1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 static cl::opt<bool> 88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 89 cl::desc("Enable fast-math-flags for DAG nodes")); 90 91 /// Minimum jump table density for normal functions. 92 static cl::opt<unsigned> 93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 94 cl::desc("Minimum density for building a jump table in " 95 "a normal function")); 96 97 /// Minimum jump table density for -Os or -Oz functions. 98 static cl::opt<unsigned> 99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 100 cl::desc("Minimum density for building a jump table in " 101 "an optsize function")); 102 103 104 // Limit the width of DAG chains. This is important in general to prevent 105 // DAG-based analysis from blowing up. For example, alias analysis and 106 // load clustering may not complete in reasonable time. It is difficult to 107 // recognize and avoid this situation within each individual analysis, and 108 // future analyses are likely to have the same behavior. Limiting DAG width is 109 // the safe approach and will be especially important with global DAGs. 110 // 111 // MaxParallelChains default is arbitrarily high to avoid affecting 112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 113 // sequence over this should have been converted to llvm.memcpy by the 114 // frontend. It is easy to induce this behavior with .ll code such as: 115 // %buffer = alloca [4096 x i8] 116 // %data = load [4096 x i8]* %argPtr 117 // store [4096 x i8] %data, [4096 x i8]* %buffer 118 static const unsigned MaxParallelChains = 64; 119 120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 121 const SDValue *Parts, unsigned NumParts, 122 MVT PartVT, EVT ValueVT, const Value *V); 123 124 /// getCopyFromParts - Create a value that contains the specified legal parts 125 /// combined into the value they represent. If the parts combine to a type 126 /// larger than ValueVT then AssertOp can be used to specify whether the extra 127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 128 /// (ISD::AssertSext). 129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 130 const SDValue *Parts, unsigned NumParts, 131 MVT PartVT, EVT ValueVT, const Value *V, 132 Optional<ISD::NodeType> AssertOp = None) { 133 if (ValueVT.isVector()) 134 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 135 PartVT, ValueVT, V); 136 137 assert(NumParts > 0 && "No parts to assemble!"); 138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 139 SDValue Val = Parts[0]; 140 141 if (NumParts > 1) { 142 // Assemble the value from multiple parts. 143 if (ValueVT.isInteger()) { 144 unsigned PartBits = PartVT.getSizeInBits(); 145 unsigned ValueBits = ValueVT.getSizeInBits(); 146 147 // Assemble the power of 2 part. 148 unsigned RoundParts = NumParts & (NumParts - 1) ? 149 1 << Log2_32(NumParts) : NumParts; 150 unsigned RoundBits = PartBits * RoundParts; 151 EVT RoundVT = RoundBits == ValueBits ? 152 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 153 SDValue Lo, Hi; 154 155 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 156 157 if (RoundParts > 2) { 158 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 159 PartVT, HalfVT, V); 160 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 161 RoundParts / 2, PartVT, HalfVT, V); 162 } else { 163 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 165 } 166 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 170 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 171 172 if (RoundParts < NumParts) { 173 // Assemble the trailing non-power-of-2 part. 174 unsigned OddParts = NumParts - RoundParts; 175 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 176 Hi = getCopyFromParts(DAG, DL, 177 Parts + RoundParts, OddParts, PartVT, OddVT, V); 178 179 // Combine the round and odd parts. 180 Lo = Val; 181 if (DAG.getDataLayout().isBigEndian()) 182 std::swap(Lo, Hi); 183 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 184 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 185 Hi = 186 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 187 DAG.getConstant(Lo.getValueSizeInBits(), DL, 188 TLI.getPointerTy(DAG.getDataLayout()))); 189 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 190 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 191 } 192 } else if (PartVT.isFloatingPoint()) { 193 // FP split into multiple FP parts (for ppcf128) 194 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 195 "Unexpected split"); 196 SDValue Lo, Hi; 197 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 199 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 200 std::swap(Lo, Hi); 201 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 202 } else { 203 // FP split into integer parts (soft fp) 204 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 205 !PartVT.isVector() && "Unexpected split"); 206 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 208 } 209 } 210 211 // There is now one part, held in Val. Correct it to match ValueVT. 212 // PartEVT is the type of the register class that holds the value. 213 // ValueVT is the type of the inline asm operation. 214 EVT PartEVT = Val.getValueType(); 215 216 if (PartEVT == ValueVT) 217 return Val; 218 219 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 220 ValueVT.bitsLT(PartEVT)) { 221 // For an FP value in an integer part, we need to truncate to the right 222 // width first. 223 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 224 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 225 } 226 227 // Handle types that have the same size. 228 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 229 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 230 231 // Handle types with different sizes. 232 if (PartEVT.isInteger() && ValueVT.isInteger()) { 233 if (ValueVT.bitsLT(PartEVT)) { 234 // For a truncate, see if we have any information to 235 // indicate whether the truncated bits will always be 236 // zero or sign-extension. 237 if (AssertOp.hasValue()) 238 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 239 DAG.getValueType(ValueVT)); 240 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 241 } 242 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 243 } 244 245 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 246 // FP_ROUND's are always exact here. 247 if (ValueVT.bitsLT(Val.getValueType())) 248 return DAG.getNode( 249 ISD::FP_ROUND, DL, ValueVT, Val, 250 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 251 252 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 253 } 254 255 llvm_unreachable("Unknown mismatch!"); 256 } 257 258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 259 const Twine &ErrMsg) { 260 const Instruction *I = dyn_cast_or_null<Instruction>(V); 261 if (!V) 262 return Ctx.emitError(ErrMsg); 263 264 const char *AsmError = ", possible invalid constraint for vector type"; 265 if (const CallInst *CI = dyn_cast<CallInst>(I)) 266 if (isa<InlineAsm>(CI->getCalledValue())) 267 return Ctx.emitError(I, ErrMsg + AsmError); 268 269 return Ctx.emitError(I, ErrMsg); 270 } 271 272 /// getCopyFromPartsVector - Create a value that contains the specified legal 273 /// parts combined into the value they represent. If the parts combine to a 274 /// type larger than ValueVT then AssertOp can be used to specify whether the 275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 276 /// ValueVT (ISD::AssertSext). 277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 278 const SDValue *Parts, unsigned NumParts, 279 MVT PartVT, EVT ValueVT, const Value *V) { 280 assert(ValueVT.isVector() && "Not a vector value"); 281 assert(NumParts > 0 && "No parts to assemble!"); 282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 283 SDValue Val = Parts[0]; 284 285 // Handle a multi-element vector. 286 if (NumParts > 1) { 287 EVT IntermediateVT; 288 MVT RegisterVT; 289 unsigned NumIntermediates; 290 unsigned NumRegs = 291 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 292 NumIntermediates, RegisterVT); 293 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 294 NumParts = NumRegs; // Silence a compiler warning. 295 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 296 assert(RegisterVT.getSizeInBits() == 297 Parts[0].getSimpleValueType().getSizeInBits() && 298 "Part type sizes don't match!"); 299 300 // Assemble the parts into intermediate operands. 301 SmallVector<SDValue, 8> Ops(NumIntermediates); 302 if (NumIntermediates == NumParts) { 303 // If the register was not expanded, truncate or copy the value, 304 // as appropriate. 305 for (unsigned i = 0; i != NumParts; ++i) 306 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 307 PartVT, IntermediateVT, V); 308 } else if (NumParts > 0) { 309 // If the intermediate type was expanded, build the intermediate 310 // operands from the parts. 311 assert(NumParts % NumIntermediates == 0 && 312 "Must expand into a divisible number of parts!"); 313 unsigned Factor = NumParts / NumIntermediates; 314 for (unsigned i = 0; i != NumIntermediates; ++i) 315 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 316 PartVT, IntermediateVT, V); 317 } 318 319 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 320 // intermediate operands. 321 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 322 : ISD::BUILD_VECTOR, 323 DL, ValueVT, Ops); 324 } 325 326 // There is now one part, held in Val. Correct it to match ValueVT. 327 EVT PartEVT = Val.getValueType(); 328 329 if (PartEVT == ValueVT) 330 return Val; 331 332 if (PartEVT.isVector()) { 333 // If the element type of the source/dest vectors are the same, but the 334 // parts vector has more elements than the value vector, then we have a 335 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 336 // elements we want. 337 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 338 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 339 "Cannot narrow, it would be a lossy transformation"); 340 return DAG.getNode( 341 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 342 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 343 } 344 345 // Vector/Vector bitcast. 346 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 347 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 348 349 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 350 "Cannot handle this kind of promotion"); 351 // Promoted vector extract 352 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 353 354 } 355 356 // Trivial bitcast if the types are the same size and the destination 357 // vector type is legal. 358 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 359 TLI.isTypeLegal(ValueVT)) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 // Handle cases such as i8 -> <1 x i1> 363 if (ValueVT.getVectorNumElements() != 1) { 364 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 365 "non-trivial scalar-to-vector conversion"); 366 return DAG.getUNDEF(ValueVT); 367 } 368 369 if (ValueVT.getVectorNumElements() == 1 && 370 ValueVT.getVectorElementType() != PartEVT) 371 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 372 373 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 374 } 375 376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 377 SDValue Val, SDValue *Parts, unsigned NumParts, 378 MVT PartVT, const Value *V); 379 380 /// getCopyToParts - Create a series of nodes that contain the specified value 381 /// split into legal parts. If the parts contain more bits than Val, then, for 382 /// integers, ExtendKind can be used to specify how to generate the extra bits. 383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 384 SDValue *Parts, unsigned NumParts, MVT PartVT, 385 const Value *V, 386 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 387 EVT ValueVT = Val.getValueType(); 388 389 // Handle the vector case separately. 390 if (ValueVT.isVector()) 391 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 392 393 unsigned PartBits = PartVT.getSizeInBits(); 394 unsigned OrigNumParts = NumParts; 395 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 396 "Copying to an illegal type!"); 397 398 if (NumParts == 0) 399 return; 400 401 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 402 EVT PartEVT = PartVT; 403 if (PartEVT == ValueVT) { 404 assert(NumParts == 1 && "No-op copy with multiple parts!"); 405 Parts[0] = Val; 406 return; 407 } 408 409 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 410 // If the parts cover more bits than the value has, promote the value. 411 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 412 assert(NumParts == 1 && "Do not know what to promote to!"); 413 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 414 } else { 415 if (ValueVT.isFloatingPoint()) { 416 // FP values need to be bitcast, then extended if they are being put 417 // into a larger container. 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 419 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 } 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 } else if (PartBits == ValueVT.getSizeInBits()) { 430 // Different types of the same size. 431 assert(NumParts == 1 && PartEVT != ValueVT); 432 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 433 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 434 // If the parts cover less bits than value has, truncate the value. 435 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 436 ValueVT.isInteger() && 437 "Unknown mismatch!"); 438 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 439 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 440 if (PartVT == MVT::x86mmx) 441 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 442 } 443 444 // The value may have changed - recompute ValueVT. 445 ValueVT = Val.getValueType(); 446 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 447 "Failed to tile the value with PartVT!"); 448 449 if (NumParts == 1) { 450 if (PartEVT != ValueVT) { 451 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 452 "scalar-to-vector conversion failed"); 453 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 454 } 455 456 Parts[0] = Val; 457 return; 458 } 459 460 // Expand the value into multiple parts. 461 if (NumParts & (NumParts - 1)) { 462 // The number of parts is not a power of 2. Split off and copy the tail. 463 assert(PartVT.isInteger() && ValueVT.isInteger() && 464 "Do not know what to expand to!"); 465 unsigned RoundParts = 1 << Log2_32(NumParts); 466 unsigned RoundBits = RoundParts * PartBits; 467 unsigned OddParts = NumParts - RoundParts; 468 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 469 DAG.getIntPtrConstant(RoundBits, DL)); 470 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 471 472 if (DAG.getDataLayout().isBigEndian()) 473 // The odd parts were reversed by getCopyToParts - unreverse them. 474 std::reverse(Parts + RoundParts, Parts + NumParts); 475 476 NumParts = RoundParts; 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 } 480 481 // The number of parts is a power of 2. Repeatedly bisect the value using 482 // EXTRACT_ELEMENT. 483 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 484 EVT::getIntegerVT(*DAG.getContext(), 485 ValueVT.getSizeInBits()), 486 Val); 487 488 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 489 for (unsigned i = 0; i < NumParts; i += StepSize) { 490 unsigned ThisBits = StepSize * PartBits / 2; 491 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 492 SDValue &Part0 = Parts[i]; 493 SDValue &Part1 = Parts[i+StepSize/2]; 494 495 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 496 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 497 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 498 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 499 500 if (ThisBits == PartBits && ThisVT != PartVT) { 501 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 502 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 503 } 504 } 505 } 506 507 if (DAG.getDataLayout().isBigEndian()) 508 std::reverse(Parts, Parts + OrigNumParts); 509 } 510 511 512 /// getCopyToPartsVector - Create a series of nodes that contain the specified 513 /// value split into legal parts. 514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 515 SDValue Val, SDValue *Parts, unsigned NumParts, 516 MVT PartVT, const Value *V) { 517 EVT ValueVT = Val.getValueType(); 518 assert(ValueVT.isVector() && "Not a vector"); 519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 520 521 if (NumParts == 1) { 522 EVT PartEVT = PartVT; 523 if (PartEVT == ValueVT) { 524 // Nothing to do. 525 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 526 // Bitconvert vector->vector case. 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 530 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 531 EVT ElementVT = PartVT.getVectorElementType(); 532 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 533 // undef elements. 534 SmallVector<SDValue, 16> Ops; 535 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 536 Ops.push_back(DAG.getNode( 537 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 538 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 539 540 for (unsigned i = ValueVT.getVectorNumElements(), 541 e = PartVT.getVectorNumElements(); i != e; ++i) 542 Ops.push_back(DAG.getUNDEF(ElementVT)); 543 544 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 545 546 // FIXME: Use CONCAT for 2x -> 4x. 547 548 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 549 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 550 } else if (PartVT.isVector() && 551 PartEVT.getVectorElementType().bitsGE( 552 ValueVT.getVectorElementType()) && 553 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 554 555 // Promoted vector extract 556 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 557 } else{ 558 // Vector -> scalar conversion. 559 assert(ValueVT.getVectorNumElements() == 1 && 560 "Only trivial vector-to-scalar conversions should get here!"); 561 Val = DAG.getNode( 562 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 563 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 565 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Handle a multi-element vector. 573 EVT IntermediateVT; 574 MVT RegisterVT; 575 unsigned NumIntermediates; 576 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 577 IntermediateVT, 578 NumIntermediates, RegisterVT); 579 unsigned NumElements = ValueVT.getVectorNumElements(); 580 581 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 582 NumParts = NumRegs; // Silence a compiler warning. 583 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 584 585 // Split the vector into intermediate operands. 586 SmallVector<SDValue, 8> Ops(NumIntermediates); 587 for (unsigned i = 0; i != NumIntermediates; ++i) { 588 if (IntermediateVT.isVector()) 589 Ops[i] = 590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 591 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 else 594 Ops[i] = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 596 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 } 598 599 // Split the intermediate operands into legal parts. 600 if (NumParts == NumIntermediates) { 601 // If the register was not expanded, promote or copy the value, 602 // as appropriate. 603 for (unsigned i = 0; i != NumParts; ++i) 604 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 605 } else if (NumParts > 0) { 606 // If the intermediate type was expanded, split each the value into 607 // legal parts. 608 assert(NumIntermediates != 0 && "division by zero"); 609 assert(NumParts % NumIntermediates == 0 && 610 "Must expand into a divisible number of parts!"); 611 unsigned Factor = NumParts / NumIntermediates; 612 for (unsigned i = 0; i != NumIntermediates; ++i) 613 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 614 } 615 } 616 617 RegsForValue::RegsForValue() {} 618 619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 620 EVT valuevt) 621 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 622 623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 624 const DataLayout &DL, unsigned Reg, Type *Ty) { 625 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 626 627 for (EVT ValueVT : ValueVTs) { 628 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 629 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 630 for (unsigned i = 0; i != NumRegs; ++i) 631 Regs.push_back(Reg + i); 632 RegVTs.push_back(RegisterVT); 633 Reg += NumRegs; 634 } 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 const SDLoc &dl, SDValue &Chain, 644 SDValue *Flag, const Value *V) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 MVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (!Flag) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 if (NumZeroBits == RegSize) { 689 // The current value is a zero. 690 // Explicitly express that as it would be easier for 691 // optimizations to kick in. 692 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 693 continue; 694 } 695 696 // FIXME: We capture more information than the dag can represent. For 697 // now, just use the tightest assertzext/assertsext possible. 698 bool isSExt = true; 699 EVT FromVT(MVT::Other); 700 if (NumSignBits == RegSize) { 701 isSExt = true; // ASSERT SEXT 1 702 FromVT = MVT::i1; 703 } else if (NumZeroBits >= RegSize - 1) { 704 isSExt = false; // ASSERT ZEXT 1 705 FromVT = MVT::i1; 706 } else if (NumSignBits > RegSize - 8) { 707 isSExt = true; // ASSERT SEXT 8 708 FromVT = MVT::i8; 709 } else if (NumZeroBits >= RegSize - 8) { 710 isSExt = false; // ASSERT ZEXT 8 711 FromVT = MVT::i8; 712 } else if (NumSignBits > RegSize - 16) { 713 isSExt = true; // ASSERT SEXT 16 714 FromVT = MVT::i16; 715 } else if (NumZeroBits >= RegSize - 16) { 716 isSExt = false; // ASSERT ZEXT 16 717 FromVT = MVT::i16; 718 } else if (NumSignBits > RegSize - 32) { 719 isSExt = true; // ASSERT SEXT 32 720 FromVT = MVT::i32; 721 } else if (NumZeroBits >= RegSize - 32) { 722 isSExt = false; // ASSERT ZEXT 32 723 FromVT = MVT::i32; 724 } else { 725 continue; 726 } 727 // Add an assertion node. 728 assert(FromVT != MVT::Other); 729 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 730 RegisterVT, P, DAG.getValueType(FromVT)); 731 } 732 733 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 734 NumRegs, RegisterVT, ValueVT, V); 735 Part += NumRegs; 736 Parts.clear(); 737 } 738 739 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 740 } 741 742 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 743 /// specified value into the registers specified by this object. This uses 744 /// Chain/Flag as the input and updates them for the output Chain/Flag. 745 /// If the Flag pointer is NULL, no flag is used. 746 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 747 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 748 const Value *V, 749 ISD::NodeType PreferredExtendType) const { 750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 751 ISD::NodeType ExtendKind = PreferredExtendType; 752 753 // Get the list of the values's legal parts. 754 unsigned NumRegs = Regs.size(); 755 SmallVector<SDValue, 8> Parts(NumRegs); 756 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 757 EVT ValueVT = ValueVTs[Value]; 758 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 759 MVT RegisterVT = RegVTs[Value]; 760 761 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 762 ExtendKind = ISD::ZERO_EXTEND; 763 764 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 765 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 766 Part += NumParts; 767 } 768 769 // Copy the parts into the registers. 770 SmallVector<SDValue, 8> Chains(NumRegs); 771 for (unsigned i = 0; i != NumRegs; ++i) { 772 SDValue Part; 773 if (!Flag) { 774 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 775 } else { 776 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 777 *Flag = Part.getValue(1); 778 } 779 780 Chains[i] = Part.getValue(0); 781 } 782 783 if (NumRegs == 1 || Flag) 784 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 785 // flagged to it. That is the CopyToReg nodes and the user are considered 786 // a single scheduling unit. If we create a TokenFactor and return it as 787 // chain, then the TokenFactor is both a predecessor (operand) of the 788 // user as well as a successor (the TF operands are flagged to the user). 789 // c1, f1 = CopyToReg 790 // c2, f2 = CopyToReg 791 // c3 = TokenFactor c1, c2 792 // ... 793 // = op c3, ..., f2 794 Chain = Chains[NumRegs-1]; 795 else 796 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 797 } 798 799 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 800 /// operand list. This adds the code marker and includes the number of 801 /// values added into it. 802 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 803 unsigned MatchingIdx, const SDLoc &dl, 804 SelectionDAG &DAG, 805 std::vector<SDValue> &Ops) const { 806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 807 808 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 809 if (HasMatching) 810 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 811 else if (!Regs.empty() && 812 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 813 // Put the register class of the virtual registers in the flag word. That 814 // way, later passes can recompute register class constraints for inline 815 // assembly as well as normal instructions. 816 // Don't do this for tied operands that can use the regclass information 817 // from the def. 818 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 819 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 820 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 821 } 822 823 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 824 Ops.push_back(Res); 825 826 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 827 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 828 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 829 MVT RegisterVT = RegVTs[Value]; 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 832 unsigned TheReg = Regs[Reg++]; 833 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 834 835 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 836 // If we clobbered the stack pointer, MFI should know about it. 837 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 838 } 839 } 840 } 841 } 842 843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 844 const TargetLibraryInfo *li) { 845 AA = &aa; 846 GFI = gfi; 847 LibInfo = li; 848 DL = &DAG.getDataLayout(); 849 Context = DAG.getContext(); 850 LPadToCallSiteMap.clear(); 851 } 852 853 /// clear - Clear out the current SelectionDAG and the associated 854 /// state and prepare this SelectionDAGBuilder object to be used 855 /// for a new block. This doesn't clear out information about 856 /// additional blocks that are needed to complete switch lowering 857 /// or PHI node updating; that information is cleared out as it is 858 /// consumed. 859 void SelectionDAGBuilder::clear() { 860 NodeMap.clear(); 861 UnusedArgNodeMap.clear(); 862 PendingLoads.clear(); 863 PendingExports.clear(); 864 CurInst = nullptr; 865 HasTailCall = false; 866 SDNodeOrder = LowestSDNodeOrder; 867 StatepointLowering.clear(); 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 898 PendingLoads); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 928 PendingExports); 929 PendingExports.clear(); 930 DAG.setRoot(Root); 931 return Root; 932 } 933 934 void SelectionDAGBuilder::visit(const Instruction &I) { 935 // Set up outgoing PHI node register values before emitting the terminator. 936 if (isa<TerminatorInst>(&I)) { 937 HandlePHINodesInSuccessorBlocks(I.getParent()); 938 } 939 940 ++SDNodeOrder; 941 942 CurInst = &I; 943 944 visit(I.getOpcode(), I); 945 946 if (!isa<TerminatorInst>(&I) && !HasTailCall && 947 !isStatepoint(&I)) // statepoints handle their exports internally 948 CopyToExportRegsIfNeeded(&I); 949 950 CurInst = nullptr; 951 } 952 953 void SelectionDAGBuilder::visitPHI(const PHINode &) { 954 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 955 } 956 957 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 958 // Note: this doesn't use InstVisitor, because it has to work with 959 // ConstantExpr's in addition to instructions. 960 switch (Opcode) { 961 default: llvm_unreachable("Unknown instruction type encountered!"); 962 // Build the switch statement using the Instruction.def file. 963 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 964 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 965 #include "llvm/IR/Instruction.def" 966 } 967 } 968 969 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 970 // generate the debug data structures now that we've seen its definition. 971 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 972 SDValue Val) { 973 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 974 if (DDI.getDI()) { 975 const DbgValueInst *DI = DDI.getDI(); 976 DebugLoc dl = DDI.getdl(); 977 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 978 DILocalVariable *Variable = DI->getVariable(); 979 DIExpression *Expr = DI->getExpression(); 980 assert(Variable->isValidLocationForIntrinsic(dl) && 981 "Expected inlined-at fields to agree"); 982 uint64_t Offset = DI->getOffset(); 983 SDDbgValue *SDV; 984 if (Val.getNode()) { 985 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 986 Val)) { 987 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 988 DAG.AddDbgValue(SDV, Val.getNode(), false); 989 } 990 } else 991 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 992 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 993 } 994 } 995 996 /// getCopyFromRegs - If there was virtual register allocated for the value V 997 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 998 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 999 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1000 SDValue Result; 1001 1002 if (It != FuncInfo.ValueMap.end()) { 1003 unsigned InReg = It->second; 1004 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1005 DAG.getDataLayout(), InReg, Ty); 1006 SDValue Chain = DAG.getEntryNode(); 1007 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1008 resolveDanglingDebugInfo(V, Result); 1009 } 1010 1011 return Result; 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1025 return copyFromReg; 1026 1027 // Otherwise create a new SDValue and remember it. 1028 SDValue Val = getValueImpl(V); 1029 NodeMap[V] = Val; 1030 resolveDanglingDebugInfo(V, Val); 1031 return Val; 1032 } 1033 1034 // Return true if SDValue exists for the given Value 1035 bool SelectionDAGBuilder::findValue(const Value *V) const { 1036 return (NodeMap.find(V) != NodeMap.end()) || 1037 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1038 } 1039 1040 /// getNonRegisterValue - Return an SDValue for the given Value, but 1041 /// don't look in FuncInfo.ValueMap for a virtual register. 1042 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1043 // If we already have an SDValue for this value, use it. 1044 SDValue &N = NodeMap[V]; 1045 if (N.getNode()) { 1046 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1047 // Remove the debug location from the node as the node is about to be used 1048 // in a location which may differ from the original debug location. This 1049 // is relevant to Constant and ConstantFP nodes because they can appear 1050 // as constant expressions inside PHI nodes. 1051 N->setDebugLoc(DebugLoc()); 1052 } 1053 return N; 1054 } 1055 1056 // Otherwise create a new SDValue and remember it. 1057 SDValue Val = getValueImpl(V); 1058 NodeMap[V] = Val; 1059 resolveDanglingDebugInfo(V, Val); 1060 return Val; 1061 } 1062 1063 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1064 /// Create an SDValue for the given value. 1065 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1067 1068 if (const Constant *C = dyn_cast<Constant>(V)) { 1069 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1070 1071 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1072 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1073 1074 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1075 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1076 1077 if (isa<ConstantPointerNull>(C)) { 1078 unsigned AS = V->getType()->getPointerAddressSpace(); 1079 return DAG.getConstant(0, getCurSDLoc(), 1080 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1081 } 1082 1083 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1084 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1085 1086 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1087 return DAG.getUNDEF(VT); 1088 1089 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1090 visit(CE->getOpcode(), *CE); 1091 SDValue N1 = NodeMap[V]; 1092 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1093 return N1; 1094 } 1095 1096 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1097 SmallVector<SDValue, 4> Constants; 1098 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1099 OI != OE; ++OI) { 1100 SDNode *Val = getValue(*OI).getNode(); 1101 // If the operand is an empty aggregate, there are no values. 1102 if (!Val) continue; 1103 // Add each leaf value from the operand to the Constants list 1104 // to form a flattened list of all the values. 1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1106 Constants.push_back(SDValue(Val, i)); 1107 } 1108 1109 return DAG.getMergeValues(Constants, getCurSDLoc()); 1110 } 1111 1112 if (const ConstantDataSequential *CDS = 1113 dyn_cast<ConstantDataSequential>(C)) { 1114 SmallVector<SDValue, 4> Ops; 1115 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1116 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1117 // Add each leaf value from the operand to the Constants list 1118 // to form a flattened list of all the values. 1119 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1120 Ops.push_back(SDValue(Val, i)); 1121 } 1122 1123 if (isa<ArrayType>(CDS->getType())) 1124 return DAG.getMergeValues(Ops, getCurSDLoc()); 1125 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1126 VT, Ops); 1127 } 1128 1129 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1130 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1131 "Unknown struct or array constant!"); 1132 1133 SmallVector<EVT, 4> ValueVTs; 1134 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1135 unsigned NumElts = ValueVTs.size(); 1136 if (NumElts == 0) 1137 return SDValue(); // empty struct 1138 SmallVector<SDValue, 4> Constants(NumElts); 1139 for (unsigned i = 0; i != NumElts; ++i) { 1140 EVT EltVT = ValueVTs[i]; 1141 if (isa<UndefValue>(C)) 1142 Constants[i] = DAG.getUNDEF(EltVT); 1143 else if (EltVT.isFloatingPoint()) 1144 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1145 else 1146 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1147 } 1148 1149 return DAG.getMergeValues(Constants, getCurSDLoc()); 1150 } 1151 1152 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1153 return DAG.getBlockAddress(BA, VT); 1154 1155 VectorType *VecTy = cast<VectorType>(V->getType()); 1156 unsigned NumElements = VecTy->getNumElements(); 1157 1158 // Now that we know the number and type of the elements, get that number of 1159 // elements into the Ops array based on what kind of constant it is. 1160 SmallVector<SDValue, 16> Ops; 1161 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1162 for (unsigned i = 0; i != NumElements; ++i) 1163 Ops.push_back(getValue(CV->getOperand(i))); 1164 } else { 1165 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1166 EVT EltVT = 1167 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1168 1169 SDValue Op; 1170 if (EltVT.isFloatingPoint()) 1171 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1172 else 1173 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1174 Ops.assign(NumElements, Op); 1175 } 1176 1177 // Create a BUILD_VECTOR node. 1178 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1179 } 1180 1181 // If this is a static alloca, generate it as the frameindex instead of 1182 // computation. 1183 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1184 DenseMap<const AllocaInst*, int>::iterator SI = 1185 FuncInfo.StaticAllocaMap.find(AI); 1186 if (SI != FuncInfo.StaticAllocaMap.end()) 1187 return DAG.getFrameIndex(SI->second, 1188 TLI.getPointerTy(DAG.getDataLayout())); 1189 } 1190 1191 // If this is an instruction which fast-isel has deferred, select it now. 1192 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1193 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1194 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1195 Inst->getType()); 1196 SDValue Chain = DAG.getEntryNode(); 1197 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1198 } 1199 1200 llvm_unreachable("Can't get register for value!"); 1201 } 1202 1203 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1204 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1205 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1206 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1207 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1208 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1209 if (IsMSVCCXX || IsCoreCLR) 1210 CatchPadMBB->setIsEHFuncletEntry(); 1211 1212 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1213 } 1214 1215 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1216 // Update machine-CFG edge. 1217 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1218 FuncInfo.MBB->addSuccessor(TargetMBB); 1219 1220 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1221 bool IsSEH = isAsynchronousEHPersonality(Pers); 1222 if (IsSEH) { 1223 // If this is not a fall-through branch or optimizations are switched off, 1224 // emit the branch. 1225 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1226 TM.getOptLevel() == CodeGenOpt::None) 1227 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1228 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1229 return; 1230 } 1231 1232 // Figure out the funclet membership for the catchret's successor. 1233 // This will be used by the FuncletLayout pass to determine how to order the 1234 // BB's. 1235 // A 'catchret' returns to the outer scope's color. 1236 Value *ParentPad = I.getCatchSwitchParentPad(); 1237 const BasicBlock *SuccessorColor; 1238 if (isa<ConstantTokenNone>(ParentPad)) 1239 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1240 else 1241 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1242 assert(SuccessorColor && "No parent funclet for catchret!"); 1243 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1244 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1245 1246 // Create the terminator node. 1247 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1248 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1249 DAG.getBasicBlock(SuccessorColorMBB)); 1250 DAG.setRoot(Ret); 1251 } 1252 1253 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1254 // Don't emit any special code for the cleanuppad instruction. It just marks 1255 // the start of a funclet. 1256 FuncInfo.MBB->setIsEHFuncletEntry(); 1257 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1258 } 1259 1260 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1261 /// many places it could ultimately go. In the IR, we have a single unwind 1262 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1263 /// This function skips over imaginary basic blocks that hold catchswitch 1264 /// instructions, and finds all the "real" machine 1265 /// basic block destinations. As those destinations may not be successors of 1266 /// EHPadBB, here we also calculate the edge probability to those destinations. 1267 /// The passed-in Prob is the edge probability to EHPadBB. 1268 static void findUnwindDestinations( 1269 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1270 BranchProbability Prob, 1271 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1272 &UnwindDests) { 1273 EHPersonality Personality = 1274 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1275 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1276 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1277 1278 while (EHPadBB) { 1279 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1280 BasicBlock *NewEHPadBB = nullptr; 1281 if (isa<LandingPadInst>(Pad)) { 1282 // Stop on landingpads. They are not funclets. 1283 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1284 break; 1285 } else if (isa<CleanupPadInst>(Pad)) { 1286 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1287 // personalities. 1288 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1289 UnwindDests.back().first->setIsEHFuncletEntry(); 1290 break; 1291 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1292 // Add the catchpad handlers to the possible destinations. 1293 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1294 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1295 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1296 if (IsMSVCCXX || IsCoreCLR) 1297 UnwindDests.back().first->setIsEHFuncletEntry(); 1298 } 1299 NewEHPadBB = CatchSwitch->getUnwindDest(); 1300 } else { 1301 continue; 1302 } 1303 1304 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1305 if (BPI && NewEHPadBB) 1306 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1307 EHPadBB = NewEHPadBB; 1308 } 1309 } 1310 1311 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1312 // Update successor info. 1313 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1314 auto UnwindDest = I.getUnwindDest(); 1315 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1316 BranchProbability UnwindDestProb = 1317 (BPI && UnwindDest) 1318 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1319 : BranchProbability::getZero(); 1320 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1321 for (auto &UnwindDest : UnwindDests) { 1322 UnwindDest.first->setIsEHPad(); 1323 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1324 } 1325 FuncInfo.MBB->normalizeSuccProbs(); 1326 1327 // Create the terminator node. 1328 SDValue Ret = 1329 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1330 DAG.setRoot(Ret); 1331 } 1332 1333 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1334 report_fatal_error("visitCatchSwitch not yet implemented!"); 1335 } 1336 1337 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1339 auto &DL = DAG.getDataLayout(); 1340 SDValue Chain = getControlRoot(); 1341 SmallVector<ISD::OutputArg, 8> Outs; 1342 SmallVector<SDValue, 8> OutVals; 1343 1344 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1345 // lower 1346 // 1347 // %val = call <ty> @llvm.experimental.deoptimize() 1348 // ret <ty> %val 1349 // 1350 // differently. 1351 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1352 LowerDeoptimizingReturn(); 1353 return; 1354 } 1355 1356 if (!FuncInfo.CanLowerReturn) { 1357 unsigned DemoteReg = FuncInfo.DemoteRegister; 1358 const Function *F = I.getParent()->getParent(); 1359 1360 // Emit a store of the return value through the virtual register. 1361 // Leave Outs empty so that LowerReturn won't try to load return 1362 // registers the usual way. 1363 SmallVector<EVT, 1> PtrValueVTs; 1364 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1365 PtrValueVTs); 1366 1367 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1368 DemoteReg, PtrValueVTs[0]); 1369 SDValue RetOp = getValue(I.getOperand(0)); 1370 1371 SmallVector<EVT, 4> ValueVTs; 1372 SmallVector<uint64_t, 4> Offsets; 1373 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1374 unsigned NumValues = ValueVTs.size(); 1375 1376 // An aggregate return value cannot wrap around the address space, so 1377 // offsets to its parts don't wrap either. 1378 SDNodeFlags Flags; 1379 Flags.setNoUnsignedWrap(true); 1380 1381 SmallVector<SDValue, 4> Chains(NumValues); 1382 for (unsigned i = 0; i != NumValues; ++i) { 1383 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1384 RetPtr.getValueType(), RetPtr, 1385 DAG.getIntPtrConstant(Offsets[i], 1386 getCurSDLoc()), 1387 &Flags); 1388 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1389 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1390 // FIXME: better loc info would be nice. 1391 Add, MachinePointerInfo()); 1392 } 1393 1394 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1395 MVT::Other, Chains); 1396 } else if (I.getNumOperands() != 0) { 1397 SmallVector<EVT, 4> ValueVTs; 1398 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1399 unsigned NumValues = ValueVTs.size(); 1400 if (NumValues) { 1401 SDValue RetOp = getValue(I.getOperand(0)); 1402 1403 const Function *F = I.getParent()->getParent(); 1404 1405 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1406 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1407 Attribute::SExt)) 1408 ExtendKind = ISD::SIGN_EXTEND; 1409 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1410 Attribute::ZExt)) 1411 ExtendKind = ISD::ZERO_EXTEND; 1412 1413 LLVMContext &Context = F->getContext(); 1414 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1415 Attribute::InReg); 1416 1417 for (unsigned j = 0; j != NumValues; ++j) { 1418 EVT VT = ValueVTs[j]; 1419 1420 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1421 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1422 1423 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1424 MVT PartVT = TLI.getRegisterType(Context, VT); 1425 SmallVector<SDValue, 4> Parts(NumParts); 1426 getCopyToParts(DAG, getCurSDLoc(), 1427 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1428 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1429 1430 // 'inreg' on function refers to return value 1431 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1432 if (RetInReg) 1433 Flags.setInReg(); 1434 1435 // Propagate extension type if any 1436 if (ExtendKind == ISD::SIGN_EXTEND) 1437 Flags.setSExt(); 1438 else if (ExtendKind == ISD::ZERO_EXTEND) 1439 Flags.setZExt(); 1440 1441 for (unsigned i = 0; i < NumParts; ++i) { 1442 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1443 VT, /*isfixed=*/true, 0, 0)); 1444 OutVals.push_back(Parts[i]); 1445 } 1446 } 1447 } 1448 } 1449 1450 // Push in swifterror virtual register as the last element of Outs. This makes 1451 // sure swifterror virtual register will be returned in the swifterror 1452 // physical register. 1453 const Function *F = I.getParent()->getParent(); 1454 if (TLI.supportSwiftError() && 1455 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1456 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1457 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1458 Flags.setSwiftError(); 1459 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1460 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1461 true /*isfixed*/, 1 /*origidx*/, 1462 0 /*partOffs*/)); 1463 // Create SDNode for the swifterror virtual register. 1464 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1465 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1466 EVT(TLI.getPointerTy(DL)))); 1467 } 1468 1469 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1470 CallingConv::ID CallConv = 1471 DAG.getMachineFunction().getFunction()->getCallingConv(); 1472 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1473 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1474 1475 // Verify that the target's LowerReturn behaved as expected. 1476 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1477 "LowerReturn didn't return a valid chain!"); 1478 1479 // Update the DAG with the new chain value resulting from return lowering. 1480 DAG.setRoot(Chain); 1481 } 1482 1483 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1484 /// created for it, emit nodes to copy the value into the virtual 1485 /// registers. 1486 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1487 // Skip empty types 1488 if (V->getType()->isEmptyTy()) 1489 return; 1490 1491 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1492 if (VMI != FuncInfo.ValueMap.end()) { 1493 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1494 CopyValueToVirtualRegister(V, VMI->second); 1495 } 1496 } 1497 1498 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1499 /// the current basic block, add it to ValueMap now so that we'll get a 1500 /// CopyTo/FromReg. 1501 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1502 // No need to export constants. 1503 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1504 1505 // Already exported? 1506 if (FuncInfo.isExportedInst(V)) return; 1507 1508 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1509 CopyValueToVirtualRegister(V, Reg); 1510 } 1511 1512 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1513 const BasicBlock *FromBB) { 1514 // The operands of the setcc have to be in this block. We don't know 1515 // how to export them from some other block. 1516 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1517 // Can export from current BB. 1518 if (VI->getParent() == FromBB) 1519 return true; 1520 1521 // Is already exported, noop. 1522 return FuncInfo.isExportedInst(V); 1523 } 1524 1525 // If this is an argument, we can export it if the BB is the entry block or 1526 // if it is already exported. 1527 if (isa<Argument>(V)) { 1528 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1529 return true; 1530 1531 // Otherwise, can only export this if it is already exported. 1532 return FuncInfo.isExportedInst(V); 1533 } 1534 1535 // Otherwise, constants can always be exported. 1536 return true; 1537 } 1538 1539 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1540 BranchProbability 1541 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1542 const MachineBasicBlock *Dst) const { 1543 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1544 const BasicBlock *SrcBB = Src->getBasicBlock(); 1545 const BasicBlock *DstBB = Dst->getBasicBlock(); 1546 if (!BPI) { 1547 // If BPI is not available, set the default probability as 1 / N, where N is 1548 // the number of successors. 1549 auto SuccSize = std::max<uint32_t>( 1550 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1551 return BranchProbability(1, SuccSize); 1552 } 1553 return BPI->getEdgeProbability(SrcBB, DstBB); 1554 } 1555 1556 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1557 MachineBasicBlock *Dst, 1558 BranchProbability Prob) { 1559 if (!FuncInfo.BPI) 1560 Src->addSuccessorWithoutProb(Dst); 1561 else { 1562 if (Prob.isUnknown()) 1563 Prob = getEdgeProbability(Src, Dst); 1564 Src->addSuccessor(Dst, Prob); 1565 } 1566 } 1567 1568 static bool InBlock(const Value *V, const BasicBlock *BB) { 1569 if (const Instruction *I = dyn_cast<Instruction>(V)) 1570 return I->getParent() == BB; 1571 return true; 1572 } 1573 1574 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1575 /// This function emits a branch and is used at the leaves of an OR or an 1576 /// AND operator tree. 1577 /// 1578 void 1579 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1580 MachineBasicBlock *TBB, 1581 MachineBasicBlock *FBB, 1582 MachineBasicBlock *CurBB, 1583 MachineBasicBlock *SwitchBB, 1584 BranchProbability TProb, 1585 BranchProbability FProb) { 1586 const BasicBlock *BB = CurBB->getBasicBlock(); 1587 1588 // If the leaf of the tree is a comparison, merge the condition into 1589 // the caseblock. 1590 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1591 // The operands of the cmp have to be in this block. We don't know 1592 // how to export them from some other block. If this is the first block 1593 // of the sequence, no exporting is needed. 1594 if (CurBB == SwitchBB || 1595 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1596 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1597 ISD::CondCode Condition; 1598 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1599 Condition = getICmpCondCode(IC->getPredicate()); 1600 } else { 1601 const FCmpInst *FC = cast<FCmpInst>(Cond); 1602 Condition = getFCmpCondCode(FC->getPredicate()); 1603 if (TM.Options.NoNaNsFPMath) 1604 Condition = getFCmpCodeWithoutNaN(Condition); 1605 } 1606 1607 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1608 TBB, FBB, CurBB, TProb, FProb); 1609 SwitchCases.push_back(CB); 1610 return; 1611 } 1612 } 1613 1614 // Create a CaseBlock record representing this branch. 1615 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1616 nullptr, TBB, FBB, CurBB, TProb, FProb); 1617 SwitchCases.push_back(CB); 1618 } 1619 1620 /// FindMergedConditions - If Cond is an expression like 1621 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1622 MachineBasicBlock *TBB, 1623 MachineBasicBlock *FBB, 1624 MachineBasicBlock *CurBB, 1625 MachineBasicBlock *SwitchBB, 1626 Instruction::BinaryOps Opc, 1627 BranchProbability TProb, 1628 BranchProbability FProb) { 1629 // If this node is not part of the or/and tree, emit it as a branch. 1630 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1631 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1632 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1633 BOp->getParent() != CurBB->getBasicBlock() || 1634 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1635 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1636 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1637 TProb, FProb); 1638 return; 1639 } 1640 1641 // Create TmpBB after CurBB. 1642 MachineFunction::iterator BBI(CurBB); 1643 MachineFunction &MF = DAG.getMachineFunction(); 1644 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1645 CurBB->getParent()->insert(++BBI, TmpBB); 1646 1647 if (Opc == Instruction::Or) { 1648 // Codegen X | Y as: 1649 // BB1: 1650 // jmp_if_X TBB 1651 // jmp TmpBB 1652 // TmpBB: 1653 // jmp_if_Y TBB 1654 // jmp FBB 1655 // 1656 1657 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1658 // The requirement is that 1659 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1660 // = TrueProb for original BB. 1661 // Assuming the original probabilities are A and B, one choice is to set 1662 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1663 // A/(1+B) and 2B/(1+B). This choice assumes that 1664 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1665 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1666 // TmpBB, but the math is more complicated. 1667 1668 auto NewTrueProb = TProb / 2; 1669 auto NewFalseProb = TProb / 2 + FProb; 1670 // Emit the LHS condition. 1671 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1672 NewTrueProb, NewFalseProb); 1673 1674 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1675 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1676 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1677 // Emit the RHS condition into TmpBB. 1678 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1679 Probs[0], Probs[1]); 1680 } else { 1681 assert(Opc == Instruction::And && "Unknown merge op!"); 1682 // Codegen X & Y as: 1683 // BB1: 1684 // jmp_if_X TmpBB 1685 // jmp FBB 1686 // TmpBB: 1687 // jmp_if_Y TBB 1688 // jmp FBB 1689 // 1690 // This requires creation of TmpBB after CurBB. 1691 1692 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1693 // The requirement is that 1694 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1695 // = FalseProb for original BB. 1696 // Assuming the original probabilities are A and B, one choice is to set 1697 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1698 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1699 // TrueProb for BB1 * FalseProb for TmpBB. 1700 1701 auto NewTrueProb = TProb + FProb / 2; 1702 auto NewFalseProb = FProb / 2; 1703 // Emit the LHS condition. 1704 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1705 NewTrueProb, NewFalseProb); 1706 1707 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1708 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1709 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1710 // Emit the RHS condition into TmpBB. 1711 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1712 Probs[0], Probs[1]); 1713 } 1714 } 1715 1716 /// If the set of cases should be emitted as a series of branches, return true. 1717 /// If we should emit this as a bunch of and/or'd together conditions, return 1718 /// false. 1719 bool 1720 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1721 if (Cases.size() != 2) return true; 1722 1723 // If this is two comparisons of the same values or'd or and'd together, they 1724 // will get folded into a single comparison, so don't emit two blocks. 1725 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1726 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1727 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1728 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1729 return false; 1730 } 1731 1732 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1733 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1734 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1735 Cases[0].CC == Cases[1].CC && 1736 isa<Constant>(Cases[0].CmpRHS) && 1737 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1738 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1739 return false; 1740 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1741 return false; 1742 } 1743 1744 return true; 1745 } 1746 1747 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1748 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1749 1750 // Update machine-CFG edges. 1751 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1752 1753 if (I.isUnconditional()) { 1754 // Update machine-CFG edges. 1755 BrMBB->addSuccessor(Succ0MBB); 1756 1757 // If this is not a fall-through branch or optimizations are switched off, 1758 // emit the branch. 1759 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1760 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1761 MVT::Other, getControlRoot(), 1762 DAG.getBasicBlock(Succ0MBB))); 1763 1764 return; 1765 } 1766 1767 // If this condition is one of the special cases we handle, do special stuff 1768 // now. 1769 const Value *CondVal = I.getCondition(); 1770 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1771 1772 // If this is a series of conditions that are or'd or and'd together, emit 1773 // this as a sequence of branches instead of setcc's with and/or operations. 1774 // As long as jumps are not expensive, this should improve performance. 1775 // For example, instead of something like: 1776 // cmp A, B 1777 // C = seteq 1778 // cmp D, E 1779 // F = setle 1780 // or C, F 1781 // jnz foo 1782 // Emit: 1783 // cmp A, B 1784 // je foo 1785 // cmp D, E 1786 // jle foo 1787 // 1788 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1789 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1790 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1791 !I.getMetadata(LLVMContext::MD_unpredictable) && 1792 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1793 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1794 Opcode, 1795 getEdgeProbability(BrMBB, Succ0MBB), 1796 getEdgeProbability(BrMBB, Succ1MBB)); 1797 // If the compares in later blocks need to use values not currently 1798 // exported from this block, export them now. This block should always 1799 // be the first entry. 1800 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1801 1802 // Allow some cases to be rejected. 1803 if (ShouldEmitAsBranches(SwitchCases)) { 1804 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1805 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1806 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1807 } 1808 1809 // Emit the branch for this block. 1810 visitSwitchCase(SwitchCases[0], BrMBB); 1811 SwitchCases.erase(SwitchCases.begin()); 1812 return; 1813 } 1814 1815 // Okay, we decided not to do this, remove any inserted MBB's and clear 1816 // SwitchCases. 1817 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1818 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1819 1820 SwitchCases.clear(); 1821 } 1822 } 1823 1824 // Create a CaseBlock record representing this branch. 1825 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1826 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1827 1828 // Use visitSwitchCase to actually insert the fast branch sequence for this 1829 // cond branch. 1830 visitSwitchCase(CB, BrMBB); 1831 } 1832 1833 /// visitSwitchCase - Emits the necessary code to represent a single node in 1834 /// the binary search tree resulting from lowering a switch instruction. 1835 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1836 MachineBasicBlock *SwitchBB) { 1837 SDValue Cond; 1838 SDValue CondLHS = getValue(CB.CmpLHS); 1839 SDLoc dl = getCurSDLoc(); 1840 1841 // Build the setcc now. 1842 if (!CB.CmpMHS) { 1843 // Fold "(X == true)" to X and "(X == false)" to !X to 1844 // handle common cases produced by branch lowering. 1845 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1846 CB.CC == ISD::SETEQ) 1847 Cond = CondLHS; 1848 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1849 CB.CC == ISD::SETEQ) { 1850 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1851 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1852 } else 1853 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1854 } else { 1855 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1856 1857 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1858 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1859 1860 SDValue CmpOp = getValue(CB.CmpMHS); 1861 EVT VT = CmpOp.getValueType(); 1862 1863 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1864 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1865 ISD::SETLE); 1866 } else { 1867 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1868 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1869 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1870 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1871 } 1872 } 1873 1874 // Update successor info 1875 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1876 // TrueBB and FalseBB are always different unless the incoming IR is 1877 // degenerate. This only happens when running llc on weird IR. 1878 if (CB.TrueBB != CB.FalseBB) 1879 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1880 SwitchBB->normalizeSuccProbs(); 1881 1882 // If the lhs block is the next block, invert the condition so that we can 1883 // fall through to the lhs instead of the rhs block. 1884 if (CB.TrueBB == NextBlock(SwitchBB)) { 1885 std::swap(CB.TrueBB, CB.FalseBB); 1886 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1887 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1888 } 1889 1890 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1891 MVT::Other, getControlRoot(), Cond, 1892 DAG.getBasicBlock(CB.TrueBB)); 1893 1894 // Insert the false branch. Do this even if it's a fall through branch, 1895 // this makes it easier to do DAG optimizations which require inverting 1896 // the branch condition. 1897 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1898 DAG.getBasicBlock(CB.FalseBB)); 1899 1900 DAG.setRoot(BrCond); 1901 } 1902 1903 /// visitJumpTable - Emit JumpTable node in the current MBB 1904 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1905 // Emit the code for the jump table 1906 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1907 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1908 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1909 JT.Reg, PTy); 1910 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1911 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1912 MVT::Other, Index.getValue(1), 1913 Table, Index); 1914 DAG.setRoot(BrJumpTable); 1915 } 1916 1917 /// visitJumpTableHeader - This function emits necessary code to produce index 1918 /// in the JumpTable from switch case. 1919 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1920 JumpTableHeader &JTH, 1921 MachineBasicBlock *SwitchBB) { 1922 SDLoc dl = getCurSDLoc(); 1923 1924 // Subtract the lowest switch case value from the value being switched on and 1925 // conditional branch to default mbb if the result is greater than the 1926 // difference between smallest and largest cases. 1927 SDValue SwitchOp = getValue(JTH.SValue); 1928 EVT VT = SwitchOp.getValueType(); 1929 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1930 DAG.getConstant(JTH.First, dl, VT)); 1931 1932 // The SDNode we just created, which holds the value being switched on minus 1933 // the smallest case value, needs to be copied to a virtual register so it 1934 // can be used as an index into the jump table in a subsequent basic block. 1935 // This value may be smaller or larger than the target's pointer type, and 1936 // therefore require extension or truncating. 1937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1938 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1939 1940 unsigned JumpTableReg = 1941 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1942 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1943 JumpTableReg, SwitchOp); 1944 JT.Reg = JumpTableReg; 1945 1946 // Emit the range check for the jump table, and branch to the default block 1947 // for the switch statement if the value being switched on exceeds the largest 1948 // case in the switch. 1949 SDValue CMP = DAG.getSetCC( 1950 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1951 Sub.getValueType()), 1952 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1953 1954 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1955 MVT::Other, CopyTo, CMP, 1956 DAG.getBasicBlock(JT.Default)); 1957 1958 // Avoid emitting unnecessary branches to the next block. 1959 if (JT.MBB != NextBlock(SwitchBB)) 1960 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1961 DAG.getBasicBlock(JT.MBB)); 1962 1963 DAG.setRoot(BrCond); 1964 } 1965 1966 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 1967 /// variable if there exists one. 1968 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 1969 SDValue &Chain) { 1970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1971 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1972 MachineFunction &MF = DAG.getMachineFunction(); 1973 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 1974 MachineSDNode *Node = 1975 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 1976 if (Global) { 1977 MachinePointerInfo MPInfo(Global); 1978 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 1979 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1980 MachineMemOperand::MODereferenceable; 1981 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 1982 DAG.getEVTAlignment(PtrTy)); 1983 Node->setMemRefs(MemRefs, MemRefs + 1); 1984 } 1985 return SDValue(Node, 0); 1986 } 1987 1988 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1989 /// tail spliced into a stack protector check success bb. 1990 /// 1991 /// For a high level explanation of how this fits into the stack protector 1992 /// generation see the comment on the declaration of class 1993 /// StackProtectorDescriptor. 1994 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1995 MachineBasicBlock *ParentBB) { 1996 1997 // First create the loads to the guard/stack slot for the comparison. 1998 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1999 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2000 2001 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2002 int FI = MFI.getStackProtectorIndex(); 2003 2004 SDValue Guard; 2005 SDLoc dl = getCurSDLoc(); 2006 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2007 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2008 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2009 2010 // Generate code to load the content of the guard slot. 2011 SDValue StackSlot = DAG.getLoad( 2012 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2013 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2014 MachineMemOperand::MOVolatile); 2015 2016 // Retrieve guard check function, nullptr if instrumentation is inlined. 2017 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2018 // The target provides a guard check function to validate the guard value. 2019 // Generate a call to that function with the content of the guard slot as 2020 // argument. 2021 auto *Fn = cast<Function>(GuardCheck); 2022 FunctionType *FnTy = Fn->getFunctionType(); 2023 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2024 2025 TargetLowering::ArgListTy Args; 2026 TargetLowering::ArgListEntry Entry; 2027 Entry.Node = StackSlot; 2028 Entry.Ty = FnTy->getParamType(0); 2029 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2030 Entry.isInReg = true; 2031 Args.push_back(Entry); 2032 2033 TargetLowering::CallLoweringInfo CLI(DAG); 2034 CLI.setDebugLoc(getCurSDLoc()) 2035 .setChain(DAG.getEntryNode()) 2036 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2037 getValue(GuardCheck), std::move(Args)); 2038 2039 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2040 DAG.setRoot(Result.second); 2041 return; 2042 } 2043 2044 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2045 // Otherwise, emit a volatile load to retrieve the stack guard value. 2046 SDValue Chain = DAG.getEntryNode(); 2047 if (TLI.useLoadStackGuardNode()) { 2048 Guard = getLoadStackGuard(DAG, dl, Chain); 2049 } else { 2050 const Value *IRGuard = TLI.getSDagStackGuard(M); 2051 SDValue GuardPtr = getValue(IRGuard); 2052 2053 Guard = 2054 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2055 Align, MachineMemOperand::MOVolatile); 2056 } 2057 2058 // Perform the comparison via a subtract/getsetcc. 2059 EVT VT = Guard.getValueType(); 2060 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2061 2062 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2063 *DAG.getContext(), 2064 Sub.getValueType()), 2065 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2066 2067 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2068 // branch to failure MBB. 2069 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2070 MVT::Other, StackSlot.getOperand(0), 2071 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2072 // Otherwise branch to success MBB. 2073 SDValue Br = DAG.getNode(ISD::BR, dl, 2074 MVT::Other, BrCond, 2075 DAG.getBasicBlock(SPD.getSuccessMBB())); 2076 2077 DAG.setRoot(Br); 2078 } 2079 2080 /// Codegen the failure basic block for a stack protector check. 2081 /// 2082 /// A failure stack protector machine basic block consists simply of a call to 2083 /// __stack_chk_fail(). 2084 /// 2085 /// For a high level explanation of how this fits into the stack protector 2086 /// generation see the comment on the declaration of class 2087 /// StackProtectorDescriptor. 2088 void 2089 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2091 SDValue Chain = 2092 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2093 None, false, getCurSDLoc(), false, false).second; 2094 DAG.setRoot(Chain); 2095 } 2096 2097 /// visitBitTestHeader - This function emits necessary code to produce value 2098 /// suitable for "bit tests" 2099 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2100 MachineBasicBlock *SwitchBB) { 2101 SDLoc dl = getCurSDLoc(); 2102 2103 // Subtract the minimum value 2104 SDValue SwitchOp = getValue(B.SValue); 2105 EVT VT = SwitchOp.getValueType(); 2106 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2107 DAG.getConstant(B.First, dl, VT)); 2108 2109 // Check range 2110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2111 SDValue RangeCmp = DAG.getSetCC( 2112 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2113 Sub.getValueType()), 2114 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2115 2116 // Determine the type of the test operands. 2117 bool UsePtrType = false; 2118 if (!TLI.isTypeLegal(VT)) 2119 UsePtrType = true; 2120 else { 2121 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2122 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2123 // Switch table case range are encoded into series of masks. 2124 // Just use pointer type, it's guaranteed to fit. 2125 UsePtrType = true; 2126 break; 2127 } 2128 } 2129 if (UsePtrType) { 2130 VT = TLI.getPointerTy(DAG.getDataLayout()); 2131 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2132 } 2133 2134 B.RegVT = VT.getSimpleVT(); 2135 B.Reg = FuncInfo.CreateReg(B.RegVT); 2136 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2137 2138 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2139 2140 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2141 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2142 SwitchBB->normalizeSuccProbs(); 2143 2144 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2145 MVT::Other, CopyTo, RangeCmp, 2146 DAG.getBasicBlock(B.Default)); 2147 2148 // Avoid emitting unnecessary branches to the next block. 2149 if (MBB != NextBlock(SwitchBB)) 2150 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2151 DAG.getBasicBlock(MBB)); 2152 2153 DAG.setRoot(BrRange); 2154 } 2155 2156 /// visitBitTestCase - this function produces one "bit test" 2157 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2158 MachineBasicBlock* NextMBB, 2159 BranchProbability BranchProbToNext, 2160 unsigned Reg, 2161 BitTestCase &B, 2162 MachineBasicBlock *SwitchBB) { 2163 SDLoc dl = getCurSDLoc(); 2164 MVT VT = BB.RegVT; 2165 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2166 SDValue Cmp; 2167 unsigned PopCount = countPopulation(B.Mask); 2168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2169 if (PopCount == 1) { 2170 // Testing for a single bit; just compare the shift count with what it 2171 // would need to be to shift a 1 bit in that position. 2172 Cmp = DAG.getSetCC( 2173 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2174 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2175 ISD::SETEQ); 2176 } else if (PopCount == BB.Range) { 2177 // There is only one zero bit in the range, test for it directly. 2178 Cmp = DAG.getSetCC( 2179 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2180 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2181 ISD::SETNE); 2182 } else { 2183 // Make desired shift 2184 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2185 DAG.getConstant(1, dl, VT), ShiftOp); 2186 2187 // Emit bit tests and jumps 2188 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2189 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2190 Cmp = DAG.getSetCC( 2191 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2192 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2193 } 2194 2195 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2196 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2197 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2198 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2199 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2200 // one as they are relative probabilities (and thus work more like weights), 2201 // and hence we need to normalize them to let the sum of them become one. 2202 SwitchBB->normalizeSuccProbs(); 2203 2204 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2205 MVT::Other, getControlRoot(), 2206 Cmp, DAG.getBasicBlock(B.TargetBB)); 2207 2208 // Avoid emitting unnecessary branches to the next block. 2209 if (NextMBB != NextBlock(SwitchBB)) 2210 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2211 DAG.getBasicBlock(NextMBB)); 2212 2213 DAG.setRoot(BrAnd); 2214 } 2215 2216 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2217 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2218 2219 // Retrieve successors. Look through artificial IR level blocks like 2220 // catchswitch for successors. 2221 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2222 const BasicBlock *EHPadBB = I.getSuccessor(1); 2223 2224 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2225 // have to do anything here to lower funclet bundles. 2226 assert(!I.hasOperandBundlesOtherThan( 2227 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2228 "Cannot lower invokes with arbitrary operand bundles yet!"); 2229 2230 const Value *Callee(I.getCalledValue()); 2231 const Function *Fn = dyn_cast<Function>(Callee); 2232 if (isa<InlineAsm>(Callee)) 2233 visitInlineAsm(&I); 2234 else if (Fn && Fn->isIntrinsic()) { 2235 switch (Fn->getIntrinsicID()) { 2236 default: 2237 llvm_unreachable("Cannot invoke this intrinsic"); 2238 case Intrinsic::donothing: 2239 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2240 break; 2241 case Intrinsic::experimental_patchpoint_void: 2242 case Intrinsic::experimental_patchpoint_i64: 2243 visitPatchpoint(&I, EHPadBB); 2244 break; 2245 case Intrinsic::experimental_gc_statepoint: 2246 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2247 break; 2248 } 2249 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2250 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2251 // Eventually we will support lowering the @llvm.experimental.deoptimize 2252 // intrinsic, and right now there are no plans to support other intrinsics 2253 // with deopt state. 2254 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2255 } else { 2256 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2257 } 2258 2259 // If the value of the invoke is used outside of its defining block, make it 2260 // available as a virtual register. 2261 // We already took care of the exported value for the statepoint instruction 2262 // during call to the LowerStatepoint. 2263 if (!isStatepoint(I)) { 2264 CopyToExportRegsIfNeeded(&I); 2265 } 2266 2267 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2268 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2269 BranchProbability EHPadBBProb = 2270 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2271 : BranchProbability::getZero(); 2272 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2273 2274 // Update successor info. 2275 addSuccessorWithProb(InvokeMBB, Return); 2276 for (auto &UnwindDest : UnwindDests) { 2277 UnwindDest.first->setIsEHPad(); 2278 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2279 } 2280 InvokeMBB->normalizeSuccProbs(); 2281 2282 // Drop into normal successor. 2283 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2284 MVT::Other, getControlRoot(), 2285 DAG.getBasicBlock(Return))); 2286 } 2287 2288 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2289 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2290 } 2291 2292 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2293 assert(FuncInfo.MBB->isEHPad() && 2294 "Call to landingpad not in landing pad!"); 2295 2296 MachineBasicBlock *MBB = FuncInfo.MBB; 2297 addLandingPadInfo(LP, *MBB); 2298 2299 // If there aren't registers to copy the values into (e.g., during SjLj 2300 // exceptions), then don't bother to create these DAG nodes. 2301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2302 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2303 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2304 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2305 return; 2306 2307 // If landingpad's return type is token type, we don't create DAG nodes 2308 // for its exception pointer and selector value. The extraction of exception 2309 // pointer or selector value from token type landingpads is not currently 2310 // supported. 2311 if (LP.getType()->isTokenTy()) 2312 return; 2313 2314 SmallVector<EVT, 2> ValueVTs; 2315 SDLoc dl = getCurSDLoc(); 2316 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2317 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2318 2319 // Get the two live-in registers as SDValues. The physregs have already been 2320 // copied into virtual registers. 2321 SDValue Ops[2]; 2322 if (FuncInfo.ExceptionPointerVirtReg) { 2323 Ops[0] = DAG.getZExtOrTrunc( 2324 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2325 FuncInfo.ExceptionPointerVirtReg, 2326 TLI.getPointerTy(DAG.getDataLayout())), 2327 dl, ValueVTs[0]); 2328 } else { 2329 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2330 } 2331 Ops[1] = DAG.getZExtOrTrunc( 2332 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2333 FuncInfo.ExceptionSelectorVirtReg, 2334 TLI.getPointerTy(DAG.getDataLayout())), 2335 dl, ValueVTs[1]); 2336 2337 // Merge into one. 2338 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2339 DAG.getVTList(ValueVTs), Ops); 2340 setValue(&LP, Res); 2341 } 2342 2343 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2344 #ifndef NDEBUG 2345 for (const CaseCluster &CC : Clusters) 2346 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2347 #endif 2348 2349 std::sort(Clusters.begin(), Clusters.end(), 2350 [](const CaseCluster &a, const CaseCluster &b) { 2351 return a.Low->getValue().slt(b.Low->getValue()); 2352 }); 2353 2354 // Merge adjacent clusters with the same destination. 2355 const unsigned N = Clusters.size(); 2356 unsigned DstIndex = 0; 2357 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2358 CaseCluster &CC = Clusters[SrcIndex]; 2359 const ConstantInt *CaseVal = CC.Low; 2360 MachineBasicBlock *Succ = CC.MBB; 2361 2362 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2363 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2364 // If this case has the same successor and is a neighbour, merge it into 2365 // the previous cluster. 2366 Clusters[DstIndex - 1].High = CaseVal; 2367 Clusters[DstIndex - 1].Prob += CC.Prob; 2368 } else { 2369 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2370 sizeof(Clusters[SrcIndex])); 2371 } 2372 } 2373 Clusters.resize(DstIndex); 2374 } 2375 2376 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2377 MachineBasicBlock *Last) { 2378 // Update JTCases. 2379 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2380 if (JTCases[i].first.HeaderBB == First) 2381 JTCases[i].first.HeaderBB = Last; 2382 2383 // Update BitTestCases. 2384 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2385 if (BitTestCases[i].Parent == First) 2386 BitTestCases[i].Parent = Last; 2387 } 2388 2389 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2390 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2391 2392 // Update machine-CFG edges with unique successors. 2393 SmallSet<BasicBlock*, 32> Done; 2394 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2395 BasicBlock *BB = I.getSuccessor(i); 2396 bool Inserted = Done.insert(BB).second; 2397 if (!Inserted) 2398 continue; 2399 2400 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2401 addSuccessorWithProb(IndirectBrMBB, Succ); 2402 } 2403 IndirectBrMBB->normalizeSuccProbs(); 2404 2405 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2406 MVT::Other, getControlRoot(), 2407 getValue(I.getAddress()))); 2408 } 2409 2410 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2411 if (DAG.getTarget().Options.TrapUnreachable) 2412 DAG.setRoot( 2413 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2414 } 2415 2416 void SelectionDAGBuilder::visitFSub(const User &I) { 2417 // -0.0 - X --> fneg 2418 Type *Ty = I.getType(); 2419 if (isa<Constant>(I.getOperand(0)) && 2420 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2421 SDValue Op2 = getValue(I.getOperand(1)); 2422 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2423 Op2.getValueType(), Op2)); 2424 return; 2425 } 2426 2427 visitBinary(I, ISD::FSUB); 2428 } 2429 2430 /// Checks if the given instruction performs a vector reduction, in which case 2431 /// we have the freedom to alter the elements in the result as long as the 2432 /// reduction of them stays unchanged. 2433 static bool isVectorReductionOp(const User *I) { 2434 const Instruction *Inst = dyn_cast<Instruction>(I); 2435 if (!Inst || !Inst->getType()->isVectorTy()) 2436 return false; 2437 2438 auto OpCode = Inst->getOpcode(); 2439 switch (OpCode) { 2440 case Instruction::Add: 2441 case Instruction::Mul: 2442 case Instruction::And: 2443 case Instruction::Or: 2444 case Instruction::Xor: 2445 break; 2446 case Instruction::FAdd: 2447 case Instruction::FMul: 2448 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2449 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2450 break; 2451 LLVM_FALLTHROUGH; 2452 default: 2453 return false; 2454 } 2455 2456 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2457 unsigned ElemNumToReduce = ElemNum; 2458 2459 // Do DFS search on the def-use chain from the given instruction. We only 2460 // allow four kinds of operations during the search until we reach the 2461 // instruction that extracts the first element from the vector: 2462 // 2463 // 1. The reduction operation of the same opcode as the given instruction. 2464 // 2465 // 2. PHI node. 2466 // 2467 // 3. ShuffleVector instruction together with a reduction operation that 2468 // does a partial reduction. 2469 // 2470 // 4. ExtractElement that extracts the first element from the vector, and we 2471 // stop searching the def-use chain here. 2472 // 2473 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2474 // from 1-3 to the stack to continue the DFS. The given instruction is not 2475 // a reduction operation if we meet any other instructions other than those 2476 // listed above. 2477 2478 SmallVector<const User *, 16> UsersToVisit{Inst}; 2479 SmallPtrSet<const User *, 16> Visited; 2480 bool ReduxExtracted = false; 2481 2482 while (!UsersToVisit.empty()) { 2483 auto User = UsersToVisit.back(); 2484 UsersToVisit.pop_back(); 2485 if (!Visited.insert(User).second) 2486 continue; 2487 2488 for (const auto &U : User->users()) { 2489 auto Inst = dyn_cast<Instruction>(U); 2490 if (!Inst) 2491 return false; 2492 2493 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2494 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2495 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2496 return false; 2497 UsersToVisit.push_back(U); 2498 } else if (const ShuffleVectorInst *ShufInst = 2499 dyn_cast<ShuffleVectorInst>(U)) { 2500 // Detect the following pattern: A ShuffleVector instruction together 2501 // with a reduction that do partial reduction on the first and second 2502 // ElemNumToReduce / 2 elements, and store the result in 2503 // ElemNumToReduce / 2 elements in another vector. 2504 2505 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2506 if (ResultElements < ElemNum) 2507 return false; 2508 2509 if (ElemNumToReduce == 1) 2510 return false; 2511 if (!isa<UndefValue>(U->getOperand(1))) 2512 return false; 2513 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2514 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2515 return false; 2516 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2517 if (ShufInst->getMaskValue(i) != -1) 2518 return false; 2519 2520 // There is only one user of this ShuffleVector instruction, which 2521 // must be a reduction operation. 2522 if (!U->hasOneUse()) 2523 return false; 2524 2525 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2526 if (!U2 || U2->getOpcode() != OpCode) 2527 return false; 2528 2529 // Check operands of the reduction operation. 2530 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2531 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2532 UsersToVisit.push_back(U2); 2533 ElemNumToReduce /= 2; 2534 } else 2535 return false; 2536 } else if (isa<ExtractElementInst>(U)) { 2537 // At this moment we should have reduced all elements in the vector. 2538 if (ElemNumToReduce != 1) 2539 return false; 2540 2541 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2542 if (!Val || Val->getZExtValue() != 0) 2543 return false; 2544 2545 ReduxExtracted = true; 2546 } else 2547 return false; 2548 } 2549 } 2550 return ReduxExtracted; 2551 } 2552 2553 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2554 SDValue Op1 = getValue(I.getOperand(0)); 2555 SDValue Op2 = getValue(I.getOperand(1)); 2556 2557 bool nuw = false; 2558 bool nsw = false; 2559 bool exact = false; 2560 bool vec_redux = false; 2561 FastMathFlags FMF; 2562 2563 if (const OverflowingBinaryOperator *OFBinOp = 2564 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2565 nuw = OFBinOp->hasNoUnsignedWrap(); 2566 nsw = OFBinOp->hasNoSignedWrap(); 2567 } 2568 if (const PossiblyExactOperator *ExactOp = 2569 dyn_cast<const PossiblyExactOperator>(&I)) 2570 exact = ExactOp->isExact(); 2571 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2572 FMF = FPOp->getFastMathFlags(); 2573 2574 if (isVectorReductionOp(&I)) { 2575 vec_redux = true; 2576 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2577 } 2578 2579 SDNodeFlags Flags; 2580 Flags.setExact(exact); 2581 Flags.setNoSignedWrap(nsw); 2582 Flags.setNoUnsignedWrap(nuw); 2583 Flags.setVectorReduction(vec_redux); 2584 if (EnableFMFInDAG) { 2585 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2586 Flags.setNoInfs(FMF.noInfs()); 2587 Flags.setNoNaNs(FMF.noNaNs()); 2588 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2589 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2590 } 2591 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2592 Op1, Op2, &Flags); 2593 setValue(&I, BinNodeValue); 2594 } 2595 2596 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2597 SDValue Op1 = getValue(I.getOperand(0)); 2598 SDValue Op2 = getValue(I.getOperand(1)); 2599 2600 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2601 Op2.getValueType(), DAG.getDataLayout()); 2602 2603 // Coerce the shift amount to the right type if we can. 2604 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2605 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2606 unsigned Op2Size = Op2.getValueSizeInBits(); 2607 SDLoc DL = getCurSDLoc(); 2608 2609 // If the operand is smaller than the shift count type, promote it. 2610 if (ShiftSize > Op2Size) 2611 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2612 2613 // If the operand is larger than the shift count type but the shift 2614 // count type has enough bits to represent any shift value, truncate 2615 // it now. This is a common case and it exposes the truncate to 2616 // optimization early. 2617 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2618 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2619 // Otherwise we'll need to temporarily settle for some other convenient 2620 // type. Type legalization will make adjustments once the shiftee is split. 2621 else 2622 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2623 } 2624 2625 bool nuw = false; 2626 bool nsw = false; 2627 bool exact = false; 2628 2629 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2630 2631 if (const OverflowingBinaryOperator *OFBinOp = 2632 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2633 nuw = OFBinOp->hasNoUnsignedWrap(); 2634 nsw = OFBinOp->hasNoSignedWrap(); 2635 } 2636 if (const PossiblyExactOperator *ExactOp = 2637 dyn_cast<const PossiblyExactOperator>(&I)) 2638 exact = ExactOp->isExact(); 2639 } 2640 SDNodeFlags Flags; 2641 Flags.setExact(exact); 2642 Flags.setNoSignedWrap(nsw); 2643 Flags.setNoUnsignedWrap(nuw); 2644 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2645 &Flags); 2646 setValue(&I, Res); 2647 } 2648 2649 void SelectionDAGBuilder::visitSDiv(const User &I) { 2650 SDValue Op1 = getValue(I.getOperand(0)); 2651 SDValue Op2 = getValue(I.getOperand(1)); 2652 2653 SDNodeFlags Flags; 2654 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2655 cast<PossiblyExactOperator>(&I)->isExact()); 2656 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2657 Op2, &Flags)); 2658 } 2659 2660 void SelectionDAGBuilder::visitICmp(const User &I) { 2661 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2662 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2663 predicate = IC->getPredicate(); 2664 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2665 predicate = ICmpInst::Predicate(IC->getPredicate()); 2666 SDValue Op1 = getValue(I.getOperand(0)); 2667 SDValue Op2 = getValue(I.getOperand(1)); 2668 ISD::CondCode Opcode = getICmpCondCode(predicate); 2669 2670 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2671 I.getType()); 2672 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2673 } 2674 2675 void SelectionDAGBuilder::visitFCmp(const User &I) { 2676 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2677 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2678 predicate = FC->getPredicate(); 2679 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2680 predicate = FCmpInst::Predicate(FC->getPredicate()); 2681 SDValue Op1 = getValue(I.getOperand(0)); 2682 SDValue Op2 = getValue(I.getOperand(1)); 2683 ISD::CondCode Condition = getFCmpCondCode(predicate); 2684 2685 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2686 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2687 // further optimization, but currently FMF is only applicable to binary nodes. 2688 if (TM.Options.NoNaNsFPMath) 2689 Condition = getFCmpCodeWithoutNaN(Condition); 2690 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2691 I.getType()); 2692 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2693 } 2694 2695 // Check if the condition of the select has one use or two users that are both 2696 // selects with the same condition. 2697 static bool hasOnlySelectUsers(const Value *Cond) { 2698 return all_of(Cond->users(), [](const Value *V) { 2699 return isa<SelectInst>(V); 2700 }); 2701 } 2702 2703 void SelectionDAGBuilder::visitSelect(const User &I) { 2704 SmallVector<EVT, 4> ValueVTs; 2705 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2706 ValueVTs); 2707 unsigned NumValues = ValueVTs.size(); 2708 if (NumValues == 0) return; 2709 2710 SmallVector<SDValue, 4> Values(NumValues); 2711 SDValue Cond = getValue(I.getOperand(0)); 2712 SDValue LHSVal = getValue(I.getOperand(1)); 2713 SDValue RHSVal = getValue(I.getOperand(2)); 2714 auto BaseOps = {Cond}; 2715 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2716 ISD::VSELECT : ISD::SELECT; 2717 2718 // Min/max matching is only viable if all output VTs are the same. 2719 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2720 EVT VT = ValueVTs[0]; 2721 LLVMContext &Ctx = *DAG.getContext(); 2722 auto &TLI = DAG.getTargetLoweringInfo(); 2723 2724 // We care about the legality of the operation after it has been type 2725 // legalized. 2726 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2727 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2728 VT = TLI.getTypeToTransformTo(Ctx, VT); 2729 2730 // If the vselect is legal, assume we want to leave this as a vector setcc + 2731 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2732 // min/max is legal on the scalar type. 2733 bool UseScalarMinMax = VT.isVector() && 2734 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2735 2736 Value *LHS, *RHS; 2737 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2738 ISD::NodeType Opc = ISD::DELETED_NODE; 2739 switch (SPR.Flavor) { 2740 case SPF_UMAX: Opc = ISD::UMAX; break; 2741 case SPF_UMIN: Opc = ISD::UMIN; break; 2742 case SPF_SMAX: Opc = ISD::SMAX; break; 2743 case SPF_SMIN: Opc = ISD::SMIN; break; 2744 case SPF_FMINNUM: 2745 switch (SPR.NaNBehavior) { 2746 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2747 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2748 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2749 case SPNB_RETURNS_ANY: { 2750 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2751 Opc = ISD::FMINNUM; 2752 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2753 Opc = ISD::FMINNAN; 2754 else if (UseScalarMinMax) 2755 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2756 ISD::FMINNUM : ISD::FMINNAN; 2757 break; 2758 } 2759 } 2760 break; 2761 case SPF_FMAXNUM: 2762 switch (SPR.NaNBehavior) { 2763 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2764 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2765 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2766 case SPNB_RETURNS_ANY: 2767 2768 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2769 Opc = ISD::FMAXNUM; 2770 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2771 Opc = ISD::FMAXNAN; 2772 else if (UseScalarMinMax) 2773 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2774 ISD::FMAXNUM : ISD::FMAXNAN; 2775 break; 2776 } 2777 break; 2778 default: break; 2779 } 2780 2781 if (Opc != ISD::DELETED_NODE && 2782 (TLI.isOperationLegalOrCustom(Opc, VT) || 2783 (UseScalarMinMax && 2784 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2785 // If the underlying comparison instruction is used by any other 2786 // instruction, the consumed instructions won't be destroyed, so it is 2787 // not profitable to convert to a min/max. 2788 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2789 OpCode = Opc; 2790 LHSVal = getValue(LHS); 2791 RHSVal = getValue(RHS); 2792 BaseOps = {}; 2793 } 2794 } 2795 2796 for (unsigned i = 0; i != NumValues; ++i) { 2797 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2798 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2799 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2800 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2801 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2802 Ops); 2803 } 2804 2805 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2806 DAG.getVTList(ValueVTs), Values)); 2807 } 2808 2809 void SelectionDAGBuilder::visitTrunc(const User &I) { 2810 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2811 SDValue N = getValue(I.getOperand(0)); 2812 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2813 I.getType()); 2814 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2815 } 2816 2817 void SelectionDAGBuilder::visitZExt(const User &I) { 2818 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2819 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2820 SDValue N = getValue(I.getOperand(0)); 2821 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2822 I.getType()); 2823 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2824 } 2825 2826 void SelectionDAGBuilder::visitSExt(const User &I) { 2827 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2828 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2829 SDValue N = getValue(I.getOperand(0)); 2830 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2831 I.getType()); 2832 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2833 } 2834 2835 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2836 // FPTrunc is never a no-op cast, no need to check 2837 SDValue N = getValue(I.getOperand(0)); 2838 SDLoc dl = getCurSDLoc(); 2839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2840 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2841 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2842 DAG.getTargetConstant( 2843 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2844 } 2845 2846 void SelectionDAGBuilder::visitFPExt(const User &I) { 2847 // FPExt is never a no-op cast, no need to check 2848 SDValue N = getValue(I.getOperand(0)); 2849 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2850 I.getType()); 2851 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2852 } 2853 2854 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2855 // FPToUI is never a no-op cast, no need to check 2856 SDValue N = getValue(I.getOperand(0)); 2857 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2858 I.getType()); 2859 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2860 } 2861 2862 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2863 // FPToSI is never a no-op cast, no need to check 2864 SDValue N = getValue(I.getOperand(0)); 2865 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2866 I.getType()); 2867 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2868 } 2869 2870 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2871 // UIToFP is never a no-op cast, no need to check 2872 SDValue N = getValue(I.getOperand(0)); 2873 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2874 I.getType()); 2875 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2876 } 2877 2878 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2879 // SIToFP is never a no-op cast, no need to check 2880 SDValue N = getValue(I.getOperand(0)); 2881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2882 I.getType()); 2883 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2884 } 2885 2886 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2887 // What to do depends on the size of the integer and the size of the pointer. 2888 // We can either truncate, zero extend, or no-op, accordingly. 2889 SDValue N = getValue(I.getOperand(0)); 2890 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2891 I.getType()); 2892 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2893 } 2894 2895 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2896 // What to do depends on the size of the integer and the size of the pointer. 2897 // We can either truncate, zero extend, or no-op, accordingly. 2898 SDValue N = getValue(I.getOperand(0)); 2899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2900 I.getType()); 2901 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2902 } 2903 2904 void SelectionDAGBuilder::visitBitCast(const User &I) { 2905 SDValue N = getValue(I.getOperand(0)); 2906 SDLoc dl = getCurSDLoc(); 2907 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2908 I.getType()); 2909 2910 // BitCast assures us that source and destination are the same size so this is 2911 // either a BITCAST or a no-op. 2912 if (DestVT != N.getValueType()) 2913 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2914 DestVT, N)); // convert types. 2915 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2916 // might fold any kind of constant expression to an integer constant and that 2917 // is not what we are looking for. Only regcognize a bitcast of a genuine 2918 // constant integer as an opaque constant. 2919 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2920 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2921 /*isOpaque*/true)); 2922 else 2923 setValue(&I, N); // noop cast. 2924 } 2925 2926 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2928 const Value *SV = I.getOperand(0); 2929 SDValue N = getValue(SV); 2930 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2931 2932 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2933 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2934 2935 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2936 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2937 2938 setValue(&I, N); 2939 } 2940 2941 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2943 SDValue InVec = getValue(I.getOperand(0)); 2944 SDValue InVal = getValue(I.getOperand(1)); 2945 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2946 TLI.getVectorIdxTy(DAG.getDataLayout())); 2947 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2948 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2949 InVec, InVal, InIdx)); 2950 } 2951 2952 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2954 SDValue InVec = getValue(I.getOperand(0)); 2955 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2956 TLI.getVectorIdxTy(DAG.getDataLayout())); 2957 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2958 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2959 InVec, InIdx)); 2960 } 2961 2962 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2963 SDValue Src1 = getValue(I.getOperand(0)); 2964 SDValue Src2 = getValue(I.getOperand(1)); 2965 SDLoc DL = getCurSDLoc(); 2966 2967 SmallVector<int, 8> Mask; 2968 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2969 unsigned MaskNumElts = Mask.size(); 2970 2971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2972 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2973 EVT SrcVT = Src1.getValueType(); 2974 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2975 2976 if (SrcNumElts == MaskNumElts) { 2977 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 2978 return; 2979 } 2980 2981 // Normalize the shuffle vector since mask and vector length don't match. 2982 if (SrcNumElts < MaskNumElts) { 2983 // Mask is longer than the source vectors. We can use concatenate vector to 2984 // make the mask and vectors lengths match. 2985 2986 if (MaskNumElts % SrcNumElts == 0) { 2987 // Mask length is a multiple of the source vector length. 2988 // Check if the shuffle is some kind of concatenation of the input 2989 // vectors. 2990 unsigned NumConcat = MaskNumElts / SrcNumElts; 2991 bool IsConcat = true; 2992 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 2993 for (unsigned i = 0; i != MaskNumElts; ++i) { 2994 int Idx = Mask[i]; 2995 if (Idx < 0) 2996 continue; 2997 // Ensure the indices in each SrcVT sized piece are sequential and that 2998 // the same source is used for the whole piece. 2999 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3000 (ConcatSrcs[i / SrcNumElts] >= 0 && 3001 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3002 IsConcat = false; 3003 break; 3004 } 3005 // Remember which source this index came from. 3006 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3007 } 3008 3009 // The shuffle is concatenating multiple vectors together. Just emit 3010 // a CONCAT_VECTORS operation. 3011 if (IsConcat) { 3012 SmallVector<SDValue, 8> ConcatOps; 3013 for (auto Src : ConcatSrcs) { 3014 if (Src < 0) 3015 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3016 else if (Src == 0) 3017 ConcatOps.push_back(Src1); 3018 else 3019 ConcatOps.push_back(Src2); 3020 } 3021 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3022 return; 3023 } 3024 } 3025 3026 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3027 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3028 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3029 PaddedMaskNumElts); 3030 3031 // Pad both vectors with undefs to make them the same length as the mask. 3032 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3033 3034 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3035 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3036 MOps1[0] = Src1; 3037 MOps2[0] = Src2; 3038 3039 Src1 = Src1.isUndef() 3040 ? DAG.getUNDEF(PaddedVT) 3041 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3042 Src2 = Src2.isUndef() 3043 ? DAG.getUNDEF(PaddedVT) 3044 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3045 3046 // Readjust mask for new input vector length. 3047 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3048 for (unsigned i = 0; i != MaskNumElts; ++i) { 3049 int Idx = Mask[i]; 3050 if (Idx >= (int)SrcNumElts) 3051 Idx -= SrcNumElts - PaddedMaskNumElts; 3052 MappedOps[i] = Idx; 3053 } 3054 3055 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3056 3057 // If the concatenated vector was padded, extract a subvector with the 3058 // correct number of elements. 3059 if (MaskNumElts != PaddedMaskNumElts) 3060 Result = DAG.getNode( 3061 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3062 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3063 3064 setValue(&I, Result); 3065 return; 3066 } 3067 3068 if (SrcNumElts > MaskNumElts) { 3069 // Analyze the access pattern of the vector to see if we can extract 3070 // two subvectors and do the shuffle. The analysis is done by calculating 3071 // the range of elements the mask access on both vectors. 3072 int MinRange[2] = { static_cast<int>(SrcNumElts), 3073 static_cast<int>(SrcNumElts)}; 3074 int MaxRange[2] = {-1, -1}; 3075 3076 for (unsigned i = 0; i != MaskNumElts; ++i) { 3077 int Idx = Mask[i]; 3078 unsigned Input = 0; 3079 if (Idx < 0) 3080 continue; 3081 3082 if (Idx >= (int)SrcNumElts) { 3083 Input = 1; 3084 Idx -= SrcNumElts; 3085 } 3086 if (Idx > MaxRange[Input]) 3087 MaxRange[Input] = Idx; 3088 if (Idx < MinRange[Input]) 3089 MinRange[Input] = Idx; 3090 } 3091 3092 // Check if the access is smaller than the vector size and can we find 3093 // a reasonable extract index. 3094 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3095 // Extract. 3096 int StartIdx[2]; // StartIdx to extract from 3097 for (unsigned Input = 0; Input < 2; ++Input) { 3098 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3099 RangeUse[Input] = 0; // Unused 3100 StartIdx[Input] = 0; 3101 continue; 3102 } 3103 3104 // Find a good start index that is a multiple of the mask length. Then 3105 // see if the rest of the elements are in range. 3106 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3107 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3108 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3109 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3110 } 3111 3112 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3113 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3114 return; 3115 } 3116 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3117 // Extract appropriate subvector and generate a vector shuffle 3118 for (unsigned Input = 0; Input < 2; ++Input) { 3119 SDValue &Src = Input == 0 ? Src1 : Src2; 3120 if (RangeUse[Input] == 0) 3121 Src = DAG.getUNDEF(VT); 3122 else { 3123 Src = DAG.getNode( 3124 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3125 DAG.getConstant(StartIdx[Input], DL, 3126 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3127 } 3128 } 3129 3130 // Calculate new mask. 3131 SmallVector<int, 8> MappedOps; 3132 for (unsigned i = 0; i != MaskNumElts; ++i) { 3133 int Idx = Mask[i]; 3134 if (Idx >= 0) { 3135 if (Idx < (int)SrcNumElts) 3136 Idx -= StartIdx[0]; 3137 else 3138 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3139 } 3140 MappedOps.push_back(Idx); 3141 } 3142 3143 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3144 return; 3145 } 3146 } 3147 3148 // We can't use either concat vectors or extract subvectors so fall back to 3149 // replacing the shuffle with extract and build vector. 3150 // to insert and build vector. 3151 EVT EltVT = VT.getVectorElementType(); 3152 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3153 SmallVector<SDValue,8> Ops; 3154 for (unsigned i = 0; i != MaskNumElts; ++i) { 3155 int Idx = Mask[i]; 3156 SDValue Res; 3157 3158 if (Idx < 0) { 3159 Res = DAG.getUNDEF(EltVT); 3160 } else { 3161 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3162 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3163 3164 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3165 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3166 } 3167 3168 Ops.push_back(Res); 3169 } 3170 3171 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3172 } 3173 3174 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3175 const Value *Op0 = I.getOperand(0); 3176 const Value *Op1 = I.getOperand(1); 3177 Type *AggTy = I.getType(); 3178 Type *ValTy = Op1->getType(); 3179 bool IntoUndef = isa<UndefValue>(Op0); 3180 bool FromUndef = isa<UndefValue>(Op1); 3181 3182 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3183 3184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3185 SmallVector<EVT, 4> AggValueVTs; 3186 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3187 SmallVector<EVT, 4> ValValueVTs; 3188 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3189 3190 unsigned NumAggValues = AggValueVTs.size(); 3191 unsigned NumValValues = ValValueVTs.size(); 3192 SmallVector<SDValue, 4> Values(NumAggValues); 3193 3194 // Ignore an insertvalue that produces an empty object 3195 if (!NumAggValues) { 3196 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3197 return; 3198 } 3199 3200 SDValue Agg = getValue(Op0); 3201 unsigned i = 0; 3202 // Copy the beginning value(s) from the original aggregate. 3203 for (; i != LinearIndex; ++i) 3204 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3205 SDValue(Agg.getNode(), Agg.getResNo() + i); 3206 // Copy values from the inserted value(s). 3207 if (NumValValues) { 3208 SDValue Val = getValue(Op1); 3209 for (; i != LinearIndex + NumValValues; ++i) 3210 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3211 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3212 } 3213 // Copy remaining value(s) from the original aggregate. 3214 for (; i != NumAggValues; ++i) 3215 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3216 SDValue(Agg.getNode(), Agg.getResNo() + i); 3217 3218 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3219 DAG.getVTList(AggValueVTs), Values)); 3220 } 3221 3222 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3223 const Value *Op0 = I.getOperand(0); 3224 Type *AggTy = Op0->getType(); 3225 Type *ValTy = I.getType(); 3226 bool OutOfUndef = isa<UndefValue>(Op0); 3227 3228 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3229 3230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3231 SmallVector<EVT, 4> ValValueVTs; 3232 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3233 3234 unsigned NumValValues = ValValueVTs.size(); 3235 3236 // Ignore a extractvalue that produces an empty object 3237 if (!NumValValues) { 3238 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3239 return; 3240 } 3241 3242 SmallVector<SDValue, 4> Values(NumValValues); 3243 3244 SDValue Agg = getValue(Op0); 3245 // Copy out the selected value(s). 3246 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3247 Values[i - LinearIndex] = 3248 OutOfUndef ? 3249 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3250 SDValue(Agg.getNode(), Agg.getResNo() + i); 3251 3252 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3253 DAG.getVTList(ValValueVTs), Values)); 3254 } 3255 3256 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3257 Value *Op0 = I.getOperand(0); 3258 // Note that the pointer operand may be a vector of pointers. Take the scalar 3259 // element which holds a pointer. 3260 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3261 SDValue N = getValue(Op0); 3262 SDLoc dl = getCurSDLoc(); 3263 3264 // Normalize Vector GEP - all scalar operands should be converted to the 3265 // splat vector. 3266 unsigned VectorWidth = I.getType()->isVectorTy() ? 3267 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3268 3269 if (VectorWidth && !N.getValueType().isVector()) { 3270 LLVMContext &Context = *DAG.getContext(); 3271 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3272 N = DAG.getSplatBuildVector(VT, dl, N); 3273 } 3274 3275 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3276 GTI != E; ++GTI) { 3277 const Value *Idx = GTI.getOperand(); 3278 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3279 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3280 if (Field) { 3281 // N = N + Offset 3282 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3283 3284 // In an inbouds GEP with an offset that is nonnegative even when 3285 // interpreted as signed, assume there is no unsigned overflow. 3286 SDNodeFlags Flags; 3287 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3288 Flags.setNoUnsignedWrap(true); 3289 3290 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3291 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3292 } 3293 } else { 3294 MVT PtrTy = 3295 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3296 unsigned PtrSize = PtrTy.getSizeInBits(); 3297 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3298 3299 // If this is a scalar constant or a splat vector of constants, 3300 // handle it quickly. 3301 const auto *CI = dyn_cast<ConstantInt>(Idx); 3302 if (!CI && isa<ConstantDataVector>(Idx) && 3303 cast<ConstantDataVector>(Idx)->getSplatValue()) 3304 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3305 3306 if (CI) { 3307 if (CI->isZero()) 3308 continue; 3309 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3310 LLVMContext &Context = *DAG.getContext(); 3311 SDValue OffsVal = VectorWidth ? 3312 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3313 DAG.getConstant(Offs, dl, PtrTy); 3314 3315 // In an inbouds GEP with an offset that is nonnegative even when 3316 // interpreted as signed, assume there is no unsigned overflow. 3317 SDNodeFlags Flags; 3318 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3319 Flags.setNoUnsignedWrap(true); 3320 3321 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3322 continue; 3323 } 3324 3325 // N = N + Idx * ElementSize; 3326 SDValue IdxN = getValue(Idx); 3327 3328 if (!IdxN.getValueType().isVector() && VectorWidth) { 3329 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3330 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3331 } 3332 3333 // If the index is smaller or larger than intptr_t, truncate or extend 3334 // it. 3335 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3336 3337 // If this is a multiply by a power of two, turn it into a shl 3338 // immediately. This is a very common case. 3339 if (ElementSize != 1) { 3340 if (ElementSize.isPowerOf2()) { 3341 unsigned Amt = ElementSize.logBase2(); 3342 IdxN = DAG.getNode(ISD::SHL, dl, 3343 N.getValueType(), IdxN, 3344 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3345 } else { 3346 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3347 IdxN = DAG.getNode(ISD::MUL, dl, 3348 N.getValueType(), IdxN, Scale); 3349 } 3350 } 3351 3352 N = DAG.getNode(ISD::ADD, dl, 3353 N.getValueType(), N, IdxN); 3354 } 3355 } 3356 3357 setValue(&I, N); 3358 } 3359 3360 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3361 // If this is a fixed sized alloca in the entry block of the function, 3362 // allocate it statically on the stack. 3363 if (FuncInfo.StaticAllocaMap.count(&I)) 3364 return; // getValue will auto-populate this. 3365 3366 SDLoc dl = getCurSDLoc(); 3367 Type *Ty = I.getAllocatedType(); 3368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3369 auto &DL = DAG.getDataLayout(); 3370 uint64_t TySize = DL.getTypeAllocSize(Ty); 3371 unsigned Align = 3372 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3373 3374 SDValue AllocSize = getValue(I.getArraySize()); 3375 3376 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3377 if (AllocSize.getValueType() != IntPtr) 3378 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3379 3380 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3381 AllocSize, 3382 DAG.getConstant(TySize, dl, IntPtr)); 3383 3384 // Handle alignment. If the requested alignment is less than or equal to 3385 // the stack alignment, ignore it. If the size is greater than or equal to 3386 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3387 unsigned StackAlign = 3388 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3389 if (Align <= StackAlign) 3390 Align = 0; 3391 3392 // Round the size of the allocation up to the stack alignment size 3393 // by add SA-1 to the size. This doesn't overflow because we're computing 3394 // an address inside an alloca. 3395 SDNodeFlags Flags; 3396 Flags.setNoUnsignedWrap(true); 3397 AllocSize = DAG.getNode(ISD::ADD, dl, 3398 AllocSize.getValueType(), AllocSize, 3399 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3400 3401 // Mask out the low bits for alignment purposes. 3402 AllocSize = DAG.getNode(ISD::AND, dl, 3403 AllocSize.getValueType(), AllocSize, 3404 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3405 dl)); 3406 3407 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3408 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3409 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3410 setValue(&I, DSA); 3411 DAG.setRoot(DSA.getValue(1)); 3412 3413 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3414 } 3415 3416 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3417 if (I.isAtomic()) 3418 return visitAtomicLoad(I); 3419 3420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3421 const Value *SV = I.getOperand(0); 3422 if (TLI.supportSwiftError()) { 3423 // Swifterror values can come from either a function parameter with 3424 // swifterror attribute or an alloca with swifterror attribute. 3425 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3426 if (Arg->hasSwiftErrorAttr()) 3427 return visitLoadFromSwiftError(I); 3428 } 3429 3430 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3431 if (Alloca->isSwiftError()) 3432 return visitLoadFromSwiftError(I); 3433 } 3434 } 3435 3436 SDValue Ptr = getValue(SV); 3437 3438 Type *Ty = I.getType(); 3439 3440 bool isVolatile = I.isVolatile(); 3441 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3442 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3443 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3444 unsigned Alignment = I.getAlignment(); 3445 3446 AAMDNodes AAInfo; 3447 I.getAAMetadata(AAInfo); 3448 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3449 3450 SmallVector<EVT, 4> ValueVTs; 3451 SmallVector<uint64_t, 4> Offsets; 3452 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3453 unsigned NumValues = ValueVTs.size(); 3454 if (NumValues == 0) 3455 return; 3456 3457 SDValue Root; 3458 bool ConstantMemory = false; 3459 if (isVolatile || NumValues > MaxParallelChains) 3460 // Serialize volatile loads with other side effects. 3461 Root = getRoot(); 3462 else if (AA->pointsToConstantMemory(MemoryLocation( 3463 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3464 // Do not serialize (non-volatile) loads of constant memory with anything. 3465 Root = DAG.getEntryNode(); 3466 ConstantMemory = true; 3467 } else { 3468 // Do not serialize non-volatile loads against each other. 3469 Root = DAG.getRoot(); 3470 } 3471 3472 SDLoc dl = getCurSDLoc(); 3473 3474 if (isVolatile) 3475 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3476 3477 // An aggregate load cannot wrap around the address space, so offsets to its 3478 // parts don't wrap either. 3479 SDNodeFlags Flags; 3480 Flags.setNoUnsignedWrap(true); 3481 3482 SmallVector<SDValue, 4> Values(NumValues); 3483 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3484 EVT PtrVT = Ptr.getValueType(); 3485 unsigned ChainI = 0; 3486 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3487 // Serializing loads here may result in excessive register pressure, and 3488 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3489 // could recover a bit by hoisting nodes upward in the chain by recognizing 3490 // they are side-effect free or do not alias. The optimizer should really 3491 // avoid this case by converting large object/array copies to llvm.memcpy 3492 // (MaxParallelChains should always remain as failsafe). 3493 if (ChainI == MaxParallelChains) { 3494 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3495 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3496 makeArrayRef(Chains.data(), ChainI)); 3497 Root = Chain; 3498 ChainI = 0; 3499 } 3500 SDValue A = DAG.getNode(ISD::ADD, dl, 3501 PtrVT, Ptr, 3502 DAG.getConstant(Offsets[i], dl, PtrVT), 3503 &Flags); 3504 auto MMOFlags = MachineMemOperand::MONone; 3505 if (isVolatile) 3506 MMOFlags |= MachineMemOperand::MOVolatile; 3507 if (isNonTemporal) 3508 MMOFlags |= MachineMemOperand::MONonTemporal; 3509 if (isInvariant) 3510 MMOFlags |= MachineMemOperand::MOInvariant; 3511 if (isDereferenceable) 3512 MMOFlags |= MachineMemOperand::MODereferenceable; 3513 3514 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3515 MachinePointerInfo(SV, Offsets[i]), Alignment, 3516 MMOFlags, AAInfo, Ranges); 3517 3518 Values[i] = L; 3519 Chains[ChainI] = L.getValue(1); 3520 } 3521 3522 if (!ConstantMemory) { 3523 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3524 makeArrayRef(Chains.data(), ChainI)); 3525 if (isVolatile) 3526 DAG.setRoot(Chain); 3527 else 3528 PendingLoads.push_back(Chain); 3529 } 3530 3531 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3532 DAG.getVTList(ValueVTs), Values)); 3533 } 3534 3535 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3537 assert(TLI.supportSwiftError() && 3538 "call visitStoreToSwiftError when backend supports swifterror"); 3539 3540 SmallVector<EVT, 4> ValueVTs; 3541 SmallVector<uint64_t, 4> Offsets; 3542 const Value *SrcV = I.getOperand(0); 3543 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3544 SrcV->getType(), ValueVTs, &Offsets); 3545 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3546 "expect a single EVT for swifterror"); 3547 3548 SDValue Src = getValue(SrcV); 3549 // Create a virtual register, then update the virtual register. 3550 auto &DL = DAG.getDataLayout(); 3551 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3552 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3553 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3554 // Chain can be getRoot or getControlRoot. 3555 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3556 SDValue(Src.getNode(), Src.getResNo())); 3557 DAG.setRoot(CopyNode); 3558 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3559 } 3560 3561 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3562 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3563 "call visitLoadFromSwiftError when backend supports swifterror"); 3564 3565 assert(!I.isVolatile() && 3566 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3567 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3568 "Support volatile, non temporal, invariant for load_from_swift_error"); 3569 3570 const Value *SV = I.getOperand(0); 3571 Type *Ty = I.getType(); 3572 AAMDNodes AAInfo; 3573 I.getAAMetadata(AAInfo); 3574 assert(!AA->pointsToConstantMemory(MemoryLocation( 3575 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3576 "load_from_swift_error should not be constant memory"); 3577 3578 SmallVector<EVT, 4> ValueVTs; 3579 SmallVector<uint64_t, 4> Offsets; 3580 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3581 ValueVTs, &Offsets); 3582 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3583 "expect a single EVT for swifterror"); 3584 3585 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3586 SDValue L = DAG.getCopyFromReg( 3587 getRoot(), getCurSDLoc(), 3588 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3589 3590 setValue(&I, L); 3591 } 3592 3593 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3594 if (I.isAtomic()) 3595 return visitAtomicStore(I); 3596 3597 const Value *SrcV = I.getOperand(0); 3598 const Value *PtrV = I.getOperand(1); 3599 3600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3601 if (TLI.supportSwiftError()) { 3602 // Swifterror values can come from either a function parameter with 3603 // swifterror attribute or an alloca with swifterror attribute. 3604 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3605 if (Arg->hasSwiftErrorAttr()) 3606 return visitStoreToSwiftError(I); 3607 } 3608 3609 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3610 if (Alloca->isSwiftError()) 3611 return visitStoreToSwiftError(I); 3612 } 3613 } 3614 3615 SmallVector<EVT, 4> ValueVTs; 3616 SmallVector<uint64_t, 4> Offsets; 3617 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3618 SrcV->getType(), ValueVTs, &Offsets); 3619 unsigned NumValues = ValueVTs.size(); 3620 if (NumValues == 0) 3621 return; 3622 3623 // Get the lowered operands. Note that we do this after 3624 // checking if NumResults is zero, because with zero results 3625 // the operands won't have values in the map. 3626 SDValue Src = getValue(SrcV); 3627 SDValue Ptr = getValue(PtrV); 3628 3629 SDValue Root = getRoot(); 3630 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3631 SDLoc dl = getCurSDLoc(); 3632 EVT PtrVT = Ptr.getValueType(); 3633 unsigned Alignment = I.getAlignment(); 3634 AAMDNodes AAInfo; 3635 I.getAAMetadata(AAInfo); 3636 3637 auto MMOFlags = MachineMemOperand::MONone; 3638 if (I.isVolatile()) 3639 MMOFlags |= MachineMemOperand::MOVolatile; 3640 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3641 MMOFlags |= MachineMemOperand::MONonTemporal; 3642 3643 // An aggregate load cannot wrap around the address space, so offsets to its 3644 // parts don't wrap either. 3645 SDNodeFlags Flags; 3646 Flags.setNoUnsignedWrap(true); 3647 3648 unsigned ChainI = 0; 3649 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3650 // See visitLoad comments. 3651 if (ChainI == MaxParallelChains) { 3652 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3653 makeArrayRef(Chains.data(), ChainI)); 3654 Root = Chain; 3655 ChainI = 0; 3656 } 3657 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3658 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3659 SDValue St = DAG.getStore( 3660 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3661 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3662 Chains[ChainI] = St; 3663 } 3664 3665 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3666 makeArrayRef(Chains.data(), ChainI)); 3667 DAG.setRoot(StoreNode); 3668 } 3669 3670 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3671 bool IsCompressing) { 3672 SDLoc sdl = getCurSDLoc(); 3673 3674 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3675 unsigned& Alignment) { 3676 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3677 Src0 = I.getArgOperand(0); 3678 Ptr = I.getArgOperand(1); 3679 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3680 Mask = I.getArgOperand(3); 3681 }; 3682 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3683 unsigned& Alignment) { 3684 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3685 Src0 = I.getArgOperand(0); 3686 Ptr = I.getArgOperand(1); 3687 Mask = I.getArgOperand(2); 3688 Alignment = 0; 3689 }; 3690 3691 Value *PtrOperand, *MaskOperand, *Src0Operand; 3692 unsigned Alignment; 3693 if (IsCompressing) 3694 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3695 else 3696 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3697 3698 SDValue Ptr = getValue(PtrOperand); 3699 SDValue Src0 = getValue(Src0Operand); 3700 SDValue Mask = getValue(MaskOperand); 3701 3702 EVT VT = Src0.getValueType(); 3703 if (!Alignment) 3704 Alignment = DAG.getEVTAlignment(VT); 3705 3706 AAMDNodes AAInfo; 3707 I.getAAMetadata(AAInfo); 3708 3709 MachineMemOperand *MMO = 3710 DAG.getMachineFunction(). 3711 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3712 MachineMemOperand::MOStore, VT.getStoreSize(), 3713 Alignment, AAInfo); 3714 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3715 MMO, false /* Truncating */, 3716 IsCompressing); 3717 DAG.setRoot(StoreNode); 3718 setValue(&I, StoreNode); 3719 } 3720 3721 // Get a uniform base for the Gather/Scatter intrinsic. 3722 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3723 // We try to represent it as a base pointer + vector of indices. 3724 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3725 // The first operand of the GEP may be a single pointer or a vector of pointers 3726 // Example: 3727 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3728 // or 3729 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3730 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3731 // 3732 // When the first GEP operand is a single pointer - it is the uniform base we 3733 // are looking for. If first operand of the GEP is a splat vector - we 3734 // extract the spalt value and use it as a uniform base. 3735 // In all other cases the function returns 'false'. 3736 // 3737 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3738 SelectionDAGBuilder* SDB) { 3739 3740 SelectionDAG& DAG = SDB->DAG; 3741 LLVMContext &Context = *DAG.getContext(); 3742 3743 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3744 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3745 if (!GEP || GEP->getNumOperands() > 2) 3746 return false; 3747 3748 const Value *GEPPtr = GEP->getPointerOperand(); 3749 if (!GEPPtr->getType()->isVectorTy()) 3750 Ptr = GEPPtr; 3751 else if (!(Ptr = getSplatValue(GEPPtr))) 3752 return false; 3753 3754 Value *IndexVal = GEP->getOperand(1); 3755 3756 // The operands of the GEP may be defined in another basic block. 3757 // In this case we'll not find nodes for the operands. 3758 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3759 return false; 3760 3761 Base = SDB->getValue(Ptr); 3762 Index = SDB->getValue(IndexVal); 3763 3764 // Suppress sign extension. 3765 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3766 if (SDB->findValue(Sext->getOperand(0))) { 3767 IndexVal = Sext->getOperand(0); 3768 Index = SDB->getValue(IndexVal); 3769 } 3770 } 3771 if (!Index.getValueType().isVector()) { 3772 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3773 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3774 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3775 } 3776 return true; 3777 } 3778 3779 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3780 SDLoc sdl = getCurSDLoc(); 3781 3782 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3783 const Value *Ptr = I.getArgOperand(1); 3784 SDValue Src0 = getValue(I.getArgOperand(0)); 3785 SDValue Mask = getValue(I.getArgOperand(3)); 3786 EVT VT = Src0.getValueType(); 3787 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3788 if (!Alignment) 3789 Alignment = DAG.getEVTAlignment(VT); 3790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3791 3792 AAMDNodes AAInfo; 3793 I.getAAMetadata(AAInfo); 3794 3795 SDValue Base; 3796 SDValue Index; 3797 const Value *BasePtr = Ptr; 3798 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3799 3800 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3801 MachineMemOperand *MMO = DAG.getMachineFunction(). 3802 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3803 MachineMemOperand::MOStore, VT.getStoreSize(), 3804 Alignment, AAInfo); 3805 if (!UniformBase) { 3806 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3807 Index = getValue(Ptr); 3808 } 3809 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3810 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3811 Ops, MMO); 3812 DAG.setRoot(Scatter); 3813 setValue(&I, Scatter); 3814 } 3815 3816 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3817 SDLoc sdl = getCurSDLoc(); 3818 3819 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3820 unsigned& Alignment) { 3821 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3822 Ptr = I.getArgOperand(0); 3823 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3824 Mask = I.getArgOperand(2); 3825 Src0 = I.getArgOperand(3); 3826 }; 3827 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3828 unsigned& Alignment) { 3829 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3830 Ptr = I.getArgOperand(0); 3831 Alignment = 0; 3832 Mask = I.getArgOperand(1); 3833 Src0 = I.getArgOperand(2); 3834 }; 3835 3836 Value *PtrOperand, *MaskOperand, *Src0Operand; 3837 unsigned Alignment; 3838 if (IsExpanding) 3839 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3840 else 3841 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3842 3843 SDValue Ptr = getValue(PtrOperand); 3844 SDValue Src0 = getValue(Src0Operand); 3845 SDValue Mask = getValue(MaskOperand); 3846 3847 EVT VT = Src0.getValueType(); 3848 if (!Alignment) 3849 Alignment = DAG.getEVTAlignment(VT); 3850 3851 AAMDNodes AAInfo; 3852 I.getAAMetadata(AAInfo); 3853 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3854 3855 // Do not serialize masked loads of constant memory with anything. 3856 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3857 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3858 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3859 3860 MachineMemOperand *MMO = 3861 DAG.getMachineFunction(). 3862 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3863 MachineMemOperand::MOLoad, VT.getStoreSize(), 3864 Alignment, AAInfo, Ranges); 3865 3866 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3867 ISD::NON_EXTLOAD, IsExpanding); 3868 if (AddToChain) { 3869 SDValue OutChain = Load.getValue(1); 3870 DAG.setRoot(OutChain); 3871 } 3872 setValue(&I, Load); 3873 } 3874 3875 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3876 SDLoc sdl = getCurSDLoc(); 3877 3878 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3879 const Value *Ptr = I.getArgOperand(0); 3880 SDValue Src0 = getValue(I.getArgOperand(3)); 3881 SDValue Mask = getValue(I.getArgOperand(2)); 3882 3883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3884 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3885 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3886 if (!Alignment) 3887 Alignment = DAG.getEVTAlignment(VT); 3888 3889 AAMDNodes AAInfo; 3890 I.getAAMetadata(AAInfo); 3891 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3892 3893 SDValue Root = DAG.getRoot(); 3894 SDValue Base; 3895 SDValue Index; 3896 const Value *BasePtr = Ptr; 3897 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3898 bool ConstantMemory = false; 3899 if (UniformBase && 3900 AA->pointsToConstantMemory(MemoryLocation( 3901 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3902 AAInfo))) { 3903 // Do not serialize (non-volatile) loads of constant memory with anything. 3904 Root = DAG.getEntryNode(); 3905 ConstantMemory = true; 3906 } 3907 3908 MachineMemOperand *MMO = 3909 DAG.getMachineFunction(). 3910 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3911 MachineMemOperand::MOLoad, VT.getStoreSize(), 3912 Alignment, AAInfo, Ranges); 3913 3914 if (!UniformBase) { 3915 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3916 Index = getValue(Ptr); 3917 } 3918 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3919 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3920 Ops, MMO); 3921 3922 SDValue OutChain = Gather.getValue(1); 3923 if (!ConstantMemory) 3924 PendingLoads.push_back(OutChain); 3925 setValue(&I, Gather); 3926 } 3927 3928 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3929 SDLoc dl = getCurSDLoc(); 3930 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3931 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3932 SynchronizationScope Scope = I.getSynchScope(); 3933 3934 SDValue InChain = getRoot(); 3935 3936 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3937 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3938 SDValue L = DAG.getAtomicCmpSwap( 3939 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3940 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3941 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3942 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3943 3944 SDValue OutChain = L.getValue(2); 3945 3946 setValue(&I, L); 3947 DAG.setRoot(OutChain); 3948 } 3949 3950 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3951 SDLoc dl = getCurSDLoc(); 3952 ISD::NodeType NT; 3953 switch (I.getOperation()) { 3954 default: llvm_unreachable("Unknown atomicrmw operation"); 3955 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3956 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3957 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3958 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3959 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3960 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3961 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3962 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3963 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3964 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3965 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3966 } 3967 AtomicOrdering Order = I.getOrdering(); 3968 SynchronizationScope Scope = I.getSynchScope(); 3969 3970 SDValue InChain = getRoot(); 3971 3972 SDValue L = 3973 DAG.getAtomic(NT, dl, 3974 getValue(I.getValOperand()).getSimpleValueType(), 3975 InChain, 3976 getValue(I.getPointerOperand()), 3977 getValue(I.getValOperand()), 3978 I.getPointerOperand(), 3979 /* Alignment=*/ 0, Order, Scope); 3980 3981 SDValue OutChain = L.getValue(1); 3982 3983 setValue(&I, L); 3984 DAG.setRoot(OutChain); 3985 } 3986 3987 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3988 SDLoc dl = getCurSDLoc(); 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 SDValue Ops[3]; 3991 Ops[0] = getRoot(); 3992 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3993 TLI.getPointerTy(DAG.getDataLayout())); 3994 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3995 TLI.getPointerTy(DAG.getDataLayout())); 3996 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3997 } 3998 3999 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4000 SDLoc dl = getCurSDLoc(); 4001 AtomicOrdering Order = I.getOrdering(); 4002 SynchronizationScope Scope = I.getSynchScope(); 4003 4004 SDValue InChain = getRoot(); 4005 4006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4007 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4008 4009 if (I.getAlignment() < VT.getSizeInBits() / 8) 4010 report_fatal_error("Cannot generate unaligned atomic load"); 4011 4012 MachineMemOperand *MMO = 4013 DAG.getMachineFunction(). 4014 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4015 MachineMemOperand::MOVolatile | 4016 MachineMemOperand::MOLoad, 4017 VT.getStoreSize(), 4018 I.getAlignment() ? I.getAlignment() : 4019 DAG.getEVTAlignment(VT), 4020 AAMDNodes(), nullptr, Scope, Order); 4021 4022 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4023 SDValue L = 4024 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4025 getValue(I.getPointerOperand()), MMO); 4026 4027 SDValue OutChain = L.getValue(1); 4028 4029 setValue(&I, L); 4030 DAG.setRoot(OutChain); 4031 } 4032 4033 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4034 SDLoc dl = getCurSDLoc(); 4035 4036 AtomicOrdering Order = I.getOrdering(); 4037 SynchronizationScope Scope = I.getSynchScope(); 4038 4039 SDValue InChain = getRoot(); 4040 4041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4042 EVT VT = 4043 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4044 4045 if (I.getAlignment() < VT.getSizeInBits() / 8) 4046 report_fatal_error("Cannot generate unaligned atomic store"); 4047 4048 SDValue OutChain = 4049 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4050 InChain, 4051 getValue(I.getPointerOperand()), 4052 getValue(I.getValueOperand()), 4053 I.getPointerOperand(), I.getAlignment(), 4054 Order, Scope); 4055 4056 DAG.setRoot(OutChain); 4057 } 4058 4059 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4060 /// node. 4061 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4062 unsigned Intrinsic) { 4063 // Ignore the callsite's attributes. A specific call site may be marked with 4064 // readnone, but the lowering code will expect the chain based on the 4065 // definition. 4066 const Function *F = I.getCalledFunction(); 4067 bool HasChain = !F->doesNotAccessMemory(); 4068 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4069 4070 // Build the operand list. 4071 SmallVector<SDValue, 8> Ops; 4072 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4073 if (OnlyLoad) { 4074 // We don't need to serialize loads against other loads. 4075 Ops.push_back(DAG.getRoot()); 4076 } else { 4077 Ops.push_back(getRoot()); 4078 } 4079 } 4080 4081 // Info is set by getTgtMemInstrinsic 4082 TargetLowering::IntrinsicInfo Info; 4083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4084 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4085 4086 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4087 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4088 Info.opc == ISD::INTRINSIC_W_CHAIN) 4089 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4090 TLI.getPointerTy(DAG.getDataLayout()))); 4091 4092 // Add all operands of the call to the operand list. 4093 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4094 SDValue Op = getValue(I.getArgOperand(i)); 4095 Ops.push_back(Op); 4096 } 4097 4098 SmallVector<EVT, 4> ValueVTs; 4099 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4100 4101 if (HasChain) 4102 ValueVTs.push_back(MVT::Other); 4103 4104 SDVTList VTs = DAG.getVTList(ValueVTs); 4105 4106 // Create the node. 4107 SDValue Result; 4108 if (IsTgtIntrinsic) { 4109 // This is target intrinsic that touches memory 4110 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4111 VTs, Ops, Info.memVT, 4112 MachinePointerInfo(Info.ptrVal, Info.offset), 4113 Info.align, Info.vol, 4114 Info.readMem, Info.writeMem, Info.size); 4115 } else if (!HasChain) { 4116 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4117 } else if (!I.getType()->isVoidTy()) { 4118 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4119 } else { 4120 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4121 } 4122 4123 if (HasChain) { 4124 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4125 if (OnlyLoad) 4126 PendingLoads.push_back(Chain); 4127 else 4128 DAG.setRoot(Chain); 4129 } 4130 4131 if (!I.getType()->isVoidTy()) { 4132 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4133 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4134 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4135 } else 4136 Result = lowerRangeToAssertZExt(DAG, I, Result); 4137 4138 setValue(&I, Result); 4139 } 4140 } 4141 4142 /// GetSignificand - Get the significand and build it into a floating-point 4143 /// number with exponent of 1: 4144 /// 4145 /// Op = (Op & 0x007fffff) | 0x3f800000; 4146 /// 4147 /// where Op is the hexadecimal representation of floating point value. 4148 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4149 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4150 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4151 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4152 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4153 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4154 } 4155 4156 /// GetExponent - Get the exponent: 4157 /// 4158 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4159 /// 4160 /// where Op is the hexadecimal representation of floating point value. 4161 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4162 const TargetLowering &TLI, const SDLoc &dl) { 4163 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4164 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4165 SDValue t1 = DAG.getNode( 4166 ISD::SRL, dl, MVT::i32, t0, 4167 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4168 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4169 DAG.getConstant(127, dl, MVT::i32)); 4170 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4171 } 4172 4173 /// getF32Constant - Get 32-bit floating point constant. 4174 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4175 const SDLoc &dl) { 4176 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4177 MVT::f32); 4178 } 4179 4180 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4181 SelectionDAG &DAG) { 4182 // TODO: What fast-math-flags should be set on the floating-point nodes? 4183 4184 // IntegerPartOfX = ((int32_t)(t0); 4185 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4186 4187 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4188 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4189 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4190 4191 // IntegerPartOfX <<= 23; 4192 IntegerPartOfX = DAG.getNode( 4193 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4194 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4195 DAG.getDataLayout()))); 4196 4197 SDValue TwoToFractionalPartOfX; 4198 if (LimitFloatPrecision <= 6) { 4199 // For floating-point precision of 6: 4200 // 4201 // TwoToFractionalPartOfX = 4202 // 0.997535578f + 4203 // (0.735607626f + 0.252464424f * x) * x; 4204 // 4205 // error 0.0144103317, which is 6 bits 4206 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4207 getF32Constant(DAG, 0x3e814304, dl)); 4208 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4209 getF32Constant(DAG, 0x3f3c50c8, dl)); 4210 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4211 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4212 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4213 } else if (LimitFloatPrecision <= 12) { 4214 // For floating-point precision of 12: 4215 // 4216 // TwoToFractionalPartOfX = 4217 // 0.999892986f + 4218 // (0.696457318f + 4219 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4220 // 4221 // error 0.000107046256, which is 13 to 14 bits 4222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4223 getF32Constant(DAG, 0x3da235e3, dl)); 4224 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4225 getF32Constant(DAG, 0x3e65b8f3, dl)); 4226 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4227 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4228 getF32Constant(DAG, 0x3f324b07, dl)); 4229 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4230 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4231 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4232 } else { // LimitFloatPrecision <= 18 4233 // For floating-point precision of 18: 4234 // 4235 // TwoToFractionalPartOfX = 4236 // 0.999999982f + 4237 // (0.693148872f + 4238 // (0.240227044f + 4239 // (0.554906021e-1f + 4240 // (0.961591928e-2f + 4241 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4242 // error 2.47208000*10^(-7), which is better than 18 bits 4243 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4244 getF32Constant(DAG, 0x3924b03e, dl)); 4245 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4246 getF32Constant(DAG, 0x3ab24b87, dl)); 4247 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4248 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4249 getF32Constant(DAG, 0x3c1d8c17, dl)); 4250 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4251 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4252 getF32Constant(DAG, 0x3d634a1d, dl)); 4253 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4254 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4255 getF32Constant(DAG, 0x3e75fe14, dl)); 4256 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4257 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4258 getF32Constant(DAG, 0x3f317234, dl)); 4259 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4260 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4261 getF32Constant(DAG, 0x3f800000, dl)); 4262 } 4263 4264 // Add the exponent into the result in integer domain. 4265 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4266 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4267 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4268 } 4269 4270 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4271 /// limited-precision mode. 4272 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4273 const TargetLowering &TLI) { 4274 if (Op.getValueType() == MVT::f32 && 4275 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4276 4277 // Put the exponent in the right bit position for later addition to the 4278 // final result: 4279 // 4280 // #define LOG2OFe 1.4426950f 4281 // t0 = Op * LOG2OFe 4282 4283 // TODO: What fast-math-flags should be set here? 4284 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4285 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4286 return getLimitedPrecisionExp2(t0, dl, DAG); 4287 } 4288 4289 // No special expansion. 4290 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4291 } 4292 4293 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4294 /// limited-precision mode. 4295 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4296 const TargetLowering &TLI) { 4297 4298 // TODO: What fast-math-flags should be set on the floating-point nodes? 4299 4300 if (Op.getValueType() == MVT::f32 && 4301 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4302 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4303 4304 // Scale the exponent by log(2) [0.69314718f]. 4305 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4306 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4307 getF32Constant(DAG, 0x3f317218, dl)); 4308 4309 // Get the significand and build it into a floating-point number with 4310 // exponent of 1. 4311 SDValue X = GetSignificand(DAG, Op1, dl); 4312 4313 SDValue LogOfMantissa; 4314 if (LimitFloatPrecision <= 6) { 4315 // For floating-point precision of 6: 4316 // 4317 // LogofMantissa = 4318 // -1.1609546f + 4319 // (1.4034025f - 0.23903021f * x) * x; 4320 // 4321 // error 0.0034276066, which is better than 8 bits 4322 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4323 getF32Constant(DAG, 0xbe74c456, dl)); 4324 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4325 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4326 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4327 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4328 getF32Constant(DAG, 0x3f949a29, dl)); 4329 } else if (LimitFloatPrecision <= 12) { 4330 // For floating-point precision of 12: 4331 // 4332 // LogOfMantissa = 4333 // -1.7417939f + 4334 // (2.8212026f + 4335 // (-1.4699568f + 4336 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4337 // 4338 // error 0.000061011436, which is 14 bits 4339 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4340 getF32Constant(DAG, 0xbd67b6d6, dl)); 4341 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4342 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4343 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4344 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4345 getF32Constant(DAG, 0x3fbc278b, dl)); 4346 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4347 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4348 getF32Constant(DAG, 0x40348e95, dl)); 4349 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4350 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4351 getF32Constant(DAG, 0x3fdef31a, dl)); 4352 } else { // LimitFloatPrecision <= 18 4353 // For floating-point precision of 18: 4354 // 4355 // LogOfMantissa = 4356 // -2.1072184f + 4357 // (4.2372794f + 4358 // (-3.7029485f + 4359 // (2.2781945f + 4360 // (-0.87823314f + 4361 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4362 // 4363 // error 0.0000023660568, which is better than 18 bits 4364 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4365 getF32Constant(DAG, 0xbc91e5ac, dl)); 4366 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4367 getF32Constant(DAG, 0x3e4350aa, dl)); 4368 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4369 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4370 getF32Constant(DAG, 0x3f60d3e3, dl)); 4371 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4372 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4373 getF32Constant(DAG, 0x4011cdf0, dl)); 4374 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4375 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4376 getF32Constant(DAG, 0x406cfd1c, dl)); 4377 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4378 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4379 getF32Constant(DAG, 0x408797cb, dl)); 4380 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4381 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4382 getF32Constant(DAG, 0x4006dcab, dl)); 4383 } 4384 4385 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4386 } 4387 4388 // No special expansion. 4389 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4390 } 4391 4392 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4393 /// limited-precision mode. 4394 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4395 const TargetLowering &TLI) { 4396 4397 // TODO: What fast-math-flags should be set on the floating-point nodes? 4398 4399 if (Op.getValueType() == MVT::f32 && 4400 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4401 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4402 4403 // Get the exponent. 4404 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4405 4406 // Get the significand and build it into a floating-point number with 4407 // exponent of 1. 4408 SDValue X = GetSignificand(DAG, Op1, dl); 4409 4410 // Different possible minimax approximations of significand in 4411 // floating-point for various degrees of accuracy over [1,2]. 4412 SDValue Log2ofMantissa; 4413 if (LimitFloatPrecision <= 6) { 4414 // For floating-point precision of 6: 4415 // 4416 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4417 // 4418 // error 0.0049451742, which is more than 7 bits 4419 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0xbeb08fe0, dl)); 4421 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4422 getF32Constant(DAG, 0x40019463, dl)); 4423 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4424 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4425 getF32Constant(DAG, 0x3fd6633d, dl)); 4426 } else if (LimitFloatPrecision <= 12) { 4427 // For floating-point precision of 12: 4428 // 4429 // Log2ofMantissa = 4430 // -2.51285454f + 4431 // (4.07009056f + 4432 // (-2.12067489f + 4433 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4434 // 4435 // error 0.0000876136000, which is better than 13 bits 4436 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4437 getF32Constant(DAG, 0xbda7262e, dl)); 4438 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4439 getF32Constant(DAG, 0x3f25280b, dl)); 4440 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4441 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4442 getF32Constant(DAG, 0x4007b923, dl)); 4443 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4444 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4445 getF32Constant(DAG, 0x40823e2f, dl)); 4446 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4447 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4448 getF32Constant(DAG, 0x4020d29c, dl)); 4449 } else { // LimitFloatPrecision <= 18 4450 // For floating-point precision of 18: 4451 // 4452 // Log2ofMantissa = 4453 // -3.0400495f + 4454 // (6.1129976f + 4455 // (-5.3420409f + 4456 // (3.2865683f + 4457 // (-1.2669343f + 4458 // (0.27515199f - 4459 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4460 // 4461 // error 0.0000018516, which is better than 18 bits 4462 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4463 getF32Constant(DAG, 0xbcd2769e, dl)); 4464 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4465 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4466 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4467 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4468 getF32Constant(DAG, 0x3fa22ae7, dl)); 4469 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4470 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4471 getF32Constant(DAG, 0x40525723, dl)); 4472 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4473 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4474 getF32Constant(DAG, 0x40aaf200, dl)); 4475 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4476 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4477 getF32Constant(DAG, 0x40c39dad, dl)); 4478 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4479 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4480 getF32Constant(DAG, 0x4042902c, dl)); 4481 } 4482 4483 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4484 } 4485 4486 // No special expansion. 4487 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4488 } 4489 4490 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4491 /// limited-precision mode. 4492 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4493 const TargetLowering &TLI) { 4494 4495 // TODO: What fast-math-flags should be set on the floating-point nodes? 4496 4497 if (Op.getValueType() == MVT::f32 && 4498 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4499 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4500 4501 // Scale the exponent by log10(2) [0.30102999f]. 4502 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4503 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4504 getF32Constant(DAG, 0x3e9a209a, dl)); 4505 4506 // Get the significand and build it into a floating-point number with 4507 // exponent of 1. 4508 SDValue X = GetSignificand(DAG, Op1, dl); 4509 4510 SDValue Log10ofMantissa; 4511 if (LimitFloatPrecision <= 6) { 4512 // For floating-point precision of 6: 4513 // 4514 // Log10ofMantissa = 4515 // -0.50419619f + 4516 // (0.60948995f - 0.10380950f * x) * x; 4517 // 4518 // error 0.0014886165, which is 6 bits 4519 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4520 getF32Constant(DAG, 0xbdd49a13, dl)); 4521 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4522 getF32Constant(DAG, 0x3f1c0789, dl)); 4523 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4524 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4525 getF32Constant(DAG, 0x3f011300, dl)); 4526 } else if (LimitFloatPrecision <= 12) { 4527 // For floating-point precision of 12: 4528 // 4529 // Log10ofMantissa = 4530 // -0.64831180f + 4531 // (0.91751397f + 4532 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4533 // 4534 // error 0.00019228036, which is better than 12 bits 4535 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4536 getF32Constant(DAG, 0x3d431f31, dl)); 4537 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4538 getF32Constant(DAG, 0x3ea21fb2, dl)); 4539 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4540 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4541 getF32Constant(DAG, 0x3f6ae232, dl)); 4542 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4543 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4544 getF32Constant(DAG, 0x3f25f7c3, dl)); 4545 } else { // LimitFloatPrecision <= 18 4546 // For floating-point precision of 18: 4547 // 4548 // Log10ofMantissa = 4549 // -0.84299375f + 4550 // (1.5327582f + 4551 // (-1.0688956f + 4552 // (0.49102474f + 4553 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4554 // 4555 // error 0.0000037995730, which is better than 18 bits 4556 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4557 getF32Constant(DAG, 0x3c5d51ce, dl)); 4558 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4559 getF32Constant(DAG, 0x3e00685a, dl)); 4560 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4561 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4562 getF32Constant(DAG, 0x3efb6798, dl)); 4563 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4564 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4565 getF32Constant(DAG, 0x3f88d192, dl)); 4566 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4567 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4568 getF32Constant(DAG, 0x3fc4316c, dl)); 4569 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4570 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4571 getF32Constant(DAG, 0x3f57ce70, dl)); 4572 } 4573 4574 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4575 } 4576 4577 // No special expansion. 4578 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4579 } 4580 4581 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4582 /// limited-precision mode. 4583 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4584 const TargetLowering &TLI) { 4585 if (Op.getValueType() == MVT::f32 && 4586 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4587 return getLimitedPrecisionExp2(Op, dl, DAG); 4588 4589 // No special expansion. 4590 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4591 } 4592 4593 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4594 /// limited-precision mode with x == 10.0f. 4595 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4596 SelectionDAG &DAG, const TargetLowering &TLI) { 4597 bool IsExp10 = false; 4598 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4599 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4600 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4601 APFloat Ten(10.0f); 4602 IsExp10 = LHSC->isExactlyValue(Ten); 4603 } 4604 } 4605 4606 // TODO: What fast-math-flags should be set on the FMUL node? 4607 if (IsExp10) { 4608 // Put the exponent in the right bit position for later addition to the 4609 // final result: 4610 // 4611 // #define LOG2OF10 3.3219281f 4612 // t0 = Op * LOG2OF10; 4613 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4614 getF32Constant(DAG, 0x40549a78, dl)); 4615 return getLimitedPrecisionExp2(t0, dl, DAG); 4616 } 4617 4618 // No special expansion. 4619 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4620 } 4621 4622 4623 /// ExpandPowI - Expand a llvm.powi intrinsic. 4624 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4625 SelectionDAG &DAG) { 4626 // If RHS is a constant, we can expand this out to a multiplication tree, 4627 // otherwise we end up lowering to a call to __powidf2 (for example). When 4628 // optimizing for size, we only want to do this if the expansion would produce 4629 // a small number of multiplies, otherwise we do the full expansion. 4630 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4631 // Get the exponent as a positive value. 4632 unsigned Val = RHSC->getSExtValue(); 4633 if ((int)Val < 0) Val = -Val; 4634 4635 // powi(x, 0) -> 1.0 4636 if (Val == 0) 4637 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4638 4639 const Function *F = DAG.getMachineFunction().getFunction(); 4640 if (!F->optForSize() || 4641 // If optimizing for size, don't insert too many multiplies. 4642 // This inserts up to 5 multiplies. 4643 countPopulation(Val) + Log2_32(Val) < 7) { 4644 // We use the simple binary decomposition method to generate the multiply 4645 // sequence. There are more optimal ways to do this (for example, 4646 // powi(x,15) generates one more multiply than it should), but this has 4647 // the benefit of being both really simple and much better than a libcall. 4648 SDValue Res; // Logically starts equal to 1.0 4649 SDValue CurSquare = LHS; 4650 // TODO: Intrinsics should have fast-math-flags that propagate to these 4651 // nodes. 4652 while (Val) { 4653 if (Val & 1) { 4654 if (Res.getNode()) 4655 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4656 else 4657 Res = CurSquare; // 1.0*CurSquare. 4658 } 4659 4660 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4661 CurSquare, CurSquare); 4662 Val >>= 1; 4663 } 4664 4665 // If the original was negative, invert the result, producing 1/(x*x*x). 4666 if (RHSC->getSExtValue() < 0) 4667 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4668 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4669 return Res; 4670 } 4671 } 4672 4673 // Otherwise, expand to a libcall. 4674 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4675 } 4676 4677 // getUnderlyingArgReg - Find underlying register used for a truncated or 4678 // bitcasted argument. 4679 static unsigned getUnderlyingArgReg(const SDValue &N) { 4680 switch (N.getOpcode()) { 4681 case ISD::CopyFromReg: 4682 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4683 case ISD::BITCAST: 4684 case ISD::AssertZext: 4685 case ISD::AssertSext: 4686 case ISD::TRUNCATE: 4687 return getUnderlyingArgReg(N.getOperand(0)); 4688 default: 4689 return 0; 4690 } 4691 } 4692 4693 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4694 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4695 /// At the end of instruction selection, they will be inserted to the entry BB. 4696 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4697 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4698 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4699 const Argument *Arg = dyn_cast<Argument>(V); 4700 if (!Arg) 4701 return false; 4702 4703 MachineFunction &MF = DAG.getMachineFunction(); 4704 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4705 4706 // Ignore inlined function arguments here. 4707 // 4708 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4709 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4710 return false; 4711 4712 Optional<MachineOperand> Op; 4713 // Some arguments' frame index is recorded during argument lowering. 4714 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4715 Op = MachineOperand::CreateFI(FI); 4716 4717 if (!Op && N.getNode()) { 4718 unsigned Reg = getUnderlyingArgReg(N); 4719 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4720 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4721 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4722 if (PR) 4723 Reg = PR; 4724 } 4725 if (Reg) 4726 Op = MachineOperand::CreateReg(Reg, false); 4727 } 4728 4729 if (!Op) { 4730 // Check if ValueMap has reg number. 4731 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4732 if (VMI != FuncInfo.ValueMap.end()) 4733 Op = MachineOperand::CreateReg(VMI->second, false); 4734 } 4735 4736 if (!Op && N.getNode()) 4737 // Check if frame index is available. 4738 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4739 if (FrameIndexSDNode *FINode = 4740 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4741 Op = MachineOperand::CreateFI(FINode->getIndex()); 4742 4743 if (!Op) 4744 return false; 4745 4746 assert(Variable->isValidLocationForIntrinsic(DL) && 4747 "Expected inlined-at fields to agree"); 4748 if (Op->isReg()) 4749 FuncInfo.ArgDbgValues.push_back( 4750 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4751 Op->getReg(), Offset, Variable, Expr)); 4752 else 4753 FuncInfo.ArgDbgValues.push_back( 4754 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4755 .addOperand(*Op) 4756 .addImm(Offset) 4757 .addMetadata(Variable) 4758 .addMetadata(Expr)); 4759 4760 return true; 4761 } 4762 4763 /// Return the appropriate SDDbgValue based on N. 4764 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4765 DILocalVariable *Variable, 4766 DIExpression *Expr, int64_t Offset, 4767 DebugLoc dl, 4768 unsigned DbgSDNodeOrder) { 4769 SDDbgValue *SDV; 4770 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4771 if (FISDN && Expr->startsWithDeref()) { 4772 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4773 // stack slot locations as such instead of as indirectly addressed 4774 // locations. 4775 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4776 Expr->elements_end()); 4777 DIExpression *DerefedDIExpr = 4778 DIExpression::get(*DAG.getContext(), TrailingElements); 4779 int FI = FISDN->getIndex(); 4780 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4781 DbgSDNodeOrder); 4782 } else { 4783 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4784 Offset, dl, DbgSDNodeOrder); 4785 } 4786 return SDV; 4787 } 4788 4789 // VisualStudio defines setjmp as _setjmp 4790 #if defined(_MSC_VER) && defined(setjmp) && \ 4791 !defined(setjmp_undefined_for_msvc) 4792 # pragma push_macro("setjmp") 4793 # undef setjmp 4794 # define setjmp_undefined_for_msvc 4795 #endif 4796 4797 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4798 /// we want to emit this as a call to a named external function, return the name 4799 /// otherwise lower it and return null. 4800 const char * 4801 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4803 SDLoc sdl = getCurSDLoc(); 4804 DebugLoc dl = getCurDebugLoc(); 4805 SDValue Res; 4806 4807 switch (Intrinsic) { 4808 default: 4809 // By default, turn this into a target intrinsic node. 4810 visitTargetIntrinsic(I, Intrinsic); 4811 return nullptr; 4812 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4813 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4814 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4815 case Intrinsic::returnaddress: 4816 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4817 TLI.getPointerTy(DAG.getDataLayout()), 4818 getValue(I.getArgOperand(0)))); 4819 return nullptr; 4820 case Intrinsic::addressofreturnaddress: 4821 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4822 TLI.getPointerTy(DAG.getDataLayout()))); 4823 return nullptr; 4824 case Intrinsic::frameaddress: 4825 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4826 TLI.getPointerTy(DAG.getDataLayout()), 4827 getValue(I.getArgOperand(0)))); 4828 return nullptr; 4829 case Intrinsic::read_register: { 4830 Value *Reg = I.getArgOperand(0); 4831 SDValue Chain = getRoot(); 4832 SDValue RegName = 4833 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4834 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4835 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4836 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4837 setValue(&I, Res); 4838 DAG.setRoot(Res.getValue(1)); 4839 return nullptr; 4840 } 4841 case Intrinsic::write_register: { 4842 Value *Reg = I.getArgOperand(0); 4843 Value *RegValue = I.getArgOperand(1); 4844 SDValue Chain = getRoot(); 4845 SDValue RegName = 4846 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4847 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4848 RegName, getValue(RegValue))); 4849 return nullptr; 4850 } 4851 case Intrinsic::setjmp: 4852 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4853 case Intrinsic::longjmp: 4854 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4855 case Intrinsic::memcpy: { 4856 SDValue Op1 = getValue(I.getArgOperand(0)); 4857 SDValue Op2 = getValue(I.getArgOperand(1)); 4858 SDValue Op3 = getValue(I.getArgOperand(2)); 4859 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4860 if (!Align) 4861 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4862 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4863 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4864 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4865 false, isTC, 4866 MachinePointerInfo(I.getArgOperand(0)), 4867 MachinePointerInfo(I.getArgOperand(1))); 4868 updateDAGForMaybeTailCall(MC); 4869 return nullptr; 4870 } 4871 case Intrinsic::memset: { 4872 SDValue Op1 = getValue(I.getArgOperand(0)); 4873 SDValue Op2 = getValue(I.getArgOperand(1)); 4874 SDValue Op3 = getValue(I.getArgOperand(2)); 4875 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4876 if (!Align) 4877 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4878 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4879 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4880 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4881 isTC, MachinePointerInfo(I.getArgOperand(0))); 4882 updateDAGForMaybeTailCall(MS); 4883 return nullptr; 4884 } 4885 case Intrinsic::memmove: { 4886 SDValue Op1 = getValue(I.getArgOperand(0)); 4887 SDValue Op2 = getValue(I.getArgOperand(1)); 4888 SDValue Op3 = getValue(I.getArgOperand(2)); 4889 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4890 if (!Align) 4891 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4892 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4893 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4894 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4895 isTC, MachinePointerInfo(I.getArgOperand(0)), 4896 MachinePointerInfo(I.getArgOperand(1))); 4897 updateDAGForMaybeTailCall(MM); 4898 return nullptr; 4899 } 4900 case Intrinsic::memcpy_element_atomic: { 4901 SDValue Dst = getValue(I.getArgOperand(0)); 4902 SDValue Src = getValue(I.getArgOperand(1)); 4903 SDValue NumElements = getValue(I.getArgOperand(2)); 4904 SDValue ElementSize = getValue(I.getArgOperand(3)); 4905 4906 // Emit a library call. 4907 TargetLowering::ArgListTy Args; 4908 TargetLowering::ArgListEntry Entry; 4909 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4910 Entry.Node = Dst; 4911 Args.push_back(Entry); 4912 4913 Entry.Node = Src; 4914 Args.push_back(Entry); 4915 4916 Entry.Ty = I.getArgOperand(2)->getType(); 4917 Entry.Node = NumElements; 4918 Args.push_back(Entry); 4919 4920 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4921 Entry.Node = ElementSize; 4922 Args.push_back(Entry); 4923 4924 uint64_t ElementSizeConstant = 4925 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4926 RTLIB::Libcall LibraryCall = 4927 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4928 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4929 report_fatal_error("Unsupported element size"); 4930 4931 TargetLowering::CallLoweringInfo CLI(DAG); 4932 CLI.setDebugLoc(sdl) 4933 .setChain(getRoot()) 4934 .setCallee(TLI.getLibcallCallingConv(LibraryCall), 4935 Type::getVoidTy(*DAG.getContext()), 4936 DAG.getExternalSymbol( 4937 TLI.getLibcallName(LibraryCall), 4938 TLI.getPointerTy(DAG.getDataLayout())), 4939 std::move(Args)); 4940 4941 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4942 DAG.setRoot(CallResult.second); 4943 return nullptr; 4944 } 4945 case Intrinsic::dbg_declare: { 4946 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4947 DILocalVariable *Variable = DI.getVariable(); 4948 DIExpression *Expression = DI.getExpression(); 4949 const Value *Address = DI.getAddress(); 4950 assert(Variable && "Missing variable"); 4951 if (!Address) { 4952 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4953 return nullptr; 4954 } 4955 4956 // Check if address has undef value. 4957 if (isa<UndefValue>(Address) || 4958 (Address->use_empty() && !isa<Argument>(Address))) { 4959 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4960 return nullptr; 4961 } 4962 4963 SDValue &N = NodeMap[Address]; 4964 if (!N.getNode() && isa<Argument>(Address)) 4965 // Check unused arguments map. 4966 N = UnusedArgNodeMap[Address]; 4967 SDDbgValue *SDV; 4968 if (N.getNode()) { 4969 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4970 Address = BCI->getOperand(0); 4971 // Parameters are handled specially. 4972 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4973 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4974 if (isParameter && FINode) { 4975 // Byval parameter. We have a frame index at this point. 4976 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4977 FINode->getIndex(), 0, dl, SDNodeOrder); 4978 } else if (isa<Argument>(Address)) { 4979 // Address is an argument, so try to emit its dbg value using 4980 // virtual register info from the FuncInfo.ValueMap. 4981 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4982 N); 4983 return nullptr; 4984 } else { 4985 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4986 true, 0, dl, SDNodeOrder); 4987 } 4988 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4989 } else { 4990 // If Address is an argument then try to emit its dbg value using 4991 // virtual register info from the FuncInfo.ValueMap. 4992 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4993 N)) { 4994 // If variable is pinned by a alloca in dominating bb then 4995 // use StaticAllocaMap. 4996 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4997 if (AI->getParent() != DI.getParent()) { 4998 DenseMap<const AllocaInst*, int>::iterator SI = 4999 FuncInfo.StaticAllocaMap.find(AI); 5000 if (SI != FuncInfo.StaticAllocaMap.end()) { 5001 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 5002 0, dl, SDNodeOrder); 5003 DAG.AddDbgValue(SDV, nullptr, false); 5004 return nullptr; 5005 } 5006 } 5007 } 5008 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5009 } 5010 } 5011 return nullptr; 5012 } 5013 case Intrinsic::dbg_value: { 5014 const DbgValueInst &DI = cast<DbgValueInst>(I); 5015 assert(DI.getVariable() && "Missing variable"); 5016 5017 DILocalVariable *Variable = DI.getVariable(); 5018 DIExpression *Expression = DI.getExpression(); 5019 uint64_t Offset = DI.getOffset(); 5020 const Value *V = DI.getValue(); 5021 if (!V) 5022 return nullptr; 5023 5024 SDDbgValue *SDV; 5025 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5026 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5027 SDNodeOrder); 5028 DAG.AddDbgValue(SDV, nullptr, false); 5029 } else { 5030 // Do not use getValue() in here; we don't want to generate code at 5031 // this point if it hasn't been done yet. 5032 SDValue N = NodeMap[V]; 5033 if (!N.getNode() && isa<Argument>(V)) 5034 // Check unused arguments map. 5035 N = UnusedArgNodeMap[V]; 5036 if (N.getNode()) { 5037 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5038 false, N)) { 5039 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5040 DAG.AddDbgValue(SDV, N.getNode(), false); 5041 } 5042 } else if (!V->use_empty() ) { 5043 // Do not call getValue(V) yet, as we don't want to generate code. 5044 // Remember it for later. 5045 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5046 DanglingDebugInfoMap[V] = DDI; 5047 } else { 5048 // We may expand this to cover more cases. One case where we have no 5049 // data available is an unreferenced parameter. 5050 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5051 } 5052 } 5053 5054 // Build a debug info table entry. 5055 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5056 V = BCI->getOperand(0); 5057 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5058 // Don't handle byval struct arguments or VLAs, for example. 5059 if (!AI) { 5060 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5061 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5062 return nullptr; 5063 } 5064 DenseMap<const AllocaInst*, int>::iterator SI = 5065 FuncInfo.StaticAllocaMap.find(AI); 5066 if (SI == FuncInfo.StaticAllocaMap.end()) 5067 return nullptr; // VLAs. 5068 return nullptr; 5069 } 5070 5071 case Intrinsic::eh_typeid_for: { 5072 // Find the type id for the given typeinfo. 5073 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5074 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5075 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5076 setValue(&I, Res); 5077 return nullptr; 5078 } 5079 5080 case Intrinsic::eh_return_i32: 5081 case Intrinsic::eh_return_i64: 5082 DAG.getMachineFunction().setCallsEHReturn(true); 5083 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5084 MVT::Other, 5085 getControlRoot(), 5086 getValue(I.getArgOperand(0)), 5087 getValue(I.getArgOperand(1)))); 5088 return nullptr; 5089 case Intrinsic::eh_unwind_init: 5090 DAG.getMachineFunction().setCallsUnwindInit(true); 5091 return nullptr; 5092 case Intrinsic::eh_dwarf_cfa: { 5093 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5094 TLI.getPointerTy(DAG.getDataLayout()), 5095 getValue(I.getArgOperand(0)))); 5096 return nullptr; 5097 } 5098 case Intrinsic::eh_sjlj_callsite: { 5099 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5100 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5101 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5102 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5103 5104 MMI.setCurrentCallSite(CI->getZExtValue()); 5105 return nullptr; 5106 } 5107 case Intrinsic::eh_sjlj_functioncontext: { 5108 // Get and store the index of the function context. 5109 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5110 AllocaInst *FnCtx = 5111 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5112 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5113 MFI.setFunctionContextIndex(FI); 5114 return nullptr; 5115 } 5116 case Intrinsic::eh_sjlj_setjmp: { 5117 SDValue Ops[2]; 5118 Ops[0] = getRoot(); 5119 Ops[1] = getValue(I.getArgOperand(0)); 5120 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5121 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5122 setValue(&I, Op.getValue(0)); 5123 DAG.setRoot(Op.getValue(1)); 5124 return nullptr; 5125 } 5126 case Intrinsic::eh_sjlj_longjmp: { 5127 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5128 getRoot(), getValue(I.getArgOperand(0)))); 5129 return nullptr; 5130 } 5131 case Intrinsic::eh_sjlj_setup_dispatch: { 5132 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5133 getRoot())); 5134 return nullptr; 5135 } 5136 5137 case Intrinsic::masked_gather: 5138 visitMaskedGather(I); 5139 return nullptr; 5140 case Intrinsic::masked_load: 5141 visitMaskedLoad(I); 5142 return nullptr; 5143 case Intrinsic::masked_scatter: 5144 visitMaskedScatter(I); 5145 return nullptr; 5146 case Intrinsic::masked_store: 5147 visitMaskedStore(I); 5148 return nullptr; 5149 case Intrinsic::masked_expandload: 5150 visitMaskedLoad(I, true /* IsExpanding */); 5151 return nullptr; 5152 case Intrinsic::masked_compressstore: 5153 visitMaskedStore(I, true /* IsCompressing */); 5154 return nullptr; 5155 case Intrinsic::x86_mmx_pslli_w: 5156 case Intrinsic::x86_mmx_pslli_d: 5157 case Intrinsic::x86_mmx_pslli_q: 5158 case Intrinsic::x86_mmx_psrli_w: 5159 case Intrinsic::x86_mmx_psrli_d: 5160 case Intrinsic::x86_mmx_psrli_q: 5161 case Intrinsic::x86_mmx_psrai_w: 5162 case Intrinsic::x86_mmx_psrai_d: { 5163 SDValue ShAmt = getValue(I.getArgOperand(1)); 5164 if (isa<ConstantSDNode>(ShAmt)) { 5165 visitTargetIntrinsic(I, Intrinsic); 5166 return nullptr; 5167 } 5168 unsigned NewIntrinsic = 0; 5169 EVT ShAmtVT = MVT::v2i32; 5170 switch (Intrinsic) { 5171 case Intrinsic::x86_mmx_pslli_w: 5172 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5173 break; 5174 case Intrinsic::x86_mmx_pslli_d: 5175 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5176 break; 5177 case Intrinsic::x86_mmx_pslli_q: 5178 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5179 break; 5180 case Intrinsic::x86_mmx_psrli_w: 5181 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5182 break; 5183 case Intrinsic::x86_mmx_psrli_d: 5184 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5185 break; 5186 case Intrinsic::x86_mmx_psrli_q: 5187 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5188 break; 5189 case Intrinsic::x86_mmx_psrai_w: 5190 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5191 break; 5192 case Intrinsic::x86_mmx_psrai_d: 5193 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5194 break; 5195 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5196 } 5197 5198 // The vector shift intrinsics with scalars uses 32b shift amounts but 5199 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5200 // to be zero. 5201 // We must do this early because v2i32 is not a legal type. 5202 SDValue ShOps[2]; 5203 ShOps[0] = ShAmt; 5204 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5205 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5206 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5207 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5208 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5209 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5210 getValue(I.getArgOperand(0)), ShAmt); 5211 setValue(&I, Res); 5212 return nullptr; 5213 } 5214 case Intrinsic::convertff: 5215 case Intrinsic::convertfsi: 5216 case Intrinsic::convertfui: 5217 case Intrinsic::convertsif: 5218 case Intrinsic::convertuif: 5219 case Intrinsic::convertss: 5220 case Intrinsic::convertsu: 5221 case Intrinsic::convertus: 5222 case Intrinsic::convertuu: { 5223 ISD::CvtCode Code = ISD::CVT_INVALID; 5224 switch (Intrinsic) { 5225 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5226 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5227 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5228 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5229 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5230 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5231 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5232 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5233 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5234 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5235 } 5236 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5237 const Value *Op1 = I.getArgOperand(0); 5238 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5239 DAG.getValueType(DestVT), 5240 DAG.getValueType(getValue(Op1).getValueType()), 5241 getValue(I.getArgOperand(1)), 5242 getValue(I.getArgOperand(2)), 5243 Code); 5244 setValue(&I, Res); 5245 return nullptr; 5246 } 5247 case Intrinsic::powi: 5248 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5249 getValue(I.getArgOperand(1)), DAG)); 5250 return nullptr; 5251 case Intrinsic::log: 5252 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5253 return nullptr; 5254 case Intrinsic::log2: 5255 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5256 return nullptr; 5257 case Intrinsic::log10: 5258 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5259 return nullptr; 5260 case Intrinsic::exp: 5261 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5262 return nullptr; 5263 case Intrinsic::exp2: 5264 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5265 return nullptr; 5266 case Intrinsic::pow: 5267 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5268 getValue(I.getArgOperand(1)), DAG, TLI)); 5269 return nullptr; 5270 case Intrinsic::sqrt: 5271 case Intrinsic::fabs: 5272 case Intrinsic::sin: 5273 case Intrinsic::cos: 5274 case Intrinsic::floor: 5275 case Intrinsic::ceil: 5276 case Intrinsic::trunc: 5277 case Intrinsic::rint: 5278 case Intrinsic::nearbyint: 5279 case Intrinsic::round: 5280 case Intrinsic::canonicalize: { 5281 unsigned Opcode; 5282 switch (Intrinsic) { 5283 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5284 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5285 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5286 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5287 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5288 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5289 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5290 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5291 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5292 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5293 case Intrinsic::round: Opcode = ISD::FROUND; break; 5294 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5295 } 5296 5297 setValue(&I, DAG.getNode(Opcode, sdl, 5298 getValue(I.getArgOperand(0)).getValueType(), 5299 getValue(I.getArgOperand(0)))); 5300 return nullptr; 5301 } 5302 case Intrinsic::minnum: { 5303 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5304 unsigned Opc = 5305 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5306 ? ISD::FMINNAN 5307 : ISD::FMINNUM; 5308 setValue(&I, DAG.getNode(Opc, sdl, VT, 5309 getValue(I.getArgOperand(0)), 5310 getValue(I.getArgOperand(1)))); 5311 return nullptr; 5312 } 5313 case Intrinsic::maxnum: { 5314 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5315 unsigned Opc = 5316 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5317 ? ISD::FMAXNAN 5318 : ISD::FMAXNUM; 5319 setValue(&I, DAG.getNode(Opc, sdl, VT, 5320 getValue(I.getArgOperand(0)), 5321 getValue(I.getArgOperand(1)))); 5322 return nullptr; 5323 } 5324 case Intrinsic::copysign: 5325 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5326 getValue(I.getArgOperand(0)).getValueType(), 5327 getValue(I.getArgOperand(0)), 5328 getValue(I.getArgOperand(1)))); 5329 return nullptr; 5330 case Intrinsic::fma: 5331 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5332 getValue(I.getArgOperand(0)).getValueType(), 5333 getValue(I.getArgOperand(0)), 5334 getValue(I.getArgOperand(1)), 5335 getValue(I.getArgOperand(2)))); 5336 return nullptr; 5337 case Intrinsic::fmuladd: { 5338 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5339 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5340 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5341 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5342 getValue(I.getArgOperand(0)).getValueType(), 5343 getValue(I.getArgOperand(0)), 5344 getValue(I.getArgOperand(1)), 5345 getValue(I.getArgOperand(2)))); 5346 } else { 5347 // TODO: Intrinsic calls should have fast-math-flags. 5348 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5349 getValue(I.getArgOperand(0)).getValueType(), 5350 getValue(I.getArgOperand(0)), 5351 getValue(I.getArgOperand(1))); 5352 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5353 getValue(I.getArgOperand(0)).getValueType(), 5354 Mul, 5355 getValue(I.getArgOperand(2))); 5356 setValue(&I, Add); 5357 } 5358 return nullptr; 5359 } 5360 case Intrinsic::convert_to_fp16: 5361 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5362 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5363 getValue(I.getArgOperand(0)), 5364 DAG.getTargetConstant(0, sdl, 5365 MVT::i32)))); 5366 return nullptr; 5367 case Intrinsic::convert_from_fp16: 5368 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5369 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5370 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5371 getValue(I.getArgOperand(0))))); 5372 return nullptr; 5373 case Intrinsic::pcmarker: { 5374 SDValue Tmp = getValue(I.getArgOperand(0)); 5375 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5376 return nullptr; 5377 } 5378 case Intrinsic::readcyclecounter: { 5379 SDValue Op = getRoot(); 5380 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5381 DAG.getVTList(MVT::i64, MVT::Other), Op); 5382 setValue(&I, Res); 5383 DAG.setRoot(Res.getValue(1)); 5384 return nullptr; 5385 } 5386 case Intrinsic::bitreverse: 5387 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5388 getValue(I.getArgOperand(0)).getValueType(), 5389 getValue(I.getArgOperand(0)))); 5390 return nullptr; 5391 case Intrinsic::bswap: 5392 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5393 getValue(I.getArgOperand(0)).getValueType(), 5394 getValue(I.getArgOperand(0)))); 5395 return nullptr; 5396 case Intrinsic::cttz: { 5397 SDValue Arg = getValue(I.getArgOperand(0)); 5398 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5399 EVT Ty = Arg.getValueType(); 5400 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5401 sdl, Ty, Arg)); 5402 return nullptr; 5403 } 5404 case Intrinsic::ctlz: { 5405 SDValue Arg = getValue(I.getArgOperand(0)); 5406 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5407 EVT Ty = Arg.getValueType(); 5408 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5409 sdl, Ty, Arg)); 5410 return nullptr; 5411 } 5412 case Intrinsic::ctpop: { 5413 SDValue Arg = getValue(I.getArgOperand(0)); 5414 EVT Ty = Arg.getValueType(); 5415 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5416 return nullptr; 5417 } 5418 case Intrinsic::stacksave: { 5419 SDValue Op = getRoot(); 5420 Res = DAG.getNode( 5421 ISD::STACKSAVE, sdl, 5422 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5423 setValue(&I, Res); 5424 DAG.setRoot(Res.getValue(1)); 5425 return nullptr; 5426 } 5427 case Intrinsic::stackrestore: { 5428 Res = getValue(I.getArgOperand(0)); 5429 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5430 return nullptr; 5431 } 5432 case Intrinsic::get_dynamic_area_offset: { 5433 SDValue Op = getRoot(); 5434 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5435 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5436 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5437 // target. 5438 if (PtrTy != ResTy) 5439 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5440 " intrinsic!"); 5441 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5442 Op); 5443 DAG.setRoot(Op); 5444 setValue(&I, Res); 5445 return nullptr; 5446 } 5447 case Intrinsic::stackguard: { 5448 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5449 MachineFunction &MF = DAG.getMachineFunction(); 5450 const Module &M = *MF.getFunction()->getParent(); 5451 SDValue Chain = getRoot(); 5452 if (TLI.useLoadStackGuardNode()) { 5453 Res = getLoadStackGuard(DAG, sdl, Chain); 5454 } else { 5455 const Value *Global = TLI.getSDagStackGuard(M); 5456 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5457 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5458 MachinePointerInfo(Global, 0), Align, 5459 MachineMemOperand::MOVolatile); 5460 } 5461 DAG.setRoot(Chain); 5462 setValue(&I, Res); 5463 return nullptr; 5464 } 5465 case Intrinsic::stackprotector: { 5466 // Emit code into the DAG to store the stack guard onto the stack. 5467 MachineFunction &MF = DAG.getMachineFunction(); 5468 MachineFrameInfo &MFI = MF.getFrameInfo(); 5469 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5470 SDValue Src, Chain = getRoot(); 5471 5472 if (TLI.useLoadStackGuardNode()) 5473 Src = getLoadStackGuard(DAG, sdl, Chain); 5474 else 5475 Src = getValue(I.getArgOperand(0)); // The guard's value. 5476 5477 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5478 5479 int FI = FuncInfo.StaticAllocaMap[Slot]; 5480 MFI.setStackProtectorIndex(FI); 5481 5482 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5483 5484 // Store the stack protector onto the stack. 5485 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5486 DAG.getMachineFunction(), FI), 5487 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5488 setValue(&I, Res); 5489 DAG.setRoot(Res); 5490 return nullptr; 5491 } 5492 case Intrinsic::objectsize: { 5493 // If we don't know by now, we're never going to know. 5494 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5495 5496 assert(CI && "Non-constant type in __builtin_object_size?"); 5497 5498 SDValue Arg = getValue(I.getCalledValue()); 5499 EVT Ty = Arg.getValueType(); 5500 5501 if (CI->isZero()) 5502 Res = DAG.getConstant(-1ULL, sdl, Ty); 5503 else 5504 Res = DAG.getConstant(0, sdl, Ty); 5505 5506 setValue(&I, Res); 5507 return nullptr; 5508 } 5509 case Intrinsic::annotation: 5510 case Intrinsic::ptr_annotation: 5511 case Intrinsic::invariant_group_barrier: 5512 // Drop the intrinsic, but forward the value 5513 setValue(&I, getValue(I.getOperand(0))); 5514 return nullptr; 5515 case Intrinsic::assume: 5516 case Intrinsic::var_annotation: 5517 // Discard annotate attributes and assumptions 5518 return nullptr; 5519 5520 case Intrinsic::init_trampoline: { 5521 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5522 5523 SDValue Ops[6]; 5524 Ops[0] = getRoot(); 5525 Ops[1] = getValue(I.getArgOperand(0)); 5526 Ops[2] = getValue(I.getArgOperand(1)); 5527 Ops[3] = getValue(I.getArgOperand(2)); 5528 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5529 Ops[5] = DAG.getSrcValue(F); 5530 5531 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5532 5533 DAG.setRoot(Res); 5534 return nullptr; 5535 } 5536 case Intrinsic::adjust_trampoline: { 5537 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5538 TLI.getPointerTy(DAG.getDataLayout()), 5539 getValue(I.getArgOperand(0)))); 5540 return nullptr; 5541 } 5542 case Intrinsic::gcroot: { 5543 MachineFunction &MF = DAG.getMachineFunction(); 5544 const Function *F = MF.getFunction(); 5545 (void)F; 5546 assert(F->hasGC() && 5547 "only valid in functions with gc specified, enforced by Verifier"); 5548 assert(GFI && "implied by previous"); 5549 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5550 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5551 5552 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5553 GFI->addStackRoot(FI->getIndex(), TypeMap); 5554 return nullptr; 5555 } 5556 case Intrinsic::gcread: 5557 case Intrinsic::gcwrite: 5558 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5559 case Intrinsic::flt_rounds: 5560 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5561 return nullptr; 5562 5563 case Intrinsic::expect: { 5564 // Just replace __builtin_expect(exp, c) with EXP. 5565 setValue(&I, getValue(I.getArgOperand(0))); 5566 return nullptr; 5567 } 5568 5569 case Intrinsic::debugtrap: 5570 case Intrinsic::trap: { 5571 StringRef TrapFuncName = 5572 I.getAttributes() 5573 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5574 .getValueAsString(); 5575 if (TrapFuncName.empty()) { 5576 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5577 ISD::TRAP : ISD::DEBUGTRAP; 5578 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5579 return nullptr; 5580 } 5581 TargetLowering::ArgListTy Args; 5582 5583 TargetLowering::CallLoweringInfo CLI(DAG); 5584 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5585 CallingConv::C, I.getType(), 5586 DAG.getExternalSymbol(TrapFuncName.data(), 5587 TLI.getPointerTy(DAG.getDataLayout())), 5588 std::move(Args)); 5589 5590 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5591 DAG.setRoot(Result.second); 5592 return nullptr; 5593 } 5594 5595 case Intrinsic::uadd_with_overflow: 5596 case Intrinsic::sadd_with_overflow: 5597 case Intrinsic::usub_with_overflow: 5598 case Intrinsic::ssub_with_overflow: 5599 case Intrinsic::umul_with_overflow: 5600 case Intrinsic::smul_with_overflow: { 5601 ISD::NodeType Op; 5602 switch (Intrinsic) { 5603 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5604 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5605 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5606 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5607 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5608 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5609 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5610 } 5611 SDValue Op1 = getValue(I.getArgOperand(0)); 5612 SDValue Op2 = getValue(I.getArgOperand(1)); 5613 5614 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5615 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5616 return nullptr; 5617 } 5618 case Intrinsic::prefetch: { 5619 SDValue Ops[5]; 5620 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5621 Ops[0] = getRoot(); 5622 Ops[1] = getValue(I.getArgOperand(0)); 5623 Ops[2] = getValue(I.getArgOperand(1)); 5624 Ops[3] = getValue(I.getArgOperand(2)); 5625 Ops[4] = getValue(I.getArgOperand(3)); 5626 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5627 DAG.getVTList(MVT::Other), Ops, 5628 EVT::getIntegerVT(*Context, 8), 5629 MachinePointerInfo(I.getArgOperand(0)), 5630 0, /* align */ 5631 false, /* volatile */ 5632 rw==0, /* read */ 5633 rw==1)); /* write */ 5634 return nullptr; 5635 } 5636 case Intrinsic::lifetime_start: 5637 case Intrinsic::lifetime_end: { 5638 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5639 // Stack coloring is not enabled in O0, discard region information. 5640 if (TM.getOptLevel() == CodeGenOpt::None) 5641 return nullptr; 5642 5643 SmallVector<Value *, 4> Allocas; 5644 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5645 5646 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5647 E = Allocas.end(); Object != E; ++Object) { 5648 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5649 5650 // Could not find an Alloca. 5651 if (!LifetimeObject) 5652 continue; 5653 5654 // First check that the Alloca is static, otherwise it won't have a 5655 // valid frame index. 5656 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5657 if (SI == FuncInfo.StaticAllocaMap.end()) 5658 return nullptr; 5659 5660 int FI = SI->second; 5661 5662 SDValue Ops[2]; 5663 Ops[0] = getRoot(); 5664 Ops[1] = 5665 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5666 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5667 5668 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5669 DAG.setRoot(Res); 5670 } 5671 return nullptr; 5672 } 5673 case Intrinsic::invariant_start: 5674 // Discard region information. 5675 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5676 return nullptr; 5677 case Intrinsic::invariant_end: 5678 // Discard region information. 5679 return nullptr; 5680 case Intrinsic::clear_cache: 5681 return TLI.getClearCacheBuiltinName(); 5682 case Intrinsic::donothing: 5683 // ignore 5684 return nullptr; 5685 case Intrinsic::experimental_stackmap: { 5686 visitStackmap(I); 5687 return nullptr; 5688 } 5689 case Intrinsic::experimental_patchpoint_void: 5690 case Intrinsic::experimental_patchpoint_i64: { 5691 visitPatchpoint(&I); 5692 return nullptr; 5693 } 5694 case Intrinsic::experimental_gc_statepoint: { 5695 LowerStatepoint(ImmutableStatepoint(&I)); 5696 return nullptr; 5697 } 5698 case Intrinsic::experimental_gc_result: { 5699 visitGCResult(cast<GCResultInst>(I)); 5700 return nullptr; 5701 } 5702 case Intrinsic::experimental_gc_relocate: { 5703 visitGCRelocate(cast<GCRelocateInst>(I)); 5704 return nullptr; 5705 } 5706 case Intrinsic::instrprof_increment: 5707 llvm_unreachable("instrprof failed to lower an increment"); 5708 case Intrinsic::instrprof_value_profile: 5709 llvm_unreachable("instrprof failed to lower a value profiling call"); 5710 case Intrinsic::localescape: { 5711 MachineFunction &MF = DAG.getMachineFunction(); 5712 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5713 5714 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5715 // is the same on all targets. 5716 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5717 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5718 if (isa<ConstantPointerNull>(Arg)) 5719 continue; // Skip null pointers. They represent a hole in index space. 5720 AllocaInst *Slot = cast<AllocaInst>(Arg); 5721 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5722 "can only escape static allocas"); 5723 int FI = FuncInfo.StaticAllocaMap[Slot]; 5724 MCSymbol *FrameAllocSym = 5725 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5726 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5727 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5728 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5729 .addSym(FrameAllocSym) 5730 .addFrameIndex(FI); 5731 } 5732 5733 return nullptr; 5734 } 5735 5736 case Intrinsic::localrecover: { 5737 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5738 MachineFunction &MF = DAG.getMachineFunction(); 5739 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5740 5741 // Get the symbol that defines the frame offset. 5742 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5743 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5744 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5745 MCSymbol *FrameAllocSym = 5746 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5747 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5748 5749 // Create a MCSymbol for the label to avoid any target lowering 5750 // that would make this PC relative. 5751 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5752 SDValue OffsetVal = 5753 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5754 5755 // Add the offset to the FP. 5756 Value *FP = I.getArgOperand(1); 5757 SDValue FPVal = getValue(FP); 5758 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5759 setValue(&I, Add); 5760 5761 return nullptr; 5762 } 5763 5764 case Intrinsic::eh_exceptionpointer: 5765 case Intrinsic::eh_exceptioncode: { 5766 // Get the exception pointer vreg, copy from it, and resize it to fit. 5767 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5768 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5769 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5770 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5771 SDValue N = 5772 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5773 if (Intrinsic == Intrinsic::eh_exceptioncode) 5774 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5775 setValue(&I, N); 5776 return nullptr; 5777 } 5778 5779 case Intrinsic::experimental_deoptimize: 5780 LowerDeoptimizeCall(&I); 5781 return nullptr; 5782 } 5783 } 5784 5785 std::pair<SDValue, SDValue> 5786 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5787 const BasicBlock *EHPadBB) { 5788 MachineFunction &MF = DAG.getMachineFunction(); 5789 MachineModuleInfo &MMI = MF.getMMI(); 5790 MCSymbol *BeginLabel = nullptr; 5791 5792 if (EHPadBB) { 5793 // Insert a label before the invoke call to mark the try range. This can be 5794 // used to detect deletion of the invoke via the MachineModuleInfo. 5795 BeginLabel = MMI.getContext().createTempSymbol(); 5796 5797 // For SjLj, keep track of which landing pads go with which invokes 5798 // so as to maintain the ordering of pads in the LSDA. 5799 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5800 if (CallSiteIndex) { 5801 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5802 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5803 5804 // Now that the call site is handled, stop tracking it. 5805 MMI.setCurrentCallSite(0); 5806 } 5807 5808 // Both PendingLoads and PendingExports must be flushed here; 5809 // this call might not return. 5810 (void)getRoot(); 5811 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5812 5813 CLI.setChain(getRoot()); 5814 } 5815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5816 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5817 5818 assert((CLI.IsTailCall || Result.second.getNode()) && 5819 "Non-null chain expected with non-tail call!"); 5820 assert((Result.second.getNode() || !Result.first.getNode()) && 5821 "Null value expected with tail call!"); 5822 5823 if (!Result.second.getNode()) { 5824 // As a special case, a null chain means that a tail call has been emitted 5825 // and the DAG root is already updated. 5826 HasTailCall = true; 5827 5828 // Since there's no actual continuation from this block, nothing can be 5829 // relying on us setting vregs for them. 5830 PendingExports.clear(); 5831 } else { 5832 DAG.setRoot(Result.second); 5833 } 5834 5835 if (EHPadBB) { 5836 // Insert a label at the end of the invoke call to mark the try range. This 5837 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5838 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5839 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5840 5841 // Inform MachineModuleInfo of range. 5842 if (MF.hasEHFunclets()) { 5843 assert(CLI.CS); 5844 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5845 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5846 BeginLabel, EndLabel); 5847 } else { 5848 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5849 } 5850 } 5851 5852 return Result; 5853 } 5854 5855 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5856 bool isTailCall, 5857 const BasicBlock *EHPadBB) { 5858 auto &DL = DAG.getDataLayout(); 5859 FunctionType *FTy = CS.getFunctionType(); 5860 Type *RetTy = CS.getType(); 5861 5862 TargetLowering::ArgListTy Args; 5863 TargetLowering::ArgListEntry Entry; 5864 Args.reserve(CS.arg_size()); 5865 5866 const Value *SwiftErrorVal = nullptr; 5867 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5868 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5869 i != e; ++i) { 5870 const Value *V = *i; 5871 5872 // Skip empty types 5873 if (V->getType()->isEmptyTy()) 5874 continue; 5875 5876 SDValue ArgNode = getValue(V); 5877 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5878 5879 // Skip the first return-type Attribute to get to params. 5880 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5881 5882 // Use swifterror virtual register as input to the call. 5883 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5884 SwiftErrorVal = V; 5885 // We find the virtual register for the actual swifterror argument. 5886 // Instead of using the Value, we use the virtual register instead. 5887 Entry.Node = 5888 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5889 EVT(TLI.getPointerTy(DL))); 5890 } 5891 5892 Args.push_back(Entry); 5893 5894 // If we have an explicit sret argument that is an Instruction, (i.e., it 5895 // might point to function-local memory), we can't meaningfully tail-call. 5896 if (Entry.isSRet && isa<Instruction>(V)) 5897 isTailCall = false; 5898 } 5899 5900 // Check if target-independent constraints permit a tail call here. 5901 // Target-dependent constraints are checked within TLI->LowerCallTo. 5902 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5903 isTailCall = false; 5904 5905 // Disable tail calls if there is an swifterror argument. Targets have not 5906 // been updated to support tail calls. 5907 if (TLI.supportSwiftError() && SwiftErrorVal) 5908 isTailCall = false; 5909 5910 TargetLowering::CallLoweringInfo CLI(DAG); 5911 CLI.setDebugLoc(getCurSDLoc()) 5912 .setChain(getRoot()) 5913 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5914 .setTailCall(isTailCall) 5915 .setConvergent(CS.isConvergent()); 5916 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5917 5918 if (Result.first.getNode()) { 5919 const Instruction *Inst = CS.getInstruction(); 5920 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5921 setValue(Inst, Result.first); 5922 } 5923 5924 // The last element of CLI.InVals has the SDValue for swifterror return. 5925 // Here we copy it to a virtual register and update SwiftErrorMap for 5926 // book-keeping. 5927 if (SwiftErrorVal && TLI.supportSwiftError()) { 5928 // Get the last element of InVals. 5929 SDValue Src = CLI.InVals.back(); 5930 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5931 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5932 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5933 // We update the virtual register for the actual swifterror argument. 5934 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5935 DAG.setRoot(CopyNode); 5936 } 5937 } 5938 5939 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5940 /// value is equal or not-equal to zero. 5941 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5942 for (const User *U : V->users()) { 5943 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5944 if (IC->isEquality()) 5945 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5946 if (C->isNullValue()) 5947 continue; 5948 // Unknown instruction. 5949 return false; 5950 } 5951 return true; 5952 } 5953 5954 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5955 Type *LoadTy, 5956 SelectionDAGBuilder &Builder) { 5957 5958 // Check to see if this load can be trivially constant folded, e.g. if the 5959 // input is from a string literal. 5960 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5961 // Cast pointer to the type we really want to load. 5962 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5963 PointerType::getUnqual(LoadTy)); 5964 5965 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5966 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5967 return Builder.getValue(LoadCst); 5968 } 5969 5970 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5971 // still constant memory, the input chain can be the entry node. 5972 SDValue Root; 5973 bool ConstantMemory = false; 5974 5975 // Do not serialize (non-volatile) loads of constant memory with anything. 5976 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5977 Root = Builder.DAG.getEntryNode(); 5978 ConstantMemory = true; 5979 } else { 5980 // Do not serialize non-volatile loads against each other. 5981 Root = Builder.DAG.getRoot(); 5982 } 5983 5984 SDValue Ptr = Builder.getValue(PtrVal); 5985 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5986 Ptr, MachinePointerInfo(PtrVal), 5987 /* Alignment = */ 1); 5988 5989 if (!ConstantMemory) 5990 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5991 return LoadVal; 5992 } 5993 5994 /// processIntegerCallValue - Record the value for an instruction that 5995 /// produces an integer result, converting the type where necessary. 5996 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5997 SDValue Value, 5998 bool IsSigned) { 5999 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6000 I.getType(), true); 6001 if (IsSigned) 6002 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6003 else 6004 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6005 setValue(&I, Value); 6006 } 6007 6008 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 6009 /// If so, return true and lower it, otherwise return false and it will be 6010 /// lowered like a normal call. 6011 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6012 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 6013 if (I.getNumArgOperands() != 3) 6014 return false; 6015 6016 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6017 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 6018 !I.getArgOperand(2)->getType()->isIntegerTy() || 6019 !I.getType()->isIntegerTy()) 6020 return false; 6021 6022 const Value *Size = I.getArgOperand(2); 6023 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6024 if (CSize && CSize->getZExtValue() == 0) { 6025 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6026 I.getType(), true); 6027 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6028 return true; 6029 } 6030 6031 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6032 std::pair<SDValue, SDValue> Res = 6033 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6034 getValue(LHS), getValue(RHS), getValue(Size), 6035 MachinePointerInfo(LHS), 6036 MachinePointerInfo(RHS)); 6037 if (Res.first.getNode()) { 6038 processIntegerCallValue(I, Res.first, true); 6039 PendingLoads.push_back(Res.second); 6040 return true; 6041 } 6042 6043 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6044 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6045 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 6046 bool ActuallyDoIt = true; 6047 MVT LoadVT; 6048 Type *LoadTy; 6049 switch (CSize->getZExtValue()) { 6050 default: 6051 LoadVT = MVT::Other; 6052 LoadTy = nullptr; 6053 ActuallyDoIt = false; 6054 break; 6055 case 2: 6056 LoadVT = MVT::i16; 6057 LoadTy = Type::getInt16Ty(CSize->getContext()); 6058 break; 6059 case 4: 6060 LoadVT = MVT::i32; 6061 LoadTy = Type::getInt32Ty(CSize->getContext()); 6062 break; 6063 case 8: 6064 LoadVT = MVT::i64; 6065 LoadTy = Type::getInt64Ty(CSize->getContext()); 6066 break; 6067 /* 6068 case 16: 6069 LoadVT = MVT::v4i32; 6070 LoadTy = Type::getInt32Ty(CSize->getContext()); 6071 LoadTy = VectorType::get(LoadTy, 4); 6072 break; 6073 */ 6074 } 6075 6076 // This turns into unaligned loads. We only do this if the target natively 6077 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6078 // we'll only produce a small number of byte loads. 6079 6080 // Require that we can find a legal MVT, and only do this if the target 6081 // supports unaligned loads of that type. Expanding into byte loads would 6082 // bloat the code. 6083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6084 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 6085 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6086 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6087 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6088 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6089 // TODO: Check alignment of src and dest ptrs. 6090 if (!TLI.isTypeLegal(LoadVT) || 6091 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 6092 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 6093 ActuallyDoIt = false; 6094 } 6095 6096 if (ActuallyDoIt) { 6097 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 6098 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 6099 6100 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 6101 ISD::SETNE); 6102 processIntegerCallValue(I, Res, false); 6103 return true; 6104 } 6105 } 6106 6107 6108 return false; 6109 } 6110 6111 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 6112 /// form. If so, return true and lower it, otherwise return false and it 6113 /// will be lowered like a normal call. 6114 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6115 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 6116 if (I.getNumArgOperands() != 3) 6117 return false; 6118 6119 const Value *Src = I.getArgOperand(0); 6120 const Value *Char = I.getArgOperand(1); 6121 const Value *Length = I.getArgOperand(2); 6122 if (!Src->getType()->isPointerTy() || 6123 !Char->getType()->isIntegerTy() || 6124 !Length->getType()->isIntegerTy() || 6125 !I.getType()->isPointerTy()) 6126 return false; 6127 6128 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6129 std::pair<SDValue, SDValue> Res = 6130 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6131 getValue(Src), getValue(Char), getValue(Length), 6132 MachinePointerInfo(Src)); 6133 if (Res.first.getNode()) { 6134 setValue(&I, Res.first); 6135 PendingLoads.push_back(Res.second); 6136 return true; 6137 } 6138 6139 return false; 6140 } 6141 6142 /// 6143 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to 6144 /// to adjust the dst pointer by the size of the copied memory. 6145 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6146 6147 // Verify argument count: void *mempcpy(void *, const void *, size_t) 6148 if (I.getNumArgOperands() != 3) 6149 return false; 6150 6151 SDValue Dst = getValue(I.getArgOperand(0)); 6152 SDValue Src = getValue(I.getArgOperand(1)); 6153 SDValue Size = getValue(I.getArgOperand(2)); 6154 6155 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6156 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6157 unsigned Align = std::min(DstAlign, SrcAlign); 6158 if (Align == 0) // Alignment of one or both could not be inferred. 6159 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6160 6161 bool isVol = false; 6162 SDLoc sdl = getCurSDLoc(); 6163 6164 // In the mempcpy context we need to pass in a false value for isTailCall 6165 // because the return pointer needs to be adjusted by the size of 6166 // the copied memory. 6167 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6168 false, /*isTailCall=*/false, 6169 MachinePointerInfo(I.getArgOperand(0)), 6170 MachinePointerInfo(I.getArgOperand(1))); 6171 assert(MC.getNode() != nullptr && 6172 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6173 DAG.setRoot(MC); 6174 6175 // Check if Size needs to be truncated or extended. 6176 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6177 6178 // Adjust return pointer to point just past the last dst byte. 6179 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6180 Dst, Size); 6181 setValue(&I, DstPlusSize); 6182 return true; 6183 } 6184 6185 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 6186 /// optimized form. If so, return true and lower it, otherwise return false 6187 /// and it will be lowered like a normal call. 6188 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6189 // Verify that the prototype makes sense. char *strcpy(char *, char *) 6190 if (I.getNumArgOperands() != 2) 6191 return false; 6192 6193 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6194 if (!Arg0->getType()->isPointerTy() || 6195 !Arg1->getType()->isPointerTy() || 6196 !I.getType()->isPointerTy()) 6197 return false; 6198 6199 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6200 std::pair<SDValue, SDValue> Res = 6201 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6202 getValue(Arg0), getValue(Arg1), 6203 MachinePointerInfo(Arg0), 6204 MachinePointerInfo(Arg1), isStpcpy); 6205 if (Res.first.getNode()) { 6206 setValue(&I, Res.first); 6207 DAG.setRoot(Res.second); 6208 return true; 6209 } 6210 6211 return false; 6212 } 6213 6214 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6215 /// If so, return true and lower it, otherwise return false and it will be 6216 /// lowered like a normal call. 6217 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6218 // Verify that the prototype makes sense. int strcmp(void*,void*) 6219 if (I.getNumArgOperands() != 2) 6220 return false; 6221 6222 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6223 if (!Arg0->getType()->isPointerTy() || 6224 !Arg1->getType()->isPointerTy() || 6225 !I.getType()->isIntegerTy()) 6226 return false; 6227 6228 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6229 std::pair<SDValue, SDValue> Res = 6230 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6231 getValue(Arg0), getValue(Arg1), 6232 MachinePointerInfo(Arg0), 6233 MachinePointerInfo(Arg1)); 6234 if (Res.first.getNode()) { 6235 processIntegerCallValue(I, Res.first, true); 6236 PendingLoads.push_back(Res.second); 6237 return true; 6238 } 6239 6240 return false; 6241 } 6242 6243 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6244 /// form. If so, return true and lower it, otherwise return false and it 6245 /// will be lowered like a normal call. 6246 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6247 // Verify that the prototype makes sense. size_t strlen(char *) 6248 if (I.getNumArgOperands() != 1) 6249 return false; 6250 6251 const Value *Arg0 = I.getArgOperand(0); 6252 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6253 return false; 6254 6255 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6256 std::pair<SDValue, SDValue> Res = 6257 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6258 getValue(Arg0), MachinePointerInfo(Arg0)); 6259 if (Res.first.getNode()) { 6260 processIntegerCallValue(I, Res.first, false); 6261 PendingLoads.push_back(Res.second); 6262 return true; 6263 } 6264 6265 return false; 6266 } 6267 6268 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6269 /// form. If so, return true and lower it, otherwise return false and it 6270 /// will be lowered like a normal call. 6271 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6272 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6273 if (I.getNumArgOperands() != 2) 6274 return false; 6275 6276 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6277 if (!Arg0->getType()->isPointerTy() || 6278 !Arg1->getType()->isIntegerTy() || 6279 !I.getType()->isIntegerTy()) 6280 return false; 6281 6282 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6283 std::pair<SDValue, SDValue> Res = 6284 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6285 getValue(Arg0), getValue(Arg1), 6286 MachinePointerInfo(Arg0)); 6287 if (Res.first.getNode()) { 6288 processIntegerCallValue(I, Res.first, false); 6289 PendingLoads.push_back(Res.second); 6290 return true; 6291 } 6292 6293 return false; 6294 } 6295 6296 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6297 /// operation (as expected), translate it to an SDNode with the specified opcode 6298 /// and return true. 6299 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6300 unsigned Opcode) { 6301 // Sanity check that it really is a unary floating-point call. 6302 if (I.getNumArgOperands() != 1 || 6303 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6304 I.getType() != I.getArgOperand(0)->getType() || 6305 !I.onlyReadsMemory()) 6306 return false; 6307 6308 SDValue Tmp = getValue(I.getArgOperand(0)); 6309 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6310 return true; 6311 } 6312 6313 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6314 /// operation (as expected), translate it to an SDNode with the specified opcode 6315 /// and return true. 6316 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6317 unsigned Opcode) { 6318 // Sanity check that it really is a binary floating-point call. 6319 if (I.getNumArgOperands() != 2 || 6320 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6321 I.getType() != I.getArgOperand(0)->getType() || 6322 I.getType() != I.getArgOperand(1)->getType() || 6323 !I.onlyReadsMemory()) 6324 return false; 6325 6326 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6327 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6328 EVT VT = Tmp0.getValueType(); 6329 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6330 return true; 6331 } 6332 6333 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6334 // Handle inline assembly differently. 6335 if (isa<InlineAsm>(I.getCalledValue())) { 6336 visitInlineAsm(&I); 6337 return; 6338 } 6339 6340 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6341 computeUsesVAFloatArgument(I, MMI); 6342 6343 const char *RenameFn = nullptr; 6344 if (Function *F = I.getCalledFunction()) { 6345 if (F->isDeclaration()) { 6346 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6347 if (unsigned IID = II->getIntrinsicID(F)) { 6348 RenameFn = visitIntrinsicCall(I, IID); 6349 if (!RenameFn) 6350 return; 6351 } 6352 } 6353 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6354 RenameFn = visitIntrinsicCall(I, IID); 6355 if (!RenameFn) 6356 return; 6357 } 6358 } 6359 6360 // Check for well-known libc/libm calls. If the function is internal, it 6361 // can't be a library call. Don't do the check if marked as nobuiltin for 6362 // some reason. 6363 LibFunc::Func Func; 6364 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6365 LibInfo->getLibFunc(F->getName(), Func) && 6366 LibInfo->hasOptimizedCodeGen(Func)) { 6367 switch (Func) { 6368 default: break; 6369 case LibFunc::copysign: 6370 case LibFunc::copysignf: 6371 case LibFunc::copysignl: 6372 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6373 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6374 I.getType() == I.getArgOperand(0)->getType() && 6375 I.getType() == I.getArgOperand(1)->getType() && 6376 I.onlyReadsMemory()) { 6377 SDValue LHS = getValue(I.getArgOperand(0)); 6378 SDValue RHS = getValue(I.getArgOperand(1)); 6379 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6380 LHS.getValueType(), LHS, RHS)); 6381 return; 6382 } 6383 break; 6384 case LibFunc::fabs: 6385 case LibFunc::fabsf: 6386 case LibFunc::fabsl: 6387 if (visitUnaryFloatCall(I, ISD::FABS)) 6388 return; 6389 break; 6390 case LibFunc::fmin: 6391 case LibFunc::fminf: 6392 case LibFunc::fminl: 6393 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6394 return; 6395 break; 6396 case LibFunc::fmax: 6397 case LibFunc::fmaxf: 6398 case LibFunc::fmaxl: 6399 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6400 return; 6401 break; 6402 case LibFunc::sin: 6403 case LibFunc::sinf: 6404 case LibFunc::sinl: 6405 if (visitUnaryFloatCall(I, ISD::FSIN)) 6406 return; 6407 break; 6408 case LibFunc::cos: 6409 case LibFunc::cosf: 6410 case LibFunc::cosl: 6411 if (visitUnaryFloatCall(I, ISD::FCOS)) 6412 return; 6413 break; 6414 case LibFunc::sqrt: 6415 case LibFunc::sqrtf: 6416 case LibFunc::sqrtl: 6417 case LibFunc::sqrt_finite: 6418 case LibFunc::sqrtf_finite: 6419 case LibFunc::sqrtl_finite: 6420 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6421 return; 6422 break; 6423 case LibFunc::floor: 6424 case LibFunc::floorf: 6425 case LibFunc::floorl: 6426 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6427 return; 6428 break; 6429 case LibFunc::nearbyint: 6430 case LibFunc::nearbyintf: 6431 case LibFunc::nearbyintl: 6432 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6433 return; 6434 break; 6435 case LibFunc::ceil: 6436 case LibFunc::ceilf: 6437 case LibFunc::ceill: 6438 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6439 return; 6440 break; 6441 case LibFunc::rint: 6442 case LibFunc::rintf: 6443 case LibFunc::rintl: 6444 if (visitUnaryFloatCall(I, ISD::FRINT)) 6445 return; 6446 break; 6447 case LibFunc::round: 6448 case LibFunc::roundf: 6449 case LibFunc::roundl: 6450 if (visitUnaryFloatCall(I, ISD::FROUND)) 6451 return; 6452 break; 6453 case LibFunc::trunc: 6454 case LibFunc::truncf: 6455 case LibFunc::truncl: 6456 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6457 return; 6458 break; 6459 case LibFunc::log2: 6460 case LibFunc::log2f: 6461 case LibFunc::log2l: 6462 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6463 return; 6464 break; 6465 case LibFunc::exp2: 6466 case LibFunc::exp2f: 6467 case LibFunc::exp2l: 6468 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6469 return; 6470 break; 6471 case LibFunc::memcmp: 6472 if (visitMemCmpCall(I)) 6473 return; 6474 break; 6475 case LibFunc::mempcpy: 6476 if (visitMemPCpyCall(I)) 6477 return; 6478 break; 6479 case LibFunc::memchr: 6480 if (visitMemChrCall(I)) 6481 return; 6482 break; 6483 case LibFunc::strcpy: 6484 if (visitStrCpyCall(I, false)) 6485 return; 6486 break; 6487 case LibFunc::stpcpy: 6488 if (visitStrCpyCall(I, true)) 6489 return; 6490 break; 6491 case LibFunc::strcmp: 6492 if (visitStrCmpCall(I)) 6493 return; 6494 break; 6495 case LibFunc::strlen: 6496 if (visitStrLenCall(I)) 6497 return; 6498 break; 6499 case LibFunc::strnlen: 6500 if (visitStrNLenCall(I)) 6501 return; 6502 break; 6503 } 6504 } 6505 } 6506 6507 SDValue Callee; 6508 if (!RenameFn) 6509 Callee = getValue(I.getCalledValue()); 6510 else 6511 Callee = DAG.getExternalSymbol( 6512 RenameFn, 6513 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6514 6515 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6516 // have to do anything here to lower funclet bundles. 6517 assert(!I.hasOperandBundlesOtherThan( 6518 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6519 "Cannot lower calls with arbitrary operand bundles!"); 6520 6521 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6522 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6523 else 6524 // Check if we can potentially perform a tail call. More detailed checking 6525 // is be done within LowerCallTo, after more information about the call is 6526 // known. 6527 LowerCallTo(&I, Callee, I.isTailCall()); 6528 } 6529 6530 namespace { 6531 6532 /// AsmOperandInfo - This contains information for each constraint that we are 6533 /// lowering. 6534 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6535 public: 6536 /// CallOperand - If this is the result output operand or a clobber 6537 /// this is null, otherwise it is the incoming operand to the CallInst. 6538 /// This gets modified as the asm is processed. 6539 SDValue CallOperand; 6540 6541 /// AssignedRegs - If this is a register or register class operand, this 6542 /// contains the set of register corresponding to the operand. 6543 RegsForValue AssignedRegs; 6544 6545 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6546 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6547 } 6548 6549 /// Whether or not this operand accesses memory 6550 bool hasMemory(const TargetLowering &TLI) const { 6551 // Indirect operand accesses access memory. 6552 if (isIndirect) 6553 return true; 6554 6555 for (const auto &Code : Codes) 6556 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6557 return true; 6558 6559 return false; 6560 } 6561 6562 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6563 /// corresponds to. If there is no Value* for this operand, it returns 6564 /// MVT::Other. 6565 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6566 const DataLayout &DL) const { 6567 if (!CallOperandVal) return MVT::Other; 6568 6569 if (isa<BasicBlock>(CallOperandVal)) 6570 return TLI.getPointerTy(DL); 6571 6572 llvm::Type *OpTy = CallOperandVal->getType(); 6573 6574 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6575 // If this is an indirect operand, the operand is a pointer to the 6576 // accessed type. 6577 if (isIndirect) { 6578 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6579 if (!PtrTy) 6580 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6581 OpTy = PtrTy->getElementType(); 6582 } 6583 6584 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6585 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6586 if (STy->getNumElements() == 1) 6587 OpTy = STy->getElementType(0); 6588 6589 // If OpTy is not a single value, it may be a struct/union that we 6590 // can tile with integers. 6591 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6592 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6593 switch (BitSize) { 6594 default: break; 6595 case 1: 6596 case 8: 6597 case 16: 6598 case 32: 6599 case 64: 6600 case 128: 6601 OpTy = IntegerType::get(Context, BitSize); 6602 break; 6603 } 6604 } 6605 6606 return TLI.getValueType(DL, OpTy, true); 6607 } 6608 }; 6609 6610 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6611 6612 } // end anonymous namespace 6613 6614 /// Make sure that the output operand \p OpInfo and its corresponding input 6615 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6616 /// out). 6617 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6618 SDISelAsmOperandInfo &MatchingOpInfo, 6619 SelectionDAG &DAG) { 6620 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6621 return; 6622 6623 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6624 const auto &TLI = DAG.getTargetLoweringInfo(); 6625 6626 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6627 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6628 OpInfo.ConstraintVT); 6629 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6630 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6631 MatchingOpInfo.ConstraintVT); 6632 if ((OpInfo.ConstraintVT.isInteger() != 6633 MatchingOpInfo.ConstraintVT.isInteger()) || 6634 (MatchRC.second != InputRC.second)) { 6635 // FIXME: error out in a more elegant fashion 6636 report_fatal_error("Unsupported asm: input constraint" 6637 " with a matching output constraint of" 6638 " incompatible type!"); 6639 } 6640 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6641 } 6642 6643 /// Get a direct memory input to behave well as an indirect operand. 6644 /// This may introduce stores, hence the need for a \p Chain. 6645 /// \return The (possibly updated) chain. 6646 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6647 SDISelAsmOperandInfo &OpInfo, 6648 SelectionDAG &DAG) { 6649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6650 6651 // If we don't have an indirect input, put it in the constpool if we can, 6652 // otherwise spill it to a stack slot. 6653 // TODO: This isn't quite right. We need to handle these according to 6654 // the addressing mode that the constraint wants. Also, this may take 6655 // an additional register for the computation and we don't want that 6656 // either. 6657 6658 // If the operand is a float, integer, or vector constant, spill to a 6659 // constant pool entry to get its address. 6660 const Value *OpVal = OpInfo.CallOperandVal; 6661 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6662 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6663 OpInfo.CallOperand = DAG.getConstantPool( 6664 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6665 return Chain; 6666 } 6667 6668 // Otherwise, create a stack slot and emit a store to it before the asm. 6669 Type *Ty = OpVal->getType(); 6670 auto &DL = DAG.getDataLayout(); 6671 uint64_t TySize = DL.getTypeAllocSize(Ty); 6672 unsigned Align = DL.getPrefTypeAlignment(Ty); 6673 MachineFunction &MF = DAG.getMachineFunction(); 6674 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6675 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6676 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6677 MachinePointerInfo::getFixedStack(MF, SSFI)); 6678 OpInfo.CallOperand = StackSlot; 6679 6680 return Chain; 6681 } 6682 6683 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6684 /// specified operand. We prefer to assign virtual registers, to allow the 6685 /// register allocator to handle the assignment process. However, if the asm 6686 /// uses features that we can't model on machineinstrs, we have SDISel do the 6687 /// allocation. This produces generally horrible, but correct, code. 6688 /// 6689 /// OpInfo describes the operand. 6690 /// 6691 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6692 const SDLoc &DL, 6693 SDISelAsmOperandInfo &OpInfo) { 6694 LLVMContext &Context = *DAG.getContext(); 6695 6696 MachineFunction &MF = DAG.getMachineFunction(); 6697 SmallVector<unsigned, 4> Regs; 6698 6699 // If this is a constraint for a single physreg, or a constraint for a 6700 // register class, find it. 6701 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6702 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6703 OpInfo.ConstraintCode, 6704 OpInfo.ConstraintVT); 6705 6706 unsigned NumRegs = 1; 6707 if (OpInfo.ConstraintVT != MVT::Other) { 6708 // If this is a FP input in an integer register (or visa versa) insert a bit 6709 // cast of the input value. More generally, handle any case where the input 6710 // value disagrees with the register class we plan to stick this in. 6711 if (OpInfo.Type == InlineAsm::isInput && 6712 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6713 // Try to convert to the first EVT that the reg class contains. If the 6714 // types are identical size, use a bitcast to convert (e.g. two differing 6715 // vector types). 6716 MVT RegVT = *PhysReg.second->vt_begin(); 6717 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6718 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6719 RegVT, OpInfo.CallOperand); 6720 OpInfo.ConstraintVT = RegVT; 6721 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6722 // If the input is a FP value and we want it in FP registers, do a 6723 // bitcast to the corresponding integer type. This turns an f64 value 6724 // into i64, which can be passed with two i32 values on a 32-bit 6725 // machine. 6726 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6727 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6728 RegVT, OpInfo.CallOperand); 6729 OpInfo.ConstraintVT = RegVT; 6730 } 6731 } 6732 6733 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6734 } 6735 6736 MVT RegVT; 6737 EVT ValueVT = OpInfo.ConstraintVT; 6738 6739 // If this is a constraint for a specific physical register, like {r17}, 6740 // assign it now. 6741 if (unsigned AssignedReg = PhysReg.first) { 6742 const TargetRegisterClass *RC = PhysReg.second; 6743 if (OpInfo.ConstraintVT == MVT::Other) 6744 ValueVT = *RC->vt_begin(); 6745 6746 // Get the actual register value type. This is important, because the user 6747 // may have asked for (e.g.) the AX register in i32 type. We need to 6748 // remember that AX is actually i16 to get the right extension. 6749 RegVT = *RC->vt_begin(); 6750 6751 // This is a explicit reference to a physical register. 6752 Regs.push_back(AssignedReg); 6753 6754 // If this is an expanded reference, add the rest of the regs to Regs. 6755 if (NumRegs != 1) { 6756 TargetRegisterClass::iterator I = RC->begin(); 6757 for (; *I != AssignedReg; ++I) 6758 assert(I != RC->end() && "Didn't find reg!"); 6759 6760 // Already added the first reg. 6761 --NumRegs; ++I; 6762 for (; NumRegs; --NumRegs, ++I) { 6763 assert(I != RC->end() && "Ran out of registers to allocate!"); 6764 Regs.push_back(*I); 6765 } 6766 } 6767 6768 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6769 return; 6770 } 6771 6772 // Otherwise, if this was a reference to an LLVM register class, create vregs 6773 // for this reference. 6774 if (const TargetRegisterClass *RC = PhysReg.second) { 6775 RegVT = *RC->vt_begin(); 6776 if (OpInfo.ConstraintVT == MVT::Other) 6777 ValueVT = RegVT; 6778 6779 // Create the appropriate number of virtual registers. 6780 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6781 for (; NumRegs; --NumRegs) 6782 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6783 6784 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6785 return; 6786 } 6787 6788 // Otherwise, we couldn't allocate enough registers for this. 6789 } 6790 6791 static unsigned 6792 findMatchingInlineAsmOperand(unsigned OperandNo, 6793 const std::vector<SDValue> &AsmNodeOperands) { 6794 // Scan until we find the definition we already emitted of this operand. 6795 unsigned CurOp = InlineAsm::Op_FirstOperand; 6796 for (; OperandNo; --OperandNo) { 6797 // Advance to the next operand. 6798 unsigned OpFlag = 6799 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6800 assert((InlineAsm::isRegDefKind(OpFlag) || 6801 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6802 InlineAsm::isMemKind(OpFlag)) && 6803 "Skipped past definitions?"); 6804 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6805 } 6806 return CurOp; 6807 } 6808 6809 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6810 /// \return true if it has succeeded, false otherwise 6811 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6812 MVT RegVT, SelectionDAG &DAG) { 6813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6814 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6815 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6816 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6817 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6818 else 6819 return false; 6820 } 6821 return true; 6822 } 6823 6824 class ExtraFlags { 6825 unsigned Flags = 0; 6826 6827 public: 6828 explicit ExtraFlags(ImmutableCallSite CS) { 6829 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6830 if (IA->hasSideEffects()) 6831 Flags |= InlineAsm::Extra_HasSideEffects; 6832 if (IA->isAlignStack()) 6833 Flags |= InlineAsm::Extra_IsAlignStack; 6834 if (CS.isConvergent()) 6835 Flags |= InlineAsm::Extra_IsConvergent; 6836 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6837 } 6838 6839 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6840 // Ideally, we would only check against memory constraints. However, the 6841 // meaning of an Other constraint can be target-specific and we can't easily 6842 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6843 // for Other constraints as well. 6844 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6845 OpInfo.ConstraintType == TargetLowering::C_Other) { 6846 if (OpInfo.Type == InlineAsm::isInput) 6847 Flags |= InlineAsm::Extra_MayLoad; 6848 else if (OpInfo.Type == InlineAsm::isOutput) 6849 Flags |= InlineAsm::Extra_MayStore; 6850 else if (OpInfo.Type == InlineAsm::isClobber) 6851 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6852 } 6853 } 6854 6855 unsigned get() const { return Flags; } 6856 }; 6857 6858 /// visitInlineAsm - Handle a call to an InlineAsm object. 6859 /// 6860 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6861 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6862 6863 /// ConstraintOperands - Information about all of the constraints. 6864 SDISelAsmOperandInfoVector ConstraintOperands; 6865 6866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6867 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6868 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6869 6870 bool hasMemory = false; 6871 6872 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6873 ExtraFlags ExtraInfo(CS); 6874 6875 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6876 unsigned ResNo = 0; // ResNo - The result number of the next output. 6877 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6878 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6879 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6880 6881 MVT OpVT = MVT::Other; 6882 6883 // Compute the value type for each operand. 6884 if (OpInfo.Type == InlineAsm::isInput || 6885 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6886 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6887 6888 // Process the call argument. BasicBlocks are labels, currently appearing 6889 // only in asm's. 6890 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6891 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6892 } else { 6893 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6894 } 6895 6896 OpVT = 6897 OpInfo 6898 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6899 .getSimpleVT(); 6900 } 6901 6902 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6903 // The return value of the call is this value. As such, there is no 6904 // corresponding argument. 6905 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6906 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6907 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6908 STy->getElementType(ResNo)); 6909 } else { 6910 assert(ResNo == 0 && "Asm only has one result!"); 6911 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6912 } 6913 ++ResNo; 6914 } 6915 6916 OpInfo.ConstraintVT = OpVT; 6917 6918 if (!hasMemory) 6919 hasMemory = OpInfo.hasMemory(TLI); 6920 6921 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6922 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6923 auto TargetConstraint = TargetConstraints[i]; 6924 6925 // Compute the constraint code and ConstraintType to use. 6926 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6927 6928 ExtraInfo.update(TargetConstraint); 6929 } 6930 6931 SDValue Chain, Flag; 6932 6933 // We won't need to flush pending loads if this asm doesn't touch 6934 // memory and is nonvolatile. 6935 if (hasMemory || IA->hasSideEffects()) 6936 Chain = getRoot(); 6937 else 6938 Chain = DAG.getRoot(); 6939 6940 // Second pass over the constraints: compute which constraint option to use 6941 // and assign registers to constraints that want a specific physreg. 6942 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6943 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6944 6945 // If this is an output operand with a matching input operand, look up the 6946 // matching input. If their types mismatch, e.g. one is an integer, the 6947 // other is floating point, or their sizes are different, flag it as an 6948 // error. 6949 if (OpInfo.hasMatchingInput()) { 6950 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6951 patchMatchingInput(OpInfo, Input, DAG); 6952 } 6953 6954 // Compute the constraint code and ConstraintType to use. 6955 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6956 6957 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6958 OpInfo.Type == InlineAsm::isClobber) 6959 continue; 6960 6961 // If this is a memory input, and if the operand is not indirect, do what we 6962 // need to to provide an address for the memory input. 6963 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6964 !OpInfo.isIndirect) { 6965 assert((OpInfo.isMultipleAlternative || 6966 (OpInfo.Type == InlineAsm::isInput)) && 6967 "Can only indirectify direct input operands!"); 6968 6969 // Memory operands really want the address of the value. 6970 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 6971 6972 // There is no longer a Value* corresponding to this operand. 6973 OpInfo.CallOperandVal = nullptr; 6974 6975 // It is now an indirect operand. 6976 OpInfo.isIndirect = true; 6977 } 6978 6979 // If this constraint is for a specific register, allocate it before 6980 // anything else. 6981 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6982 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6983 } 6984 6985 // Third pass - Loop over all of the operands, assigning virtual or physregs 6986 // to register class operands. 6987 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6988 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6989 6990 // C_Register operands have already been allocated, Other/Memory don't need 6991 // to be. 6992 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6993 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6994 } 6995 6996 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6997 std::vector<SDValue> AsmNodeOperands; 6998 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6999 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7000 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7001 7002 // If we have a !srcloc metadata node associated with it, we want to attach 7003 // this to the ultimately generated inline asm machineinstr. To do this, we 7004 // pass in the third operand as this (potentially null) inline asm MDNode. 7005 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7006 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7007 7008 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7009 // bits as operand 3. 7010 AsmNodeOperands.push_back(DAG.getTargetConstant( 7011 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7012 7013 // Loop over all of the inputs, copying the operand values into the 7014 // appropriate registers and processing the output regs. 7015 RegsForValue RetValRegs; 7016 7017 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7018 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 7019 7020 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7021 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7022 7023 switch (OpInfo.Type) { 7024 case InlineAsm::isOutput: { 7025 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7026 OpInfo.ConstraintType != TargetLowering::C_Register) { 7027 // Memory output, or 'other' output (e.g. 'X' constraint). 7028 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7029 7030 unsigned ConstraintID = 7031 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7032 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7033 "Failed to convert memory constraint code to constraint id."); 7034 7035 // Add information to the INLINEASM node to know about this output. 7036 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7037 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7038 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7039 MVT::i32)); 7040 AsmNodeOperands.push_back(OpInfo.CallOperand); 7041 break; 7042 } 7043 7044 // Otherwise, this is a register or register class output. 7045 7046 // Copy the output from the appropriate register. Find a register that 7047 // we can use. 7048 if (OpInfo.AssignedRegs.Regs.empty()) { 7049 emitInlineAsmError( 7050 CS, "couldn't allocate output register for constraint '" + 7051 Twine(OpInfo.ConstraintCode) + "'"); 7052 return; 7053 } 7054 7055 // If this is an indirect operand, store through the pointer after the 7056 // asm. 7057 if (OpInfo.isIndirect) { 7058 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7059 OpInfo.CallOperandVal)); 7060 } else { 7061 // This is the result value of the call. 7062 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7063 // Concatenate this output onto the outputs list. 7064 RetValRegs.append(OpInfo.AssignedRegs); 7065 } 7066 7067 // Add information to the INLINEASM node to know that this register is 7068 // set. 7069 OpInfo.AssignedRegs 7070 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7071 ? InlineAsm::Kind_RegDefEarlyClobber 7072 : InlineAsm::Kind_RegDef, 7073 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7074 break; 7075 } 7076 case InlineAsm::isInput: { 7077 SDValue InOperandVal = OpInfo.CallOperand; 7078 7079 if (OpInfo.isMatchingInputConstraint()) { 7080 // If this is required to match an output register we have already set, 7081 // just use its register. 7082 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7083 AsmNodeOperands); 7084 unsigned OpFlag = 7085 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7086 if (InlineAsm::isRegDefKind(OpFlag) || 7087 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7088 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7089 if (OpInfo.isIndirect) { 7090 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7091 emitInlineAsmError(CS, "inline asm not supported yet:" 7092 " don't know how to handle tied " 7093 "indirect register inputs"); 7094 return; 7095 } 7096 7097 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7098 SmallVector<unsigned, 4> Regs; 7099 7100 if (!createVirtualRegs(Regs, 7101 InlineAsm::getNumOperandRegisters(OpFlag), 7102 RegVT, DAG)) { 7103 emitInlineAsmError(CS, "inline asm error: This value type register " 7104 "class is not natively supported!"); 7105 return; 7106 } 7107 7108 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7109 7110 SDLoc dl = getCurSDLoc(); 7111 // Use the produced MatchedRegs object to 7112 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7113 Chain, &Flag, CS.getInstruction()); 7114 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7115 true, OpInfo.getMatchedOperand(), dl, 7116 DAG, AsmNodeOperands); 7117 break; 7118 } 7119 7120 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7121 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7122 "Unexpected number of operands"); 7123 // Add information to the INLINEASM node to know about this input. 7124 // See InlineAsm.h isUseOperandTiedToDef. 7125 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7126 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7127 OpInfo.getMatchedOperand()); 7128 AsmNodeOperands.push_back(DAG.getTargetConstant( 7129 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7130 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7131 break; 7132 } 7133 7134 // Treat indirect 'X' constraint as memory. 7135 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7136 OpInfo.isIndirect) 7137 OpInfo.ConstraintType = TargetLowering::C_Memory; 7138 7139 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7140 std::vector<SDValue> Ops; 7141 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7142 Ops, DAG); 7143 if (Ops.empty()) { 7144 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7145 Twine(OpInfo.ConstraintCode) + "'"); 7146 return; 7147 } 7148 7149 // Add information to the INLINEASM node to know about this input. 7150 unsigned ResOpType = 7151 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7152 AsmNodeOperands.push_back(DAG.getTargetConstant( 7153 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7154 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7155 break; 7156 } 7157 7158 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7159 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7160 assert(InOperandVal.getValueType() == 7161 TLI.getPointerTy(DAG.getDataLayout()) && 7162 "Memory operands expect pointer values"); 7163 7164 unsigned ConstraintID = 7165 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7166 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7167 "Failed to convert memory constraint code to constraint id."); 7168 7169 // Add information to the INLINEASM node to know about this input. 7170 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7171 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7172 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7173 getCurSDLoc(), 7174 MVT::i32)); 7175 AsmNodeOperands.push_back(InOperandVal); 7176 break; 7177 } 7178 7179 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7180 OpInfo.ConstraintType == TargetLowering::C_Register) && 7181 "Unknown constraint type!"); 7182 7183 // TODO: Support this. 7184 if (OpInfo.isIndirect) { 7185 emitInlineAsmError( 7186 CS, "Don't know how to handle indirect register inputs yet " 7187 "for constraint '" + 7188 Twine(OpInfo.ConstraintCode) + "'"); 7189 return; 7190 } 7191 7192 // Copy the input into the appropriate registers. 7193 if (OpInfo.AssignedRegs.Regs.empty()) { 7194 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7195 Twine(OpInfo.ConstraintCode) + "'"); 7196 return; 7197 } 7198 7199 SDLoc dl = getCurSDLoc(); 7200 7201 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7202 Chain, &Flag, CS.getInstruction()); 7203 7204 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7205 dl, DAG, AsmNodeOperands); 7206 break; 7207 } 7208 case InlineAsm::isClobber: { 7209 // Add the clobbered value to the operand list, so that the register 7210 // allocator is aware that the physreg got clobbered. 7211 if (!OpInfo.AssignedRegs.Regs.empty()) 7212 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7213 false, 0, getCurSDLoc(), DAG, 7214 AsmNodeOperands); 7215 break; 7216 } 7217 } 7218 } 7219 7220 // Finish up input operands. Set the input chain and add the flag last. 7221 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7222 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7223 7224 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7225 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7226 Flag = Chain.getValue(1); 7227 7228 // If this asm returns a register value, copy the result from that register 7229 // and set it as the value of the call. 7230 if (!RetValRegs.Regs.empty()) { 7231 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7232 Chain, &Flag, CS.getInstruction()); 7233 7234 // FIXME: Why don't we do this for inline asms with MRVs? 7235 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7236 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7237 7238 // If any of the results of the inline asm is a vector, it may have the 7239 // wrong width/num elts. This can happen for register classes that can 7240 // contain multiple different value types. The preg or vreg allocated may 7241 // not have the same VT as was expected. Convert it to the right type 7242 // with bit_convert. 7243 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7244 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7245 ResultType, Val); 7246 7247 } else if (ResultType != Val.getValueType() && 7248 ResultType.isInteger() && Val.getValueType().isInteger()) { 7249 // If a result value was tied to an input value, the computed result may 7250 // have a wider width than the expected result. Extract the relevant 7251 // portion. 7252 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7253 } 7254 7255 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7256 } 7257 7258 setValue(CS.getInstruction(), Val); 7259 // Don't need to use this as a chain in this case. 7260 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7261 return; 7262 } 7263 7264 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7265 7266 // Process indirect outputs, first output all of the flagged copies out of 7267 // physregs. 7268 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7269 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7270 const Value *Ptr = IndirectStoresToEmit[i].second; 7271 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7272 Chain, &Flag, IA); 7273 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7274 } 7275 7276 // Emit the non-flagged stores from the physregs. 7277 SmallVector<SDValue, 8> OutChains; 7278 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7279 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7280 getValue(StoresToEmit[i].second), 7281 MachinePointerInfo(StoresToEmit[i].second)); 7282 OutChains.push_back(Val); 7283 } 7284 7285 if (!OutChains.empty()) 7286 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7287 7288 DAG.setRoot(Chain); 7289 } 7290 7291 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7292 const Twine &Message) { 7293 LLVMContext &Ctx = *DAG.getContext(); 7294 Ctx.emitError(CS.getInstruction(), Message); 7295 7296 // Make sure we leave the DAG in a valid state 7297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7298 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7299 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7300 } 7301 7302 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7303 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7304 MVT::Other, getRoot(), 7305 getValue(I.getArgOperand(0)), 7306 DAG.getSrcValue(I.getArgOperand(0)))); 7307 } 7308 7309 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7311 const DataLayout &DL = DAG.getDataLayout(); 7312 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7313 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7314 DAG.getSrcValue(I.getOperand(0)), 7315 DL.getABITypeAlignment(I.getType())); 7316 setValue(&I, V); 7317 DAG.setRoot(V.getValue(1)); 7318 } 7319 7320 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7321 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7322 MVT::Other, getRoot(), 7323 getValue(I.getArgOperand(0)), 7324 DAG.getSrcValue(I.getArgOperand(0)))); 7325 } 7326 7327 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7328 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7329 MVT::Other, getRoot(), 7330 getValue(I.getArgOperand(0)), 7331 getValue(I.getArgOperand(1)), 7332 DAG.getSrcValue(I.getArgOperand(0)), 7333 DAG.getSrcValue(I.getArgOperand(1)))); 7334 } 7335 7336 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7337 const Instruction &I, 7338 SDValue Op) { 7339 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7340 if (!Range) 7341 return Op; 7342 7343 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7344 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7345 return Op; 7346 7347 APInt Lo = CR.getUnsignedMin(); 7348 if (!Lo.isMinValue()) 7349 return Op; 7350 7351 APInt Hi = CR.getUnsignedMax(); 7352 unsigned Bits = Hi.getActiveBits(); 7353 7354 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7355 7356 SDLoc SL = getCurSDLoc(); 7357 7358 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7359 DAG.getValueType(SmallVT)); 7360 unsigned NumVals = Op.getNode()->getNumValues(); 7361 if (NumVals == 1) 7362 return ZExt; 7363 7364 SmallVector<SDValue, 4> Ops; 7365 7366 Ops.push_back(ZExt); 7367 for (unsigned I = 1; I != NumVals; ++I) 7368 Ops.push_back(Op.getValue(I)); 7369 7370 return DAG.getMergeValues(Ops, SL); 7371 } 7372 7373 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7374 /// the call being lowered. 7375 /// 7376 /// This is a helper for lowering intrinsics that follow a target calling 7377 /// convention or require stack pointer adjustment. Only a subset of the 7378 /// intrinsic's operands need to participate in the calling convention. 7379 void SelectionDAGBuilder::populateCallLoweringInfo( 7380 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7381 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7382 bool IsPatchPoint) { 7383 TargetLowering::ArgListTy Args; 7384 Args.reserve(NumArgs); 7385 7386 // Populate the argument list. 7387 // Attributes for args start at offset 1, after the return attribute. 7388 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7389 ArgI != ArgE; ++ArgI) { 7390 const Value *V = CS->getOperand(ArgI); 7391 7392 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7393 7394 TargetLowering::ArgListEntry Entry; 7395 Entry.Node = getValue(V); 7396 Entry.Ty = V->getType(); 7397 Entry.setAttributes(&CS, AttrI); 7398 Args.push_back(Entry); 7399 } 7400 7401 CLI.setDebugLoc(getCurSDLoc()) 7402 .setChain(getRoot()) 7403 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7404 .setDiscardResult(CS->use_empty()) 7405 .setIsPatchPoint(IsPatchPoint); 7406 } 7407 7408 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7409 /// or patchpoint target node's operand list. 7410 /// 7411 /// Constants are converted to TargetConstants purely as an optimization to 7412 /// avoid constant materialization and register allocation. 7413 /// 7414 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7415 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7416 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7417 /// address materialization and register allocation, but may also be required 7418 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7419 /// alloca in the entry block, then the runtime may assume that the alloca's 7420 /// StackMap location can be read immediately after compilation and that the 7421 /// location is valid at any point during execution (this is similar to the 7422 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7423 /// only available in a register, then the runtime would need to trap when 7424 /// execution reaches the StackMap in order to read the alloca's location. 7425 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7426 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7427 SelectionDAGBuilder &Builder) { 7428 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7429 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7430 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7431 Ops.push_back( 7432 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7433 Ops.push_back( 7434 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7435 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7436 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7437 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7438 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7439 } else 7440 Ops.push_back(OpVal); 7441 } 7442 } 7443 7444 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7445 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7446 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7447 // [live variables...]) 7448 7449 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7450 7451 SDValue Chain, InFlag, Callee, NullPtr; 7452 SmallVector<SDValue, 32> Ops; 7453 7454 SDLoc DL = getCurSDLoc(); 7455 Callee = getValue(CI.getCalledValue()); 7456 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7457 7458 // The stackmap intrinsic only records the live variables (the arguemnts 7459 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7460 // intrinsic, this won't be lowered to a function call. This means we don't 7461 // have to worry about calling conventions and target specific lowering code. 7462 // Instead we perform the call lowering right here. 7463 // 7464 // chain, flag = CALLSEQ_START(chain, 0) 7465 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7466 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7467 // 7468 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7469 InFlag = Chain.getValue(1); 7470 7471 // Add the <id> and <numBytes> constants. 7472 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7473 Ops.push_back(DAG.getTargetConstant( 7474 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7475 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7476 Ops.push_back(DAG.getTargetConstant( 7477 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7478 MVT::i32)); 7479 7480 // Push live variables for the stack map. 7481 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7482 7483 // We are not pushing any register mask info here on the operands list, 7484 // because the stackmap doesn't clobber anything. 7485 7486 // Push the chain and the glue flag. 7487 Ops.push_back(Chain); 7488 Ops.push_back(InFlag); 7489 7490 // Create the STACKMAP node. 7491 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7492 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7493 Chain = SDValue(SM, 0); 7494 InFlag = Chain.getValue(1); 7495 7496 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7497 7498 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7499 7500 // Set the root to the target-lowered call chain. 7501 DAG.setRoot(Chain); 7502 7503 // Inform the Frame Information that we have a stackmap in this function. 7504 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7505 } 7506 7507 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7508 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7509 const BasicBlock *EHPadBB) { 7510 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7511 // i32 <numBytes>, 7512 // i8* <target>, 7513 // i32 <numArgs>, 7514 // [Args...], 7515 // [live variables...]) 7516 7517 CallingConv::ID CC = CS.getCallingConv(); 7518 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7519 bool HasDef = !CS->getType()->isVoidTy(); 7520 SDLoc dl = getCurSDLoc(); 7521 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7522 7523 // Handle immediate and symbolic callees. 7524 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7525 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7526 /*isTarget=*/true); 7527 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7528 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7529 SDLoc(SymbolicCallee), 7530 SymbolicCallee->getValueType(0)); 7531 7532 // Get the real number of arguments participating in the call <numArgs> 7533 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7534 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7535 7536 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7537 // Intrinsics include all meta-operands up to but not including CC. 7538 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7539 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7540 "Not enough arguments provided to the patchpoint intrinsic"); 7541 7542 // For AnyRegCC the arguments are lowered later on manually. 7543 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7544 Type *ReturnTy = 7545 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7546 7547 TargetLowering::CallLoweringInfo CLI(DAG); 7548 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7549 true); 7550 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7551 7552 SDNode *CallEnd = Result.second.getNode(); 7553 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7554 CallEnd = CallEnd->getOperand(0).getNode(); 7555 7556 /// Get a call instruction from the call sequence chain. 7557 /// Tail calls are not allowed. 7558 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7559 "Expected a callseq node."); 7560 SDNode *Call = CallEnd->getOperand(0).getNode(); 7561 bool HasGlue = Call->getGluedNode(); 7562 7563 // Replace the target specific call node with the patchable intrinsic. 7564 SmallVector<SDValue, 8> Ops; 7565 7566 // Add the <id> and <numBytes> constants. 7567 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7568 Ops.push_back(DAG.getTargetConstant( 7569 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7570 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7571 Ops.push_back(DAG.getTargetConstant( 7572 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7573 MVT::i32)); 7574 7575 // Add the callee. 7576 Ops.push_back(Callee); 7577 7578 // Adjust <numArgs> to account for any arguments that have been passed on the 7579 // stack instead. 7580 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7581 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7582 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7583 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7584 7585 // Add the calling convention 7586 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7587 7588 // Add the arguments we omitted previously. The register allocator should 7589 // place these in any free register. 7590 if (IsAnyRegCC) 7591 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7592 Ops.push_back(getValue(CS.getArgument(i))); 7593 7594 // Push the arguments from the call instruction up to the register mask. 7595 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7596 Ops.append(Call->op_begin() + 2, e); 7597 7598 // Push live variables for the stack map. 7599 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7600 7601 // Push the register mask info. 7602 if (HasGlue) 7603 Ops.push_back(*(Call->op_end()-2)); 7604 else 7605 Ops.push_back(*(Call->op_end()-1)); 7606 7607 // Push the chain (this is originally the first operand of the call, but 7608 // becomes now the last or second to last operand). 7609 Ops.push_back(*(Call->op_begin())); 7610 7611 // Push the glue flag (last operand). 7612 if (HasGlue) 7613 Ops.push_back(*(Call->op_end()-1)); 7614 7615 SDVTList NodeTys; 7616 if (IsAnyRegCC && HasDef) { 7617 // Create the return types based on the intrinsic definition 7618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7619 SmallVector<EVT, 3> ValueVTs; 7620 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7621 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7622 7623 // There is always a chain and a glue type at the end 7624 ValueVTs.push_back(MVT::Other); 7625 ValueVTs.push_back(MVT::Glue); 7626 NodeTys = DAG.getVTList(ValueVTs); 7627 } else 7628 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7629 7630 // Replace the target specific call node with a PATCHPOINT node. 7631 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7632 dl, NodeTys, Ops); 7633 7634 // Update the NodeMap. 7635 if (HasDef) { 7636 if (IsAnyRegCC) 7637 setValue(CS.getInstruction(), SDValue(MN, 0)); 7638 else 7639 setValue(CS.getInstruction(), Result.first); 7640 } 7641 7642 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7643 // call sequence. Furthermore the location of the chain and glue can change 7644 // when the AnyReg calling convention is used and the intrinsic returns a 7645 // value. 7646 if (IsAnyRegCC && HasDef) { 7647 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7648 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7649 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7650 } else 7651 DAG.ReplaceAllUsesWith(Call, MN); 7652 DAG.DeleteNode(Call); 7653 7654 // Inform the Frame Information that we have a patchpoint in this function. 7655 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7656 } 7657 7658 /// Returns an AttributeSet representing the attributes applied to the return 7659 /// value of the given call. 7660 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7661 SmallVector<Attribute::AttrKind, 2> Attrs; 7662 if (CLI.RetSExt) 7663 Attrs.push_back(Attribute::SExt); 7664 if (CLI.RetZExt) 7665 Attrs.push_back(Attribute::ZExt); 7666 if (CLI.IsInReg) 7667 Attrs.push_back(Attribute::InReg); 7668 7669 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7670 Attrs); 7671 } 7672 7673 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7674 /// implementation, which just calls LowerCall. 7675 /// FIXME: When all targets are 7676 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7677 std::pair<SDValue, SDValue> 7678 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7679 // Handle the incoming return values from the call. 7680 CLI.Ins.clear(); 7681 Type *OrigRetTy = CLI.RetTy; 7682 SmallVector<EVT, 4> RetTys; 7683 SmallVector<uint64_t, 4> Offsets; 7684 auto &DL = CLI.DAG.getDataLayout(); 7685 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7686 7687 SmallVector<ISD::OutputArg, 4> Outs; 7688 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7689 7690 bool CanLowerReturn = 7691 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7692 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7693 7694 SDValue DemoteStackSlot; 7695 int DemoteStackIdx = -100; 7696 if (!CanLowerReturn) { 7697 // FIXME: equivalent assert? 7698 // assert(!CS.hasInAllocaArgument() && 7699 // "sret demotion is incompatible with inalloca"); 7700 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7701 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7702 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7703 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7704 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7705 7706 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7707 ArgListEntry Entry; 7708 Entry.Node = DemoteStackSlot; 7709 Entry.Ty = StackSlotPtrType; 7710 Entry.isSExt = false; 7711 Entry.isZExt = false; 7712 Entry.isInReg = false; 7713 Entry.isSRet = true; 7714 Entry.isNest = false; 7715 Entry.isByVal = false; 7716 Entry.isReturned = false; 7717 Entry.isSwiftSelf = false; 7718 Entry.isSwiftError = false; 7719 Entry.Alignment = Align; 7720 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7721 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7722 7723 // sret demotion isn't compatible with tail-calls, since the sret argument 7724 // points into the callers stack frame. 7725 CLI.IsTailCall = false; 7726 } else { 7727 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7728 EVT VT = RetTys[I]; 7729 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7730 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7731 for (unsigned i = 0; i != NumRegs; ++i) { 7732 ISD::InputArg MyFlags; 7733 MyFlags.VT = RegisterVT; 7734 MyFlags.ArgVT = VT; 7735 MyFlags.Used = CLI.IsReturnValueUsed; 7736 if (CLI.RetSExt) 7737 MyFlags.Flags.setSExt(); 7738 if (CLI.RetZExt) 7739 MyFlags.Flags.setZExt(); 7740 if (CLI.IsInReg) 7741 MyFlags.Flags.setInReg(); 7742 CLI.Ins.push_back(MyFlags); 7743 } 7744 } 7745 } 7746 7747 // We push in swifterror return as the last element of CLI.Ins. 7748 ArgListTy &Args = CLI.getArgs(); 7749 if (supportSwiftError()) { 7750 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7751 if (Args[i].isSwiftError) { 7752 ISD::InputArg MyFlags; 7753 MyFlags.VT = getPointerTy(DL); 7754 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7755 MyFlags.Flags.setSwiftError(); 7756 CLI.Ins.push_back(MyFlags); 7757 } 7758 } 7759 } 7760 7761 // Handle all of the outgoing arguments. 7762 CLI.Outs.clear(); 7763 CLI.OutVals.clear(); 7764 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7765 SmallVector<EVT, 4> ValueVTs; 7766 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7767 Type *FinalType = Args[i].Ty; 7768 if (Args[i].isByVal) 7769 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7770 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7771 FinalType, CLI.CallConv, CLI.IsVarArg); 7772 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7773 ++Value) { 7774 EVT VT = ValueVTs[Value]; 7775 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7776 SDValue Op = SDValue(Args[i].Node.getNode(), 7777 Args[i].Node.getResNo() + Value); 7778 ISD::ArgFlagsTy Flags; 7779 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7780 7781 if (Args[i].isZExt) 7782 Flags.setZExt(); 7783 if (Args[i].isSExt) 7784 Flags.setSExt(); 7785 if (Args[i].isInReg) { 7786 // If we are using vectorcall calling convention, a structure that is 7787 // passed InReg - is surely an HVA 7788 if (CLI.CallConv == CallingConv::X86_VectorCall && 7789 isa<StructType>(FinalType)) { 7790 // The first value of a structure is marked 7791 if (0 == Value) 7792 Flags.setHvaStart(); 7793 Flags.setHva(); 7794 } 7795 // Set InReg Flag 7796 Flags.setInReg(); 7797 } 7798 if (Args[i].isSRet) 7799 Flags.setSRet(); 7800 if (Args[i].isSwiftSelf) 7801 Flags.setSwiftSelf(); 7802 if (Args[i].isSwiftError) 7803 Flags.setSwiftError(); 7804 if (Args[i].isByVal) 7805 Flags.setByVal(); 7806 if (Args[i].isInAlloca) { 7807 Flags.setInAlloca(); 7808 // Set the byval flag for CCAssignFn callbacks that don't know about 7809 // inalloca. This way we can know how many bytes we should've allocated 7810 // and how many bytes a callee cleanup function will pop. If we port 7811 // inalloca to more targets, we'll have to add custom inalloca handling 7812 // in the various CC lowering callbacks. 7813 Flags.setByVal(); 7814 } 7815 if (Args[i].isByVal || Args[i].isInAlloca) { 7816 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7817 Type *ElementTy = Ty->getElementType(); 7818 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7819 // For ByVal, alignment should come from FE. BE will guess if this 7820 // info is not there but there are cases it cannot get right. 7821 unsigned FrameAlign; 7822 if (Args[i].Alignment) 7823 FrameAlign = Args[i].Alignment; 7824 else 7825 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7826 Flags.setByValAlign(FrameAlign); 7827 } 7828 if (Args[i].isNest) 7829 Flags.setNest(); 7830 if (NeedsRegBlock) 7831 Flags.setInConsecutiveRegs(); 7832 Flags.setOrigAlign(OriginalAlignment); 7833 7834 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7835 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7836 SmallVector<SDValue, 4> Parts(NumParts); 7837 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7838 7839 if (Args[i].isSExt) 7840 ExtendKind = ISD::SIGN_EXTEND; 7841 else if (Args[i].isZExt) 7842 ExtendKind = ISD::ZERO_EXTEND; 7843 7844 // Conservatively only handle 'returned' on non-vectors for now 7845 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7846 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7847 "unexpected use of 'returned'"); 7848 // Before passing 'returned' to the target lowering code, ensure that 7849 // either the register MVT and the actual EVT are the same size or that 7850 // the return value and argument are extended in the same way; in these 7851 // cases it's safe to pass the argument register value unchanged as the 7852 // return register value (although it's at the target's option whether 7853 // to do so) 7854 // TODO: allow code generation to take advantage of partially preserved 7855 // registers rather than clobbering the entire register when the 7856 // parameter extension method is not compatible with the return 7857 // extension method 7858 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7859 (ExtendKind != ISD::ANY_EXTEND && 7860 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7861 Flags.setReturned(); 7862 } 7863 7864 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7865 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7866 7867 for (unsigned j = 0; j != NumParts; ++j) { 7868 // if it isn't first piece, alignment must be 1 7869 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7870 i < CLI.NumFixedArgs, 7871 i, j*Parts[j].getValueType().getStoreSize()); 7872 if (NumParts > 1 && j == 0) 7873 MyFlags.Flags.setSplit(); 7874 else if (j != 0) { 7875 MyFlags.Flags.setOrigAlign(1); 7876 if (j == NumParts - 1) 7877 MyFlags.Flags.setSplitEnd(); 7878 } 7879 7880 CLI.Outs.push_back(MyFlags); 7881 CLI.OutVals.push_back(Parts[j]); 7882 } 7883 7884 if (NeedsRegBlock && Value == NumValues - 1) 7885 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7886 } 7887 } 7888 7889 SmallVector<SDValue, 4> InVals; 7890 CLI.Chain = LowerCall(CLI, InVals); 7891 7892 // Update CLI.InVals to use outside of this function. 7893 CLI.InVals = InVals; 7894 7895 // Verify that the target's LowerCall behaved as expected. 7896 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7897 "LowerCall didn't return a valid chain!"); 7898 assert((!CLI.IsTailCall || InVals.empty()) && 7899 "LowerCall emitted a return value for a tail call!"); 7900 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7901 "LowerCall didn't emit the correct number of values!"); 7902 7903 // For a tail call, the return value is merely live-out and there aren't 7904 // any nodes in the DAG representing it. Return a special value to 7905 // indicate that a tail call has been emitted and no more Instructions 7906 // should be processed in the current block. 7907 if (CLI.IsTailCall) { 7908 CLI.DAG.setRoot(CLI.Chain); 7909 return std::make_pair(SDValue(), SDValue()); 7910 } 7911 7912 #ifndef NDEBUG 7913 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7914 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7915 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7916 "LowerCall emitted a value with the wrong type!"); 7917 } 7918 #endif 7919 7920 SmallVector<SDValue, 4> ReturnValues; 7921 if (!CanLowerReturn) { 7922 // The instruction result is the result of loading from the 7923 // hidden sret parameter. 7924 SmallVector<EVT, 1> PVTs; 7925 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7926 7927 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7928 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7929 EVT PtrVT = PVTs[0]; 7930 7931 unsigned NumValues = RetTys.size(); 7932 ReturnValues.resize(NumValues); 7933 SmallVector<SDValue, 4> Chains(NumValues); 7934 7935 // An aggregate return value cannot wrap around the address space, so 7936 // offsets to its parts don't wrap either. 7937 SDNodeFlags Flags; 7938 Flags.setNoUnsignedWrap(true); 7939 7940 for (unsigned i = 0; i < NumValues; ++i) { 7941 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7942 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7943 PtrVT), &Flags); 7944 SDValue L = CLI.DAG.getLoad( 7945 RetTys[i], CLI.DL, CLI.Chain, Add, 7946 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7947 DemoteStackIdx, Offsets[i]), 7948 /* Alignment = */ 1); 7949 ReturnValues[i] = L; 7950 Chains[i] = L.getValue(1); 7951 } 7952 7953 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7954 } else { 7955 // Collect the legal value parts into potentially illegal values 7956 // that correspond to the original function's return values. 7957 Optional<ISD::NodeType> AssertOp; 7958 if (CLI.RetSExt) 7959 AssertOp = ISD::AssertSext; 7960 else if (CLI.RetZExt) 7961 AssertOp = ISD::AssertZext; 7962 unsigned CurReg = 0; 7963 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7964 EVT VT = RetTys[I]; 7965 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7966 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7967 7968 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7969 NumRegs, RegisterVT, VT, nullptr, 7970 AssertOp)); 7971 CurReg += NumRegs; 7972 } 7973 7974 // For a function returning void, there is no return value. We can't create 7975 // such a node, so we just return a null return value in that case. In 7976 // that case, nothing will actually look at the value. 7977 if (ReturnValues.empty()) 7978 return std::make_pair(SDValue(), CLI.Chain); 7979 } 7980 7981 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7982 CLI.DAG.getVTList(RetTys), ReturnValues); 7983 return std::make_pair(Res, CLI.Chain); 7984 } 7985 7986 void TargetLowering::LowerOperationWrapper(SDNode *N, 7987 SmallVectorImpl<SDValue> &Results, 7988 SelectionDAG &DAG) const { 7989 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7990 Results.push_back(Res); 7991 } 7992 7993 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7994 llvm_unreachable("LowerOperation not implemented for this target!"); 7995 } 7996 7997 void 7998 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7999 SDValue Op = getNonRegisterValue(V); 8000 assert((Op.getOpcode() != ISD::CopyFromReg || 8001 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8002 "Copy from a reg to the same reg!"); 8003 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8004 8005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8006 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8007 V->getType()); 8008 SDValue Chain = DAG.getEntryNode(); 8009 8010 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8011 FuncInfo.PreferredExtendType.end()) 8012 ? ISD::ANY_EXTEND 8013 : FuncInfo.PreferredExtendType[V]; 8014 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8015 PendingExports.push_back(Chain); 8016 } 8017 8018 #include "llvm/CodeGen/SelectionDAGISel.h" 8019 8020 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8021 /// entry block, return true. This includes arguments used by switches, since 8022 /// the switch may expand into multiple basic blocks. 8023 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8024 // With FastISel active, we may be splitting blocks, so force creation 8025 // of virtual registers for all non-dead arguments. 8026 if (FastISel) 8027 return A->use_empty(); 8028 8029 const BasicBlock &Entry = A->getParent()->front(); 8030 for (const User *U : A->users()) 8031 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8032 return false; // Use not in entry block. 8033 8034 return true; 8035 } 8036 8037 void SelectionDAGISel::LowerArguments(const Function &F) { 8038 SelectionDAG &DAG = SDB->DAG; 8039 SDLoc dl = SDB->getCurSDLoc(); 8040 const DataLayout &DL = DAG.getDataLayout(); 8041 SmallVector<ISD::InputArg, 16> Ins; 8042 8043 if (!FuncInfo->CanLowerReturn) { 8044 // Put in an sret pointer parameter before all the other parameters. 8045 SmallVector<EVT, 1> ValueVTs; 8046 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8047 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8048 8049 // NOTE: Assuming that a pointer will never break down to more than one VT 8050 // or one register. 8051 ISD::ArgFlagsTy Flags; 8052 Flags.setSRet(); 8053 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8054 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8055 ISD::InputArg::NoArgIndex, 0); 8056 Ins.push_back(RetArg); 8057 } 8058 8059 // Set up the incoming argument description vector. 8060 unsigned Idx = 1; 8061 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 8062 I != E; ++I, ++Idx) { 8063 SmallVector<EVT, 4> ValueVTs; 8064 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 8065 bool isArgValueUsed = !I->use_empty(); 8066 unsigned PartBase = 0; 8067 Type *FinalType = I->getType(); 8068 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8069 FinalType = cast<PointerType>(FinalType)->getElementType(); 8070 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8071 FinalType, F.getCallingConv(), F.isVarArg()); 8072 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8073 Value != NumValues; ++Value) { 8074 EVT VT = ValueVTs[Value]; 8075 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8076 ISD::ArgFlagsTy Flags; 8077 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8078 8079 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8080 Flags.setZExt(); 8081 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8082 Flags.setSExt(); 8083 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8084 // If we are using vectorcall calling convention, a structure that is 8085 // passed InReg - is surely an HVA 8086 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8087 isa<StructType>(I->getType())) { 8088 // The first value of a structure is marked 8089 if (0 == Value) 8090 Flags.setHvaStart(); 8091 Flags.setHva(); 8092 } 8093 // Set InReg Flag 8094 Flags.setInReg(); 8095 } 8096 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8097 Flags.setSRet(); 8098 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8099 Flags.setSwiftSelf(); 8100 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8101 Flags.setSwiftError(); 8102 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8103 Flags.setByVal(); 8104 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8105 Flags.setInAlloca(); 8106 // Set the byval flag for CCAssignFn callbacks that don't know about 8107 // inalloca. This way we can know how many bytes we should've allocated 8108 // and how many bytes a callee cleanup function will pop. If we port 8109 // inalloca to more targets, we'll have to add custom inalloca handling 8110 // in the various CC lowering callbacks. 8111 Flags.setByVal(); 8112 } 8113 if (F.getCallingConv() == CallingConv::X86_INTR) { 8114 // IA Interrupt passes frame (1st parameter) by value in the stack. 8115 if (Idx == 1) 8116 Flags.setByVal(); 8117 } 8118 if (Flags.isByVal() || Flags.isInAlloca()) { 8119 PointerType *Ty = cast<PointerType>(I->getType()); 8120 Type *ElementTy = Ty->getElementType(); 8121 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8122 // For ByVal, alignment should be passed from FE. BE will guess if 8123 // this info is not there but there are cases it cannot get right. 8124 unsigned FrameAlign; 8125 if (F.getParamAlignment(Idx)) 8126 FrameAlign = F.getParamAlignment(Idx); 8127 else 8128 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8129 Flags.setByValAlign(FrameAlign); 8130 } 8131 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8132 Flags.setNest(); 8133 if (NeedsRegBlock) 8134 Flags.setInConsecutiveRegs(); 8135 Flags.setOrigAlign(OriginalAlignment); 8136 8137 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8138 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8139 for (unsigned i = 0; i != NumRegs; ++i) { 8140 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8141 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8142 if (NumRegs > 1 && i == 0) 8143 MyFlags.Flags.setSplit(); 8144 // if it isn't first piece, alignment must be 1 8145 else if (i > 0) { 8146 MyFlags.Flags.setOrigAlign(1); 8147 if (i == NumRegs - 1) 8148 MyFlags.Flags.setSplitEnd(); 8149 } 8150 Ins.push_back(MyFlags); 8151 } 8152 if (NeedsRegBlock && Value == NumValues - 1) 8153 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8154 PartBase += VT.getStoreSize(); 8155 } 8156 } 8157 8158 // Call the target to set up the argument values. 8159 SmallVector<SDValue, 8> InVals; 8160 SDValue NewRoot = TLI->LowerFormalArguments( 8161 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8162 8163 // Verify that the target's LowerFormalArguments behaved as expected. 8164 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8165 "LowerFormalArguments didn't return a valid chain!"); 8166 assert(InVals.size() == Ins.size() && 8167 "LowerFormalArguments didn't emit the correct number of values!"); 8168 DEBUG({ 8169 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8170 assert(InVals[i].getNode() && 8171 "LowerFormalArguments emitted a null value!"); 8172 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8173 "LowerFormalArguments emitted a value with the wrong type!"); 8174 } 8175 }); 8176 8177 // Update the DAG with the new chain value resulting from argument lowering. 8178 DAG.setRoot(NewRoot); 8179 8180 // Set up the argument values. 8181 unsigned i = 0; 8182 Idx = 1; 8183 if (!FuncInfo->CanLowerReturn) { 8184 // Create a virtual register for the sret pointer, and put in a copy 8185 // from the sret argument into it. 8186 SmallVector<EVT, 1> ValueVTs; 8187 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8188 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8189 MVT VT = ValueVTs[0].getSimpleVT(); 8190 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8191 Optional<ISD::NodeType> AssertOp = None; 8192 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8193 RegVT, VT, nullptr, AssertOp); 8194 8195 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8196 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8197 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8198 FuncInfo->DemoteRegister = SRetReg; 8199 NewRoot = 8200 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8201 DAG.setRoot(NewRoot); 8202 8203 // i indexes lowered arguments. Bump it past the hidden sret argument. 8204 // Idx indexes LLVM arguments. Don't touch it. 8205 ++i; 8206 } 8207 8208 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 8209 ++I, ++Idx) { 8210 SmallVector<SDValue, 4> ArgValues; 8211 SmallVector<EVT, 4> ValueVTs; 8212 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 8213 unsigned NumValues = ValueVTs.size(); 8214 8215 // If this argument is unused then remember its value. It is used to generate 8216 // debugging information. 8217 bool isSwiftErrorArg = 8218 TLI->supportSwiftError() && 8219 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8220 if (I->use_empty() && NumValues && !isSwiftErrorArg) { 8221 SDB->setUnusedArgValue(&*I, InVals[i]); 8222 8223 // Also remember any frame index for use in FastISel. 8224 if (FrameIndexSDNode *FI = 8225 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8226 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8227 } 8228 8229 for (unsigned Val = 0; Val != NumValues; ++Val) { 8230 EVT VT = ValueVTs[Val]; 8231 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8232 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8233 8234 // Even an apparant 'unused' swifterror argument needs to be returned. So 8235 // we do generate a copy for it that can be used on return from the 8236 // function. 8237 if (!I->use_empty() || isSwiftErrorArg) { 8238 Optional<ISD::NodeType> AssertOp; 8239 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8240 AssertOp = ISD::AssertSext; 8241 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8242 AssertOp = ISD::AssertZext; 8243 8244 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 8245 NumParts, PartVT, VT, 8246 nullptr, AssertOp)); 8247 } 8248 8249 i += NumParts; 8250 } 8251 8252 // We don't need to do anything else for unused arguments. 8253 if (ArgValues.empty()) 8254 continue; 8255 8256 // Note down frame index. 8257 if (FrameIndexSDNode *FI = 8258 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8259 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8260 8261 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8262 SDB->getCurSDLoc()); 8263 8264 SDB->setValue(&*I, Res); 8265 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8266 if (LoadSDNode *LNode = 8267 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8268 if (FrameIndexSDNode *FI = 8269 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8270 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8271 } 8272 8273 // Update the SwiftErrorVRegDefMap. 8274 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8275 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8276 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8277 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8278 FuncInfo->SwiftErrorArg, Reg); 8279 } 8280 8281 // If this argument is live outside of the entry block, insert a copy from 8282 // wherever we got it to the vreg that other BB's will reference it as. 8283 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8284 // If we can, though, try to skip creating an unnecessary vreg. 8285 // FIXME: This isn't very clean... it would be nice to make this more 8286 // general. It's also subtly incompatible with the hacks FastISel 8287 // uses with vregs. 8288 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8289 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8290 FuncInfo->ValueMap[&*I] = Reg; 8291 continue; 8292 } 8293 } 8294 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8295 FuncInfo->InitializeRegForValue(&*I); 8296 SDB->CopyToExportRegsIfNeeded(&*I); 8297 } 8298 } 8299 8300 assert(i == InVals.size() && "Argument register count mismatch!"); 8301 8302 // Finally, if the target has anything special to do, allow it to do so. 8303 EmitFunctionEntryCode(); 8304 } 8305 8306 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8307 /// ensure constants are generated when needed. Remember the virtual registers 8308 /// that need to be added to the Machine PHI nodes as input. We cannot just 8309 /// directly add them, because expansion might result in multiple MBB's for one 8310 /// BB. As such, the start of the BB might correspond to a different MBB than 8311 /// the end. 8312 /// 8313 void 8314 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8315 const TerminatorInst *TI = LLVMBB->getTerminator(); 8316 8317 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8318 8319 // Check PHI nodes in successors that expect a value to be available from this 8320 // block. 8321 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8322 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8323 if (!isa<PHINode>(SuccBB->begin())) continue; 8324 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8325 8326 // If this terminator has multiple identical successors (common for 8327 // switches), only handle each succ once. 8328 if (!SuccsHandled.insert(SuccMBB).second) 8329 continue; 8330 8331 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8332 8333 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8334 // nodes and Machine PHI nodes, but the incoming operands have not been 8335 // emitted yet. 8336 for (BasicBlock::const_iterator I = SuccBB->begin(); 8337 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8338 // Ignore dead phi's. 8339 if (PN->use_empty()) continue; 8340 8341 // Skip empty types 8342 if (PN->getType()->isEmptyTy()) 8343 continue; 8344 8345 unsigned Reg; 8346 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8347 8348 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8349 unsigned &RegOut = ConstantsOut[C]; 8350 if (RegOut == 0) { 8351 RegOut = FuncInfo.CreateRegs(C->getType()); 8352 CopyValueToVirtualRegister(C, RegOut); 8353 } 8354 Reg = RegOut; 8355 } else { 8356 DenseMap<const Value *, unsigned>::iterator I = 8357 FuncInfo.ValueMap.find(PHIOp); 8358 if (I != FuncInfo.ValueMap.end()) 8359 Reg = I->second; 8360 else { 8361 assert(isa<AllocaInst>(PHIOp) && 8362 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8363 "Didn't codegen value into a register!??"); 8364 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8365 CopyValueToVirtualRegister(PHIOp, Reg); 8366 } 8367 } 8368 8369 // Remember that this register needs to added to the machine PHI node as 8370 // the input for this MBB. 8371 SmallVector<EVT, 4> ValueVTs; 8372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8373 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8374 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8375 EVT VT = ValueVTs[vti]; 8376 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8377 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8378 FuncInfo.PHINodesToUpdate.push_back( 8379 std::make_pair(&*MBBI++, Reg + i)); 8380 Reg += NumRegisters; 8381 } 8382 } 8383 } 8384 8385 ConstantsOut.clear(); 8386 } 8387 8388 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8389 /// is 0. 8390 MachineBasicBlock * 8391 SelectionDAGBuilder::StackProtectorDescriptor:: 8392 AddSuccessorMBB(const BasicBlock *BB, 8393 MachineBasicBlock *ParentMBB, 8394 bool IsLikely, 8395 MachineBasicBlock *SuccMBB) { 8396 // If SuccBB has not been created yet, create it. 8397 if (!SuccMBB) { 8398 MachineFunction *MF = ParentMBB->getParent(); 8399 MachineFunction::iterator BBI(ParentMBB); 8400 SuccMBB = MF->CreateMachineBasicBlock(BB); 8401 MF->insert(++BBI, SuccMBB); 8402 } 8403 // Add it as a successor of ParentMBB. 8404 ParentMBB->addSuccessor( 8405 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8406 return SuccMBB; 8407 } 8408 8409 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8410 MachineFunction::iterator I(MBB); 8411 if (++I == FuncInfo.MF->end()) 8412 return nullptr; 8413 return &*I; 8414 } 8415 8416 /// During lowering new call nodes can be created (such as memset, etc.). 8417 /// Those will become new roots of the current DAG, but complications arise 8418 /// when they are tail calls. In such cases, the call lowering will update 8419 /// the root, but the builder still needs to know that a tail call has been 8420 /// lowered in order to avoid generating an additional return. 8421 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8422 // If the node is null, we do have a tail call. 8423 if (MaybeTC.getNode() != nullptr) 8424 DAG.setRoot(MaybeTC); 8425 else 8426 HasTailCall = true; 8427 } 8428 8429 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8430 const SmallVectorImpl<unsigned> &TotalCases, 8431 unsigned First, unsigned Last, 8432 unsigned Density) const { 8433 assert(Last >= First); 8434 assert(TotalCases[Last] >= TotalCases[First]); 8435 8436 const APInt &LowCase = Clusters[First].Low->getValue(); 8437 const APInt &HighCase = Clusters[Last].High->getValue(); 8438 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8439 8440 // FIXME: A range of consecutive cases has 100% density, but only requires one 8441 // comparison to lower. We should discriminate against such consecutive ranges 8442 // in jump tables. 8443 8444 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8445 uint64_t Range = Diff + 1; 8446 8447 uint64_t NumCases = 8448 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8449 8450 assert(NumCases < UINT64_MAX / 100); 8451 assert(Range >= NumCases); 8452 8453 return NumCases * 100 >= Range * Density; 8454 } 8455 8456 static inline bool areJTsAllowed(const TargetLowering &TLI, 8457 const SwitchInst *SI) { 8458 const Function *Fn = SI->getParent()->getParent(); 8459 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8460 return false; 8461 8462 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8463 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8464 } 8465 8466 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8467 unsigned First, unsigned Last, 8468 const SwitchInst *SI, 8469 MachineBasicBlock *DefaultMBB, 8470 CaseCluster &JTCluster) { 8471 assert(First <= Last); 8472 8473 auto Prob = BranchProbability::getZero(); 8474 unsigned NumCmps = 0; 8475 std::vector<MachineBasicBlock*> Table; 8476 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8477 8478 // Initialize probabilities in JTProbs. 8479 for (unsigned I = First; I <= Last; ++I) 8480 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8481 8482 for (unsigned I = First; I <= Last; ++I) { 8483 assert(Clusters[I].Kind == CC_Range); 8484 Prob += Clusters[I].Prob; 8485 const APInt &Low = Clusters[I].Low->getValue(); 8486 const APInt &High = Clusters[I].High->getValue(); 8487 NumCmps += (Low == High) ? 1 : 2; 8488 if (I != First) { 8489 // Fill the gap between this and the previous cluster. 8490 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8491 assert(PreviousHigh.slt(Low)); 8492 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8493 for (uint64_t J = 0; J < Gap; J++) 8494 Table.push_back(DefaultMBB); 8495 } 8496 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8497 for (uint64_t J = 0; J < ClusterSize; ++J) 8498 Table.push_back(Clusters[I].MBB); 8499 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8500 } 8501 8502 unsigned NumDests = JTProbs.size(); 8503 if (isSuitableForBitTests(NumDests, NumCmps, 8504 Clusters[First].Low->getValue(), 8505 Clusters[Last].High->getValue())) { 8506 // Clusters[First..Last] should be lowered as bit tests instead. 8507 return false; 8508 } 8509 8510 // Create the MBB that will load from and jump through the table. 8511 // Note: We create it here, but it's not inserted into the function yet. 8512 MachineFunction *CurMF = FuncInfo.MF; 8513 MachineBasicBlock *JumpTableMBB = 8514 CurMF->CreateMachineBasicBlock(SI->getParent()); 8515 8516 // Add successors. Note: use table order for determinism. 8517 SmallPtrSet<MachineBasicBlock *, 8> Done; 8518 for (MachineBasicBlock *Succ : Table) { 8519 if (Done.count(Succ)) 8520 continue; 8521 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8522 Done.insert(Succ); 8523 } 8524 JumpTableMBB->normalizeSuccProbs(); 8525 8526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8527 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8528 ->createJumpTableIndex(Table); 8529 8530 // Set up the jump table info. 8531 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8532 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8533 Clusters[Last].High->getValue(), SI->getCondition(), 8534 nullptr, false); 8535 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8536 8537 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8538 JTCases.size() - 1, Prob); 8539 return true; 8540 } 8541 8542 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8543 const SwitchInst *SI, 8544 MachineBasicBlock *DefaultMBB) { 8545 #ifndef NDEBUG 8546 // Clusters must be non-empty, sorted, and only contain Range clusters. 8547 assert(!Clusters.empty()); 8548 for (CaseCluster &C : Clusters) 8549 assert(C.Kind == CC_Range); 8550 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8551 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8552 #endif 8553 8554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8555 if (!areJTsAllowed(TLI, SI)) 8556 return; 8557 8558 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8559 8560 const int64_t N = Clusters.size(); 8561 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8562 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8563 const unsigned MaxJumpTableSize = 8564 OptForSize || TLI.getMaximumJumpTableSize() == 0 8565 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8566 8567 if (N < 2 || N < MinJumpTableEntries) 8568 return; 8569 8570 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8571 SmallVector<unsigned, 8> TotalCases(N); 8572 for (unsigned i = 0; i < N; ++i) { 8573 const APInt &Hi = Clusters[i].High->getValue(); 8574 const APInt &Lo = Clusters[i].Low->getValue(); 8575 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8576 if (i != 0) 8577 TotalCases[i] += TotalCases[i - 1]; 8578 } 8579 8580 const unsigned MinDensity = 8581 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8582 8583 // Cheap case: the whole range may be suitable for jump table. 8584 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8585 Clusters[0].Low->getValue()) 8586 .getLimitedValue(UINT_MAX - 1) + 1; 8587 if (JumpTableSize <= MaxJumpTableSize && 8588 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8589 CaseCluster JTCluster; 8590 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8591 Clusters[0] = JTCluster; 8592 Clusters.resize(1); 8593 return; 8594 } 8595 } 8596 8597 // The algorithm below is not suitable for -O0. 8598 if (TM.getOptLevel() == CodeGenOpt::None) 8599 return; 8600 8601 // Split Clusters into minimum number of dense partitions. The algorithm uses 8602 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8603 // for the Case Statement'" (1994), but builds the MinPartitions array in 8604 // reverse order to make it easier to reconstruct the partitions in ascending 8605 // order. In the choice between two optimal partitionings, it picks the one 8606 // which yields more jump tables. 8607 8608 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8609 SmallVector<unsigned, 8> MinPartitions(N); 8610 // LastElement[i] is the last element of the partition starting at i. 8611 SmallVector<unsigned, 8> LastElement(N); 8612 // PartitionsScore[i] is used to break ties when choosing between two 8613 // partitionings resulting in the same number of partitions. 8614 SmallVector<unsigned, 8> PartitionsScore(N); 8615 // For PartitionsScore, a small number of comparisons is considered as good as 8616 // a jump table and a single comparison is considered better than a jump 8617 // table. 8618 enum PartitionScores : unsigned { 8619 NoTable = 0, 8620 Table = 1, 8621 FewCases = 1, 8622 SingleCase = 2 8623 }; 8624 8625 // Base case: There is only one way to partition Clusters[N-1]. 8626 MinPartitions[N - 1] = 1; 8627 LastElement[N - 1] = N - 1; 8628 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8629 8630 // Note: loop indexes are signed to avoid underflow. 8631 for (int64_t i = N - 2; i >= 0; i--) { 8632 // Find optimal partitioning of Clusters[i..N-1]. 8633 // Baseline: Put Clusters[i] into a partition on its own. 8634 MinPartitions[i] = MinPartitions[i + 1] + 1; 8635 LastElement[i] = i; 8636 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8637 8638 // Search for a solution that results in fewer partitions. 8639 for (int64_t j = N - 1; j > i; j--) { 8640 // Try building a partition from Clusters[i..j]. 8641 JumpTableSize = (Clusters[j].High->getValue() - 8642 Clusters[i].Low->getValue()) 8643 .getLimitedValue(UINT_MAX - 1) + 1; 8644 if (JumpTableSize <= MaxJumpTableSize && 8645 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8646 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8647 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8648 int64_t NumEntries = j - i + 1; 8649 8650 if (NumEntries == 1) 8651 Score += PartitionScores::SingleCase; 8652 else if (NumEntries <= SmallNumberOfEntries) 8653 Score += PartitionScores::FewCases; 8654 else if (NumEntries >= MinJumpTableEntries) 8655 Score += PartitionScores::Table; 8656 8657 // If this leads to fewer partitions, or to the same number of 8658 // partitions with better score, it is a better partitioning. 8659 if (NumPartitions < MinPartitions[i] || 8660 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8661 MinPartitions[i] = NumPartitions; 8662 LastElement[i] = j; 8663 PartitionsScore[i] = Score; 8664 } 8665 } 8666 } 8667 } 8668 8669 // Iterate over the partitions, replacing some with jump tables in-place. 8670 unsigned DstIndex = 0; 8671 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8672 Last = LastElement[First]; 8673 assert(Last >= First); 8674 assert(DstIndex <= First); 8675 unsigned NumClusters = Last - First + 1; 8676 8677 CaseCluster JTCluster; 8678 if (NumClusters >= MinJumpTableEntries && 8679 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8680 Clusters[DstIndex++] = JTCluster; 8681 } else { 8682 for (unsigned I = First; I <= Last; ++I) 8683 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8684 } 8685 } 8686 Clusters.resize(DstIndex); 8687 } 8688 8689 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8690 // FIXME: Using the pointer type doesn't seem ideal. 8691 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8692 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8693 return Range <= BW; 8694 } 8695 8696 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8697 unsigned NumCmps, 8698 const APInt &Low, 8699 const APInt &High) { 8700 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8701 // range of cases both require only one branch to lower. Just looking at the 8702 // number of clusters and destinations should be enough to decide whether to 8703 // build bit tests. 8704 8705 // To lower a range with bit tests, the range must fit the bitwidth of a 8706 // machine word. 8707 if (!rangeFitsInWord(Low, High)) 8708 return false; 8709 8710 // Decide whether it's profitable to lower this range with bit tests. Each 8711 // destination requires a bit test and branch, and there is an overall range 8712 // check branch. For a small number of clusters, separate comparisons might be 8713 // cheaper, and for many destinations, splitting the range might be better. 8714 return (NumDests == 1 && NumCmps >= 3) || 8715 (NumDests == 2 && NumCmps >= 5) || 8716 (NumDests == 3 && NumCmps >= 6); 8717 } 8718 8719 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8720 unsigned First, unsigned Last, 8721 const SwitchInst *SI, 8722 CaseCluster &BTCluster) { 8723 assert(First <= Last); 8724 if (First == Last) 8725 return false; 8726 8727 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8728 unsigned NumCmps = 0; 8729 for (int64_t I = First; I <= Last; ++I) { 8730 assert(Clusters[I].Kind == CC_Range); 8731 Dests.set(Clusters[I].MBB->getNumber()); 8732 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8733 } 8734 unsigned NumDests = Dests.count(); 8735 8736 APInt Low = Clusters[First].Low->getValue(); 8737 APInt High = Clusters[Last].High->getValue(); 8738 assert(Low.slt(High)); 8739 8740 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8741 return false; 8742 8743 APInt LowBound; 8744 APInt CmpRange; 8745 8746 const int BitWidth = DAG.getTargetLoweringInfo() 8747 .getPointerTy(DAG.getDataLayout()) 8748 .getSizeInBits(); 8749 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8750 8751 // Check if the clusters cover a contiguous range such that no value in the 8752 // range will jump to the default statement. 8753 bool ContiguousRange = true; 8754 for (int64_t I = First + 1; I <= Last; ++I) { 8755 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8756 ContiguousRange = false; 8757 break; 8758 } 8759 } 8760 8761 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8762 // Optimize the case where all the case values fit in a word without having 8763 // to subtract minValue. In this case, we can optimize away the subtraction. 8764 LowBound = APInt::getNullValue(Low.getBitWidth()); 8765 CmpRange = High; 8766 ContiguousRange = false; 8767 } else { 8768 LowBound = Low; 8769 CmpRange = High - Low; 8770 } 8771 8772 CaseBitsVector CBV; 8773 auto TotalProb = BranchProbability::getZero(); 8774 for (unsigned i = First; i <= Last; ++i) { 8775 // Find the CaseBits for this destination. 8776 unsigned j; 8777 for (j = 0; j < CBV.size(); ++j) 8778 if (CBV[j].BB == Clusters[i].MBB) 8779 break; 8780 if (j == CBV.size()) 8781 CBV.push_back( 8782 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8783 CaseBits *CB = &CBV[j]; 8784 8785 // Update Mask, Bits and ExtraProb. 8786 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8787 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8788 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8789 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8790 CB->Bits += Hi - Lo + 1; 8791 CB->ExtraProb += Clusters[i].Prob; 8792 TotalProb += Clusters[i].Prob; 8793 } 8794 8795 BitTestInfo BTI; 8796 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8797 // Sort by probability first, number of bits second. 8798 if (a.ExtraProb != b.ExtraProb) 8799 return a.ExtraProb > b.ExtraProb; 8800 return a.Bits > b.Bits; 8801 }); 8802 8803 for (auto &CB : CBV) { 8804 MachineBasicBlock *BitTestBB = 8805 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8806 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8807 } 8808 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8809 SI->getCondition(), -1U, MVT::Other, false, 8810 ContiguousRange, nullptr, nullptr, std::move(BTI), 8811 TotalProb); 8812 8813 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8814 BitTestCases.size() - 1, TotalProb); 8815 return true; 8816 } 8817 8818 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8819 const SwitchInst *SI) { 8820 // Partition Clusters into as few subsets as possible, where each subset has a 8821 // range that fits in a machine word and has <= 3 unique destinations. 8822 8823 #ifndef NDEBUG 8824 // Clusters must be sorted and contain Range or JumpTable clusters. 8825 assert(!Clusters.empty()); 8826 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8827 for (const CaseCluster &C : Clusters) 8828 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8829 for (unsigned i = 1; i < Clusters.size(); ++i) 8830 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8831 #endif 8832 8833 // The algorithm below is not suitable for -O0. 8834 if (TM.getOptLevel() == CodeGenOpt::None) 8835 return; 8836 8837 // If target does not have legal shift left, do not emit bit tests at all. 8838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8839 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8840 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8841 return; 8842 8843 int BitWidth = PTy.getSizeInBits(); 8844 const int64_t N = Clusters.size(); 8845 8846 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8847 SmallVector<unsigned, 8> MinPartitions(N); 8848 // LastElement[i] is the last element of the partition starting at i. 8849 SmallVector<unsigned, 8> LastElement(N); 8850 8851 // FIXME: This might not be the best algorithm for finding bit test clusters. 8852 8853 // Base case: There is only one way to partition Clusters[N-1]. 8854 MinPartitions[N - 1] = 1; 8855 LastElement[N - 1] = N - 1; 8856 8857 // Note: loop indexes are signed to avoid underflow. 8858 for (int64_t i = N - 2; i >= 0; --i) { 8859 // Find optimal partitioning of Clusters[i..N-1]. 8860 // Baseline: Put Clusters[i] into a partition on its own. 8861 MinPartitions[i] = MinPartitions[i + 1] + 1; 8862 LastElement[i] = i; 8863 8864 // Search for a solution that results in fewer partitions. 8865 // Note: the search is limited by BitWidth, reducing time complexity. 8866 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8867 // Try building a partition from Clusters[i..j]. 8868 8869 // Check the range. 8870 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8871 Clusters[j].High->getValue())) 8872 continue; 8873 8874 // Check nbr of destinations and cluster types. 8875 // FIXME: This works, but doesn't seem very efficient. 8876 bool RangesOnly = true; 8877 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8878 for (int64_t k = i; k <= j; k++) { 8879 if (Clusters[k].Kind != CC_Range) { 8880 RangesOnly = false; 8881 break; 8882 } 8883 Dests.set(Clusters[k].MBB->getNumber()); 8884 } 8885 if (!RangesOnly || Dests.count() > 3) 8886 break; 8887 8888 // Check if it's a better partition. 8889 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8890 if (NumPartitions < MinPartitions[i]) { 8891 // Found a better partition. 8892 MinPartitions[i] = NumPartitions; 8893 LastElement[i] = j; 8894 } 8895 } 8896 } 8897 8898 // Iterate over the partitions, replacing with bit-test clusters in-place. 8899 unsigned DstIndex = 0; 8900 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8901 Last = LastElement[First]; 8902 assert(First <= Last); 8903 assert(DstIndex <= First); 8904 8905 CaseCluster BitTestCluster; 8906 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8907 Clusters[DstIndex++] = BitTestCluster; 8908 } else { 8909 size_t NumClusters = Last - First + 1; 8910 std::memmove(&Clusters[DstIndex], &Clusters[First], 8911 sizeof(Clusters[0]) * NumClusters); 8912 DstIndex += NumClusters; 8913 } 8914 } 8915 Clusters.resize(DstIndex); 8916 } 8917 8918 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8919 MachineBasicBlock *SwitchMBB, 8920 MachineBasicBlock *DefaultMBB) { 8921 MachineFunction *CurMF = FuncInfo.MF; 8922 MachineBasicBlock *NextMBB = nullptr; 8923 MachineFunction::iterator BBI(W.MBB); 8924 if (++BBI != FuncInfo.MF->end()) 8925 NextMBB = &*BBI; 8926 8927 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8928 8929 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8930 8931 if (Size == 2 && W.MBB == SwitchMBB) { 8932 // If any two of the cases has the same destination, and if one value 8933 // is the same as the other, but has one bit unset that the other has set, 8934 // use bit manipulation to do two compares at once. For example: 8935 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8936 // TODO: This could be extended to merge any 2 cases in switches with 3 8937 // cases. 8938 // TODO: Handle cases where W.CaseBB != SwitchBB. 8939 CaseCluster &Small = *W.FirstCluster; 8940 CaseCluster &Big = *W.LastCluster; 8941 8942 if (Small.Low == Small.High && Big.Low == Big.High && 8943 Small.MBB == Big.MBB) { 8944 const APInt &SmallValue = Small.Low->getValue(); 8945 const APInt &BigValue = Big.Low->getValue(); 8946 8947 // Check that there is only one bit different. 8948 APInt CommonBit = BigValue ^ SmallValue; 8949 if (CommonBit.isPowerOf2()) { 8950 SDValue CondLHS = getValue(Cond); 8951 EVT VT = CondLHS.getValueType(); 8952 SDLoc DL = getCurSDLoc(); 8953 8954 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8955 DAG.getConstant(CommonBit, DL, VT)); 8956 SDValue Cond = DAG.getSetCC( 8957 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8958 ISD::SETEQ); 8959 8960 // Update successor info. 8961 // Both Small and Big will jump to Small.BB, so we sum up the 8962 // probabilities. 8963 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8964 if (BPI) 8965 addSuccessorWithProb( 8966 SwitchMBB, DefaultMBB, 8967 // The default destination is the first successor in IR. 8968 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8969 else 8970 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8971 8972 // Insert the true branch. 8973 SDValue BrCond = 8974 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8975 DAG.getBasicBlock(Small.MBB)); 8976 // Insert the false branch. 8977 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8978 DAG.getBasicBlock(DefaultMBB)); 8979 8980 DAG.setRoot(BrCond); 8981 return; 8982 } 8983 } 8984 } 8985 8986 if (TM.getOptLevel() != CodeGenOpt::None) { 8987 // Order cases by probability so the most likely case will be checked first. 8988 std::sort(W.FirstCluster, W.LastCluster + 1, 8989 [](const CaseCluster &a, const CaseCluster &b) { 8990 return a.Prob > b.Prob; 8991 }); 8992 8993 // Rearrange the case blocks so that the last one falls through if possible 8994 // without without changing the order of probabilities. 8995 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8996 --I; 8997 if (I->Prob > W.LastCluster->Prob) 8998 break; 8999 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9000 std::swap(*I, *W.LastCluster); 9001 break; 9002 } 9003 } 9004 } 9005 9006 // Compute total probability. 9007 BranchProbability DefaultProb = W.DefaultProb; 9008 BranchProbability UnhandledProbs = DefaultProb; 9009 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9010 UnhandledProbs += I->Prob; 9011 9012 MachineBasicBlock *CurMBB = W.MBB; 9013 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9014 MachineBasicBlock *Fallthrough; 9015 if (I == W.LastCluster) { 9016 // For the last cluster, fall through to the default destination. 9017 Fallthrough = DefaultMBB; 9018 } else { 9019 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9020 CurMF->insert(BBI, Fallthrough); 9021 // Put Cond in a virtual register to make it available from the new blocks. 9022 ExportFromCurrentBlock(Cond); 9023 } 9024 UnhandledProbs -= I->Prob; 9025 9026 switch (I->Kind) { 9027 case CC_JumpTable: { 9028 // FIXME: Optimize away range check based on pivot comparisons. 9029 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9030 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9031 9032 // The jump block hasn't been inserted yet; insert it here. 9033 MachineBasicBlock *JumpMBB = JT->MBB; 9034 CurMF->insert(BBI, JumpMBB); 9035 9036 auto JumpProb = I->Prob; 9037 auto FallthroughProb = UnhandledProbs; 9038 9039 // If the default statement is a target of the jump table, we evenly 9040 // distribute the default probability to successors of CurMBB. Also 9041 // update the probability on the edge from JumpMBB to Fallthrough. 9042 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9043 SE = JumpMBB->succ_end(); 9044 SI != SE; ++SI) { 9045 if (*SI == DefaultMBB) { 9046 JumpProb += DefaultProb / 2; 9047 FallthroughProb -= DefaultProb / 2; 9048 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9049 JumpMBB->normalizeSuccProbs(); 9050 break; 9051 } 9052 } 9053 9054 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9055 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9056 CurMBB->normalizeSuccProbs(); 9057 9058 // The jump table header will be inserted in our current block, do the 9059 // range check, and fall through to our fallthrough block. 9060 JTH->HeaderBB = CurMBB; 9061 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9062 9063 // If we're in the right place, emit the jump table header right now. 9064 if (CurMBB == SwitchMBB) { 9065 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9066 JTH->Emitted = true; 9067 } 9068 break; 9069 } 9070 case CC_BitTests: { 9071 // FIXME: Optimize away range check based on pivot comparisons. 9072 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9073 9074 // The bit test blocks haven't been inserted yet; insert them here. 9075 for (BitTestCase &BTC : BTB->Cases) 9076 CurMF->insert(BBI, BTC.ThisBB); 9077 9078 // Fill in fields of the BitTestBlock. 9079 BTB->Parent = CurMBB; 9080 BTB->Default = Fallthrough; 9081 9082 BTB->DefaultProb = UnhandledProbs; 9083 // If the cases in bit test don't form a contiguous range, we evenly 9084 // distribute the probability on the edge to Fallthrough to two 9085 // successors of CurMBB. 9086 if (!BTB->ContiguousRange) { 9087 BTB->Prob += DefaultProb / 2; 9088 BTB->DefaultProb -= DefaultProb / 2; 9089 } 9090 9091 // If we're in the right place, emit the bit test header right now. 9092 if (CurMBB == SwitchMBB) { 9093 visitBitTestHeader(*BTB, SwitchMBB); 9094 BTB->Emitted = true; 9095 } 9096 break; 9097 } 9098 case CC_Range: { 9099 const Value *RHS, *LHS, *MHS; 9100 ISD::CondCode CC; 9101 if (I->Low == I->High) { 9102 // Check Cond == I->Low. 9103 CC = ISD::SETEQ; 9104 LHS = Cond; 9105 RHS=I->Low; 9106 MHS = nullptr; 9107 } else { 9108 // Check I->Low <= Cond <= I->High. 9109 CC = ISD::SETLE; 9110 LHS = I->Low; 9111 MHS = Cond; 9112 RHS = I->High; 9113 } 9114 9115 // The false probability is the sum of all unhandled cases. 9116 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9117 UnhandledProbs); 9118 9119 if (CurMBB == SwitchMBB) 9120 visitSwitchCase(CB, SwitchMBB); 9121 else 9122 SwitchCases.push_back(CB); 9123 9124 break; 9125 } 9126 } 9127 CurMBB = Fallthrough; 9128 } 9129 } 9130 9131 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9132 CaseClusterIt First, 9133 CaseClusterIt Last) { 9134 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9135 if (X.Prob != CC.Prob) 9136 return X.Prob > CC.Prob; 9137 9138 // Ties are broken by comparing the case value. 9139 return X.Low->getValue().slt(CC.Low->getValue()); 9140 }); 9141 } 9142 9143 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9144 const SwitchWorkListItem &W, 9145 Value *Cond, 9146 MachineBasicBlock *SwitchMBB) { 9147 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9148 "Clusters not sorted?"); 9149 9150 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9151 9152 // Balance the tree based on branch probabilities to create a near-optimal (in 9153 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9154 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9155 CaseClusterIt LastLeft = W.FirstCluster; 9156 CaseClusterIt FirstRight = W.LastCluster; 9157 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9158 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9159 9160 // Move LastLeft and FirstRight towards each other from opposite directions to 9161 // find a partitioning of the clusters which balances the probability on both 9162 // sides. If LeftProb and RightProb are equal, alternate which side is 9163 // taken to ensure 0-probability nodes are distributed evenly. 9164 unsigned I = 0; 9165 while (LastLeft + 1 < FirstRight) { 9166 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9167 LeftProb += (++LastLeft)->Prob; 9168 else 9169 RightProb += (--FirstRight)->Prob; 9170 I++; 9171 } 9172 9173 for (;;) { 9174 // Our binary search tree differs from a typical BST in that ours can have up 9175 // to three values in each leaf. The pivot selection above doesn't take that 9176 // into account, which means the tree might require more nodes and be less 9177 // efficient. We compensate for this here. 9178 9179 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9180 unsigned NumRight = W.LastCluster - FirstRight + 1; 9181 9182 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9183 // If one side has less than 3 clusters, and the other has more than 3, 9184 // consider taking a cluster from the other side. 9185 9186 if (NumLeft < NumRight) { 9187 // Consider moving the first cluster on the right to the left side. 9188 CaseCluster &CC = *FirstRight; 9189 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9190 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9191 if (LeftSideRank <= RightSideRank) { 9192 // Moving the cluster to the left does not demote it. 9193 ++LastLeft; 9194 ++FirstRight; 9195 continue; 9196 } 9197 } else { 9198 assert(NumRight < NumLeft); 9199 // Consider moving the last element on the left to the right side. 9200 CaseCluster &CC = *LastLeft; 9201 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9202 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9203 if (RightSideRank <= LeftSideRank) { 9204 // Moving the cluster to the right does not demot it. 9205 --LastLeft; 9206 --FirstRight; 9207 continue; 9208 } 9209 } 9210 } 9211 break; 9212 } 9213 9214 assert(LastLeft + 1 == FirstRight); 9215 assert(LastLeft >= W.FirstCluster); 9216 assert(FirstRight <= W.LastCluster); 9217 9218 // Use the first element on the right as pivot since we will make less-than 9219 // comparisons against it. 9220 CaseClusterIt PivotCluster = FirstRight; 9221 assert(PivotCluster > W.FirstCluster); 9222 assert(PivotCluster <= W.LastCluster); 9223 9224 CaseClusterIt FirstLeft = W.FirstCluster; 9225 CaseClusterIt LastRight = W.LastCluster; 9226 9227 const ConstantInt *Pivot = PivotCluster->Low; 9228 9229 // New blocks will be inserted immediately after the current one. 9230 MachineFunction::iterator BBI(W.MBB); 9231 ++BBI; 9232 9233 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9234 // we can branch to its destination directly if it's squeezed exactly in 9235 // between the known lower bound and Pivot - 1. 9236 MachineBasicBlock *LeftMBB; 9237 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9238 FirstLeft->Low == W.GE && 9239 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9240 LeftMBB = FirstLeft->MBB; 9241 } else { 9242 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9243 FuncInfo.MF->insert(BBI, LeftMBB); 9244 WorkList.push_back( 9245 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9246 // Put Cond in a virtual register to make it available from the new blocks. 9247 ExportFromCurrentBlock(Cond); 9248 } 9249 9250 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9251 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9252 // directly if RHS.High equals the current upper bound. 9253 MachineBasicBlock *RightMBB; 9254 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9255 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9256 RightMBB = FirstRight->MBB; 9257 } else { 9258 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9259 FuncInfo.MF->insert(BBI, RightMBB); 9260 WorkList.push_back( 9261 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9262 // Put Cond in a virtual register to make it available from the new blocks. 9263 ExportFromCurrentBlock(Cond); 9264 } 9265 9266 // Create the CaseBlock record that will be used to lower the branch. 9267 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9268 LeftProb, RightProb); 9269 9270 if (W.MBB == SwitchMBB) 9271 visitSwitchCase(CB, SwitchMBB); 9272 else 9273 SwitchCases.push_back(CB); 9274 } 9275 9276 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9277 // Extract cases from the switch. 9278 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9279 CaseClusterVector Clusters; 9280 Clusters.reserve(SI.getNumCases()); 9281 for (auto I : SI.cases()) { 9282 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9283 const ConstantInt *CaseVal = I.getCaseValue(); 9284 BranchProbability Prob = 9285 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9286 : BranchProbability(1, SI.getNumCases() + 1); 9287 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9288 } 9289 9290 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9291 9292 // Cluster adjacent cases with the same destination. We do this at all 9293 // optimization levels because it's cheap to do and will make codegen faster 9294 // if there are many clusters. 9295 sortAndRangeify(Clusters); 9296 9297 if (TM.getOptLevel() != CodeGenOpt::None) { 9298 // Replace an unreachable default with the most popular destination. 9299 // FIXME: Exploit unreachable default more aggressively. 9300 bool UnreachableDefault = 9301 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9302 if (UnreachableDefault && !Clusters.empty()) { 9303 DenseMap<const BasicBlock *, unsigned> Popularity; 9304 unsigned MaxPop = 0; 9305 const BasicBlock *MaxBB = nullptr; 9306 for (auto I : SI.cases()) { 9307 const BasicBlock *BB = I.getCaseSuccessor(); 9308 if (++Popularity[BB] > MaxPop) { 9309 MaxPop = Popularity[BB]; 9310 MaxBB = BB; 9311 } 9312 } 9313 // Set new default. 9314 assert(MaxPop > 0 && MaxBB); 9315 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9316 9317 // Remove cases that were pointing to the destination that is now the 9318 // default. 9319 CaseClusterVector New; 9320 New.reserve(Clusters.size()); 9321 for (CaseCluster &CC : Clusters) { 9322 if (CC.MBB != DefaultMBB) 9323 New.push_back(CC); 9324 } 9325 Clusters = std::move(New); 9326 } 9327 } 9328 9329 // If there is only the default destination, jump there directly. 9330 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9331 if (Clusters.empty()) { 9332 SwitchMBB->addSuccessor(DefaultMBB); 9333 if (DefaultMBB != NextBlock(SwitchMBB)) { 9334 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9335 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9336 } 9337 return; 9338 } 9339 9340 findJumpTables(Clusters, &SI, DefaultMBB); 9341 findBitTestClusters(Clusters, &SI); 9342 9343 DEBUG({ 9344 dbgs() << "Case clusters: "; 9345 for (const CaseCluster &C : Clusters) { 9346 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9347 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9348 9349 C.Low->getValue().print(dbgs(), true); 9350 if (C.Low != C.High) { 9351 dbgs() << '-'; 9352 C.High->getValue().print(dbgs(), true); 9353 } 9354 dbgs() << ' '; 9355 } 9356 dbgs() << '\n'; 9357 }); 9358 9359 assert(!Clusters.empty()); 9360 SwitchWorkList WorkList; 9361 CaseClusterIt First = Clusters.begin(); 9362 CaseClusterIt Last = Clusters.end() - 1; 9363 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9364 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9365 9366 while (!WorkList.empty()) { 9367 SwitchWorkListItem W = WorkList.back(); 9368 WorkList.pop_back(); 9369 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9370 9371 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9372 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9373 // For optimized builds, lower large range as a balanced binary tree. 9374 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9375 continue; 9376 } 9377 9378 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9379 } 9380 } 9381