   MachineBasicBlock *ParentBB) {
2531 
2532   // First create the loads to the guard/stack slot for the comparison.
2533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2534   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2535   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2536 
2537   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2538   int FI = MFI.getStackProtectorIndex();
2539 
2540   SDValue Guard;
2541   SDLoc dl = getCurSDLoc();
2542   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2543   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2544   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2545 
2546   // Generate code to load the content of the guard slot.
2547   SDValue GuardVal = DAG.getLoad(
2548       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2549       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2550       MachineMemOperand::MOVolatile);
2551 
2552   if (TLI.useStackGuardXorFP())
2553     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2554 
2555   // Retrieve guard check function, nullptr if instrumentation is inlined.
2556   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2557     // The target provides a guard check function to validate the guard value.
2558     // Generate a call to that function with the content of the guard slot as
2559     // argument.
2560     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2561     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2562 
2563     TargetLowering::ArgListTy Args;
2564     TargetLowering::ArgListEntry Entry;
2565     Entry.Node = GuardVal;
2566     Entry.Ty = FnTy->getParamType(0);
2567     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2568       Entry.IsInReg = true;
2569     Args.push_back(Entry);
2570 
2571     TargetLowering::CallLoweringInfo CLI(DAG);
2572     CLI.setDebugLoc(getCurSDLoc())
2573         .setChain(DAG.getEntryNode())
2574         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2575                    getValue(GuardCheckFn), std::move(Args));
2576 
2577     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2578     DAG.setRoot(Result.second);
2579     return;
2580   }
2581 
2582   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2583   // Otherwise, emit a volatile load to retrieve the stack guard value.
2584   SDValue Chain = DAG.getEntryNode();
2585   if (TLI.useLoadStackGuardNode()) {
2586     Guard = getLoadStackGuard(DAG, dl, Chain);
2587   } else {
2588     const Value *IRGuard = TLI.getSDagStackGuard(M);
2589     SDValue GuardPtr = getValue(IRGuard);
2590 
2591     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2592                         MachinePointerInfo(IRGuard, 0), Align,
2593                         MachineMemOperand::MOVolatile);
2594   }
2595 
2596   // Perform the comparison via a getsetcc.
2597   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2598                                                         *DAG.getContext(),
2599                                                         Guard.getValueType()),
2600                              Guard, GuardVal, ISD::SETNE);
2601 
2602   // If the guard/stackslot do not equal, branch to failure MBB.
2603   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2604                                MVT::Other, GuardVal.getOperand(0),
2605                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2606   // Otherwise branch to success MBB.
2607   SDValue Br = DAG.getNode(ISD::BR, dl,
2608                            MVT::Other, BrCond,
2609                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2610 
2611   DAG.setRoot(Br);
2612 }
2613 
2614 /// Codegen the failure basic block for a stack protector check.
2615 ///
2616 /// A failure stack protector machine basic block consists simply of a call to
2617 /// __stack_chk_fail().
2618 ///
2619 /// For a high level explanation of how this fits into the stack protector
2620 /// generation see the comment on the declaration of class
2621 /// StackProtectorDescriptor.
2622 void
2623 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2625   TargetLowering::MakeLibCallOptions CallOptions;
2626   CallOptions.setDiscardResult(true);
2627   SDValue Chain =
2628       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2629                       None, CallOptions, getCurSDLoc()).second;
2630   // On PS4, the "return address" must still be within the calling function,
2631   // even if it's at the very end, so emit an explicit TRAP here.
2632   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2633   if (TM.getTargetTriple().isPS4CPU())
2634     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2635 
2636   DAG.setRoot(Chain);
2637 }
2638 
2639 /// visitBitTestHeader - This function emits necessary code to produce value
2640 /// suitable for "bit tests"
2641 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2642                                              MachineBasicBlock *SwitchBB) {
2643   SDLoc dl = getCurSDLoc();
2644 
2645   // Subtract the minimum value.
2646   SDValue SwitchOp = getValue(B.SValue);
2647   EVT VT = SwitchOp.getValueType();
2648   SDValue RangeSub =
2649       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2650 
2651   // Determine the type of the test operands.
2652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2653   bool UsePtrType = false;
2654   if (!TLI.isTypeLegal(VT)) {
2655     UsePtrType = true;
2656   } else {
2657     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2658       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2659         // Switch table case range are encoded into series of masks.
2660         // Just use pointer type, it's guaranteed to fit.
2661         UsePtrType = true;
2662         break;
2663       }
2664   }
2665   SDValue Sub = RangeSub;
2666   if (UsePtrType) {
2667     VT = TLI.getPointerTy(DAG.getDataLayout());
2668     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2669   }
2670 
2671   B.RegVT = VT.getSimpleVT();
2672   B.Reg = FuncInfo.CreateReg(B.RegVT);
2673   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2674 
2675   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2676 
2677   if (!B.OmitRangeCheck)
2678     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2679   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2680   SwitchBB->normalizeSuccProbs();
2681 
2682   SDValue Root = CopyTo;
2683   if (!B.OmitRangeCheck) {
2684     // Conditional branch to the default block.
2685     SDValue RangeCmp = DAG.getSetCC(dl,
2686         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2687                                RangeSub.getValueType()),
2688         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2689         ISD::SETUGT);
2690 
2691     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2692                        DAG.getBasicBlock(B.Default));
2693   }
2694 
2695   // Avoid emitting unnecessary branches to the next block.
2696   if (MBB != NextBlock(SwitchBB))
2697     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2698 
2699   DAG.setRoot(Root);
2700 }
2701 
2702 /// visitBitTestCase - this function produces one "bit test"
2703 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2704                                            MachineBasicBlock* NextMBB,
2705                                            BranchProbability BranchProbToNext,
2706                                            unsigned Reg,
2707                                            BitTestCase &B,
2708                                            MachineBasicBlock *SwitchBB) {
2709   SDLoc dl = getCurSDLoc();
2710   MVT VT = BB.RegVT;
2711   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2712   SDValue Cmp;
2713   unsigned PopCount = countPopulation(B.Mask);
2714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2715   if (PopCount == 1) {
2716     // Testing for a single bit; just compare the shift count with what it
2717     // would need to be to shift a 1 bit in that position.
2718     Cmp = DAG.getSetCC(
2719         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2720         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2721         ISD::SETEQ);
2722   } else if (PopCount == BB.Range) {
2723     // There is only one zero bit in the range, test for it directly.
2724     Cmp = DAG.getSetCC(
2725         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2726         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2727         ISD::SETNE);
2728   } else {
2729     // Make desired shift
2730     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2731                                     DAG.getConstant(1, dl, VT), ShiftOp);
2732 
2733     // Emit bit tests and jumps
2734     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2735                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2736     Cmp = DAG.getSetCC(
2737         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2738         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2739   }
2740 
2741   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2742   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2743   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2744   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2745   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2746   // one as they are relative probabilities (and thus work more like weights),
2747   // and hence we need to normalize them to let the sum of them become one.
2748   SwitchBB->normalizeSuccProbs();
2749 
2750   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2751                               MVT::Other, getControlRoot(),
2752                               Cmp, DAG.getBasicBlock(B.TargetBB));
2753 
2754   // Avoid emitting unnecessary branches to the next block.
2755   if (NextMBB != NextBlock(SwitchBB))
2756     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2757                         DAG.getBasicBlock(NextMBB));
2758 
2759   DAG.setRoot(BrAnd);
2760 }
2761 
2762 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2763   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2764 
2765   // Retrieve successors. Look through artificial IR level blocks like
2766   // catchswitch for successors.
2767   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2768   const BasicBlock *EHPadBB = I.getSuccessor(1);
2769 
2770   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2771   // have to do anything here to lower funclet bundles.
2772   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2773                                         LLVMContext::OB_funclet,
2774                                         LLVMContext::OB_cfguardtarget}) &&
2775          "Cannot lower invokes with arbitrary operand bundles yet!");
2776 
2777   const Value *Callee(I.getCalledValue());
2778   const Function *Fn = dyn_cast<Function>(Callee);
2779   if (isa<InlineAsm>(Callee))
2780     visitInlineAsm(&I);
2781   else if (Fn && Fn->isIntrinsic()) {
2782     switch (Fn->getIntrinsicID()) {
2783     default:
2784       llvm_unreachable("Cannot invoke this intrinsic");
2785     case Intrinsic::donothing:
2786       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2787       break;
2788     case Intrinsic::experimental_patchpoint_void:
2789     case Intrinsic::experimental_patchpoint_i64:
2790       visitPatchpoint(&I, EHPadBB);
2791       break;
2792     case Intrinsic::experimental_gc_statepoint:
2793       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2794       break;
2795     case Intrinsic::wasm_rethrow_in_catch: {
2796       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2797       // special because it can be invoked, so we manually lower it to a DAG
2798       // node here.
2799       SmallVector<SDValue, 8> Ops;
2800       Ops.push_back(getRoot()); // inchain
2801       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2802       Ops.push_back(
2803           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2804                                 TLI.getPointerTy(DAG.getDataLayout())));
2805       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2806       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2807       break;
2808     }
2809     }
2810   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2811     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2812     // Eventually we will support lowering the @llvm.experimental.deoptimize
2813     // intrinsic, and right now there are no plans to support other intrinsics
2814     // with deopt state.
2815     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2816   } else {
2817     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2818   }
2819 
2820   // If the value of the invoke is used outside of its defining block, make it
2821   // available as a virtual register.
2822   // We already took care of the exported value for the statepoint instruction
2823   // during call to the LowerStatepoint.
2824   if (!isStatepoint(I)) {
2825     CopyToExportRegsIfNeeded(&I);
2826   }
2827 
2828   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2829   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2830   BranchProbability EHPadBBProb =
2831       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2832           : BranchProbability::getZero();
2833   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2834 
2835   // Update successor info.
2836   addSuccessorWithProb(InvokeMBB, Return);
2837   for (auto &UnwindDest : UnwindDests) {
2838     UnwindDest.first->setIsEHPad();
2839     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2840   }
2841   InvokeMBB->normalizeSuccProbs();
2842 
2843   // Drop into normal successor.
2844   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2845                           DAG.getBasicBlock(Return)));
2846 }
2847 
2848 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2849   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2850 
2851   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2852   // have to do anything here to lower funclet bundles.
2853   assert(!I.hasOperandBundlesOtherThan(
2854              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2855          "Cannot lower callbrs with arbitrary operand bundles yet!");
2856 
2857   assert(isa<InlineAsm>(I.getCalledValue()) &&
2858          "Only know how to handle inlineasm callbr");
2859   visitInlineAsm(&I);
2860   CopyToExportRegsIfNeeded(&I);
2861 
2862   // Retrieve successors.
2863   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2864   Return->setInlineAsmBrDefaultTarget();
2865 
2866   // Update successor info.
2867   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2868   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2869     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2870     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2871     CallBrMBB->addInlineAsmBrIndirectTarget(Target);
2872   }
2873   CallBrMBB->normalizeSuccProbs();
2874 
2875   // Drop into default successor.
2876   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2877                           MVT::Other, getControlRoot(),
2878                           DAG.getBasicBlock(Return)));
2879 }
2880 
2881 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2882   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2883 }
2884 
2885 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2886   assert(FuncInfo.MBB->isEHPad() &&
2887          "Call to landingpad not in landing pad!");
2888 
2889   // If there aren't registers to copy the values into (e.g., during SjLj
2890   // exceptions), then don't bother to create these DAG nodes.
2891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2892   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2893   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2894       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2895     return;
2896 
2897   // If landingpad's return type is token type, we don't create DAG nodes
2898   // for its exception pointer and selector value. The extraction of exception
2899   // pointer or selector value from token type landingpads is not currently
2900   // supported.
2901   if (LP.getType()->isTokenTy())
2902     return;
2903 
2904   SmallVector<EVT, 2> ValueVTs;
2905   SDLoc dl = getCurSDLoc();
2906   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2907   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2908 
2909   // Get the two live-in registers as SDValues. The physregs have already been
2910   // copied into virtual registers.
2911   SDValue Ops[2];
2912   if (FuncInfo.ExceptionPointerVirtReg) {
2913     Ops[0] = DAG.getZExtOrTrunc(
2914         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2915                            FuncInfo.ExceptionPointerVirtReg,
2916                            TLI.getPointerTy(DAG.getDataLayout())),
2917         dl, ValueVTs[0]);
2918   } else {
2919     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2920   }
2921   Ops[1] = DAG.getZExtOrTrunc(
2922       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2923                          FuncInfo.ExceptionSelectorVirtReg,
2924                          TLI.getPointerTy(DAG.getDataLayout())),
2925       dl, ValueVTs[1]);
2926 
2927   // Merge into one.
2928   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2929                             DAG.getVTList(ValueVTs), Ops);
2930   setValue(&LP, Res);
2931 }
2932 
2933 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2934                                            MachineBasicBlock *Last) {
2935   // Update JTCases.
2936   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2937     if (SL->JTCases[i].first.HeaderBB == First)
2938       SL->JTCases[i].first.HeaderBB = Last;
2939 
2940   // Update BitTestCases.
2941   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2942     if (SL->BitTestCases[i].Parent == First)
2943       SL->BitTestCases[i].Parent = Last;
2944 }
2945 
2946 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2947   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2948 
2949   // Update machine-CFG edges with unique successors.
2950   SmallSet<BasicBlock*, 32> Done;
2951   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2952     BasicBlock *BB = I.getSuccessor(i);
2953     bool Inserted = Done.insert(BB).second;
2954     if (!Inserted)
2955         continue;
2956 
2957     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2958     addSuccessorWithProb(IndirectBrMBB, Succ);
2959   }
2960   IndirectBrMBB->normalizeSuccProbs();
2961 
2962   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2963                           MVT::Other, getControlRoot(),
2964                           getValue(I.getAddress())));
2965 }
2966 
2967 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2968   if (!DAG.getTarget().Options.TrapUnreachable)
2969     return;
2970 
2971   // We may be able to ignore unreachable behind a noreturn call.
2972   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2973     const BasicBlock &BB = *I.getParent();
2974     if (&I != &BB.front()) {
2975       BasicBlock::const_iterator PredI =
2976         std::prev(BasicBlock::const_iterator(&I));
2977       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2978         if (Call->doesNotReturn())
2979           return;
2980       }
2981     }
2982   }
2983 
2984   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2985 }
2986 
2987 void SelectionDAGBuilder::visitFSub(const User &I) {
2988   // -0.0 - X --> fneg
2989   Type *Ty = I.getType();
2990   if (isa<Constant>(I.getOperand(0)) &&
2991       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2992     SDValue Op2 = getValue(I.getOperand(1));
2993     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2994                              Op2.getValueType(), Op2));
2995     return;
2996   }
2997 
2998   visitBinary(I, ISD::FSUB);
2999 }
3000 
3001 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3002   SDNodeFlags Flags;
3003 
3004   SDValue Op = getValue(I.getOperand(0));
3005   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3006                                     Op, Flags);
3007   setValue(&I, UnNodeValue);
3008 }
3009 
3010 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3011   SDNodeFlags Flags;
3012   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3013     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3014     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3015   }
3016   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3017     Flags.setExact(ExactOp->isExact());
3018   }
3019 
3020   SDValue Op1 = getValue(I.getOperand(0));
3021   SDValue Op2 = getValue(I.getOperand(1));
3022   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3023                                      Op1, Op2, Flags);
3024   setValue(&I, BinNodeValue);
3025 }
3026 
3027 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3028   SDValue Op1 = getValue(I.getOperand(0));
3029   SDValue Op2 = getValue(I.getOperand(1));
3030 
3031   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3032       Op1.getValueType(), DAG.getDataLayout());
3033 
3034   // Coerce the shift amount to the right type if we can.
3035   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3036     unsigned ShiftSize = ShiftTy.getSizeInBits();
3037     unsigned Op2Size = Op2.getValueSizeInBits();
3038     SDLoc DL = getCurSDLoc();
3039 
3040     // If the operand is smaller than the shift count type, promote it.
3041     if (ShiftSize > Op2Size)
3042       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3043 
3044     // If the operand is larger than the shift count type but the shift
3045     // count type has enough bits to represent any shift value, truncate
3046     // it now. This is a common case and it exposes the truncate to
3047     // optimization early.
3048     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3049       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3050     // Otherwise we'll need to temporarily settle for some other convenient
3051     // type.  Type legalization will make adjustments once the shiftee is split.
3052     else
3053       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3054   }
3055 
3056   bool nuw = false;
3057   bool nsw = false;
3058   bool exact = false;
3059 
3060   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3061 
3062     if (const OverflowingBinaryOperator *OFBinOp =
3063             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3064       nuw = OFBinOp->hasNoUnsignedWrap();
3065       nsw = OFBinOp->hasNoSignedWrap();
3066     }
3067     if (const PossiblyExactOperator *ExactOp =
3068             dyn_cast<const PossiblyExactOperator>(&I))
3069       exact = ExactOp->isExact();
3070   }
3071   SDNodeFlags Flags;
3072   Flags.setExact(exact);
3073   Flags.setNoSignedWrap(nsw);
3074   Flags.setNoUnsignedWrap(nuw);
3075   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3076                             Flags);
3077   setValue(&I, Res);
3078 }
3079 
3080 void SelectionDAGBuilder::visitSDiv(const User &I) {
3081   SDValue Op1 = getValue(I.getOperand(0));
3082   SDValue Op2 = getValue(I.getOperand(1));
3083 
3084   SDNodeFlags Flags;
3085   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3086                  cast<PossiblyExactOperator>(&I)->isExact());
3087   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3088                            Op2, Flags));
3089 }
3090 
3091 void SelectionDAGBuilder::visitICmp(const User &I) {
3092   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3093   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3094     predicate = IC->getPredicate();
3095   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3096     predicate = ICmpInst::Predicate(IC->getPredicate());
3097   SDValue Op1 = getValue(I.getOperand(0));
3098   SDValue Op2 = getValue(I.getOperand(1));
3099   ISD::CondCode Opcode = getICmpCondCode(predicate);
3100 
3101   auto &TLI = DAG.getTargetLoweringInfo();
3102   EVT MemVT =
3103       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3104 
3105   // If a pointer's DAG type is larger than its memory type then the DAG values
3106   // are zero-extended. This breaks signed comparisons so truncate back to the
3107   // underlying type before doing the compare.
3108   if (Op1.getValueType() != MemVT) {
3109     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3110     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3111   }
3112 
3113   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3114                                                         I.getType());
3115   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3116 }
3117 
3118 void SelectionDAGBuilder::visitFCmp(const User &I) {
3119   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3120   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3121     predicate = FC->getPredicate();
3122   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3123     predicate = FCmpInst::Predicate(FC->getPredicate());
3124   SDValue Op1 = getValue(I.getOperand(0));
3125   SDValue Op2 = getValue(I.getOperand(1));
3126 
3127   ISD::CondCode Condition = getFCmpCondCode(predicate);
3128   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3129   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3130     Condition = getFCmpCodeWithoutNaN(Condition);
3131 
3132   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3133                                                         I.getType());
3134   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3135 }
3136 
3137 // Check if the condition of the select has one use or two users that are both
3138 // selects with the same condition.
3139 static bool hasOnlySelectUsers(const Value *Cond) {
3140   return llvm::all_of(Cond->users(), [](const Value *V) {
3141     return isa<SelectInst>(V);
3142   });
3143 }
3144 
3145 void SelectionDAGBuilder::visitSelect(const User &I) {
3146   SmallVector<EVT, 4> ValueVTs;
3147   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3148                   ValueVTs);
3149   unsigned NumValues = ValueVTs.size();
3150   if (NumValues == 0) return;
3151 
3152   SmallVector<SDValue, 4> Values(NumValues);
3153   SDValue Cond     = getValue(I.getOperand(0));
3154   SDValue LHSVal   = getValue(I.getOperand(1));
3155   SDValue RHSVal   = getValue(I.getOperand(2));
3156   SmallVector<SDValue, 1> BaseOps(1, Cond);
3157   ISD::NodeType OpCode =
3158       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3159 
3160   bool IsUnaryAbs = false;
3161 
3162   // Min/max matching is only viable if all output VTs are the same.
3163   if (is_splat(ValueVTs)) {
3164     EVT VT = ValueVTs[0];
3165     LLVMContext &Ctx = *DAG.getContext();
3166     auto &TLI = DAG.getTargetLoweringInfo();
3167 
3168     // We care about the legality of the operation after it has been type
3169     // legalized.
3170     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3171       VT = TLI.getTypeToTransformTo(Ctx, VT);
3172 
3173     // If the vselect is legal, assume we want to leave this as a vector setcc +
3174     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3175     // min/max is legal on the scalar type.
3176     bool UseScalarMinMax = VT.isVector() &&
3177       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3178 
3179     Value *LHS, *RHS;
3180     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3181     ISD::NodeType Opc = ISD::DELETED_NODE;
3182     switch (SPR.Flavor) {
3183     case SPF_UMAX:    Opc = ISD::UMAX; break;
3184     case SPF_UMIN:    Opc = ISD::UMIN; break;
3185     case SPF_SMAX:    Opc = ISD::SMAX; break;
3186     case SPF_SMIN:    Opc = ISD::SMIN; break;
3187     case SPF_FMINNUM:
3188       switch (SPR.NaNBehavior) {
3189       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3190       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3191       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3192       case SPNB_RETURNS_ANY: {
3193         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3194           Opc = ISD::FMINNUM;
3195         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3196           Opc = ISD::FMINIMUM;
3197         else if (UseScalarMinMax)
3198           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3199             ISD::FMINNUM : ISD::FMINIMUM;
3200         break;
3201       }
3202       }
3203       break;
3204     case SPF_FMAXNUM:
3205       switch (SPR.NaNBehavior) {
3206       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3207       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3208       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3209       case SPNB_RETURNS_ANY:
3210 
3211         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3212           Opc = ISD::FMAXNUM;
3213         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3214           Opc = ISD::FMAXIMUM;
3215         else if (UseScalarMinMax)
3216           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3217             ISD::FMAXNUM : ISD::FMAXIMUM;
3218         break;
3219       }
3220       break;
3221     case SPF_ABS:
3222       IsUnaryAbs = true;
3223       Opc = ISD::ABS;
3224       break;
3225     case SPF_NABS:
3226       // TODO: we need to produce sub(0, abs(X)).
3227     default: break;
3228     }
3229 
3230     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3231         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3232          (UseScalarMinMax &&
3233           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3234         // If the underlying comparison instruction is used by any other
3235         // instruction, the consumed instructions won't be destroyed, so it is
3236         // not profitable to convert to a min/max.
3237         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3238       OpCode = Opc;
3239       LHSVal = getValue(LHS);
3240       RHSVal = getValue(RHS);
3241       BaseOps.clear();
3242     }
3243 
3244     if (IsUnaryAbs) {
3245       OpCode = Opc;
3246       LHSVal = getValue(LHS);
3247       BaseOps.clear();
3248     }
3249   }
3250 
3251   if (IsUnaryAbs) {
3252     for (unsigned i = 0; i != NumValues; ++i) {
3253       Values[i] =
3254           DAG.getNode(OpCode, getCurSDLoc(),
3255                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3256                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3257     }
3258   } else {
3259     for (unsigned i = 0; i != NumValues; ++i) {
3260       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3261       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3262       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3263       Values[i] = DAG.getNode(
3264           OpCode, getCurSDLoc(),
3265           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3266     }
3267   }
3268 
3269   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3270                            DAG.getVTList(ValueVTs), Values));
3271 }
3272 
3273 void SelectionDAGBuilder::visitTrunc(const User &I) {
3274   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3275   SDValue N = getValue(I.getOperand(0));
3276   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3277                                                         I.getType());
3278   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3279 }
3280 
3281 void SelectionDAGBuilder::visitZExt(const User &I) {
3282   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3283   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3284   SDValue N = getValue(I.getOperand(0));
3285   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3286                                                         I.getType());
3287   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3288 }
3289 
3290 void SelectionDAGBuilder::visitSExt(const User &I) {
3291   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3292   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3293   SDValue N = getValue(I.getOperand(0));
3294   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3295                                                         I.getType());
3296   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3297 }
3298 
3299 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3300   // FPTrunc is never a no-op cast, no need to check
3301   SDValue N = getValue(I.getOperand(0));
3302   SDLoc dl = getCurSDLoc();
3303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3304   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3305   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3306                            DAG.getTargetConstant(
3307                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3308 }
3309 
3310 void SelectionDAGBuilder::visitFPExt(const User &I) {
3311   // FPExt is never a no-op cast, no need to check
3312   SDValue N = getValue(I.getOperand(0));
3313   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3314                                                         I.getType());
3315   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3316 }
3317 
3318 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3319   // FPToUI is never a no-op cast, no need to check
3320   SDValue N = getValue(I.getOperand(0));
3321   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3322                                                         I.getType());
3323   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3324 }
3325 
3326 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3327   // FPToSI is never a no-op cast, no need to check
3328   SDValue N = getValue(I.getOperand(0));
3329   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3330                                                         I.getType());
3331   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3332 }
3333 
3334 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3335   // UIToFP is never a no-op cast, no need to check
3336   SDValue N = getValue(I.getOperand(0));
3337   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3338                                                         I.getType());
3339   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3340 }
3341 
3342 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3343   // SIToFP is never a no-op cast, no need to check
3344   SDValue N = getValue(I.getOperand(0));
3345   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3346                                                         I.getType());
3347   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3348 }
3349 
3350 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3351   // What to do depends on the size of the integer and the size of the pointer.
3352   // We can either truncate, zero extend, or no-op, accordingly.
3353   SDValue N = getValue(I.getOperand(0));
3354   auto &TLI = DAG.getTargetLoweringInfo();
3355   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3356                                                         I.getType());
3357   EVT PtrMemVT =
3358       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3359   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3360   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3361   setValue(&I, N);
3362 }
3363 
3364 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3365   // What to do depends on the size of the integer and the size of the pointer.
3366   // We can either truncate, zero extend, or no-op, accordingly.
3367   SDValue N = getValue(I.getOperand(0));
3368   auto &TLI = DAG.getTargetLoweringInfo();
3369   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3370   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3371   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3372   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3373   setValue(&I, N);
3374 }
3375 
3376 void SelectionDAGBuilder::visitBitCast(const User &I) {
3377   SDValue N = getValue(I.getOperand(0));
3378   SDLoc dl = getCurSDLoc();
3379   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3380                                                         I.getType());
3381 
3382   // BitCast assures us that source and destination are the same size so this is
3383   // either a BITCAST or a no-op.
3384   if (DestVT != N.getValueType())
3385     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3386                              DestVT, N)); // convert types.
3387   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3388   // might fold any kind of constant expression to an integer constant and that
3389   // is not what we are looking for. Only recognize a bitcast of a genuine
3390   // constant integer as an opaque constant.
3391   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3392     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3393                                  /*isOpaque*/true));
3394   else
3395     setValue(&I, N);            // noop cast.
3396 }
3397 
3398 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3399   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3400   const Value *SV = I.getOperand(0);
3401   SDValue N = getValue(SV);
3402   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3403 
3404   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3405   unsigned DestAS = I.getType()->getPointerAddressSpace();
3406 
3407   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3408     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3409 
3410   setValue(&I, N);
3411 }
3412 
3413 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415   SDValue InVec = getValue(I.getOperand(0));
3416   SDValue InVal = getValue(I.getOperand(1));
3417   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3418                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3419   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3420                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3421                            InVec, InVal, InIdx));
3422 }
3423 
3424 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3425   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3426   SDValue InVec = getValue(I.getOperand(0));
3427   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3428                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3429   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3430                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3431                            InVec, InIdx));
3432 }
3433 
3434 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3435   SDValue Src1 = getValue(I.getOperand(0));
3436   SDValue Src2 = getValue(I.getOperand(1));
3437   Constant *MaskV = cast<Constant>(I.getOperand(2));
3438   SDLoc DL = getCurSDLoc();
3439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3440   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3441   EVT SrcVT = Src1.getValueType();
3442   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3443 
3444   if (MaskV->isNullValue() && VT.isScalableVector()) {
3445     // Canonical splat form of first element of first input vector.
3446     SDValue FirstElt =
3447         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3448                     DAG.getVectorIdxConstant(0, DL));
3449     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3450     return;
3451   }
3452 
3453   // For now, we only handle splats for scalable vectors.
3454   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3455   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3456   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3457 
3458   SmallVector<int, 8> Mask;
3459   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3460   unsigned MaskNumElts = Mask.size();
3461 
3462   if (SrcNumElts == MaskNumElts) {
3463     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3464     return;
3465   }
3466 
3467   // Normalize the shuffle vector since mask and vector length don't match.
3468   if (SrcNumElts < MaskNumElts) {
3469     // Mask is longer than the source vectors. We can use concatenate vector to
3470     // make the mask and vectors lengths match.
3471 
3472     if (MaskNumElts % SrcNumElts == 0) {
3473       // Mask length is a multiple of the source vector length.
3474       // Check if the shuffle is some kind of concatenation of the input
3475       // vectors.
3476       unsigned NumConcat = MaskNumElts / SrcNumElts;
3477       bool IsConcat = true;
3478       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3479       for (unsigned i = 0; i != MaskNumElts; ++i) {
3480         int Idx = Mask[i];
3481         if (Idx < 0)
3482           continue;
3483         // Ensure the indices in each SrcVT sized piece are sequential and that
3484         // the same source is used for the whole piece.
3485         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3486             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3487              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3488           IsConcat = false;
3489           break;
3490         }
3491         // Remember which source this index came from.
3492         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3493       }
3494 
3495       // The shuffle is concatenating multiple vectors together. Just emit
3496       // a CONCAT_VECTORS operation.
3497       if (IsConcat) {
3498         SmallVector<SDValue, 8> ConcatOps;
3499         for (auto Src : ConcatSrcs) {
3500           if (Src < 0)
3501             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3502           else if (Src == 0)
3503             ConcatOps.push_back(Src1);
3504           else
3505             ConcatOps.push_back(Src2);
3506         }
3507         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3508         return;
3509       }
3510     }
3511 
3512     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3513     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3514     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3515                                     PaddedMaskNumElts);
3516 
3517     // Pad both vectors with undefs to make them the same length as the mask.
3518     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3519 
3520     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3521     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3522     MOps1[0] = Src1;
3523     MOps2[0] = Src2;
3524 
3525     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3526     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3527 
3528     // Readjust mask for new input vector length.
3529     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3530     for (unsigned i = 0; i != MaskNumElts; ++i) {
3531       int Idx = Mask[i];
3532       if (Idx >= (int)SrcNumElts)
3533         Idx -= SrcNumElts - PaddedMaskNumElts;
3534       MappedOps[i] = Idx;
3535     }
3536 
3537     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3538 
3539     // If the concatenated vector was padded, extract a subvector with the
3540     // correct number of elements.
3541     if (MaskNumElts != PaddedMaskNumElts)
3542       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3543                            DAG.getVectorIdxConstant(0, DL));
3544 
3545     setValue(&I, Result);
3546     return;
3547   }
3548 
3549   if (SrcNumElts > MaskNumElts) {
3550     // Analyze the access pattern of the vector to see if we can extract
3551     // two subvectors and do the shuffle.
3552     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3553     bool CanExtract = true;
3554     for (int Idx : Mask) {
3555       unsigned Input = 0;
3556       if (Idx < 0)
3557         continue;
3558 
3559       if (Idx >= (int)SrcNumElts) {
3560         Input = 1;
3561         Idx -= SrcNumElts;
3562       }
3563 
3564       // If all the indices come from the same MaskNumElts sized portion of
3565       // the sources we can use extract. Also make sure the extract wouldn't
3566       // extract past the end of the source.
3567       int NewStartIdx = alignDown(Idx, MaskNumElts);
3568       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3569           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3570         CanExtract = false;
3571       // Make sure we always update StartIdx as we use it to track if all
3572       // elements are undef.
3573       StartIdx[Input] = NewStartIdx;
3574     }
3575 
3576     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3577       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3578       return;
3579     }
3580     if (CanExtract) {
3581       // Extract appropriate subvector and generate a vector shuffle
3582       for (unsigned Input = 0; Input < 2; ++Input) {
3583         SDValue &Src = Input == 0 ? Src1 : Src2;
3584         if (StartIdx[Input] < 0)
3585           Src = DAG.getUNDEF(VT);
3586         else {
3587           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3588                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3589         }
3590       }
3591 
3592       // Calculate new mask.
3593       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3594       for (int &Idx : MappedOps) {
3595         if (Idx >= (int)SrcNumElts)
3596           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3597         else if (Idx >= 0)
3598           Idx -= StartIdx[0];
3599       }
3600 
3601       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3602       return;
3603     }
3604   }
3605 
3606   // We can't use either concat vectors or extract subvectors so fall back to
3607   // replacing the shuffle with extract and build vector.
3608   // to insert and build vector.
3609   EVT EltVT = VT.getVectorElementType();
3610   SmallVector<SDValue,8> Ops;
3611   for (int Idx : Mask) {
3612     SDValue Res;
3613 
3614     if (Idx < 0) {
3615       Res = DAG.getUNDEF(EltVT);
3616     } else {
3617       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3618       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3619 
3620       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3621                         DAG.getVectorIdxConstant(Idx, DL));
3622     }
3623 
3624     Ops.push_back(Res);
3625   }
3626 
3627   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3628 }
3629 
3630 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3631   ArrayRef<unsigned> Indices;
3632   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3633     Indices = IV->getIndices();
3634   else
3635     Indices = cast<ConstantExpr>(&I)->getIndices();
3636 
3637   const Value *Op0 = I.getOperand(0);
3638   const Value *Op1 = I.getOperand(1);
3639   Type *AggTy = I.getType();
3640   Type *ValTy = Op1->getType();
3641   bool IntoUndef = isa<UndefValue>(Op0);
3642   bool FromUndef = isa<UndefValue>(Op1);
3643 
3644   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3645 
3646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3647   SmallVector<EVT, 4> AggValueVTs;
3648   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3649   SmallVector<EVT, 4> ValValueVTs;
3650   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3651 
3652   unsigned NumAggValues = AggValueVTs.size();
3653   unsigned NumValValues = ValValueVTs.size();
3654   SmallVector<SDValue, 4> Values(NumAggValues);
3655 
3656   // Ignore an insertvalue that produces an empty object
3657   if (!NumAggValues) {
3658     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3659     return;
3660   }
3661 
3662   SDValue Agg = getValue(Op0);
3663   unsigned i = 0;
3664   // Copy the beginning value(s) from the original aggregate.
3665   for (; i != LinearIndex; ++i)
3666     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3667                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3668   // Copy values from the inserted value(s).
3669   if (NumValValues) {
3670     SDValue Val = getValue(Op1);
3671     for (; i != LinearIndex + NumValValues; ++i)
3672       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3673                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3674   }
3675   // Copy remaining value(s) from the original aggregate.
3676   for (; i != NumAggValues; ++i)
3677     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3678                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3679 
3680   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3681                            DAG.getVTList(AggValueVTs), Values));
3682 }
3683 
3684 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3685   ArrayRef<unsigned> Indices;
3686   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3687     Indices = EV->getIndices();
3688   else
3689     Indices = cast<ConstantExpr>(&I)->getIndices();
3690 
3691   const Value *Op0 = I.getOperand(0);
3692   Type *AggTy = Op0->getType();
3693   Type *ValTy = I.getType();
3694   bool OutOfUndef = isa<UndefValue>(Op0);
3695 
3696   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3697 
3698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3699   SmallVector<EVT, 4> ValValueVTs;
3700   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3701 
3702   unsigned NumValValues = ValValueVTs.size();
3703 
3704   // Ignore a extractvalue that produces an empty object
3705   if (!NumValValues) {
3706     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3707     return;
3708   }
3709 
3710   SmallVector<SDValue, 4> Values(NumValValues);
3711 
3712   SDValue Agg = getValue(Op0);
3713   // Copy out the selected value(s).
3714   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3715     Values[i - LinearIndex] =
3716       OutOfUndef ?
3717         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3718         SDValue(Agg.getNode(), Agg.getResNo() + i);
3719 
3720   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3721                            DAG.getVTList(ValValueVTs), Values));
3722 }
3723 
3724 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3725   Value *Op0 = I.getOperand(0);
3726   // Note that the pointer operand may be a vector of pointers. Take the scalar
3727   // element which holds a pointer.
3728   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3729   SDValue N = getValue(Op0);
3730   SDLoc dl = getCurSDLoc();
3731   auto &TLI = DAG.getTargetLoweringInfo();
3732   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3733   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3734 
3735   // Normalize Vector GEP - all scalar operands should be converted to the
3736   // splat vector.
3737   bool IsVectorGEP = I.getType()->isVectorTy();
3738   ElementCount VectorElementCount = IsVectorGEP ?
3739     I.getType()->getVectorElementCount() : ElementCount(0, false);
3740 
3741   if (IsVectorGEP && !N.getValueType().isVector()) {
3742     LLVMContext &Context = *DAG.getContext();
3743     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3744     if (VectorElementCount.Scalable)
3745       N = DAG.getSplatVector(VT, dl, N);
3746     else
3747       N = DAG.getSplatBuildVector(VT, dl, N);
3748   }
3749 
3750   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3751        GTI != E; ++GTI) {
3752     const Value *Idx = GTI.getOperand();
3753     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3754       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3755       if (Field) {
3756         // N = N + Offset
3757         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3758 
3759         // In an inbounds GEP with an offset that is nonnegative even when
3760         // interpreted as signed, assume there is no unsigned overflow.
3761         SDNodeFlags Flags;
3762         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3763           Flags.setNoUnsignedWrap(true);
3764 
3765         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3766                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3767       }
3768     } else {
3769       // IdxSize is the width of the arithmetic according to IR semantics.
3770       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3771       // (and fix up the result later).
3772       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3773       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3774       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3775       // We intentionally mask away the high bits here; ElementSize may not
3776       // fit in IdxTy.
3777       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3778       bool ElementScalable = ElementSize.isScalable();
3779 
3780       // If this is a scalar constant or a splat vector of constants,
3781       // handle it quickly.
3782       const auto *C = dyn_cast<Constant>(Idx);
3783       if (C && isa<VectorType>(C->getType()))
3784         C = C->getSplatValue();
3785 
3786       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3787       if (CI && CI->isZero())
3788         continue;
3789       if (CI && !ElementScalable) {
3790         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3791         LLVMContext &Context = *DAG.getContext();
3792         SDValue OffsVal;
3793         if (IsVectorGEP)
3794           OffsVal = DAG.getConstant(
3795               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3796         else
3797           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3798 
3799         // In an inbounds GEP with an offset that is nonnegative even when
3800         // interpreted as signed, assume there is no unsigned overflow.
3801         SDNodeFlags Flags;
3802         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3803           Flags.setNoUnsignedWrap(true);
3804 
3805         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3806 
3807         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3808         continue;
3809       }
3810 
3811       // N = N + Idx * ElementMul;
3812       SDValue IdxN = getValue(Idx);
3813 
3814       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3815         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3816                                   VectorElementCount);
3817         if (VectorElementCount.Scalable)
3818           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3819         else
3820           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3821       }
3822 
3823       // If the index is smaller or larger than intptr_t, truncate or extend
3824       // it.
3825       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3826 
3827       if (ElementScalable) {
3828         EVT VScaleTy = N.getValueType().getScalarType();
3829         SDValue VScale = DAG.getNode(
3830             ISD::VSCALE, dl, VScaleTy,
3831             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3832         if (IsVectorGEP)
3833           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3834         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3835       } else {
3836         // If this is a multiply by a power of two, turn it into a shl
3837         // immediately.  This is a very common case.
3838         if (ElementMul != 1) {
3839           if (ElementMul.isPowerOf2()) {
3840             unsigned Amt = ElementMul.logBase2();
3841             IdxN = DAG.getNode(ISD::SHL, dl,
3842                                N.getValueType(), IdxN,
3843                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3844           } else {
3845             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3846                                             IdxN.getValueType());
3847             IdxN = DAG.getNode(ISD::MUL, dl,
3848                                N.getValueType(), IdxN, Scale);
3849           }
3850         }
3851       }
3852 
3853       N = DAG.getNode(ISD::ADD, dl,
3854                       N.getValueType(), N, IdxN);
3855     }
3856   }
3857 
3858   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3859     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3860 
3861   setValue(&I, N);
3862 }
3863 
3864 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3865   // If this is a fixed sized alloca in the entry block of the function,
3866   // allocate it statically on the stack.
3867   if (FuncInfo.StaticAllocaMap.count(&I))
3868     return;   // getValue will auto-populate this.
3869 
3870   SDLoc dl = getCurSDLoc();
3871   Type *Ty = I.getAllocatedType();
3872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3873   auto &DL = DAG.getDataLayout();
3874   uint64_t TySize = DL.getTypeAllocSize(Ty);
3875   MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign());
3876 
3877   SDValue AllocSize = getValue(I.getArraySize());
3878 
3879   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3880   if (AllocSize.getValueType() != IntPtr)
3881     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3882 
3883   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3884                           AllocSize,
3885                           DAG.getConstant(TySize, dl, IntPtr));
3886 
3887   // Handle alignment.  If the requested alignment is less than or equal to
3888   // the stack alignment, ignore it.  If the size is greater than or equal to
3889   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3890   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3891   if (Alignment <= StackAlign)
3892     Alignment = None;
3893 
3894   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3895   // Round the size of the allocation up to the stack alignment size
3896   // by add SA-1 to the size. This doesn't overflow because we're computing
3897   // an address inside an alloca.
3898   SDNodeFlags Flags;
3899   Flags.setNoUnsignedWrap(true);
3900   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3901                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3902 
3903   // Mask out the low bits for alignment purposes.
3904   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3905                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3906 
3907   SDValue Ops[] = {
3908       getRoot(), AllocSize,
3909       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3910   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3911   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3912   setValue(&I, DSA);
3913   DAG.setRoot(DSA.getValue(1));
3914 
3915   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3916 }
3917 
3918 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3919   if (I.isAtomic())
3920     return visitAtomicLoad(I);
3921 
3922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3923   const Value *SV = I.getOperand(0);
3924   if (TLI.supportSwiftError()) {
3925     // Swifterror values can come from either a function parameter with
3926     // swifterror attribute or an alloca with swifterror attribute.
3927     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3928       if (Arg->hasSwiftErrorAttr())
3929         return visitLoadFromSwiftError(I);
3930     }
3931 
3932     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3933       if (Alloca->isSwiftError())
3934         return visitLoadFromSwiftError(I);
3935     }
3936   }
3937 
3938   SDValue Ptr = getValue(SV);
3939 
3940   Type *Ty = I.getType();
3941   unsigned Alignment = I.getAlignment();
3942 
3943   AAMDNodes AAInfo;
3944   I.getAAMetadata(AAInfo);
3945   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3946 
3947   SmallVector<EVT, 4> ValueVTs, MemVTs;
3948   SmallVector<uint64_t, 4> Offsets;
3949   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3950   unsigned NumValues = ValueVTs.size();
3951   if (NumValues == 0)
3952     return;
3953 
3954   bool isVolatile = I.isVolatile();
3955 
3956   SDValue Root;
3957   bool ConstantMemory = false;
3958   if (isVolatile)
3959     // Serialize volatile loads with other side effects.
3960     Root = getRoot();
3961   else if (NumValues > MaxParallelChains)
3962     Root = getMemoryRoot();
3963   else if (AA &&
3964            AA->pointsToConstantMemory(MemoryLocation(
3965                SV,
3966                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3967                AAInfo))) {
3968     // Do not serialize (non-volatile) loads of constant memory with anything.
3969     Root = DAG.getEntryNode();
3970     ConstantMemory = true;
3971   } else {
3972     // Do not serialize non-volatile loads against each other.
3973     Root = DAG.getRoot();
3974   }
3975 
3976   SDLoc dl = getCurSDLoc();
3977 
3978   if (isVolatile)
3979     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3980 
3981   // An aggregate load cannot wrap around the address space, so offsets to its
3982   // parts don't wrap either.
3983   SDNodeFlags Flags;
3984   Flags.setNoUnsignedWrap(true);
3985 
3986   SmallVector<SDValue, 4> Values(NumValues);
3987   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3988   EVT PtrVT = Ptr.getValueType();
3989 
3990   MachineMemOperand::Flags MMOFlags
3991     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
3992 
3993   unsigned ChainI = 0;
3994   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3995     // Serializing loads here may result in excessive register pressure, and
3996     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3997     // could recover a bit by hoisting nodes upward in the chain by recognizing
3998     // they are side-effect free or do not alias. The optimizer should really
3999     // avoid this case by converting large object/array copies to llvm.memcpy
4000     // (MaxParallelChains should always remain as failsafe).
4001     if (ChainI == MaxParallelChains) {
4002       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4003       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4004                                   makeArrayRef(Chains.data(), ChainI));
4005       Root = Chain;
4006       ChainI = 0;
4007     }
4008     SDValue A = DAG.getNode(ISD::ADD, dl,
4009                             PtrVT, Ptr,
4010                             DAG.getConstant(Offsets[i], dl, PtrVT),
4011                             Flags);
4012 
4013     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4014                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4015                             MMOFlags, AAInfo, Ranges);
4016     Chains[ChainI] = L.getValue(1);
4017 
4018     if (MemVTs[i] != ValueVTs[i])
4019       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4020 
4021     Values[i] = L;
4022   }
4023 
4024   if (!ConstantMemory) {
4025     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4026                                 makeArrayRef(Chains.data(), ChainI));
4027     if (isVolatile)
4028       DAG.setRoot(Chain);
4029     else
4030       PendingLoads.push_back(Chain);
4031   }
4032 
4033   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4034                            DAG.getVTList(ValueVTs), Values));
4035 }
4036 
4037 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4038   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4039          "call visitStoreToSwiftError when backend supports swifterror");
4040 
4041   SmallVector<EVT, 4> ValueVTs;
4042   SmallVector<uint64_t, 4> Offsets;
4043   const Value *SrcV = I.getOperand(0);
4044   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4045                   SrcV->getType(), ValueVTs, &Offsets);
4046   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4047          "expect a single EVT for swifterror");
4048 
4049   SDValue Src = getValue(SrcV);
4050   // Create a virtual register, then update the virtual register.
4051   Register VReg =
4052       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4053   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4054   // Chain can be getRoot or getControlRoot.
4055   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4056                                       SDValue(Src.getNode(), Src.getResNo()));
4057   DAG.setRoot(CopyNode);
4058 }
4059 
4060 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4061   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4062          "call visitLoadFromSwiftError when backend supports swifterror");
4063 
4064   assert(!I.isVolatile() &&
4065          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4066          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4067          "Support volatile, non temporal, invariant for load_from_swift_error");
4068 
4069   const Value *SV = I.getOperand(0);
4070   Type *Ty = I.getType();
4071   AAMDNodes AAInfo;
4072   I.getAAMetadata(AAInfo);
4073   assert(
4074       (!AA ||
4075        !AA->pointsToConstantMemory(MemoryLocation(
4076            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4077            AAInfo))) &&
4078       "load_from_swift_error should not be constant memory");
4079 
4080   SmallVector<EVT, 4> ValueVTs;
4081   SmallVector<uint64_t, 4> Offsets;
4082   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4083                   ValueVTs, &Offsets);
4084   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4085          "expect a single EVT for swifterror");
4086 
4087   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4088   SDValue L = DAG.getCopyFromReg(
4089       getRoot(), getCurSDLoc(),
4090       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4091 
4092   setValue(&I, L);
4093 }
4094 
4095 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4096   if (I.isAtomic())
4097     return visitAtomicStore(I);
4098 
4099   const Value *SrcV = I.getOperand(0);
4100   const Value *PtrV = I.getOperand(1);
4101 
4102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4103   if (TLI.supportSwiftError()) {
4104     // Swifterror values can come from either a function parameter with
4105     // swifterror attribute or an alloca with swifterror attribute.
4106     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4107       if (Arg->hasSwiftErrorAttr())
4108         return visitStoreToSwiftError(I);
4109     }
4110 
4111     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4112       if (Alloca->isSwiftError())
4113         return visitStoreToSwiftError(I);
4114     }
4115   }
4116 
4117   SmallVector<EVT, 4> ValueVTs, MemVTs;
4118   SmallVector<uint64_t, 4> Offsets;
4119   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4120                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4121   unsigned NumValues = ValueVTs.size();
4122   if (NumValues == 0)
4123     return;
4124 
4125   // Get the lowered operands. Note that we do this after
4126   // checking if NumResults is zero, because with zero results
4127   // the operands won't have values in the map.
4128   SDValue Src = getValue(SrcV);
4129   SDValue Ptr = getValue(PtrV);
4130 
4131   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4132   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4133   SDLoc dl = getCurSDLoc();
4134   unsigned Alignment = I.getAlignment();
4135   AAMDNodes AAInfo;
4136   I.getAAMetadata(AAInfo);
4137 
4138   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4139 
4140   // An aggregate load cannot wrap around the address space, so offsets to its
4141   // parts don't wrap either.
4142   SDNodeFlags Flags;
4143   Flags.setNoUnsignedWrap(true);
4144 
4145   unsigned ChainI = 0;
4146   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4147     // See visitLoad comments.
4148     if (ChainI == MaxParallelChains) {
4149       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4150                                   makeArrayRef(Chains.data(), ChainI));
4151       Root = Chain;
4152       ChainI = 0;
4153     }
4154     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4155     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4156     if (MemVTs[i] != ValueVTs[i])
4157       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4158     SDValue St =
4159         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4160                      Alignment, MMOFlags, AAInfo);
4161     Chains[ChainI] = St;
4162   }
4163 
4164   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4165                                   makeArrayRef(Chains.data(), ChainI));
4166   DAG.setRoot(StoreNode);
4167 }
4168 
4169 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4170                                            bool IsCompressing) {
4171   SDLoc sdl = getCurSDLoc();
4172 
4173   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4174                            unsigned& Alignment) {
4175     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4176     Src0 = I.getArgOperand(0);
4177     Ptr = I.getArgOperand(1);
4178     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4179     Mask = I.getArgOperand(3);
4180   };
4181   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4182                            unsigned& Alignment) {
4183     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4184     Src0 = I.getArgOperand(0);
4185     Ptr = I.getArgOperand(1);
4186     Mask = I.getArgOperand(2);
4187     Alignment = 0;
4188   };
4189 
4190   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4191   unsigned Alignment;
4192   if (IsCompressing)
4193     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4194   else
4195     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4196 
4197   SDValue Ptr = getValue(PtrOperand);
4198   SDValue Src0 = getValue(Src0Operand);
4199   SDValue Mask = getValue(MaskOperand);
4200   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4201 
4202   EVT VT = Src0.getValueType();
4203   if (!Alignment)
4204     Alignment = DAG.getEVTAlignment(VT);
4205 
4206   AAMDNodes AAInfo;
4207   I.getAAMetadata(AAInfo);
4208 
4209   MachineMemOperand *MMO =
4210     DAG.getMachineFunction().
4211     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4212                           MachineMemOperand::MOStore,
4213                           // TODO: Make MachineMemOperands aware of scalable
4214                           // vectors.
4215                           VT.getStoreSize().getKnownMinSize(),
4216                           Alignment, AAInfo);
4217   SDValue StoreNode =
4218       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4219                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4220   DAG.setRoot(StoreNode);
4221   setValue(&I, StoreNode);
4222 }
4223 
4224 // Get a uniform base for the Gather/Scatter intrinsic.
4225 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4226 // We try to represent it as a base pointer + vector of indices.
4227 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4228 // The first operand of the GEP may be a single pointer or a vector of pointers
4229 // Example:
4230 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4231 //  or
4232 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4233 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4234 //
4235 // When the first GEP operand is a single pointer - it is the uniform base we
4236 // are looking for. If first operand of the GEP is a splat vector - we
4237 // extract the splat value and use it as a uniform base.
4238 // In all other cases the function returns 'false'.
4239 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4240                            ISD::MemIndexType &IndexType, SDValue &Scale,
4241                            SelectionDAGBuilder *SDB) {
4242   SelectionDAG& DAG = SDB->DAG;
4243   LLVMContext &Context = *DAG.getContext();
4244 
4245   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4246   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4247   if (!GEP)
4248     return false;
4249 
4250   const Value *BasePtr = GEP->getPointerOperand();
4251   if (BasePtr->getType()->isVectorTy()) {
4252     BasePtr = getSplatValue(BasePtr);
4253     if (!BasePtr)
4254       return false;
4255   }
4256 
4257   unsigned FinalIndex = GEP->getNumOperands() - 1;
4258   Value *IndexVal = GEP->getOperand(FinalIndex);
4259   gep_type_iterator GTI = gep_type_begin(*GEP);
4260 
4261   // Ensure all the other indices are 0.
4262   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4263     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4264     if (!C)
4265       return false;
4266     if (isa<VectorType>(C->getType()))
4267       C = C->getSplatValue();
4268     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4269     if (!CI || !CI->isZero())
4270       return false;
4271   }
4272 
4273   // The operands of the GEP may be defined in another basic block.
4274   // In this case we'll not find nodes for the operands.
4275   if (!SDB->findValue(BasePtr))
4276     return false;
4277   Constant *C = dyn_cast<Constant>(IndexVal);
4278   if (!C && !SDB->findValue(IndexVal))
4279     return false;
4280 
4281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4282   const DataLayout &DL = DAG.getDataLayout();
4283   StructType *STy = GTI.getStructTypeOrNull();
4284 
4285   if (STy) {
4286     const StructLayout *SL = DL.getStructLayout(STy);
4287     unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue();
4288     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4289     Index = DAG.getConstant(SL->getElementOffset(Field),
4290                             SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4291   } else {
4292     Scale = DAG.getTargetConstant(
4293                 DL.getTypeAllocSize(GEP->getResultElementType()),
4294                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4295     Index = SDB->getValue(IndexVal);
4296   }
4297   Base = SDB->getValue(BasePtr);
4298   IndexType = ISD::SIGNED_SCALED;
4299 
4300   if (STy || !Index.getValueType().isVector()) {
4301     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4302     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4303     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4304   }
4305   return true;
4306 }
4307 
4308 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4309   SDLoc sdl = getCurSDLoc();
4310 
4311   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4312   const Value *Ptr = I.getArgOperand(1);
4313   SDValue Src0 = getValue(I.getArgOperand(0));
4314   SDValue Mask = getValue(I.getArgOperand(3));
4315   EVT VT = Src0.getValueType();
4316   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4317   if (!Alignment)
4318     Alignment = DAG.getEVTAlignment(VT);
4319   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4320 
4321   AAMDNodes AAInfo;
4322   I.getAAMetadata(AAInfo);
4323 
4324   SDValue Base;
4325   SDValue Index;
4326   ISD::MemIndexType IndexType;
4327   SDValue Scale;
4328   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4329 
4330   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4331   MachineMemOperand *MMO = DAG.getMachineFunction().
4332     getMachineMemOperand(MachinePointerInfo(AS),
4333                          MachineMemOperand::MOStore,
4334                          // TODO: Make MachineMemOperands aware of scalable
4335                          // vectors.
4336                          MemoryLocation::UnknownSize,
4337                          Alignment, AAInfo);
4338   if (!UniformBase) {
4339     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4340     Index = getValue(Ptr);
4341     IndexType = ISD::SIGNED_SCALED;
4342     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4343   }
4344   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4345   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4346                                          Ops, MMO, IndexType);
4347   DAG.setRoot(Scatter);
4348   setValue(&I, Scatter);
4349 }
4350 
4351 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4352   SDLoc sdl = getCurSDLoc();
4353 
4354   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4355                            unsigned& Alignment) {
4356     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4357     Ptr = I.getArgOperand(0);
4358     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4359     Mask = I.getArgOperand(2);
4360     Src0 = I.getArgOperand(3);
4361   };
4362   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4363                            unsigned& Alignment) {
4364     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4365     Ptr = I.getArgOperand(0);
4366     Alignment = 0;
4367     Mask = I.getArgOperand(1);
4368     Src0 = I.getArgOperand(2);
4369   };
4370 
4371   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4372   unsigned Alignment;
4373   if (IsExpanding)
4374     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4375   else
4376     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4377 
4378   SDValue Ptr = getValue(PtrOperand);
4379   SDValue Src0 = getValue(Src0Operand);
4380   SDValue Mask = getValue(MaskOperand);
4381   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4382 
4383   EVT VT = Src0.getValueType();
4384   if (!Alignment)
4385     Alignment = DAG.getEVTAlignment(VT);
4386 
4387   AAMDNodes AAInfo;
4388   I.getAAMetadata(AAInfo);
4389   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4390 
4391   // Do not serialize masked loads of constant memory with anything.
4392   MemoryLocation ML;
4393   if (VT.isScalableVector())
4394     ML = MemoryLocation(PtrOperand);
4395   else
4396     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4397                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4398                            AAInfo);
4399   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4400 
4401   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4402 
4403   MachineMemOperand *MMO =
4404     DAG.getMachineFunction().
4405     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4406                           MachineMemOperand::MOLoad,
4407                           // TODO: Make MachineMemOperands aware of scalable
4408                           // vectors.
4409                           VT.getStoreSize().getKnownMinSize(),
4410                           Alignment, AAInfo, Ranges);
4411 
4412   SDValue Load =
4413       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4414                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4415   if (AddToChain)
4416     PendingLoads.push_back(Load.getValue(1));
4417   setValue(&I, Load);
4418 }
4419 
4420 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4421   SDLoc sdl = getCurSDLoc();
4422 
4423   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4424   const Value *Ptr = I.getArgOperand(0);
4425   SDValue Src0 = getValue(I.getArgOperand(3));
4426   SDValue Mask = getValue(I.getArgOperand(2));
4427 
4428   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4429   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4430   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4431   if (!Alignment)
4432     Alignment = DAG.getEVTAlignment(VT);
4433 
4434   AAMDNodes AAInfo;
4435   I.getAAMetadata(AAInfo);
4436   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4437 
4438   SDValue Root = DAG.getRoot();
4439   SDValue Base;
4440   SDValue Index;
4441   ISD::MemIndexType IndexType;
4442   SDValue Scale;
4443   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4444   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4445   MachineMemOperand *MMO =
4446     DAG.getMachineFunction().
4447     getMachineMemOperand(MachinePointerInfo(AS),
4448                          MachineMemOperand::MOLoad,
4449                          // TODO: Make MachineMemOperands aware of scalable
4450                          // vectors.
4451                          MemoryLocation::UnknownSize,
4452                          Alignment, AAInfo, Ranges);
4453 
4454   if (!UniformBase) {
4455     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4456     Index = getValue(Ptr);
4457     IndexType = ISD::SIGNED_SCALED;
4458     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4459   }
4460   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4461   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4462                                        Ops, MMO, IndexType);
4463 
4464   PendingLoads.push_back(Gather.getValue(1));
4465   setValue(&I, Gather);
4466 }
4467 
4468 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4469   SDLoc dl = getCurSDLoc();
4470   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4471   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4472   SyncScope::ID SSID = I.getSyncScopeID();
4473 
4474   SDValue InChain = getRoot();
4475 
4476   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4477   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4478 
4479   auto Alignment = DAG.getEVTAlignment(MemVT);
4480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4481   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4482 
4483   MachineFunction &MF = DAG.getMachineFunction();
4484   MachineMemOperand *MMO =
4485     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4486                             Flags, MemVT.getStoreSize(), Alignment,
4487                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4488                             FailureOrdering);
4489 
4490   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4491                                    dl, MemVT, VTs, InChain,
4492                                    getValue(I.getPointerOperand()),
4493                                    getValue(I.getCompareOperand()),
4494                                    getValue(I.getNewValOperand()), MMO);
4495 
4496   SDValue OutChain = L.getValue(2);
4497 
4498   setValue(&I, L);
4499   DAG.setRoot(OutChain);
4500 }
4501 
4502 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4503   SDLoc dl = getCurSDLoc();
4504   ISD::NodeType NT;
4505   switch (I.getOperation()) {
4506   default: llvm_unreachable("Unknown atomicrmw operation");
4507   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4508   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4509   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4510   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4511   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4512   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4513   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4514   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4515   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4516   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4517   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4518   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4519   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4520   }
4521   AtomicOrdering Ordering = I.getOrdering();
4522   SyncScope::ID SSID = I.getSyncScopeID();
4523 
4524   SDValue InChain = getRoot();
4525 
4526   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4527   auto Alignment = DAG.getEVTAlignment(MemVT);
4528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4529   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4530 
4531   MachineFunction &MF = DAG.getMachineFunction();
4532   MachineMemOperand *MMO =
4533     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4534                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4535                             nullptr, SSID, Ordering);
4536 
4537   SDValue L =
4538     DAG.getAtomic(NT, dl, MemVT, InChain,
4539                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4540                   MMO);
4541 
4542   SDValue OutChain = L.getValue(1);
4543 
4544   setValue(&I, L);
4545   DAG.setRoot(OutChain);
4546 }
4547 
4548 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4549   SDLoc dl = getCurSDLoc();
4550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4551   SDValue Ops[3];
4552   Ops[0] = getRoot();
4553   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4554                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4555   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4556                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4557   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4558 }
4559 
4560 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4561   SDLoc dl = getCurSDLoc();
4562   AtomicOrdering Order = I.getOrdering();
4563   SyncScope::ID SSID = I.getSyncScopeID();
4564 
4565   SDValue InChain = getRoot();
4566 
4567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4568   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4569   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4570 
4571   if (!TLI.supportsUnalignedAtomics() &&
4572       I.getAlignment() < MemVT.getSizeInBits() / 8)
4573     report_fatal_error("Cannot generate unaligned atomic load");
4574 
4575   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4576 
4577   MachineMemOperand *MMO =
4578       DAG.getMachineFunction().
4579       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4580                            Flags, MemVT.getStoreSize(),
4581                            I.getAlignment() ? I.getAlignment() :
4582                                               DAG.getEVTAlignment(MemVT),
4583                            AAMDNodes(), nullptr, SSID, Order);
4584 
4585   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4586 
4587   SDValue Ptr = getValue(I.getPointerOperand());
4588 
4589   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4590     // TODO: Once this is better exercised by tests, it should be merged with
4591     // the normal path for loads to prevent future divergence.
4592     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4593     if (MemVT != VT)
4594       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4595 
4596     setValue(&I, L);
4597     SDValue OutChain = L.getValue(1);
4598     if (!I.isUnordered())
4599       DAG.setRoot(OutChain);
4600     else
4601       PendingLoads.push_back(OutChain);
4602     return;
4603   }
4604 
4605   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4606                             Ptr, MMO);
4607 
4608   SDValue OutChain = L.getValue(1);
4609   if (MemVT != VT)
4610     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4611 
4612   setValue(&I, L);
4613   DAG.setRoot(OutChain);
4614 }
4615 
4616 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4617   SDLoc dl = getCurSDLoc();
4618 
4619   AtomicOrdering Ordering = I.getOrdering();
4620   SyncScope::ID SSID = I.getSyncScopeID();
4621 
4622   SDValue InChain = getRoot();
4623 
4624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4625   EVT MemVT =
4626       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4627 
4628   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4629     report_fatal_error("Cannot generate unaligned atomic store");
4630 
4631   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4632 
4633   MachineFunction &MF = DAG.getMachineFunction();
4634   MachineMemOperand *MMO =
4635     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4636                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4637                             nullptr, SSID, Ordering);
4638 
4639   SDValue Val = getValue(I.getValueOperand());
4640   if (Val.getValueType() != MemVT)
4641     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4642   SDValue Ptr = getValue(I.getPointerOperand());
4643 
4644   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4645     // TODO: Once this is better exercised by tests, it should be merged with
4646     // the normal path for stores to prevent future divergence.
4647     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4648     DAG.setRoot(S);
4649     return;
4650   }
4651   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4652                                    Ptr, Val, MMO);
4653 
4654 
4655   DAG.setRoot(OutChain);
4656 }
4657 
4658 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4659 /// node.
4660 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4661                                                unsigned Intrinsic) {
4662   // Ignore the callsite's attributes. A specific call site may be marked with
4663   // readnone, but the lowering code will expect the chain based on the
4664   // definition.
4665   const Function *F = I.getCalledFunction();
4666   bool HasChain = !F->doesNotAccessMemory();
4667   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4668 
4669   // Build the operand list.
4670   SmallVector<SDValue, 8> Ops;
4671   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4672     if (OnlyLoad) {
4673       // We don't need to serialize loads against other loads.
4674       Ops.push_back(DAG.getRoot());
4675     } else {
4676       Ops.push_back(getRoot());
4677     }
4678   }
4679 
4680   // Info is set by getTgtMemInstrinsic
4681   TargetLowering::IntrinsicInfo Info;
4682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4683   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4684                                                DAG.getMachineFunction(),
4685                                                Intrinsic);
4686 
4687   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4688   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4689       Info.opc == ISD::INTRINSIC_W_CHAIN)
4690     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4691                                         TLI.getPointerTy(DAG.getDataLayout())));
4692 
4693   // Add all operands of the call to the operand list.
4694   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4695     const Value *Arg = I.getArgOperand(i);
4696     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4697       Ops.push_back(getValue(Arg));
4698       continue;
4699     }
4700 
4701     // Use TargetConstant instead of a regular constant for immarg.
4702     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4703     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4704       assert(CI->getBitWidth() <= 64 &&
4705              "large intrinsic immediates not handled");
4706       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4707     } else {
4708       Ops.push_back(
4709           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4710     }
4711   }
4712 
4713   SmallVector<EVT, 4> ValueVTs;
4714   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4715 
4716   if (HasChain)
4717     ValueVTs.push_back(MVT::Other);
4718 
4719   SDVTList VTs = DAG.getVTList(ValueVTs);
4720 
4721   // Create the node.
4722   SDValue Result;
4723   if (IsTgtIntrinsic) {
4724     // This is target intrinsic that touches memory
4725     AAMDNodes AAInfo;
4726     I.getAAMetadata(AAInfo);
4727     Result = DAG.getMemIntrinsicNode(
4728         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4729         MachinePointerInfo(Info.ptrVal, Info.offset),
4730         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4731   } else if (!HasChain) {
4732     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4733   } else if (!I.getType()->isVoidTy()) {
4734     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4735   } else {
4736     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4737   }
4738 
4739   if (HasChain) {
4740     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4741     if (OnlyLoad)
4742       PendingLoads.push_back(Chain);
4743     else
4744       DAG.setRoot(Chain);
4745   }
4746 
4747   if (!I.getType()->isVoidTy()) {
4748     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4749       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4750       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4751     } else
4752       Result = lowerRangeToAssertZExt(DAG, I, Result);
4753 
4754     setValue(&I, Result);
4755   }
4756 }
4757 
4758 /// GetSignificand - Get the significand and build it into a floating-point
4759 /// number with exponent of 1:
4760 ///
4761 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4762 ///
4763 /// where Op is the hexadecimal representation of floating point value.
4764 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4765   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4766                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4767   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4768                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4769   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4770 }
4771 
4772 /// GetExponent - Get the exponent:
4773 ///
4774 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4775 ///
4776 /// where Op is the hexadecimal representation of floating point value.
4777 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4778                            const TargetLowering &TLI, const SDLoc &dl) {
4779   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4780                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4781   SDValue t1 = DAG.getNode(
4782       ISD::SRL, dl, MVT::i32, t0,
4783       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4784   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4785                            DAG.getConstant(127, dl, MVT::i32));
4786   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4787 }
4788 
4789 /// getF32Constant - Get 32-bit floating point constant.
4790 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4791                               const SDLoc &dl) {
4792   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4793                            MVT::f32);
4794 }
4795 
4796 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4797                                        SelectionDAG &DAG) {
4798   // TODO: What fast-math-flags should be set on the floating-point nodes?
4799 
4800   //   IntegerPartOfX = ((int32_t)(t0);
4801   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4802 
4803   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4804   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4805   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4806 
4807   //   IntegerPartOfX <<= 23;
4808   IntegerPartOfX = DAG.getNode(
4809       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4810       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4811                                   DAG.getDataLayout())));
4812 
4813   SDValue TwoToFractionalPartOfX;
4814   if (LimitFloatPrecision <= 6) {
4815     // For floating-point precision of 6:
4816     //
4817     //   TwoToFractionalPartOfX =
4818     //     0.997535578f +
4819     //       (0.735607626f + 0.252464424f * x) * x;
4820     //
4821     // error 0.0144103317, which is 6 bits
4822     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4823                              getF32Constant(DAG, 0x3e814304, dl));
4824     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4825                              getF32Constant(DAG, 0x3f3c50c8, dl));
4826     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4827     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4828                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4829   } else if (LimitFloatPrecision <= 12) {
4830     // For floating-point precision of 12:
4831     //
4832     //   TwoToFractionalPartOfX =
4833     //     0.999892986f +
4834     //       (0.696457318f +
4835     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4836     //
4837     // error 0.000107046256, which is 13 to 14 bits
4838     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4839                              getF32Constant(DAG, 0x3da235e3, dl));
4840     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4841                              getF32Constant(DAG, 0x3e65b8f3, dl));
4842     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4843     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4844                              getF32Constant(DAG, 0x3f324b07, dl));
4845     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4846     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4847                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4848   } else { // LimitFloatPrecision <= 18
4849     // For floating-point precision of 18:
4850     //
4851     //   TwoToFractionalPartOfX =
4852     //     0.999999982f +
4853     //       (0.693148872f +
4854     //         (0.240227044f +
4855     //           (0.554906021e-1f +
4856     //             (0.961591928e-2f +
4857     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4858     // error 2.47208000*10^(-7), which is better than 18 bits
4859     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4860                              getF32Constant(DAG, 0x3924b03e, dl));
4861     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4862                              getF32Constant(DAG, 0x3ab24b87, dl));
4863     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4864     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4865                              getF32Constant(DAG, 0x3c1d8c17, dl));
4866     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4867     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4868                              getF32Constant(DAG, 0x3d634a1d, dl));
4869     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4870     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4871                              getF32Constant(DAG, 0x3e75fe14, dl));
4872     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4873     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4874                               getF32Constant(DAG, 0x3f317234, dl));
4875     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4876     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4877                                          getF32Constant(DAG, 0x3f800000, dl));
4878   }
4879 
4880   // Add the exponent into the result in integer domain.
4881   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4882   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4883                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4884 }
4885 
4886 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4887 /// limited-precision mode.
4888 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4889                          const TargetLowering &TLI) {
4890   if (Op.getValueType() == MVT::f32 &&
4891       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4892 
4893     // Put the exponent in the right bit position for later addition to the
4894     // final result:
4895     //
4896     // t0 = Op * log2(e)
4897 
4898     // TODO: What fast-math-flags should be set here?
4899     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4900                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4901     return getLimitedPrecisionExp2(t0, dl, DAG);
4902   }
4903 
4904   // No special expansion.
4905   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4906 }
4907 
4908 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4909 /// limited-precision mode.
4910 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4911                          const TargetLowering &TLI) {
4912   // TODO: What fast-math-flags should be set on the floating-point nodes?
4913 
4914   if (Op.getValueType() == MVT::f32 &&
4915       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4916     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4917 
4918     // Scale the exponent by log(2).
4919     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4920     SDValue LogOfExponent =
4921         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4922                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4923 
4924     // Get the significand and build it into a floating-point number with
4925     // exponent of 1.
4926     SDValue X = GetSignificand(DAG, Op1, dl);
4927 
4928     SDValue LogOfMantissa;
4929     if (LimitFloatPrecision <= 6) {
4930       // For floating-point precision of 6:
4931       //
4932       //   LogofMantissa =
4933       //     -1.1609546f +
4934       //       (1.4034025f - 0.23903021f * x) * x;
4935       //
4936       // error 0.0034276066, which is better than 8 bits
4937       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4938                                getF32Constant(DAG, 0xbe74c456, dl));
4939       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4940                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4941       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4942       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4943                                   getF32Constant(DAG, 0x3f949a29, dl));
4944     } else if (LimitFloatPrecision <= 12) {
4945       // For floating-point precision of 12:
4946       //
4947       //   LogOfMantissa =
4948       //     -1.7417939f +
4949       //       (2.8212026f +
4950       //         (-1.4699568f +
4951       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4952       //
4953       // error 0.000061011436, which is 14 bits
4954       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4955                                getF32Constant(DAG, 0xbd67b6d6, dl));
4956       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4957                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4958       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4959       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4960                                getF32Constant(DAG, 0x3fbc278b, dl));
4961       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4962       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4963                                getF32Constant(DAG, 0x40348e95, dl));
4964       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4965       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4966                                   getF32Constant(DAG, 0x3fdef31a, dl));
4967     } else { // LimitFloatPrecision <= 18
4968       // For floating-point precision of 18:
4969       //
4970       //   LogOfMantissa =
4971       //     -2.1072184f +
4972       //       (4.2372794f +
4973       //         (-3.7029485f +
4974       //           (2.2781945f +
4975       //             (-0.87823314f +
4976       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4977       //
4978       // error 0.0000023660568, which is better than 18 bits
4979       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4980                                getF32Constant(DAG, 0xbc91e5ac, dl));
4981       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4982                                getF32Constant(DAG, 0x3e4350aa, dl));
4983       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4984       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4985                                getF32Constant(DAG, 0x3f60d3e3, dl));
4986       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4987       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4988                                getF32Constant(DAG, 0x4011cdf0, dl));
4989       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4990       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4991                                getF32Constant(DAG, 0x406cfd1c, dl));
4992       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4993       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4994                                getF32Constant(DAG, 0x408797cb, dl));
4995       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4996       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4997                                   getF32Constant(DAG, 0x4006dcab, dl));
4998     }
4999 
5000     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5001   }
5002 
5003   // No special expansion.
5004   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5005 }
5006 
5007 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5008 /// limited-precision mode.
5009 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5010                           const TargetLowering &TLI) {
5011   // TODO: What fast-math-flags should be set on the floating-point nodes?
5012 
5013   if (Op.getValueType() == MVT::f32 &&
5014       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5015     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5016 
5017     // Get the exponent.
5018     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5019 
5020     // Get the significand and build it into a floating-point number with
5021     // exponent of 1.
5022     SDValue X = GetSignificand(DAG, Op1, dl);
5023 
5024     // Different possible minimax approximations of significand in
5025     // floating-point for various degrees of accuracy over [1,2].
5026     SDValue Log2ofMantissa;
5027     if (LimitFloatPrecision <= 6) {
5028       // For floating-point precision of 6:
5029       //
5030       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5031       //
5032       // error 0.0049451742, which is more than 7 bits
5033       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5034                                getF32Constant(DAG, 0xbeb08fe0, dl));
5035       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5036                                getF32Constant(DAG, 0x40019463, dl));
5037       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5038       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5039                                    getF32Constant(DAG, 0x3fd6633d, dl));
5040     } else if (LimitFloatPrecision <= 12) {
5041       // For floating-point precision of 12:
5042       //
5043       //   Log2ofMantissa =
5044       //     -2.51285454f +
5045       //       (4.07009056f +
5046       //         (-2.12067489f +
5047       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5048       //
5049       // error 0.0000876136000, which is better than 13 bits
5050       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5051                                getF32Constant(DAG, 0xbda7262e, dl));
5052       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5053                                getF32Constant(DAG, 0x3f25280b, dl));
5054       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5055       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5056                                getF32Constant(DAG, 0x4007b923, dl));
5057       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5058       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5059                                getF32Constant(DAG, 0x40823e2f, dl));
5060       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5061       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5062                                    getF32Constant(DAG, 0x4020d29c, dl));
5063     } else { // LimitFloatPrecision <= 18
5064       // For floating-point precision of 18:
5065       //
5066       //   Log2ofMantissa =
5067       //     -3.0400495f +
5068       //       (6.1129976f +
5069       //         (-5.3420409f +
5070       //           (3.2865683f +
5071       //             (-1.2669343f +
5072       //               (0.27515199f -
5073       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5074       //
5075       // error 0.0000018516, which is better than 18 bits
5076       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5077                                getF32Constant(DAG, 0xbcd2769e, dl));
5078       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5079                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5080       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5081       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5082                                getF32Constant(DAG, 0x3fa22ae7, dl));
5083       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5084       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5085                                getF32Constant(DAG, 0x40525723, dl));
5086       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5087       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5088                                getF32Constant(DAG, 0x40aaf200, dl));
5089       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5090       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5091                                getF32Constant(DAG, 0x40c39dad, dl));
5092       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5093       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5094                                    getF32Constant(DAG, 0x4042902c, dl));
5095     }
5096 
5097     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5098   }
5099 
5100   // No special expansion.
5101   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5102 }
5103 
5104 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5105 /// limited-precision mode.
5106 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5107                            const TargetLowering &TLI) {
5108   // TODO: What fast-math-flags should be set on the floating-point nodes?
5109 
5110   if (Op.getValueType() == MVT::f32 &&
5111       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5112     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5113 
5114     // Scale the exponent by log10(2) [0.30102999f].
5115     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5116     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5117                                         getF32Constant(DAG, 0x3e9a209a, dl));
5118 
5119     // Get the significand and build it into a floating-point number with
5120     // exponent of 1.
5121     SDValue X = GetSignificand(DAG, Op1, dl);
5122 
5123     SDValue Log10ofMantissa;
5124     if (LimitFloatPrecision <= 6) {
5125       // For floating-point precision of 6:
5126       //
5127       //   Log10ofMantissa =
5128       //     -0.50419619f +
5129       //       (0.60948995f - 0.10380950f * x) * x;
5130       //
5131       // error 0.0014886165, which is 6 bits
5132       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5133                                getF32Constant(DAG, 0xbdd49a13, dl));
5134       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5135                                getF32Constant(DAG, 0x3f1c0789, dl));
5136       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5137       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5138                                     getF32Constant(DAG, 0x3f011300, dl));
5139     } else if (LimitFloatPrecision <= 12) {
5140       // For floating-point precision of 12:
5141       //
5142       //   Log10ofMantissa =
5143       //     -0.64831180f +
5144       //       (0.91751397f +
5145       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5146       //
5147       // error 0.00019228036, which is better than 12 bits
5148       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5149                                getF32Constant(DAG, 0x3d431f31, dl));
5150       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5151                                getF32Constant(DAG, 0x3ea21fb2, dl));
5152       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5153       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5154                                getF32Constant(DAG, 0x3f6ae232, dl));
5155       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5156       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5157                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5158     } else { // LimitFloatPrecision <= 18
5159       // For floating-point precision of 18:
5160       //
5161       //   Log10ofMantissa =
5162       //     -0.84299375f +
5163       //       (1.5327582f +
5164       //         (-1.0688956f +
5165       //           (0.49102474f +
5166       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5167       //
5168       // error 0.0000037995730, which is better than 18 bits
5169       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5170                                getF32Constant(DAG, 0x3c5d51ce, dl));
5171       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5172                                getF32Constant(DAG, 0x3e00685a, dl));
5173       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5174       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5175                                getF32Constant(DAG, 0x3efb6798, dl));
5176       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5177       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5178                                getF32Constant(DAG, 0x3f88d192, dl));
5179       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5180       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5181                                getF32Constant(DAG, 0x3fc4316c, dl));
5182       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5183       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5184                                     getF32Constant(DAG, 0x3f57ce70, dl));
5185     }
5186 
5187     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5188   }
5189 
5190   // No special expansion.
5191   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5192 }
5193 
5194 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5195 /// limited-precision mode.
5196 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5197                           const TargetLowering &TLI) {
5198   if (Op.getValueType() == MVT::f32 &&
5199       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5200     return getLimitedPrecisionExp2(Op, dl, DAG);
5201 
5202   // No special expansion.
5203   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5204 }
5205 
5206 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5207 /// limited-precision mode with x == 10.0f.
5208 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5209                          SelectionDAG &DAG, const TargetLowering &TLI) {
5210   bool IsExp10 = false;
5211   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5212       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5213     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5214       APFloat Ten(10.0f);
5215       IsExp10 = LHSC->isExactlyValue(Ten);
5216     }
5217   }
5218 
5219   // TODO: What fast-math-flags should be set on the FMUL node?
5220   if (IsExp10) {
5221     // Put the exponent in the right bit position for later addition to the
5222     // final result:
5223     //
5224     //   #define LOG2OF10 3.3219281f
5225     //   t0 = Op * LOG2OF10;
5226     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5227                              getF32Constant(DAG, 0x40549a78, dl));
5228     return getLimitedPrecisionExp2(t0, dl, DAG);
5229   }
5230 
5231   // No special expansion.
5232   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5233 }
5234 
5235 /// ExpandPowI - Expand a llvm.powi intrinsic.
5236 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5237                           SelectionDAG &DAG) {
5238   // If RHS is a constant, we can expand this out to a multiplication tree,
5239   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5240   // optimizing for size, we only want to do this if the expansion would produce
5241   // a small number of multiplies, otherwise we do the full expansion.
5242   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5243     // Get the exponent as a positive value.
5244     unsigned Val = RHSC->getSExtValue();
5245     if ((int)Val < 0) Val = -Val;
5246 
5247     // powi(x, 0) -> 1.0
5248     if (Val == 0)
5249       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5250 
5251     bool OptForSize = DAG.shouldOptForSize();
5252     if (!OptForSize ||
5253         // If optimizing for size, don't insert too many multiplies.
5254         // This inserts up to 5 multiplies.
5255         countPopulation(Val) + Log2_32(Val) < 7) {
5256       // We use the simple binary decomposition method to generate the multiply
5257       // sequence.  There are more optimal ways to do this (for example,
5258       // powi(x,15) generates one more multiply than it should), but this has
5259       // the benefit of being both really simple and much better than a libcall.
5260       SDValue Res;  // Logically starts equal to 1.0
5261       SDValue CurSquare = LHS;
5262       // TODO: Intrinsics should have fast-math-flags that propagate to these
5263       // nodes.
5264       while (Val) {
5265         if (Val & 1) {
5266           if (Res.getNode())
5267             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5268           else
5269             Res = CurSquare;  // 1.0*CurSquare.
5270         }
5271 
5272         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5273                                 CurSquare, CurSquare);
5274         Val >>= 1;
5275       }
5276 
5277       // If the original was negative, invert the result, producing 1/(x*x*x).
5278       if (RHSC->getSExtValue() < 0)
5279         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5280                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5281       return Res;
5282     }
5283   }
5284 
5285   // Otherwise, expand to a libcall.
5286   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5287 }
5288 
5289 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5290                             SDValue LHS, SDValue RHS, SDValue Scale,
5291                             SelectionDAG &DAG, const TargetLowering &TLI) {
5292   EVT VT = LHS.getValueType();
5293   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5294   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5295   LLVMContext &Ctx = *DAG.getContext();
5296 
5297   // If the type is legal but the operation isn't, this node might survive all
5298   // the way to operation legalization. If we end up there and we do not have
5299   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5300   // node.
5301 
5302   // Coax the legalizer into expanding the node during type legalization instead
5303   // by bumping the size by one bit. This will force it to Promote, enabling the
5304   // early expansion and avoiding the need to expand later.
5305 
5306   // We don't have to do this if Scale is 0; that can always be expanded, unless
5307   // it's a saturating signed operation. Those can experience true integer
5308   // division overflow, a case which we must avoid.
5309 
5310   // FIXME: We wouldn't have to do this (or any of the early
5311   // expansion/promotion) if it was possible to expand a libcall of an
5312   // illegal type during operation legalization. But it's not, so things
5313   // get a bit hacky.
5314   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5315   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5316       (TLI.isTypeLegal(VT) ||
5317        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5318     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5319         Opcode, VT, ScaleInt);
5320     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5321       EVT PromVT;
5322       if (VT.isScalarInteger())
5323         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5324       else if (VT.isVector()) {
5325         PromVT = VT.getVectorElementType();
5326         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5327         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5328       } else
5329         llvm_unreachable("Wrong VT for DIVFIX?");
5330       if (Signed) {
5331         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5332         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5333       } else {
5334         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5335         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5336       }
5337       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5338       // For saturating operations, we need to shift up the LHS to get the
5339       // proper saturation width, and then shift down again afterwards.
5340       if (Saturating)
5341         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5342                           DAG.getConstant(1, DL, ShiftTy));
5343       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5344       if (Saturating)
5345         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5346                           DAG.getConstant(1, DL, ShiftTy));
5347       return DAG.getZExtOrTrunc(Res, DL, VT);
5348     }
5349   }
5350 
5351   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5352 }
5353 
5354 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5355 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5356 static void
5357 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5358                      const SDValue &N) {
5359   switch (N.getOpcode()) {
5360   case ISD::CopyFromReg: {
5361     SDValue Op = N.getOperand(1);
5362     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5363                       Op.getValueType().getSizeInBits());
5364     return;
5365   }
5366   case ISD::BITCAST:
5367   case ISD::AssertZext:
5368   case ISD::AssertSext:
5369   case ISD::TRUNCATE:
5370     getUnderlyingArgRegs(Regs, N.getOperand(0));
5371     return;
5372   case ISD::BUILD_PAIR:
5373   case ISD::BUILD_VECTOR:
5374   case ISD::CONCAT_VECTORS:
5375     for (SDValue Op : N->op_values())
5376       getUnderlyingArgRegs(Regs, Op);
5377     return;
5378   default:
5379     return;
5380   }
5381 }
5382 
5383 /// If the DbgValueInst is a dbg_value of a function argument, create the
5384 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5385 /// instruction selection, they will be inserted to the entry BB.
5386 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5387     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5388     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5389   const Argument *Arg = dyn_cast<Argument>(V);
5390   if (!Arg)
5391     return false;
5392 
5393   if (!IsDbgDeclare) {
5394     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5395     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5396     // the entry block.
5397     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5398     if (!IsInEntryBlock)
5399       return false;
5400 
5401     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5402     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5403     // variable that also is a param.
5404     //
5405     // Although, if we are at the top of the entry block already, we can still
5406     // emit using ArgDbgValue. This might catch some situations when the
5407     // dbg.value refers to an argument that isn't used in the entry block, so
5408     // any CopyToReg node would be optimized out and the only way to express
5409     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5410     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5411     // we should only emit as ArgDbgValue if the Variable is an argument to the
5412     // current function, and the dbg.value intrinsic is found in the entry
5413     // block.
5414     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5415         !DL->getInlinedAt();
5416     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5417     if (!IsInPrologue && !VariableIsFunctionInputArg)
5418       return false;
5419 
5420     // Here we assume that a function argument on IR level only can be used to
5421     // describe one input parameter on source level. If we for example have
5422     // source code like this
5423     //
5424     //    struct A { long x, y; };
5425     //    void foo(struct A a, long b) {
5426     //      ...
5427     //      b = a.x;
5428     //      ...
5429     //    }
5430     //
5431     // and IR like this
5432     //
5433     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5434     //  entry:
5435     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5436     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5437     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5438     //    ...
5439     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5440     //    ...
5441     //
5442     // then the last dbg.value is describing a parameter "b" using a value that
5443     // is an argument. But since we already has used %a1 to describe a parameter
5444     // we should not handle that last dbg.value here (that would result in an
5445     // incorrect hoisting of the DBG_VALUE to the function entry).
5446     // Notice that we allow one dbg.value per IR level argument, to accommodate
5447     // for the situation with fragments above.
5448     if (VariableIsFunctionInputArg) {
5449       unsigned ArgNo = Arg->getArgNo();
5450       if (ArgNo >= FuncInfo.DescribedArgs.size())
5451         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5452       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5453         return false;
5454       FuncInfo.DescribedArgs.set(ArgNo);
5455     }
5456   }
5457 
5458   MachineFunction &MF = DAG.getMachineFunction();
5459   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5460 
5461   bool IsIndirect = false;
5462   Optional<MachineOperand> Op;
5463   // Some arguments' frame index is recorded during argument lowering.
5464   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5465   if (FI != std::numeric_limits<int>::max())
5466     Op = MachineOperand::CreateFI(FI);
5467 
5468   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5469   if (!Op && N.getNode()) {
5470     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5471     Register Reg;
5472     if (ArgRegsAndSizes.size() == 1)
5473       Reg = ArgRegsAndSizes.front().first;
5474 
5475     if (Reg && Reg.isVirtual()) {
5476       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5477       Register PR = RegInfo.getLiveInPhysReg(Reg);
5478       if (PR)
5479         Reg = PR;
5480     }
5481     if (Reg) {
5482       Op = MachineOperand::CreateReg(Reg, false);
5483       IsIndirect = IsDbgDeclare;
5484     }
5485   }
5486 
5487   if (!Op && N.getNode()) {
5488     // Check if frame index is available.
5489     SDValue LCandidate = peekThroughBitcasts(N);
5490     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5491       if (FrameIndexSDNode *FINode =
5492           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5493         Op = MachineOperand::CreateFI(FINode->getIndex());
5494   }
5495 
5496   if (!Op) {
5497     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5498     auto splitMultiRegDbgValue
5499       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5500       unsigned Offset = 0;
5501       for (auto RegAndSize : SplitRegs) {
5502         // If the expression is already a fragment, the current register
5503         // offset+size might extend beyond the fragment. In this case, only
5504         // the register bits that are inside the fragment are relevant.
5505         int RegFragmentSizeInBits = RegAndSize.second;
5506         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5507           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5508           // The register is entirely outside the expression fragment,
5509           // so is irrelevant for debug info.
5510           if (Offset >= ExprFragmentSizeInBits)
5511             break;
5512           // The register is partially outside the expression fragment, only
5513           // the low bits within the fragment are relevant for debug info.
5514           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5515             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5516           }
5517         }
5518 
5519         auto FragmentExpr = DIExpression::createFragmentExpression(
5520             Expr, Offset, RegFragmentSizeInBits);
5521         Offset += RegAndSize.second;
5522         // If a valid fragment expression cannot be created, the variable's
5523         // correct value cannot be determined and so it is set as Undef.
5524         if (!FragmentExpr) {
5525           SDDbgValue *SDV = DAG.getConstantDbgValue(
5526               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5527           DAG.AddDbgValue(SDV, nullptr, false);
5528           continue;
5529         }
5530         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5531         FuncInfo.ArgDbgValues.push_back(
5532           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5533                   RegAndSize.first, Variable, *FragmentExpr));
5534       }
5535     };
5536 
5537     // Check if ValueMap has reg number.
5538     DenseMap<const Value *, unsigned>::const_iterator
5539       VMI = FuncInfo.ValueMap.find(V);
5540     if (VMI != FuncInfo.ValueMap.end()) {
5541       const auto &TLI = DAG.getTargetLoweringInfo();
5542       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5543                        V->getType(), getABIRegCopyCC(V));
5544       if (RFV.occupiesMultipleRegs()) {
5545         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5546         return true;
5547       }
5548 
5549       Op = MachineOperand::CreateReg(VMI->second, false);
5550       IsIndirect = IsDbgDeclare;
5551     } else if (ArgRegsAndSizes.size() > 1) {
5552       // This was split due to the calling convention, and no virtual register
5553       // mapping exists for the value.
5554       splitMultiRegDbgValue(ArgRegsAndSizes);
5555       return true;
5556     }
5557   }
5558 
5559   if (!Op)
5560     return false;
5561 
5562   assert(Variable->isValidLocationForIntrinsic(DL) &&
5563          "Expected inlined-at fields to agree");
5564   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5565   FuncInfo.ArgDbgValues.push_back(
5566       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5567               *Op, Variable, Expr));
5568 
5569   return true;
5570 }
5571 
5572 /// Return the appropriate SDDbgValue based on N.
5573 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5574                                              DILocalVariable *Variable,
5575                                              DIExpression *Expr,
5576                                              const DebugLoc &dl,
5577                                              unsigned DbgSDNodeOrder) {
5578   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5579     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5580     // stack slot locations.
5581     //
5582     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5583     // debug values here after optimization:
5584     //
5585     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5586     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5587     //
5588     // Both describe the direct values of their associated variables.
5589     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5590                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5591   }
5592   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5593                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5594 }
5595 
5596 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5597   switch (Intrinsic) {
5598   case Intrinsic::smul_fix:
5599     return ISD::SMULFIX;
5600   case Intrinsic::umul_fix:
5601     return ISD::UMULFIX;
5602   case Intrinsic::smul_fix_sat:
5603     return ISD::SMULFIXSAT;
5604   case Intrinsic::umul_fix_sat:
5605     return ISD::UMULFIXSAT;
5606   case Intrinsic::sdiv_fix:
5607     return ISD::SDIVFIX;
5608   case Intrinsic::udiv_fix:
5609     return ISD::UDIVFIX;
5610   case Intrinsic::sdiv_fix_sat:
5611     return ISD::SDIVFIXSAT;
5612   case Intrinsic::udiv_fix_sat:
5613     return ISD::UDIVFIXSAT;
5614   default:
5615     llvm_unreachable("Unhandled fixed point intrinsic");
5616   }
5617 }
5618 
5619 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5620                                            const char *FunctionName) {
5621   assert(FunctionName && "FunctionName must not be nullptr");
5622   SDValue Callee = DAG.getExternalSymbol(
5623       FunctionName,
5624       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5625   LowerCallTo(&I, Callee, I.isTailCall());
5626 }
5627 
5628 /// Lower the call to the specified intrinsic function.
5629 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5630                                              unsigned Intrinsic) {
5631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5632   SDLoc sdl = getCurSDLoc();
5633   DebugLoc dl = getCurDebugLoc();
5634   SDValue Res;
5635 
5636   switch (Intrinsic) {
5637   default:
5638     // By default, turn this into a target intrinsic node.
5639     visitTargetIntrinsic(I, Intrinsic);
5640     return;
5641   case Intrinsic::vscale: {
5642     match(&I, m_VScale(DAG.getDataLayout()));
5643     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5644     setValue(&I,
5645              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5646     return;
5647   }
5648   case Intrinsic::vastart:  visitVAStart(I); return;
5649   case Intrinsic::vaend:    visitVAEnd(I); return;
5650   case Intrinsic::vacopy:   visitVACopy(I); return;
5651   case Intrinsic::returnaddress:
5652     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5653                              TLI.getPointerTy(DAG.getDataLayout()),
5654                              getValue(I.getArgOperand(0))));
5655     return;
5656   case Intrinsic::addressofreturnaddress:
5657     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5658                              TLI.getPointerTy(DAG.getDataLayout())));
5659     return;
5660   case Intrinsic::sponentry:
5661     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5662                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5663     return;
5664   case Intrinsic::frameaddress:
5665     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5666                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5667                              getValue(I.getArgOperand(0))));
5668     return;
5669   case Intrinsic::read_register: {
5670     Value *Reg = I.getArgOperand(0);
5671     SDValue Chain = getRoot();
5672     SDValue RegName =
5673         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5674     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5675     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5676       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5677     setValue(&I, Res);
5678     DAG.setRoot(Res.getValue(1));
5679     return;
5680   }
5681   case Intrinsic::write_register: {
5682     Value *Reg = I.getArgOperand(0);
5683     Value *RegValue = I.getArgOperand(1);
5684     SDValue Chain = getRoot();
5685     SDValue RegName =
5686         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5687     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5688                             RegName, getValue(RegValue)));
5689     return;
5690   }
5691   case Intrinsic::memcpy: {
5692     const auto &MCI = cast<MemCpyInst>(I);
5693     SDValue Op1 = getValue(I.getArgOperand(0));
5694     SDValue Op2 = getValue(I.getArgOperand(1));
5695     SDValue Op3 = getValue(I.getArgOperand(2));
5696     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5697     Align DstAlign = MCI.getDestAlign().valueOrOne();
5698     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5699     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5700     bool isVol = MCI.isVolatile();
5701     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5702     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5703     // node.
5704     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5705     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5706                                /* AlwaysInline */ false, isTC,
5707                                MachinePointerInfo(I.getArgOperand(0)),
5708                                MachinePointerInfo(I.getArgOperand(1)));
5709     updateDAGForMaybeTailCall(MC);
5710     return;
5711   }
5712   case Intrinsic::memcpy_inline: {
5713     const auto &MCI = cast<MemCpyInlineInst>(I);
5714     SDValue Dst = getValue(I.getArgOperand(0));
5715     SDValue Src = getValue(I.getArgOperand(1));
5716     SDValue Size = getValue(I.getArgOperand(2));
5717     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5718     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5719     Align DstAlign = MCI.getDestAlign().valueOrOne();
5720     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5721     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5722     bool isVol = MCI.isVolatile();
5723     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5724     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5725     // node.
5726     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5727                                /* AlwaysInline */ true, isTC,
5728                                MachinePointerInfo(I.getArgOperand(0)),
5729                                MachinePointerInfo(I.getArgOperand(1)));
5730     updateDAGForMaybeTailCall(MC);
5731     return;
5732   }
5733   case Intrinsic::memset: {
5734     const auto &MSI = cast<MemSetInst>(I);
5735     SDValue Op1 = getValue(I.getArgOperand(0));
5736     SDValue Op2 = getValue(I.getArgOperand(1));
5737     SDValue Op3 = getValue(I.getArgOperand(2));
5738     // @llvm.memset defines 0 and 1 to both mean no alignment.
5739     Align Alignment = MSI.getDestAlign().valueOrOne();
5740     bool isVol = MSI.isVolatile();
5741     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5742     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5743     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5744                                MachinePointerInfo(I.getArgOperand(0)));
5745     updateDAGForMaybeTailCall(MS);
5746     return;
5747   }
5748   case Intrinsic::memmove: {
5749     const auto &MMI = cast<MemMoveInst>(I);
5750     SDValue Op1 = getValue(I.getArgOperand(0));
5751     SDValue Op2 = getValue(I.getArgOperand(1));
5752     SDValue Op3 = getValue(I.getArgOperand(2));
5753     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5754     Align DstAlign = MMI.getDestAlign().valueOrOne();
5755     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5756     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5757     bool isVol = MMI.isVolatile();
5758     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5759     // FIXME: Support passing different dest/src alignments to the memmove DAG
5760     // node.
5761     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5762     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5763                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5764                                 MachinePointerInfo(I.getArgOperand(1)));
5765     updateDAGForMaybeTailCall(MM);
5766     return;
5767   }
5768   case Intrinsic::memcpy_element_unordered_atomic: {
5769     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5770     SDValue Dst = getValue(MI.getRawDest());
5771     SDValue Src = getValue(MI.getRawSource());
5772     SDValue Length = getValue(MI.getLength());
5773 
5774     unsigned DstAlign = MI.getDestAlignment();
5775     unsigned SrcAlign = MI.getSourceAlignment();
5776     Type *LengthTy = MI.getLength()->getType();
5777     unsigned ElemSz = MI.getElementSizeInBytes();
5778     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5779     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5780                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5781                                      MachinePointerInfo(MI.getRawDest()),
5782                                      MachinePointerInfo(MI.getRawSource()));
5783     updateDAGForMaybeTailCall(MC);
5784     return;
5785   }
5786   case Intrinsic::memmove_element_unordered_atomic: {
5787     auto &MI = cast<AtomicMemMoveInst>(I);
5788     SDValue Dst = getValue(MI.getRawDest());
5789     SDValue Src = getValue(MI.getRawSource());
5790     SDValue Length = getValue(MI.getLength());
5791 
5792     unsigned DstAlign = MI.getDestAlignment();
5793     unsigned SrcAlign = MI.getSourceAlignment();
5794     Type *LengthTy = MI.getLength()->getType();
5795     unsigned ElemSz = MI.getElementSizeInBytes();
5796     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5797     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5798                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5799                                       MachinePointerInfo(MI.getRawDest()),
5800                                       MachinePointerInfo(MI.getRawSource()));
5801     updateDAGForMaybeTailCall(MC);
5802     return;
5803   }
5804   case Intrinsic::memset_element_unordered_atomic: {
5805     auto &MI = cast<AtomicMemSetInst>(I);
5806     SDValue Dst = getValue(MI.getRawDest());
5807     SDValue Val = getValue(MI.getValue());
5808     SDValue Length = getValue(MI.getLength());
5809 
5810     unsigned DstAlign = MI.getDestAlignment();
5811     Type *LengthTy = MI.getLength()->getType();
5812     unsigned ElemSz = MI.getElementSizeInBytes();
5813     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5814     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5815                                      LengthTy, ElemSz, isTC,
5816                                      MachinePointerInfo(MI.getRawDest()));
5817     updateDAGForMaybeTailCall(MC);
5818     return;
5819   }
5820   case Intrinsic::dbg_addr:
5821   case Intrinsic::dbg_declare: {
5822     const auto &DI = cast<DbgVariableIntrinsic>(I);
5823     DILocalVariable *Variable = DI.getVariable();
5824     DIExpression *Expression = DI.getExpression();
5825     dropDanglingDebugInfo(Variable, Expression);
5826     assert(Variable && "Missing variable");
5827     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5828                       << "\n");
5829     // Check if address has undef value.
5830     const Value *Address = DI.getVariableLocation();
5831     if (!Address || isa<UndefValue>(Address) ||
5832         (Address->use_empty() && !isa<Argument>(Address))) {
5833       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5834                         << " (bad/undef/unused-arg address)\n");
5835       return;
5836     }
5837 
5838     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5839 
5840     // Check if this variable can be described by a frame index, typically
5841     // either as a static alloca or a byval parameter.
5842     int FI = std::numeric_limits<int>::max();
5843     if (const auto *AI =
5844             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5845       if (AI->isStaticAlloca()) {
5846         auto I = FuncInfo.StaticAllocaMap.find(AI);
5847         if (I != FuncInfo.StaticAllocaMap.end())
5848           FI = I->second;
5849       }
5850     } else if (const auto *Arg = dyn_cast<Argument>(
5851                    Address->stripInBoundsConstantOffsets())) {
5852       FI = FuncInfo.getArgumentFrameIndex(Arg);
5853     }
5854 
5855     // llvm.dbg.addr is control dependent and always generates indirect
5856     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5857     // the MachineFunction variable table.
5858     if (FI != std::numeric_limits<int>::max()) {
5859       if (Intrinsic == Intrinsic::dbg_addr) {
5860         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5861             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5862         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5863       } else {
5864         LLVM_DEBUG(dbgs() << "Skipping " << DI
5865                           << " (variable info stashed in MF side table)\n");
5866       }
5867       return;
5868     }
5869 
5870     SDValue &N = NodeMap[Address];
5871     if (!N.getNode() && isa<Argument>(Address))
5872       // Check unused arguments map.
5873       N = UnusedArgNodeMap[Address];
5874     SDDbgValue *SDV;
5875     if (N.getNode()) {
5876       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5877         Address = BCI->getOperand(0);
5878       // Parameters are handled specially.
5879       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5880       if (isParameter && FINode) {
5881         // Byval parameter. We have a frame index at this point.
5882         SDV =
5883             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5884                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5885       } else if (isa<Argument>(Address)) {
5886         // Address is an argument, so try to emit its dbg value using
5887         // virtual register info from the FuncInfo.ValueMap.
5888         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5889         return;
5890       } else {
5891         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5892                               true, dl, SDNodeOrder);
5893       }
5894       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5895     } else {
5896       // If Address is an argument then try to emit its dbg value using
5897       // virtual register info from the FuncInfo.ValueMap.
5898       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5899                                     N)) {
5900         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5901                           << " (could not emit func-arg dbg_value)\n");
5902       }
5903     }
5904     return;
5905   }
5906   case Intrinsic::dbg_label: {
5907     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5908     DILabel *Label = DI.getLabel();
5909     assert(Label && "Missing label");
5910 
5911     SDDbgLabel *SDV;
5912     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5913     DAG.AddDbgLabel(SDV);
5914     return;
5915   }
5916   case Intrinsic::dbg_value: {
5917     const DbgValueInst &DI = cast<DbgValueInst>(I);
5918     assert(DI.getVariable() && "Missing variable");
5919 
5920     DILocalVariable *Variable = DI.getVariable();
5921     DIExpression *Expression = DI.getExpression();
5922     dropDanglingDebugInfo(Variable, Expression);
5923     const Value *V = DI.getValue();
5924     if (!V)
5925       return;
5926 
5927     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5928         SDNodeOrder))
5929       return;
5930 
5931     // TODO: Dangling debug info will eventually either be resolved or produce
5932     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5933     // between the original dbg.value location and its resolved DBG_VALUE, which
5934     // we should ideally fill with an extra Undef DBG_VALUE.
5935 
5936     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5937     return;
5938   }
5939 
5940   case Intrinsic::eh_typeid_for: {
5941     // Find the type id for the given typeinfo.
5942     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5943     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5944     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5945     setValue(&I, Res);
5946     return;
5947   }
5948 
5949   case Intrinsic::eh_return_i32:
5950   case Intrinsic::eh_return_i64:
5951     DAG.getMachineFunction().setCallsEHReturn(true);
5952     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5953                             MVT::Other,
5954                             getControlRoot(),
5955                             getValue(I.getArgOperand(0)),
5956                             getValue(I.getArgOperand(1))));
5957     return;
5958   case Intrinsic::eh_unwind_init:
5959     DAG.getMachineFunction().setCallsUnwindInit(true);
5960     return;
5961   case Intrinsic::eh_dwarf_cfa:
5962     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5963                              TLI.getPointerTy(DAG.getDataLayout()),
5964                              getValue(I.getArgOperand(0))));
5965     return;
5966   case Intrinsic::eh_sjlj_callsite: {
5967     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5968     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5969     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5970     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5971 
5972     MMI.setCurrentCallSite(CI->getZExtValue());
5973     return;
5974   }
5975   case Intrinsic::eh_sjlj_functioncontext: {
5976     // Get and store the index of the function context.
5977     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5978     AllocaInst *FnCtx =
5979       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5980     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5981     MFI.setFunctionContextIndex(FI);
5982     return;
5983   }
5984   case Intrinsic::eh_sjlj_setjmp: {
5985     SDValue Ops[2];
5986     Ops[0] = getRoot();
5987     Ops[1] = getValue(I.getArgOperand(0));
5988     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5989                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5990     setValue(&I, Op.getValue(0));
5991     DAG.setRoot(Op.getValue(1));
5992     return;
5993   }
5994   case Intrinsic::eh_sjlj_longjmp:
5995     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5996                             getRoot(), getValue(I.getArgOperand(0))));
5997     return;
5998   case Intrinsic::eh_sjlj_setup_dispatch:
5999     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6000                             getRoot()));
6001     return;
6002   case Intrinsic::masked_gather:
6003     visitMaskedGather(I);
6004     return;
6005   case Intrinsic::masked_load:
6006     visitMaskedLoad(I);
6007     return;
6008   case Intrinsic::masked_scatter:
6009     visitMaskedScatter(I);
6010     return;
6011   case Intrinsic::masked_store:
6012     visitMaskedStore(I);
6013     return;
6014   case Intrinsic::masked_expandload:
6015     visitMaskedLoad(I, true /* IsExpanding */);
6016     return;
6017   case Intrinsic::masked_compressstore:
6018     visitMaskedStore(I, true /* IsCompressing */);
6019     return;
6020   case Intrinsic::powi:
6021     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6022                             getValue(I.getArgOperand(1)), DAG));
6023     return;
6024   case Intrinsic::log:
6025     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6026     return;
6027   case Intrinsic::log2:
6028     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6029     return;
6030   case Intrinsic::log10:
6031     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6032     return;
6033   case Intrinsic::exp:
6034     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6035     return;
6036   case Intrinsic::exp2:
6037     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6038     return;
6039   case Intrinsic::pow:
6040     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6041                            getValue(I.getArgOperand(1)), DAG, TLI));
6042     return;
6043   case Intrinsic::sqrt:
6044   case Intrinsic::fabs:
6045   case Intrinsic::sin:
6046   case Intrinsic::cos:
6047   case Intrinsic::floor:
6048   case Intrinsic::ceil:
6049   case Intrinsic::trunc:
6050   case Intrinsic::rint:
6051   case Intrinsic::nearbyint:
6052   case Intrinsic::round:
6053   case Intrinsic::canonicalize: {
6054     unsigned Opcode;
6055     switch (Intrinsic) {
6056     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6057     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6058     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6059     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6060     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6061     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6062     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6063     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6064     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6065     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6066     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6067     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6068     }
6069 
6070     setValue(&I, DAG.getNode(Opcode, sdl,
6071                              getValue(I.getArgOperand(0)).getValueType(),
6072                              getValue(I.getArgOperand(0))));
6073     return;
6074   }
6075   case Intrinsic::lround:
6076   case Intrinsic::llround:
6077   case Intrinsic::lrint:
6078   case Intrinsic::llrint: {
6079     unsigned Opcode;
6080     switch (Intrinsic) {
6081     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6082     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6083     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6084     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6085     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6086     }
6087 
6088     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6089     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6090                              getValue(I.getArgOperand(0))));
6091     return;
6092   }
6093   case Intrinsic::minnum:
6094     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6095                              getValue(I.getArgOperand(0)).getValueType(),
6096                              getValue(I.getArgOperand(0)),
6097                              getValue(I.getArgOperand(1))));
6098     return;
6099   case Intrinsic::maxnum:
6100     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6101                              getValue(I.getArgOperand(0)).getValueType(),
6102                              getValue(I.getArgOperand(0)),
6103                              getValue(I.getArgOperand(1))));
6104     return;
6105   case Intrinsic::minimum:
6106     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6107                              getValue(I.getArgOperand(0)).getValueType(),
6108                              getValue(I.getArgOperand(0)),
6109                              getValue(I.getArgOperand(1))));
6110     return;
6111   case Intrinsic::maximum:
6112     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6113                              getValue(I.getArgOperand(0)).getValueType(),
6114                              getValue(I.getArgOperand(0)),
6115                              getValue(I.getArgOperand(1))));
6116     return;
6117   case Intrinsic::copysign:
6118     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6119                              getValue(I.getArgOperand(0)).getValueType(),
6120                              getValue(I.getArgOperand(0)),
6121                              getValue(I.getArgOperand(1))));
6122     return;
6123   case Intrinsic::fma:
6124     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6125                              getValue(I.getArgOperand(0)).getValueType(),
6126                              getValue(I.getArgOperand(0)),
6127                              getValue(I.getArgOperand(1)),
6128                              getValue(I.getArgOperand(2))));
6129     return;
6130 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6131   case Intrinsic::INTRINSIC:
6132 #include "llvm/IR/ConstrainedOps.def"
6133     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6134     return;
6135   case Intrinsic::fmuladd: {
6136     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6137     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6138         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6139       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6140                                getValue(I.getArgOperand(0)).getValueType(),
6141                                getValue(I.getArgOperand(0)),
6142                                getValue(I.getArgOperand(1)),
6143                                getValue(I.getArgOperand(2))));
6144     } else {
6145       // TODO: Intrinsic calls should have fast-math-flags.
6146       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6147                                 getValue(I.getArgOperand(0)).getValueType(),
6148                                 getValue(I.getArgOperand(0)),
6149                                 getValue(I.getArgOperand(1)));
6150       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6151                                 getValue(I.getArgOperand(0)).getValueType(),
6152                                 Mul,
6153                                 getValue(I.getArgOperand(2)));
6154       setValue(&I, Add);
6155     }
6156     return;
6157   }
6158   case Intrinsic::convert_to_fp16:
6159     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6160                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6161                                          getValue(I.getArgOperand(0)),
6162                                          DAG.getTargetConstant(0, sdl,
6163                                                                MVT::i32))));
6164     return;
6165   case Intrinsic::convert_from_fp16:
6166     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6167                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6168                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6169                                          getValue(I.getArgOperand(0)))));
6170     return;
6171   case Intrinsic::pcmarker: {
6172     SDValue Tmp = getValue(I.getArgOperand(0));
6173     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6174     return;
6175   }
6176   case Intrinsic::readcyclecounter: {
6177     SDValue Op = getRoot();
6178     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6179                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6180     setValue(&I, Res);
6181     DAG.setRoot(Res.getValue(1));
6182     return;
6183   }
6184   case Intrinsic::bitreverse:
6185     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6186                              getValue(I.getArgOperand(0)).getValueType(),
6187                              getValue(I.getArgOperand(0))));
6188     return;
6189   case Intrinsic::bswap:
6190     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6191                              getValue(I.getArgOperand(0)).getValueType(),
6192                              getValue(I.getArgOperand(0))));
6193     return;
6194   case Intrinsic::cttz: {
6195     SDValue Arg = getValue(I.getArgOperand(0));
6196     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6197     EVT Ty = Arg.getValueType();
6198     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6199                              sdl, Ty, Arg));
6200     return;
6201   }
6202   case Intrinsic::ctlz: {
6203     SDValue Arg = getValue(I.getArgOperand(0));
6204     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6205     EVT Ty = Arg.getValueType();
6206     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6207                              sdl, Ty, Arg));
6208     return;
6209   }
6210   case Intrinsic::ctpop: {
6211     SDValue Arg = getValue(I.getArgOperand(0));
6212     EVT Ty = Arg.getValueType();
6213     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6214     return;
6215   }
6216   case Intrinsic::fshl:
6217   case Intrinsic::fshr: {
6218     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6219     SDValue X = getValue(I.getArgOperand(0));
6220     SDValue Y = getValue(I.getArgOperand(1));
6221     SDValue Z = getValue(I.getArgOperand(2));
6222     EVT VT = X.getValueType();
6223     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6224     SDValue Zero = DAG.getConstant(0, sdl, VT);
6225     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6226 
6227     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6228     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6229       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6230       return;
6231     }
6232 
6233     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6234     // avoid the select that is necessary in the general case to filter out
6235     // the 0-shift possibility that leads to UB.
6236     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6237       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6238       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6239         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6240         return;
6241       }
6242 
6243       // Some targets only rotate one way. Try the opposite direction.
6244       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6245       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6246         // Negate the shift amount because it is safe to ignore the high bits.
6247         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6248         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6249         return;
6250       }
6251 
6252       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6253       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6254       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6255       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6256       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6257       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6258       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6259       return;
6260     }
6261 
6262     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6263     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6264     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6265     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6266     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6267     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6268 
6269     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6270     // and that is undefined. We must compare and select to avoid UB.
6271     EVT CCVT = MVT::i1;
6272     if (VT.isVector())
6273       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6274 
6275     // For fshl, 0-shift returns the 1st arg (X).
6276     // For fshr, 0-shift returns the 2nd arg (Y).
6277     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6278     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6279     return;
6280   }
6281   case Intrinsic::sadd_sat: {
6282     SDValue Op1 = getValue(I.getArgOperand(0));
6283     SDValue Op2 = getValue(I.getArgOperand(1));
6284     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6285     return;
6286   }
6287   case Intrinsic::uadd_sat: {
6288     SDValue Op1 = getValue(I.getArgOperand(0));
6289     SDValue Op2 = getValue(I.getArgOperand(1));
6290     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6291     return;
6292   }
6293   case Intrinsic::ssub_sat: {
6294     SDValue Op1 = getValue(I.getArgOperand(0));
6295     SDValue Op2 = getValue(I.getArgOperand(1));
6296     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6297     return;
6298   }
6299   case Intrinsic::usub_sat: {
6300     SDValue Op1 = getValue(I.getArgOperand(0));
6301     SDValue Op2 = getValue(I.getArgOperand(1));
6302     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6303     return;
6304   }
6305   case Intrinsic::smul_fix:
6306   case Intrinsic::umul_fix:
6307   case Intrinsic::smul_fix_sat:
6308   case Intrinsic::umul_fix_sat: {
6309     SDValue Op1 = getValue(I.getArgOperand(0));
6310     SDValue Op2 = getValue(I.getArgOperand(1));
6311     SDValue Op3 = getValue(I.getArgOperand(2));
6312     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6313                              Op1.getValueType(), Op1, Op2, Op3));
6314     return;
6315   }
6316   case Intrinsic::sdiv_fix:
6317   case Intrinsic::udiv_fix:
6318   case Intrinsic::sdiv_fix_sat:
6319   case Intrinsic::udiv_fix_sat: {
6320     SDValue Op1 = getValue(I.getArgOperand(0));
6321     SDValue Op2 = getValue(I.getArgOperand(1));
6322     SDValue Op3 = getValue(I.getArgOperand(2));
6323     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6324                               Op1, Op2, Op3, DAG, TLI));
6325     return;
6326   }
6327   case Intrinsic::stacksave: {
6328     SDValue Op = getRoot();
6329     Res = DAG.getNode(
6330         ISD::STACKSAVE, sdl,
6331         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6332     setValue(&I, Res);
6333     DAG.setRoot(Res.getValue(1));
6334     return;
6335   }
6336   case Intrinsic::stackrestore:
6337     Res = getValue(I.getArgOperand(0));
6338     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6339     return;
6340   case Intrinsic::get_dynamic_area_offset: {
6341     SDValue Op = getRoot();
6342     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6343     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6344     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6345     // target.
6346     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6347       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6348                          " intrinsic!");
6349     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6350                       Op);
6351     DAG.setRoot(Op);
6352     setValue(&I, Res);
6353     return;
6354   }
6355   case Intrinsic::stackguard: {
6356     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6357     MachineFunction &MF = DAG.getMachineFunction();
6358     const Module &M = *MF.getFunction().getParent();
6359     SDValue Chain = getRoot();
6360     if (TLI.useLoadStackGuardNode()) {
6361       Res = getLoadStackGuard(DAG, sdl, Chain);
6362     } else {
6363       const Value *Global = TLI.getSDagStackGuard(M);
6364       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6365       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6366                         MachinePointerInfo(Global, 0), Align,
6367                         MachineMemOperand::MOVolatile);
6368     }
6369     if (TLI.useStackGuardXorFP())
6370       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6371     DAG.setRoot(Chain);
6372     setValue(&I, Res);
6373     return;
6374   }
6375   case Intrinsic::stackprotector: {
6376     // Emit code into the DAG to store the stack guard onto the stack.
6377     MachineFunction &MF = DAG.getMachineFunction();
6378     MachineFrameInfo &MFI = MF.getFrameInfo();
6379     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6380     SDValue Src, Chain = getRoot();
6381 
6382     if (TLI.useLoadStackGuardNode())
6383       Src = getLoadStackGuard(DAG, sdl, Chain);
6384     else
6385       Src = getValue(I.getArgOperand(0));   // The guard's value.
6386 
6387     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6388 
6389     int FI = FuncInfo.StaticAllocaMap[Slot];
6390     MFI.setStackProtectorIndex(FI);
6391 
6392     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6393 
6394     // Store the stack protector onto the stack.
6395     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6396                                                  DAG.getMachineFunction(), FI),
6397                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6398     setValue(&I, Res);
6399     DAG.setRoot(Res);
6400     return;
6401   }
6402   case Intrinsic::objectsize:
6403     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6404 
6405   case Intrinsic::is_constant:
6406     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6407 
6408   case Intrinsic::annotation:
6409   case Intrinsic::ptr_annotation:
6410   case Intrinsic::launder_invariant_group:
6411   case Intrinsic::strip_invariant_group:
6412     // Drop the intrinsic, but forward the value
6413     setValue(&I, getValue(I.getOperand(0)));
6414     return;
6415   case Intrinsic::assume:
6416   case Intrinsic::var_annotation:
6417   case Intrinsic::sideeffect:
6418     // Discard annotate attributes, assumptions, and artificial side-effects.
6419     return;
6420 
6421   case Intrinsic::codeview_annotation: {
6422     // Emit a label associated with this metadata.
6423     MachineFunction &MF = DAG.getMachineFunction();
6424     MCSymbol *Label =
6425         MF.getMMI().getContext().createTempSymbol("annotation", true);
6426     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6427     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6428     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6429     DAG.setRoot(Res);
6430     return;
6431   }
6432 
6433   case Intrinsic::init_trampoline: {
6434     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6435 
6436     SDValue Ops[6];
6437     Ops[0] = getRoot();
6438     Ops[1] = getValue(I.getArgOperand(0));
6439     Ops[2] = getValue(I.getArgOperand(1));
6440     Ops[3] = getValue(I.getArgOperand(2));
6441     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6442     Ops[5] = DAG.getSrcValue(F);
6443 
6444     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6445 
6446     DAG.setRoot(Res);
6447     return;
6448   }
6449   case Intrinsic::adjust_trampoline:
6450     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6451                              TLI.getPointerTy(DAG.getDataLayout()),
6452                              getValue(I.getArgOperand(0))));
6453     return;
6454   case Intrinsic::gcroot: {
6455     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6456            "only valid in functions with gc specified, enforced by Verifier");
6457     assert(GFI && "implied by previous");
6458     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6459     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6460 
6461     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6462     GFI->addStackRoot(FI->getIndex(), TypeMap);
6463     return;
6464   }
6465   case Intrinsic::gcread:
6466   case Intrinsic::gcwrite:
6467     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6468   case Intrinsic::flt_rounds:
6469     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6470     setValue(&I, Res);
6471     DAG.setRoot(Res.getValue(1));
6472     return;
6473 
6474   case Intrinsic::expect:
6475     // Just replace __builtin_expect(exp, c) with EXP.
6476     setValue(&I, getValue(I.getArgOperand(0)));
6477     return;
6478 
6479   case Intrinsic::debugtrap:
6480   case Intrinsic::trap: {
6481     StringRef TrapFuncName =
6482         I.getAttributes()
6483             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6484             .getValueAsString();
6485     if (TrapFuncName.empty()) {
6486       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6487         ISD::TRAP : ISD::DEBUGTRAP;
6488       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6489       return;
6490     }
6491     TargetLowering::ArgListTy Args;
6492 
6493     TargetLowering::CallLoweringInfo CLI(DAG);
6494     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6495         CallingConv::C, I.getType(),
6496         DAG.getExternalSymbol(TrapFuncName.data(),
6497                               TLI.getPointerTy(DAG.getDataLayout())),
6498         std::move(Args));
6499 
6500     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6501     DAG.setRoot(Result.second);
6502     return;
6503   }
6504 
6505   case Intrinsic::uadd_with_overflow:
6506   case Intrinsic::sadd_with_overflow:
6507   case Intrinsic::usub_with_overflow:
6508   case Intrinsic::ssub_with_overflow:
6509   case Intrinsic::umul_with_overflow:
6510   case Intrinsic::smul_with_overflow: {
6511     ISD::NodeType Op;
6512     switch (Intrinsic) {
6513     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6514     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6515     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6516     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6517     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6518     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6519     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6520     }
6521     SDValue Op1 = getValue(I.getArgOperand(0));
6522     SDValue Op2 = getValue(I.getArgOperand(1));
6523 
6524     EVT ResultVT = Op1.getValueType();
6525     EVT OverflowVT = MVT::i1;
6526     if (ResultVT.isVector())
6527       OverflowVT = EVT::getVectorVT(
6528           *Context, OverflowVT, ResultVT.getVectorNumElements());
6529 
6530     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6531     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6532     return;
6533   }
6534   case Intrinsic::prefetch: {
6535     SDValue Ops[5];
6536     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6537     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6538     Ops[0] = DAG.getRoot();
6539     Ops[1] = getValue(I.getArgOperand(0));
6540     Ops[2] = getValue(I.getArgOperand(1));
6541     Ops[3] = getValue(I.getArgOperand(2));
6542     Ops[4] = getValue(I.getArgOperand(3));
6543     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6544                                              DAG.getVTList(MVT::Other), Ops,
6545                                              EVT::getIntegerVT(*Context, 8),
6546                                              MachinePointerInfo(I.getArgOperand(0)),
6547                                              0, /* align */
6548                                              Flags);
6549 
6550     // Chain the prefetch in parallell with any pending loads, to stay out of
6551     // the way of later optimizations.
6552     PendingLoads.push_back(Result);
6553     Result = getRoot();
6554     DAG.setRoot(Result);
6555     return;
6556   }
6557   case Intrinsic::lifetime_start:
6558   case Intrinsic::lifetime_end: {
6559     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6560     // Stack coloring is not enabled in O0, discard region information.
6561     if (TM.getOptLevel() == CodeGenOpt::None)
6562       return;
6563 
6564     const int64_t ObjectSize =
6565         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6566     Value *const ObjectPtr = I.getArgOperand(1);
6567     SmallVector<const Value *, 4> Allocas;
6568     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6569 
6570     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6571            E = Allocas.end(); Object != E; ++Object) {
6572       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6573 
6574       // Could not find an Alloca.
6575       if (!LifetimeObject)
6576         continue;
6577 
6578       // First check that the Alloca is static, otherwise it won't have a
6579       // valid frame index.
6580       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6581       if (SI == FuncInfo.StaticAllocaMap.end())
6582         return;
6583 
6584       const int FrameIndex = SI->second;
6585       int64_t Offset;
6586       if (GetPointerBaseWithConstantOffset(
6587               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6588         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6589       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6590                                 Offset);
6591       DAG.setRoot(Res);
6592     }
6593     return;
6594   }
6595   case Intrinsic::invariant_start:
6596     // Discard region information.
6597     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6598     return;
6599   case Intrinsic::invariant_end:
6600     // Discard region information.
6601     return;
6602   case Intrinsic::clear_cache:
6603     /// FunctionName may be null.
6604     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6605       lowerCallToExternalSymbol(I, FunctionName);
6606     return;
6607   case Intrinsic::donothing:
6608     // ignore
6609     return;
6610   case Intrinsic::experimental_stackmap:
6611     visitStackmap(I);
6612     return;
6613   case Intrinsic::experimental_patchpoint_void:
6614   case Intrinsic::experimental_patchpoint_i64:
6615     visitPatchpoint(&I);
6616     return;
6617   case Intrinsic::experimental_gc_statepoint:
6618     LowerStatepoint(ImmutableStatepoint(&I));
6619     return;
6620   case Intrinsic::experimental_gc_result:
6621     visitGCResult(cast<GCResultInst>(I));
6622     return;
6623   case Intrinsic::experimental_gc_relocate:
6624     visitGCRelocate(cast<GCRelocateInst>(I));
6625     return;
6626   case Intrinsic::instrprof_increment:
6627     llvm_unreachable("instrprof failed to lower an increment");
6628   case Intrinsic::instrprof_value_profile:
6629     llvm_unreachable("instrprof failed to lower a value profiling call");
6630   case Intrinsic::localescape: {
6631     MachineFunction &MF = DAG.getMachineFunction();
6632     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6633 
6634     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6635     // is the same on all targets.
6636     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6637       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6638       if (isa<ConstantPointerNull>(Arg))
6639         continue; // Skip null pointers. They represent a hole in index space.
6640       AllocaInst *Slot = cast<AllocaInst>(Arg);
6641       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6642              "can only escape static allocas");
6643       int FI = FuncInfo.StaticAllocaMap[Slot];
6644       MCSymbol *FrameAllocSym =
6645           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6646               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6647       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6648               TII->get(TargetOpcode::LOCAL_ESCAPE))
6649           .addSym(FrameAllocSym)
6650           .addFrameIndex(FI);
6651     }
6652 
6653     return;
6654   }
6655 
6656   case Intrinsic::localrecover: {
6657     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6658     MachineFunction &MF = DAG.getMachineFunction();
6659     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6660 
6661     // Get the symbol that defines the frame offset.
6662     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6663     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6664     unsigned IdxVal =
6665         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6666     MCSymbol *FrameAllocSym =
6667         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6668             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6669 
6670     // Create a MCSymbol for the label to avoid any target lowering
6671     // that would make this PC relative.
6672     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6673     SDValue OffsetVal =
6674         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6675 
6676     // Add the offset to the FP.
6677     Value *FP = I.getArgOperand(1);
6678     SDValue FPVal = getValue(FP);
6679     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6680     setValue(&I, Add);
6681 
6682     return;
6683   }
6684 
6685   case Intrinsic::eh_exceptionpointer:
6686   case Intrinsic::eh_exceptioncode: {
6687     // Get the exception pointer vreg, copy from it, and resize it to fit.
6688     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6689     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6690     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6691     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6692     SDValue N =
6693         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6694     if (Intrinsic == Intrinsic::eh_exceptioncode)
6695       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6696     setValue(&I, N);
6697     return;
6698   }
6699   case Intrinsic::xray_customevent: {
6700     // Here we want to make sure that the intrinsic behaves as if it has a
6701     // specific calling convention, and only for x86_64.
6702     // FIXME: Support other platforms later.
6703     const auto &Triple = DAG.getTarget().getTargetTriple();
6704     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6705       return;
6706 
6707     SDLoc DL = getCurSDLoc();
6708     SmallVector<SDValue, 8> Ops;
6709 
6710     // We want to say that we always want the arguments in registers.
6711     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6712     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6713     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6714     SDValue Chain = getRoot();
6715     Ops.push_back(LogEntryVal);
6716     Ops.push_back(StrSizeVal);
6717     Ops.push_back(Chain);
6718 
6719     // We need to enforce the calling convention for the callsite, so that
6720     // argument ordering is enforced correctly, and that register allocation can
6721     // see that some registers may be assumed clobbered and have to preserve
6722     // them across calls to the intrinsic.
6723     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6724                                            DL, NodeTys, Ops);
6725     SDValue patchableNode = SDValue(MN, 0);
6726     DAG.setRoot(patchableNode);
6727     setValue(&I, patchableNode);
6728     return;
6729   }
6730   case Intrinsic::xray_typedevent: {
6731     // Here we want to make sure that the intrinsic behaves as if it has a
6732     // specific calling convention, and only for x86_64.
6733     // FIXME: Support other platforms later.
6734     const auto &Triple = DAG.getTarget().getTargetTriple();
6735     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6736       return;
6737 
6738     SDLoc DL = getCurSDLoc();
6739     SmallVector<SDValue, 8> Ops;
6740 
6741     // We want to say that we always want the arguments in registers.
6742     // It's unclear to me how manipulating the selection DAG here forces callers
6743     // to provide arguments in registers instead of on the stack.
6744     SDValue LogTypeId = getValue(I.getArgOperand(0));
6745     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6746     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6747     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6748     SDValue Chain = getRoot();
6749     Ops.push_back(LogTypeId);
6750     Ops.push_back(LogEntryVal);
6751     Ops.push_back(StrSizeVal);
6752     Ops.push_back(Chain);
6753 
6754     // We need to enforce the calling convention for the callsite, so that
6755     // argument ordering is enforced correctly, and that register allocation can
6756     // see that some registers may be assumed clobbered and have to preserve
6757     // them across calls to the intrinsic.
6758     MachineSDNode *MN = DAG.getMachineNode(
6759         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6760     SDValue patchableNode = SDValue(MN, 0);
6761     DAG.setRoot(patchableNode);
6762     setValue(&I, patchableNode);
6763     return;
6764   }
6765   case Intrinsic::experimental_deoptimize:
6766     LowerDeoptimizeCall(&I);
6767     return;
6768 
6769   case Intrinsic::experimental_vector_reduce_v2_fadd:
6770   case Intrinsic::experimental_vector_reduce_v2_fmul:
6771   case Intrinsic::experimental_vector_reduce_add:
6772   case Intrinsic::experimental_vector_reduce_mul:
6773   case Intrinsic::experimental_vector_reduce_and:
6774   case Intrinsic::experimental_vector_reduce_or:
6775   case Intrinsic::experimental_vector_reduce_xor:
6776   case Intrinsic::experimental_vector_reduce_smax:
6777   case Intrinsic::experimental_vector_reduce_smin:
6778   case Intrinsic::experimental_vector_reduce_umax:
6779   case Intrinsic::experimental_vector_reduce_umin:
6780   case Intrinsic::experimental_vector_reduce_fmax:
6781   case Intrinsic::experimental_vector_reduce_fmin:
6782     visitVectorReduce(I, Intrinsic);
6783     return;
6784 
6785   case Intrinsic::icall_branch_funnel: {
6786     SmallVector<SDValue, 16> Ops;
6787     Ops.push_back(getValue(I.getArgOperand(0)));
6788 
6789     int64_t Offset;
6790     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6791         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6792     if (!Base)
6793       report_fatal_error(
6794           "llvm.icall.branch.funnel operand must be a GlobalValue");
6795     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6796 
6797     struct BranchFunnelTarget {
6798       int64_t Offset;
6799       SDValue Target;
6800     };
6801     SmallVector<BranchFunnelTarget, 8> Targets;
6802 
6803     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6804       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6805           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6806       if (ElemBase != Base)
6807         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6808                            "to the same GlobalValue");
6809 
6810       SDValue Val = getValue(I.getArgOperand(Op + 1));
6811       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6812       if (!GA)
6813         report_fatal_error(
6814             "llvm.icall.branch.funnel operand must be a GlobalValue");
6815       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6816                                      GA->getGlobal(), getCurSDLoc(),
6817                                      Val.getValueType(), GA->getOffset())});
6818     }
6819     llvm::sort(Targets,
6820                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6821                  return T1.Offset < T2.Offset;
6822                });
6823 
6824     for (auto &T : Targets) {
6825       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6826       Ops.push_back(T.Target);
6827     }
6828 
6829     Ops.push_back(DAG.getRoot()); // Chain
6830     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6831                                  getCurSDLoc(), MVT::Other, Ops),
6832               0);
6833     DAG.setRoot(N);
6834     setValue(&I, N);
6835     HasTailCall = true;
6836     return;
6837   }
6838 
6839   case Intrinsic::wasm_landingpad_index:
6840     // Information this intrinsic contained has been transferred to
6841     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6842     // delete it now.
6843     return;
6844 
6845   case Intrinsic::aarch64_settag:
6846   case Intrinsic::aarch64_settag_zero: {
6847     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6848     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6849     SDValue Val = TSI.EmitTargetCodeForSetTag(
6850         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6851         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6852         ZeroMemory);
6853     DAG.setRoot(Val);
6854     setValue(&I, Val);
6855     return;
6856   }
6857   case Intrinsic::ptrmask: {
6858     SDValue Ptr = getValue(I.getOperand(0));
6859     SDValue Const = getValue(I.getOperand(1));
6860 
6861     EVT DestVT =
6862         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6863 
6864     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6865                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6866     return;
6867   }
6868   }
6869 }
6870 
6871 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6872     const ConstrainedFPIntrinsic &FPI) {
6873   SDLoc sdl = getCurSDLoc();
6874 
6875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6876   SmallVector<EVT, 4> ValueVTs;
6877   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6878   ValueVTs.push_back(MVT::Other); // Out chain
6879 
6880   // We do not need to serialize constrained FP intrinsics against
6881   // each other or against (nonvolatile) loads, so they can be
6882   // chained like loads.
6883   SDValue Chain = DAG.getRoot();
6884   SmallVector<SDValue, 4> Opers;
6885   Opers.push_back(Chain);
6886   if (FPI.isUnaryOp()) {
6887     Opers.push_back(getValue(FPI.getArgOperand(0)));
6888   } else if (FPI.isTernaryOp()) {
6889     Opers.push_back(getValue(FPI.getArgOperand(0)));
6890     Opers.push_back(getValue(FPI.getArgOperand(1)));
6891     Opers.push_back(getValue(FPI.getArgOperand(2)));
6892   } else {
6893     Opers.push_back(getValue(FPI.getArgOperand(0)));
6894     Opers.push_back(getValue(FPI.getArgOperand(1)));
6895   }
6896 
6897   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6898     assert(Result.getNode()->getNumValues() == 2);
6899 
6900     // Push node to the appropriate list so that future instructions can be
6901     // chained up correctly.
6902     SDValue OutChain = Result.getValue(1);
6903     switch (EB) {
6904     case fp::ExceptionBehavior::ebIgnore:
6905       // The only reason why ebIgnore nodes still need to be chained is that
6906       // they might depend on the current rounding mode, and therefore must
6907       // not be moved across instruction that may change that mode.
6908       LLVM_FALLTHROUGH;
6909     case fp::ExceptionBehavior::ebMayTrap:
6910       // These must not be moved across calls or instructions that may change
6911       // floating-point exception masks.
6912       PendingConstrainedFP.push_back(OutChain);
6913       break;
6914     case fp::ExceptionBehavior::ebStrict:
6915       // These must not be moved across calls or instructions that may change
6916       // floating-point exception masks or read floating-point exception flags.
6917       // In addition, they cannot be optimized out even if unused.
6918       PendingConstrainedFPStrict.push_back(OutChain);
6919       break;
6920     }
6921   };
6922 
6923   SDVTList VTs = DAG.getVTList(ValueVTs);
6924   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6925 
6926   SDNodeFlags Flags;
6927   if (EB == fp::ExceptionBehavior::ebIgnore)
6928     Flags.setNoFPExcept(true);
6929 
6930   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6931     Flags.copyFMF(*FPOp);
6932 
6933   unsigned Opcode;
6934   switch (FPI.getIntrinsicID()) {
6935   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6936 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6937   case Intrinsic::INTRINSIC:                                                   \
6938     Opcode = ISD::STRICT_##DAGN;                                               \
6939     break;
6940 #include "llvm/IR/ConstrainedOps.def"
6941   case Intrinsic::experimental_constrained_fmuladd: {
6942     Opcode = ISD::STRICT_FMA;
6943     // Break fmuladd into fmul and fadd.
6944     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6945         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6946                                         ValueVTs[0])) {
6947       Opers.pop_back();
6948       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
6949       pushOutChain(Mul, EB);
6950       Opcode = ISD::STRICT_FADD;
6951       Opers.clear();
6952       Opers.push_back(Mul.getValue(1));
6953       Opers.push_back(Mul.getValue(0));
6954       Opers.push_back(getValue(FPI.getArgOperand(2)));
6955     }
6956     break;
6957   }
6958   }
6959 
6960   // A few strict DAG nodes carry additional operands that are not
6961   // set up by the default code above.
6962   switch (Opcode) {
6963   default: break;
6964   case ISD::STRICT_FP_ROUND:
6965     Opers.push_back(
6966         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
6967     break;
6968   case ISD::STRICT_FSETCC:
6969   case ISD::STRICT_FSETCCS: {
6970     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
6971     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
6972     break;
6973   }
6974   }
6975 
6976   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
6977   pushOutChain(Result, EB);
6978 
6979   SDValue FPResult = Result.getValue(0);
6980   setValue(&FPI, FPResult);
6981 }
6982 
6983 std::pair<SDValue, SDValue>
6984 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6985                                     const BasicBlock *EHPadBB) {
6986   MachineFunction &MF = DAG.getMachineFunction();
6987   MachineModuleInfo &MMI = MF.getMMI();
6988   MCSymbol *BeginLabel = nullptr;
6989 
6990   if (EHPadBB) {
6991     // Insert a label before the invoke call to mark the try range.  This can be
6992     // used to detect deletion of the invoke via the MachineModuleInfo.
6993     BeginLabel = MMI.getContext().createTempSymbol();
6994 
6995     // For SjLj, keep track of which landing pads go with which invokes
6996     // so as to maintain the ordering of pads in the LSDA.
6997     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6998     if (CallSiteIndex) {
6999       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7000       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7001 
7002       // Now that the call site is handled, stop tracking it.
7003       MMI.setCurrentCallSite(0);
7004     }
7005 
7006     // Both PendingLoads and PendingExports must be flushed here;
7007     // this call might not return.
7008     (void)getRoot();
7009     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7010 
7011     CLI.setChain(getRoot());
7012   }
7013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7014   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7015 
7016   assert((CLI.IsTailCall || Result.second.getNode()) &&
7017          "Non-null chain expected with non-tail call!");
7018   assert((Result.second.getNode() || !Result.first.getNode()) &&
7019          "Null value expected with tail call!");
7020 
7021   if (!Result.second.getNode()) {
7022     // As a special case, a null chain means that a tail call has been emitted
7023     // and the DAG root is already updated.
7024     HasTailCall = true;
7025 
7026     // Since there's no actual continuation from this block, nothing can be
7027     // relying on us setting vregs for them.
7028     PendingExports.clear();
7029   } else {
7030     DAG.setRoot(Result.second);
7031   }
7032 
7033   if (EHPadBB) {
7034     // Insert a label at the end of the invoke call to mark the try range.  This
7035     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7036     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7037     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7038 
7039     // Inform MachineModuleInfo of range.
7040     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7041     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7042     // actually use outlined funclets and their LSDA info style.
7043     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7044       assert(CLI.CS);
7045       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7046       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7047                                 BeginLabel, EndLabel);
7048     } else if (!isScopedEHPersonality(Pers)) {
7049       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7050     }
7051   }
7052 
7053   return Result;
7054 }
7055 
7056 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7057                                       bool isTailCall,
7058                                       const BasicBlock *EHPadBB) {
7059   auto &DL = DAG.getDataLayout();
7060   FunctionType *FTy = CS.getFunctionType();
7061   Type *RetTy = CS.getType();
7062 
7063   TargetLowering::ArgListTy Args;
7064   Args.reserve(CS.arg_size());
7065 
7066   const Value *SwiftErrorVal = nullptr;
7067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7068 
7069   if (isTailCall) {
7070     // Avoid emitting tail calls in functions with the disable-tail-calls
7071     // attribute.
7072     auto *Caller = CS.getInstruction()->getParent()->getParent();
7073     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7074         "true")
7075       isTailCall = false;
7076 
7077     // We can't tail call inside a function with a swifterror argument. Lowering
7078     // does not support this yet. It would have to move into the swifterror
7079     // register before the call.
7080     if (TLI.supportSwiftError() &&
7081         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7082       isTailCall = false;
7083   }
7084 
7085   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7086        i != e; ++i) {
7087     TargetLowering::ArgListEntry Entry;
7088     const Value *V = *i;
7089 
7090     // Skip empty types
7091     if (V->getType()->isEmptyTy())
7092       continue;
7093 
7094     SDValue ArgNode = getValue(V);
7095     Entry.Node = ArgNode; Entry.Ty = V->getType();
7096 
7097     Entry.setAttributes(&CS, i - CS.arg_begin());
7098 
7099     // Use swifterror virtual register as input to the call.
7100     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7101       SwiftErrorVal = V;
7102       // We find the virtual register for the actual swifterror argument.
7103       // Instead of using the Value, we use the virtual register instead.
7104       Entry.Node = DAG.getRegister(
7105           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7106           EVT(TLI.getPointerTy(DL)));
7107     }
7108 
7109     Args.push_back(Entry);
7110 
7111     // If we have an explicit sret argument that is an Instruction, (i.e., it
7112     // might point to function-local memory), we can't meaningfully tail-call.
7113     if (Entry.IsSRet && isa<Instruction>(V))
7114       isTailCall = false;
7115   }
7116 
7117   // If call site has a cfguardtarget operand bundle, create and add an
7118   // additional ArgListEntry.
7119   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7120     TargetLowering::ArgListEntry Entry;
7121     Value *V = Bundle->Inputs[0];
7122     SDValue ArgNode = getValue(V);
7123     Entry.Node = ArgNode;
7124     Entry.Ty = V->getType();
7125     Entry.IsCFGuardTarget = true;
7126     Args.push_back(Entry);
7127   }
7128 
7129   // Check if target-independent constraints permit a tail call here.
7130   // Target-dependent constraints are checked within TLI->LowerCallTo.
7131   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7132     isTailCall = false;
7133 
7134   // Disable tail calls if there is an swifterror argument. Targets have not
7135   // been updated to support tail calls.
7136   if (TLI.supportSwiftError() && SwiftErrorVal)
7137     isTailCall = false;
7138 
7139   TargetLowering::CallLoweringInfo CLI(DAG);
7140   CLI.setDebugLoc(getCurSDLoc())
7141       .setChain(getRoot())
7142       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7143       .setTailCall(isTailCall)
7144       .setConvergent(CS.isConvergent());
7145   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7146 
7147   if (Result.first.getNode()) {
7148     const Instruction *Inst = CS.getInstruction();
7149     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7150     setValue(Inst, Result.first);
7151   }
7152 
7153   // The last element of CLI.InVals has the SDValue for swifterror return.
7154   // Here we copy it to a virtual register and update SwiftErrorMap for
7155   // book-keeping.
7156   if (SwiftErrorVal && TLI.supportSwiftError()) {
7157     // Get the last element of InVals.
7158     SDValue Src = CLI.InVals.back();
7159     Register VReg = SwiftError.getOrCreateVRegDefAt(
7160         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7161     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7162     DAG.setRoot(CopyNode);
7163   }
7164 }
7165 
7166 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7167                              SelectionDAGBuilder &Builder) {
7168   // Check to see if this load can be trivially constant folded, e.g. if the
7169   // input is from a string literal.
7170   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7171     // Cast pointer to the type we really want to load.
7172     Type *LoadTy =
7173         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7174     if (LoadVT.isVector())
7175       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7176 
7177     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7178                                          PointerType::getUnqual(LoadTy));
7179 
7180     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7181             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7182       return Builder.getValue(LoadCst);
7183   }
7184 
7185   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7186   // still constant memory, the input chain can be the entry node.
7187   SDValue Root;
7188   bool ConstantMemory = false;
7189 
7190   // Do not serialize (non-volatile) loads of constant memory with anything.
7191   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7192     Root = Builder.DAG.getEntryNode();
7193     ConstantMemory = true;
7194   } else {
7195     // Do not serialize non-volatile loads against each other.
7196     Root = Builder.DAG.getRoot();
7197   }
7198 
7199   SDValue Ptr = Builder.getValue(PtrVal);
7200   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7201                                         Ptr, MachinePointerInfo(PtrVal),
7202                                         /* Alignment = */ 1);
7203 
7204   if (!ConstantMemory)
7205     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7206   return LoadVal;
7207 }
7208 
7209 /// Record the value for an instruction that produces an integer result,
7210 /// converting the type where necessary.
7211 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7212                                                   SDValue Value,
7213                                                   bool IsSigned) {
7214   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7215                                                     I.getType(), true);
7216   if (IsSigned)
7217     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7218   else
7219     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7220   setValue(&I, Value);
7221 }
7222 
7223 /// See if we can lower a memcmp call into an optimized form. If so, return
7224 /// true and lower it. Otherwise return false, and it will be lowered like a
7225 /// normal call.
7226 /// The caller already checked that \p I calls the appropriate LibFunc with a
7227 /// correct prototype.
7228 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7229   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7230   const Value *Size = I.getArgOperand(2);
7231   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7232   if (CSize && CSize->getZExtValue() == 0) {
7233     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7234                                                           I.getType(), true);
7235     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7236     return true;
7237   }
7238 
7239   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7240   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7241       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7242       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7243   if (Res.first.getNode()) {
7244     processIntegerCallValue(I, Res.first, true);
7245     PendingLoads.push_back(Res.second);
7246     return true;
7247   }
7248 
7249   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7250   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7251   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7252     return false;
7253 
7254   // If the target has a fast compare for the given size, it will return a
7255   // preferred load type for that size. Require that the load VT is legal and
7256   // that the target supports unaligned loads of that type. Otherwise, return
7257   // INVALID.
7258   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7259     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7260     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7261     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7262       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7263       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7264       // TODO: Check alignment of src and dest ptrs.
7265       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7266       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7267       if (!TLI.isTypeLegal(LVT) ||
7268           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7269           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7270         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7271     }
7272 
7273     return LVT;
7274   };
7275 
7276   // This turns into unaligned loads. We only do this if the target natively
7277   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7278   // we'll only produce a small number of byte loads.
7279   MVT LoadVT;
7280   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7281   switch (NumBitsToCompare) {
7282   default:
7283     return false;
7284   case 16:
7285     LoadVT = MVT::i16;
7286     break;
7287   case 32:
7288     LoadVT = MVT::i32;
7289     break;
7290   case 64:
7291   case 128:
7292   case 256:
7293     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7294     break;
7295   }
7296 
7297   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7298     return false;
7299 
7300   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7301   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7302 
7303   // Bitcast to a wide integer type if the loads are vectors.
7304   if (LoadVT.isVector()) {
7305     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7306     LoadL = DAG.getBitcast(CmpVT, LoadL);
7307     LoadR = DAG.getBitcast(CmpVT, LoadR);
7308   }
7309 
7310   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7311   processIntegerCallValue(I, Cmp, false);
7312   return true;
7313 }
7314 
7315 /// See if we can lower a memchr call into an optimized form. If so, return
7316 /// true and lower it. Otherwise return false, and it will be lowered like a
7317 /// normal call.
7318 /// The caller already checked that \p I calls the appropriate LibFunc with a
7319 /// correct prototype.
7320 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7321   const Value *Src = I.getArgOperand(0);
7322   const Value *Char = I.getArgOperand(1);
7323   const Value *Length = I.getArgOperand(2);
7324 
7325   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7326   std::pair<SDValue, SDValue> Res =
7327     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7328                                 getValue(Src), getValue(Char), getValue(Length),
7329                                 MachinePointerInfo(Src));
7330   if (Res.first.getNode()) {
7331     setValue(&I, Res.first);
7332     PendingLoads.push_back(Res.second);
7333     return true;
7334   }
7335 
7336   return false;
7337 }
7338 
7339 /// See if we can lower a mempcpy call into an optimized form. If so, return
7340 /// true and lower it. Otherwise return false, and it will be lowered like a
7341 /// normal call.
7342 /// The caller already checked that \p I calls the appropriate LibFunc with a
7343 /// correct prototype.
7344 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7345   SDValue Dst = getValue(I.getArgOperand(0));
7346   SDValue Src = getValue(I.getArgOperand(1));
7347   SDValue Size = getValue(I.getArgOperand(2));
7348 
7349   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7350   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7351   // DAG::getMemcpy needs Alignment to be defined.
7352   Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign));
7353 
7354   bool isVol = false;
7355   SDLoc sdl = getCurSDLoc();
7356 
7357   // In the mempcpy context we need to pass in a false value for isTailCall
7358   // because the return pointer needs to be adjusted by the size of
7359   // the copied memory.
7360   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7361   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7362                              /*isTailCall=*/false,
7363                              MachinePointerInfo(I.getArgOperand(0)),
7364                              MachinePointerInfo(I.getArgOperand(1)));
7365   assert(MC.getNode() != nullptr &&
7366          "** memcpy should not be lowered as TailCall in mempcpy context **");
7367   DAG.setRoot(MC);
7368 
7369   // Check if Size needs to be truncated or extended.
7370   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7371 
7372   // Adjust return pointer to point just past the last dst byte.
7373   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7374                                     Dst, Size);
7375   setValue(&I, DstPlusSize);
7376   return true;
7377 }
7378 
7379 /// See if we can lower a strcpy call into an optimized form.  If so, return
7380 /// true and lower it, otherwise return false and it will be lowered like a
7381 /// normal call.
7382 /// The caller already checked that \p I calls the appropriate LibFunc with a
7383 /// correct prototype.
7384 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7385   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7386 
7387   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7388   std::pair<SDValue, SDValue> Res =
7389     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7390                                 getValue(Arg0), getValue(Arg1),
7391                                 MachinePointerInfo(Arg0),
7392                                 MachinePointerInfo(Arg1), isStpcpy);
7393   if (Res.first.getNode()) {
7394     setValue(&I, Res.first);
7395     DAG.setRoot(Res.second);
7396     return true;
7397   }
7398 
7399   return false;
7400 }
7401 
7402 /// See if we can lower a strcmp call into an optimized form.  If so, return
7403 /// true and lower it, otherwise return false and it will be lowered like a
7404 /// normal call.
7405 /// The caller already checked that \p I calls the appropriate LibFunc with a
7406 /// correct prototype.
7407 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7408   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7409 
7410   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7411   std::pair<SDValue, SDValue> Res =
7412     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7413                                 getValue(Arg0), getValue(Arg1),
7414                                 MachinePointerInfo(Arg0),
7415                                 MachinePointerInfo(Arg1));
7416   if (Res.first.getNode()) {
7417     processIntegerCallValue(I, Res.first, true);
7418     PendingLoads.push_back(Res.second);
7419     return true;
7420   }
7421 
7422   return false;
7423 }
7424 
7425 /// See if we can lower a strlen call into an optimized form.  If so, return
7426 /// true and lower it, otherwise return false and it will be lowered like a
7427 /// normal call.
7428 /// The caller already checked that \p I calls the appropriate LibFunc with a
7429 /// correct prototype.
7430 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7431   const Value *Arg0 = I.getArgOperand(0);
7432 
7433   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7434   std::pair<SDValue, SDValue> Res =
7435     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7436                                 getValue(Arg0), MachinePointerInfo(Arg0));
7437   if (Res.first.getNode()) {
7438     processIntegerCallValue(I, Res.first, false);
7439     PendingLoads.push_back(Res.second);
7440     return true;
7441   }
7442 
7443   return false;
7444 }
7445 
7446 /// See if we can lower a strnlen call into an optimized form.  If so, return
7447 /// true and lower it, otherwise return false and it will be lowered like a
7448 /// normal call.
7449 /// The caller already checked that \p I calls the appropriate LibFunc with a
7450 /// correct prototype.
7451 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7452   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7453 
7454   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7455   std::pair<SDValue, SDValue> Res =
7456     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7457                                  getValue(Arg0), getValue(Arg1),
7458                                  MachinePointerInfo(Arg0));
7459   if (Res.first.getNode()) {
7460     processIntegerCallValue(I, Res.first, false);
7461     PendingLoads.push_back(Res.second);
7462     return true;
7463   }
7464 
7465   return false;
7466 }
7467 
7468 /// See if we can lower a unary floating-point operation into an SDNode with
7469 /// the specified Opcode.  If so, return true and lower it, otherwise return
7470 /// false and it will be lowered like a normal call.
7471 /// The caller already checked that \p I calls the appropriate LibFunc with a
7472 /// correct prototype.
7473 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7474                                               unsigned Opcode) {
7475   // We already checked this call's prototype; verify it doesn't modify errno.
7476   if (!I.onlyReadsMemory())
7477     return false;
7478 
7479   SDValue Tmp = getValue(I.getArgOperand(0));
7480   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7481   return true;
7482 }
7483 
7484 /// See if we can lower a binary floating-point operation into an SDNode with
7485 /// the specified Opcode. If so, return true and lower it. Otherwise return
7486 /// false, and it will be lowered like a normal call.
7487 /// The caller already checked that \p I calls the appropriate LibFunc with a
7488 /// correct prototype.
7489 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7490                                                unsigned Opcode) {
7491   // We already checked this call's prototype; verify it doesn't modify errno.
7492   if (!I.onlyReadsMemory())
7493     return false;
7494 
7495   SDValue Tmp0 = getValue(I.getArgOperand(0));
7496   SDValue Tmp1 = getValue(I.getArgOperand(1));
7497   EVT VT = Tmp0.getValueType();
7498   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7499   return true;
7500 }
7501 
7502 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7503   // Handle inline assembly differently.
7504   if (isa<InlineAsm>(I.getCalledValue())) {
7505     visitInlineAsm(&I);
7506     return;
7507   }
7508 
7509   if (Function *F = I.getCalledFunction()) {
7510     if (F->isDeclaration()) {
7511       // Is this an LLVM intrinsic or a target-specific intrinsic?
7512       unsigned IID = F->getIntrinsicID();
7513       if (!IID)
7514         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7515           IID = II->getIntrinsicID(F);
7516 
7517       if (IID) {
7518         visitIntrinsicCall(I, IID);
7519         return;
7520       }
7521     }
7522 
7523     // Check for well-known libc/libm calls.  If the function is internal, it
7524     // can't be a library call.  Don't do the check if marked as nobuiltin for
7525     // some reason or the call site requires strict floating point semantics.
7526     LibFunc Func;
7527     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7528         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7529         LibInfo->hasOptimizedCodeGen(Func)) {
7530       switch (Func) {
7531       default: break;
7532       case LibFunc_copysign:
7533       case LibFunc_copysignf:
7534       case LibFunc_copysignl:
7535         // We already checked this call's prototype; verify it doesn't modify
7536         // errno.
7537         if (I.onlyReadsMemory()) {
7538           SDValue LHS = getValue(I.getArgOperand(0));
7539           SDValue RHS = getValue(I.getArgOperand(1));
7540           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7541                                    LHS.getValueType(), LHS, RHS));
7542           return;
7543         }
7544         break;
7545       case LibFunc_fabs:
7546       case LibFunc_fabsf:
7547       case LibFunc_fabsl:
7548         if (visitUnaryFloatCall(I, ISD::FABS))
7549           return;
7550         break;
7551       case LibFunc_fmin:
7552       case LibFunc_fminf:
7553       case LibFunc_fminl:
7554         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7555           return;
7556         break;
7557       case LibFunc_fmax:
7558       case LibFunc_fmaxf:
7559       case LibFunc_fmaxl:
7560         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7561           return;
7562         break;
7563       case LibFunc_sin:
7564       case LibFunc_sinf:
7565       case LibFunc_sinl:
7566         if (visitUnaryFloatCall(I, ISD::FSIN))
7567           return;
7568         break;
7569       case LibFunc_cos:
7570       case LibFunc_cosf:
7571       case LibFunc_cosl:
7572         if (visitUnaryFloatCall(I, ISD::FCOS))
7573           return;
7574         break;
7575       case LibFunc_sqrt:
7576       case LibFunc_sqrtf:
7577       case LibFunc_sqrtl:
7578       case LibFunc_sqrt_finite:
7579       case LibFunc_sqrtf_finite:
7580       case LibFunc_sqrtl_finite:
7581         if (visitUnaryFloatCall(I, ISD::FSQRT))
7582           return;
7583         break;
7584       case LibFunc_floor:
7585       case LibFunc_floorf:
7586       case LibFunc_floorl:
7587         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7588           return;
7589         break;
7590       case LibFunc_nearbyint:
7591       case LibFunc_nearbyintf:
7592       case LibFunc_nearbyintl:
7593         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7594           return;
7595         break;
7596       case LibFunc_ceil:
7597       case LibFunc_ceilf:
7598       case LibFunc_ceill:
7599         if (visitUnaryFloatCall(I, ISD::FCEIL))
7600           return;
7601         break;
7602       case LibFunc_rint:
7603       case LibFunc_rintf:
7604       case LibFunc_rintl:
7605         if (visitUnaryFloatCall(I, ISD::FRINT))
7606           return;
7607         break;
7608       case LibFunc_round:
7609       case LibFunc_roundf:
7610       case LibFunc_roundl:
7611         if (visitUnaryFloatCall(I, ISD::FROUND))
7612           return;
7613         break;
7614       case LibFunc_trunc:
7615       case LibFunc_truncf:
7616       case LibFunc_truncl:
7617         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7618           return;
7619         break;
7620       case LibFunc_log2:
7621       case LibFunc_log2f:
7622       case LibFunc_log2l:
7623         if (visitUnaryFloatCall(I, ISD::FLOG2))
7624           return;
7625         break;
7626       case LibFunc_exp2:
7627       case LibFunc_exp2f:
7628       case LibFunc_exp2l:
7629         if (visitUnaryFloatCall(I, ISD::FEXP2))
7630           return;
7631         break;
7632       case LibFunc_memcmp:
7633         if (visitMemCmpCall(I))
7634           return;
7635         break;
7636       case LibFunc_mempcpy:
7637         if (visitMemPCpyCall(I))
7638           return;
7639         break;
7640       case LibFunc_memchr:
7641         if (visitMemChrCall(I))
7642           return;
7643         break;
7644       case LibFunc_strcpy:
7645         if (visitStrCpyCall(I, false))
7646           return;
7647         break;
7648       case LibFunc_stpcpy:
7649         if (visitStrCpyCall(I, true))
7650           return;
7651         break;
7652       case LibFunc_strcmp:
7653         if (visitStrCmpCall(I))
7654           return;
7655         break;
7656       case LibFunc_strlen:
7657         if (visitStrLenCall(I))
7658           return;
7659         break;
7660       case LibFunc_strnlen:
7661         if (visitStrNLenCall(I))
7662           return;
7663         break;
7664       }
7665     }
7666   }
7667 
7668   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7669   // have to do anything here to lower funclet bundles.
7670   // CFGuardTarget bundles are lowered in LowerCallTo.
7671   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7672                                         LLVMContext::OB_funclet,
7673                                         LLVMContext::OB_cfguardtarget}) &&
7674          "Cannot lower calls with arbitrary operand bundles!");
7675 
7676   SDValue Callee = getValue(I.getCalledValue());
7677 
7678   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7679     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7680   else
7681     // Check if we can potentially perform a tail call. More detailed checking
7682     // is be done within LowerCallTo, after more information about the call is
7683     // known.
7684     LowerCallTo(&I, Callee, I.isTailCall());
7685 }
7686 
7687 namespace {
7688 
7689 /// AsmOperandInfo - This contains information for each constraint that we are
7690 /// lowering.
7691 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7692 public:
7693   /// CallOperand - If this is the result output operand or a clobber
7694   /// this is null, otherwise it is the incoming operand to the CallInst.
7695   /// This gets modified as the asm is processed.
7696   SDValue CallOperand;
7697 
7698   /// AssignedRegs - If this is a register or register class operand, this
7699   /// contains the set of register corresponding to the operand.
7700   RegsForValue AssignedRegs;
7701 
7702   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7703     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7704   }
7705 
7706   /// Whether or not this operand accesses memory
7707   bool hasMemory(const TargetLowering &TLI) const {
7708     // Indirect operand accesses access memory.
7709     if (isIndirect)
7710       return true;
7711 
7712     for (const auto &Code : Codes)
7713       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7714         return true;
7715 
7716     return false;
7717   }
7718 
7719   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7720   /// corresponds to.  If there is no Value* for this operand, it returns
7721   /// MVT::Other.
7722   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7723                            const DataLayout &DL) const {
7724     if (!CallOperandVal) return MVT::Other;
7725 
7726     if (isa<BasicBlock>(CallOperandVal))
7727       return TLI.getPointerTy(DL);
7728 
7729     llvm::Type *OpTy = CallOperandVal->getType();
7730 
7731     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7732     // If this is an indirect operand, the operand is a pointer to the
7733     // accessed type.
7734     if (isIndirect) {
7735       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7736       if (!PtrTy)
7737         report_fatal_error("Indirect operand for inline asm not a pointer!");
7738       OpTy = PtrTy->getElementType();
7739     }
7740 
7741     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7742     if (StructType *STy = dyn_cast<StructType>(OpTy))
7743       if (STy->getNumElements() == 1)
7744         OpTy = STy->getElementType(0);
7745 
7746     // If OpTy is not a single value, it may be a struct/union that we
7747     // can tile with integers.
7748     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7749       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7750       switch (BitSize) {
7751       default: break;
7752       case 1:
7753       case 8:
7754       case 16:
7755       case 32:
7756       case 64:
7757       case 128:
7758         OpTy = IntegerType::get(Context, BitSize);
7759         break;
7760       }
7761     }
7762 
7763     return TLI.getValueType(DL, OpTy, true);
7764   }
7765 };
7766 
7767 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7768 
7769 } // end anonymous namespace
7770 
7771 /// Make sure that the output operand \p OpInfo and its corresponding input
7772 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7773 /// out).
7774 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7775                                SDISelAsmOperandInfo &MatchingOpInfo,
7776                                SelectionDAG &DAG) {
7777   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7778     return;
7779 
7780   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7781   const auto &TLI = DAG.getTargetLoweringInfo();
7782 
7783   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7784       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7785                                        OpInfo.ConstraintVT);
7786   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7787       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7788                                        MatchingOpInfo.ConstraintVT);
7789   if ((OpInfo.ConstraintVT.isInteger() !=
7790        MatchingOpInfo.ConstraintVT.isInteger()) ||
7791       (MatchRC.second != InputRC.second)) {
7792     // FIXME: error out in a more elegant fashion
7793     report_fatal_error("Unsupported asm: input constraint"
7794                        " with a matching output constraint of"
7795                        " incompatible type!");
7796   }
7797   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7798 }
7799 
7800 /// Get a direct memory input to behave well as an indirect operand.
7801 /// This may introduce stores, hence the need for a \p Chain.
7802 /// \return The (possibly updated) chain.
7803 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7804                                         SDISelAsmOperandInfo &OpInfo,
7805                                         SelectionDAG &DAG) {
7806   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7807 
7808   // If we don't have an indirect input, put it in the constpool if we can,
7809   // otherwise spill it to a stack slot.
7810   // TODO: This isn't quite right. We need to handle these according to
7811   // the addressing mode that the constraint wants. Also, this may take
7812   // an additional register for the computation and we don't want that
7813   // either.
7814 
7815   // If the operand is a float, integer, or vector constant, spill to a
7816   // constant pool entry to get its address.
7817   const Value *OpVal = OpInfo.CallOperandVal;
7818   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7819       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7820     OpInfo.CallOperand = DAG.getConstantPool(
7821         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7822     return Chain;
7823   }
7824 
7825   // Otherwise, create a stack slot and emit a store to it before the asm.
7826   Type *Ty = OpVal->getType();
7827   auto &DL = DAG.getDataLayout();
7828   uint64_t TySize = DL.getTypeAllocSize(Ty);
7829   unsigned Align = DL.getPrefTypeAlignment(Ty);
7830   MachineFunction &MF = DAG.getMachineFunction();
7831   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7832   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7833   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7834                             MachinePointerInfo::getFixedStack(MF, SSFI),
7835                             TLI.getMemValueType(DL, Ty));
7836   OpInfo.CallOperand = StackSlot;
7837 
7838   return Chain;
7839 }
7840 
7841 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7842 /// specified operand.  We prefer to assign virtual registers, to allow the
7843 /// register allocator to handle the assignment process.  However, if the asm
7844 /// uses features that we can't model on machineinstrs, we have SDISel do the
7845 /// allocation.  This produces generally horrible, but correct, code.
7846 ///
7847 ///   OpInfo describes the operand
7848 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7849 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7850                                  SDISelAsmOperandInfo &OpInfo,
7851                                  SDISelAsmOperandInfo &RefOpInfo) {
7852   LLVMContext &Context = *DAG.getContext();
7853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7854 
7855   MachineFunction &MF = DAG.getMachineFunction();
7856   SmallVector<unsigned, 4> Regs;
7857   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7858 
7859   // No work to do for memory operations.
7860   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7861     return;
7862 
7863   // If this is a constraint for a single physreg, or a constraint for a
7864   // register class, find it.
7865   unsigned AssignedReg;
7866   const TargetRegisterClass *RC;
7867   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7868       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7869   // RC is unset only on failure. Return immediately.
7870   if (!RC)
7871     return;
7872 
7873   // Get the actual register value type.  This is important, because the user
7874   // may have asked for (e.g.) the AX register in i32 type.  We need to
7875   // remember that AX is actually i16 to get the right extension.
7876   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7877 
7878   if (OpInfo.ConstraintVT != MVT::Other) {
7879     // If this is an FP operand in an integer register (or visa versa), or more
7880     // generally if the operand value disagrees with the register class we plan
7881     // to stick it in, fix the operand type.
7882     //
7883     // If this is an input value, the bitcast to the new type is done now.
7884     // Bitcast for output value is done at the end of visitInlineAsm().
7885     if ((OpInfo.Type == InlineAsm::isOutput ||
7886          OpInfo.Type == InlineAsm::isInput) &&
7887         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7888       // Try to convert to the first EVT that the reg class contains.  If the
7889       // types are identical size, use a bitcast to convert (e.g. two differing
7890       // vector types).  Note: output bitcast is done at the end of
7891       // visitInlineAsm().
7892       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7893         // Exclude indirect inputs while they are unsupported because the code
7894         // to perform the load is missing and thus OpInfo.CallOperand still
7895         // refers to the input address rather than the pointed-to value.
7896         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7897           OpInfo.CallOperand =
7898               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7899         OpInfo.ConstraintVT = RegVT;
7900         // If the operand is an FP value and we want it in integer registers,
7901         // use the corresponding integer type. This turns an f64 value into
7902         // i64, which can be passed with two i32 values on a 32-bit machine.
7903       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7904         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7905         if (OpInfo.Type == InlineAsm::isInput)
7906           OpInfo.CallOperand =
7907               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7908         OpInfo.ConstraintVT = VT;
7909       }
7910     }
7911   }
7912 
7913   // No need to allocate a matching input constraint since the constraint it's
7914   // matching to has already been allocated.
7915   if (OpInfo.isMatchingInputConstraint())
7916     return;
7917 
7918   EVT ValueVT = OpInfo.ConstraintVT;
7919   if (OpInfo.ConstraintVT == MVT::Other)
7920     ValueVT = RegVT;
7921 
7922   // Initialize NumRegs.
7923   unsigned NumRegs = 1;
7924   if (OpInfo.ConstraintVT != MVT::Other)
7925     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7926 
7927   // If this is a constraint for a specific physical register, like {r17},
7928   // assign it now.
7929 
7930   // If this associated to a specific register, initialize iterator to correct
7931   // place. If virtual, make sure we have enough registers
7932 
7933   // Initialize iterator if necessary
7934   TargetRegisterClass::iterator I = RC->begin();
7935   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7936 
7937   // Do not check for single registers.
7938   if (AssignedReg) {
7939       for (; *I != AssignedReg; ++I)
7940         assert(I != RC->end() && "AssignedReg should be member of RC");
7941   }
7942 
7943   for (; NumRegs; --NumRegs, ++I) {
7944     assert(I != RC->end() && "Ran out of registers to allocate!");
7945     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7946     Regs.push_back(R);
7947   }
7948 
7949   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7950 }
7951 
7952 static unsigned
7953 findMatchingInlineAsmOperand(unsigned OperandNo,
7954                              const std::vector<SDValue> &AsmNodeOperands) {
7955   // Scan until we find the definition we already emitted of this operand.
7956   unsigned CurOp = InlineAsm::Op_FirstOperand;
7957   for (; OperandNo; --OperandNo) {
7958     // Advance to the next operand.
7959     unsigned OpFlag =
7960         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7961     assert((InlineAsm::isRegDefKind(OpFlag) ||
7962             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7963             InlineAsm::isMemKind(OpFlag)) &&
7964            "Skipped past definitions?");
7965     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7966   }
7967   return CurOp;
7968 }
7969 
7970 namespace {
7971 
7972 class ExtraFlags {
7973   unsigned Flags = 0;
7974 
7975 public:
7976   explicit ExtraFlags(ImmutableCallSite CS) {
7977     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7978     if (IA->hasSideEffects())
7979       Flags |= InlineAsm::Extra_HasSideEffects;
7980     if (IA->isAlignStack())
7981       Flags |= InlineAsm::Extra_IsAlignStack;
7982     if (CS.isConvergent())
7983       Flags |= InlineAsm::Extra_IsConvergent;
7984     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7985   }
7986 
7987   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7988     // Ideally, we would only check against memory constraints.  However, the
7989     // meaning of an Other constraint can be target-specific and we can't easily
7990     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7991     // for Other constraints as well.
7992     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7993         OpInfo.ConstraintType == TargetLowering::C_Other) {
7994       if (OpInfo.Type == InlineAsm::isInput)
7995         Flags |= InlineAsm::Extra_MayLoad;
7996       else if (OpInfo.Type == InlineAsm::isOutput)
7997         Flags |= InlineAsm::Extra_MayStore;
7998       else if (OpInfo.Type == InlineAsm::isClobber)
7999         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8000     }
8001   }
8002 
8003   unsigned get() const { return Flags; }
8004 };
8005 
8006 } // end anonymous namespace
8007 
8008 /// visitInlineAsm - Handle a call to an InlineAsm object.
8009 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8010   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8011 
8012   /// ConstraintOperands - Information about all of the constraints.
8013   SDISelAsmOperandInfoVector ConstraintOperands;
8014 
8015   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8016   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8017       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8018 
8019   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8020   // AsmDialect, MayLoad, MayStore).
8021   bool HasSideEffect = IA->hasSideEffects();
8022   ExtraFlags ExtraInfo(CS);
8023 
8024   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8025   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8026   unsigned NumMatchingOps = 0;
8027   for (auto &T : TargetConstraints) {
8028     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8029     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8030 
8031     // Compute the value type for each operand.
8032     if (OpInfo.Type == InlineAsm::isInput ||
8033         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8034       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8035 
8036       // Process the call argument. BasicBlocks are labels, currently appearing
8037       // only in asm's.
8038       const Instruction *I = CS.getInstruction();
8039       if (isa<CallBrInst>(I) &&
8040           ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() -
8041                         cast<CallBrInst>(I)->getNumIndirectDests() -
8042                         NumMatchingOps) &&
8043           (NumMatchingOps == 0 ||
8044            ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() -
8045                         NumMatchingOps))) {
8046         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8047         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8048         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8049       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8050         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8051       } else {
8052         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8053       }
8054 
8055       OpInfo.ConstraintVT =
8056           OpInfo
8057               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8058               .getSimpleVT();
8059     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8060       // The return value of the call is this value.  As such, there is no
8061       // corresponding argument.
8062       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8063       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8064         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8065             DAG.getDataLayout(), STy->getElementType(ResNo));
8066       } else {
8067         assert(ResNo == 0 && "Asm only has one result!");
8068         OpInfo.ConstraintVT =
8069             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8070       }
8071       ++ResNo;
8072     } else {
8073       OpInfo.ConstraintVT = MVT::Other;
8074     }
8075 
8076     if (OpInfo.hasMatchingInput())
8077       ++NumMatchingOps;
8078 
8079     if (!HasSideEffect)
8080       HasSideEffect = OpInfo.hasMemory(TLI);
8081 
8082     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8083     // FIXME: Could we compute this on OpInfo rather than T?
8084 
8085     // Compute the constraint code and ConstraintType to use.
8086     TLI.ComputeConstraintToUse(T, SDValue());
8087 
8088     if (T.ConstraintType == TargetLowering::C_Immediate &&
8089         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8090       // We've delayed emitting a diagnostic like the "n" constraint because
8091       // inlining could cause an integer showing up.
8092       return emitInlineAsmError(
8093           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8094                   "integer constant expression");
8095 
8096     ExtraInfo.update(T);
8097   }
8098 
8099 
8100   // We won't need to flush pending loads if this asm doesn't touch
8101   // memory and is nonvolatile.
8102   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8103 
8104   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8105   if (IsCallBr) {
8106     // If this is a callbr we need to flush pending exports since inlineasm_br
8107     // is a terminator. We need to do this before nodes are glued to
8108     // the inlineasm_br node.
8109     Chain = getControlRoot();
8110   }
8111 
8112   // Second pass over the constraints: compute which constraint option to use.
8113   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8114     // If this is an output operand with a matching input operand, look up the
8115     // matching input. If their types mismatch, e.g. one is an integer, the
8116     // other is floating point, or their sizes are different, flag it as an
8117     // error.
8118     if (OpInfo.hasMatchingInput()) {
8119       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8120       patchMatchingInput(OpInfo, Input, DAG);
8121     }
8122 
8123     // Compute the constraint code and ConstraintType to use.
8124     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8125 
8126     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8127         OpInfo.Type == InlineAsm::isClobber)
8128       continue;
8129 
8130     // If this is a memory input, and if the operand is not indirect, do what we
8131     // need to provide an address for the memory input.
8132     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8133         !OpInfo.isIndirect) {
8134       assert((OpInfo.isMultipleAlternative ||
8135               (OpInfo.Type == InlineAsm::isInput)) &&
8136              "Can only indirectify direct input operands!");
8137 
8138       // Memory operands really want the address of the value.
8139       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8140 
8141       // There is no longer a Value* corresponding to this operand.
8142       OpInfo.CallOperandVal = nullptr;
8143 
8144       // It is now an indirect operand.
8145       OpInfo.isIndirect = true;
8146     }
8147 
8148   }
8149 
8150   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8151   std::vector<SDValue> AsmNodeOperands;
8152   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8153   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8154       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8155 
8156   // If we have a !srcloc metadata node associated with it, we want to attach
8157   // this to the ultimately generated inline asm machineinstr.  To do this, we
8158   // pass in the third operand as this (potentially null) inline asm MDNode.
8159   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8160   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8161 
8162   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8163   // bits as operand 3.
8164   AsmNodeOperands.push_back(DAG.getTargetConstant(
8165       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8166 
8167   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8168   // this, assign virtual and physical registers for inputs and otput.
8169   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8170     // Assign Registers.
8171     SDISelAsmOperandInfo &RefOpInfo =
8172         OpInfo.isMatchingInputConstraint()
8173             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8174             : OpInfo;
8175     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8176 
8177     switch (OpInfo.Type) {
8178     case InlineAsm::isOutput:
8179       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8180         unsigned ConstraintID =
8181             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8182         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8183                "Failed to convert memory constraint code to constraint id.");
8184 
8185         // Add information to the INLINEASM node to know about this output.
8186         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8187         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8188         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8189                                                         MVT::i32));
8190         AsmNodeOperands.push_back(OpInfo.CallOperand);
8191       } else {
8192         // Otherwise, this outputs to a register (directly for C_Register /
8193         // C_RegisterClass, and a target-defined fashion for
8194         // C_Immediate/C_Other). Find a register that we can use.
8195         if (OpInfo.AssignedRegs.Regs.empty()) {
8196           emitInlineAsmError(
8197               CS, "couldn't allocate output register for constraint '" +
8198                       Twine(OpInfo.ConstraintCode) + "'");
8199           return;
8200         }
8201 
8202         // Add information to the INLINEASM node to know that this register is
8203         // set.
8204         OpInfo.AssignedRegs.AddInlineAsmOperands(
8205             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8206                                   : InlineAsm::Kind_RegDef,
8207             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8208       }
8209       break;
8210 
8211     case InlineAsm::isInput: {
8212       SDValue InOperandVal = OpInfo.CallOperand;
8213 
8214       if (OpInfo.isMatchingInputConstraint()) {
8215         // If this is required to match an output register we have already set,
8216         // just use its register.
8217         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8218                                                   AsmNodeOperands);
8219         unsigned OpFlag =
8220           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8221         if (InlineAsm::isRegDefKind(OpFlag) ||
8222             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8223           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8224           if (OpInfo.isIndirect) {
8225             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8226             emitInlineAsmError(CS, "inline asm not supported yet:"
8227                                    " don't know how to handle tied "
8228                                    "indirect register inputs");
8229             return;
8230           }
8231 
8232           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8233           SmallVector<unsigned, 4> Regs;
8234 
8235           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8236             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8237             MachineRegisterInfo &RegInfo =
8238                 DAG.getMachineFunction().getRegInfo();
8239             for (unsigned i = 0; i != NumRegs; ++i)
8240               Regs.push_back(RegInfo.createVirtualRegister(RC));
8241           } else {
8242             emitInlineAsmError(CS, "inline asm error: This value type register "
8243                                    "class is not natively supported!");
8244             return;
8245           }
8246 
8247           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8248 
8249           SDLoc dl = getCurSDLoc();
8250           // Use the produced MatchedRegs object to
8251           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8252                                     CS.getInstruction());
8253           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8254                                            true, OpInfo.getMatchedOperand(), dl,
8255                                            DAG, AsmNodeOperands);
8256           break;
8257         }
8258 
8259         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8260         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8261                "Unexpected number of operands");
8262         // Add information to the INLINEASM node to know about this input.
8263         // See InlineAsm.h isUseOperandTiedToDef.
8264         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8265         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8266                                                     OpInfo.getMatchedOperand());
8267         AsmNodeOperands.push_back(DAG.getTargetConstant(
8268             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8269         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8270         break;
8271       }
8272 
8273       // Treat indirect 'X' constraint as memory.
8274       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8275           OpInfo.isIndirect)
8276         OpInfo.ConstraintType = TargetLowering::C_Memory;
8277 
8278       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8279           OpInfo.ConstraintType == TargetLowering::C_Other) {
8280         std::vector<SDValue> Ops;
8281         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8282                                           Ops, DAG);
8283         if (Ops.empty()) {
8284           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8285             if (isa<ConstantSDNode>(InOperandVal)) {
8286               emitInlineAsmError(CS, "value out of range for constraint '" +
8287                                  Twine(OpInfo.ConstraintCode) + "'");
8288               return;
8289             }
8290 
8291           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8292                                      Twine(OpInfo.ConstraintCode) + "'");
8293           return;
8294         }
8295 
8296         // Add information to the INLINEASM node to know about this input.
8297         unsigned ResOpType =
8298           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8299         AsmNodeOperands.push_back(DAG.getTargetConstant(
8300             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8301         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8302         break;
8303       }
8304 
8305       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8306         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8307         assert(InOperandVal.getValueType() ==
8308                    TLI.getPointerTy(DAG.getDataLayout()) &&
8309                "Memory operands expect pointer values");
8310 
8311         unsigned ConstraintID =
8312             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8313         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8314                "Failed to convert memory constraint code to constraint id.");
8315 
8316         // Add information to the INLINEASM node to know about this input.
8317         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8318         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8319         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8320                                                         getCurSDLoc(),
8321                                                         MVT::i32));
8322         AsmNodeOperands.push_back(InOperandVal);
8323         break;
8324       }
8325 
8326       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8327               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8328              "Unknown constraint type!");
8329 
8330       // TODO: Support this.
8331       if (OpInfo.isIndirect) {
8332         emitInlineAsmError(
8333             CS, "Don't know how to handle indirect register inputs yet "
8334                 "for constraint '" +
8335                     Twine(OpInfo.ConstraintCode) + "'");
8336         return;
8337       }
8338 
8339       // Copy the input into the appropriate registers.
8340       if (OpInfo.AssignedRegs.Regs.empty()) {
8341         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8342                                    Twine(OpInfo.ConstraintCode) + "'");
8343         return;
8344       }
8345 
8346       SDLoc dl = getCurSDLoc();
8347 
8348       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8349                                         Chain, &Flag, CS.getInstruction());
8350 
8351       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8352                                                dl, DAG, AsmNodeOperands);
8353       break;
8354     }
8355     case InlineAsm::isClobber:
8356       // Add the clobbered value to the operand list, so that the register
8357       // allocator is aware that the physreg got clobbered.
8358       if (!OpInfo.AssignedRegs.Regs.empty())
8359         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8360                                                  false, 0, getCurSDLoc(), DAG,
8361                                                  AsmNodeOperands);
8362       break;
8363     }
8364   }
8365 
8366   // Finish up input operands.  Set the input chain and add the flag last.
8367   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8368   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8369 
8370   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8371   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8372                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8373   Flag = Chain.getValue(1);
8374 
8375   // Do additional work to generate outputs.
8376 
8377   SmallVector<EVT, 1> ResultVTs;
8378   SmallVector<SDValue, 1> ResultValues;
8379   SmallVector<SDValue, 8> OutChains;
8380 
8381   llvm::Type *CSResultType = CS.getType();
8382   ArrayRef<Type *> ResultTypes;
8383   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8384     ResultTypes = StructResult->elements();
8385   else if (!CSResultType->isVoidTy())
8386     ResultTypes = makeArrayRef(CSResultType);
8387 
8388   auto CurResultType = ResultTypes.begin();
8389   auto handleRegAssign = [&](SDValue V) {
8390     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8391     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8392     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8393     ++CurResultType;
8394     // If the type of the inline asm call site return value is different but has
8395     // same size as the type of the asm output bitcast it.  One example of this
8396     // is for vectors with different width / number of elements.  This can
8397     // happen for register classes that can contain multiple different value
8398     // types.  The preg or vreg allocated may not have the same VT as was
8399     // expected.
8400     //
8401     // This can also happen for a return value that disagrees with the register
8402     // class it is put in, eg. a double in a general-purpose register on a
8403     // 32-bit machine.
8404     if (ResultVT != V.getValueType() &&
8405         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8406       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8407     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8408              V.getValueType().isInteger()) {
8409       // If a result value was tied to an input value, the computed result
8410       // may have a wider width than the expected result.  Extract the
8411       // relevant portion.
8412       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8413     }
8414     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8415     ResultVTs.push_back(ResultVT);
8416     ResultValues.push_back(V);
8417   };
8418 
8419   // Deal with output operands.
8420   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8421     if (OpInfo.Type == InlineAsm::isOutput) {
8422       SDValue Val;
8423       // Skip trivial output operands.
8424       if (OpInfo.AssignedRegs.Regs.empty())
8425         continue;
8426 
8427       switch (OpInfo.ConstraintType) {
8428       case TargetLowering::C_Register:
8429       case TargetLowering::C_RegisterClass:
8430         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8431             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8432         break;
8433       case TargetLowering::C_Immediate:
8434       case TargetLowering::C_Other:
8435         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8436                                               OpInfo, DAG);
8437         break;
8438       case TargetLowering::C_Memory:
8439         break; // Already handled.
8440       case TargetLowering::C_Unknown:
8441         assert(false && "Unexpected unknown constraint");
8442       }
8443 
8444       // Indirect output manifest as stores. Record output chains.
8445       if (OpInfo.isIndirect) {
8446         const Value *Ptr = OpInfo.CallOperandVal;
8447         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8448         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8449                                      MachinePointerInfo(Ptr));
8450         OutChains.push_back(Store);
8451       } else {
8452         // generate CopyFromRegs to associated registers.
8453         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8454         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8455           for (const SDValue &V : Val->op_values())
8456             handleRegAssign(V);
8457         } else
8458           handleRegAssign(Val);
8459       }
8460     }
8461   }
8462 
8463   // Set results.
8464   if (!ResultValues.empty()) {
8465     assert(CurResultType == ResultTypes.end() &&
8466            "Mismatch in number of ResultTypes");
8467     assert(ResultValues.size() == ResultTypes.size() &&
8468            "Mismatch in number of output operands in asm result");
8469 
8470     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8471                             DAG.getVTList(ResultVTs), ResultValues);
8472     setValue(CS.getInstruction(), V);
8473   }
8474 
8475   // Collect store chains.
8476   if (!OutChains.empty())
8477     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8478 
8479   // Only Update Root if inline assembly has a memory effect.
8480   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8481     DAG.setRoot(Chain);
8482 }
8483 
8484 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8485                                              const Twine &Message) {
8486   LLVMContext &Ctx = *DAG.getContext();
8487   Ctx.emitError(CS.getInstruction(), Message);
8488 
8489   // Make sure we leave the DAG in a valid state
8490   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8491   SmallVector<EVT, 1> ValueVTs;
8492   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8493 
8494   if (ValueVTs.empty())
8495     return;
8496 
8497   SmallVector<SDValue, 1> Ops;
8498   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8499     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8500 
8501   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8502 }
8503 
8504 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8505   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8506                           MVT::Other, getRoot(),
8507                           getValue(I.getArgOperand(0)),
8508                           DAG.getSrcValue(I.getArgOperand(0))));
8509 }
8510 
8511 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8513   const DataLayout &DL = DAG.getDataLayout();
8514   SDValue V = DAG.getVAArg(
8515       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8516       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8517       DL.getABITypeAlignment(I.getType()));
8518   DAG.setRoot(V.getValue(1));
8519 
8520   if (I.getType()->isPointerTy())
8521     V = DAG.getPtrExtOrTrunc(
8522         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8523   setValue(&I, V);
8524 }
8525 
8526 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8527   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8528                           MVT::Other, getRoot(),
8529                           getValue(I.getArgOperand(0)),
8530                           DAG.getSrcValue(I.getArgOperand(0))));
8531 }
8532 
8533 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8534   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8535                           MVT::Other, getRoot(),
8536                           getValue(I.getArgOperand(0)),
8537                           getValue(I.getArgOperand(1)),
8538                           DAG.getSrcValue(I.getArgOperand(0)),
8539                           DAG.getSrcValue(I.getArgOperand(1))));
8540 }
8541 
8542 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8543                                                     const Instruction &I,
8544                                                     SDValue Op) {
8545   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8546   if (!Range)
8547     return Op;
8548 
8549   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8550   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8551     return Op;
8552 
8553   APInt Lo = CR.getUnsignedMin();
8554   if (!Lo.isMinValue())
8555     return Op;
8556 
8557   APInt Hi = CR.getUnsignedMax();
8558   unsigned Bits = std::max(Hi.getActiveBits(),
8559                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8560 
8561   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8562 
8563   SDLoc SL = getCurSDLoc();
8564 
8565   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8566                              DAG.getValueType(SmallVT));
8567   unsigned NumVals = Op.getNode()->getNumValues();
8568   if (NumVals == 1)
8569     return ZExt;
8570 
8571   SmallVector<SDValue, 4> Ops;
8572 
8573   Ops.push_back(ZExt);
8574   for (unsigned I = 1; I != NumVals; ++I)
8575     Ops.push_back(Op.getValue(I));
8576 
8577   return DAG.getMergeValues(Ops, SL);
8578 }
8579 
8580 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8581 /// the call being lowered.
8582 ///
8583 /// This is a helper for lowering intrinsics that follow a target calling
8584 /// convention or require stack pointer adjustment. Only a subset of the
8585 /// intrinsic's operands need to participate in the calling convention.
8586 void SelectionDAGBuilder::populateCallLoweringInfo(
8587     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8588     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8589     bool IsPatchPoint) {
8590   TargetLowering::ArgListTy Args;
8591   Args.reserve(NumArgs);
8592 
8593   // Populate the argument list.
8594   // Attributes for args start at offset 1, after the return attribute.
8595   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8596        ArgI != ArgE; ++ArgI) {
8597     const Value *V = Call->getOperand(ArgI);
8598 
8599     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8600 
8601     TargetLowering::ArgListEntry Entry;
8602     Entry.Node = getValue(V);
8603     Entry.Ty = V->getType();
8604     Entry.setAttributes(Call, ArgI);
8605     Args.push_back(Entry);
8606   }
8607 
8608   CLI.setDebugLoc(getCurSDLoc())
8609       .setChain(getRoot())
8610       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8611       .setDiscardResult(Call->use_empty())
8612       .setIsPatchPoint(IsPatchPoint);
8613 }
8614 
8615 /// Add a stack map intrinsic call's live variable operands to a stackmap
8616 /// or patchpoint target node's operand list.
8617 ///
8618 /// Constants are converted to TargetConstants purely as an optimization to
8619 /// avoid constant materialization and register allocation.
8620 ///
8621 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8622 /// generate addess computation nodes, and so FinalizeISel can convert the
8623 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8624 /// address materialization and register allocation, but may also be required
8625 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8626 /// alloca in the entry block, then the runtime may assume that the alloca's
8627 /// StackMap location can be read immediately after compilation and that the
8628 /// location is valid at any point during execution (this is similar to the
8629 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8630 /// only available in a register, then the runtime would need to trap when
8631 /// execution reaches the StackMap in order to read the alloca's location.
8632 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8633                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8634                                 SelectionDAGBuilder &Builder) {
8635   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8636     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8637     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8638       Ops.push_back(
8639         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8640       Ops.push_back(
8641         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8642     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8643       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8644       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8645           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8646     } else
8647       Ops.push_back(OpVal);
8648   }
8649 }
8650 
8651 /// Lower llvm.experimental.stackmap directly to its target opcode.
8652 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8653   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8654   //                                  [live variables...])
8655 
8656   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8657 
8658   SDValue Chain, InFlag, Callee, NullPtr;
8659   SmallVector<SDValue, 32> Ops;
8660 
8661   SDLoc DL = getCurSDLoc();
8662   Callee = getValue(CI.getCalledValue());
8663   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8664 
8665   // The stackmap intrinsic only records the live variables (the arguments
8666   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8667   // intrinsic, this won't be lowered to a function call. This means we don't
8668   // have to worry about calling conventions and target specific lowering code.
8669   // Instead we perform the call lowering right here.
8670   //
8671   // chain, flag = CALLSEQ_START(chain, 0, 0)
8672   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8673   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8674   //
8675   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8676   InFlag = Chain.getValue(1);
8677 
8678   // Add the <id> and <numBytes> constants.
8679   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8680   Ops.push_back(DAG.getTargetConstant(
8681                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8682   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8683   Ops.push_back(DAG.getTargetConstant(
8684                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8685                   MVT::i32));
8686 
8687   // Push live variables for the stack map.
8688   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8689 
8690   // We are not pushing any register mask info here on the operands list,
8691   // because the stackmap doesn't clobber anything.
8692 
8693   // Push the chain and the glue flag.
8694   Ops.push_back(Chain);
8695   Ops.push_back(InFlag);
8696 
8697   // Create the STACKMAP node.
8698   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8699   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8700   Chain = SDValue(SM, 0);
8701   InFlag = Chain.getValue(1);
8702 
8703   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8704 
8705   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8706 
8707   // Set the root to the target-lowered call chain.
8708   DAG.setRoot(Chain);
8709 
8710   // Inform the Frame Information that we have a stackmap in this function.
8711   FuncInfo.MF->getFrameInfo().setHasStackMap();
8712 }
8713 
8714 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8715 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8716                                           const BasicBlock *EHPadBB) {
8717   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8718   //                                                 i32 <numBytes>,
8719   //                                                 i8* <target>,
8720   //                                                 i32 <numArgs>,
8721   //                                                 [Args...],
8722   //                                                 [live variables...])
8723 
8724   CallingConv::ID CC = CS.getCallingConv();
8725   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8726   bool HasDef = !CS->getType()->isVoidTy();
8727   SDLoc dl = getCurSDLoc();
8728   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8729 
8730   // Handle immediate and symbolic callees.
8731   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8732     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8733                                    /*isTarget=*/true);
8734   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8735     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8736                                          SDLoc(SymbolicCallee),
8737                                          SymbolicCallee->getValueType(0));
8738 
8739   // Get the real number of arguments participating in the call <numArgs>
8740   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8741   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8742 
8743   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8744   // Intrinsics include all meta-operands up to but not including CC.
8745   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8746   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8747          "Not enough arguments provided to the patchpoint intrinsic");
8748 
8749   // For AnyRegCC the arguments are lowered later on manually.
8750   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8751   Type *ReturnTy =
8752     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8753 
8754   TargetLowering::CallLoweringInfo CLI(DAG);
8755   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8756                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8757   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8758 
8759   SDNode *CallEnd = Result.second.getNode();
8760   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8761     CallEnd = CallEnd->getOperand(0).getNode();
8762 
8763   /// Get a call instruction from the call sequence chain.
8764   /// Tail calls are not allowed.
8765   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8766          "Expected a callseq node.");
8767   SDNode *Call = CallEnd->getOperand(0).getNode();
8768   bool HasGlue = Call->getGluedNode();
8769 
8770   // Replace the target specific call node with the patchable intrinsic.
8771   SmallVector<SDValue, 8> Ops;
8772 
8773   // Add the <id> and <numBytes> constants.
8774   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8775   Ops.push_back(DAG.getTargetConstant(
8776                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8777   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8778   Ops.push_back(DAG.getTargetConstant(
8779                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8780                   MVT::i32));
8781 
8782   // Add the callee.
8783   Ops.push_back(Callee);
8784 
8785   // Adjust <numArgs> to account for any arguments that have been passed on the
8786   // stack instead.
8787   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8788   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8789   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8790   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8791 
8792   // Add the calling convention
8793   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8794 
8795   // Add the arguments we omitted previously. The register allocator should
8796   // place these in any free register.
8797   if (IsAnyRegCC)
8798     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8799       Ops.push_back(getValue(CS.getArgument(i)));
8800 
8801   // Push the arguments from the call instruction up to the register mask.
8802   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8803   Ops.append(Call->op_begin() + 2, e);
8804 
8805   // Push live variables for the stack map.
8806   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8807 
8808   // Push the register mask info.
8809   if (HasGlue)
8810     Ops.push_back(*(Call->op_end()-2));
8811   else
8812     Ops.push_back(*(Call->op_end()-1));
8813 
8814   // Push the chain (this is originally the first operand of the call, but
8815   // becomes now the last or second to last operand).
8816   Ops.push_back(*(Call->op_begin()));
8817 
8818   // Push the glue flag (last operand).
8819   if (HasGlue)
8820     Ops.push_back(*(Call->op_end()-1));
8821 
8822   SDVTList NodeTys;
8823   if (IsAnyRegCC && HasDef) {
8824     // Create the return types based on the intrinsic definition
8825     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8826     SmallVector<EVT, 3> ValueVTs;
8827     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8828     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8829 
8830     // There is always a chain and a glue type at the end
8831     ValueVTs.push_back(MVT::Other);
8832     ValueVTs.push_back(MVT::Glue);
8833     NodeTys = DAG.getVTList(ValueVTs);
8834   } else
8835     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8836 
8837   // Replace the target specific call node with a PATCHPOINT node.
8838   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8839                                          dl, NodeTys, Ops);
8840 
8841   // Update the NodeMap.
8842   if (HasDef) {
8843     if (IsAnyRegCC)
8844       setValue(CS.getInstruction(), SDValue(MN, 0));
8845     else
8846       setValue(CS.getInstruction(), Result.first);
8847   }
8848 
8849   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8850   // call sequence. Furthermore the location of the chain and glue can change
8851   // when the AnyReg calling convention is used and the intrinsic returns a
8852   // value.
8853   if (IsAnyRegCC && HasDef) {
8854     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8855     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8856     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8857   } else
8858     DAG.ReplaceAllUsesWith(Call, MN);
8859   DAG.DeleteNode(Call);
8860 
8861   // Inform the Frame Information that we have a patchpoint in this function.
8862   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8863 }
8864 
8865 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8866                                             unsigned Intrinsic) {
8867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8868   SDValue Op1 = getValue(I.getArgOperand(0));
8869   SDValue Op2;
8870   if (I.getNumArgOperands() > 1)
8871     Op2 = getValue(I.getArgOperand(1));
8872   SDLoc dl = getCurSDLoc();
8873   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8874   SDValue Res;
8875   FastMathFlags FMF;
8876   if (isa<FPMathOperator>(I))
8877     FMF = I.getFastMathFlags();
8878 
8879   switch (Intrinsic) {
8880   case Intrinsic::experimental_vector_reduce_v2_fadd:
8881     if (FMF.allowReassoc())
8882       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8883                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8884     else
8885       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8886     break;
8887   case Intrinsic::experimental_vector_reduce_v2_fmul:
8888     if (FMF.allowReassoc())
8889       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8890                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8891     else
8892       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8893     break;
8894   case Intrinsic::experimental_vector_reduce_add:
8895     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8896     break;
8897   case Intrinsic::experimental_vector_reduce_mul:
8898     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8899     break;
8900   case Intrinsic::experimental_vector_reduce_and:
8901     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8902     break;
8903   case Intrinsic::experimental_vector_reduce_or:
8904     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8905     break;
8906   case Intrinsic::experimental_vector_reduce_xor:
8907     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8908     break;
8909   case Intrinsic::experimental_vector_reduce_smax:
8910     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8911     break;
8912   case Intrinsic::experimental_vector_reduce_smin:
8913     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8914     break;
8915   case Intrinsic::experimental_vector_reduce_umax:
8916     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8917     break;
8918   case Intrinsic::experimental_vector_reduce_umin:
8919     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8920     break;
8921   case Intrinsic::experimental_vector_reduce_fmax:
8922     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8923     break;
8924   case Intrinsic::experimental_vector_reduce_fmin:
8925     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8926     break;
8927   default:
8928     llvm_unreachable("Unhandled vector reduce intrinsic");
8929   }
8930   setValue(&I, Res);
8931 }
8932 
8933 /// Returns an AttributeList representing the attributes applied to the return
8934 /// value of the given call.
8935 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8936   SmallVector<Attribute::AttrKind, 2> Attrs;
8937   if (CLI.RetSExt)
8938     Attrs.push_back(Attribute::SExt);
8939   if (CLI.RetZExt)
8940     Attrs.push_back(Attribute::ZExt);
8941   if (CLI.IsInReg)
8942     Attrs.push_back(Attribute::InReg);
8943 
8944   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8945                             Attrs);
8946 }
8947 
8948 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8949 /// implementation, which just calls LowerCall.
8950 /// FIXME: When all targets are
8951 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8952 std::pair<SDValue, SDValue>
8953 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8954   // Handle the incoming return values from the call.
8955   CLI.Ins.clear();
8956   Type *OrigRetTy = CLI.RetTy;
8957   SmallVector<EVT, 4> RetTys;
8958   SmallVector<uint64_t, 4> Offsets;
8959   auto &DL = CLI.DAG.getDataLayout();
8960   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8961 
8962   if (CLI.IsPostTypeLegalization) {
8963     // If we are lowering a libcall after legalization, split the return type.
8964     SmallVector<EVT, 4> OldRetTys;
8965     SmallVector<uint64_t, 4> OldOffsets;
8966     RetTys.swap(OldRetTys);
8967     Offsets.swap(OldOffsets);
8968 
8969     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8970       EVT RetVT = OldRetTys[i];
8971       uint64_t Offset = OldOffsets[i];
8972       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8973       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8974       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8975       RetTys.append(NumRegs, RegisterVT);
8976       for (unsigned j = 0; j != NumRegs; ++j)
8977         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8978     }
8979   }
8980 
8981   SmallVector<ISD::OutputArg, 4> Outs;
8982   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8983 
8984   bool CanLowerReturn =
8985       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8986                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8987 
8988   SDValue DemoteStackSlot;
8989   int DemoteStackIdx = -100;
8990   if (!CanLowerReturn) {
8991     // FIXME: equivalent assert?
8992     // assert(!CS.hasInAllocaArgument() &&
8993     //        "sret demotion is incompatible with inalloca");
8994     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8995     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8996     MachineFunction &MF = CLI.DAG.getMachineFunction();
8997     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8998     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8999                                               DL.getAllocaAddrSpace());
9000 
9001     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9002     ArgListEntry Entry;
9003     Entry.Node = DemoteStackSlot;
9004     Entry.Ty = StackSlotPtrType;
9005     Entry.IsSExt = false;
9006     Entry.IsZExt = false;
9007     Entry.IsInReg = false;
9008     Entry.IsSRet = true;
9009     Entry.IsNest = false;
9010     Entry.IsByVal = false;
9011     Entry.IsReturned = false;
9012     Entry.IsSwiftSelf = false;
9013     Entry.IsSwiftError = false;
9014     Entry.IsCFGuardTarget = false;
9015     Entry.Alignment = Align;
9016     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9017     CLI.NumFixedArgs += 1;
9018     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9019 
9020     // sret demotion isn't compatible with tail-calls, since the sret argument
9021     // points into the callers stack frame.
9022     CLI.IsTailCall = false;
9023   } else {
9024     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9025         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9026     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9027       ISD::ArgFlagsTy Flags;
9028       if (NeedsRegBlock) {
9029         Flags.setInConsecutiveRegs();
9030         if (I == RetTys.size() - 1)
9031           Flags.setInConsecutiveRegsLast();
9032       }
9033       EVT VT = RetTys[I];
9034       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9035                                                      CLI.CallConv, VT);
9036       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9037                                                        CLI.CallConv, VT);
9038       for (unsigned i = 0; i != NumRegs; ++i) {
9039         ISD::InputArg MyFlags;
9040         MyFlags.Flags = Flags;
9041         MyFlags.VT = RegisterVT;
9042         MyFlags.ArgVT = VT;
9043         MyFlags.Used = CLI.IsReturnValueUsed;
9044         if (CLI.RetTy->isPointerTy()) {
9045           MyFlags.Flags.setPointer();
9046           MyFlags.Flags.setPointerAddrSpace(
9047               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9048         }
9049         if (CLI.RetSExt)
9050           MyFlags.Flags.setSExt();
9051         if (CLI.RetZExt)
9052           MyFlags.Flags.setZExt();
9053         if (CLI.IsInReg)
9054           MyFlags.Flags.setInReg();
9055         CLI.Ins.push_back(MyFlags);
9056       }
9057     }
9058   }
9059 
9060   // We push in swifterror return as the last element of CLI.Ins.
9061   ArgListTy &Args = CLI.getArgs();
9062   if (supportSwiftError()) {
9063     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9064       if (Args[i].IsSwiftError) {
9065         ISD::InputArg MyFlags;
9066         MyFlags.VT = getPointerTy(DL);
9067         MyFlags.ArgVT = EVT(getPointerTy(DL));
9068         MyFlags.Flags.setSwiftError();
9069         CLI.Ins.push_back(MyFlags);
9070       }
9071     }
9072   }
9073 
9074   // Handle all of the outgoing arguments.
9075   CLI.Outs.clear();
9076   CLI.OutVals.clear();
9077   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9078     SmallVector<EVT, 4> ValueVTs;
9079     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9080     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9081     Type *FinalType = Args[i].Ty;
9082     if (Args[i].IsByVal)
9083       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9084     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9085         FinalType, CLI.CallConv, CLI.IsVarArg);
9086     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9087          ++Value) {
9088       EVT VT = ValueVTs[Value];
9089       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9090       SDValue Op = SDValue(Args[i].Node.getNode(),
9091                            Args[i].Node.getResNo() + Value);
9092       ISD::ArgFlagsTy Flags;
9093 
9094       // Certain targets (such as MIPS), may have a different ABI alignment
9095       // for a type depending on the context. Give the target a chance to
9096       // specify the alignment it wants.
9097       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9098 
9099       if (Args[i].Ty->isPointerTy()) {
9100         Flags.setPointer();
9101         Flags.setPointerAddrSpace(
9102             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9103       }
9104       if (Args[i].IsZExt)
9105         Flags.setZExt();
9106       if (Args[i].IsSExt)
9107         Flags.setSExt();
9108       if (Args[i].IsInReg) {
9109         // If we are using vectorcall calling convention, a structure that is
9110         // passed InReg - is surely an HVA
9111         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9112             isa<StructType>(FinalType)) {
9113           // The first value of a structure is marked
9114           if (0 == Value)
9115             Flags.setHvaStart();
9116           Flags.setHva();
9117         }
9118         // Set InReg Flag
9119         Flags.setInReg();
9120       }
9121       if (Args[i].IsSRet)
9122         Flags.setSRet();
9123       if (Args[i].IsSwiftSelf)
9124         Flags.setSwiftSelf();
9125       if (Args[i].IsSwiftError)
9126         Flags.setSwiftError();
9127       if (Args[i].IsCFGuardTarget)
9128         Flags.setCFGuardTarget();
9129       if (Args[i].IsByVal)
9130         Flags.setByVal();
9131       if (Args[i].IsInAlloca) {
9132         Flags.setInAlloca();
9133         // Set the byval flag for CCAssignFn callbacks that don't know about
9134         // inalloca.  This way we can know how many bytes we should've allocated
9135         // and how many bytes a callee cleanup function will pop.  If we port
9136         // inalloca to more targets, we'll have to add custom inalloca handling
9137         // in the various CC lowering callbacks.
9138         Flags.setByVal();
9139       }
9140       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9141         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9142         Type *ElementTy = Ty->getElementType();
9143 
9144         unsigned FrameSize = DL.getTypeAllocSize(
9145             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9146         Flags.setByValSize(FrameSize);
9147 
9148         // info is not there but there are cases it cannot get right.
9149         unsigned FrameAlign;
9150         if (Args[i].Alignment)
9151           FrameAlign = Args[i].Alignment;
9152         else
9153           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9154         Flags.setByValAlign(Align(FrameAlign));
9155       }
9156       if (Args[i].IsNest)
9157         Flags.setNest();
9158       if (NeedsRegBlock)
9159         Flags.setInConsecutiveRegs();
9160       Flags.setOrigAlign(OriginalAlignment);
9161 
9162       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9163                                                  CLI.CallConv, VT);
9164       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9165                                                         CLI.CallConv, VT);
9166       SmallVector<SDValue, 4> Parts(NumParts);
9167       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9168 
9169       if (Args[i].IsSExt)
9170         ExtendKind = ISD::SIGN_EXTEND;
9171       else if (Args[i].IsZExt)
9172         ExtendKind = ISD::ZERO_EXTEND;
9173 
9174       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9175       // for now.
9176       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9177           CanLowerReturn) {
9178         assert((CLI.RetTy == Args[i].Ty ||
9179                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9180                  CLI.RetTy->getPointerAddressSpace() ==
9181                      Args[i].Ty->getPointerAddressSpace())) &&
9182                RetTys.size() == NumValues && "unexpected use of 'returned'");
9183         // Before passing 'returned' to the target lowering code, ensure that
9184         // either the register MVT and the actual EVT are the same size or that
9185         // the return value and argument are extended in the same way; in these
9186         // cases it's safe to pass the argument register value unchanged as the
9187         // return register value (although it's at the target's option whether
9188         // to do so)
9189         // TODO: allow code generation to take advantage of partially preserved
9190         // registers rather than clobbering the entire register when the
9191         // parameter extension method is not compatible with the return
9192         // extension method
9193         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9194             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9195              CLI.RetZExt == Args[i].IsZExt))
9196           Flags.setReturned();
9197       }
9198 
9199       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9200                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9201 
9202       for (unsigned j = 0; j != NumParts; ++j) {
9203         // if it isn't first piece, alignment must be 1
9204         // For scalable vectors the scalable part is currently handled
9205         // by individual targets, so we just use the known minimum size here.
9206         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9207                     i < CLI.NumFixedArgs, i,
9208                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9209         if (NumParts > 1 && j == 0)
9210           MyFlags.Flags.setSplit();
9211         else if (j != 0) {
9212           MyFlags.Flags.setOrigAlign(Align(1));
9213           if (j == NumParts - 1)
9214             MyFlags.Flags.setSplitEnd();
9215         }
9216 
9217         CLI.Outs.push_back(MyFlags);
9218         CLI.OutVals.push_back(Parts[j]);
9219       }
9220 
9221       if (NeedsRegBlock && Value == NumValues - 1)
9222         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9223     }
9224   }
9225 
9226   SmallVector<SDValue, 4> InVals;
9227   CLI.Chain = LowerCall(CLI, InVals);
9228 
9229   // Update CLI.InVals to use outside of this function.
9230   CLI.InVals = InVals;
9231 
9232   // Verify that the target's LowerCall behaved as expected.
9233   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9234          "LowerCall didn't return a valid chain!");
9235   assert((!CLI.IsTailCall || InVals.empty()) &&
9236          "LowerCall emitted a return value for a tail call!");
9237   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9238          "LowerCall didn't emit the correct number of values!");
9239 
9240   // For a tail call, the return value is merely live-out and there aren't
9241   // any nodes in the DAG representing it. Return a special value to
9242   // indicate that a tail call has been emitted and no more Instructions
9243   // should be processed in the current block.
9244   if (CLI.IsTailCall) {
9245     CLI.DAG.setRoot(CLI.Chain);
9246     return std::make_pair(SDValue(), SDValue());
9247   }
9248 
9249 #ifndef NDEBUG
9250   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9251     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9252     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9253            "LowerCall emitted a value with the wrong type!");
9254   }
9255 #endif
9256 
9257   SmallVector<SDValue, 4> ReturnValues;
9258   if (!CanLowerReturn) {
9259     // The instruction result is the result of loading from the
9260     // hidden sret parameter.
9261     SmallVector<EVT, 1> PVTs;
9262     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9263 
9264     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9265     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9266     EVT PtrVT = PVTs[0];
9267 
9268     unsigned NumValues = RetTys.size();
9269     ReturnValues.resize(NumValues);
9270     SmallVector<SDValue, 4> Chains(NumValues);
9271 
9272     // An aggregate return value cannot wrap around the address space, so
9273     // offsets to its parts don't wrap either.
9274     SDNodeFlags Flags;
9275     Flags.setNoUnsignedWrap(true);
9276 
9277     for (unsigned i = 0; i < NumValues; ++i) {
9278       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9279                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9280                                                         PtrVT), Flags);
9281       SDValue L = CLI.DAG.getLoad(
9282           RetTys[i], CLI.DL, CLI.Chain, Add,
9283           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9284                                             DemoteStackIdx, Offsets[i]),
9285           /* Alignment = */ 1);
9286       ReturnValues[i] = L;
9287       Chains[i] = L.getValue(1);
9288     }
9289 
9290     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9291   } else {
9292     // Collect the legal value parts into potentially illegal values
9293     // that correspond to the original function's return values.
9294     Optional<ISD::NodeType> AssertOp;
9295     if (CLI.RetSExt)
9296       AssertOp = ISD::AssertSext;
9297     else if (CLI.RetZExt)
9298       AssertOp = ISD::AssertZext;
9299     unsigned CurReg = 0;
9300     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9301       EVT VT = RetTys[I];
9302       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9303                                                      CLI.CallConv, VT);
9304       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9305                                                        CLI.CallConv, VT);
9306 
9307       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9308                                               NumRegs, RegisterVT, VT, nullptr,
9309                                               CLI.CallConv, AssertOp));
9310       CurReg += NumRegs;
9311     }
9312 
9313     // For a function returning void, there is no return value. We can't create
9314     // such a node, so we just return a null return value in that case. In
9315     // that case, nothing will actually look at the value.
9316     if (ReturnValues.empty())
9317       return std::make_pair(SDValue(), CLI.Chain);
9318   }
9319 
9320   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9321                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9322   return std::make_pair(Res, CLI.Chain);
9323 }
9324 
9325 void TargetLowering::LowerOperationWrapper(SDNode *N,
9326                                            SmallVectorImpl<SDValue> &Results,
9327                                            SelectionDAG &DAG) const {
9328   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9329     Results.push_back(Res);
9330 }
9331 
9332 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9333   llvm_unreachable("LowerOperation not implemented for this target!");
9334 }
9335 
9336 void
9337 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9338   SDValue Op = getNonRegisterValue(V);
9339   assert((Op.getOpcode() != ISD::CopyFromReg ||
9340           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9341          "Copy from a reg to the same reg!");
9342   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9343 
9344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9345   // If this is an InlineAsm we have to match the registers required, not the
9346   // notional registers required by the type.
9347 
9348   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9349                    None); // This is not an ABI copy.
9350   SDValue Chain = DAG.getEntryNode();
9351 
9352   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9353                               FuncInfo.PreferredExtendType.end())
9354                                  ? ISD::ANY_EXTEND
9355                                  : FuncInfo.PreferredExtendType[V];
9356   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9357   PendingExports.push_back(Chain);
9358 }
9359 
9360 #include "llvm/CodeGen/SelectionDAGISel.h"
9361 
9362 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9363 /// entry block, return true.  This includes arguments used by switches, since
9364 /// the switch may expand into multiple basic blocks.
9365 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9366   // With FastISel active, we may be splitting blocks, so force creation
9367   // of virtual registers for all non-dead arguments.
9368   if (FastISel)
9369     return A->use_empty();
9370 
9371   const BasicBlock &Entry = A->getParent()->front();
9372   for (const User *U : A->users())
9373     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9374       return false;  // Use not in entry block.
9375 
9376   return true;
9377 }
9378 
9379 using ArgCopyElisionMapTy =
9380     DenseMap<const Argument *,
9381              std::pair<const AllocaInst *, const StoreInst *>>;
9382 
9383 /// Scan the entry block of the function in FuncInfo for arguments that look
9384 /// like copies into a local alloca. Record any copied arguments in
9385 /// ArgCopyElisionCandidates.
9386 static void
9387 findArgumentCopyElisionCandidates(const DataLayout &DL,
9388                                   FunctionLoweringInfo *FuncInfo,
9389                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9390   // Record the state of every static alloca used in the entry block. Argument
9391   // allocas are all used in the entry block, so we need approximately as many
9392   // entries as we have arguments.
9393   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9394   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9395   unsigned NumArgs = FuncInfo->Fn->arg_size();
9396   StaticAllocas.reserve(NumArgs * 2);
9397 
9398   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9399     if (!V)
9400       return nullptr;
9401     V = V->stripPointerCasts();
9402     const auto *AI = dyn_cast<AllocaInst>(V);
9403     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9404       return nullptr;
9405     auto Iter = StaticAllocas.insert({AI, Unknown});
9406     return &Iter.first->second;
9407   };
9408 
9409   // Look for stores of arguments to static allocas. Look through bitcasts and
9410   // GEPs to handle type coercions, as long as the alloca is fully initialized
9411   // by the store. Any non-store use of an alloca escapes it and any subsequent
9412   // unanalyzed store might write it.
9413   // FIXME: Handle structs initialized with multiple stores.
9414   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9415     // Look for stores, and handle non-store uses conservatively.
9416     const auto *SI = dyn_cast<StoreInst>(&I);
9417     if (!SI) {
9418       // We will look through cast uses, so ignore them completely.
9419       if (I.isCast())
9420         continue;
9421       // Ignore debug info intrinsics, they don't escape or store to allocas.
9422       if (isa<DbgInfoIntrinsic>(I))
9423         continue;
9424       // This is an unknown instruction. Assume it escapes or writes to all
9425       // static alloca operands.
9426       for (const Use &U : I.operands()) {
9427         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9428           *Info = StaticAllocaInfo::Clobbered;
9429       }
9430       continue;
9431     }
9432 
9433     // If the stored value is a static alloca, mark it as escaped.
9434     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9435       *Info = StaticAllocaInfo::Clobbered;
9436 
9437     // Check if the destination is a static alloca.
9438     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9439     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9440     if (!Info)
9441       continue;
9442     const AllocaInst *AI = cast<AllocaInst>(Dst);
9443 
9444     // Skip allocas that have been initialized or clobbered.
9445     if (*Info != StaticAllocaInfo::Unknown)
9446       continue;
9447 
9448     // Check if the stored value is an argument, and that this store fully
9449     // initializes the alloca. Don't elide copies from the same argument twice.
9450     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9451     const auto *Arg = dyn_cast<Argument>(Val);
9452     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9453         Arg->getType()->isEmptyTy() ||
9454         DL.getTypeStoreSize(Arg->getType()) !=
9455             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9456         ArgCopyElisionCandidates.count(Arg)) {
9457       *Info = StaticAllocaInfo::Clobbered;
9458       continue;
9459     }
9460 
9461     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9462                       << '\n');
9463 
9464     // Mark this alloca and store for argument copy elision.
9465     *Info = StaticAllocaInfo::Elidable;
9466     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9467 
9468     // Stop scanning if we've seen all arguments. This will happen early in -O0
9469     // builds, which is useful, because -O0 builds have large entry blocks and
9470     // many allocas.
9471     if (ArgCopyElisionCandidates.size() == NumArgs)
9472       break;
9473   }
9474 }
9475 
9476 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9477 /// ArgVal is a load from a suitable fixed stack object.
9478 static void tryToElideArgumentCopy(
9479     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9480     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9481     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9482     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9483     SDValue ArgVal, bool &ArgHasUses) {
9484   // Check if this is a load from a fixed stack object.
9485   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9486   if (!LNode)
9487     return;
9488   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9489   if (!FINode)
9490     return;
9491 
9492   // Check that the fixed stack object is the right size and alignment.
9493   // Look at the alignment that the user wrote on the alloca instead of looking
9494   // at the stack object.
9495   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9496   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9497   const AllocaInst *AI = ArgCopyIter->second.first;
9498   int FixedIndex = FINode->getIndex();
9499   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9500   int OldIndex = AllocaIndex;
9501   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9502   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9503     LLVM_DEBUG(
9504         dbgs() << "  argument copy elision failed due to bad fixed stack "
9505                   "object size\n");
9506     return;
9507   }
9508   unsigned RequiredAlignment = AI->getAlignment();
9509   if (!RequiredAlignment) {
9510     RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9511         AI->getAllocatedType());
9512   }
9513   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9514     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9515                          "greater than stack argument alignment ("
9516                       << RequiredAlignment << " vs "
9517                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9518     return;
9519   }
9520 
9521   // Perform the elision. Delete the old stack object and replace its only use
9522   // in the variable info map. Mark the stack object as mutable.
9523   LLVM_DEBUG({
9524     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9525            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9526            << '\n';
9527   });
9528   MFI.RemoveStackObject(OldIndex);
9529   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9530   AllocaIndex = FixedIndex;
9531   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9532   Chains.push_back(ArgVal.getValue(1));
9533 
9534   // Avoid emitting code for the store implementing the copy.
9535   const StoreInst *SI = ArgCopyIter->second.second;
9536   ElidedArgCopyInstrs.insert(SI);
9537 
9538   // Check for uses of the argument again so that we can avoid exporting ArgVal
9539   // if it is't used by anything other than the store.
9540   for (const Value *U : Arg.users()) {
9541     if (U != SI) {
9542       ArgHasUses = true;
9543       break;
9544     }
9545   }
9546 }
9547 
9548 void SelectionDAGISel::LowerArguments(const Function &F) {
9549   SelectionDAG &DAG = SDB->DAG;
9550   SDLoc dl = SDB->getCurSDLoc();
9551   const DataLayout &DL = DAG.getDataLayout();
9552   SmallVector<ISD::InputArg, 16> Ins;
9553 
9554   if (!FuncInfo->CanLowerReturn) {
9555     // Put in an sret pointer parameter before all the other parameters.
9556     SmallVector<EVT, 1> ValueVTs;
9557     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9558                     F.getReturnType()->getPointerTo(
9559                         DAG.getDataLayout().getAllocaAddrSpace()),
9560                     ValueVTs);
9561 
9562     // NOTE: Assuming that a pointer will never break down to more than one VT
9563     // or one register.
9564     ISD::ArgFlagsTy Flags;
9565     Flags.setSRet();
9566     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9567     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9568                          ISD::InputArg::NoArgIndex, 0);
9569     Ins.push_back(RetArg);
9570   }
9571 
9572   // Look for stores of arguments to static allocas. Mark such arguments with a
9573   // flag to ask the target to give us the memory location of that argument if
9574   // available.
9575   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9576   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9577                                     ArgCopyElisionCandidates);
9578 
9579   // Set up the incoming argument description vector.
9580   for (const Argument &Arg : F.args()) {
9581     unsigned ArgNo = Arg.getArgNo();
9582     SmallVector<EVT, 4> ValueVTs;
9583     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9584     bool isArgValueUsed = !Arg.use_empty();
9585     unsigned PartBase = 0;
9586     Type *FinalType = Arg.getType();
9587     if (Arg.hasAttribute(Attribute::ByVal))
9588       FinalType = Arg.getParamByValType();
9589     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9590         FinalType, F.getCallingConv(), F.isVarArg());
9591     for (unsigned Value = 0, NumValues = ValueVTs.size();
9592          Value != NumValues; ++Value) {
9593       EVT VT = ValueVTs[Value];
9594       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9595       ISD::ArgFlagsTy Flags;
9596 
9597       // Certain targets (such as MIPS), may have a different ABI alignment
9598       // for a type depending on the context. Give the target a chance to
9599       // specify the alignment it wants.
9600       const Align OriginalAlignment(
9601           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9602 
9603       if (Arg.getType()->isPointerTy()) {
9604         Flags.setPointer();
9605         Flags.setPointerAddrSpace(
9606             cast<PointerType>(Arg.getType())->getAddressSpace());
9607       }
9608       if (Arg.hasAttribute(Attribute::ZExt))
9609         Flags.setZExt();
9610       if (Arg.hasAttribute(Attribute::SExt))
9611         Flags.setSExt();
9612       if (Arg.hasAttribute(Attribute::InReg)) {
9613         // If we are using vectorcall calling convention, a structure that is
9614         // passed InReg - is surely an HVA
9615         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9616             isa<StructType>(Arg.getType())) {
9617           // The first value of a structure is marked
9618           if (0 == Value)
9619             Flags.setHvaStart();
9620           Flags.setHva();
9621         }
9622         // Set InReg Flag
9623         Flags.setInReg();
9624       }
9625       if (Arg.hasAttribute(Attribute::StructRet))
9626         Flags.setSRet();
9627       if (Arg.hasAttribute(Attribute::SwiftSelf))
9628         Flags.setSwiftSelf();
9629       if (Arg.hasAttribute(Attribute::SwiftError))
9630         Flags.setSwiftError();
9631       if (Arg.hasAttribute(Attribute::ByVal))
9632         Flags.setByVal();
9633       if (Arg.hasAttribute(Attribute::InAlloca)) {
9634         Flags.setInAlloca();
9635         // Set the byval flag for CCAssignFn callbacks that don't know about
9636         // inalloca.  This way we can know how many bytes we should've allocated
9637         // and how many bytes a callee cleanup function will pop.  If we port
9638         // inalloca to more targets, we'll have to add custom inalloca handling
9639         // in the various CC lowering callbacks.
9640         Flags.setByVal();
9641       }
9642       if (F.getCallingConv() == CallingConv::X86_INTR) {
9643         // IA Interrupt passes frame (1st parameter) by value in the stack.
9644         if (ArgNo == 0)
9645           Flags.setByVal();
9646       }
9647       if (Flags.isByVal() || Flags.isInAlloca()) {
9648         Type *ElementTy = Arg.getParamByValType();
9649 
9650         // For ByVal, size and alignment should be passed from FE.  BE will
9651         // guess if this info is not there but there are cases it cannot get
9652         // right.
9653         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9654         Flags.setByValSize(FrameSize);
9655 
9656         unsigned FrameAlign;
9657         if (Arg.getParamAlignment())
9658           FrameAlign = Arg.getParamAlignment();
9659         else
9660           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9661         Flags.setByValAlign(Align(FrameAlign));
9662       }
9663       if (Arg.hasAttribute(Attribute::Nest))
9664         Flags.setNest();
9665       if (NeedsRegBlock)
9666         Flags.setInConsecutiveRegs();
9667       Flags.setOrigAlign(OriginalAlignment);
9668       if (ArgCopyElisionCandidates.count(&Arg))
9669         Flags.setCopyElisionCandidate();
9670       if (Arg.hasAttribute(Attribute::Returned))
9671         Flags.setReturned();
9672 
9673       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9674           *CurDAG->getContext(), F.getCallingConv(), VT);
9675       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9676           *CurDAG->getContext(), F.getCallingConv(), VT);
9677       for (unsigned i = 0; i != NumRegs; ++i) {
9678         // For scalable vectors, use the minimum size; individual targets
9679         // are responsible for handling scalable vector arguments and
9680         // return values.
9681         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9682                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9683         if (NumRegs > 1 && i == 0)
9684           MyFlags.Flags.setSplit();
9685         // if it isn't first piece, alignment must be 1
9686         else if (i > 0) {
9687           MyFlags.Flags.setOrigAlign(Align(1));
9688           if (i == NumRegs - 1)
9689             MyFlags.Flags.setSplitEnd();
9690         }
9691         Ins.push_back(MyFlags);
9692       }
9693       if (NeedsRegBlock && Value == NumValues - 1)
9694         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9695       PartBase += VT.getStoreSize().getKnownMinSize();
9696     }
9697   }
9698 
9699   // Call the target to set up the argument values.
9700   SmallVector<SDValue, 8> InVals;
9701   SDValue NewRoot = TLI->LowerFormalArguments(
9702       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9703 
9704   // Verify that the target's LowerFormalArguments behaved as expected.
9705   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9706          "LowerFormalArguments didn't return a valid chain!");
9707   assert(InVals.size() == Ins.size() &&
9708          "LowerFormalArguments didn't emit the correct number of values!");
9709   LLVM_DEBUG({
9710     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9711       assert(InVals[i].getNode() &&
9712              "LowerFormalArguments emitted a null value!");
9713       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9714              "LowerFormalArguments emitted a value with the wrong type!");
9715     }
9716   });
9717 
9718   // Update the DAG with the new chain value resulting from argument lowering.
9719   DAG.setRoot(NewRoot);
9720 
9721   // Set up the argument values.
9722   unsigned i = 0;
9723   if (!FuncInfo->CanLowerReturn) {
9724     // Create a virtual register for the sret pointer, and put in a copy
9725     // from the sret argument into it.
9726     SmallVector<EVT, 1> ValueVTs;
9727     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9728                     F.getReturnType()->getPointerTo(
9729                         DAG.getDataLayout().getAllocaAddrSpace()),
9730                     ValueVTs);
9731     MVT VT = ValueVTs[0].getSimpleVT();
9732     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9733     Optional<ISD::NodeType> AssertOp = None;
9734     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9735                                         nullptr, F.getCallingConv(), AssertOp);
9736 
9737     MachineFunction& MF = SDB->DAG.getMachineFunction();
9738     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9739     Register SRetReg =
9740         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9741     FuncInfo->DemoteRegister = SRetReg;
9742     NewRoot =
9743         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9744     DAG.setRoot(NewRoot);
9745 
9746     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9747     ++i;
9748   }
9749 
9750   SmallVector<SDValue, 4> Chains;
9751   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9752   for (const Argument &Arg : F.args()) {
9753     SmallVector<SDValue, 4> ArgValues;
9754     SmallVector<EVT, 4> ValueVTs;
9755     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9756     unsigned NumValues = ValueVTs.size();
9757     if (NumValues == 0)
9758       continue;
9759 
9760     bool ArgHasUses = !Arg.use_empty();
9761 
9762     // Elide the copying store if the target loaded this argument from a
9763     // suitable fixed stack object.
9764     if (Ins[i].Flags.isCopyElisionCandidate()) {
9765       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9766                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9767                              InVals[i], ArgHasUses);
9768     }
9769 
9770     // If this argument is unused then remember its value. It is used to generate
9771     // debugging information.
9772     bool isSwiftErrorArg =
9773         TLI->supportSwiftError() &&
9774         Arg.hasAttribute(Attribute::SwiftError);
9775     if (!ArgHasUses && !isSwiftErrorArg) {
9776       SDB->setUnusedArgValue(&Arg, InVals[i]);
9777 
9778       // Also remember any frame index for use in FastISel.
9779       if (FrameIndexSDNode *FI =
9780           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9781         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9782     }
9783 
9784     for (unsigned Val = 0; Val != NumValues; ++Val) {
9785       EVT VT = ValueVTs[Val];
9786       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9787                                                       F.getCallingConv(), VT);
9788       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9789           *CurDAG->getContext(), F.getCallingConv(), VT);
9790 
9791       // Even an apparent 'unused' swifterror argument needs to be returned. So
9792       // we do generate a copy for it that can be used on return from the
9793       // function.
9794       if (ArgHasUses || isSwiftErrorArg) {
9795         Optional<ISD::NodeType> AssertOp;
9796         if (Arg.hasAttribute(Attribute::SExt))
9797           AssertOp = ISD::AssertSext;
9798         else if (Arg.hasAttribute(Attribute::ZExt))
9799           AssertOp = ISD::AssertZext;
9800 
9801         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9802                                              PartVT, VT, nullptr,
9803                                              F.getCallingConv(), AssertOp));
9804       }
9805 
9806       i += NumParts;
9807     }
9808 
9809     // We don't need to do anything else for unused arguments.
9810     if (ArgValues.empty())
9811       continue;
9812 
9813     // Note down frame index.
9814     if (FrameIndexSDNode *FI =
9815         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9816       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9817 
9818     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9819                                      SDB->getCurSDLoc());
9820 
9821     SDB->setValue(&Arg, Res);
9822     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9823       // We want to associate the argument with the frame index, among
9824       // involved operands, that correspond to the lowest address. The
9825       // getCopyFromParts function, called earlier, is swapping the order of
9826       // the operands to BUILD_PAIR depending on endianness. The result of
9827       // that swapping is that the least significant bits of the argument will
9828       // be in the first operand of the BUILD_PAIR node, and the most
9829       // significant bits will be in the second operand.
9830       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9831       if (LoadSDNode *LNode =
9832           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9833         if (FrameIndexSDNode *FI =
9834             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9835           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9836     }
9837 
9838     // Analyses past this point are naive and don't expect an assertion.
9839     if (Res.getOpcode() == ISD::AssertZext)
9840       Res = Res.getOperand(0);
9841 
9842     // Update the SwiftErrorVRegDefMap.
9843     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9844       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9845       if (Register::isVirtualRegister(Reg))
9846         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9847                                    Reg);
9848     }
9849 
9850     // If this argument is live outside of the entry block, insert a copy from
9851     // wherever we got it to the vreg that other BB's will reference it as.
9852     if (Res.getOpcode() == ISD::CopyFromReg) {
9853       // If we can, though, try to skip creating an unnecessary vreg.
9854       // FIXME: This isn't very clean... it would be nice to make this more
9855       // general.
9856       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9857       if (Register::isVirtualRegister(Reg)) {
9858         FuncInfo->ValueMap[&Arg] = Reg;
9859         continue;
9860       }
9861     }
9862     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9863       FuncInfo->InitializeRegForValue(&Arg);
9864       SDB->CopyToExportRegsIfNeeded(&Arg);
9865     }
9866   }
9867 
9868   if (!Chains.empty()) {
9869     Chains.push_back(NewRoot);
9870     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9871   }
9872 
9873   DAG.setRoot(NewRoot);
9874 
9875   assert(i == InVals.size() && "Argument register count mismatch!");
9876 
9877   // If any argument copy elisions occurred and we have debug info, update the
9878   // stale frame indices used in the dbg.declare variable info table.
9879   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9880   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9881     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9882       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9883       if (I != ArgCopyElisionFrameIndexMap.end())
9884         VI.Slot = I->second;
9885     }
9886   }
9887 
9888   // Finally, if the target has anything special to do, allow it to do so.
9889   emitFunctionEntryCode();
9890 }
9891 
9892 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9893 /// ensure constants are generated when needed.  Remember the virtual registers
9894 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9895 /// directly add them, because expansion might result in multiple MBB's for one
9896 /// BB.  As such, the start of the BB might correspond to a different MBB than
9897 /// the end.
9898 void
9899 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9900   const Instruction *TI = LLVMBB->getTerminator();
9901 
9902   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9903 
9904   // Check PHI nodes in successors that expect a value to be available from this
9905   // block.
9906   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9907     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9908     if (!isa<PHINode>(SuccBB->begin())) continue;
9909     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9910 
9911     // If this terminator has multiple identical successors (common for
9912     // switches), only handle each succ once.
9913     if (!SuccsHandled.insert(SuccMBB).second)
9914       continue;
9915 
9916     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9917 
9918     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9919     // nodes and Machine PHI nodes, but the incoming operands have not been
9920     // emitted yet.
9921     for (const PHINode &PN : SuccBB->phis()) {
9922       // Ignore dead phi's.
9923       if (PN.use_empty())
9924         continue;
9925 
9926       // Skip empty types
9927       if (PN.getType()->isEmptyTy())
9928         continue;
9929 
9930       unsigned Reg;
9931       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9932 
9933       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9934         unsigned &RegOut = ConstantsOut[C];
9935         if (RegOut == 0) {
9936           RegOut = FuncInfo.CreateRegs(C);
9937           CopyValueToVirtualRegister(C, RegOut);
9938         }
9939         Reg = RegOut;
9940       } else {
9941         DenseMap<const Value *, unsigned>::iterator I =
9942           FuncInfo.ValueMap.find(PHIOp);
9943         if (I != FuncInfo.ValueMap.end())
9944           Reg = I->second;
9945         else {
9946           assert(isa<AllocaInst>(PHIOp) &&
9947                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9948                  "Didn't codegen value into a register!??");
9949           Reg = FuncInfo.CreateRegs(PHIOp);
9950           CopyValueToVirtualRegister(PHIOp, Reg);
9951         }
9952       }
9953 
9954       // Remember that this register needs to added to the machine PHI node as
9955       // the input for this MBB.
9956       SmallVector<EVT, 4> ValueVTs;
9957       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9958       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9959       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9960         EVT VT = ValueVTs[vti];
9961         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9962         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9963           FuncInfo.PHINodesToUpdate.push_back(
9964               std::make_pair(&*MBBI++, Reg + i));
9965         Reg += NumRegisters;
9966       }
9967     }
9968   }
9969 
9970   ConstantsOut.clear();
9971 }
9972 
9973 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9974 /// is 0.
9975 MachineBasicBlock *
9976 SelectionDAGBuilder::StackProtectorDescriptor::
9977 AddSuccessorMBB(const BasicBlock *BB,
9978                 MachineBasicBlock *ParentMBB,
9979                 bool IsLikely,
9980                 MachineBasicBlock *SuccMBB) {
9981   // If SuccBB has not been created yet, create it.
9982   if (!SuccMBB) {
9983     MachineFunction *MF = ParentMBB->getParent();
9984     MachineFunction::iterator BBI(ParentMBB);
9985     SuccMBB = MF->CreateMachineBasicBlock(BB);
9986     MF->insert(++BBI, SuccMBB);
9987   }
9988   // Add it as a successor of ParentMBB.
9989   ParentMBB->addSuccessor(
9990       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9991   return SuccMBB;
9992 }
9993 
9994 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9995   MachineFunction::iterator I(MBB);
9996   if (++I == FuncInfo.MF->end())
9997     return nullptr;
9998   return &*I;
9999 }
10000 
10001 /// During lowering new call nodes can be created (such as memset, etc.).
10002 /// Those will become new roots of the current DAG, but complications arise
10003 /// when they are tail calls. In such cases, the call lowering will update
10004 /// the root, but the builder still needs to know that a tail call has been
10005 /// lowered in order to avoid generating an additional return.
10006 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10007   // If the node is null, we do have a tail call.
10008   if (MaybeTC.getNode() != nullptr)
10009     DAG.setRoot(MaybeTC);
10010   else
10011     HasTailCall = true;
10012 }
10013 
10014 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10015                                         MachineBasicBlock *SwitchMBB,
10016                                         MachineBasicBlock *DefaultMBB) {
10017   MachineFunction *CurMF = FuncInfo.MF;
10018   MachineBasicBlock *NextMBB = nullptr;
10019   MachineFunction::iterator BBI(W.MBB);
10020   if (++BBI != FuncInfo.MF->end())
10021     NextMBB = &*BBI;
10022 
10023   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10024 
10025   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10026 
10027   if (Size == 2 && W.MBB == SwitchMBB) {
10028     // If any two of the cases has the same destination, and if one value
10029     // is the same as the other, but has one bit unset that the other has set,
10030     // use bit manipulation to do two compares at once.  For example:
10031     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10032     // TODO: This could be extended to merge any 2 cases in switches with 3
10033     // cases.
10034     // TODO: Handle cases where W.CaseBB != SwitchBB.
10035     CaseCluster &Small = *W.FirstCluster;
10036     CaseCluster &Big = *W.LastCluster;
10037 
10038     if (Small.Low == Small.High && Big.Low == Big.High &&
10039         Small.MBB == Big.MBB) {
10040       const APInt &SmallValue = Small.Low->getValue();
10041       const APInt &BigValue = Big.Low->getValue();
10042 
10043       // Check that there is only one bit different.
10044       APInt CommonBit = BigValue ^ SmallValue;
10045       if (CommonBit.isPowerOf2()) {
10046         SDValue CondLHS = getValue(Cond);
10047         EVT VT = CondLHS.getValueType();
10048         SDLoc DL = getCurSDLoc();
10049 
10050         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10051                                  DAG.getConstant(CommonBit, DL, VT));
10052         SDValue Cond = DAG.getSetCC(
10053             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10054             ISD::SETEQ);
10055 
10056         // Update successor info.
10057         // Both Small and Big will jump to Small.BB, so we sum up the
10058         // probabilities.
10059         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10060         if (BPI)
10061           addSuccessorWithProb(
10062               SwitchMBB, DefaultMBB,
10063               // The default destination is the first successor in IR.
10064               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10065         else
10066           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10067 
10068         // Insert the true branch.
10069         SDValue BrCond =
10070             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10071                         DAG.getBasicBlock(Small.MBB));
10072         // Insert the false branch.
10073         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10074                              DAG.getBasicBlock(DefaultMBB));
10075 
10076         DAG.setRoot(BrCond);
10077         return;
10078       }
10079     }
10080   }
10081 
10082   if (TM.getOptLevel() != CodeGenOpt::None) {
10083     // Here, we order cases by probability so the most likely case will be
10084     // checked first. However, two clusters can have the same probability in
10085     // which case their relative ordering is non-deterministic. So we use Low
10086     // as a tie-breaker as clusters are guaranteed to never overlap.
10087     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10088                [](const CaseCluster &a, const CaseCluster &b) {
10089       return a.Prob != b.Prob ?
10090              a.Prob > b.Prob :
10091              a.Low->getValue().slt(b.Low->getValue());
10092     });
10093 
10094     // Rearrange the case blocks so that the last one falls through if possible
10095     // without changing the order of probabilities.
10096     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10097       --I;
10098       if (I->Prob > W.LastCluster->Prob)
10099         break;
10100       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10101         std::swap(*I, *W.LastCluster);
10102         break;
10103       }
10104     }
10105   }
10106 
10107   // Compute total probability.
10108   BranchProbability DefaultProb = W.DefaultProb;
10109   BranchProbability UnhandledProbs = DefaultProb;
10110   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10111     UnhandledProbs += I->Prob;
10112 
10113   MachineBasicBlock *CurMBB = W.MBB;
10114   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10115     bool FallthroughUnreachable = false;
10116     MachineBasicBlock *Fallthrough;
10117     if (I == W.LastCluster) {
10118       // For the last cluster, fall through to the default destination.
10119       Fallthrough = DefaultMBB;
10120       FallthroughUnreachable = isa<UnreachableInst>(
10121           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10122     } else {
10123       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10124       CurMF->insert(BBI, Fallthrough);
10125       // Put Cond in a virtual register to make it available from the new blocks.
10126       ExportFromCurrentBlock(Cond);
10127     }
10128     UnhandledProbs -= I->Prob;
10129 
10130     switch (I->Kind) {
10131       case CC_JumpTable: {
10132         // FIXME: Optimize away range check based on pivot comparisons.
10133         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10134         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10135 
10136         // The jump block hasn't been inserted yet; insert it here.
10137         MachineBasicBlock *JumpMBB = JT->MBB;
10138         CurMF->insert(BBI, JumpMBB);
10139 
10140         auto JumpProb = I->Prob;
10141         auto FallthroughProb = UnhandledProbs;
10142 
10143         // If the default statement is a target of the jump table, we evenly
10144         // distribute the default probability to successors of CurMBB. Also
10145         // update the probability on the edge from JumpMBB to Fallthrough.
10146         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10147                                               SE = JumpMBB->succ_end();
10148              SI != SE; ++SI) {
10149           if (*SI == DefaultMBB) {
10150             JumpProb += DefaultProb / 2;
10151             FallthroughProb -= DefaultProb / 2;
10152             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10153             JumpMBB->normalizeSuccProbs();
10154             break;
10155           }
10156         }
10157 
10158         if (FallthroughUnreachable) {
10159           // Skip the range check if the fallthrough block is unreachable.
10160           JTH->OmitRangeCheck = true;
10161         }
10162 
10163         if (!JTH->OmitRangeCheck)
10164           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10165         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10166         CurMBB->normalizeSuccProbs();
10167 
10168         // The jump table header will be inserted in our current block, do the
10169         // range check, and fall through to our fallthrough block.
10170         JTH->HeaderBB = CurMBB;
10171         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10172 
10173         // If we're in the right place, emit the jump table header right now.
10174         if (CurMBB == SwitchMBB) {
10175           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10176           JTH->Emitted = true;
10177         }
10178         break;
10179       }
10180       case CC_BitTests: {
10181         // FIXME: Optimize away range check based on pivot comparisons.
10182         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10183 
10184         // The bit test blocks haven't been inserted yet; insert them here.
10185         for (BitTestCase &BTC : BTB->Cases)
10186           CurMF->insert(BBI, BTC.ThisBB);
10187 
10188         // Fill in fields of the BitTestBlock.
10189         BTB->Parent = CurMBB;
10190         BTB->Default = Fallthrough;
10191 
10192         BTB->DefaultProb = UnhandledProbs;
10193         // If the cases in bit test don't form a contiguous range, we evenly
10194         // distribute the probability on the edge to Fallthrough to two
10195         // successors of CurMBB.
10196         if (!BTB->ContiguousRange) {
10197           BTB->Prob += DefaultProb / 2;
10198           BTB->DefaultProb -= DefaultProb / 2;
10199         }
10200 
10201         if (FallthroughUnreachable) {
10202           // Skip the range check if the fallthrough block is unreachable.
10203           BTB->OmitRangeCheck = true;
10204         }
10205 
10206         // If we're in the right place, emit the bit test header right now.
10207         if (CurMBB == SwitchMBB) {
10208           visitBitTestHeader(*BTB, SwitchMBB);
10209           BTB->Emitted = true;
10210         }
10211         break;
10212       }
10213       case CC_Range: {
10214         const Value *RHS, *LHS, *MHS;
10215         ISD::CondCode CC;
10216         if (I->Low == I->High) {
10217           // Check Cond == I->Low.
10218           CC = ISD::SETEQ;
10219           LHS = Cond;
10220           RHS=I->Low;
10221           MHS = nullptr;
10222         } else {
10223           // Check I->Low <= Cond <= I->High.
10224           CC = ISD::SETLE;
10225           LHS = I->Low;
10226           MHS = Cond;
10227           RHS = I->High;
10228         }
10229 
10230         // If Fallthrough is unreachable, fold away the comparison.
10231         if (FallthroughUnreachable)
10232           CC = ISD::SETTRUE;
10233 
10234         // The false probability is the sum of all unhandled cases.
10235         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10236                      getCurSDLoc(), I->Prob, UnhandledProbs);
10237 
10238         if (CurMBB == SwitchMBB)
10239           visitSwitchCase(CB, SwitchMBB);
10240         else
10241           SL->SwitchCases.push_back(CB);
10242 
10243         break;
10244       }
10245     }
10246     CurMBB = Fallthrough;
10247   }
10248 }
10249 
10250 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10251                                               CaseClusterIt First,
10252                                               CaseClusterIt Last) {
10253   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10254     if (X.Prob != CC.Prob)
10255       return X.Prob > CC.Prob;
10256 
10257     // Ties are broken by comparing the case value.
10258     return X.Low->getValue().slt(CC.Low->getValue());
10259   });
10260 }
10261 
10262 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10263                                         const SwitchWorkListItem &W,
10264                                         Value *Cond,
10265                                         MachineBasicBlock *SwitchMBB) {
10266   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10267          "Clusters not sorted?");
10268 
10269   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10270 
10271   // Balance the tree based on branch probabilities to create a near-optimal (in
10272   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10273   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10274   CaseClusterIt LastLeft = W.FirstCluster;
10275   CaseClusterIt FirstRight = W.LastCluster;
10276   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10277   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10278 
10279   // Move LastLeft and FirstRight towards each other from opposite directions to
10280   // find a partitioning of the clusters which balances the probability on both
10281   // sides. If LeftProb and RightProb are equal, alternate which side is
10282   // taken to ensure 0-probability nodes are distributed evenly.
10283   unsigned I = 0;
10284   while (LastLeft + 1 < FirstRight) {
10285     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10286       LeftProb += (++LastLeft)->Prob;
10287     else
10288       RightProb += (--FirstRight)->Prob;
10289     I++;
10290   }
10291 
10292   while (true) {
10293     // Our binary search tree differs from a typical BST in that ours can have up
10294     // to three values in each leaf. The pivot selection above doesn't take that
10295     // into account, which means the tree might require more nodes and be less
10296     // efficient. We compensate for this here.
10297 
10298     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10299     unsigned NumRight = W.LastCluster - FirstRight + 1;
10300 
10301     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10302       // If one side has less than 3 clusters, and the other has more than 3,
10303       // consider taking a cluster from the other side.
10304 
10305       if (NumLeft < NumRight) {
10306         // Consider moving the first cluster on the right to the left side.
10307         CaseCluster &CC = *FirstRight;
10308         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10309         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10310         if (LeftSideRank <= RightSideRank) {
10311           // Moving the cluster to the left does not demote it.
10312           ++LastLeft;
10313           ++FirstRight;
10314           continue;
10315         }
10316       } else {
10317         assert(NumRight < NumLeft);
10318         // Consider moving the last element on the left to the right side.
10319         CaseCluster &CC = *LastLeft;
10320         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10321         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10322         if (RightSideRank <= LeftSideRank) {
10323           // Moving the cluster to the right does not demot it.
10324           --LastLeft;
10325           --FirstRight;
10326           continue;
10327         }
10328       }
10329     }
10330     break;
10331   }
10332 
10333   assert(LastLeft + 1 == FirstRight);
10334   assert(LastLeft >= W.FirstCluster);
10335   assert(FirstRight <= W.LastCluster);
10336 
10337   // Use the first element on the right as pivot since we will make less-than
10338   // comparisons against it.
10339   CaseClusterIt PivotCluster = FirstRight;
10340   assert(PivotCluster > W.FirstCluster);
10341   assert(PivotCluster <= W.LastCluster);
10342 
10343   CaseClusterIt FirstLeft = W.FirstCluster;
10344   CaseClusterIt LastRight = W.LastCluster;
10345 
10346   const ConstantInt *Pivot = PivotCluster->Low;
10347 
10348   // New blocks will be inserted immediately after the current one.
10349   MachineFunction::iterator BBI(W.MBB);
10350   ++BBI;
10351 
10352   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10353   // we can branch to its destination directly if it's squeezed exactly in
10354   // between the known lower bound and Pivot - 1.
10355   MachineBasicBlock *LeftMBB;
10356   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10357       FirstLeft->Low == W.GE &&
10358       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10359     LeftMBB = FirstLeft->MBB;
10360   } else {
10361     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10362     FuncInfo.MF->insert(BBI, LeftMBB);
10363     WorkList.push_back(
10364         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10365     // Put Cond in a virtual register to make it available from the new blocks.
10366     ExportFromCurrentBlock(Cond);
10367   }
10368 
10369   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10370   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10371   // directly if RHS.High equals the current upper bound.
10372   MachineBasicBlock *RightMBB;
10373   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10374       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10375     RightMBB = FirstRight->MBB;
10376   } else {
10377     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10378     FuncInfo.MF->insert(BBI, RightMBB);
10379     WorkList.push_back(
10380         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10381     // Put Cond in a virtual register to make it available from the new blocks.
10382     ExportFromCurrentBlock(Cond);
10383   }
10384 
10385   // Create the CaseBlock record that will be used to lower the branch.
10386   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10387                getCurSDLoc(), LeftProb, RightProb);
10388 
10389   if (W.MBB == SwitchMBB)
10390     visitSwitchCase(CB, SwitchMBB);
10391   else
10392     SL->SwitchCases.push_back(CB);
10393 }
10394 
10395 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10396 // from the swith statement.
10397 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10398                                             BranchProbability PeeledCaseProb) {
10399   if (PeeledCaseProb == BranchProbability::getOne())
10400     return BranchProbability::getZero();
10401   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10402 
10403   uint32_t Numerator = CaseProb.getNumerator();
10404   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10405   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10406 }
10407 
10408 // Try to peel the top probability case if it exceeds the threshold.
10409 // Return current MachineBasicBlock for the switch statement if the peeling
10410 // does not occur.
10411 // If the peeling is performed, return the newly created MachineBasicBlock
10412 // for the peeled switch statement. Also update Clusters to remove the peeled
10413 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10414 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10415     const SwitchInst &SI, CaseClusterVector &Clusters,
10416     BranchProbability &PeeledCaseProb) {
10417   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10418   // Don't perform if there is only one cluster or optimizing for size.
10419   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10420       TM.getOptLevel() == CodeGenOpt::None ||
10421       SwitchMBB->getParent()->getFunction().hasMinSize())
10422     return SwitchMBB;
10423 
10424   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10425   unsigned PeeledCaseIndex = 0;
10426   bool SwitchPeeled = false;
10427   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10428     CaseCluster &CC = Clusters[Index];
10429     if (CC.Prob < TopCaseProb)
10430       continue;
10431     TopCaseProb = CC.Prob;
10432     PeeledCaseIndex = Index;
10433     SwitchPeeled = true;
10434   }
10435   if (!SwitchPeeled)
10436     return SwitchMBB;
10437 
10438   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10439                     << TopCaseProb << "\n");
10440 
10441   // Record the MBB for the peeled switch statement.
10442   MachineFunction::iterator BBI(SwitchMBB);
10443   ++BBI;
10444   MachineBasicBlock *PeeledSwitchMBB =
10445       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10446   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10447 
10448   ExportFromCurrentBlock(SI.getCondition());
10449   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10450   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10451                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10452   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10453 
10454   Clusters.erase(PeeledCaseIt);
10455   for (CaseCluster &CC : Clusters) {
10456     LLVM_DEBUG(
10457         dbgs() << "Scale the probablity for one cluster, before scaling: "
10458                << CC.Prob << "\n");
10459     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10460     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10461   }
10462   PeeledCaseProb = TopCaseProb;
10463   return PeeledSwitchMBB;
10464 }
10465 
10466 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10467   // Extract cases from the switch.
10468   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10469   CaseClusterVector Clusters;
10470   Clusters.reserve(SI.getNumCases());
10471   for (auto I : SI.cases()) {
10472     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10473     const ConstantInt *CaseVal = I.getCaseValue();
10474     BranchProbability Prob =
10475         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10476             : BranchProbability(1, SI.getNumCases() + 1);
10477     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10478   }
10479 
10480   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10481 
10482   // Cluster adjacent cases with the same destination. We do this at all
10483   // optimization levels because it's cheap to do and will make codegen faster
10484   // if there are many clusters.
10485   sortAndRangeify(Clusters);
10486 
10487   // The branch probablity of the peeled case.
10488   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10489   MachineBasicBlock *PeeledSwitchMBB =
10490       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10491 
10492   // If there is only the default destination, jump there directly.
10493   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10494   if (Clusters.empty()) {
10495     assert(PeeledSwitchMBB == SwitchMBB);
10496     SwitchMBB->addSuccessor(DefaultMBB);
10497     if (DefaultMBB != NextBlock(SwitchMBB)) {
10498       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10499                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10500     }
10501     return;
10502   }
10503 
10504   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10505   SL->findBitTestClusters(Clusters, &SI);
10506 
10507   LLVM_DEBUG({
10508     dbgs() << "Case clusters: ";
10509     for (const CaseCluster &C : Clusters) {
10510       if (C.Kind == CC_JumpTable)
10511         dbgs() << "JT:";
10512       if (C.Kind == CC_BitTests)
10513         dbgs() << "BT:";
10514 
10515       C.Low->getValue().print(dbgs(), true);
10516       if (C.Low != C.High) {
10517         dbgs() << '-';
10518         C.High->getValue().print(dbgs(), true);
10519       }
10520       dbgs() << ' ';
10521     }
10522     dbgs() << '\n';
10523   });
10524 
10525   assert(!Clusters.empty());
10526   SwitchWorkList WorkList;
10527   CaseClusterIt First = Clusters.begin();
10528   CaseClusterIt Last = Clusters.end() - 1;
10529   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10530   // Scale the branchprobability for DefaultMBB if the peel occurs and
10531   // DefaultMBB is not replaced.
10532   if (PeeledCaseProb != BranchProbability::getZero() &&
10533       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10534     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10535   WorkList.push_back(
10536       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10537 
10538   while (!WorkList.empty()) {
10539     SwitchWorkListItem W = WorkList.back();
10540     WorkList.pop_back();
10541     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10542 
10543     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10544         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10545       // For optimized builds, lower large range as a balanced binary tree.
10546       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10547       continue;
10548     }
10549 
10550     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10551   }
10552 }
10553 
10554 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10555   SDNodeFlags Flags;
10556 
10557   SDValue Op = getValue(I.getOperand(0));
10558   if (I.getOperand(0)->getType()->isAggregateType()) {
10559     EVT VT = Op.getValueType();
10560     SmallVector<SDValue, 1> Values;
10561     for (unsigned i = 0; i < Op.getNumOperands(); ++i) {
10562       SDValue Arg(Op.getNode(), i);
10563       SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), VT, Arg, Flags);
10564       Values.push_back(UnNodeValue);
10565     }
10566     SDValue MergedValue = DAG.getMergeValues(Values, getCurSDLoc());
10567     setValue(&I, MergedValue);
10568   } else {
10569     SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), Op.getValueType(),
10570                                       Op, Flags);
10571     setValue(&I, UnNodeValue);
10572   }
10573 }
10574