xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 9deee6bffa9c331f46c68e5dd4cb4abf93dc0716)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Statepoint.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCContext.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/TargetParser/Triple.h"
101 #include "llvm/Transforms/Utils/Local.h"
102 #include <cstddef>
103 #include <iterator>
104 #include <limits>
105 #include <optional>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
153                                       const SDValue *Parts, unsigned NumParts,
154                                       MVT PartVT, EVT ValueVT, const Value *V,
155                                       std::optional<CallingConv::ID> CC);
156 
157 /// getCopyFromParts - Create a value that contains the specified legal parts
158 /// combined into the value they represent.  If the parts combine to a type
159 /// larger than ValueVT then AssertOp can be used to specify whether the extra
160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
161 /// (ISD::AssertSext).
162 static SDValue
163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
164                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
165                  std::optional<CallingConv::ID> CC = std::nullopt,
166                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
167   // Let the target assemble the parts if it wants to
168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
169   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
170                                                    PartVT, ValueVT, CC))
171     return Val;
172 
173   if (ValueVT.isVector())
174     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
175                                   CC);
176 
177   assert(NumParts > 0 && "No parts to assemble!");
178   SDValue Val = Parts[0];
179 
180   if (NumParts > 1) {
181     // Assemble the value from multiple parts.
182     if (ValueVT.isInteger()) {
183       unsigned PartBits = PartVT.getSizeInBits();
184       unsigned ValueBits = ValueVT.getSizeInBits();
185 
186       // Assemble the power of 2 part.
187       unsigned RoundParts = llvm::bit_floor(NumParts);
188       unsigned RoundBits = PartBits * RoundParts;
189       EVT RoundVT = RoundBits == ValueBits ?
190         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191       SDValue Lo, Hi;
192 
193       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194 
195       if (RoundParts > 2) {
196         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
197                               PartVT, HalfVT, V);
198         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
199                               RoundParts / 2, PartVT, HalfVT, V);
200       } else {
201         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
202         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
203       }
204 
205       if (DAG.getDataLayout().isBigEndian())
206         std::swap(Lo, Hi);
207 
208       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
209 
210       if (RoundParts < NumParts) {
211         // Assemble the trailing non-power-of-2 part.
212         unsigned OddParts = NumParts - RoundParts;
213         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
214         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
215                               OddVT, V, CC);
216 
217         // Combine the round and odd parts.
218         Lo = Val;
219         if (DAG.getDataLayout().isBigEndian())
220           std::swap(Lo, Hi);
221         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
222         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
223         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
224                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
225                                          TLI.getShiftAmountTy(
226                                              TotalVT, DAG.getDataLayout())));
227         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
228         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
229       }
230     } else if (PartVT.isFloatingPoint()) {
231       // FP split into multiple FP parts (for ppcf128)
232       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
233              "Unexpected split");
234       SDValue Lo, Hi;
235       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
236       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
237       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
238         std::swap(Lo, Hi);
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
240     } else {
241       // FP split into integer parts (soft fp)
242       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
243              !PartVT.isVector() && "Unexpected split");
244       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
245       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
246     }
247   }
248 
249   // There is now one part, held in Val.  Correct it to match ValueVT.
250   // PartEVT is the type of the register class that holds the value.
251   // ValueVT is the type of the inline asm operation.
252   EVT PartEVT = Val.getValueType();
253 
254   if (PartEVT == ValueVT)
255     return Val;
256 
257   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
258       ValueVT.bitsLT(PartEVT)) {
259     // For an FP value in an integer part, we need to truncate to the right
260     // width first.
261     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
262     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
263   }
264 
265   // Handle types that have the same size.
266   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
267     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
268 
269   // Handle types with different sizes.
270   if (PartEVT.isInteger() && ValueVT.isInteger()) {
271     if (ValueVT.bitsLT(PartEVT)) {
272       // For a truncate, see if we have any information to
273       // indicate whether the truncated bits will always be
274       // zero or sign-extension.
275       if (AssertOp)
276         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
277                           DAG.getValueType(ValueVT));
278       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
279     }
280     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
281   }
282 
283   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
284     // FP_ROUND's are always exact here.
285     if (ValueVT.bitsLT(Val.getValueType()))
286       return DAG.getNode(
287           ISD::FP_ROUND, DL, ValueVT, Val,
288           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
289 
290     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
291   }
292 
293   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
294   // then truncating.
295   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
296       ValueVT.bitsLT(PartEVT)) {
297     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
298     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
299   }
300 
301   report_fatal_error("Unknown mismatch in getCopyFromParts!");
302 }
303 
304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
305                                               const Twine &ErrMsg) {
306   const Instruction *I = dyn_cast_or_null<Instruction>(V);
307   if (!V)
308     return Ctx.emitError(ErrMsg);
309 
310   const char *AsmError = ", possible invalid constraint for vector type";
311   if (const CallInst *CI = dyn_cast<CallInst>(I))
312     if (CI->isInlineAsm())
313       return Ctx.emitError(I, ErrMsg + AsmError);
314 
315   return Ctx.emitError(I, ErrMsg);
316 }
317 
318 /// getCopyFromPartsVector - Create a value that contains the specified legal
319 /// parts combined into the value they represent.  If the parts combine to a
320 /// type larger than ValueVT then AssertOp can be used to specify whether the
321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
322 /// ValueVT (ISD::AssertSext).
323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
324                                       const SDValue *Parts, unsigned NumParts,
325                                       MVT PartVT, EVT ValueVT, const Value *V,
326                                       std::optional<CallingConv::ID> CallConv) {
327   assert(ValueVT.isVector() && "Not a vector value");
328   assert(NumParts > 0 && "No parts to assemble!");
329   const bool IsABIRegCopy = CallConv.has_value();
330 
331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
332   SDValue Val = Parts[0];
333 
334   // Handle a multi-element vector.
335   if (NumParts > 1) {
336     EVT IntermediateVT;
337     MVT RegisterVT;
338     unsigned NumIntermediates;
339     unsigned NumRegs;
340 
341     if (IsABIRegCopy) {
342       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
343           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
344           NumIntermediates, RegisterVT);
345     } else {
346       NumRegs =
347           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
348                                      NumIntermediates, RegisterVT);
349     }
350 
351     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
352     NumParts = NumRegs; // Silence a compiler warning.
353     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
354     assert(RegisterVT.getSizeInBits() ==
355            Parts[0].getSimpleValueType().getSizeInBits() &&
356            "Part type sizes don't match!");
357 
358     // Assemble the parts into intermediate operands.
359     SmallVector<SDValue, 8> Ops(NumIntermediates);
360     if (NumIntermediates == NumParts) {
361       // If the register was not expanded, truncate or copy the value,
362       // as appropriate.
363       for (unsigned i = 0; i != NumParts; ++i)
364         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
365                                   PartVT, IntermediateVT, V, CallConv);
366     } else if (NumParts > 0) {
367       // If the intermediate type was expanded, build the intermediate
368       // operands from the parts.
369       assert(NumParts % NumIntermediates == 0 &&
370              "Must expand into a divisible number of parts!");
371       unsigned Factor = NumParts / NumIntermediates;
372       for (unsigned i = 0; i != NumIntermediates; ++i)
373         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
374                                   PartVT, IntermediateVT, V, CallConv);
375     }
376 
377     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
378     // intermediate operands.
379     EVT BuiltVectorTy =
380         IntermediateVT.isVector()
381             ? EVT::getVectorVT(
382                   *DAG.getContext(), IntermediateVT.getScalarType(),
383                   IntermediateVT.getVectorElementCount() * NumParts)
384             : EVT::getVectorVT(*DAG.getContext(),
385                                IntermediateVT.getScalarType(),
386                                NumIntermediates);
387     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
388                                                 : ISD::BUILD_VECTOR,
389                       DL, BuiltVectorTy, Ops);
390   }
391 
392   // There is now one part, held in Val.  Correct it to match ValueVT.
393   EVT PartEVT = Val.getValueType();
394 
395   if (PartEVT == ValueVT)
396     return Val;
397 
398   if (PartEVT.isVector()) {
399     // Vector/Vector bitcast.
400     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
401       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
402 
403     // If the parts vector has more elements than the value vector, then we
404     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
405     // Extract the elements we want.
406     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       PartEVT =
413           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
414                            ValueVT.getVectorElementCount());
415       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
416                         DAG.getVectorIdxConstant(0, DL));
417       if (PartEVT == ValueVT)
418         return Val;
419       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
420         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
423       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425     }
426 
427     // Promoted vector extract
428     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
429   }
430 
431   // Trivial bitcast if the types are the same size and the destination
432   // vector type is legal.
433   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
434       TLI.isTypeLegal(ValueVT))
435     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437   if (ValueVT.getVectorNumElements() != 1) {
438      // Certain ABIs require that vectors are passed as integers. For vectors
439      // are the same size, this is an obvious bitcast.
440      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
441        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442      } else if (ValueVT.bitsLT(PartEVT)) {
443        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
444        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
445        // Drop the extra bits.
446        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
447        return DAG.getBitcast(ValueVT, Val);
448      }
449 
450      diagnosePossiblyInvalidConstraint(
451          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452      return DAG.getUNDEF(ValueVT);
453   }
454 
455   // Handle cases such as i8 -> <1 x i1>
456   EVT ValueSVT = ValueVT.getVectorElementType();
457   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
458     unsigned ValueSize = ValueSVT.getSizeInBits();
459     if (ValueSize == PartEVT.getSizeInBits()) {
460       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
461     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
462       // It's possible a scalar floating point type gets softened to integer and
463       // then promoted to a larger integer. If PartEVT is the larger integer
464       // we need to truncate it and then bitcast to the FP type.
465       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
466       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
467       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
468       Val = DAG.getBitcast(ValueSVT, Val);
469     } else {
470       Val = ValueVT.isFloatingPoint()
471                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
472                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
473     }
474   }
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  std::optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void
488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
489                unsigned NumParts, MVT PartVT, const Value *V,
490                std::optional<CallingConv::ID> CallConv = std::nullopt,
491                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   // Let the target split the parts if it wants to
493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
494   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
495                                       CallConv))
496     return;
497   EVT ValueVT = Val.getValueType();
498 
499   // Handle the vector case separately.
500   if (ValueVT.isVector())
501     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
502                                 CallConv);
503 
504   unsigned OrigNumParts = NumParts;
505   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
506          "Copying to an illegal type!");
507 
508   if (NumParts == 0)
509     return;
510 
511   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
512   EVT PartEVT = PartVT;
513   if (PartEVT == ValueVT) {
514     assert(NumParts == 1 && "No-op copy with multiple parts!");
515     Parts[0] = Val;
516     return;
517   }
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
521     // If the parts cover more bits than the value has, promote the value.
522     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
523       assert(NumParts == 1 && "Do not know what to promote to!");
524       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
525     } else {
526       if (ValueVT.isFloatingPoint()) {
527         // FP values need to be bitcast, then extended if they are being put
528         // into a larger container.
529         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
530         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
531       }
532       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533              ValueVT.isInteger() &&
534              "Unknown mismatch!");
535       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
537       if (PartVT == MVT::x86mmx)
538         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539     }
540   } else if (PartBits == ValueVT.getSizeInBits()) {
541     // Different types of the same size.
542     assert(NumParts == 1 && PartEVT != ValueVT);
543     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
545     // If the parts cover less bits than value has, truncate the value.
546     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
547            ValueVT.isInteger() &&
548            "Unknown mismatch!");
549     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
550     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
551     if (PartVT == MVT::x86mmx)
552       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553   }
554 
555   // The value may have changed - recompute ValueVT.
556   ValueVT = Val.getValueType();
557   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
558          "Failed to tile the value with PartVT!");
559 
560   if (NumParts == 1) {
561     if (PartEVT != ValueVT) {
562       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
563                                         "scalar-to-vector conversion failed");
564       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Expand the value into multiple parts.
572   if (NumParts & (NumParts - 1)) {
573     // The number of parts is not a power of 2.  Split off and copy the tail.
574     assert(PartVT.isInteger() && ValueVT.isInteger() &&
575            "Do not know what to expand to!");
576     unsigned RoundParts = llvm::bit_floor(NumParts);
577     unsigned RoundBits = RoundParts * PartBits;
578     unsigned OddParts = NumParts - RoundParts;
579     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
580       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
581 
582     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
583                    CallConv);
584 
585     if (DAG.getDataLayout().isBigEndian())
586       // The odd parts were reversed by getCopyToParts - unreverse them.
587       std::reverse(Parts + RoundParts, Parts + NumParts);
588 
589     NumParts = RoundParts;
590     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
591     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
592   }
593 
594   // The number of parts is a power of 2.  Repeatedly bisect the value using
595   // EXTRACT_ELEMENT.
596   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
597                          EVT::getIntegerVT(*DAG.getContext(),
598                                            ValueVT.getSizeInBits()),
599                          Val);
600 
601   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
602     for (unsigned i = 0; i < NumParts; i += StepSize) {
603       unsigned ThisBits = StepSize * PartBits / 2;
604       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
605       SDValue &Part0 = Parts[i];
606       SDValue &Part1 = Parts[i+StepSize/2];
607 
608       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
609                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
610       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
611                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
612 
613       if (ThisBits == PartBits && ThisVT != PartVT) {
614         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
615         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
616       }
617     }
618   }
619 
620   if (DAG.getDataLayout().isBigEndian())
621     std::reverse(Parts, Parts + OrigNumParts);
622 }
623 
624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
625                                      const SDLoc &DL, EVT PartVT) {
626   if (!PartVT.isVector())
627     return SDValue();
628 
629   EVT ValueVT = Val.getValueType();
630   EVT PartEVT = PartVT.getVectorElementType();
631   EVT ValueEVT = ValueVT.getVectorElementType();
632   ElementCount PartNumElts = PartVT.getVectorElementCount();
633   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
634 
635   // We only support widening vectors with equivalent element types and
636   // fixed/scalable properties. If a target needs to widen a fixed-length type
637   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
638   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
639       PartNumElts.isScalable() != ValueNumElts.isScalable())
640     return SDValue();
641 
642   // Have a try for bf16 because some targets share its ABI with fp16.
643   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
644     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
645            "Cannot widen to illegal type");
646     Val = DAG.getNode(ISD::BITCAST, DL,
647                       ValueVT.changeVectorElementType(MVT::f16), Val);
648   } else if (PartEVT != ValueEVT) {
649     return SDValue();
650   }
651 
652   // Widening a scalable vector to another scalable vector is done by inserting
653   // the vector into a larger undef one.
654   if (PartNumElts.isScalable())
655     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
656                        Val, DAG.getVectorIdxConstant(0, DL));
657 
658   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
659   // undef elements.
660   SmallVector<SDValue, 16> Ops;
661   DAG.ExtractVectorElements(Val, Ops);
662   SDValue EltUndef = DAG.getUNDEF(PartEVT);
663   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
664 
665   // FIXME: Use CONCAT for 2x -> 4x.
666   return DAG.getBuildVector(PartVT, DL, Ops);
667 }
668 
669 /// getCopyToPartsVector - Create a series of nodes that contain the specified
670 /// value split into legal parts.
671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
672                                  SDValue Val, SDValue *Parts, unsigned NumParts,
673                                  MVT PartVT, const Value *V,
674                                  std::optional<CallingConv::ID> CallConv) {
675   EVT ValueVT = Val.getValueType();
676   assert(ValueVT.isVector() && "Not a vector");
677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678   const bool IsABIRegCopy = CallConv.has_value();
679 
680   if (NumParts == 1) {
681     EVT PartEVT = PartVT;
682     if (PartEVT == ValueVT) {
683       // Nothing to do.
684     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
685       // Bitconvert vector->vector case.
686       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
687     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
688       Val = Widened;
689     } else if (PartVT.isVector() &&
690                PartEVT.getVectorElementType().bitsGE(
691                    ValueVT.getVectorElementType()) &&
692                PartEVT.getVectorElementCount() ==
693                    ValueVT.getVectorElementCount()) {
694 
695       // Promoted vector extract
696       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
697     } else if (PartEVT.isVector() &&
698                PartEVT.getVectorElementType() !=
699                    ValueVT.getVectorElementType() &&
700                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
701                    TargetLowering::TypeWidenVector) {
702       // Combination of widening and promotion.
703       EVT WidenVT =
704           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
705                            PartVT.getVectorElementCount());
706       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
707       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
708     } else {
709       // Don't extract an integer from a float vector. This can happen if the
710       // FP type gets softened to integer and then promoted. The promotion
711       // prevents it from being picked up by the earlier bitcast case.
712       if (ValueVT.getVectorElementCount().isScalar() &&
713           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
714         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
715                           DAG.getVectorIdxConstant(0, DL));
716       } else {
717         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
718         assert(PartVT.getFixedSizeInBits() > ValueSize &&
719                "lossy conversion of vector to scalar type");
720         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
721         Val = DAG.getBitcast(IntermediateType, Val);
722         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
723       }
724     }
725 
726     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
727     Parts[0] = Val;
728     return;
729   }
730 
731   // Handle a multi-element vector.
732   EVT IntermediateVT;
733   MVT RegisterVT;
734   unsigned NumIntermediates;
735   unsigned NumRegs;
736   if (IsABIRegCopy) {
737     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
738         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
739         RegisterVT);
740   } else {
741     NumRegs =
742         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
743                                    NumIntermediates, RegisterVT);
744   }
745 
746   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
747   NumParts = NumRegs; // Silence a compiler warning.
748   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
749 
750   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
751          "Mixing scalable and fixed vectors when copying in parts");
752 
753   std::optional<ElementCount> DestEltCnt;
754 
755   if (IntermediateVT.isVector())
756     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
757   else
758     DestEltCnt = ElementCount::getFixed(NumIntermediates);
759 
760   EVT BuiltVectorTy = EVT::getVectorVT(
761       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
762 
763   if (ValueVT == BuiltVectorTy) {
764     // Nothing to do.
765   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
766     // Bitconvert vector->vector case.
767     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
768   } else {
769     if (BuiltVectorTy.getVectorElementType().bitsGT(
770             ValueVT.getVectorElementType())) {
771       // Integer promotion.
772       ValueVT = EVT::getVectorVT(*DAG.getContext(),
773                                  BuiltVectorTy.getVectorElementType(),
774                                  ValueVT.getVectorElementCount());
775       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
776     }
777 
778     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
779       Val = Widened;
780     }
781   }
782 
783   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
784 
785   // Split the vector into intermediate operands.
786   SmallVector<SDValue, 8> Ops(NumIntermediates);
787   for (unsigned i = 0; i != NumIntermediates; ++i) {
788     if (IntermediateVT.isVector()) {
789       // This does something sensible for scalable vectors - see the
790       // definition of EXTRACT_SUBVECTOR for further details.
791       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
792       Ops[i] =
793           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
794                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
795     } else {
796       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
797                            DAG.getVectorIdxConstant(i, DL));
798     }
799   }
800 
801   // Split the intermediate operands into legal parts.
802   if (NumParts == NumIntermediates) {
803     // If the register was not expanded, promote or copy the value,
804     // as appropriate.
805     for (unsigned i = 0; i != NumParts; ++i)
806       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
807   } else if (NumParts > 0) {
808     // If the intermediate type was expanded, split each the value into
809     // legal parts.
810     assert(NumIntermediates != 0 && "division by zero");
811     assert(NumParts % NumIntermediates == 0 &&
812            "Must expand into a divisible number of parts!");
813     unsigned Factor = NumParts / NumIntermediates;
814     for (unsigned i = 0; i != NumIntermediates; ++i)
815       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
816                      CallConv);
817   }
818 }
819 
820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
821                            EVT valuevt, std::optional<CallingConv::ID> CC)
822     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
823       RegCount(1, regs.size()), CallConv(CC) {}
824 
825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
826                            const DataLayout &DL, unsigned Reg, Type *Ty,
827                            std::optional<CallingConv::ID> CC) {
828   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
829 
830   CallConv = CC;
831 
832   for (EVT ValueVT : ValueVTs) {
833     unsigned NumRegs =
834         isABIMangled()
835             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
836             : TLI.getNumRegisters(Context, ValueVT);
837     MVT RegisterVT =
838         isABIMangled()
839             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
840             : TLI.getRegisterType(Context, ValueVT);
841     for (unsigned i = 0; i != NumRegs; ++i)
842       Regs.push_back(Reg + i);
843     RegVTs.push_back(RegisterVT);
844     RegCount.push_back(NumRegs);
845     Reg += NumRegs;
846   }
847 }
848 
849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
850                                       FunctionLoweringInfo &FuncInfo,
851                                       const SDLoc &dl, SDValue &Chain,
852                                       SDValue *Glue, const Value *V) const {
853   // A Value with type {} or [0 x %t] needs no registers.
854   if (ValueVTs.empty())
855     return SDValue();
856 
857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
858 
859   // Assemble the legal parts into the final values.
860   SmallVector<SDValue, 4> Values(ValueVTs.size());
861   SmallVector<SDValue, 8> Parts;
862   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
863     // Copy the legal parts from the registers.
864     EVT ValueVT = ValueVTs[Value];
865     unsigned NumRegs = RegCount[Value];
866     MVT RegisterVT = isABIMangled()
867                          ? TLI.getRegisterTypeForCallingConv(
868                                *DAG.getContext(), *CallConv, RegVTs[Value])
869                          : RegVTs[Value];
870 
871     Parts.resize(NumRegs);
872     for (unsigned i = 0; i != NumRegs; ++i) {
873       SDValue P;
874       if (!Glue) {
875         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
876       } else {
877         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
878         *Glue = P.getValue(2);
879       }
880 
881       Chain = P.getValue(1);
882       Parts[i] = P;
883 
884       // If the source register was virtual and if we know something about it,
885       // add an assert node.
886       if (!Register::isVirtualRegister(Regs[Part + i]) ||
887           !RegisterVT.isInteger())
888         continue;
889 
890       const FunctionLoweringInfo::LiveOutInfo *LOI =
891         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
892       if (!LOI)
893         continue;
894 
895       unsigned RegSize = RegisterVT.getScalarSizeInBits();
896       unsigned NumSignBits = LOI->NumSignBits;
897       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
898 
899       if (NumZeroBits == RegSize) {
900         // The current value is a zero.
901         // Explicitly express that as it would be easier for
902         // optimizations to kick in.
903         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
904         continue;
905       }
906 
907       // FIXME: We capture more information than the dag can represent.  For
908       // now, just use the tightest assertzext/assertsext possible.
909       bool isSExt;
910       EVT FromVT(MVT::Other);
911       if (NumZeroBits) {
912         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
913         isSExt = false;
914       } else if (NumSignBits > 1) {
915         FromVT =
916             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
917         isSExt = true;
918       } else {
919         continue;
920       }
921       // Add an assertion node.
922       assert(FromVT != MVT::Other);
923       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
924                              RegisterVT, P, DAG.getValueType(FromVT));
925     }
926 
927     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
928                                      RegisterVT, ValueVT, V, CallConv);
929     Part += NumRegs;
930     Parts.clear();
931   }
932 
933   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
934 }
935 
936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
937                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
938                                  const Value *V,
939                                  ISD::NodeType PreferredExtendType) const {
940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
941   ISD::NodeType ExtendKind = PreferredExtendType;
942 
943   // Get the list of the values's legal parts.
944   unsigned NumRegs = Regs.size();
945   SmallVector<SDValue, 8> Parts(NumRegs);
946   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
947     unsigned NumParts = RegCount[Value];
948 
949     MVT RegisterVT = isABIMangled()
950                          ? TLI.getRegisterTypeForCallingConv(
951                                *DAG.getContext(), *CallConv, RegVTs[Value])
952                          : RegVTs[Value];
953 
954     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
955       ExtendKind = ISD::ZERO_EXTEND;
956 
957     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
958                    NumParts, RegisterVT, V, CallConv, ExtendKind);
959     Part += NumParts;
960   }
961 
962   // Copy the parts into the registers.
963   SmallVector<SDValue, 8> Chains(NumRegs);
964   for (unsigned i = 0; i != NumRegs; ++i) {
965     SDValue Part;
966     if (!Glue) {
967       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
968     } else {
969       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
970       *Glue = Part.getValue(1);
971     }
972 
973     Chains[i] = Part.getValue(0);
974   }
975 
976   if (NumRegs == 1 || Glue)
977     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
978     // flagged to it. That is the CopyToReg nodes and the user are considered
979     // a single scheduling unit. If we create a TokenFactor and return it as
980     // chain, then the TokenFactor is both a predecessor (operand) of the
981     // user as well as a successor (the TF operands are flagged to the user).
982     // c1, f1 = CopyToReg
983     // c2, f2 = CopyToReg
984     // c3     = TokenFactor c1, c2
985     // ...
986     //        = op c3, ..., f2
987     Chain = Chains[NumRegs-1];
988   else
989     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
990 }
991 
992 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
993                                         unsigned MatchingIdx, const SDLoc &dl,
994                                         SelectionDAG &DAG,
995                                         std::vector<SDValue> &Ops) const {
996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
997 
998   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
999   if (HasMatching)
1000     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
1001   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1002     // Put the register class of the virtual registers in the flag word.  That
1003     // way, later passes can recompute register class constraints for inline
1004     // assembly as well as normal instructions.
1005     // Don't do this for tied operands that can use the regclass information
1006     // from the def.
1007     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1008     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1009     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
1010   }
1011 
1012   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1013   Ops.push_back(Res);
1014 
1015   if (Code == InlineAsm::Kind_Clobber) {
1016     // Clobbers should always have a 1:1 mapping with registers, and may
1017     // reference registers that have illegal (e.g. vector) types. Hence, we
1018     // shouldn't try to apply any sort of splitting logic to them.
1019     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1020            "No 1:1 mapping from clobbers to regs?");
1021     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1022     (void)SP;
1023     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1024       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1025       assert(
1026           (Regs[I] != SP ||
1027            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1028           "If we clobbered the stack pointer, MFI should know about it.");
1029     }
1030     return;
1031   }
1032 
1033   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1034     MVT RegisterVT = RegVTs[Value];
1035     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1036                                            RegisterVT);
1037     for (unsigned i = 0; i != NumRegs; ++i) {
1038       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1039       unsigned TheReg = Regs[Reg++];
1040       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1041     }
1042   }
1043 }
1044 
1045 SmallVector<std::pair<unsigned, TypeSize>, 4>
1046 RegsForValue::getRegsAndSizes() const {
1047   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1048   unsigned I = 0;
1049   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1050     unsigned RegCount = std::get<0>(CountAndVT);
1051     MVT RegisterVT = std::get<1>(CountAndVT);
1052     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1053     for (unsigned E = I + RegCount; I != E; ++I)
1054       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1055   }
1056   return OutVec;
1057 }
1058 
1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1060                                AssumptionCache *ac,
1061                                const TargetLibraryInfo *li) {
1062   AA = aa;
1063   AC = ac;
1064   GFI = gfi;
1065   LibInfo = li;
1066   Context = DAG.getContext();
1067   LPadToCallSiteMap.clear();
1068   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1069   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1070       *DAG.getMachineFunction().getFunction().getParent());
1071 }
1072 
1073 void SelectionDAGBuilder::clear() {
1074   NodeMap.clear();
1075   UnusedArgNodeMap.clear();
1076   PendingLoads.clear();
1077   PendingExports.clear();
1078   PendingConstrainedFP.clear();
1079   PendingConstrainedFPStrict.clear();
1080   CurInst = nullptr;
1081   HasTailCall = false;
1082   SDNodeOrder = LowestSDNodeOrder;
1083   StatepointLowering.clear();
1084 }
1085 
1086 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1087   DanglingDebugInfoMap.clear();
1088 }
1089 
1090 // Update DAG root to include dependencies on Pending chains.
1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1092   SDValue Root = DAG.getRoot();
1093 
1094   if (Pending.empty())
1095     return Root;
1096 
1097   // Add current root to PendingChains, unless we already indirectly
1098   // depend on it.
1099   if (Root.getOpcode() != ISD::EntryToken) {
1100     unsigned i = 0, e = Pending.size();
1101     for (; i != e; ++i) {
1102       assert(Pending[i].getNode()->getNumOperands() > 1);
1103       if (Pending[i].getNode()->getOperand(0) == Root)
1104         break;  // Don't add the root if we already indirectly depend on it.
1105     }
1106 
1107     if (i == e)
1108       Pending.push_back(Root);
1109   }
1110 
1111   if (Pending.size() == 1)
1112     Root = Pending[0];
1113   else
1114     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1115 
1116   DAG.setRoot(Root);
1117   Pending.clear();
1118   return Root;
1119 }
1120 
1121 SDValue SelectionDAGBuilder::getMemoryRoot() {
1122   return updateRoot(PendingLoads);
1123 }
1124 
1125 SDValue SelectionDAGBuilder::getRoot() {
1126   // Chain up all pending constrained intrinsics together with all
1127   // pending loads, by simply appending them to PendingLoads and
1128   // then calling getMemoryRoot().
1129   PendingLoads.reserve(PendingLoads.size() +
1130                        PendingConstrainedFP.size() +
1131                        PendingConstrainedFPStrict.size());
1132   PendingLoads.append(PendingConstrainedFP.begin(),
1133                       PendingConstrainedFP.end());
1134   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1135                       PendingConstrainedFPStrict.end());
1136   PendingConstrainedFP.clear();
1137   PendingConstrainedFPStrict.clear();
1138   return getMemoryRoot();
1139 }
1140 
1141 SDValue SelectionDAGBuilder::getControlRoot() {
1142   // We need to emit pending fpexcept.strict constrained intrinsics,
1143   // so append them to the PendingExports list.
1144   PendingExports.append(PendingConstrainedFPStrict.begin(),
1145                         PendingConstrainedFPStrict.end());
1146   PendingConstrainedFPStrict.clear();
1147   return updateRoot(PendingExports);
1148 }
1149 
1150 void SelectionDAGBuilder::visit(const Instruction &I) {
1151   // Set up outgoing PHI node register values before emitting the terminator.
1152   if (I.isTerminator()) {
1153     HandlePHINodesInSuccessorBlocks(I.getParent());
1154   }
1155 
1156   // Add SDDbgValue nodes for any var locs here. Do so before updating
1157   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1158   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1159     // Add SDDbgValue nodes for any var locs here. Do so before updating
1160     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1161     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1162          It != End; ++It) {
1163       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1164       dropDanglingDebugInfo(Var, It->Expr);
1165       if (It->Values.isKillLocation(It->Expr)) {
1166         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1167         continue;
1168       }
1169       SmallVector<Value *> Values(It->Values.location_ops());
1170       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1171                             It->Values.hasArgList()))
1172         addDanglingDebugInfo(It, SDNodeOrder);
1173     }
1174   }
1175 
1176   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1177   if (!isa<DbgInfoIntrinsic>(I))
1178     ++SDNodeOrder;
1179 
1180   CurInst = &I;
1181 
1182   // Set inserted listener only if required.
1183   bool NodeInserted = false;
1184   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1185   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1186   if (PCSectionsMD) {
1187     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1188         DAG, [&](SDNode *) { NodeInserted = true; });
1189   }
1190 
1191   visit(I.getOpcode(), I);
1192 
1193   if (!I.isTerminator() && !HasTailCall &&
1194       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1195     CopyToExportRegsIfNeeded(&I);
1196 
1197   // Handle metadata.
1198   if (PCSectionsMD) {
1199     auto It = NodeMap.find(&I);
1200     if (It != NodeMap.end()) {
1201       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1202     } else if (NodeInserted) {
1203       // This should not happen; if it does, don't let it go unnoticed so we can
1204       // fix it. Relevant visit*() function is probably missing a setValue().
1205       errs() << "warning: loosing !pcsections metadata ["
1206              << I.getModule()->getName() << "]\n";
1207       LLVM_DEBUG(I.dump());
1208       assert(false);
1209     }
1210   }
1211 
1212   CurInst = nullptr;
1213 }
1214 
1215 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1216   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1217 }
1218 
1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1220   // Note: this doesn't use InstVisitor, because it has to work with
1221   // ConstantExpr's in addition to instructions.
1222   switch (Opcode) {
1223   default: llvm_unreachable("Unknown instruction type encountered!");
1224     // Build the switch statement using the Instruction.def file.
1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1226     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1227 #include "llvm/IR/Instruction.def"
1228   }
1229 }
1230 
1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1232                                             DILocalVariable *Variable,
1233                                             DebugLoc DL, unsigned Order,
1234                                             RawLocationWrapper Values,
1235                                             DIExpression *Expression) {
1236   if (!Values.hasArgList())
1237     return false;
1238   // For variadic dbg_values we will now insert an undef.
1239   // FIXME: We can potentially recover these!
1240   SmallVector<SDDbgOperand, 2> Locs;
1241   for (const Value *V : Values.location_ops()) {
1242     auto *Undef = UndefValue::get(V->getType());
1243     Locs.push_back(SDDbgOperand::fromConst(Undef));
1244   }
1245   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1246                                         /*IsIndirect=*/false, DL, Order,
1247                                         /*IsVariadic=*/true);
1248   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1249   return true;
1250 }
1251 
1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1253                                                unsigned Order) {
1254   if (!handleDanglingVariadicDebugInfo(
1255           DAG,
1256           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1257                                             ->getVariable(VarLoc->VariableID)
1258                                             .getVariable()),
1259           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1260     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1261         VarLoc, Order);
1262   }
1263 }
1264 
1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1266                                                unsigned Order) {
1267   // We treat variadic dbg_values differently at this stage.
1268   if (!handleDanglingVariadicDebugInfo(
1269           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1270           DI->getWrappedLocation(), DI->getExpression())) {
1271     // TODO: Dangling debug info will eventually either be resolved or produce
1272     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1273     // between the original dbg.value location and its resolved DBG_VALUE,
1274     // which we should ideally fill with an extra Undef DBG_VALUE.
1275     assert(DI->getNumVariableLocationOps() == 1 &&
1276            "DbgValueInst without an ArgList should have a single location "
1277            "operand.");
1278     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1279   }
1280 }
1281 
1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1283                                                 const DIExpression *Expr) {
1284   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1285     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1286     DIExpression *DanglingExpr = DDI.getExpression();
1287     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1288       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1289                         << "\n");
1290       return true;
1291     }
1292     return false;
1293   };
1294 
1295   for (auto &DDIMI : DanglingDebugInfoMap) {
1296     DanglingDebugInfoVector &DDIV = DDIMI.second;
1297 
1298     // If debug info is to be dropped, run it through final checks to see
1299     // whether it can be salvaged.
1300     for (auto &DDI : DDIV)
1301       if (isMatchingDbgValue(DDI))
1302         salvageUnresolvedDbgValue(DDI);
1303 
1304     erase_if(DDIV, isMatchingDbgValue);
1305   }
1306 }
1307 
1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1309 // generate the debug data structures now that we've seen its definition.
1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1311                                                    SDValue Val) {
1312   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1313   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1314     return;
1315 
1316   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1317   for (auto &DDI : DDIV) {
1318     DebugLoc DL = DDI.getDebugLoc();
1319     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1320     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1321     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1322     DIExpression *Expr = DDI.getExpression();
1323     assert(Variable->isValidLocationForIntrinsic(DL) &&
1324            "Expected inlined-at fields to agree");
1325     SDDbgValue *SDV;
1326     if (Val.getNode()) {
1327       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1328       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1329       // we couldn't resolve it directly when examining the DbgValue intrinsic
1330       // in the first place we should not be more successful here). Unless we
1331       // have some test case that prove this to be correct we should avoid
1332       // calling EmitFuncArgumentDbgValue here.
1333       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1334                                     FuncArgumentDbgValueKind::Value, Val)) {
1335         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1336                           << "\n");
1337         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1338         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1339         // inserted after the definition of Val when emitting the instructions
1340         // after ISel. An alternative could be to teach
1341         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1342         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1343                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1344                    << ValSDNodeOrder << "\n");
1345         SDV = getDbgValue(Val, Variable, Expr, DL,
1346                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1347         DAG.AddDbgValue(SDV, false);
1348       } else
1349         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1350                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1351     } else {
1352       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1353       auto Undef = UndefValue::get(V->getType());
1354       auto SDV =
1355           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1356       DAG.AddDbgValue(SDV, false);
1357     }
1358   }
1359   DDIV.clear();
1360 }
1361 
1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1363   // TODO: For the variadic implementation, instead of only checking the fail
1364   // state of `handleDebugValue`, we need know specifically which values were
1365   // invalid, so that we attempt to salvage only those values when processing
1366   // a DIArgList.
1367   Value *V = DDI.getVariableLocationOp(0);
1368   Value *OrigV = V;
1369   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1370   DIExpression *Expr = DDI.getExpression();
1371   DebugLoc DL = DDI.getDebugLoc();
1372   unsigned SDOrder = DDI.getSDNodeOrder();
1373 
1374   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1375   // that DW_OP_stack_value is desired.
1376   bool StackValue = true;
1377 
1378   // Can this Value can be encoded without any further work?
1379   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1380     return;
1381 
1382   // Attempt to salvage back through as many instructions as possible. Bail if
1383   // a non-instruction is seen, such as a constant expression or global
1384   // variable. FIXME: Further work could recover those too.
1385   while (isa<Instruction>(V)) {
1386     Instruction &VAsInst = *cast<Instruction>(V);
1387     // Temporary "0", awaiting real implementation.
1388     SmallVector<uint64_t, 16> Ops;
1389     SmallVector<Value *, 4> AdditionalValues;
1390     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1391                              AdditionalValues);
1392     // If we cannot salvage any further, and haven't yet found a suitable debug
1393     // expression, bail out.
1394     if (!V)
1395       break;
1396 
1397     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1398     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1399     // here for variadic dbg_values, remove that condition.
1400     if (!AdditionalValues.empty())
1401       break;
1402 
1403     // New value and expr now represent this debuginfo.
1404     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1405 
1406     // Some kind of simplification occurred: check whether the operand of the
1407     // salvaged debug expression can be encoded in this DAG.
1408     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1409       LLVM_DEBUG(
1410           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1411                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1412       return;
1413     }
1414   }
1415 
1416   // This was the final opportunity to salvage this debug information, and it
1417   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1418   // any earlier variable location.
1419   assert(OrigV && "V shouldn't be null");
1420   auto *Undef = UndefValue::get(OrigV->getType());
1421   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1422   DAG.AddDbgValue(SDV, false);
1423   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1424                     << "\n");
1425 }
1426 
1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1428                                                DIExpression *Expr,
1429                                                DebugLoc DbgLoc,
1430                                                unsigned Order) {
1431   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1432   DIExpression *NewExpr =
1433       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1434   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1435                    /*IsVariadic*/ false);
1436 }
1437 
1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1439                                            DILocalVariable *Var,
1440                                            DIExpression *Expr, DebugLoc DbgLoc,
1441                                            unsigned Order, bool IsVariadic) {
1442   if (Values.empty())
1443     return true;
1444   SmallVector<SDDbgOperand> LocationOps;
1445   SmallVector<SDNode *> Dependencies;
1446   for (const Value *V : Values) {
1447     // Constant value.
1448     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1449         isa<ConstantPointerNull>(V)) {
1450       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1451       continue;
1452     }
1453 
1454     // Look through IntToPtr constants.
1455     if (auto *CE = dyn_cast<ConstantExpr>(V))
1456       if (CE->getOpcode() == Instruction::IntToPtr) {
1457         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1458         continue;
1459       }
1460 
1461     // If the Value is a frame index, we can create a FrameIndex debug value
1462     // without relying on the DAG at all.
1463     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1464       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1465       if (SI != FuncInfo.StaticAllocaMap.end()) {
1466         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1467         continue;
1468       }
1469     }
1470 
1471     // Do not use getValue() in here; we don't want to generate code at
1472     // this point if it hasn't been done yet.
1473     SDValue N = NodeMap[V];
1474     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1475       N = UnusedArgNodeMap[V];
1476     if (N.getNode()) {
1477       // Only emit func arg dbg value for non-variadic dbg.values for now.
1478       if (!IsVariadic &&
1479           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1480                                    FuncArgumentDbgValueKind::Value, N))
1481         return true;
1482       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1483         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1484         // describe stack slot locations.
1485         //
1486         // Consider "int x = 0; int *px = &x;". There are two kinds of
1487         // interesting debug values here after optimization:
1488         //
1489         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1490         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1491         //
1492         // Both describe the direct values of their associated variables.
1493         Dependencies.push_back(N.getNode());
1494         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1495         continue;
1496       }
1497       LocationOps.emplace_back(
1498           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1499       continue;
1500     }
1501 
1502     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1503     // Special rules apply for the first dbg.values of parameter variables in a
1504     // function. Identify them by the fact they reference Argument Values, that
1505     // they're parameters, and they are parameters of the current function. We
1506     // need to let them dangle until they get an SDNode.
1507     bool IsParamOfFunc =
1508         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1509     if (IsParamOfFunc)
1510       return false;
1511 
1512     // The value is not used in this block yet (or it would have an SDNode).
1513     // We still want the value to appear for the user if possible -- if it has
1514     // an associated VReg, we can refer to that instead.
1515     auto VMI = FuncInfo.ValueMap.find(V);
1516     if (VMI != FuncInfo.ValueMap.end()) {
1517       unsigned Reg = VMI->second;
1518       // If this is a PHI node, it may be split up into several MI PHI nodes
1519       // (in FunctionLoweringInfo::set).
1520       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1521                        V->getType(), std::nullopt);
1522       if (RFV.occupiesMultipleRegs()) {
1523         // FIXME: We could potentially support variadic dbg_values here.
1524         if (IsVariadic)
1525           return false;
1526         unsigned Offset = 0;
1527         unsigned BitsToDescribe = 0;
1528         if (auto VarSize = Var->getSizeInBits())
1529           BitsToDescribe = *VarSize;
1530         if (auto Fragment = Expr->getFragmentInfo())
1531           BitsToDescribe = Fragment->SizeInBits;
1532         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1533           // Bail out if all bits are described already.
1534           if (Offset >= BitsToDescribe)
1535             break;
1536           // TODO: handle scalable vectors.
1537           unsigned RegisterSize = RegAndSize.second;
1538           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1539                                       ? BitsToDescribe - Offset
1540                                       : RegisterSize;
1541           auto FragmentExpr = DIExpression::createFragmentExpression(
1542               Expr, Offset, FragmentSize);
1543           if (!FragmentExpr)
1544             continue;
1545           SDDbgValue *SDV = DAG.getVRegDbgValue(
1546               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1547           DAG.AddDbgValue(SDV, false);
1548           Offset += RegisterSize;
1549         }
1550         return true;
1551       }
1552       // We can use simple vreg locations for variadic dbg_values as well.
1553       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1554       continue;
1555     }
1556     // We failed to create a SDDbgOperand for V.
1557     return false;
1558   }
1559 
1560   // We have created a SDDbgOperand for each Value in Values.
1561   // Should use Order instead of SDNodeOrder?
1562   assert(!LocationOps.empty());
1563   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1564                                         /*IsIndirect=*/false, DbgLoc,
1565                                         SDNodeOrder, IsVariadic);
1566   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1567   return true;
1568 }
1569 
1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1571   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1572   for (auto &Pair : DanglingDebugInfoMap)
1573     for (auto &DDI : Pair.second)
1574       salvageUnresolvedDbgValue(DDI);
1575   clearDanglingDebugInfo();
1576 }
1577 
1578 /// getCopyFromRegs - If there was virtual register allocated for the value V
1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1581   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1582   SDValue Result;
1583 
1584   if (It != FuncInfo.ValueMap.end()) {
1585     Register InReg = It->second;
1586 
1587     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1588                      DAG.getDataLayout(), InReg, Ty,
1589                      std::nullopt); // This is not an ABI copy.
1590     SDValue Chain = DAG.getEntryNode();
1591     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1592                                  V);
1593     resolveDanglingDebugInfo(V, Result);
1594   }
1595 
1596   return Result;
1597 }
1598 
1599 /// getValue - Return an SDValue for the given Value.
1600 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1601   // If we already have an SDValue for this value, use it. It's important
1602   // to do this first, so that we don't create a CopyFromReg if we already
1603   // have a regular SDValue.
1604   SDValue &N = NodeMap[V];
1605   if (N.getNode()) return N;
1606 
1607   // If there's a virtual register allocated and initialized for this
1608   // value, use it.
1609   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1610     return copyFromReg;
1611 
1612   // Otherwise create a new SDValue and remember it.
1613   SDValue Val = getValueImpl(V);
1614   NodeMap[V] = Val;
1615   resolveDanglingDebugInfo(V, Val);
1616   return Val;
1617 }
1618 
1619 /// getNonRegisterValue - Return an SDValue for the given Value, but
1620 /// don't look in FuncInfo.ValueMap for a virtual register.
1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1622   // If we already have an SDValue for this value, use it.
1623   SDValue &N = NodeMap[V];
1624   if (N.getNode()) {
1625     if (isIntOrFPConstant(N)) {
1626       // Remove the debug location from the node as the node is about to be used
1627       // in a location which may differ from the original debug location.  This
1628       // is relevant to Constant and ConstantFP nodes because they can appear
1629       // as constant expressions inside PHI nodes.
1630       N->setDebugLoc(DebugLoc());
1631     }
1632     return N;
1633   }
1634 
1635   // Otherwise create a new SDValue and remember it.
1636   SDValue Val = getValueImpl(V);
1637   NodeMap[V] = Val;
1638   resolveDanglingDebugInfo(V, Val);
1639   return Val;
1640 }
1641 
1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1643 /// Create an SDValue for the given value.
1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1645   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1646 
1647   if (const Constant *C = dyn_cast<Constant>(V)) {
1648     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1649 
1650     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1651       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1652 
1653     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1654       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1655 
1656     if (isa<ConstantPointerNull>(C)) {
1657       unsigned AS = V->getType()->getPointerAddressSpace();
1658       return DAG.getConstant(0, getCurSDLoc(),
1659                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1660     }
1661 
1662     if (match(C, m_VScale()))
1663       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1664 
1665     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1666       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1667 
1668     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1669       return DAG.getUNDEF(VT);
1670 
1671     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1672       visit(CE->getOpcode(), *CE);
1673       SDValue N1 = NodeMap[V];
1674       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1675       return N1;
1676     }
1677 
1678     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1679       SmallVector<SDValue, 4> Constants;
1680       for (const Use &U : C->operands()) {
1681         SDNode *Val = getValue(U).getNode();
1682         // If the operand is an empty aggregate, there are no values.
1683         if (!Val) continue;
1684         // Add each leaf value from the operand to the Constants list
1685         // to form a flattened list of all the values.
1686         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1687           Constants.push_back(SDValue(Val, i));
1688       }
1689 
1690       return DAG.getMergeValues(Constants, getCurSDLoc());
1691     }
1692 
1693     if (const ConstantDataSequential *CDS =
1694           dyn_cast<ConstantDataSequential>(C)) {
1695       SmallVector<SDValue, 4> Ops;
1696       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1697         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1698         // Add each leaf value from the operand to the Constants list
1699         // to form a flattened list of all the values.
1700         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1701           Ops.push_back(SDValue(Val, i));
1702       }
1703 
1704       if (isa<ArrayType>(CDS->getType()))
1705         return DAG.getMergeValues(Ops, getCurSDLoc());
1706       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1707     }
1708 
1709     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1710       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1711              "Unknown struct or array constant!");
1712 
1713       SmallVector<EVT, 4> ValueVTs;
1714       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1715       unsigned NumElts = ValueVTs.size();
1716       if (NumElts == 0)
1717         return SDValue(); // empty struct
1718       SmallVector<SDValue, 4> Constants(NumElts);
1719       for (unsigned i = 0; i != NumElts; ++i) {
1720         EVT EltVT = ValueVTs[i];
1721         if (isa<UndefValue>(C))
1722           Constants[i] = DAG.getUNDEF(EltVT);
1723         else if (EltVT.isFloatingPoint())
1724           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1725         else
1726           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1727       }
1728 
1729       return DAG.getMergeValues(Constants, getCurSDLoc());
1730     }
1731 
1732     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1733       return DAG.getBlockAddress(BA, VT);
1734 
1735     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1736       return getValue(Equiv->getGlobalValue());
1737 
1738     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1739       return getValue(NC->getGlobalValue());
1740 
1741     VectorType *VecTy = cast<VectorType>(V->getType());
1742 
1743     // Now that we know the number and type of the elements, get that number of
1744     // elements into the Ops array based on what kind of constant it is.
1745     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1746       SmallVector<SDValue, 16> Ops;
1747       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1748       for (unsigned i = 0; i != NumElements; ++i)
1749         Ops.push_back(getValue(CV->getOperand(i)));
1750 
1751       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1752     }
1753 
1754     if (isa<ConstantAggregateZero>(C)) {
1755       EVT EltVT =
1756           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1757 
1758       SDValue Op;
1759       if (EltVT.isFloatingPoint())
1760         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1761       else
1762         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1763 
1764       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1765     }
1766 
1767     llvm_unreachable("Unknown vector constant");
1768   }
1769 
1770   // If this is a static alloca, generate it as the frameindex instead of
1771   // computation.
1772   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1773     DenseMap<const AllocaInst*, int>::iterator SI =
1774       FuncInfo.StaticAllocaMap.find(AI);
1775     if (SI != FuncInfo.StaticAllocaMap.end())
1776       return DAG.getFrameIndex(
1777           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1778   }
1779 
1780   // If this is an instruction which fast-isel has deferred, select it now.
1781   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1782     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1783 
1784     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1785                      Inst->getType(), std::nullopt);
1786     SDValue Chain = DAG.getEntryNode();
1787     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1788   }
1789 
1790   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1791     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1792 
1793   if (const auto *BB = dyn_cast<BasicBlock>(V))
1794     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1795 
1796   llvm_unreachable("Can't get register for value!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1800   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1801   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1802   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1803   bool IsSEH = isAsynchronousEHPersonality(Pers);
1804   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1805   if (!IsSEH)
1806     CatchPadMBB->setIsEHScopeEntry();
1807   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1808   if (IsMSVCCXX || IsCoreCLR)
1809     CatchPadMBB->setIsEHFuncletEntry();
1810 }
1811 
1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1813   // Update machine-CFG edge.
1814   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1815   FuncInfo.MBB->addSuccessor(TargetMBB);
1816   TargetMBB->setIsEHCatchretTarget(true);
1817   DAG.getMachineFunction().setHasEHCatchret(true);
1818 
1819   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820   bool IsSEH = isAsynchronousEHPersonality(Pers);
1821   if (IsSEH) {
1822     // If this is not a fall-through branch or optimizations are switched off,
1823     // emit the branch.
1824     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1825         TM.getOptLevel() == CodeGenOpt::None)
1826       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1827                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1828     return;
1829   }
1830 
1831   // Figure out the funclet membership for the catchret's successor.
1832   // This will be used by the FuncletLayout pass to determine how to order the
1833   // BB's.
1834   // A 'catchret' returns to the outer scope's color.
1835   Value *ParentPad = I.getCatchSwitchParentPad();
1836   const BasicBlock *SuccessorColor;
1837   if (isa<ConstantTokenNone>(ParentPad))
1838     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1839   else
1840     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1841   assert(SuccessorColor && "No parent funclet for catchret!");
1842   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1843   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1844 
1845   // Create the terminator node.
1846   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1847                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1848                             DAG.getBasicBlock(SuccessorColorMBB));
1849   DAG.setRoot(Ret);
1850 }
1851 
1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1853   // Don't emit any special code for the cleanuppad instruction. It just marks
1854   // the start of an EH scope/funclet.
1855   FuncInfo.MBB->setIsEHScopeEntry();
1856   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1857   if (Pers != EHPersonality::Wasm_CXX) {
1858     FuncInfo.MBB->setIsEHFuncletEntry();
1859     FuncInfo.MBB->setIsCleanupFuncletEntry();
1860   }
1861 }
1862 
1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1864 // not match, it is OK to add only the first unwind destination catchpad to the
1865 // successors, because there will be at least one invoke instruction within the
1866 // catch scope that points to the next unwind destination, if one exists, so
1867 // CFGSort cannot mess up with BB sorting order.
1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1869 // call within them, and catchpads only consisting of 'catch (...)' have a
1870 // '__cxa_end_catch' call within them, both of which generate invokes in case
1871 // the next unwind destination exists, i.e., the next unwind destination is not
1872 // the caller.)
1873 //
1874 // Having at most one EH pad successor is also simpler and helps later
1875 // transformations.
1876 //
1877 // For example,
1878 // current:
1879 //   invoke void @foo to ... unwind label %catch.dispatch
1880 // catch.dispatch:
1881 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1882 // catch.start:
1883 //   ...
1884 //   ... in this BB or some other child BB dominated by this BB there will be an
1885 //   invoke that points to 'next' BB as an unwind destination
1886 //
1887 // next: ; We don't need to add this to 'current' BB's successor
1888 //   ...
1889 static void findWasmUnwindDestinations(
1890     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1891     BranchProbability Prob,
1892     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1893         &UnwindDests) {
1894   while (EHPadBB) {
1895     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1896     if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads.
1898       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1899       UnwindDests.back().first->setIsEHScopeEntry();
1900       break;
1901     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1902       // Add the catchpad handlers to the possible destinations. We don't
1903       // continue to the unwind destination of the catchswitch for wasm.
1904       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1905         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1906         UnwindDests.back().first->setIsEHScopeEntry();
1907       }
1908       break;
1909     } else {
1910       continue;
1911     }
1912   }
1913 }
1914 
1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1916 /// many places it could ultimately go. In the IR, we have a single unwind
1917 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1918 /// This function skips over imaginary basic blocks that hold catchswitch
1919 /// instructions, and finds all the "real" machine
1920 /// basic block destinations. As those destinations may not be successors of
1921 /// EHPadBB, here we also calculate the edge probability to those destinations.
1922 /// The passed-in Prob is the edge probability to EHPadBB.
1923 static void findUnwindDestinations(
1924     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1925     BranchProbability Prob,
1926     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1927         &UnwindDests) {
1928   EHPersonality Personality =
1929     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1930   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1931   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1932   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1933   bool IsSEH = isAsynchronousEHPersonality(Personality);
1934 
1935   if (IsWasmCXX) {
1936     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1937     assert(UnwindDests.size() <= 1 &&
1938            "There should be at most one unwind destination for wasm");
1939     return;
1940   }
1941 
1942   while (EHPadBB) {
1943     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1944     BasicBlock *NewEHPadBB = nullptr;
1945     if (isa<LandingPadInst>(Pad)) {
1946       // Stop on landingpads. They are not funclets.
1947       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1948       break;
1949     } else if (isa<CleanupPadInst>(Pad)) {
1950       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1951       // personalities.
1952       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1953       UnwindDests.back().first->setIsEHScopeEntry();
1954       UnwindDests.back().first->setIsEHFuncletEntry();
1955       break;
1956     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1957       // Add the catchpad handlers to the possible destinations.
1958       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1959         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1960         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1961         if (IsMSVCCXX || IsCoreCLR)
1962           UnwindDests.back().first->setIsEHFuncletEntry();
1963         if (!IsSEH)
1964           UnwindDests.back().first->setIsEHScopeEntry();
1965       }
1966       NewEHPadBB = CatchSwitch->getUnwindDest();
1967     } else {
1968       continue;
1969     }
1970 
1971     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1972     if (BPI && NewEHPadBB)
1973       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1974     EHPadBB = NewEHPadBB;
1975   }
1976 }
1977 
1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1979   // Update successor info.
1980   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1981   auto UnwindDest = I.getUnwindDest();
1982   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1983   BranchProbability UnwindDestProb =
1984       (BPI && UnwindDest)
1985           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1986           : BranchProbability::getZero();
1987   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1988   for (auto &UnwindDest : UnwindDests) {
1989     UnwindDest.first->setIsEHPad();
1990     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1991   }
1992   FuncInfo.MBB->normalizeSuccProbs();
1993 
1994   // Create the terminator node.
1995   SDValue Ret =
1996       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1997   DAG.setRoot(Ret);
1998 }
1999 
2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2001   report_fatal_error("visitCatchSwitch not yet implemented!");
2002 }
2003 
2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006   auto &DL = DAG.getDataLayout();
2007   SDValue Chain = getControlRoot();
2008   SmallVector<ISD::OutputArg, 8> Outs;
2009   SmallVector<SDValue, 8> OutVals;
2010 
2011   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2012   // lower
2013   //
2014   //   %val = call <ty> @llvm.experimental.deoptimize()
2015   //   ret <ty> %val
2016   //
2017   // differently.
2018   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2019     LowerDeoptimizingReturn();
2020     return;
2021   }
2022 
2023   if (!FuncInfo.CanLowerReturn) {
2024     unsigned DemoteReg = FuncInfo.DemoteRegister;
2025     const Function *F = I.getParent()->getParent();
2026 
2027     // Emit a store of the return value through the virtual register.
2028     // Leave Outs empty so that LowerReturn won't try to load return
2029     // registers the usual way.
2030     SmallVector<EVT, 1> PtrValueVTs;
2031     ComputeValueVTs(TLI, DL,
2032                     PointerType::get(F->getContext(),
2033                                      DAG.getDataLayout().getAllocaAddrSpace()),
2034                     PtrValueVTs);
2035 
2036     SDValue RetPtr =
2037         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2038     SDValue RetOp = getValue(I.getOperand(0));
2039 
2040     SmallVector<EVT, 4> ValueVTs, MemVTs;
2041     SmallVector<uint64_t, 4> Offsets;
2042     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2043                     &Offsets, 0);
2044     unsigned NumValues = ValueVTs.size();
2045 
2046     SmallVector<SDValue, 4> Chains(NumValues);
2047     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2048     for (unsigned i = 0; i != NumValues; ++i) {
2049       // An aggregate return value cannot wrap around the address space, so
2050       // offsets to its parts don't wrap either.
2051       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2052                                            TypeSize::Fixed(Offsets[i]));
2053 
2054       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2055       if (MemVTs[i] != ValueVTs[i])
2056         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2057       Chains[i] = DAG.getStore(
2058           Chain, getCurSDLoc(), Val,
2059           // FIXME: better loc info would be nice.
2060           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2061           commonAlignment(BaseAlign, Offsets[i]));
2062     }
2063 
2064     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2065                         MVT::Other, Chains);
2066   } else if (I.getNumOperands() != 0) {
2067     SmallVector<EVT, 4> ValueVTs;
2068     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2069     unsigned NumValues = ValueVTs.size();
2070     if (NumValues) {
2071       SDValue RetOp = getValue(I.getOperand(0));
2072 
2073       const Function *F = I.getParent()->getParent();
2074 
2075       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2076           I.getOperand(0)->getType(), F->getCallingConv(),
2077           /*IsVarArg*/ false, DL);
2078 
2079       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2080       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2081         ExtendKind = ISD::SIGN_EXTEND;
2082       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2083         ExtendKind = ISD::ZERO_EXTEND;
2084 
2085       LLVMContext &Context = F->getContext();
2086       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2087 
2088       for (unsigned j = 0; j != NumValues; ++j) {
2089         EVT VT = ValueVTs[j];
2090 
2091         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2092           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2093 
2094         CallingConv::ID CC = F->getCallingConv();
2095 
2096         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2097         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2098         SmallVector<SDValue, 4> Parts(NumParts);
2099         getCopyToParts(DAG, getCurSDLoc(),
2100                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2101                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2102 
2103         // 'inreg' on function refers to return value
2104         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2105         if (RetInReg)
2106           Flags.setInReg();
2107 
2108         if (I.getOperand(0)->getType()->isPointerTy()) {
2109           Flags.setPointer();
2110           Flags.setPointerAddrSpace(
2111               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2112         }
2113 
2114         if (NeedsRegBlock) {
2115           Flags.setInConsecutiveRegs();
2116           if (j == NumValues - 1)
2117             Flags.setInConsecutiveRegsLast();
2118         }
2119 
2120         // Propagate extension type if any
2121         if (ExtendKind == ISD::SIGN_EXTEND)
2122           Flags.setSExt();
2123         else if (ExtendKind == ISD::ZERO_EXTEND)
2124           Flags.setZExt();
2125 
2126         for (unsigned i = 0; i < NumParts; ++i) {
2127           Outs.push_back(ISD::OutputArg(Flags,
2128                                         Parts[i].getValueType().getSimpleVT(),
2129                                         VT, /*isfixed=*/true, 0, 0));
2130           OutVals.push_back(Parts[i]);
2131         }
2132       }
2133     }
2134   }
2135 
2136   // Push in swifterror virtual register as the last element of Outs. This makes
2137   // sure swifterror virtual register will be returned in the swifterror
2138   // physical register.
2139   const Function *F = I.getParent()->getParent();
2140   if (TLI.supportSwiftError() &&
2141       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2142     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2143     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2144     Flags.setSwiftError();
2145     Outs.push_back(ISD::OutputArg(
2146         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2147         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2148     // Create SDNode for the swifterror virtual register.
2149     OutVals.push_back(
2150         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2151                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2152                         EVT(TLI.getPointerTy(DL))));
2153   }
2154 
2155   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2156   CallingConv::ID CallConv =
2157     DAG.getMachineFunction().getFunction().getCallingConv();
2158   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2159       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2160 
2161   // Verify that the target's LowerReturn behaved as expected.
2162   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2163          "LowerReturn didn't return a valid chain!");
2164 
2165   // Update the DAG with the new chain value resulting from return lowering.
2166   DAG.setRoot(Chain);
2167 }
2168 
2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2170 /// created for it, emit nodes to copy the value into the virtual
2171 /// registers.
2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2173   // Skip empty types
2174   if (V->getType()->isEmptyTy())
2175     return;
2176 
2177   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2178   if (VMI != FuncInfo.ValueMap.end()) {
2179     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2180            "Unused value assigned virtual registers!");
2181     CopyValueToVirtualRegister(V, VMI->second);
2182   }
2183 }
2184 
2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2186 /// the current basic block, add it to ValueMap now so that we'll get a
2187 /// CopyTo/FromReg.
2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2189   // No need to export constants.
2190   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2191 
2192   // Already exported?
2193   if (FuncInfo.isExportedInst(V)) return;
2194 
2195   Register Reg = FuncInfo.InitializeRegForValue(V);
2196   CopyValueToVirtualRegister(V, Reg);
2197 }
2198 
2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2200                                                      const BasicBlock *FromBB) {
2201   // The operands of the setcc have to be in this block.  We don't know
2202   // how to export them from some other block.
2203   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2204     // Can export from current BB.
2205     if (VI->getParent() == FromBB)
2206       return true;
2207 
2208     // Is already exported, noop.
2209     return FuncInfo.isExportedInst(V);
2210   }
2211 
2212   // If this is an argument, we can export it if the BB is the entry block or
2213   // if it is already exported.
2214   if (isa<Argument>(V)) {
2215     if (FromBB->isEntryBlock())
2216       return true;
2217 
2218     // Otherwise, can only export this if it is already exported.
2219     return FuncInfo.isExportedInst(V);
2220   }
2221 
2222   // Otherwise, constants can always be exported.
2223   return true;
2224 }
2225 
2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2227 BranchProbability
2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2229                                         const MachineBasicBlock *Dst) const {
2230   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2231   const BasicBlock *SrcBB = Src->getBasicBlock();
2232   const BasicBlock *DstBB = Dst->getBasicBlock();
2233   if (!BPI) {
2234     // If BPI is not available, set the default probability as 1 / N, where N is
2235     // the number of successors.
2236     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2237     return BranchProbability(1, SuccSize);
2238   }
2239   return BPI->getEdgeProbability(SrcBB, DstBB);
2240 }
2241 
2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2243                                                MachineBasicBlock *Dst,
2244                                                BranchProbability Prob) {
2245   if (!FuncInfo.BPI)
2246     Src->addSuccessorWithoutProb(Dst);
2247   else {
2248     if (Prob.isUnknown())
2249       Prob = getEdgeProbability(Src, Dst);
2250     Src->addSuccessor(Dst, Prob);
2251   }
2252 }
2253 
2254 static bool InBlock(const Value *V, const BasicBlock *BB) {
2255   if (const Instruction *I = dyn_cast<Instruction>(V))
2256     return I->getParent() == BB;
2257   return true;
2258 }
2259 
2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2261 /// This function emits a branch and is used at the leaves of an OR or an
2262 /// AND operator tree.
2263 void
2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2265                                                   MachineBasicBlock *TBB,
2266                                                   MachineBasicBlock *FBB,
2267                                                   MachineBasicBlock *CurBB,
2268                                                   MachineBasicBlock *SwitchBB,
2269                                                   BranchProbability TProb,
2270                                                   BranchProbability FProb,
2271                                                   bool InvertCond) {
2272   const BasicBlock *BB = CurBB->getBasicBlock();
2273 
2274   // If the leaf of the tree is a comparison, merge the condition into
2275   // the caseblock.
2276   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2277     // The operands of the cmp have to be in this block.  We don't know
2278     // how to export them from some other block.  If this is the first block
2279     // of the sequence, no exporting is needed.
2280     if (CurBB == SwitchBB ||
2281         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2282          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2283       ISD::CondCode Condition;
2284       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2285         ICmpInst::Predicate Pred =
2286             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2287         Condition = getICmpCondCode(Pred);
2288       } else {
2289         const FCmpInst *FC = cast<FCmpInst>(Cond);
2290         FCmpInst::Predicate Pred =
2291             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2292         Condition = getFCmpCondCode(Pred);
2293         if (TM.Options.NoNaNsFPMath)
2294           Condition = getFCmpCodeWithoutNaN(Condition);
2295       }
2296 
2297       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2298                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2299       SL->SwitchCases.push_back(CB);
2300       return;
2301     }
2302   }
2303 
2304   // Create a CaseBlock record representing this branch.
2305   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2306   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2307                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2308   SL->SwitchCases.push_back(CB);
2309 }
2310 
2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2312                                                MachineBasicBlock *TBB,
2313                                                MachineBasicBlock *FBB,
2314                                                MachineBasicBlock *CurBB,
2315                                                MachineBasicBlock *SwitchBB,
2316                                                Instruction::BinaryOps Opc,
2317                                                BranchProbability TProb,
2318                                                BranchProbability FProb,
2319                                                bool InvertCond) {
2320   // Skip over not part of the tree and remember to invert op and operands at
2321   // next level.
2322   Value *NotCond;
2323   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2324       InBlock(NotCond, CurBB->getBasicBlock())) {
2325     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2326                          !InvertCond);
2327     return;
2328   }
2329 
2330   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2331   const Value *BOpOp0, *BOpOp1;
2332   // Compute the effective opcode for Cond, taking into account whether it needs
2333   // to be inverted, e.g.
2334   //   and (not (or A, B)), C
2335   // gets lowered as
2336   //   and (and (not A, not B), C)
2337   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2338   if (BOp) {
2339     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2340                ? Instruction::And
2341                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2342                       ? Instruction::Or
2343                       : (Instruction::BinaryOps)0);
2344     if (InvertCond) {
2345       if (BOpc == Instruction::And)
2346         BOpc = Instruction::Or;
2347       else if (BOpc == Instruction::Or)
2348         BOpc = Instruction::And;
2349     }
2350   }
2351 
2352   // If this node is not part of the or/and tree, emit it as a branch.
2353   // Note that all nodes in the tree should have same opcode.
2354   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2355   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2356       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2357       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2359                                  TProb, FProb, InvertCond);
2360     return;
2361   }
2362 
2363   //  Create TmpBB after CurBB.
2364   MachineFunction::iterator BBI(CurBB);
2365   MachineFunction &MF = DAG.getMachineFunction();
2366   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2367   CurBB->getParent()->insert(++BBI, TmpBB);
2368 
2369   if (Opc == Instruction::Or) {
2370     // Codegen X | Y as:
2371     // BB1:
2372     //   jmp_if_X TBB
2373     //   jmp TmpBB
2374     // TmpBB:
2375     //   jmp_if_Y TBB
2376     //   jmp FBB
2377     //
2378 
2379     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2380     // The requirement is that
2381     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2382     //     = TrueProb for original BB.
2383     // Assuming the original probabilities are A and B, one choice is to set
2384     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2385     // A/(1+B) and 2B/(1+B). This choice assumes that
2386     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2387     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2388     // TmpBB, but the math is more complicated.
2389 
2390     auto NewTrueProb = TProb / 2;
2391     auto NewFalseProb = TProb / 2 + FProb;
2392     // Emit the LHS condition.
2393     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2394                          NewFalseProb, InvertCond);
2395 
2396     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2397     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2398     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2399     // Emit the RHS condition into TmpBB.
2400     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2401                          Probs[1], InvertCond);
2402   } else {
2403     assert(Opc == Instruction::And && "Unknown merge op!");
2404     // Codegen X & Y as:
2405     // BB1:
2406     //   jmp_if_X TmpBB
2407     //   jmp FBB
2408     // TmpBB:
2409     //   jmp_if_Y TBB
2410     //   jmp FBB
2411     //
2412     //  This requires creation of TmpBB after CurBB.
2413 
2414     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2415     // The requirement is that
2416     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2417     //     = FalseProb for original BB.
2418     // Assuming the original probabilities are A and B, one choice is to set
2419     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2420     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2421     // TrueProb for BB1 * FalseProb for TmpBB.
2422 
2423     auto NewTrueProb = TProb + FProb / 2;
2424     auto NewFalseProb = FProb / 2;
2425     // Emit the LHS condition.
2426     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2427                          NewFalseProb, InvertCond);
2428 
2429     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2430     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2431     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2432     // Emit the RHS condition into TmpBB.
2433     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2434                          Probs[1], InvertCond);
2435   }
2436 }
2437 
2438 /// If the set of cases should be emitted as a series of branches, return true.
2439 /// If we should emit this as a bunch of and/or'd together conditions, return
2440 /// false.
2441 bool
2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2443   if (Cases.size() != 2) return true;
2444 
2445   // If this is two comparisons of the same values or'd or and'd together, they
2446   // will get folded into a single comparison, so don't emit two blocks.
2447   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2448        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2449       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2450        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2451     return false;
2452   }
2453 
2454   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2455   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2456   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2457       Cases[0].CC == Cases[1].CC &&
2458       isa<Constant>(Cases[0].CmpRHS) &&
2459       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2460     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2461       return false;
2462     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2463       return false;
2464   }
2465 
2466   return true;
2467 }
2468 
2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2470   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2471 
2472   // Update machine-CFG edges.
2473   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2474 
2475   if (I.isUnconditional()) {
2476     // Update machine-CFG edges.
2477     BrMBB->addSuccessor(Succ0MBB);
2478 
2479     // If this is not a fall-through branch or optimizations are switched off,
2480     // emit the branch.
2481     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) {
2482       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2483                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2484       setValue(&I, Br);
2485       DAG.setRoot(Br);
2486     }
2487 
2488     return;
2489   }
2490 
2491   // If this condition is one of the special cases we handle, do special stuff
2492   // now.
2493   const Value *CondVal = I.getCondition();
2494   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2495 
2496   // If this is a series of conditions that are or'd or and'd together, emit
2497   // this as a sequence of branches instead of setcc's with and/or operations.
2498   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2499   // unpredictable branches, and vector extracts because those jumps are likely
2500   // expensive for any target), this should improve performance.
2501   // For example, instead of something like:
2502   //     cmp A, B
2503   //     C = seteq
2504   //     cmp D, E
2505   //     F = setle
2506   //     or C, F
2507   //     jnz foo
2508   // Emit:
2509   //     cmp A, B
2510   //     je foo
2511   //     cmp D, E
2512   //     jle foo
2513   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2514   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2515       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2516     Value *Vec;
2517     const Value *BOp0, *BOp1;
2518     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2519     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2520       Opcode = Instruction::And;
2521     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2522       Opcode = Instruction::Or;
2523 
2524     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2525                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2526       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2527                            getEdgeProbability(BrMBB, Succ0MBB),
2528                            getEdgeProbability(BrMBB, Succ1MBB),
2529                            /*InvertCond=*/false);
2530       // If the compares in later blocks need to use values not currently
2531       // exported from this block, export them now.  This block should always
2532       // be the first entry.
2533       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2534 
2535       // Allow some cases to be rejected.
2536       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2537         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2538           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2539           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2540         }
2541 
2542         // Emit the branch for this block.
2543         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2544         SL->SwitchCases.erase(SL->SwitchCases.begin());
2545         return;
2546       }
2547 
2548       // Okay, we decided not to do this, remove any inserted MBB's and clear
2549       // SwitchCases.
2550       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2551         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2552 
2553       SL->SwitchCases.clear();
2554     }
2555   }
2556 
2557   // Create a CaseBlock record representing this branch.
2558   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2559                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2560 
2561   // Use visitSwitchCase to actually insert the fast branch sequence for this
2562   // cond branch.
2563   visitSwitchCase(CB, BrMBB);
2564 }
2565 
2566 /// visitSwitchCase - Emits the necessary code to represent a single node in
2567 /// the binary search tree resulting from lowering a switch instruction.
2568 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2569                                           MachineBasicBlock *SwitchBB) {
2570   SDValue Cond;
2571   SDValue CondLHS = getValue(CB.CmpLHS);
2572   SDLoc dl = CB.DL;
2573 
2574   if (CB.CC == ISD::SETTRUE) {
2575     // Branch or fall through to TrueBB.
2576     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577     SwitchBB->normalizeSuccProbs();
2578     if (CB.TrueBB != NextBlock(SwitchBB)) {
2579       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2580                               DAG.getBasicBlock(CB.TrueBB)));
2581     }
2582     return;
2583   }
2584 
2585   auto &TLI = DAG.getTargetLoweringInfo();
2586   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2587 
2588   // Build the setcc now.
2589   if (!CB.CmpMHS) {
2590     // Fold "(X == true)" to X and "(X == false)" to !X to
2591     // handle common cases produced by branch lowering.
2592     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2593         CB.CC == ISD::SETEQ)
2594       Cond = CondLHS;
2595     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2596              CB.CC == ISD::SETEQ) {
2597       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2598       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2599     } else {
2600       SDValue CondRHS = getValue(CB.CmpRHS);
2601 
2602       // If a pointer's DAG type is larger than its memory type then the DAG
2603       // values are zero-extended. This breaks signed comparisons so truncate
2604       // back to the underlying type before doing the compare.
2605       if (CondLHS.getValueType() != MemVT) {
2606         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2607         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2608       }
2609       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2610     }
2611   } else {
2612     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2613 
2614     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2615     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2616 
2617     SDValue CmpOp = getValue(CB.CmpMHS);
2618     EVT VT = CmpOp.getValueType();
2619 
2620     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2621       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2622                           ISD::SETLE);
2623     } else {
2624       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2625                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2626       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2627                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2628     }
2629   }
2630 
2631   // Update successor info
2632   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2633   // TrueBB and FalseBB are always different unless the incoming IR is
2634   // degenerate. This only happens when running llc on weird IR.
2635   if (CB.TrueBB != CB.FalseBB)
2636     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2637   SwitchBB->normalizeSuccProbs();
2638 
2639   // If the lhs block is the next block, invert the condition so that we can
2640   // fall through to the lhs instead of the rhs block.
2641   if (CB.TrueBB == NextBlock(SwitchBB)) {
2642     std::swap(CB.TrueBB, CB.FalseBB);
2643     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2644     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2645   }
2646 
2647   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2648                                MVT::Other, getControlRoot(), Cond,
2649                                DAG.getBasicBlock(CB.TrueBB));
2650 
2651   setValue(CurInst, BrCond);
2652 
2653   // Insert the false branch. Do this even if it's a fall through branch,
2654   // this makes it easier to do DAG optimizations which require inverting
2655   // the branch condition.
2656   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2657                        DAG.getBasicBlock(CB.FalseBB));
2658 
2659   DAG.setRoot(BrCond);
2660 }
2661 
2662 /// visitJumpTable - Emit JumpTable node in the current MBB
2663 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2664   // Emit the code for the jump table
2665   assert(JT.Reg != -1U && "Should lower JT Header first!");
2666   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2667   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2668                                      JT.Reg, PTy);
2669   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2670   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2671                                     MVT::Other, Index.getValue(1),
2672                                     Table, Index);
2673   DAG.setRoot(BrJumpTable);
2674 }
2675 
2676 /// visitJumpTableHeader - This function emits necessary code to produce index
2677 /// in the JumpTable from switch case.
2678 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2679                                                JumpTableHeader &JTH,
2680                                                MachineBasicBlock *SwitchBB) {
2681   SDLoc dl = getCurSDLoc();
2682 
2683   // Subtract the lowest switch case value from the value being switched on.
2684   SDValue SwitchOp = getValue(JTH.SValue);
2685   EVT VT = SwitchOp.getValueType();
2686   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2687                             DAG.getConstant(JTH.First, dl, VT));
2688 
2689   // The SDNode we just created, which holds the value being switched on minus
2690   // the smallest case value, needs to be copied to a virtual register so it
2691   // can be used as an index into the jump table in a subsequent basic block.
2692   // This value may be smaller or larger than the target's pointer type, and
2693   // therefore require extension or truncating.
2694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2695   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2696 
2697   unsigned JumpTableReg =
2698       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2699   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2700                                     JumpTableReg, SwitchOp);
2701   JT.Reg = JumpTableReg;
2702 
2703   if (!JTH.FallthroughUnreachable) {
2704     // Emit the range check for the jump table, and branch to the default block
2705     // for the switch statement if the value being switched on exceeds the
2706     // largest case in the switch.
2707     SDValue CMP = DAG.getSetCC(
2708         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2709                                    Sub.getValueType()),
2710         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2711 
2712     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2713                                  MVT::Other, CopyTo, CMP,
2714                                  DAG.getBasicBlock(JT.Default));
2715 
2716     // Avoid emitting unnecessary branches to the next block.
2717     if (JT.MBB != NextBlock(SwitchBB))
2718       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2719                            DAG.getBasicBlock(JT.MBB));
2720 
2721     DAG.setRoot(BrCond);
2722   } else {
2723     // Avoid emitting unnecessary branches to the next block.
2724     if (JT.MBB != NextBlock(SwitchBB))
2725       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2726                               DAG.getBasicBlock(JT.MBB)));
2727     else
2728       DAG.setRoot(CopyTo);
2729   }
2730 }
2731 
2732 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2733 /// variable if there exists one.
2734 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2735                                  SDValue &Chain) {
2736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2738   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2739   MachineFunction &MF = DAG.getMachineFunction();
2740   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2741   MachineSDNode *Node =
2742       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2743   if (Global) {
2744     MachinePointerInfo MPInfo(Global);
2745     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2746                  MachineMemOperand::MODereferenceable;
2747     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2748         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2749     DAG.setNodeMemRefs(Node, {MemRef});
2750   }
2751   if (PtrTy != PtrMemTy)
2752     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2753   return SDValue(Node, 0);
2754 }
2755 
2756 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2757 /// tail spliced into a stack protector check success bb.
2758 ///
2759 /// For a high level explanation of how this fits into the stack protector
2760 /// generation see the comment on the declaration of class
2761 /// StackProtectorDescriptor.
2762 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2763                                                   MachineBasicBlock *ParentBB) {
2764 
2765   // First create the loads to the guard/stack slot for the comparison.
2766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2767   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2768   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2769 
2770   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2771   int FI = MFI.getStackProtectorIndex();
2772 
2773   SDValue Guard;
2774   SDLoc dl = getCurSDLoc();
2775   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2776   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2777   Align Align =
2778       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
2779 
2780   // Generate code to load the content of the guard slot.
2781   SDValue GuardVal = DAG.getLoad(
2782       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2783       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2784       MachineMemOperand::MOVolatile);
2785 
2786   if (TLI.useStackGuardXorFP())
2787     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2788 
2789   // Retrieve guard check function, nullptr if instrumentation is inlined.
2790   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2791     // The target provides a guard check function to validate the guard value.
2792     // Generate a call to that function with the content of the guard slot as
2793     // argument.
2794     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2795     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2796 
2797     TargetLowering::ArgListTy Args;
2798     TargetLowering::ArgListEntry Entry;
2799     Entry.Node = GuardVal;
2800     Entry.Ty = FnTy->getParamType(0);
2801     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2802       Entry.IsInReg = true;
2803     Args.push_back(Entry);
2804 
2805     TargetLowering::CallLoweringInfo CLI(DAG);
2806     CLI.setDebugLoc(getCurSDLoc())
2807         .setChain(DAG.getEntryNode())
2808         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2809                    getValue(GuardCheckFn), std::move(Args));
2810 
2811     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2812     DAG.setRoot(Result.second);
2813     return;
2814   }
2815 
2816   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2817   // Otherwise, emit a volatile load to retrieve the stack guard value.
2818   SDValue Chain = DAG.getEntryNode();
2819   if (TLI.useLoadStackGuardNode()) {
2820     Guard = getLoadStackGuard(DAG, dl, Chain);
2821   } else {
2822     const Value *IRGuard = TLI.getSDagStackGuard(M);
2823     SDValue GuardPtr = getValue(IRGuard);
2824 
2825     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2826                         MachinePointerInfo(IRGuard, 0), Align,
2827                         MachineMemOperand::MOVolatile);
2828   }
2829 
2830   // Perform the comparison via a getsetcc.
2831   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2832                                                         *DAG.getContext(),
2833                                                         Guard.getValueType()),
2834                              Guard, GuardVal, ISD::SETNE);
2835 
2836   // If the guard/stackslot do not equal, branch to failure MBB.
2837   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2838                                MVT::Other, GuardVal.getOperand(0),
2839                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2840   // Otherwise branch to success MBB.
2841   SDValue Br = DAG.getNode(ISD::BR, dl,
2842                            MVT::Other, BrCond,
2843                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2844 
2845   DAG.setRoot(Br);
2846 }
2847 
2848 /// Codegen the failure basic block for a stack protector check.
2849 ///
2850 /// A failure stack protector machine basic block consists simply of a call to
2851 /// __stack_chk_fail().
2852 ///
2853 /// For a high level explanation of how this fits into the stack protector
2854 /// generation see the comment on the declaration of class
2855 /// StackProtectorDescriptor.
2856 void
2857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2859   TargetLowering::MakeLibCallOptions CallOptions;
2860   CallOptions.setDiscardResult(true);
2861   SDValue Chain =
2862       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2863                       std::nullopt, CallOptions, getCurSDLoc())
2864           .second;
2865   // On PS4/PS5, the "return address" must still be within the calling
2866   // function, even if it's at the very end, so emit an explicit TRAP here.
2867   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2868   if (TM.getTargetTriple().isPS())
2869     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2870   // WebAssembly needs an unreachable instruction after a non-returning call,
2871   // because the function return type can be different from __stack_chk_fail's
2872   // return type (void).
2873   if (TM.getTargetTriple().isWasm())
2874     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2875 
2876   DAG.setRoot(Chain);
2877 }
2878 
2879 /// visitBitTestHeader - This function emits necessary code to produce value
2880 /// suitable for "bit tests"
2881 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2882                                              MachineBasicBlock *SwitchBB) {
2883   SDLoc dl = getCurSDLoc();
2884 
2885   // Subtract the minimum value.
2886   SDValue SwitchOp = getValue(B.SValue);
2887   EVT VT = SwitchOp.getValueType();
2888   SDValue RangeSub =
2889       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2890 
2891   // Determine the type of the test operands.
2892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2893   bool UsePtrType = false;
2894   if (!TLI.isTypeLegal(VT)) {
2895     UsePtrType = true;
2896   } else {
2897     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2898       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2899         // Switch table case range are encoded into series of masks.
2900         // Just use pointer type, it's guaranteed to fit.
2901         UsePtrType = true;
2902         break;
2903       }
2904   }
2905   SDValue Sub = RangeSub;
2906   if (UsePtrType) {
2907     VT = TLI.getPointerTy(DAG.getDataLayout());
2908     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2909   }
2910 
2911   B.RegVT = VT.getSimpleVT();
2912   B.Reg = FuncInfo.CreateReg(B.RegVT);
2913   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2914 
2915   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2916 
2917   if (!B.FallthroughUnreachable)
2918     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2919   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2920   SwitchBB->normalizeSuccProbs();
2921 
2922   SDValue Root = CopyTo;
2923   if (!B.FallthroughUnreachable) {
2924     // Conditional branch to the default block.
2925     SDValue RangeCmp = DAG.getSetCC(dl,
2926         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2927                                RangeSub.getValueType()),
2928         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2929         ISD::SETUGT);
2930 
2931     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2932                        DAG.getBasicBlock(B.Default));
2933   }
2934 
2935   // Avoid emitting unnecessary branches to the next block.
2936   if (MBB != NextBlock(SwitchBB))
2937     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2938 
2939   DAG.setRoot(Root);
2940 }
2941 
2942 /// visitBitTestCase - this function produces one "bit test"
2943 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2944                                            MachineBasicBlock* NextMBB,
2945                                            BranchProbability BranchProbToNext,
2946                                            unsigned Reg,
2947                                            BitTestCase &B,
2948                                            MachineBasicBlock *SwitchBB) {
2949   SDLoc dl = getCurSDLoc();
2950   MVT VT = BB.RegVT;
2951   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2952   SDValue Cmp;
2953   unsigned PopCount = llvm::popcount(B.Mask);
2954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2955   if (PopCount == 1) {
2956     // Testing for a single bit; just compare the shift count with what it
2957     // would need to be to shift a 1 bit in that position.
2958     Cmp = DAG.getSetCC(
2959         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2960         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2961         ISD::SETEQ);
2962   } else if (PopCount == BB.Range) {
2963     // There is only one zero bit in the range, test for it directly.
2964     Cmp = DAG.getSetCC(
2965         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2966         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2967   } else {
2968     // Make desired shift
2969     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2970                                     DAG.getConstant(1, dl, VT), ShiftOp);
2971 
2972     // Emit bit tests and jumps
2973     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2974                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2975     Cmp = DAG.getSetCC(
2976         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2977         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2978   }
2979 
2980   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2981   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2982   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2983   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2984   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2985   // one as they are relative probabilities (and thus work more like weights),
2986   // and hence we need to normalize them to let the sum of them become one.
2987   SwitchBB->normalizeSuccProbs();
2988 
2989   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2990                               MVT::Other, getControlRoot(),
2991                               Cmp, DAG.getBasicBlock(B.TargetBB));
2992 
2993   // Avoid emitting unnecessary branches to the next block.
2994   if (NextMBB != NextBlock(SwitchBB))
2995     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2996                         DAG.getBasicBlock(NextMBB));
2997 
2998   DAG.setRoot(BrAnd);
2999 }
3000 
3001 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3002   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3003 
3004   // Retrieve successors. Look through artificial IR level blocks like
3005   // catchswitch for successors.
3006   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3007   const BasicBlock *EHPadBB = I.getSuccessor(1);
3008   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3009 
3010   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3011   // have to do anything here to lower funclet bundles.
3012   assert(!I.hasOperandBundlesOtherThan(
3013              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3014               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3015               LLVMContext::OB_cfguardtarget,
3016               LLVMContext::OB_clang_arc_attachedcall}) &&
3017          "Cannot lower invokes with arbitrary operand bundles yet!");
3018 
3019   const Value *Callee(I.getCalledOperand());
3020   const Function *Fn = dyn_cast<Function>(Callee);
3021   if (isa<InlineAsm>(Callee))
3022     visitInlineAsm(I, EHPadBB);
3023   else if (Fn && Fn->isIntrinsic()) {
3024     switch (Fn->getIntrinsicID()) {
3025     default:
3026       llvm_unreachable("Cannot invoke this intrinsic");
3027     case Intrinsic::donothing:
3028       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3029     case Intrinsic::seh_try_begin:
3030     case Intrinsic::seh_scope_begin:
3031     case Intrinsic::seh_try_end:
3032     case Intrinsic::seh_scope_end:
3033       if (EHPadMBB)
3034           // a block referenced by EH table
3035           // so dtor-funclet not removed by opts
3036           EHPadMBB->setMachineBlockAddressTaken();
3037       break;
3038     case Intrinsic::experimental_patchpoint_void:
3039     case Intrinsic::experimental_patchpoint_i64:
3040       visitPatchpoint(I, EHPadBB);
3041       break;
3042     case Intrinsic::experimental_gc_statepoint:
3043       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3044       break;
3045     case Intrinsic::wasm_rethrow: {
3046       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3047       // special because it can be invoked, so we manually lower it to a DAG
3048       // node here.
3049       SmallVector<SDValue, 8> Ops;
3050       Ops.push_back(getRoot()); // inchain
3051       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052       Ops.push_back(
3053           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3054                                 TLI.getPointerTy(DAG.getDataLayout())));
3055       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3056       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3057       break;
3058     }
3059     }
3060   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3061     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3062     // Eventually we will support lowering the @llvm.experimental.deoptimize
3063     // intrinsic, and right now there are no plans to support other intrinsics
3064     // with deopt state.
3065     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3066   } else {
3067     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3068   }
3069 
3070   // If the value of the invoke is used outside of its defining block, make it
3071   // available as a virtual register.
3072   // We already took care of the exported value for the statepoint instruction
3073   // during call to the LowerStatepoint.
3074   if (!isa<GCStatepointInst>(I)) {
3075     CopyToExportRegsIfNeeded(&I);
3076   }
3077 
3078   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3079   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3080   BranchProbability EHPadBBProb =
3081       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3082           : BranchProbability::getZero();
3083   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3084 
3085   // Update successor info.
3086   addSuccessorWithProb(InvokeMBB, Return);
3087   for (auto &UnwindDest : UnwindDests) {
3088     UnwindDest.first->setIsEHPad();
3089     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3090   }
3091   InvokeMBB->normalizeSuccProbs();
3092 
3093   // Drop into normal successor.
3094   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3095                           DAG.getBasicBlock(Return)));
3096 }
3097 
3098 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3099   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3100 
3101   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3102   // have to do anything here to lower funclet bundles.
3103   assert(!I.hasOperandBundlesOtherThan(
3104              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3105          "Cannot lower callbrs with arbitrary operand bundles yet!");
3106 
3107   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3108   visitInlineAsm(I);
3109   CopyToExportRegsIfNeeded(&I);
3110 
3111   // Retrieve successors.
3112   SmallPtrSet<BasicBlock *, 8> Dests;
3113   Dests.insert(I.getDefaultDest());
3114   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3115 
3116   // Update successor info.
3117   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3118   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3119     BasicBlock *Dest = I.getIndirectDest(i);
3120     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3121     Target->setIsInlineAsmBrIndirectTarget();
3122     Target->setMachineBlockAddressTaken();
3123     Target->setLabelMustBeEmitted();
3124     // Don't add duplicate machine successors.
3125     if (Dests.insert(Dest).second)
3126       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3127   }
3128   CallBrMBB->normalizeSuccProbs();
3129 
3130   // Drop into default successor.
3131   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3132                           MVT::Other, getControlRoot(),
3133                           DAG.getBasicBlock(Return)));
3134 }
3135 
3136 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3137   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3138 }
3139 
3140 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3141   assert(FuncInfo.MBB->isEHPad() &&
3142          "Call to landingpad not in landing pad!");
3143 
3144   // If there aren't registers to copy the values into (e.g., during SjLj
3145   // exceptions), then don't bother to create these DAG nodes.
3146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3147   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3148   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3149       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3150     return;
3151 
3152   // If landingpad's return type is token type, we don't create DAG nodes
3153   // for its exception pointer and selector value. The extraction of exception
3154   // pointer or selector value from token type landingpads is not currently
3155   // supported.
3156   if (LP.getType()->isTokenTy())
3157     return;
3158 
3159   SmallVector<EVT, 2> ValueVTs;
3160   SDLoc dl = getCurSDLoc();
3161   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3162   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3163 
3164   // Get the two live-in registers as SDValues. The physregs have already been
3165   // copied into virtual registers.
3166   SDValue Ops[2];
3167   if (FuncInfo.ExceptionPointerVirtReg) {
3168     Ops[0] = DAG.getZExtOrTrunc(
3169         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3170                            FuncInfo.ExceptionPointerVirtReg,
3171                            TLI.getPointerTy(DAG.getDataLayout())),
3172         dl, ValueVTs[0]);
3173   } else {
3174     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3175   }
3176   Ops[1] = DAG.getZExtOrTrunc(
3177       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3178                          FuncInfo.ExceptionSelectorVirtReg,
3179                          TLI.getPointerTy(DAG.getDataLayout())),
3180       dl, ValueVTs[1]);
3181 
3182   // Merge into one.
3183   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3184                             DAG.getVTList(ValueVTs), Ops);
3185   setValue(&LP, Res);
3186 }
3187 
3188 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3189                                            MachineBasicBlock *Last) {
3190   // Update JTCases.
3191   for (JumpTableBlock &JTB : SL->JTCases)
3192     if (JTB.first.HeaderBB == First)
3193       JTB.first.HeaderBB = Last;
3194 
3195   // Update BitTestCases.
3196   for (BitTestBlock &BTB : SL->BitTestCases)
3197     if (BTB.Parent == First)
3198       BTB.Parent = Last;
3199 }
3200 
3201 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3202   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3203 
3204   // Update machine-CFG edges with unique successors.
3205   SmallSet<BasicBlock*, 32> Done;
3206   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3207     BasicBlock *BB = I.getSuccessor(i);
3208     bool Inserted = Done.insert(BB).second;
3209     if (!Inserted)
3210         continue;
3211 
3212     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3213     addSuccessorWithProb(IndirectBrMBB, Succ);
3214   }
3215   IndirectBrMBB->normalizeSuccProbs();
3216 
3217   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3218                           MVT::Other, getControlRoot(),
3219                           getValue(I.getAddress())));
3220 }
3221 
3222 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3223   if (!DAG.getTarget().Options.TrapUnreachable)
3224     return;
3225 
3226   // We may be able to ignore unreachable behind a noreturn call.
3227   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3228     const BasicBlock &BB = *I.getParent();
3229     if (&I != &BB.front()) {
3230       BasicBlock::const_iterator PredI =
3231         std::prev(BasicBlock::const_iterator(&I));
3232       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3233         if (Call->doesNotReturn())
3234           return;
3235       }
3236     }
3237   }
3238 
3239   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3240 }
3241 
3242 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3243   SDNodeFlags Flags;
3244   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3245     Flags.copyFMF(*FPOp);
3246 
3247   SDValue Op = getValue(I.getOperand(0));
3248   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3249                                     Op, Flags);
3250   setValue(&I, UnNodeValue);
3251 }
3252 
3253 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3254   SDNodeFlags Flags;
3255   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3256     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3257     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3258   }
3259   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3260     Flags.setExact(ExactOp->isExact());
3261   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3262     Flags.copyFMF(*FPOp);
3263 
3264   SDValue Op1 = getValue(I.getOperand(0));
3265   SDValue Op2 = getValue(I.getOperand(1));
3266   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3267                                      Op1, Op2, Flags);
3268   setValue(&I, BinNodeValue);
3269 }
3270 
3271 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3272   SDValue Op1 = getValue(I.getOperand(0));
3273   SDValue Op2 = getValue(I.getOperand(1));
3274 
3275   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3276       Op1.getValueType(), DAG.getDataLayout());
3277 
3278   // Coerce the shift amount to the right type if we can. This exposes the
3279   // truncate or zext to optimization early.
3280   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3281     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3282            "Unexpected shift type");
3283     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3284   }
3285 
3286   bool nuw = false;
3287   bool nsw = false;
3288   bool exact = false;
3289 
3290   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3291 
3292     if (const OverflowingBinaryOperator *OFBinOp =
3293             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3294       nuw = OFBinOp->hasNoUnsignedWrap();
3295       nsw = OFBinOp->hasNoSignedWrap();
3296     }
3297     if (const PossiblyExactOperator *ExactOp =
3298             dyn_cast<const PossiblyExactOperator>(&I))
3299       exact = ExactOp->isExact();
3300   }
3301   SDNodeFlags Flags;
3302   Flags.setExact(exact);
3303   Flags.setNoSignedWrap(nsw);
3304   Flags.setNoUnsignedWrap(nuw);
3305   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3306                             Flags);
3307   setValue(&I, Res);
3308 }
3309 
3310 void SelectionDAGBuilder::visitSDiv(const User &I) {
3311   SDValue Op1 = getValue(I.getOperand(0));
3312   SDValue Op2 = getValue(I.getOperand(1));
3313 
3314   SDNodeFlags Flags;
3315   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3316                  cast<PossiblyExactOperator>(&I)->isExact());
3317   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3318                            Op2, Flags));
3319 }
3320 
3321 void SelectionDAGBuilder::visitICmp(const User &I) {
3322   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3323   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3324     predicate = IC->getPredicate();
3325   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3326     predicate = ICmpInst::Predicate(IC->getPredicate());
3327   SDValue Op1 = getValue(I.getOperand(0));
3328   SDValue Op2 = getValue(I.getOperand(1));
3329   ISD::CondCode Opcode = getICmpCondCode(predicate);
3330 
3331   auto &TLI = DAG.getTargetLoweringInfo();
3332   EVT MemVT =
3333       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3334 
3335   // If a pointer's DAG type is larger than its memory type then the DAG values
3336   // are zero-extended. This breaks signed comparisons so truncate back to the
3337   // underlying type before doing the compare.
3338   if (Op1.getValueType() != MemVT) {
3339     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3340     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3341   }
3342 
3343   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                         I.getType());
3345   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3346 }
3347 
3348 void SelectionDAGBuilder::visitFCmp(const User &I) {
3349   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3350   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3351     predicate = FC->getPredicate();
3352   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3353     predicate = FCmpInst::Predicate(FC->getPredicate());
3354   SDValue Op1 = getValue(I.getOperand(0));
3355   SDValue Op2 = getValue(I.getOperand(1));
3356 
3357   ISD::CondCode Condition = getFCmpCondCode(predicate);
3358   auto *FPMO = cast<FPMathOperator>(&I);
3359   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3360     Condition = getFCmpCodeWithoutNaN(Condition);
3361 
3362   SDNodeFlags Flags;
3363   Flags.copyFMF(*FPMO);
3364   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3365 
3366   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3367                                                         I.getType());
3368   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3369 }
3370 
3371 // Check if the condition of the select has one use or two users that are both
3372 // selects with the same condition.
3373 static bool hasOnlySelectUsers(const Value *Cond) {
3374   return llvm::all_of(Cond->users(), [](const Value *V) {
3375     return isa<SelectInst>(V);
3376   });
3377 }
3378 
3379 void SelectionDAGBuilder::visitSelect(const User &I) {
3380   SmallVector<EVT, 4> ValueVTs;
3381   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3382                   ValueVTs);
3383   unsigned NumValues = ValueVTs.size();
3384   if (NumValues == 0) return;
3385 
3386   SmallVector<SDValue, 4> Values(NumValues);
3387   SDValue Cond     = getValue(I.getOperand(0));
3388   SDValue LHSVal   = getValue(I.getOperand(1));
3389   SDValue RHSVal   = getValue(I.getOperand(2));
3390   SmallVector<SDValue, 1> BaseOps(1, Cond);
3391   ISD::NodeType OpCode =
3392       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3393 
3394   bool IsUnaryAbs = false;
3395   bool Negate = false;
3396 
3397   SDNodeFlags Flags;
3398   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3399     Flags.copyFMF(*FPOp);
3400 
3401   Flags.setUnpredictable(
3402       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3403 
3404   // Min/max matching is only viable if all output VTs are the same.
3405   if (all_equal(ValueVTs)) {
3406     EVT VT = ValueVTs[0];
3407     LLVMContext &Ctx = *DAG.getContext();
3408     auto &TLI = DAG.getTargetLoweringInfo();
3409 
3410     // We care about the legality of the operation after it has been type
3411     // legalized.
3412     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3413       VT = TLI.getTypeToTransformTo(Ctx, VT);
3414 
3415     // If the vselect is legal, assume we want to leave this as a vector setcc +
3416     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3417     // min/max is legal on the scalar type.
3418     bool UseScalarMinMax = VT.isVector() &&
3419       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3420 
3421     // ValueTracking's select pattern matching does not account for -0.0,
3422     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3423     // -0.0 is less than +0.0.
3424     Value *LHS, *RHS;
3425     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3426     ISD::NodeType Opc = ISD::DELETED_NODE;
3427     switch (SPR.Flavor) {
3428     case SPF_UMAX:    Opc = ISD::UMAX; break;
3429     case SPF_UMIN:    Opc = ISD::UMIN; break;
3430     case SPF_SMAX:    Opc = ISD::SMAX; break;
3431     case SPF_SMIN:    Opc = ISD::SMIN; break;
3432     case SPF_FMINNUM:
3433       switch (SPR.NaNBehavior) {
3434       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3435       case SPNB_RETURNS_NAN: break;
3436       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3437       case SPNB_RETURNS_ANY:
3438         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3439             (UseScalarMinMax &&
3440              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3441           Opc = ISD::FMINNUM;
3442         break;
3443       }
3444       break;
3445     case SPF_FMAXNUM:
3446       switch (SPR.NaNBehavior) {
3447       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3448       case SPNB_RETURNS_NAN: break;
3449       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3450       case SPNB_RETURNS_ANY:
3451         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3452             (UseScalarMinMax &&
3453              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3454           Opc = ISD::FMAXNUM;
3455         break;
3456       }
3457       break;
3458     case SPF_NABS:
3459       Negate = true;
3460       [[fallthrough]];
3461     case SPF_ABS:
3462       IsUnaryAbs = true;
3463       Opc = ISD::ABS;
3464       break;
3465     default: break;
3466     }
3467 
3468     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3469         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3470          (UseScalarMinMax &&
3471           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3472         // If the underlying comparison instruction is used by any other
3473         // instruction, the consumed instructions won't be destroyed, so it is
3474         // not profitable to convert to a min/max.
3475         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3476       OpCode = Opc;
3477       LHSVal = getValue(LHS);
3478       RHSVal = getValue(RHS);
3479       BaseOps.clear();
3480     }
3481 
3482     if (IsUnaryAbs) {
3483       OpCode = Opc;
3484       LHSVal = getValue(LHS);
3485       BaseOps.clear();
3486     }
3487   }
3488 
3489   if (IsUnaryAbs) {
3490     for (unsigned i = 0; i != NumValues; ++i) {
3491       SDLoc dl = getCurSDLoc();
3492       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3493       Values[i] =
3494           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3495       if (Negate)
3496         Values[i] = DAG.getNegative(Values[i], dl, VT);
3497     }
3498   } else {
3499     for (unsigned i = 0; i != NumValues; ++i) {
3500       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3501       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3502       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3503       Values[i] = DAG.getNode(
3504           OpCode, getCurSDLoc(),
3505           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3506     }
3507   }
3508 
3509   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3510                            DAG.getVTList(ValueVTs), Values));
3511 }
3512 
3513 void SelectionDAGBuilder::visitTrunc(const User &I) {
3514   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3515   SDValue N = getValue(I.getOperand(0));
3516   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3517                                                         I.getType());
3518   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3519 }
3520 
3521 void SelectionDAGBuilder::visitZExt(const User &I) {
3522   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3523   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3524   SDValue N = getValue(I.getOperand(0));
3525   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3526                                                         I.getType());
3527   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3528 }
3529 
3530 void SelectionDAGBuilder::visitSExt(const User &I) {
3531   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3532   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3533   SDValue N = getValue(I.getOperand(0));
3534   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3535                                                         I.getType());
3536   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3537 }
3538 
3539 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3540   // FPTrunc is never a no-op cast, no need to check
3541   SDValue N = getValue(I.getOperand(0));
3542   SDLoc dl = getCurSDLoc();
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3546                            DAG.getTargetConstant(
3547                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3548 }
3549 
3550 void SelectionDAGBuilder::visitFPExt(const User &I) {
3551   // FPExt is never a no-op cast, no need to check
3552   SDValue N = getValue(I.getOperand(0));
3553   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3554                                                         I.getType());
3555   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3556 }
3557 
3558 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3559   // FPToUI is never a no-op cast, no need to check
3560   SDValue N = getValue(I.getOperand(0));
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3564 }
3565 
3566 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3567   // FPToSI is never a no-op cast, no need to check
3568   SDValue N = getValue(I.getOperand(0));
3569   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3570                                                         I.getType());
3571   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3572 }
3573 
3574 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3575   // UIToFP is never a no-op cast, no need to check
3576   SDValue N = getValue(I.getOperand(0));
3577   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3578                                                         I.getType());
3579   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3580 }
3581 
3582 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3583   // SIToFP is never a no-op cast, no need to check
3584   SDValue N = getValue(I.getOperand(0));
3585   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3586                                                         I.getType());
3587   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3588 }
3589 
3590 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3591   // What to do depends on the size of the integer and the size of the pointer.
3592   // We can either truncate, zero extend, or no-op, accordingly.
3593   SDValue N = getValue(I.getOperand(0));
3594   auto &TLI = DAG.getTargetLoweringInfo();
3595   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3596                                                         I.getType());
3597   EVT PtrMemVT =
3598       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3599   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3600   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3601   setValue(&I, N);
3602 }
3603 
3604 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3605   // What to do depends on the size of the integer and the size of the pointer.
3606   // We can either truncate, zero extend, or no-op, accordingly.
3607   SDValue N = getValue(I.getOperand(0));
3608   auto &TLI = DAG.getTargetLoweringInfo();
3609   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3610   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3611   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3612   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3613   setValue(&I, N);
3614 }
3615 
3616 void SelectionDAGBuilder::visitBitCast(const User &I) {
3617   SDValue N = getValue(I.getOperand(0));
3618   SDLoc dl = getCurSDLoc();
3619   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3620                                                         I.getType());
3621 
3622   // BitCast assures us that source and destination are the same size so this is
3623   // either a BITCAST or a no-op.
3624   if (DestVT != N.getValueType())
3625     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3626                              DestVT, N)); // convert types.
3627   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3628   // might fold any kind of constant expression to an integer constant and that
3629   // is not what we are looking for. Only recognize a bitcast of a genuine
3630   // constant integer as an opaque constant.
3631   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3632     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3633                                  /*isOpaque*/true));
3634   else
3635     setValue(&I, N);            // noop cast.
3636 }
3637 
3638 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3640   const Value *SV = I.getOperand(0);
3641   SDValue N = getValue(SV);
3642   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3643 
3644   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3645   unsigned DestAS = I.getType()->getPointerAddressSpace();
3646 
3647   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3648     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3649 
3650   setValue(&I, N);
3651 }
3652 
3653 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3655   SDValue InVec = getValue(I.getOperand(0));
3656   SDValue InVal = getValue(I.getOperand(1));
3657   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3658                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3659   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3660                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3661                            InVec, InVal, InIdx));
3662 }
3663 
3664 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3666   SDValue InVec = getValue(I.getOperand(0));
3667   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3668                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3669   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3670                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3671                            InVec, InIdx));
3672 }
3673 
3674 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3675   SDValue Src1 = getValue(I.getOperand(0));
3676   SDValue Src2 = getValue(I.getOperand(1));
3677   ArrayRef<int> Mask;
3678   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3679     Mask = SVI->getShuffleMask();
3680   else
3681     Mask = cast<ConstantExpr>(I).getShuffleMask();
3682   SDLoc DL = getCurSDLoc();
3683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3685   EVT SrcVT = Src1.getValueType();
3686 
3687   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3688       VT.isScalableVector()) {
3689     // Canonical splat form of first element of first input vector.
3690     SDValue FirstElt =
3691         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3692                     DAG.getVectorIdxConstant(0, DL));
3693     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3694     return;
3695   }
3696 
3697   // For now, we only handle splats for scalable vectors.
3698   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3699   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3700   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3701 
3702   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3703   unsigned MaskNumElts = Mask.size();
3704 
3705   if (SrcNumElts == MaskNumElts) {
3706     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3707     return;
3708   }
3709 
3710   // Normalize the shuffle vector since mask and vector length don't match.
3711   if (SrcNumElts < MaskNumElts) {
3712     // Mask is longer than the source vectors. We can use concatenate vector to
3713     // make the mask and vectors lengths match.
3714 
3715     if (MaskNumElts % SrcNumElts == 0) {
3716       // Mask length is a multiple of the source vector length.
3717       // Check if the shuffle is some kind of concatenation of the input
3718       // vectors.
3719       unsigned NumConcat = MaskNumElts / SrcNumElts;
3720       bool IsConcat = true;
3721       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3722       for (unsigned i = 0; i != MaskNumElts; ++i) {
3723         int Idx = Mask[i];
3724         if (Idx < 0)
3725           continue;
3726         // Ensure the indices in each SrcVT sized piece are sequential and that
3727         // the same source is used for the whole piece.
3728         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3729             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3730              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3731           IsConcat = false;
3732           break;
3733         }
3734         // Remember which source this index came from.
3735         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3736       }
3737 
3738       // The shuffle is concatenating multiple vectors together. Just emit
3739       // a CONCAT_VECTORS operation.
3740       if (IsConcat) {
3741         SmallVector<SDValue, 8> ConcatOps;
3742         for (auto Src : ConcatSrcs) {
3743           if (Src < 0)
3744             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3745           else if (Src == 0)
3746             ConcatOps.push_back(Src1);
3747           else
3748             ConcatOps.push_back(Src2);
3749         }
3750         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3751         return;
3752       }
3753     }
3754 
3755     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3756     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3757     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3758                                     PaddedMaskNumElts);
3759 
3760     // Pad both vectors with undefs to make them the same length as the mask.
3761     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3762 
3763     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3764     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3765     MOps1[0] = Src1;
3766     MOps2[0] = Src2;
3767 
3768     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3769     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3770 
3771     // Readjust mask for new input vector length.
3772     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3773     for (unsigned i = 0; i != MaskNumElts; ++i) {
3774       int Idx = Mask[i];
3775       if (Idx >= (int)SrcNumElts)
3776         Idx -= SrcNumElts - PaddedMaskNumElts;
3777       MappedOps[i] = Idx;
3778     }
3779 
3780     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3781 
3782     // If the concatenated vector was padded, extract a subvector with the
3783     // correct number of elements.
3784     if (MaskNumElts != PaddedMaskNumElts)
3785       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3786                            DAG.getVectorIdxConstant(0, DL));
3787 
3788     setValue(&I, Result);
3789     return;
3790   }
3791 
3792   if (SrcNumElts > MaskNumElts) {
3793     // Analyze the access pattern of the vector to see if we can extract
3794     // two subvectors and do the shuffle.
3795     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3796     bool CanExtract = true;
3797     for (int Idx : Mask) {
3798       unsigned Input = 0;
3799       if (Idx < 0)
3800         continue;
3801 
3802       if (Idx >= (int)SrcNumElts) {
3803         Input = 1;
3804         Idx -= SrcNumElts;
3805       }
3806 
3807       // If all the indices come from the same MaskNumElts sized portion of
3808       // the sources we can use extract. Also make sure the extract wouldn't
3809       // extract past the end of the source.
3810       int NewStartIdx = alignDown(Idx, MaskNumElts);
3811       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3812           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3813         CanExtract = false;
3814       // Make sure we always update StartIdx as we use it to track if all
3815       // elements are undef.
3816       StartIdx[Input] = NewStartIdx;
3817     }
3818 
3819     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3820       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3821       return;
3822     }
3823     if (CanExtract) {
3824       // Extract appropriate subvector and generate a vector shuffle
3825       for (unsigned Input = 0; Input < 2; ++Input) {
3826         SDValue &Src = Input == 0 ? Src1 : Src2;
3827         if (StartIdx[Input] < 0)
3828           Src = DAG.getUNDEF(VT);
3829         else {
3830           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3831                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3832         }
3833       }
3834 
3835       // Calculate new mask.
3836       SmallVector<int, 8> MappedOps(Mask);
3837       for (int &Idx : MappedOps) {
3838         if (Idx >= (int)SrcNumElts)
3839           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3840         else if (Idx >= 0)
3841           Idx -= StartIdx[0];
3842       }
3843 
3844       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3845       return;
3846     }
3847   }
3848 
3849   // We can't use either concat vectors or extract subvectors so fall back to
3850   // replacing the shuffle with extract and build vector.
3851   // to insert and build vector.
3852   EVT EltVT = VT.getVectorElementType();
3853   SmallVector<SDValue,8> Ops;
3854   for (int Idx : Mask) {
3855     SDValue Res;
3856 
3857     if (Idx < 0) {
3858       Res = DAG.getUNDEF(EltVT);
3859     } else {
3860       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3861       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3862 
3863       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3864                         DAG.getVectorIdxConstant(Idx, DL));
3865     }
3866 
3867     Ops.push_back(Res);
3868   }
3869 
3870   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3871 }
3872 
3873 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3874   ArrayRef<unsigned> Indices = I.getIndices();
3875   const Value *Op0 = I.getOperand(0);
3876   const Value *Op1 = I.getOperand(1);
3877   Type *AggTy = I.getType();
3878   Type *ValTy = Op1->getType();
3879   bool IntoUndef = isa<UndefValue>(Op0);
3880   bool FromUndef = isa<UndefValue>(Op1);
3881 
3882   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3883 
3884   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3885   SmallVector<EVT, 4> AggValueVTs;
3886   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3887   SmallVector<EVT, 4> ValValueVTs;
3888   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3889 
3890   unsigned NumAggValues = AggValueVTs.size();
3891   unsigned NumValValues = ValValueVTs.size();
3892   SmallVector<SDValue, 4> Values(NumAggValues);
3893 
3894   // Ignore an insertvalue that produces an empty object
3895   if (!NumAggValues) {
3896     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3897     return;
3898   }
3899 
3900   SDValue Agg = getValue(Op0);
3901   unsigned i = 0;
3902   // Copy the beginning value(s) from the original aggregate.
3903   for (; i != LinearIndex; ++i)
3904     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3905                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3906   // Copy values from the inserted value(s).
3907   if (NumValValues) {
3908     SDValue Val = getValue(Op1);
3909     for (; i != LinearIndex + NumValValues; ++i)
3910       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3911                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3912   }
3913   // Copy remaining value(s) from the original aggregate.
3914   for (; i != NumAggValues; ++i)
3915     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3916                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3917 
3918   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3919                            DAG.getVTList(AggValueVTs), Values));
3920 }
3921 
3922 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3923   ArrayRef<unsigned> Indices = I.getIndices();
3924   const Value *Op0 = I.getOperand(0);
3925   Type *AggTy = Op0->getType();
3926   Type *ValTy = I.getType();
3927   bool OutOfUndef = isa<UndefValue>(Op0);
3928 
3929   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3930 
3931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3932   SmallVector<EVT, 4> ValValueVTs;
3933   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3934 
3935   unsigned NumValValues = ValValueVTs.size();
3936 
3937   // Ignore a extractvalue that produces an empty object
3938   if (!NumValValues) {
3939     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3940     return;
3941   }
3942 
3943   SmallVector<SDValue, 4> Values(NumValValues);
3944 
3945   SDValue Agg = getValue(Op0);
3946   // Copy out the selected value(s).
3947   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3948     Values[i - LinearIndex] =
3949       OutOfUndef ?
3950         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3951         SDValue(Agg.getNode(), Agg.getResNo() + i);
3952 
3953   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3954                            DAG.getVTList(ValValueVTs), Values));
3955 }
3956 
3957 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3958   Value *Op0 = I.getOperand(0);
3959   // Note that the pointer operand may be a vector of pointers. Take the scalar
3960   // element which holds a pointer.
3961   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3962   SDValue N = getValue(Op0);
3963   SDLoc dl = getCurSDLoc();
3964   auto &TLI = DAG.getTargetLoweringInfo();
3965 
3966   // Normalize Vector GEP - all scalar operands should be converted to the
3967   // splat vector.
3968   bool IsVectorGEP = I.getType()->isVectorTy();
3969   ElementCount VectorElementCount =
3970       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3971                   : ElementCount::getFixed(0);
3972 
3973   if (IsVectorGEP && !N.getValueType().isVector()) {
3974     LLVMContext &Context = *DAG.getContext();
3975     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3976     N = DAG.getSplat(VT, dl, N);
3977   }
3978 
3979   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3980        GTI != E; ++GTI) {
3981     const Value *Idx = GTI.getOperand();
3982     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3983       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3984       if (Field) {
3985         // N = N + Offset
3986         uint64_t Offset =
3987             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3988 
3989         // In an inbounds GEP with an offset that is nonnegative even when
3990         // interpreted as signed, assume there is no unsigned overflow.
3991         SDNodeFlags Flags;
3992         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3993           Flags.setNoUnsignedWrap(true);
3994 
3995         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3996                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3997       }
3998     } else {
3999       // IdxSize is the width of the arithmetic according to IR semantics.
4000       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4001       // (and fix up the result later).
4002       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4003       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4004       TypeSize ElementSize =
4005           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4006       // We intentionally mask away the high bits here; ElementSize may not
4007       // fit in IdxTy.
4008       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4009       bool ElementScalable = ElementSize.isScalable();
4010 
4011       // If this is a scalar constant or a splat vector of constants,
4012       // handle it quickly.
4013       const auto *C = dyn_cast<Constant>(Idx);
4014       if (C && isa<VectorType>(C->getType()))
4015         C = C->getSplatValue();
4016 
4017       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4018       if (CI && CI->isZero())
4019         continue;
4020       if (CI && !ElementScalable) {
4021         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4022         LLVMContext &Context = *DAG.getContext();
4023         SDValue OffsVal;
4024         if (IsVectorGEP)
4025           OffsVal = DAG.getConstant(
4026               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4027         else
4028           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4029 
4030         // In an inbounds GEP with an offset that is nonnegative even when
4031         // interpreted as signed, assume there is no unsigned overflow.
4032         SDNodeFlags Flags;
4033         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4034           Flags.setNoUnsignedWrap(true);
4035 
4036         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4037 
4038         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4039         continue;
4040       }
4041 
4042       // N = N + Idx * ElementMul;
4043       SDValue IdxN = getValue(Idx);
4044 
4045       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4046         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4047                                   VectorElementCount);
4048         IdxN = DAG.getSplat(VT, dl, IdxN);
4049       }
4050 
4051       // If the index is smaller or larger than intptr_t, truncate or extend
4052       // it.
4053       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4054 
4055       if (ElementScalable) {
4056         EVT VScaleTy = N.getValueType().getScalarType();
4057         SDValue VScale = DAG.getNode(
4058             ISD::VSCALE, dl, VScaleTy,
4059             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4060         if (IsVectorGEP)
4061           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4062         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4063       } else {
4064         // If this is a multiply by a power of two, turn it into a shl
4065         // immediately.  This is a very common case.
4066         if (ElementMul != 1) {
4067           if (ElementMul.isPowerOf2()) {
4068             unsigned Amt = ElementMul.logBase2();
4069             IdxN = DAG.getNode(ISD::SHL, dl,
4070                                N.getValueType(), IdxN,
4071                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4072           } else {
4073             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4074                                             IdxN.getValueType());
4075             IdxN = DAG.getNode(ISD::MUL, dl,
4076                                N.getValueType(), IdxN, Scale);
4077           }
4078         }
4079       }
4080 
4081       N = DAG.getNode(ISD::ADD, dl,
4082                       N.getValueType(), N, IdxN);
4083     }
4084   }
4085 
4086   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4087   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4088   if (IsVectorGEP) {
4089     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4090     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4091   }
4092 
4093   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4094     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4095 
4096   setValue(&I, N);
4097 }
4098 
4099 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4100   // If this is a fixed sized alloca in the entry block of the function,
4101   // allocate it statically on the stack.
4102   if (FuncInfo.StaticAllocaMap.count(&I))
4103     return;   // getValue will auto-populate this.
4104 
4105   SDLoc dl = getCurSDLoc();
4106   Type *Ty = I.getAllocatedType();
4107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4108   auto &DL = DAG.getDataLayout();
4109   TypeSize TySize = DL.getTypeAllocSize(Ty);
4110   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4111 
4112   SDValue AllocSize = getValue(I.getArraySize());
4113 
4114   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4115   if (AllocSize.getValueType() != IntPtr)
4116     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4117 
4118   if (TySize.isScalable())
4119     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4120                             DAG.getVScale(dl, IntPtr,
4121                                           APInt(IntPtr.getScalarSizeInBits(),
4122                                                 TySize.getKnownMinValue())));
4123   else
4124     AllocSize =
4125         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4126                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4127 
4128   // Handle alignment.  If the requested alignment is less than or equal to
4129   // the stack alignment, ignore it.  If the size is greater than or equal to
4130   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4131   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4132   if (*Alignment <= StackAlign)
4133     Alignment = std::nullopt;
4134 
4135   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4136   // Round the size of the allocation up to the stack alignment size
4137   // by add SA-1 to the size. This doesn't overflow because we're computing
4138   // an address inside an alloca.
4139   SDNodeFlags Flags;
4140   Flags.setNoUnsignedWrap(true);
4141   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4142                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4143 
4144   // Mask out the low bits for alignment purposes.
4145   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4146                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4147 
4148   SDValue Ops[] = {
4149       getRoot(), AllocSize,
4150       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4151   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4152   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4153   setValue(&I, DSA);
4154   DAG.setRoot(DSA.getValue(1));
4155 
4156   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4157 }
4158 
4159 static const MDNode *getRangeMetadata(const Instruction &I) {
4160   // If !noundef is not present, then !range violation results in a poison
4161   // value rather than immediate undefined behavior. In theory, transferring
4162   // these annotations to SDAG is fine, but in practice there are key SDAG
4163   // transforms that are known not to be poison-safe, such as folding logical
4164   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4165   // also present.
4166   if (!I.hasMetadata(LLVMContext::MD_noundef))
4167     return nullptr;
4168   return I.getMetadata(LLVMContext::MD_range);
4169 }
4170 
4171 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4172   if (I.isAtomic())
4173     return visitAtomicLoad(I);
4174 
4175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4176   const Value *SV = I.getOperand(0);
4177   if (TLI.supportSwiftError()) {
4178     // Swifterror values can come from either a function parameter with
4179     // swifterror attribute or an alloca with swifterror attribute.
4180     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4181       if (Arg->hasSwiftErrorAttr())
4182         return visitLoadFromSwiftError(I);
4183     }
4184 
4185     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4186       if (Alloca->isSwiftError())
4187         return visitLoadFromSwiftError(I);
4188     }
4189   }
4190 
4191   SDValue Ptr = getValue(SV);
4192 
4193   Type *Ty = I.getType();
4194   SmallVector<EVT, 4> ValueVTs, MemVTs;
4195   SmallVector<uint64_t, 4> Offsets;
4196   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4197   unsigned NumValues = ValueVTs.size();
4198   if (NumValues == 0)
4199     return;
4200 
4201   Align Alignment = I.getAlign();
4202   AAMDNodes AAInfo = I.getAAMetadata();
4203   const MDNode *Ranges = getRangeMetadata(I);
4204   bool isVolatile = I.isVolatile();
4205   MachineMemOperand::Flags MMOFlags =
4206       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4207 
4208   SDValue Root;
4209   bool ConstantMemory = false;
4210   if (isVolatile)
4211     // Serialize volatile loads with other side effects.
4212     Root = getRoot();
4213   else if (NumValues > MaxParallelChains)
4214     Root = getMemoryRoot();
4215   else if (AA &&
4216            AA->pointsToConstantMemory(MemoryLocation(
4217                SV,
4218                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4219                AAInfo))) {
4220     // Do not serialize (non-volatile) loads of constant memory with anything.
4221     Root = DAG.getEntryNode();
4222     ConstantMemory = true;
4223     MMOFlags |= MachineMemOperand::MOInvariant;
4224   } else {
4225     // Do not serialize non-volatile loads against each other.
4226     Root = DAG.getRoot();
4227   }
4228 
4229   SDLoc dl = getCurSDLoc();
4230 
4231   if (isVolatile)
4232     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4233 
4234   SmallVector<SDValue, 4> Values(NumValues);
4235   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4236 
4237   unsigned ChainI = 0;
4238   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4239     // Serializing loads here may result in excessive register pressure, and
4240     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4241     // could recover a bit by hoisting nodes upward in the chain by recognizing
4242     // they are side-effect free or do not alias. The optimizer should really
4243     // avoid this case by converting large object/array copies to llvm.memcpy
4244     // (MaxParallelChains should always remain as failsafe).
4245     if (ChainI == MaxParallelChains) {
4246       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4247       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4248                                   ArrayRef(Chains.data(), ChainI));
4249       Root = Chain;
4250       ChainI = 0;
4251     }
4252 
4253     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(Offsets[i]));
4254     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4255                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4256                             MMOFlags, AAInfo, Ranges);
4257     Chains[ChainI] = L.getValue(1);
4258 
4259     if (MemVTs[i] != ValueVTs[i])
4260       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4261 
4262     Values[i] = L;
4263   }
4264 
4265   if (!ConstantMemory) {
4266     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4267                                 ArrayRef(Chains.data(), ChainI));
4268     if (isVolatile)
4269       DAG.setRoot(Chain);
4270     else
4271       PendingLoads.push_back(Chain);
4272   }
4273 
4274   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4275                            DAG.getVTList(ValueVTs), Values));
4276 }
4277 
4278 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4279   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4280          "call visitStoreToSwiftError when backend supports swifterror");
4281 
4282   SmallVector<EVT, 4> ValueVTs;
4283   SmallVector<uint64_t, 4> Offsets;
4284   const Value *SrcV = I.getOperand(0);
4285   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4286                   SrcV->getType(), ValueVTs, &Offsets, 0);
4287   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4288          "expect a single EVT for swifterror");
4289 
4290   SDValue Src = getValue(SrcV);
4291   // Create a virtual register, then update the virtual register.
4292   Register VReg =
4293       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4294   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4295   // Chain can be getRoot or getControlRoot.
4296   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4297                                       SDValue(Src.getNode(), Src.getResNo()));
4298   DAG.setRoot(CopyNode);
4299 }
4300 
4301 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4302   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4303          "call visitLoadFromSwiftError when backend supports swifterror");
4304 
4305   assert(!I.isVolatile() &&
4306          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4307          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4308          "Support volatile, non temporal, invariant for load_from_swift_error");
4309 
4310   const Value *SV = I.getOperand(0);
4311   Type *Ty = I.getType();
4312   assert(
4313       (!AA ||
4314        !AA->pointsToConstantMemory(MemoryLocation(
4315            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4316            I.getAAMetadata()))) &&
4317       "load_from_swift_error should not be constant memory");
4318 
4319   SmallVector<EVT, 4> ValueVTs;
4320   SmallVector<uint64_t, 4> Offsets;
4321   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4322                   ValueVTs, &Offsets, 0);
4323   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4324          "expect a single EVT for swifterror");
4325 
4326   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4327   SDValue L = DAG.getCopyFromReg(
4328       getRoot(), getCurSDLoc(),
4329       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4330 
4331   setValue(&I, L);
4332 }
4333 
4334 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4335   if (I.isAtomic())
4336     return visitAtomicStore(I);
4337 
4338   const Value *SrcV = I.getOperand(0);
4339   const Value *PtrV = I.getOperand(1);
4340 
4341   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4342   if (TLI.supportSwiftError()) {
4343     // Swifterror values can come from either a function parameter with
4344     // swifterror attribute or an alloca with swifterror attribute.
4345     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4346       if (Arg->hasSwiftErrorAttr())
4347         return visitStoreToSwiftError(I);
4348     }
4349 
4350     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4351       if (Alloca->isSwiftError())
4352         return visitStoreToSwiftError(I);
4353     }
4354   }
4355 
4356   SmallVector<EVT, 4> ValueVTs, MemVTs;
4357   SmallVector<uint64_t, 4> Offsets;
4358   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4359                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4360   unsigned NumValues = ValueVTs.size();
4361   if (NumValues == 0)
4362     return;
4363 
4364   // Get the lowered operands. Note that we do this after
4365   // checking if NumResults is zero, because with zero results
4366   // the operands won't have values in the map.
4367   SDValue Src = getValue(SrcV);
4368   SDValue Ptr = getValue(PtrV);
4369 
4370   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4371   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4372   SDLoc dl = getCurSDLoc();
4373   Align Alignment = I.getAlign();
4374   AAMDNodes AAInfo = I.getAAMetadata();
4375 
4376   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4377 
4378   unsigned ChainI = 0;
4379   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4380     // See visitLoad comments.
4381     if (ChainI == MaxParallelChains) {
4382       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4383                                   ArrayRef(Chains.data(), ChainI));
4384       Root = Chain;
4385       ChainI = 0;
4386     }
4387 
4388     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(Offsets[i]));
4389     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4390     if (MemVTs[i] != ValueVTs[i])
4391       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4392     SDValue St =
4393         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4394                      Alignment, MMOFlags, AAInfo);
4395     Chains[ChainI] = St;
4396   }
4397 
4398   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4399                                   ArrayRef(Chains.data(), ChainI));
4400   setValue(&I, StoreNode);
4401   DAG.setRoot(StoreNode);
4402 }
4403 
4404 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4405                                            bool IsCompressing) {
4406   SDLoc sdl = getCurSDLoc();
4407 
4408   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4409                                MaybeAlign &Alignment) {
4410     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4411     Src0 = I.getArgOperand(0);
4412     Ptr = I.getArgOperand(1);
4413     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4414     Mask = I.getArgOperand(3);
4415   };
4416   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4417                                     MaybeAlign &Alignment) {
4418     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4419     Src0 = I.getArgOperand(0);
4420     Ptr = I.getArgOperand(1);
4421     Mask = I.getArgOperand(2);
4422     Alignment = std::nullopt;
4423   };
4424 
4425   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4426   MaybeAlign Alignment;
4427   if (IsCompressing)
4428     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4429   else
4430     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4431 
4432   SDValue Ptr = getValue(PtrOperand);
4433   SDValue Src0 = getValue(Src0Operand);
4434   SDValue Mask = getValue(MaskOperand);
4435   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4436 
4437   EVT VT = Src0.getValueType();
4438   if (!Alignment)
4439     Alignment = DAG.getEVTAlign(VT);
4440 
4441   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4442       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4443       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4444   SDValue StoreNode =
4445       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4446                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4447   DAG.setRoot(StoreNode);
4448   setValue(&I, StoreNode);
4449 }
4450 
4451 // Get a uniform base for the Gather/Scatter intrinsic.
4452 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4453 // We try to represent it as a base pointer + vector of indices.
4454 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4455 // The first operand of the GEP may be a single pointer or a vector of pointers
4456 // Example:
4457 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4458 //  or
4459 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4460 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4461 //
4462 // When the first GEP operand is a single pointer - it is the uniform base we
4463 // are looking for. If first operand of the GEP is a splat vector - we
4464 // extract the splat value and use it as a uniform base.
4465 // In all other cases the function returns 'false'.
4466 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4467                            ISD::MemIndexType &IndexType, SDValue &Scale,
4468                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4469                            uint64_t ElemSize) {
4470   SelectionDAG& DAG = SDB->DAG;
4471   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4472   const DataLayout &DL = DAG.getDataLayout();
4473 
4474   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4475 
4476   // Handle splat constant pointer.
4477   if (auto *C = dyn_cast<Constant>(Ptr)) {
4478     C = C->getSplatValue();
4479     if (!C)
4480       return false;
4481 
4482     Base = SDB->getValue(C);
4483 
4484     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4485     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4486     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4487     IndexType = ISD::SIGNED_SCALED;
4488     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4489     return true;
4490   }
4491 
4492   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4493   if (!GEP || GEP->getParent() != CurBB)
4494     return false;
4495 
4496   if (GEP->getNumOperands() != 2)
4497     return false;
4498 
4499   const Value *BasePtr = GEP->getPointerOperand();
4500   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4501 
4502   // Make sure the base is scalar and the index is a vector.
4503   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4504     return false;
4505 
4506   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4507   if (ScaleVal.isScalable())
4508     return false;
4509 
4510   // Target may not support the required addressing mode.
4511   if (ScaleVal != 1 &&
4512       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4513     return false;
4514 
4515   Base = SDB->getValue(BasePtr);
4516   Index = SDB->getValue(IndexVal);
4517   IndexType = ISD::SIGNED_SCALED;
4518 
4519   Scale =
4520       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4521   return true;
4522 }
4523 
4524 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4525   SDLoc sdl = getCurSDLoc();
4526 
4527   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4528   const Value *Ptr = I.getArgOperand(1);
4529   SDValue Src0 = getValue(I.getArgOperand(0));
4530   SDValue Mask = getValue(I.getArgOperand(3));
4531   EVT VT = Src0.getValueType();
4532   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4533                         ->getMaybeAlignValue()
4534                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4536 
4537   SDValue Base;
4538   SDValue Index;
4539   ISD::MemIndexType IndexType;
4540   SDValue Scale;
4541   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4542                                     I.getParent(), VT.getScalarStoreSize());
4543 
4544   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4545   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4546       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4547       // TODO: Make MachineMemOperands aware of scalable
4548       // vectors.
4549       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4550   if (!UniformBase) {
4551     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4552     Index = getValue(Ptr);
4553     IndexType = ISD::SIGNED_SCALED;
4554     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4555   }
4556 
4557   EVT IdxVT = Index.getValueType();
4558   EVT EltTy = IdxVT.getVectorElementType();
4559   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4560     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4561     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4562   }
4563 
4564   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4565   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4566                                          Ops, MMO, IndexType, false);
4567   DAG.setRoot(Scatter);
4568   setValue(&I, Scatter);
4569 }
4570 
4571 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4572   SDLoc sdl = getCurSDLoc();
4573 
4574   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4575                               MaybeAlign &Alignment) {
4576     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4577     Ptr = I.getArgOperand(0);
4578     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4579     Mask = I.getArgOperand(2);
4580     Src0 = I.getArgOperand(3);
4581   };
4582   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4583                                  MaybeAlign &Alignment) {
4584     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4585     Ptr = I.getArgOperand(0);
4586     Alignment = std::nullopt;
4587     Mask = I.getArgOperand(1);
4588     Src0 = I.getArgOperand(2);
4589   };
4590 
4591   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4592   MaybeAlign Alignment;
4593   if (IsExpanding)
4594     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4595   else
4596     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4597 
4598   SDValue Ptr = getValue(PtrOperand);
4599   SDValue Src0 = getValue(Src0Operand);
4600   SDValue Mask = getValue(MaskOperand);
4601   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4602 
4603   EVT VT = Src0.getValueType();
4604   if (!Alignment)
4605     Alignment = DAG.getEVTAlign(VT);
4606 
4607   AAMDNodes AAInfo = I.getAAMetadata();
4608   const MDNode *Ranges = getRangeMetadata(I);
4609 
4610   // Do not serialize masked loads of constant memory with anything.
4611   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4612   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4613 
4614   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4615 
4616   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4617       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4618       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4619 
4620   SDValue Load =
4621       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4622                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4623   if (AddToChain)
4624     PendingLoads.push_back(Load.getValue(1));
4625   setValue(&I, Load);
4626 }
4627 
4628 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4629   SDLoc sdl = getCurSDLoc();
4630 
4631   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4632   const Value *Ptr = I.getArgOperand(0);
4633   SDValue Src0 = getValue(I.getArgOperand(3));
4634   SDValue Mask = getValue(I.getArgOperand(2));
4635 
4636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4637   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4638   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4639                         ->getMaybeAlignValue()
4640                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4641 
4642   const MDNode *Ranges = getRangeMetadata(I);
4643 
4644   SDValue Root = DAG.getRoot();
4645   SDValue Base;
4646   SDValue Index;
4647   ISD::MemIndexType IndexType;
4648   SDValue Scale;
4649   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4650                                     I.getParent(), VT.getScalarStoreSize());
4651   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4652   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4653       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4654       // TODO: Make MachineMemOperands aware of scalable
4655       // vectors.
4656       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4657 
4658   if (!UniformBase) {
4659     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4660     Index = getValue(Ptr);
4661     IndexType = ISD::SIGNED_SCALED;
4662     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4663   }
4664 
4665   EVT IdxVT = Index.getValueType();
4666   EVT EltTy = IdxVT.getVectorElementType();
4667   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4668     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4669     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4670   }
4671 
4672   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4673   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4674                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4675 
4676   PendingLoads.push_back(Gather.getValue(1));
4677   setValue(&I, Gather);
4678 }
4679 
4680 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4681   SDLoc dl = getCurSDLoc();
4682   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4683   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4684   SyncScope::ID SSID = I.getSyncScopeID();
4685 
4686   SDValue InChain = getRoot();
4687 
4688   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4689   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4690 
4691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4692   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4693 
4694   MachineFunction &MF = DAG.getMachineFunction();
4695   MachineMemOperand *MMO = MF.getMachineMemOperand(
4696       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4697       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4698       FailureOrdering);
4699 
4700   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4701                                    dl, MemVT, VTs, InChain,
4702                                    getValue(I.getPointerOperand()),
4703                                    getValue(I.getCompareOperand()),
4704                                    getValue(I.getNewValOperand()), MMO);
4705 
4706   SDValue OutChain = L.getValue(2);
4707 
4708   setValue(&I, L);
4709   DAG.setRoot(OutChain);
4710 }
4711 
4712 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4713   SDLoc dl = getCurSDLoc();
4714   ISD::NodeType NT;
4715   switch (I.getOperation()) {
4716   default: llvm_unreachable("Unknown atomicrmw operation");
4717   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4718   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4719   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4720   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4721   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4722   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4723   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4724   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4725   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4726   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4727   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4728   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4729   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4730   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4731   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4732   case AtomicRMWInst::UIncWrap:
4733     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4734     break;
4735   case AtomicRMWInst::UDecWrap:
4736     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4737     break;
4738   }
4739   AtomicOrdering Ordering = I.getOrdering();
4740   SyncScope::ID SSID = I.getSyncScopeID();
4741 
4742   SDValue InChain = getRoot();
4743 
4744   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4746   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4747 
4748   MachineFunction &MF = DAG.getMachineFunction();
4749   MachineMemOperand *MMO = MF.getMachineMemOperand(
4750       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4751       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4752 
4753   SDValue L =
4754     DAG.getAtomic(NT, dl, MemVT, InChain,
4755                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4756                   MMO);
4757 
4758   SDValue OutChain = L.getValue(1);
4759 
4760   setValue(&I, L);
4761   DAG.setRoot(OutChain);
4762 }
4763 
4764 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4765   SDLoc dl = getCurSDLoc();
4766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4767   SDValue Ops[3];
4768   Ops[0] = getRoot();
4769   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4770                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4771   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4772                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4773   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4774   setValue(&I, N);
4775   DAG.setRoot(N);
4776 }
4777 
4778 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4779   SDLoc dl = getCurSDLoc();
4780   AtomicOrdering Order = I.getOrdering();
4781   SyncScope::ID SSID = I.getSyncScopeID();
4782 
4783   SDValue InChain = getRoot();
4784 
4785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4786   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4787   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4788 
4789   if (!TLI.supportsUnalignedAtomics() &&
4790       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4791     report_fatal_error("Cannot generate unaligned atomic load");
4792 
4793   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4794 
4795   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4796       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4797       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4798 
4799   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4800 
4801   SDValue Ptr = getValue(I.getPointerOperand());
4802 
4803   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4804     // TODO: Once this is better exercised by tests, it should be merged with
4805     // the normal path for loads to prevent future divergence.
4806     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4807     if (MemVT != VT)
4808       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4809 
4810     setValue(&I, L);
4811     SDValue OutChain = L.getValue(1);
4812     if (!I.isUnordered())
4813       DAG.setRoot(OutChain);
4814     else
4815       PendingLoads.push_back(OutChain);
4816     return;
4817   }
4818 
4819   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4820                             Ptr, MMO);
4821 
4822   SDValue OutChain = L.getValue(1);
4823   if (MemVT != VT)
4824     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4825 
4826   setValue(&I, L);
4827   DAG.setRoot(OutChain);
4828 }
4829 
4830 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4831   SDLoc dl = getCurSDLoc();
4832 
4833   AtomicOrdering Ordering = I.getOrdering();
4834   SyncScope::ID SSID = I.getSyncScopeID();
4835 
4836   SDValue InChain = getRoot();
4837 
4838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4839   EVT MemVT =
4840       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4841 
4842   if (!TLI.supportsUnalignedAtomics() &&
4843       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4844     report_fatal_error("Cannot generate unaligned atomic store");
4845 
4846   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4847 
4848   MachineFunction &MF = DAG.getMachineFunction();
4849   MachineMemOperand *MMO = MF.getMachineMemOperand(
4850       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4851       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4852 
4853   SDValue Val = getValue(I.getValueOperand());
4854   if (Val.getValueType() != MemVT)
4855     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4856   SDValue Ptr = getValue(I.getPointerOperand());
4857 
4858   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4859     // TODO: Once this is better exercised by tests, it should be merged with
4860     // the normal path for stores to prevent future divergence.
4861     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4862     setValue(&I, S);
4863     DAG.setRoot(S);
4864     return;
4865   }
4866   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4867                                    Ptr, Val, MMO);
4868 
4869   setValue(&I, OutChain);
4870   DAG.setRoot(OutChain);
4871 }
4872 
4873 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4874 /// node.
4875 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4876                                                unsigned Intrinsic) {
4877   // Ignore the callsite's attributes. A specific call site may be marked with
4878   // readnone, but the lowering code will expect the chain based on the
4879   // definition.
4880   const Function *F = I.getCalledFunction();
4881   bool HasChain = !F->doesNotAccessMemory();
4882   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4883 
4884   // Build the operand list.
4885   SmallVector<SDValue, 8> Ops;
4886   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4887     if (OnlyLoad) {
4888       // We don't need to serialize loads against other loads.
4889       Ops.push_back(DAG.getRoot());
4890     } else {
4891       Ops.push_back(getRoot());
4892     }
4893   }
4894 
4895   // Info is set by getTgtMemIntrinsic
4896   TargetLowering::IntrinsicInfo Info;
4897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4898   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4899                                                DAG.getMachineFunction(),
4900                                                Intrinsic);
4901 
4902   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4903   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4904       Info.opc == ISD::INTRINSIC_W_CHAIN)
4905     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4906                                         TLI.getPointerTy(DAG.getDataLayout())));
4907 
4908   // Add all operands of the call to the operand list.
4909   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4910     const Value *Arg = I.getArgOperand(i);
4911     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4912       Ops.push_back(getValue(Arg));
4913       continue;
4914     }
4915 
4916     // Use TargetConstant instead of a regular constant for immarg.
4917     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4918     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4919       assert(CI->getBitWidth() <= 64 &&
4920              "large intrinsic immediates not handled");
4921       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4922     } else {
4923       Ops.push_back(
4924           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4925     }
4926   }
4927 
4928   SmallVector<EVT, 4> ValueVTs;
4929   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4930 
4931   if (HasChain)
4932     ValueVTs.push_back(MVT::Other);
4933 
4934   SDVTList VTs = DAG.getVTList(ValueVTs);
4935 
4936   // Propagate fast-math-flags from IR to node(s).
4937   SDNodeFlags Flags;
4938   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4939     Flags.copyFMF(*FPMO);
4940   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4941 
4942   // Create the node.
4943   SDValue Result;
4944   // In some cases, custom collection of operands from CallInst I may be needed.
4945   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4946   if (IsTgtIntrinsic) {
4947     // This is target intrinsic that touches memory
4948     //
4949     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4950     //       didn't yield anything useful.
4951     MachinePointerInfo MPI;
4952     if (Info.ptrVal)
4953       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4954     else if (Info.fallbackAddressSpace)
4955       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4956     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4957                                      Info.memVT, MPI, Info.align, Info.flags,
4958                                      Info.size, I.getAAMetadata());
4959   } else if (!HasChain) {
4960     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4961   } else if (!I.getType()->isVoidTy()) {
4962     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4963   } else {
4964     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4965   }
4966 
4967   if (HasChain) {
4968     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4969     if (OnlyLoad)
4970       PendingLoads.push_back(Chain);
4971     else
4972       DAG.setRoot(Chain);
4973   }
4974 
4975   if (!I.getType()->isVoidTy()) {
4976     if (!isa<VectorType>(I.getType()))
4977       Result = lowerRangeToAssertZExt(DAG, I, Result);
4978 
4979     MaybeAlign Alignment = I.getRetAlign();
4980 
4981     // Insert `assertalign` node if there's an alignment.
4982     if (InsertAssertAlign && Alignment) {
4983       Result =
4984           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4985     }
4986 
4987     setValue(&I, Result);
4988   }
4989 }
4990 
4991 /// GetSignificand - Get the significand and build it into a floating-point
4992 /// number with exponent of 1:
4993 ///
4994 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4995 ///
4996 /// where Op is the hexadecimal representation of floating point value.
4997 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4998   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4999                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5000   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5001                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5002   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5003 }
5004 
5005 /// GetExponent - Get the exponent:
5006 ///
5007 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5008 ///
5009 /// where Op is the hexadecimal representation of floating point value.
5010 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5011                            const TargetLowering &TLI, const SDLoc &dl) {
5012   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5013                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5014   SDValue t1 = DAG.getNode(
5015       ISD::SRL, dl, MVT::i32, t0,
5016       DAG.getConstant(23, dl,
5017                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5018   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5019                            DAG.getConstant(127, dl, MVT::i32));
5020   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5021 }
5022 
5023 /// getF32Constant - Get 32-bit floating point constant.
5024 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5025                               const SDLoc &dl) {
5026   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5027                            MVT::f32);
5028 }
5029 
5030 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5031                                        SelectionDAG &DAG) {
5032   // TODO: What fast-math-flags should be set on the floating-point nodes?
5033 
5034   //   IntegerPartOfX = ((int32_t)(t0);
5035   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5036 
5037   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5038   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5039   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5040 
5041   //   IntegerPartOfX <<= 23;
5042   IntegerPartOfX =
5043       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5044                   DAG.getConstant(23, dl,
5045                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5046                                       MVT::i32, DAG.getDataLayout())));
5047 
5048   SDValue TwoToFractionalPartOfX;
5049   if (LimitFloatPrecision <= 6) {
5050     // For floating-point precision of 6:
5051     //
5052     //   TwoToFractionalPartOfX =
5053     //     0.997535578f +
5054     //       (0.735607626f + 0.252464424f * x) * x;
5055     //
5056     // error 0.0144103317, which is 6 bits
5057     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5058                              getF32Constant(DAG, 0x3e814304, dl));
5059     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5060                              getF32Constant(DAG, 0x3f3c50c8, dl));
5061     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5062     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5063                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5064   } else if (LimitFloatPrecision <= 12) {
5065     // For floating-point precision of 12:
5066     //
5067     //   TwoToFractionalPartOfX =
5068     //     0.999892986f +
5069     //       (0.696457318f +
5070     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5071     //
5072     // error 0.000107046256, which is 13 to 14 bits
5073     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5074                              getF32Constant(DAG, 0x3da235e3, dl));
5075     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5076                              getF32Constant(DAG, 0x3e65b8f3, dl));
5077     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5078     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5079                              getF32Constant(DAG, 0x3f324b07, dl));
5080     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5081     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5082                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5083   } else { // LimitFloatPrecision <= 18
5084     // For floating-point precision of 18:
5085     //
5086     //   TwoToFractionalPartOfX =
5087     //     0.999999982f +
5088     //       (0.693148872f +
5089     //         (0.240227044f +
5090     //           (0.554906021e-1f +
5091     //             (0.961591928e-2f +
5092     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5093     // error 2.47208000*10^(-7), which is better than 18 bits
5094     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5095                              getF32Constant(DAG, 0x3924b03e, dl));
5096     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5097                              getF32Constant(DAG, 0x3ab24b87, dl));
5098     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5099     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5100                              getF32Constant(DAG, 0x3c1d8c17, dl));
5101     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5102     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5103                              getF32Constant(DAG, 0x3d634a1d, dl));
5104     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5105     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5106                              getF32Constant(DAG, 0x3e75fe14, dl));
5107     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5108     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5109                               getF32Constant(DAG, 0x3f317234, dl));
5110     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5111     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5112                                          getF32Constant(DAG, 0x3f800000, dl));
5113   }
5114 
5115   // Add the exponent into the result in integer domain.
5116   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5117   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5118                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5119 }
5120 
5121 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5122 /// limited-precision mode.
5123 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5124                          const TargetLowering &TLI, SDNodeFlags Flags) {
5125   if (Op.getValueType() == MVT::f32 &&
5126       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5127 
5128     // Put the exponent in the right bit position for later addition to the
5129     // final result:
5130     //
5131     // t0 = Op * log2(e)
5132 
5133     // TODO: What fast-math-flags should be set here?
5134     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5135                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5136     return getLimitedPrecisionExp2(t0, dl, DAG);
5137   }
5138 
5139   // No special expansion.
5140   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5141 }
5142 
5143 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5144 /// limited-precision mode.
5145 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5146                          const TargetLowering &TLI, SDNodeFlags Flags) {
5147   // TODO: What fast-math-flags should be set on the floating-point nodes?
5148 
5149   if (Op.getValueType() == MVT::f32 &&
5150       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5151     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5152 
5153     // Scale the exponent by log(2).
5154     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5155     SDValue LogOfExponent =
5156         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5157                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5158 
5159     // Get the significand and build it into a floating-point number with
5160     // exponent of 1.
5161     SDValue X = GetSignificand(DAG, Op1, dl);
5162 
5163     SDValue LogOfMantissa;
5164     if (LimitFloatPrecision <= 6) {
5165       // For floating-point precision of 6:
5166       //
5167       //   LogofMantissa =
5168       //     -1.1609546f +
5169       //       (1.4034025f - 0.23903021f * x) * x;
5170       //
5171       // error 0.0034276066, which is better than 8 bits
5172       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5173                                getF32Constant(DAG, 0xbe74c456, dl));
5174       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5175                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5176       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5177       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5178                                   getF32Constant(DAG, 0x3f949a29, dl));
5179     } else if (LimitFloatPrecision <= 12) {
5180       // For floating-point precision of 12:
5181       //
5182       //   LogOfMantissa =
5183       //     -1.7417939f +
5184       //       (2.8212026f +
5185       //         (-1.4699568f +
5186       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5187       //
5188       // error 0.000061011436, which is 14 bits
5189       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5190                                getF32Constant(DAG, 0xbd67b6d6, dl));
5191       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5192                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5193       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5194       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5195                                getF32Constant(DAG, 0x3fbc278b, dl));
5196       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5197       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5198                                getF32Constant(DAG, 0x40348e95, dl));
5199       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5200       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5201                                   getF32Constant(DAG, 0x3fdef31a, dl));
5202     } else { // LimitFloatPrecision <= 18
5203       // For floating-point precision of 18:
5204       //
5205       //   LogOfMantissa =
5206       //     -2.1072184f +
5207       //       (4.2372794f +
5208       //         (-3.7029485f +
5209       //           (2.2781945f +
5210       //             (-0.87823314f +
5211       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5212       //
5213       // error 0.0000023660568, which is better than 18 bits
5214       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5215                                getF32Constant(DAG, 0xbc91e5ac, dl));
5216       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5217                                getF32Constant(DAG, 0x3e4350aa, dl));
5218       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5219       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5220                                getF32Constant(DAG, 0x3f60d3e3, dl));
5221       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5222       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5223                                getF32Constant(DAG, 0x4011cdf0, dl));
5224       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5225       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5226                                getF32Constant(DAG, 0x406cfd1c, dl));
5227       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5228       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5229                                getF32Constant(DAG, 0x408797cb, dl));
5230       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5231       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5232                                   getF32Constant(DAG, 0x4006dcab, dl));
5233     }
5234 
5235     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5236   }
5237 
5238   // No special expansion.
5239   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5240 }
5241 
5242 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5243 /// limited-precision mode.
5244 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5245                           const TargetLowering &TLI, SDNodeFlags Flags) {
5246   // TODO: What fast-math-flags should be set on the floating-point nodes?
5247 
5248   if (Op.getValueType() == MVT::f32 &&
5249       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5250     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5251 
5252     // Get the exponent.
5253     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5254 
5255     // Get the significand and build it into a floating-point number with
5256     // exponent of 1.
5257     SDValue X = GetSignificand(DAG, Op1, dl);
5258 
5259     // Different possible minimax approximations of significand in
5260     // floating-point for various degrees of accuracy over [1,2].
5261     SDValue Log2ofMantissa;
5262     if (LimitFloatPrecision <= 6) {
5263       // For floating-point precision of 6:
5264       //
5265       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5266       //
5267       // error 0.0049451742, which is more than 7 bits
5268       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5269                                getF32Constant(DAG, 0xbeb08fe0, dl));
5270       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5271                                getF32Constant(DAG, 0x40019463, dl));
5272       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5273       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5274                                    getF32Constant(DAG, 0x3fd6633d, dl));
5275     } else if (LimitFloatPrecision <= 12) {
5276       // For floating-point precision of 12:
5277       //
5278       //   Log2ofMantissa =
5279       //     -2.51285454f +
5280       //       (4.07009056f +
5281       //         (-2.12067489f +
5282       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5283       //
5284       // error 0.0000876136000, which is better than 13 bits
5285       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5286                                getF32Constant(DAG, 0xbda7262e, dl));
5287       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5288                                getF32Constant(DAG, 0x3f25280b, dl));
5289       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5290       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5291                                getF32Constant(DAG, 0x4007b923, dl));
5292       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5293       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5294                                getF32Constant(DAG, 0x40823e2f, dl));
5295       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5296       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5297                                    getF32Constant(DAG, 0x4020d29c, dl));
5298     } else { // LimitFloatPrecision <= 18
5299       // For floating-point precision of 18:
5300       //
5301       //   Log2ofMantissa =
5302       //     -3.0400495f +
5303       //       (6.1129976f +
5304       //         (-5.3420409f +
5305       //           (3.2865683f +
5306       //             (-1.2669343f +
5307       //               (0.27515199f -
5308       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5309       //
5310       // error 0.0000018516, which is better than 18 bits
5311       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5312                                getF32Constant(DAG, 0xbcd2769e, dl));
5313       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5314                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5315       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5316       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5317                                getF32Constant(DAG, 0x3fa22ae7, dl));
5318       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5319       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5320                                getF32Constant(DAG, 0x40525723, dl));
5321       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5322       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5323                                getF32Constant(DAG, 0x40aaf200, dl));
5324       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5325       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5326                                getF32Constant(DAG, 0x40c39dad, dl));
5327       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5328       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5329                                    getF32Constant(DAG, 0x4042902c, dl));
5330     }
5331 
5332     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5333   }
5334 
5335   // No special expansion.
5336   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5337 }
5338 
5339 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5340 /// limited-precision mode.
5341 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5342                            const TargetLowering &TLI, SDNodeFlags Flags) {
5343   // TODO: What fast-math-flags should be set on the floating-point nodes?
5344 
5345   if (Op.getValueType() == MVT::f32 &&
5346       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5347     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5348 
5349     // Scale the exponent by log10(2) [0.30102999f].
5350     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5351     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5352                                         getF32Constant(DAG, 0x3e9a209a, dl));
5353 
5354     // Get the significand and build it into a floating-point number with
5355     // exponent of 1.
5356     SDValue X = GetSignificand(DAG, Op1, dl);
5357 
5358     SDValue Log10ofMantissa;
5359     if (LimitFloatPrecision <= 6) {
5360       // For floating-point precision of 6:
5361       //
5362       //   Log10ofMantissa =
5363       //     -0.50419619f +
5364       //       (0.60948995f - 0.10380950f * x) * x;
5365       //
5366       // error 0.0014886165, which is 6 bits
5367       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5368                                getF32Constant(DAG, 0xbdd49a13, dl));
5369       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5370                                getF32Constant(DAG, 0x3f1c0789, dl));
5371       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5372       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5373                                     getF32Constant(DAG, 0x3f011300, dl));
5374     } else if (LimitFloatPrecision <= 12) {
5375       // For floating-point precision of 12:
5376       //
5377       //   Log10ofMantissa =
5378       //     -0.64831180f +
5379       //       (0.91751397f +
5380       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5381       //
5382       // error 0.00019228036, which is better than 12 bits
5383       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5384                                getF32Constant(DAG, 0x3d431f31, dl));
5385       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5386                                getF32Constant(DAG, 0x3ea21fb2, dl));
5387       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5388       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5389                                getF32Constant(DAG, 0x3f6ae232, dl));
5390       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5391       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5392                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5393     } else { // LimitFloatPrecision <= 18
5394       // For floating-point precision of 18:
5395       //
5396       //   Log10ofMantissa =
5397       //     -0.84299375f +
5398       //       (1.5327582f +
5399       //         (-1.0688956f +
5400       //           (0.49102474f +
5401       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5402       //
5403       // error 0.0000037995730, which is better than 18 bits
5404       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5405                                getF32Constant(DAG, 0x3c5d51ce, dl));
5406       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5407                                getF32Constant(DAG, 0x3e00685a, dl));
5408       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5409       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5410                                getF32Constant(DAG, 0x3efb6798, dl));
5411       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5412       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5413                                getF32Constant(DAG, 0x3f88d192, dl));
5414       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5415       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5416                                getF32Constant(DAG, 0x3fc4316c, dl));
5417       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5418       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5419                                     getF32Constant(DAG, 0x3f57ce70, dl));
5420     }
5421 
5422     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5423   }
5424 
5425   // No special expansion.
5426   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5427 }
5428 
5429 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5430 /// limited-precision mode.
5431 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5432                           const TargetLowering &TLI, SDNodeFlags Flags) {
5433   if (Op.getValueType() == MVT::f32 &&
5434       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5435     return getLimitedPrecisionExp2(Op, dl, DAG);
5436 
5437   // No special expansion.
5438   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5439 }
5440 
5441 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5442 /// limited-precision mode with x == 10.0f.
5443 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5444                          SelectionDAG &DAG, const TargetLowering &TLI,
5445                          SDNodeFlags Flags) {
5446   bool IsExp10 = false;
5447   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5448       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5449     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5450       APFloat Ten(10.0f);
5451       IsExp10 = LHSC->isExactlyValue(Ten);
5452     }
5453   }
5454 
5455   // TODO: What fast-math-flags should be set on the FMUL node?
5456   if (IsExp10) {
5457     // Put the exponent in the right bit position for later addition to the
5458     // final result:
5459     //
5460     //   #define LOG2OF10 3.3219281f
5461     //   t0 = Op * LOG2OF10;
5462     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5463                              getF32Constant(DAG, 0x40549a78, dl));
5464     return getLimitedPrecisionExp2(t0, dl, DAG);
5465   }
5466 
5467   // No special expansion.
5468   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5469 }
5470 
5471 /// ExpandPowI - Expand a llvm.powi intrinsic.
5472 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5473                           SelectionDAG &DAG) {
5474   // If RHS is a constant, we can expand this out to a multiplication tree if
5475   // it's beneficial on the target, otherwise we end up lowering to a call to
5476   // __powidf2 (for example).
5477   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5478     unsigned Val = RHSC->getSExtValue();
5479 
5480     // powi(x, 0) -> 1.0
5481     if (Val == 0)
5482       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5483 
5484     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5485             Val, DAG.shouldOptForSize())) {
5486       // Get the exponent as a positive value.
5487       if ((int)Val < 0)
5488         Val = -Val;
5489       // We use the simple binary decomposition method to generate the multiply
5490       // sequence.  There are more optimal ways to do this (for example,
5491       // powi(x,15) generates one more multiply than it should), but this has
5492       // the benefit of being both really simple and much better than a libcall.
5493       SDValue Res; // Logically starts equal to 1.0
5494       SDValue CurSquare = LHS;
5495       // TODO: Intrinsics should have fast-math-flags that propagate to these
5496       // nodes.
5497       while (Val) {
5498         if (Val & 1) {
5499           if (Res.getNode())
5500             Res =
5501                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5502           else
5503             Res = CurSquare; // 1.0*CurSquare.
5504         }
5505 
5506         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5507                                 CurSquare, CurSquare);
5508         Val >>= 1;
5509       }
5510 
5511       // If the original was negative, invert the result, producing 1/(x*x*x).
5512       if (RHSC->getSExtValue() < 0)
5513         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5514                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5515       return Res;
5516     }
5517   }
5518 
5519   // Otherwise, expand to a libcall.
5520   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5521 }
5522 
5523 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5524                             SDValue LHS, SDValue RHS, SDValue Scale,
5525                             SelectionDAG &DAG, const TargetLowering &TLI) {
5526   EVT VT = LHS.getValueType();
5527   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5528   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5529   LLVMContext &Ctx = *DAG.getContext();
5530 
5531   // If the type is legal but the operation isn't, this node might survive all
5532   // the way to operation legalization. If we end up there and we do not have
5533   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5534   // node.
5535 
5536   // Coax the legalizer into expanding the node during type legalization instead
5537   // by bumping the size by one bit. This will force it to Promote, enabling the
5538   // early expansion and avoiding the need to expand later.
5539 
5540   // We don't have to do this if Scale is 0; that can always be expanded, unless
5541   // it's a saturating signed operation. Those can experience true integer
5542   // division overflow, a case which we must avoid.
5543 
5544   // FIXME: We wouldn't have to do this (or any of the early
5545   // expansion/promotion) if it was possible to expand a libcall of an
5546   // illegal type during operation legalization. But it's not, so things
5547   // get a bit hacky.
5548   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5549   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5550       (TLI.isTypeLegal(VT) ||
5551        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5552     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5553         Opcode, VT, ScaleInt);
5554     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5555       EVT PromVT;
5556       if (VT.isScalarInteger())
5557         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5558       else if (VT.isVector()) {
5559         PromVT = VT.getVectorElementType();
5560         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5561         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5562       } else
5563         llvm_unreachable("Wrong VT for DIVFIX?");
5564       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5565       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5566       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5567       // For saturating operations, we need to shift up the LHS to get the
5568       // proper saturation width, and then shift down again afterwards.
5569       if (Saturating)
5570         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5571                           DAG.getConstant(1, DL, ShiftTy));
5572       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5573       if (Saturating)
5574         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5575                           DAG.getConstant(1, DL, ShiftTy));
5576       return DAG.getZExtOrTrunc(Res, DL, VT);
5577     }
5578   }
5579 
5580   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5581 }
5582 
5583 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5584 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5585 static void
5586 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5587                      const SDValue &N) {
5588   switch (N.getOpcode()) {
5589   case ISD::CopyFromReg: {
5590     SDValue Op = N.getOperand(1);
5591     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5592                       Op.getValueType().getSizeInBits());
5593     return;
5594   }
5595   case ISD::BITCAST:
5596   case ISD::AssertZext:
5597   case ISD::AssertSext:
5598   case ISD::TRUNCATE:
5599     getUnderlyingArgRegs(Regs, N.getOperand(0));
5600     return;
5601   case ISD::BUILD_PAIR:
5602   case ISD::BUILD_VECTOR:
5603   case ISD::CONCAT_VECTORS:
5604     for (SDValue Op : N->op_values())
5605       getUnderlyingArgRegs(Regs, Op);
5606     return;
5607   default:
5608     return;
5609   }
5610 }
5611 
5612 /// If the DbgValueInst is a dbg_value of a function argument, create the
5613 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5614 /// instruction selection, they will be inserted to the entry BB.
5615 /// We don't currently support this for variadic dbg_values, as they shouldn't
5616 /// appear for function arguments or in the prologue.
5617 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5618     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5619     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5620   const Argument *Arg = dyn_cast<Argument>(V);
5621   if (!Arg)
5622     return false;
5623 
5624   MachineFunction &MF = DAG.getMachineFunction();
5625   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5626 
5627   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5628   // we've been asked to pursue.
5629   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5630                               bool Indirect) {
5631     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5632       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5633       // pointing at the VReg, which will be patched up later.
5634       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5635       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5636           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5637           /* isKill */ false, /* isDead */ false,
5638           /* isUndef */ false, /* isEarlyClobber */ false,
5639           /* SubReg */ 0, /* isDebug */ true)});
5640 
5641       auto *NewDIExpr = FragExpr;
5642       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5643       // the DIExpression.
5644       if (Indirect)
5645         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5646       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5647       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5648       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5649     } else {
5650       // Create a completely standard DBG_VALUE.
5651       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5652       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5653     }
5654   };
5655 
5656   if (Kind == FuncArgumentDbgValueKind::Value) {
5657     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5658     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5659     // the entry block.
5660     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5661     if (!IsInEntryBlock)
5662       return false;
5663 
5664     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5665     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5666     // variable that also is a param.
5667     //
5668     // Although, if we are at the top of the entry block already, we can still
5669     // emit using ArgDbgValue. This might catch some situations when the
5670     // dbg.value refers to an argument that isn't used in the entry block, so
5671     // any CopyToReg node would be optimized out and the only way to express
5672     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5673     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5674     // we should only emit as ArgDbgValue if the Variable is an argument to the
5675     // current function, and the dbg.value intrinsic is found in the entry
5676     // block.
5677     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5678         !DL->getInlinedAt();
5679     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5680     if (!IsInPrologue && !VariableIsFunctionInputArg)
5681       return false;
5682 
5683     // Here we assume that a function argument on IR level only can be used to
5684     // describe one input parameter on source level. If we for example have
5685     // source code like this
5686     //
5687     //    struct A { long x, y; };
5688     //    void foo(struct A a, long b) {
5689     //      ...
5690     //      b = a.x;
5691     //      ...
5692     //    }
5693     //
5694     // and IR like this
5695     //
5696     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5697     //  entry:
5698     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5699     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5700     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5701     //    ...
5702     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5703     //    ...
5704     //
5705     // then the last dbg.value is describing a parameter "b" using a value that
5706     // is an argument. But since we already has used %a1 to describe a parameter
5707     // we should not handle that last dbg.value here (that would result in an
5708     // incorrect hoisting of the DBG_VALUE to the function entry).
5709     // Notice that we allow one dbg.value per IR level argument, to accommodate
5710     // for the situation with fragments above.
5711     if (VariableIsFunctionInputArg) {
5712       unsigned ArgNo = Arg->getArgNo();
5713       if (ArgNo >= FuncInfo.DescribedArgs.size())
5714         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5715       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5716         return false;
5717       FuncInfo.DescribedArgs.set(ArgNo);
5718     }
5719   }
5720 
5721   bool IsIndirect = false;
5722   std::optional<MachineOperand> Op;
5723   // Some arguments' frame index is recorded during argument lowering.
5724   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5725   if (FI != std::numeric_limits<int>::max())
5726     Op = MachineOperand::CreateFI(FI);
5727 
5728   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5729   if (!Op && N.getNode()) {
5730     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5731     Register Reg;
5732     if (ArgRegsAndSizes.size() == 1)
5733       Reg = ArgRegsAndSizes.front().first;
5734 
5735     if (Reg && Reg.isVirtual()) {
5736       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5737       Register PR = RegInfo.getLiveInPhysReg(Reg);
5738       if (PR)
5739         Reg = PR;
5740     }
5741     if (Reg) {
5742       Op = MachineOperand::CreateReg(Reg, false);
5743       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5744     }
5745   }
5746 
5747   if (!Op && N.getNode()) {
5748     // Check if frame index is available.
5749     SDValue LCandidate = peekThroughBitcasts(N);
5750     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5751       if (FrameIndexSDNode *FINode =
5752           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5753         Op = MachineOperand::CreateFI(FINode->getIndex());
5754   }
5755 
5756   if (!Op) {
5757     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5758     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5759                                          SplitRegs) {
5760       unsigned Offset = 0;
5761       for (const auto &RegAndSize : SplitRegs) {
5762         // If the expression is already a fragment, the current register
5763         // offset+size might extend beyond the fragment. In this case, only
5764         // the register bits that are inside the fragment are relevant.
5765         int RegFragmentSizeInBits = RegAndSize.second;
5766         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5767           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5768           // The register is entirely outside the expression fragment,
5769           // so is irrelevant for debug info.
5770           if (Offset >= ExprFragmentSizeInBits)
5771             break;
5772           // The register is partially outside the expression fragment, only
5773           // the low bits within the fragment are relevant for debug info.
5774           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5775             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5776           }
5777         }
5778 
5779         auto FragmentExpr = DIExpression::createFragmentExpression(
5780             Expr, Offset, RegFragmentSizeInBits);
5781         Offset += RegAndSize.second;
5782         // If a valid fragment expression cannot be created, the variable's
5783         // correct value cannot be determined and so it is set as Undef.
5784         if (!FragmentExpr) {
5785           SDDbgValue *SDV = DAG.getConstantDbgValue(
5786               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5787           DAG.AddDbgValue(SDV, false);
5788           continue;
5789         }
5790         MachineInstr *NewMI =
5791             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5792                              Kind != FuncArgumentDbgValueKind::Value);
5793         FuncInfo.ArgDbgValues.push_back(NewMI);
5794       }
5795     };
5796 
5797     // Check if ValueMap has reg number.
5798     DenseMap<const Value *, Register>::const_iterator
5799       VMI = FuncInfo.ValueMap.find(V);
5800     if (VMI != FuncInfo.ValueMap.end()) {
5801       const auto &TLI = DAG.getTargetLoweringInfo();
5802       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5803                        V->getType(), std::nullopt);
5804       if (RFV.occupiesMultipleRegs()) {
5805         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5806         return true;
5807       }
5808 
5809       Op = MachineOperand::CreateReg(VMI->second, false);
5810       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5811     } else if (ArgRegsAndSizes.size() > 1) {
5812       // This was split due to the calling convention, and no virtual register
5813       // mapping exists for the value.
5814       splitMultiRegDbgValue(ArgRegsAndSizes);
5815       return true;
5816     }
5817   }
5818 
5819   if (!Op)
5820     return false;
5821 
5822   // If the expression refers to the entry value of an Argument, use the
5823   // corresponding livein physical register. As per the Verifier, this is only
5824   // allowed for swiftasync Arguments.
5825   if (Op->isReg() && Expr->isEntryValue()) {
5826     assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
5827     auto OpReg = Op->getReg();
5828     for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
5829       if (OpReg == VirtReg || OpReg == PhysReg) {
5830         SDDbgValue *SDV = DAG.getVRegDbgValue(
5831             Variable, Expr, PhysReg,
5832             Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL,
5833             SDNodeOrder);
5834         DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
5835         return true;
5836       }
5837     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
5838                          "couldn't find a physical register\n");
5839     return true;
5840   }
5841 
5842   assert(Variable->isValidLocationForIntrinsic(DL) &&
5843          "Expected inlined-at fields to agree");
5844   MachineInstr *NewMI = nullptr;
5845 
5846   if (Op->isReg())
5847     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5848   else
5849     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5850                     Variable, Expr);
5851 
5852   // Otherwise, use ArgDbgValues.
5853   FuncInfo.ArgDbgValues.push_back(NewMI);
5854   return true;
5855 }
5856 
5857 /// Return the appropriate SDDbgValue based on N.
5858 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5859                                              DILocalVariable *Variable,
5860                                              DIExpression *Expr,
5861                                              const DebugLoc &dl,
5862                                              unsigned DbgSDNodeOrder) {
5863   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5864     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5865     // stack slot locations.
5866     //
5867     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5868     // debug values here after optimization:
5869     //
5870     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5871     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5872     //
5873     // Both describe the direct values of their associated variables.
5874     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5875                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5876   }
5877   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5878                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5879 }
5880 
5881 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5882   switch (Intrinsic) {
5883   case Intrinsic::smul_fix:
5884     return ISD::SMULFIX;
5885   case Intrinsic::umul_fix:
5886     return ISD::UMULFIX;
5887   case Intrinsic::smul_fix_sat:
5888     return ISD::SMULFIXSAT;
5889   case Intrinsic::umul_fix_sat:
5890     return ISD::UMULFIXSAT;
5891   case Intrinsic::sdiv_fix:
5892     return ISD::SDIVFIX;
5893   case Intrinsic::udiv_fix:
5894     return ISD::UDIVFIX;
5895   case Intrinsic::sdiv_fix_sat:
5896     return ISD::SDIVFIXSAT;
5897   case Intrinsic::udiv_fix_sat:
5898     return ISD::UDIVFIXSAT;
5899   default:
5900     llvm_unreachable("Unhandled fixed point intrinsic");
5901   }
5902 }
5903 
5904 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5905                                            const char *FunctionName) {
5906   assert(FunctionName && "FunctionName must not be nullptr");
5907   SDValue Callee = DAG.getExternalSymbol(
5908       FunctionName,
5909       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5910   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5911 }
5912 
5913 /// Given a @llvm.call.preallocated.setup, return the corresponding
5914 /// preallocated call.
5915 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5916   assert(cast<CallBase>(PreallocatedSetup)
5917                  ->getCalledFunction()
5918                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5919          "expected call_preallocated_setup Value");
5920   for (const auto *U : PreallocatedSetup->users()) {
5921     auto *UseCall = cast<CallBase>(U);
5922     const Function *Fn = UseCall->getCalledFunction();
5923     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5924       return UseCall;
5925     }
5926   }
5927   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5928 }
5929 
5930 /// Lower the call to the specified intrinsic function.
5931 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5932                                              unsigned Intrinsic) {
5933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5934   SDLoc sdl = getCurSDLoc();
5935   DebugLoc dl = getCurDebugLoc();
5936   SDValue Res;
5937 
5938   SDNodeFlags Flags;
5939   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5940     Flags.copyFMF(*FPOp);
5941 
5942   switch (Intrinsic) {
5943   default:
5944     // By default, turn this into a target intrinsic node.
5945     visitTargetIntrinsic(I, Intrinsic);
5946     return;
5947   case Intrinsic::vscale: {
5948     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5949     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5950     return;
5951   }
5952   case Intrinsic::vastart:  visitVAStart(I); return;
5953   case Intrinsic::vaend:    visitVAEnd(I); return;
5954   case Intrinsic::vacopy:   visitVACopy(I); return;
5955   case Intrinsic::returnaddress:
5956     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5957                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5958                              getValue(I.getArgOperand(0))));
5959     return;
5960   case Intrinsic::addressofreturnaddress:
5961     setValue(&I,
5962              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5963                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5964     return;
5965   case Intrinsic::sponentry:
5966     setValue(&I,
5967              DAG.getNode(ISD::SPONENTRY, sdl,
5968                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5969     return;
5970   case Intrinsic::frameaddress:
5971     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5972                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5973                              getValue(I.getArgOperand(0))));
5974     return;
5975   case Intrinsic::read_volatile_register:
5976   case Intrinsic::read_register: {
5977     Value *Reg = I.getArgOperand(0);
5978     SDValue Chain = getRoot();
5979     SDValue RegName =
5980         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5981     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5982     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5983       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5984     setValue(&I, Res);
5985     DAG.setRoot(Res.getValue(1));
5986     return;
5987   }
5988   case Intrinsic::write_register: {
5989     Value *Reg = I.getArgOperand(0);
5990     Value *RegValue = I.getArgOperand(1);
5991     SDValue Chain = getRoot();
5992     SDValue RegName =
5993         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5994     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5995                             RegName, getValue(RegValue)));
5996     return;
5997   }
5998   case Intrinsic::memcpy: {
5999     const auto &MCI = cast<MemCpyInst>(I);
6000     SDValue Op1 = getValue(I.getArgOperand(0));
6001     SDValue Op2 = getValue(I.getArgOperand(1));
6002     SDValue Op3 = getValue(I.getArgOperand(2));
6003     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6004     Align DstAlign = MCI.getDestAlign().valueOrOne();
6005     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6006     Align Alignment = std::min(DstAlign, SrcAlign);
6007     bool isVol = MCI.isVolatile();
6008     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6009     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6010     // node.
6011     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6012     SDValue MC = DAG.getMemcpy(
6013         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6014         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6015         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6016     updateDAGForMaybeTailCall(MC);
6017     return;
6018   }
6019   case Intrinsic::memcpy_inline: {
6020     const auto &MCI = cast<MemCpyInlineInst>(I);
6021     SDValue Dst = getValue(I.getArgOperand(0));
6022     SDValue Src = getValue(I.getArgOperand(1));
6023     SDValue Size = getValue(I.getArgOperand(2));
6024     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6025     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6026     Align DstAlign = MCI.getDestAlign().valueOrOne();
6027     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6028     Align Alignment = std::min(DstAlign, SrcAlign);
6029     bool isVol = MCI.isVolatile();
6030     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6031     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6032     // node.
6033     SDValue MC = DAG.getMemcpy(
6034         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6035         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6036         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6037     updateDAGForMaybeTailCall(MC);
6038     return;
6039   }
6040   case Intrinsic::memset: {
6041     const auto &MSI = cast<MemSetInst>(I);
6042     SDValue Op1 = getValue(I.getArgOperand(0));
6043     SDValue Op2 = getValue(I.getArgOperand(1));
6044     SDValue Op3 = getValue(I.getArgOperand(2));
6045     // @llvm.memset defines 0 and 1 to both mean no alignment.
6046     Align Alignment = MSI.getDestAlign().valueOrOne();
6047     bool isVol = MSI.isVolatile();
6048     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6049     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6050     SDValue MS = DAG.getMemset(
6051         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6052         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6053     updateDAGForMaybeTailCall(MS);
6054     return;
6055   }
6056   case Intrinsic::memset_inline: {
6057     const auto &MSII = cast<MemSetInlineInst>(I);
6058     SDValue Dst = getValue(I.getArgOperand(0));
6059     SDValue Value = getValue(I.getArgOperand(1));
6060     SDValue Size = getValue(I.getArgOperand(2));
6061     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6062     // @llvm.memset defines 0 and 1 to both mean no alignment.
6063     Align DstAlign = MSII.getDestAlign().valueOrOne();
6064     bool isVol = MSII.isVolatile();
6065     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6066     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6067     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6068                                /* AlwaysInline */ true, isTC,
6069                                MachinePointerInfo(I.getArgOperand(0)),
6070                                I.getAAMetadata());
6071     updateDAGForMaybeTailCall(MC);
6072     return;
6073   }
6074   case Intrinsic::memmove: {
6075     const auto &MMI = cast<MemMoveInst>(I);
6076     SDValue Op1 = getValue(I.getArgOperand(0));
6077     SDValue Op2 = getValue(I.getArgOperand(1));
6078     SDValue Op3 = getValue(I.getArgOperand(2));
6079     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6080     Align DstAlign = MMI.getDestAlign().valueOrOne();
6081     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6082     Align Alignment = std::min(DstAlign, SrcAlign);
6083     bool isVol = MMI.isVolatile();
6084     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6085     // FIXME: Support passing different dest/src alignments to the memmove DAG
6086     // node.
6087     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6088     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6089                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6090                                 MachinePointerInfo(I.getArgOperand(1)),
6091                                 I.getAAMetadata(), AA);
6092     updateDAGForMaybeTailCall(MM);
6093     return;
6094   }
6095   case Intrinsic::memcpy_element_unordered_atomic: {
6096     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6097     SDValue Dst = getValue(MI.getRawDest());
6098     SDValue Src = getValue(MI.getRawSource());
6099     SDValue Length = getValue(MI.getLength());
6100 
6101     Type *LengthTy = MI.getLength()->getType();
6102     unsigned ElemSz = MI.getElementSizeInBytes();
6103     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6104     SDValue MC =
6105         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6106                             isTC, MachinePointerInfo(MI.getRawDest()),
6107                             MachinePointerInfo(MI.getRawSource()));
6108     updateDAGForMaybeTailCall(MC);
6109     return;
6110   }
6111   case Intrinsic::memmove_element_unordered_atomic: {
6112     auto &MI = cast<AtomicMemMoveInst>(I);
6113     SDValue Dst = getValue(MI.getRawDest());
6114     SDValue Src = getValue(MI.getRawSource());
6115     SDValue Length = getValue(MI.getLength());
6116 
6117     Type *LengthTy = MI.getLength()->getType();
6118     unsigned ElemSz = MI.getElementSizeInBytes();
6119     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6120     SDValue MC =
6121         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6122                              isTC, MachinePointerInfo(MI.getRawDest()),
6123                              MachinePointerInfo(MI.getRawSource()));
6124     updateDAGForMaybeTailCall(MC);
6125     return;
6126   }
6127   case Intrinsic::memset_element_unordered_atomic: {
6128     auto &MI = cast<AtomicMemSetInst>(I);
6129     SDValue Dst = getValue(MI.getRawDest());
6130     SDValue Val = getValue(MI.getValue());
6131     SDValue Length = getValue(MI.getLength());
6132 
6133     Type *LengthTy = MI.getLength()->getType();
6134     unsigned ElemSz = MI.getElementSizeInBytes();
6135     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6136     SDValue MC =
6137         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6138                             isTC, MachinePointerInfo(MI.getRawDest()));
6139     updateDAGForMaybeTailCall(MC);
6140     return;
6141   }
6142   case Intrinsic::call_preallocated_setup: {
6143     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6144     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6145     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6146                               getRoot(), SrcValue);
6147     setValue(&I, Res);
6148     DAG.setRoot(Res);
6149     return;
6150   }
6151   case Intrinsic::call_preallocated_arg: {
6152     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6153     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6154     SDValue Ops[3];
6155     Ops[0] = getRoot();
6156     Ops[1] = SrcValue;
6157     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6158                                    MVT::i32); // arg index
6159     SDValue Res = DAG.getNode(
6160         ISD::PREALLOCATED_ARG, sdl,
6161         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6162     setValue(&I, Res);
6163     DAG.setRoot(Res.getValue(1));
6164     return;
6165   }
6166   case Intrinsic::dbg_declare: {
6167     const auto &DI = cast<DbgDeclareInst>(I);
6168     // Debug intrinsics are handled separately in assignment tracking mode.
6169     // Some intrinsics are handled right after Argument lowering.
6170     if (AssignmentTrackingEnabled ||
6171         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6172       return;
6173     // Assume dbg.declare can not currently use DIArgList, i.e.
6174     // it is non-variadic.
6175     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6176     DILocalVariable *Variable = DI.getVariable();
6177     DIExpression *Expression = DI.getExpression();
6178     dropDanglingDebugInfo(Variable, Expression);
6179     assert(Variable && "Missing variable");
6180     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6181                       << "\n");
6182     // Check if address has undef value.
6183     const Value *Address = DI.getVariableLocationOp(0);
6184     if (!Address || isa<UndefValue>(Address) ||
6185         (Address->use_empty() && !isa<Argument>(Address))) {
6186       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6187                         << " (bad/undef/unused-arg address)\n");
6188       return;
6189     }
6190 
6191     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6192 
6193     SDValue &N = NodeMap[Address];
6194     if (!N.getNode() && isa<Argument>(Address))
6195       // Check unused arguments map.
6196       N = UnusedArgNodeMap[Address];
6197     SDDbgValue *SDV;
6198     if (N.getNode()) {
6199       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6200         Address = BCI->getOperand(0);
6201       // Parameters are handled specially.
6202       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6203       if (isParameter && FINode) {
6204         // Byval parameter. We have a frame index at this point.
6205         SDV =
6206             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6207                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6208       } else if (isa<Argument>(Address)) {
6209         // Address is an argument, so try to emit its dbg value using
6210         // virtual register info from the FuncInfo.ValueMap.
6211         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6212                                  FuncArgumentDbgValueKind::Declare, N);
6213         return;
6214       } else {
6215         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6216                               true, dl, SDNodeOrder);
6217       }
6218       DAG.AddDbgValue(SDV, isParameter);
6219     } else {
6220       // If Address is an argument then try to emit its dbg value using
6221       // virtual register info from the FuncInfo.ValueMap.
6222       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6223                                     FuncArgumentDbgValueKind::Declare, N)) {
6224         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6225                           << " (could not emit func-arg dbg_value)\n");
6226       }
6227     }
6228     return;
6229   }
6230   case Intrinsic::dbg_label: {
6231     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6232     DILabel *Label = DI.getLabel();
6233     assert(Label && "Missing label");
6234 
6235     SDDbgLabel *SDV;
6236     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6237     DAG.AddDbgLabel(SDV);
6238     return;
6239   }
6240   case Intrinsic::dbg_assign: {
6241     // Debug intrinsics are handled seperately in assignment tracking mode.
6242     if (AssignmentTrackingEnabled)
6243       return;
6244     // If assignment tracking hasn't been enabled then fall through and treat
6245     // the dbg.assign as a dbg.value.
6246     [[fallthrough]];
6247   }
6248   case Intrinsic::dbg_value: {
6249     // Debug intrinsics are handled seperately in assignment tracking mode.
6250     if (AssignmentTrackingEnabled)
6251       return;
6252     const DbgValueInst &DI = cast<DbgValueInst>(I);
6253     assert(DI.getVariable() && "Missing variable");
6254 
6255     DILocalVariable *Variable = DI.getVariable();
6256     DIExpression *Expression = DI.getExpression();
6257     dropDanglingDebugInfo(Variable, Expression);
6258 
6259     if (DI.isKillLocation()) {
6260       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6261       return;
6262     }
6263 
6264     SmallVector<Value *, 4> Values(DI.getValues());
6265     if (Values.empty())
6266       return;
6267 
6268     bool IsVariadic = DI.hasArgList();
6269     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6270                           SDNodeOrder, IsVariadic))
6271       addDanglingDebugInfo(&DI, SDNodeOrder);
6272     return;
6273   }
6274 
6275   case Intrinsic::eh_typeid_for: {
6276     // Find the type id for the given typeinfo.
6277     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6278     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6279     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6280     setValue(&I, Res);
6281     return;
6282   }
6283 
6284   case Intrinsic::eh_return_i32:
6285   case Intrinsic::eh_return_i64:
6286     DAG.getMachineFunction().setCallsEHReturn(true);
6287     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6288                             MVT::Other,
6289                             getControlRoot(),
6290                             getValue(I.getArgOperand(0)),
6291                             getValue(I.getArgOperand(1))));
6292     return;
6293   case Intrinsic::eh_unwind_init:
6294     DAG.getMachineFunction().setCallsUnwindInit(true);
6295     return;
6296   case Intrinsic::eh_dwarf_cfa:
6297     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6298                              TLI.getPointerTy(DAG.getDataLayout()),
6299                              getValue(I.getArgOperand(0))));
6300     return;
6301   case Intrinsic::eh_sjlj_callsite: {
6302     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6303     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6304     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6305 
6306     MMI.setCurrentCallSite(CI->getZExtValue());
6307     return;
6308   }
6309   case Intrinsic::eh_sjlj_functioncontext: {
6310     // Get and store the index of the function context.
6311     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6312     AllocaInst *FnCtx =
6313       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6314     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6315     MFI.setFunctionContextIndex(FI);
6316     return;
6317   }
6318   case Intrinsic::eh_sjlj_setjmp: {
6319     SDValue Ops[2];
6320     Ops[0] = getRoot();
6321     Ops[1] = getValue(I.getArgOperand(0));
6322     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6323                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6324     setValue(&I, Op.getValue(0));
6325     DAG.setRoot(Op.getValue(1));
6326     return;
6327   }
6328   case Intrinsic::eh_sjlj_longjmp:
6329     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6330                             getRoot(), getValue(I.getArgOperand(0))));
6331     return;
6332   case Intrinsic::eh_sjlj_setup_dispatch:
6333     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6334                             getRoot()));
6335     return;
6336   case Intrinsic::masked_gather:
6337     visitMaskedGather(I);
6338     return;
6339   case Intrinsic::masked_load:
6340     visitMaskedLoad(I);
6341     return;
6342   case Intrinsic::masked_scatter:
6343     visitMaskedScatter(I);
6344     return;
6345   case Intrinsic::masked_store:
6346     visitMaskedStore(I);
6347     return;
6348   case Intrinsic::masked_expandload:
6349     visitMaskedLoad(I, true /* IsExpanding */);
6350     return;
6351   case Intrinsic::masked_compressstore:
6352     visitMaskedStore(I, true /* IsCompressing */);
6353     return;
6354   case Intrinsic::powi:
6355     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6356                             getValue(I.getArgOperand(1)), DAG));
6357     return;
6358   case Intrinsic::log:
6359     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6360     return;
6361   case Intrinsic::log2:
6362     setValue(&I,
6363              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6364     return;
6365   case Intrinsic::log10:
6366     setValue(&I,
6367              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6368     return;
6369   case Intrinsic::exp:
6370     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6371     return;
6372   case Intrinsic::exp2:
6373     setValue(&I,
6374              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6375     return;
6376   case Intrinsic::pow:
6377     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6378                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6379     return;
6380   case Intrinsic::sqrt:
6381   case Intrinsic::fabs:
6382   case Intrinsic::sin:
6383   case Intrinsic::cos:
6384   case Intrinsic::floor:
6385   case Intrinsic::ceil:
6386   case Intrinsic::trunc:
6387   case Intrinsic::rint:
6388   case Intrinsic::nearbyint:
6389   case Intrinsic::round:
6390   case Intrinsic::roundeven:
6391   case Intrinsic::canonicalize: {
6392     unsigned Opcode;
6393     switch (Intrinsic) {
6394     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6395     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6396     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6397     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6398     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6399     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6400     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6401     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6402     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6403     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6404     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6405     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6406     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6407     }
6408 
6409     setValue(&I, DAG.getNode(Opcode, sdl,
6410                              getValue(I.getArgOperand(0)).getValueType(),
6411                              getValue(I.getArgOperand(0)), Flags));
6412     return;
6413   }
6414   case Intrinsic::lround:
6415   case Intrinsic::llround:
6416   case Intrinsic::lrint:
6417   case Intrinsic::llrint: {
6418     unsigned Opcode;
6419     switch (Intrinsic) {
6420     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6421     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6422     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6423     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6424     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6425     }
6426 
6427     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6428     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6429                              getValue(I.getArgOperand(0))));
6430     return;
6431   }
6432   case Intrinsic::minnum:
6433     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6434                              getValue(I.getArgOperand(0)).getValueType(),
6435                              getValue(I.getArgOperand(0)),
6436                              getValue(I.getArgOperand(1)), Flags));
6437     return;
6438   case Intrinsic::maxnum:
6439     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6440                              getValue(I.getArgOperand(0)).getValueType(),
6441                              getValue(I.getArgOperand(0)),
6442                              getValue(I.getArgOperand(1)), Flags));
6443     return;
6444   case Intrinsic::minimum:
6445     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6446                              getValue(I.getArgOperand(0)).getValueType(),
6447                              getValue(I.getArgOperand(0)),
6448                              getValue(I.getArgOperand(1)), Flags));
6449     return;
6450   case Intrinsic::maximum:
6451     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6452                              getValue(I.getArgOperand(0)).getValueType(),
6453                              getValue(I.getArgOperand(0)),
6454                              getValue(I.getArgOperand(1)), Flags));
6455     return;
6456   case Intrinsic::copysign:
6457     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6458                              getValue(I.getArgOperand(0)).getValueType(),
6459                              getValue(I.getArgOperand(0)),
6460                              getValue(I.getArgOperand(1)), Flags));
6461     return;
6462   case Intrinsic::ldexp:
6463     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6464                              getValue(I.getArgOperand(0)).getValueType(),
6465                              getValue(I.getArgOperand(0)),
6466                              getValue(I.getArgOperand(1)), Flags));
6467     return;
6468   case Intrinsic::frexp: {
6469     SmallVector<EVT, 2> ValueVTs;
6470     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6471     SDVTList VTs = DAG.getVTList(ValueVTs);
6472     setValue(&I,
6473              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6474     return;
6475   }
6476   case Intrinsic::arithmetic_fence: {
6477     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6478                              getValue(I.getArgOperand(0)).getValueType(),
6479                              getValue(I.getArgOperand(0)), Flags));
6480     return;
6481   }
6482   case Intrinsic::fma:
6483     setValue(&I, DAG.getNode(
6484                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6485                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6486                      getValue(I.getArgOperand(2)), Flags));
6487     return;
6488 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6489   case Intrinsic::INTRINSIC:
6490 #include "llvm/IR/ConstrainedOps.def"
6491     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6492     return;
6493 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6494 #include "llvm/IR/VPIntrinsics.def"
6495     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6496     return;
6497   case Intrinsic::fptrunc_round: {
6498     // Get the last argument, the metadata and convert it to an integer in the
6499     // call
6500     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6501     std::optional<RoundingMode> RoundMode =
6502         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6503 
6504     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6505 
6506     // Propagate fast-math-flags from IR to node(s).
6507     SDNodeFlags Flags;
6508     Flags.copyFMF(*cast<FPMathOperator>(&I));
6509     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6510 
6511     SDValue Result;
6512     Result = DAG.getNode(
6513         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6514         DAG.getTargetConstant((int)*RoundMode, sdl,
6515                               TLI.getPointerTy(DAG.getDataLayout())));
6516     setValue(&I, Result);
6517 
6518     return;
6519   }
6520   case Intrinsic::fmuladd: {
6521     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6522     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6523         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6524       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6525                                getValue(I.getArgOperand(0)).getValueType(),
6526                                getValue(I.getArgOperand(0)),
6527                                getValue(I.getArgOperand(1)),
6528                                getValue(I.getArgOperand(2)), Flags));
6529     } else {
6530       // TODO: Intrinsic calls should have fast-math-flags.
6531       SDValue Mul = DAG.getNode(
6532           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6533           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6534       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6535                                 getValue(I.getArgOperand(0)).getValueType(),
6536                                 Mul, getValue(I.getArgOperand(2)), Flags);
6537       setValue(&I, Add);
6538     }
6539     return;
6540   }
6541   case Intrinsic::convert_to_fp16:
6542     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6543                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6544                                          getValue(I.getArgOperand(0)),
6545                                          DAG.getTargetConstant(0, sdl,
6546                                                                MVT::i32))));
6547     return;
6548   case Intrinsic::convert_from_fp16:
6549     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6550                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6551                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6552                                          getValue(I.getArgOperand(0)))));
6553     return;
6554   case Intrinsic::fptosi_sat: {
6555     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6556     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6557                              getValue(I.getArgOperand(0)),
6558                              DAG.getValueType(VT.getScalarType())));
6559     return;
6560   }
6561   case Intrinsic::fptoui_sat: {
6562     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6563     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6564                              getValue(I.getArgOperand(0)),
6565                              DAG.getValueType(VT.getScalarType())));
6566     return;
6567   }
6568   case Intrinsic::set_rounding:
6569     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6570                       {getRoot(), getValue(I.getArgOperand(0))});
6571     setValue(&I, Res);
6572     DAG.setRoot(Res.getValue(0));
6573     return;
6574   case Intrinsic::is_fpclass: {
6575     const DataLayout DLayout = DAG.getDataLayout();
6576     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6577     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6578     FPClassTest Test = static_cast<FPClassTest>(
6579         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6580     MachineFunction &MF = DAG.getMachineFunction();
6581     const Function &F = MF.getFunction();
6582     SDValue Op = getValue(I.getArgOperand(0));
6583     SDNodeFlags Flags;
6584     Flags.setNoFPExcept(
6585         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6586     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6587     // expansion can use illegal types. Making expansion early allows
6588     // legalizing these types prior to selection.
6589     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6590       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6591       setValue(&I, Result);
6592       return;
6593     }
6594 
6595     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6596     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6597     setValue(&I, V);
6598     return;
6599   }
6600   case Intrinsic::get_fpenv: {
6601     const DataLayout DLayout = DAG.getDataLayout();
6602     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6603     Align TempAlign = DAG.getEVTAlign(EnvVT);
6604     SDValue Chain = getRoot();
6605     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6606     // and temporary storage in stack.
6607     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6608       Res = DAG.getNode(
6609           ISD::GET_FPENV, sdl,
6610           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6611                         MVT::Other),
6612           Chain);
6613     } else {
6614       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6615       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6616       auto MPI =
6617           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6618       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6619           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6620           TempAlign);
6621       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6622       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6623     }
6624     setValue(&I, Res);
6625     DAG.setRoot(Res.getValue(1));
6626     return;
6627   }
6628   case Intrinsic::set_fpenv: {
6629     const DataLayout DLayout = DAG.getDataLayout();
6630     SDValue Env = getValue(I.getArgOperand(0));
6631     EVT EnvVT = Env.getValueType();
6632     Align TempAlign = DAG.getEVTAlign(EnvVT);
6633     SDValue Chain = getRoot();
6634     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6635     // environment from memory.
6636     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6637       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6638     } else {
6639       // Allocate space in stack, copy environment bits into it and use this
6640       // memory in SET_FPENV_MEM.
6641       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6642       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6643       auto MPI =
6644           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6645       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6646                            MachineMemOperand::MOStore);
6647       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6648           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6649           TempAlign);
6650       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6651     }
6652     DAG.setRoot(Chain);
6653     return;
6654   }
6655   case Intrinsic::reset_fpenv:
6656     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6657     return;
6658   case Intrinsic::pcmarker: {
6659     SDValue Tmp = getValue(I.getArgOperand(0));
6660     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6661     return;
6662   }
6663   case Intrinsic::readcyclecounter: {
6664     SDValue Op = getRoot();
6665     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6666                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6667     setValue(&I, Res);
6668     DAG.setRoot(Res.getValue(1));
6669     return;
6670   }
6671   case Intrinsic::bitreverse:
6672     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6673                              getValue(I.getArgOperand(0)).getValueType(),
6674                              getValue(I.getArgOperand(0))));
6675     return;
6676   case Intrinsic::bswap:
6677     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6678                              getValue(I.getArgOperand(0)).getValueType(),
6679                              getValue(I.getArgOperand(0))));
6680     return;
6681   case Intrinsic::cttz: {
6682     SDValue Arg = getValue(I.getArgOperand(0));
6683     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6684     EVT Ty = Arg.getValueType();
6685     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6686                              sdl, Ty, Arg));
6687     return;
6688   }
6689   case Intrinsic::ctlz: {
6690     SDValue Arg = getValue(I.getArgOperand(0));
6691     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6692     EVT Ty = Arg.getValueType();
6693     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6694                              sdl, Ty, Arg));
6695     return;
6696   }
6697   case Intrinsic::ctpop: {
6698     SDValue Arg = getValue(I.getArgOperand(0));
6699     EVT Ty = Arg.getValueType();
6700     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6701     return;
6702   }
6703   case Intrinsic::fshl:
6704   case Intrinsic::fshr: {
6705     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6706     SDValue X = getValue(I.getArgOperand(0));
6707     SDValue Y = getValue(I.getArgOperand(1));
6708     SDValue Z = getValue(I.getArgOperand(2));
6709     EVT VT = X.getValueType();
6710 
6711     if (X == Y) {
6712       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6713       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6714     } else {
6715       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6716       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6717     }
6718     return;
6719   }
6720   case Intrinsic::sadd_sat: {
6721     SDValue Op1 = getValue(I.getArgOperand(0));
6722     SDValue Op2 = getValue(I.getArgOperand(1));
6723     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6724     return;
6725   }
6726   case Intrinsic::uadd_sat: {
6727     SDValue Op1 = getValue(I.getArgOperand(0));
6728     SDValue Op2 = getValue(I.getArgOperand(1));
6729     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6730     return;
6731   }
6732   case Intrinsic::ssub_sat: {
6733     SDValue Op1 = getValue(I.getArgOperand(0));
6734     SDValue Op2 = getValue(I.getArgOperand(1));
6735     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6736     return;
6737   }
6738   case Intrinsic::usub_sat: {
6739     SDValue Op1 = getValue(I.getArgOperand(0));
6740     SDValue Op2 = getValue(I.getArgOperand(1));
6741     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6742     return;
6743   }
6744   case Intrinsic::sshl_sat: {
6745     SDValue Op1 = getValue(I.getArgOperand(0));
6746     SDValue Op2 = getValue(I.getArgOperand(1));
6747     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6748     return;
6749   }
6750   case Intrinsic::ushl_sat: {
6751     SDValue Op1 = getValue(I.getArgOperand(0));
6752     SDValue Op2 = getValue(I.getArgOperand(1));
6753     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6754     return;
6755   }
6756   case Intrinsic::smul_fix:
6757   case Intrinsic::umul_fix:
6758   case Intrinsic::smul_fix_sat:
6759   case Intrinsic::umul_fix_sat: {
6760     SDValue Op1 = getValue(I.getArgOperand(0));
6761     SDValue Op2 = getValue(I.getArgOperand(1));
6762     SDValue Op3 = getValue(I.getArgOperand(2));
6763     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6764                              Op1.getValueType(), Op1, Op2, Op3));
6765     return;
6766   }
6767   case Intrinsic::sdiv_fix:
6768   case Intrinsic::udiv_fix:
6769   case Intrinsic::sdiv_fix_sat:
6770   case Intrinsic::udiv_fix_sat: {
6771     SDValue Op1 = getValue(I.getArgOperand(0));
6772     SDValue Op2 = getValue(I.getArgOperand(1));
6773     SDValue Op3 = getValue(I.getArgOperand(2));
6774     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6775                               Op1, Op2, Op3, DAG, TLI));
6776     return;
6777   }
6778   case Intrinsic::smax: {
6779     SDValue Op1 = getValue(I.getArgOperand(0));
6780     SDValue Op2 = getValue(I.getArgOperand(1));
6781     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6782     return;
6783   }
6784   case Intrinsic::smin: {
6785     SDValue Op1 = getValue(I.getArgOperand(0));
6786     SDValue Op2 = getValue(I.getArgOperand(1));
6787     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6788     return;
6789   }
6790   case Intrinsic::umax: {
6791     SDValue Op1 = getValue(I.getArgOperand(0));
6792     SDValue Op2 = getValue(I.getArgOperand(1));
6793     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6794     return;
6795   }
6796   case Intrinsic::umin: {
6797     SDValue Op1 = getValue(I.getArgOperand(0));
6798     SDValue Op2 = getValue(I.getArgOperand(1));
6799     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6800     return;
6801   }
6802   case Intrinsic::abs: {
6803     // TODO: Preserve "int min is poison" arg in SDAG?
6804     SDValue Op1 = getValue(I.getArgOperand(0));
6805     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6806     return;
6807   }
6808   case Intrinsic::stacksave: {
6809     SDValue Op = getRoot();
6810     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6811     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6812     setValue(&I, Res);
6813     DAG.setRoot(Res.getValue(1));
6814     return;
6815   }
6816   case Intrinsic::stackrestore:
6817     Res = getValue(I.getArgOperand(0));
6818     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6819     return;
6820   case Intrinsic::get_dynamic_area_offset: {
6821     SDValue Op = getRoot();
6822     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6823     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6824     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6825     // target.
6826     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6827       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6828                          " intrinsic!");
6829     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6830                       Op);
6831     DAG.setRoot(Op);
6832     setValue(&I, Res);
6833     return;
6834   }
6835   case Intrinsic::stackguard: {
6836     MachineFunction &MF = DAG.getMachineFunction();
6837     const Module &M = *MF.getFunction().getParent();
6838     SDValue Chain = getRoot();
6839     if (TLI.useLoadStackGuardNode()) {
6840       Res = getLoadStackGuard(DAG, sdl, Chain);
6841     } else {
6842       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6843       const Value *Global = TLI.getSDagStackGuard(M);
6844       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6845       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6846                         MachinePointerInfo(Global, 0), Align,
6847                         MachineMemOperand::MOVolatile);
6848     }
6849     if (TLI.useStackGuardXorFP())
6850       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6851     DAG.setRoot(Chain);
6852     setValue(&I, Res);
6853     return;
6854   }
6855   case Intrinsic::stackprotector: {
6856     // Emit code into the DAG to store the stack guard onto the stack.
6857     MachineFunction &MF = DAG.getMachineFunction();
6858     MachineFrameInfo &MFI = MF.getFrameInfo();
6859     SDValue Src, Chain = getRoot();
6860 
6861     if (TLI.useLoadStackGuardNode())
6862       Src = getLoadStackGuard(DAG, sdl, Chain);
6863     else
6864       Src = getValue(I.getArgOperand(0));   // The guard's value.
6865 
6866     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6867 
6868     int FI = FuncInfo.StaticAllocaMap[Slot];
6869     MFI.setStackProtectorIndex(FI);
6870     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6871 
6872     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6873 
6874     // Store the stack protector onto the stack.
6875     Res = DAG.getStore(
6876         Chain, sdl, Src, FIN,
6877         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6878         MaybeAlign(), MachineMemOperand::MOVolatile);
6879     setValue(&I, Res);
6880     DAG.setRoot(Res);
6881     return;
6882   }
6883   case Intrinsic::objectsize:
6884     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6885 
6886   case Intrinsic::is_constant:
6887     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6888 
6889   case Intrinsic::annotation:
6890   case Intrinsic::ptr_annotation:
6891   case Intrinsic::launder_invariant_group:
6892   case Intrinsic::strip_invariant_group:
6893     // Drop the intrinsic, but forward the value
6894     setValue(&I, getValue(I.getOperand(0)));
6895     return;
6896 
6897   case Intrinsic::assume:
6898   case Intrinsic::experimental_noalias_scope_decl:
6899   case Intrinsic::var_annotation:
6900   case Intrinsic::sideeffect:
6901     // Discard annotate attributes, noalias scope declarations, assumptions, and
6902     // artificial side-effects.
6903     return;
6904 
6905   case Intrinsic::codeview_annotation: {
6906     // Emit a label associated with this metadata.
6907     MachineFunction &MF = DAG.getMachineFunction();
6908     MCSymbol *Label =
6909         MF.getMMI().getContext().createTempSymbol("annotation", true);
6910     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6911     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6912     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6913     DAG.setRoot(Res);
6914     return;
6915   }
6916 
6917   case Intrinsic::init_trampoline: {
6918     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6919 
6920     SDValue Ops[6];
6921     Ops[0] = getRoot();
6922     Ops[1] = getValue(I.getArgOperand(0));
6923     Ops[2] = getValue(I.getArgOperand(1));
6924     Ops[3] = getValue(I.getArgOperand(2));
6925     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6926     Ops[5] = DAG.getSrcValue(F);
6927 
6928     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6929 
6930     DAG.setRoot(Res);
6931     return;
6932   }
6933   case Intrinsic::adjust_trampoline:
6934     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6935                              TLI.getPointerTy(DAG.getDataLayout()),
6936                              getValue(I.getArgOperand(0))));
6937     return;
6938   case Intrinsic::gcroot: {
6939     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6940            "only valid in functions with gc specified, enforced by Verifier");
6941     assert(GFI && "implied by previous");
6942     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6943     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6944 
6945     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6946     GFI->addStackRoot(FI->getIndex(), TypeMap);
6947     return;
6948   }
6949   case Intrinsic::gcread:
6950   case Intrinsic::gcwrite:
6951     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6952   case Intrinsic::get_rounding:
6953     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6954     setValue(&I, Res);
6955     DAG.setRoot(Res.getValue(1));
6956     return;
6957 
6958   case Intrinsic::expect:
6959     // Just replace __builtin_expect(exp, c) with EXP.
6960     setValue(&I, getValue(I.getArgOperand(0)));
6961     return;
6962 
6963   case Intrinsic::ubsantrap:
6964   case Intrinsic::debugtrap:
6965   case Intrinsic::trap: {
6966     StringRef TrapFuncName =
6967         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6968     if (TrapFuncName.empty()) {
6969       switch (Intrinsic) {
6970       case Intrinsic::trap:
6971         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6972         break;
6973       case Intrinsic::debugtrap:
6974         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6975         break;
6976       case Intrinsic::ubsantrap:
6977         DAG.setRoot(DAG.getNode(
6978             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6979             DAG.getTargetConstant(
6980                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6981                 MVT::i32)));
6982         break;
6983       default: llvm_unreachable("unknown trap intrinsic");
6984       }
6985       return;
6986     }
6987     TargetLowering::ArgListTy Args;
6988     if (Intrinsic == Intrinsic::ubsantrap) {
6989       Args.push_back(TargetLoweringBase::ArgListEntry());
6990       Args[0].Val = I.getArgOperand(0);
6991       Args[0].Node = getValue(Args[0].Val);
6992       Args[0].Ty = Args[0].Val->getType();
6993     }
6994 
6995     TargetLowering::CallLoweringInfo CLI(DAG);
6996     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6997         CallingConv::C, I.getType(),
6998         DAG.getExternalSymbol(TrapFuncName.data(),
6999                               TLI.getPointerTy(DAG.getDataLayout())),
7000         std::move(Args));
7001 
7002     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7003     DAG.setRoot(Result.second);
7004     return;
7005   }
7006 
7007   case Intrinsic::uadd_with_overflow:
7008   case Intrinsic::sadd_with_overflow:
7009   case Intrinsic::usub_with_overflow:
7010   case Intrinsic::ssub_with_overflow:
7011   case Intrinsic::umul_with_overflow:
7012   case Intrinsic::smul_with_overflow: {
7013     ISD::NodeType Op;
7014     switch (Intrinsic) {
7015     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7016     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7017     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7018     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7019     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7020     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7021     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7022     }
7023     SDValue Op1 = getValue(I.getArgOperand(0));
7024     SDValue Op2 = getValue(I.getArgOperand(1));
7025 
7026     EVT ResultVT = Op1.getValueType();
7027     EVT OverflowVT = MVT::i1;
7028     if (ResultVT.isVector())
7029       OverflowVT = EVT::getVectorVT(
7030           *Context, OverflowVT, ResultVT.getVectorElementCount());
7031 
7032     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7033     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7034     return;
7035   }
7036   case Intrinsic::prefetch: {
7037     SDValue Ops[5];
7038     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7039     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7040     Ops[0] = DAG.getRoot();
7041     Ops[1] = getValue(I.getArgOperand(0));
7042     Ops[2] = getValue(I.getArgOperand(1));
7043     Ops[3] = getValue(I.getArgOperand(2));
7044     Ops[4] = getValue(I.getArgOperand(3));
7045     SDValue Result = DAG.getMemIntrinsicNode(
7046         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7047         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7048         /* align */ std::nullopt, Flags);
7049 
7050     // Chain the prefetch in parallell with any pending loads, to stay out of
7051     // the way of later optimizations.
7052     PendingLoads.push_back(Result);
7053     Result = getRoot();
7054     DAG.setRoot(Result);
7055     return;
7056   }
7057   case Intrinsic::lifetime_start:
7058   case Intrinsic::lifetime_end: {
7059     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7060     // Stack coloring is not enabled in O0, discard region information.
7061     if (TM.getOptLevel() == CodeGenOpt::None)
7062       return;
7063 
7064     const int64_t ObjectSize =
7065         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7066     Value *const ObjectPtr = I.getArgOperand(1);
7067     SmallVector<const Value *, 4> Allocas;
7068     getUnderlyingObjects(ObjectPtr, Allocas);
7069 
7070     for (const Value *Alloca : Allocas) {
7071       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7072 
7073       // Could not find an Alloca.
7074       if (!LifetimeObject)
7075         continue;
7076 
7077       // First check that the Alloca is static, otherwise it won't have a
7078       // valid frame index.
7079       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7080       if (SI == FuncInfo.StaticAllocaMap.end())
7081         return;
7082 
7083       const int FrameIndex = SI->second;
7084       int64_t Offset;
7085       if (GetPointerBaseWithConstantOffset(
7086               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7087         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7088       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7089                                 Offset);
7090       DAG.setRoot(Res);
7091     }
7092     return;
7093   }
7094   case Intrinsic::pseudoprobe: {
7095     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7096     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7097     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7098     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7099     DAG.setRoot(Res);
7100     return;
7101   }
7102   case Intrinsic::invariant_start:
7103     // Discard region information.
7104     setValue(&I,
7105              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7106     return;
7107   case Intrinsic::invariant_end:
7108     // Discard region information.
7109     return;
7110   case Intrinsic::clear_cache:
7111     /// FunctionName may be null.
7112     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7113       lowerCallToExternalSymbol(I, FunctionName);
7114     return;
7115   case Intrinsic::donothing:
7116   case Intrinsic::seh_try_begin:
7117   case Intrinsic::seh_scope_begin:
7118   case Intrinsic::seh_try_end:
7119   case Intrinsic::seh_scope_end:
7120     // ignore
7121     return;
7122   case Intrinsic::experimental_stackmap:
7123     visitStackmap(I);
7124     return;
7125   case Intrinsic::experimental_patchpoint_void:
7126   case Intrinsic::experimental_patchpoint_i64:
7127     visitPatchpoint(I);
7128     return;
7129   case Intrinsic::experimental_gc_statepoint:
7130     LowerStatepoint(cast<GCStatepointInst>(I));
7131     return;
7132   case Intrinsic::experimental_gc_result:
7133     visitGCResult(cast<GCResultInst>(I));
7134     return;
7135   case Intrinsic::experimental_gc_relocate:
7136     visitGCRelocate(cast<GCRelocateInst>(I));
7137     return;
7138   case Intrinsic::instrprof_cover:
7139     llvm_unreachable("instrprof failed to lower a cover");
7140   case Intrinsic::instrprof_increment:
7141     llvm_unreachable("instrprof failed to lower an increment");
7142   case Intrinsic::instrprof_timestamp:
7143     llvm_unreachable("instrprof failed to lower a timestamp");
7144   case Intrinsic::instrprof_value_profile:
7145     llvm_unreachable("instrprof failed to lower a value profiling call");
7146   case Intrinsic::localescape: {
7147     MachineFunction &MF = DAG.getMachineFunction();
7148     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7149 
7150     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7151     // is the same on all targets.
7152     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7153       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7154       if (isa<ConstantPointerNull>(Arg))
7155         continue; // Skip null pointers. They represent a hole in index space.
7156       AllocaInst *Slot = cast<AllocaInst>(Arg);
7157       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7158              "can only escape static allocas");
7159       int FI = FuncInfo.StaticAllocaMap[Slot];
7160       MCSymbol *FrameAllocSym =
7161           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7162               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7163       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7164               TII->get(TargetOpcode::LOCAL_ESCAPE))
7165           .addSym(FrameAllocSym)
7166           .addFrameIndex(FI);
7167     }
7168 
7169     return;
7170   }
7171 
7172   case Intrinsic::localrecover: {
7173     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7174     MachineFunction &MF = DAG.getMachineFunction();
7175 
7176     // Get the symbol that defines the frame offset.
7177     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7178     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7179     unsigned IdxVal =
7180         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7181     MCSymbol *FrameAllocSym =
7182         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7183             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7184 
7185     Value *FP = I.getArgOperand(1);
7186     SDValue FPVal = getValue(FP);
7187     EVT PtrVT = FPVal.getValueType();
7188 
7189     // Create a MCSymbol for the label to avoid any target lowering
7190     // that would make this PC relative.
7191     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7192     SDValue OffsetVal =
7193         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7194 
7195     // Add the offset to the FP.
7196     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7197     setValue(&I, Add);
7198 
7199     return;
7200   }
7201 
7202   case Intrinsic::eh_exceptionpointer:
7203   case Intrinsic::eh_exceptioncode: {
7204     // Get the exception pointer vreg, copy from it, and resize it to fit.
7205     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7206     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7207     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7208     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7209     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7210     if (Intrinsic == Intrinsic::eh_exceptioncode)
7211       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7212     setValue(&I, N);
7213     return;
7214   }
7215   case Intrinsic::xray_customevent: {
7216     // Here we want to make sure that the intrinsic behaves as if it has a
7217     // specific calling convention.
7218     const auto &Triple = DAG.getTarget().getTargetTriple();
7219     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7220       return;
7221 
7222     SmallVector<SDValue, 8> Ops;
7223 
7224     // We want to say that we always want the arguments in registers.
7225     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7226     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7227     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7228     SDValue Chain = getRoot();
7229     Ops.push_back(LogEntryVal);
7230     Ops.push_back(StrSizeVal);
7231     Ops.push_back(Chain);
7232 
7233     // We need to enforce the calling convention for the callsite, so that
7234     // argument ordering is enforced correctly, and that register allocation can
7235     // see that some registers may be assumed clobbered and have to preserve
7236     // them across calls to the intrinsic.
7237     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7238                                            sdl, NodeTys, Ops);
7239     SDValue patchableNode = SDValue(MN, 0);
7240     DAG.setRoot(patchableNode);
7241     setValue(&I, patchableNode);
7242     return;
7243   }
7244   case Intrinsic::xray_typedevent: {
7245     // Here we want to make sure that the intrinsic behaves as if it has a
7246     // specific calling convention.
7247     const auto &Triple = DAG.getTarget().getTargetTriple();
7248     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7249       return;
7250 
7251     SmallVector<SDValue, 8> Ops;
7252 
7253     // We want to say that we always want the arguments in registers.
7254     // It's unclear to me how manipulating the selection DAG here forces callers
7255     // to provide arguments in registers instead of on the stack.
7256     SDValue LogTypeId = getValue(I.getArgOperand(0));
7257     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7258     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7259     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7260     SDValue Chain = getRoot();
7261     Ops.push_back(LogTypeId);
7262     Ops.push_back(LogEntryVal);
7263     Ops.push_back(StrSizeVal);
7264     Ops.push_back(Chain);
7265 
7266     // We need to enforce the calling convention for the callsite, so that
7267     // argument ordering is enforced correctly, and that register allocation can
7268     // see that some registers may be assumed clobbered and have to preserve
7269     // them across calls to the intrinsic.
7270     MachineSDNode *MN = DAG.getMachineNode(
7271         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7272     SDValue patchableNode = SDValue(MN, 0);
7273     DAG.setRoot(patchableNode);
7274     setValue(&I, patchableNode);
7275     return;
7276   }
7277   case Intrinsic::experimental_deoptimize:
7278     LowerDeoptimizeCall(&I);
7279     return;
7280   case Intrinsic::experimental_stepvector:
7281     visitStepVector(I);
7282     return;
7283   case Intrinsic::vector_reduce_fadd:
7284   case Intrinsic::vector_reduce_fmul:
7285   case Intrinsic::vector_reduce_add:
7286   case Intrinsic::vector_reduce_mul:
7287   case Intrinsic::vector_reduce_and:
7288   case Intrinsic::vector_reduce_or:
7289   case Intrinsic::vector_reduce_xor:
7290   case Intrinsic::vector_reduce_smax:
7291   case Intrinsic::vector_reduce_smin:
7292   case Intrinsic::vector_reduce_umax:
7293   case Intrinsic::vector_reduce_umin:
7294   case Intrinsic::vector_reduce_fmax:
7295   case Intrinsic::vector_reduce_fmin:
7296   case Intrinsic::vector_reduce_fmaximum:
7297   case Intrinsic::vector_reduce_fminimum:
7298     visitVectorReduce(I, Intrinsic);
7299     return;
7300 
7301   case Intrinsic::icall_branch_funnel: {
7302     SmallVector<SDValue, 16> Ops;
7303     Ops.push_back(getValue(I.getArgOperand(0)));
7304 
7305     int64_t Offset;
7306     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7307         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7308     if (!Base)
7309       report_fatal_error(
7310           "llvm.icall.branch.funnel operand must be a GlobalValue");
7311     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7312 
7313     struct BranchFunnelTarget {
7314       int64_t Offset;
7315       SDValue Target;
7316     };
7317     SmallVector<BranchFunnelTarget, 8> Targets;
7318 
7319     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7320       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7321           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7322       if (ElemBase != Base)
7323         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7324                            "to the same GlobalValue");
7325 
7326       SDValue Val = getValue(I.getArgOperand(Op + 1));
7327       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7328       if (!GA)
7329         report_fatal_error(
7330             "llvm.icall.branch.funnel operand must be a GlobalValue");
7331       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7332                                      GA->getGlobal(), sdl, Val.getValueType(),
7333                                      GA->getOffset())});
7334     }
7335     llvm::sort(Targets,
7336                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7337                  return T1.Offset < T2.Offset;
7338                });
7339 
7340     for (auto &T : Targets) {
7341       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7342       Ops.push_back(T.Target);
7343     }
7344 
7345     Ops.push_back(DAG.getRoot()); // Chain
7346     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7347                                  MVT::Other, Ops),
7348               0);
7349     DAG.setRoot(N);
7350     setValue(&I, N);
7351     HasTailCall = true;
7352     return;
7353   }
7354 
7355   case Intrinsic::wasm_landingpad_index:
7356     // Information this intrinsic contained has been transferred to
7357     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7358     // delete it now.
7359     return;
7360 
7361   case Intrinsic::aarch64_settag:
7362   case Intrinsic::aarch64_settag_zero: {
7363     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7364     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7365     SDValue Val = TSI.EmitTargetCodeForSetTag(
7366         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7367         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7368         ZeroMemory);
7369     DAG.setRoot(Val);
7370     setValue(&I, Val);
7371     return;
7372   }
7373   case Intrinsic::ptrmask: {
7374     SDValue Ptr = getValue(I.getOperand(0));
7375     SDValue Const = getValue(I.getOperand(1));
7376 
7377     EVT PtrVT = Ptr.getValueType();
7378     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7379                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7380     return;
7381   }
7382   case Intrinsic::threadlocal_address: {
7383     setValue(&I, getValue(I.getOperand(0)));
7384     return;
7385   }
7386   case Intrinsic::get_active_lane_mask: {
7387     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7388     SDValue Index = getValue(I.getOperand(0));
7389     EVT ElementVT = Index.getValueType();
7390 
7391     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7392       visitTargetIntrinsic(I, Intrinsic);
7393       return;
7394     }
7395 
7396     SDValue TripCount = getValue(I.getOperand(1));
7397     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7398                                  CCVT.getVectorElementCount());
7399 
7400     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7401     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7402     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7403     SDValue VectorInduction = DAG.getNode(
7404         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7405     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7406                                  VectorTripCount, ISD::CondCode::SETULT);
7407     setValue(&I, SetCC);
7408     return;
7409   }
7410   case Intrinsic::experimental_get_vector_length: {
7411     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7412            "Expected positive VF");
7413     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7414     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7415 
7416     SDValue Count = getValue(I.getOperand(0));
7417     EVT CountVT = Count.getValueType();
7418 
7419     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7420       visitTargetIntrinsic(I, Intrinsic);
7421       return;
7422     }
7423 
7424     // Expand to a umin between the trip count and the maximum elements the type
7425     // can hold.
7426     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7427 
7428     // Extend the trip count to at least the result VT.
7429     if (CountVT.bitsLT(VT)) {
7430       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7431       CountVT = VT;
7432     }
7433 
7434     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7435                                          ElementCount::get(VF, IsScalable));
7436 
7437     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7438     // Clip to the result type if needed.
7439     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7440 
7441     setValue(&I, Trunc);
7442     return;
7443   }
7444   case Intrinsic::vector_insert: {
7445     SDValue Vec = getValue(I.getOperand(0));
7446     SDValue SubVec = getValue(I.getOperand(1));
7447     SDValue Index = getValue(I.getOperand(2));
7448 
7449     // The intrinsic's index type is i64, but the SDNode requires an index type
7450     // suitable for the target. Convert the index as required.
7451     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7452     if (Index.getValueType() != VectorIdxTy)
7453       Index = DAG.getVectorIdxConstant(
7454           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7455 
7456     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7457     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7458                              Index));
7459     return;
7460   }
7461   case Intrinsic::vector_extract: {
7462     SDValue Vec = getValue(I.getOperand(0));
7463     SDValue Index = getValue(I.getOperand(1));
7464     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7465 
7466     // The intrinsic's index type is i64, but the SDNode requires an index type
7467     // suitable for the target. Convert the index as required.
7468     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7469     if (Index.getValueType() != VectorIdxTy)
7470       Index = DAG.getVectorIdxConstant(
7471           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7472 
7473     setValue(&I,
7474              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7475     return;
7476   }
7477   case Intrinsic::experimental_vector_reverse:
7478     visitVectorReverse(I);
7479     return;
7480   case Intrinsic::experimental_vector_splice:
7481     visitVectorSplice(I);
7482     return;
7483   case Intrinsic::callbr_landingpad:
7484     visitCallBrLandingPad(I);
7485     return;
7486   case Intrinsic::experimental_vector_interleave2:
7487     visitVectorInterleave(I);
7488     return;
7489   case Intrinsic::experimental_vector_deinterleave2:
7490     visitVectorDeinterleave(I);
7491     return;
7492   }
7493 }
7494 
7495 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7496     const ConstrainedFPIntrinsic &FPI) {
7497   SDLoc sdl = getCurSDLoc();
7498 
7499   // We do not need to serialize constrained FP intrinsics against
7500   // each other or against (nonvolatile) loads, so they can be
7501   // chained like loads.
7502   SDValue Chain = DAG.getRoot();
7503   SmallVector<SDValue, 4> Opers;
7504   Opers.push_back(Chain);
7505   if (FPI.isUnaryOp()) {
7506     Opers.push_back(getValue(FPI.getArgOperand(0)));
7507   } else if (FPI.isTernaryOp()) {
7508     Opers.push_back(getValue(FPI.getArgOperand(0)));
7509     Opers.push_back(getValue(FPI.getArgOperand(1)));
7510     Opers.push_back(getValue(FPI.getArgOperand(2)));
7511   } else {
7512     Opers.push_back(getValue(FPI.getArgOperand(0)));
7513     Opers.push_back(getValue(FPI.getArgOperand(1)));
7514   }
7515 
7516   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7517     assert(Result.getNode()->getNumValues() == 2);
7518 
7519     // Push node to the appropriate list so that future instructions can be
7520     // chained up correctly.
7521     SDValue OutChain = Result.getValue(1);
7522     switch (EB) {
7523     case fp::ExceptionBehavior::ebIgnore:
7524       // The only reason why ebIgnore nodes still need to be chained is that
7525       // they might depend on the current rounding mode, and therefore must
7526       // not be moved across instruction that may change that mode.
7527       [[fallthrough]];
7528     case fp::ExceptionBehavior::ebMayTrap:
7529       // These must not be moved across calls or instructions that may change
7530       // floating-point exception masks.
7531       PendingConstrainedFP.push_back(OutChain);
7532       break;
7533     case fp::ExceptionBehavior::ebStrict:
7534       // These must not be moved across calls or instructions that may change
7535       // floating-point exception masks or read floating-point exception flags.
7536       // In addition, they cannot be optimized out even if unused.
7537       PendingConstrainedFPStrict.push_back(OutChain);
7538       break;
7539     }
7540   };
7541 
7542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7543   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7544   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7545   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7546 
7547   SDNodeFlags Flags;
7548   if (EB == fp::ExceptionBehavior::ebIgnore)
7549     Flags.setNoFPExcept(true);
7550 
7551   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7552     Flags.copyFMF(*FPOp);
7553 
7554   unsigned Opcode;
7555   switch (FPI.getIntrinsicID()) {
7556   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7557 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7558   case Intrinsic::INTRINSIC:                                                   \
7559     Opcode = ISD::STRICT_##DAGN;                                               \
7560     break;
7561 #include "llvm/IR/ConstrainedOps.def"
7562   case Intrinsic::experimental_constrained_fmuladd: {
7563     Opcode = ISD::STRICT_FMA;
7564     // Break fmuladd into fmul and fadd.
7565     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7566         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7567       Opers.pop_back();
7568       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7569       pushOutChain(Mul, EB);
7570       Opcode = ISD::STRICT_FADD;
7571       Opers.clear();
7572       Opers.push_back(Mul.getValue(1));
7573       Opers.push_back(Mul.getValue(0));
7574       Opers.push_back(getValue(FPI.getArgOperand(2)));
7575     }
7576     break;
7577   }
7578   }
7579 
7580   // A few strict DAG nodes carry additional operands that are not
7581   // set up by the default code above.
7582   switch (Opcode) {
7583   default: break;
7584   case ISD::STRICT_FP_ROUND:
7585     Opers.push_back(
7586         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7587     break;
7588   case ISD::STRICT_FSETCC:
7589   case ISD::STRICT_FSETCCS: {
7590     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7591     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7592     if (TM.Options.NoNaNsFPMath)
7593       Condition = getFCmpCodeWithoutNaN(Condition);
7594     Opers.push_back(DAG.getCondCode(Condition));
7595     break;
7596   }
7597   }
7598 
7599   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7600   pushOutChain(Result, EB);
7601 
7602   SDValue FPResult = Result.getValue(0);
7603   setValue(&FPI, FPResult);
7604 }
7605 
7606 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7607   std::optional<unsigned> ResOPC;
7608   switch (VPIntrin.getIntrinsicID()) {
7609   case Intrinsic::vp_ctlz: {
7610     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7611     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7612     break;
7613   }
7614   case Intrinsic::vp_cttz: {
7615     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7616     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7617     break;
7618   }
7619 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7620   case Intrinsic::VPID:                                                        \
7621     ResOPC = ISD::VPSD;                                                        \
7622     break;
7623 #include "llvm/IR/VPIntrinsics.def"
7624   }
7625 
7626   if (!ResOPC)
7627     llvm_unreachable(
7628         "Inconsistency: no SDNode available for this VPIntrinsic!");
7629 
7630   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7631       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7632     if (VPIntrin.getFastMathFlags().allowReassoc())
7633       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7634                                                 : ISD::VP_REDUCE_FMUL;
7635   }
7636 
7637   return *ResOPC;
7638 }
7639 
7640 void SelectionDAGBuilder::visitVPLoad(
7641     const VPIntrinsic &VPIntrin, EVT VT,
7642     const SmallVectorImpl<SDValue> &OpValues) {
7643   SDLoc DL = getCurSDLoc();
7644   Value *PtrOperand = VPIntrin.getArgOperand(0);
7645   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7646   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7647   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7648   SDValue LD;
7649   // Do not serialize variable-length loads of constant memory with
7650   // anything.
7651   if (!Alignment)
7652     Alignment = DAG.getEVTAlign(VT);
7653   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7654   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7655   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7656   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7657       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7658       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7659   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7660                      MMO, false /*IsExpanding */);
7661   if (AddToChain)
7662     PendingLoads.push_back(LD.getValue(1));
7663   setValue(&VPIntrin, LD);
7664 }
7665 
7666 void SelectionDAGBuilder::visitVPGather(
7667     const VPIntrinsic &VPIntrin, EVT VT,
7668     const SmallVectorImpl<SDValue> &OpValues) {
7669   SDLoc DL = getCurSDLoc();
7670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7671   Value *PtrOperand = VPIntrin.getArgOperand(0);
7672   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7673   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7674   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7675   SDValue LD;
7676   if (!Alignment)
7677     Alignment = DAG.getEVTAlign(VT.getScalarType());
7678   unsigned AS =
7679     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7680   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7681      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7682      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7683   SDValue Base, Index, Scale;
7684   ISD::MemIndexType IndexType;
7685   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7686                                     this, VPIntrin.getParent(),
7687                                     VT.getScalarStoreSize());
7688   if (!UniformBase) {
7689     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7690     Index = getValue(PtrOperand);
7691     IndexType = ISD::SIGNED_SCALED;
7692     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7693   }
7694   EVT IdxVT = Index.getValueType();
7695   EVT EltTy = IdxVT.getVectorElementType();
7696   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7697     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7698     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7699   }
7700   LD = DAG.getGatherVP(
7701       DAG.getVTList(VT, MVT::Other), VT, DL,
7702       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7703       IndexType);
7704   PendingLoads.push_back(LD.getValue(1));
7705   setValue(&VPIntrin, LD);
7706 }
7707 
7708 void SelectionDAGBuilder::visitVPStore(
7709     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7710   SDLoc DL = getCurSDLoc();
7711   Value *PtrOperand = VPIntrin.getArgOperand(1);
7712   EVT VT = OpValues[0].getValueType();
7713   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7714   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7715   SDValue ST;
7716   if (!Alignment)
7717     Alignment = DAG.getEVTAlign(VT);
7718   SDValue Ptr = OpValues[1];
7719   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7720   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7721       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7722       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7723   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7724                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7725                       /* IsTruncating */ false, /*IsCompressing*/ false);
7726   DAG.setRoot(ST);
7727   setValue(&VPIntrin, ST);
7728 }
7729 
7730 void SelectionDAGBuilder::visitVPScatter(
7731     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7732   SDLoc DL = getCurSDLoc();
7733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7734   Value *PtrOperand = VPIntrin.getArgOperand(1);
7735   EVT VT = OpValues[0].getValueType();
7736   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7737   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7738   SDValue ST;
7739   if (!Alignment)
7740     Alignment = DAG.getEVTAlign(VT.getScalarType());
7741   unsigned AS =
7742       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7743   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7744       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7745       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7746   SDValue Base, Index, Scale;
7747   ISD::MemIndexType IndexType;
7748   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7749                                     this, VPIntrin.getParent(),
7750                                     VT.getScalarStoreSize());
7751   if (!UniformBase) {
7752     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7753     Index = getValue(PtrOperand);
7754     IndexType = ISD::SIGNED_SCALED;
7755     Scale =
7756       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7757   }
7758   EVT IdxVT = Index.getValueType();
7759   EVT EltTy = IdxVT.getVectorElementType();
7760   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7761     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7762     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7763   }
7764   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7765                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7766                          OpValues[2], OpValues[3]},
7767                         MMO, IndexType);
7768   DAG.setRoot(ST);
7769   setValue(&VPIntrin, ST);
7770 }
7771 
7772 void SelectionDAGBuilder::visitVPStridedLoad(
7773     const VPIntrinsic &VPIntrin, EVT VT,
7774     const SmallVectorImpl<SDValue> &OpValues) {
7775   SDLoc DL = getCurSDLoc();
7776   Value *PtrOperand = VPIntrin.getArgOperand(0);
7777   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7778   if (!Alignment)
7779     Alignment = DAG.getEVTAlign(VT.getScalarType());
7780   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7781   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7782   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7783   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7784   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7785   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7786       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7787       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7788 
7789   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7790                                     OpValues[2], OpValues[3], MMO,
7791                                     false /*IsExpanding*/);
7792 
7793   if (AddToChain)
7794     PendingLoads.push_back(LD.getValue(1));
7795   setValue(&VPIntrin, LD);
7796 }
7797 
7798 void SelectionDAGBuilder::visitVPStridedStore(
7799     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7800   SDLoc DL = getCurSDLoc();
7801   Value *PtrOperand = VPIntrin.getArgOperand(1);
7802   EVT VT = OpValues[0].getValueType();
7803   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7804   if (!Alignment)
7805     Alignment = DAG.getEVTAlign(VT.getScalarType());
7806   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7807   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7808       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7809       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7810 
7811   SDValue ST = DAG.getStridedStoreVP(
7812       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7813       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7814       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7815       /*IsCompressing*/ false);
7816 
7817   DAG.setRoot(ST);
7818   setValue(&VPIntrin, ST);
7819 }
7820 
7821 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7823   SDLoc DL = getCurSDLoc();
7824 
7825   ISD::CondCode Condition;
7826   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7827   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7828   if (IsFP) {
7829     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7830     // flags, but calls that don't return floating-point types can't be
7831     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7832     Condition = getFCmpCondCode(CondCode);
7833     if (TM.Options.NoNaNsFPMath)
7834       Condition = getFCmpCodeWithoutNaN(Condition);
7835   } else {
7836     Condition = getICmpCondCode(CondCode);
7837   }
7838 
7839   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7840   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7841   // #2 is the condition code
7842   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7843   SDValue EVL = getValue(VPIntrin.getOperand(4));
7844   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7845   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7846          "Unexpected target EVL type");
7847   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7848 
7849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7850                                                         VPIntrin.getType());
7851   setValue(&VPIntrin,
7852            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7853 }
7854 
7855 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7856     const VPIntrinsic &VPIntrin) {
7857   SDLoc DL = getCurSDLoc();
7858   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7859 
7860   auto IID = VPIntrin.getIntrinsicID();
7861 
7862   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7863     return visitVPCmp(*CmpI);
7864 
7865   SmallVector<EVT, 4> ValueVTs;
7866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7867   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7868   SDVTList VTs = DAG.getVTList(ValueVTs);
7869 
7870   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7871 
7872   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7873   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7874          "Unexpected target EVL type");
7875 
7876   // Request operands.
7877   SmallVector<SDValue, 7> OpValues;
7878   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7879     auto Op = getValue(VPIntrin.getArgOperand(I));
7880     if (I == EVLParamPos)
7881       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7882     OpValues.push_back(Op);
7883   }
7884 
7885   switch (Opcode) {
7886   default: {
7887     SDNodeFlags SDFlags;
7888     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7889       SDFlags.copyFMF(*FPMO);
7890     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7891     setValue(&VPIntrin, Result);
7892     break;
7893   }
7894   case ISD::VP_LOAD:
7895     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7896     break;
7897   case ISD::VP_GATHER:
7898     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7899     break;
7900   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7901     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7902     break;
7903   case ISD::VP_STORE:
7904     visitVPStore(VPIntrin, OpValues);
7905     break;
7906   case ISD::VP_SCATTER:
7907     visitVPScatter(VPIntrin, OpValues);
7908     break;
7909   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7910     visitVPStridedStore(VPIntrin, OpValues);
7911     break;
7912   case ISD::VP_FMULADD: {
7913     assert(OpValues.size() == 5 && "Unexpected number of operands");
7914     SDNodeFlags SDFlags;
7915     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7916       SDFlags.copyFMF(*FPMO);
7917     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7918         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7919       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7920     } else {
7921       SDValue Mul = DAG.getNode(
7922           ISD::VP_FMUL, DL, VTs,
7923           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7924       SDValue Add =
7925           DAG.getNode(ISD::VP_FADD, DL, VTs,
7926                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7927       setValue(&VPIntrin, Add);
7928     }
7929     break;
7930   }
7931   case ISD::VP_INTTOPTR: {
7932     SDValue N = OpValues[0];
7933     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7934     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7935     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7936                                OpValues[2]);
7937     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7938                              OpValues[2]);
7939     setValue(&VPIntrin, N);
7940     break;
7941   }
7942   case ISD::VP_PTRTOINT: {
7943     SDValue N = OpValues[0];
7944     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7945                                                           VPIntrin.getType());
7946     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7947                                        VPIntrin.getOperand(0)->getType());
7948     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7949                                OpValues[2]);
7950     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7951                              OpValues[2]);
7952     setValue(&VPIntrin, N);
7953     break;
7954   }
7955   case ISD::VP_ABS:
7956   case ISD::VP_CTLZ:
7957   case ISD::VP_CTLZ_ZERO_UNDEF:
7958   case ISD::VP_CTTZ:
7959   case ISD::VP_CTTZ_ZERO_UNDEF: {
7960     SDValue Result =
7961         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7962     setValue(&VPIntrin, Result);
7963     break;
7964   }
7965   }
7966 }
7967 
7968 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7969                                           const BasicBlock *EHPadBB,
7970                                           MCSymbol *&BeginLabel) {
7971   MachineFunction &MF = DAG.getMachineFunction();
7972   MachineModuleInfo &MMI = MF.getMMI();
7973 
7974   // Insert a label before the invoke call to mark the try range.  This can be
7975   // used to detect deletion of the invoke via the MachineModuleInfo.
7976   BeginLabel = MMI.getContext().createTempSymbol();
7977 
7978   // For SjLj, keep track of which landing pads go with which invokes
7979   // so as to maintain the ordering of pads in the LSDA.
7980   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7981   if (CallSiteIndex) {
7982     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7983     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7984 
7985     // Now that the call site is handled, stop tracking it.
7986     MMI.setCurrentCallSite(0);
7987   }
7988 
7989   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7990 }
7991 
7992 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7993                                         const BasicBlock *EHPadBB,
7994                                         MCSymbol *BeginLabel) {
7995   assert(BeginLabel && "BeginLabel should've been set");
7996 
7997   MachineFunction &MF = DAG.getMachineFunction();
7998   MachineModuleInfo &MMI = MF.getMMI();
7999 
8000   // Insert a label at the end of the invoke call to mark the try range.  This
8001   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8002   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8003   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8004 
8005   // Inform MachineModuleInfo of range.
8006   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8007   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8008   // actually use outlined funclets and their LSDA info style.
8009   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8010     assert(II && "II should've been set");
8011     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8012     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8013   } else if (!isScopedEHPersonality(Pers)) {
8014     assert(EHPadBB);
8015     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8016   }
8017 
8018   return Chain;
8019 }
8020 
8021 std::pair<SDValue, SDValue>
8022 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8023                                     const BasicBlock *EHPadBB) {
8024   MCSymbol *BeginLabel = nullptr;
8025 
8026   if (EHPadBB) {
8027     // Both PendingLoads and PendingExports must be flushed here;
8028     // this call might not return.
8029     (void)getRoot();
8030     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8031     CLI.setChain(getRoot());
8032   }
8033 
8034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8035   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8036 
8037   assert((CLI.IsTailCall || Result.second.getNode()) &&
8038          "Non-null chain expected with non-tail call!");
8039   assert((Result.second.getNode() || !Result.first.getNode()) &&
8040          "Null value expected with tail call!");
8041 
8042   if (!Result.second.getNode()) {
8043     // As a special case, a null chain means that a tail call has been emitted
8044     // and the DAG root is already updated.
8045     HasTailCall = true;
8046 
8047     // Since there's no actual continuation from this block, nothing can be
8048     // relying on us setting vregs for them.
8049     PendingExports.clear();
8050   } else {
8051     DAG.setRoot(Result.second);
8052   }
8053 
8054   if (EHPadBB) {
8055     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8056                            BeginLabel));
8057   }
8058 
8059   return Result;
8060 }
8061 
8062 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8063                                       bool isTailCall,
8064                                       bool isMustTailCall,
8065                                       const BasicBlock *EHPadBB) {
8066   auto &DL = DAG.getDataLayout();
8067   FunctionType *FTy = CB.getFunctionType();
8068   Type *RetTy = CB.getType();
8069 
8070   TargetLowering::ArgListTy Args;
8071   Args.reserve(CB.arg_size());
8072 
8073   const Value *SwiftErrorVal = nullptr;
8074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8075 
8076   if (isTailCall) {
8077     // Avoid emitting tail calls in functions with the disable-tail-calls
8078     // attribute.
8079     auto *Caller = CB.getParent()->getParent();
8080     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8081         "true" && !isMustTailCall)
8082       isTailCall = false;
8083 
8084     // We can't tail call inside a function with a swifterror argument. Lowering
8085     // does not support this yet. It would have to move into the swifterror
8086     // register before the call.
8087     if (TLI.supportSwiftError() &&
8088         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8089       isTailCall = false;
8090   }
8091 
8092   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8093     TargetLowering::ArgListEntry Entry;
8094     const Value *V = *I;
8095 
8096     // Skip empty types
8097     if (V->getType()->isEmptyTy())
8098       continue;
8099 
8100     SDValue ArgNode = getValue(V);
8101     Entry.Node = ArgNode; Entry.Ty = V->getType();
8102 
8103     Entry.setAttributes(&CB, I - CB.arg_begin());
8104 
8105     // Use swifterror virtual register as input to the call.
8106     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8107       SwiftErrorVal = V;
8108       // We find the virtual register for the actual swifterror argument.
8109       // Instead of using the Value, we use the virtual register instead.
8110       Entry.Node =
8111           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8112                           EVT(TLI.getPointerTy(DL)));
8113     }
8114 
8115     Args.push_back(Entry);
8116 
8117     // If we have an explicit sret argument that is an Instruction, (i.e., it
8118     // might point to function-local memory), we can't meaningfully tail-call.
8119     if (Entry.IsSRet && isa<Instruction>(V))
8120       isTailCall = false;
8121   }
8122 
8123   // If call site has a cfguardtarget operand bundle, create and add an
8124   // additional ArgListEntry.
8125   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8126     TargetLowering::ArgListEntry Entry;
8127     Value *V = Bundle->Inputs[0];
8128     SDValue ArgNode = getValue(V);
8129     Entry.Node = ArgNode;
8130     Entry.Ty = V->getType();
8131     Entry.IsCFGuardTarget = true;
8132     Args.push_back(Entry);
8133   }
8134 
8135   // Check if target-independent constraints permit a tail call here.
8136   // Target-dependent constraints are checked within TLI->LowerCallTo.
8137   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8138     isTailCall = false;
8139 
8140   // Disable tail calls if there is an swifterror argument. Targets have not
8141   // been updated to support tail calls.
8142   if (TLI.supportSwiftError() && SwiftErrorVal)
8143     isTailCall = false;
8144 
8145   ConstantInt *CFIType = nullptr;
8146   if (CB.isIndirectCall()) {
8147     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8148       if (!TLI.supportKCFIBundles())
8149         report_fatal_error(
8150             "Target doesn't support calls with kcfi operand bundles.");
8151       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8152       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8153     }
8154   }
8155 
8156   TargetLowering::CallLoweringInfo CLI(DAG);
8157   CLI.setDebugLoc(getCurSDLoc())
8158       .setChain(getRoot())
8159       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8160       .setTailCall(isTailCall)
8161       .setConvergent(CB.isConvergent())
8162       .setIsPreallocated(
8163           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8164       .setCFIType(CFIType);
8165   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8166 
8167   if (Result.first.getNode()) {
8168     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8169     setValue(&CB, Result.first);
8170   }
8171 
8172   // The last element of CLI.InVals has the SDValue for swifterror return.
8173   // Here we copy it to a virtual register and update SwiftErrorMap for
8174   // book-keeping.
8175   if (SwiftErrorVal && TLI.supportSwiftError()) {
8176     // Get the last element of InVals.
8177     SDValue Src = CLI.InVals.back();
8178     Register VReg =
8179         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8180     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8181     DAG.setRoot(CopyNode);
8182   }
8183 }
8184 
8185 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8186                              SelectionDAGBuilder &Builder) {
8187   // Check to see if this load can be trivially constant folded, e.g. if the
8188   // input is from a string literal.
8189   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8190     // Cast pointer to the type we really want to load.
8191     Type *LoadTy =
8192         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8193     if (LoadVT.isVector())
8194       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8195 
8196     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8197                                          PointerType::getUnqual(LoadTy));
8198 
8199     if (const Constant *LoadCst =
8200             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8201                                          LoadTy, Builder.DAG.getDataLayout()))
8202       return Builder.getValue(LoadCst);
8203   }
8204 
8205   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8206   // still constant memory, the input chain can be the entry node.
8207   SDValue Root;
8208   bool ConstantMemory = false;
8209 
8210   // Do not serialize (non-volatile) loads of constant memory with anything.
8211   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8212     Root = Builder.DAG.getEntryNode();
8213     ConstantMemory = true;
8214   } else {
8215     // Do not serialize non-volatile loads against each other.
8216     Root = Builder.DAG.getRoot();
8217   }
8218 
8219   SDValue Ptr = Builder.getValue(PtrVal);
8220   SDValue LoadVal =
8221       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8222                           MachinePointerInfo(PtrVal), Align(1));
8223 
8224   if (!ConstantMemory)
8225     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8226   return LoadVal;
8227 }
8228 
8229 /// Record the value for an instruction that produces an integer result,
8230 /// converting the type where necessary.
8231 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8232                                                   SDValue Value,
8233                                                   bool IsSigned) {
8234   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8235                                                     I.getType(), true);
8236   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8237   setValue(&I, Value);
8238 }
8239 
8240 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8241 /// true and lower it. Otherwise return false, and it will be lowered like a
8242 /// normal call.
8243 /// The caller already checked that \p I calls the appropriate LibFunc with a
8244 /// correct prototype.
8245 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8246   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8247   const Value *Size = I.getArgOperand(2);
8248   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8249   if (CSize && CSize->getZExtValue() == 0) {
8250     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8251                                                           I.getType(), true);
8252     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8253     return true;
8254   }
8255 
8256   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8257   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8258       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8259       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8260   if (Res.first.getNode()) {
8261     processIntegerCallValue(I, Res.first, true);
8262     PendingLoads.push_back(Res.second);
8263     return true;
8264   }
8265 
8266   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8267   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8268   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8269     return false;
8270 
8271   // If the target has a fast compare for the given size, it will return a
8272   // preferred load type for that size. Require that the load VT is legal and
8273   // that the target supports unaligned loads of that type. Otherwise, return
8274   // INVALID.
8275   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8276     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8277     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8278     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8279       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8280       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8281       // TODO: Check alignment of src and dest ptrs.
8282       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8283       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8284       if (!TLI.isTypeLegal(LVT) ||
8285           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8286           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8287         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8288     }
8289 
8290     return LVT;
8291   };
8292 
8293   // This turns into unaligned loads. We only do this if the target natively
8294   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8295   // we'll only produce a small number of byte loads.
8296   MVT LoadVT;
8297   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8298   switch (NumBitsToCompare) {
8299   default:
8300     return false;
8301   case 16:
8302     LoadVT = MVT::i16;
8303     break;
8304   case 32:
8305     LoadVT = MVT::i32;
8306     break;
8307   case 64:
8308   case 128:
8309   case 256:
8310     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8311     break;
8312   }
8313 
8314   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8315     return false;
8316 
8317   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8318   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8319 
8320   // Bitcast to a wide integer type if the loads are vectors.
8321   if (LoadVT.isVector()) {
8322     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8323     LoadL = DAG.getBitcast(CmpVT, LoadL);
8324     LoadR = DAG.getBitcast(CmpVT, LoadR);
8325   }
8326 
8327   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8328   processIntegerCallValue(I, Cmp, false);
8329   return true;
8330 }
8331 
8332 /// See if we can lower a memchr call into an optimized form. If so, return
8333 /// true and lower it. Otherwise return false, and it will be lowered like a
8334 /// normal call.
8335 /// The caller already checked that \p I calls the appropriate LibFunc with a
8336 /// correct prototype.
8337 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8338   const Value *Src = I.getArgOperand(0);
8339   const Value *Char = I.getArgOperand(1);
8340   const Value *Length = I.getArgOperand(2);
8341 
8342   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8343   std::pair<SDValue, SDValue> Res =
8344     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8345                                 getValue(Src), getValue(Char), getValue(Length),
8346                                 MachinePointerInfo(Src));
8347   if (Res.first.getNode()) {
8348     setValue(&I, Res.first);
8349     PendingLoads.push_back(Res.second);
8350     return true;
8351   }
8352 
8353   return false;
8354 }
8355 
8356 /// See if we can lower a mempcpy call into an optimized form. If so, return
8357 /// true and lower it. Otherwise return false, and it will be lowered like a
8358 /// normal call.
8359 /// The caller already checked that \p I calls the appropriate LibFunc with a
8360 /// correct prototype.
8361 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8362   SDValue Dst = getValue(I.getArgOperand(0));
8363   SDValue Src = getValue(I.getArgOperand(1));
8364   SDValue Size = getValue(I.getArgOperand(2));
8365 
8366   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8367   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8368   // DAG::getMemcpy needs Alignment to be defined.
8369   Align Alignment = std::min(DstAlign, SrcAlign);
8370 
8371   SDLoc sdl = getCurSDLoc();
8372 
8373   // In the mempcpy context we need to pass in a false value for isTailCall
8374   // because the return pointer needs to be adjusted by the size of
8375   // the copied memory.
8376   SDValue Root = getMemoryRoot();
8377   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8378                              /*isTailCall=*/false,
8379                              MachinePointerInfo(I.getArgOperand(0)),
8380                              MachinePointerInfo(I.getArgOperand(1)),
8381                              I.getAAMetadata());
8382   assert(MC.getNode() != nullptr &&
8383          "** memcpy should not be lowered as TailCall in mempcpy context **");
8384   DAG.setRoot(MC);
8385 
8386   // Check if Size needs to be truncated or extended.
8387   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8388 
8389   // Adjust return pointer to point just past the last dst byte.
8390   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8391                                     Dst, Size);
8392   setValue(&I, DstPlusSize);
8393   return true;
8394 }
8395 
8396 /// See if we can lower a strcpy call into an optimized form.  If so, return
8397 /// true and lower it, otherwise return false and it will be lowered like a
8398 /// normal call.
8399 /// The caller already checked that \p I calls the appropriate LibFunc with a
8400 /// correct prototype.
8401 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8402   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8403 
8404   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8405   std::pair<SDValue, SDValue> Res =
8406     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8407                                 getValue(Arg0), getValue(Arg1),
8408                                 MachinePointerInfo(Arg0),
8409                                 MachinePointerInfo(Arg1), isStpcpy);
8410   if (Res.first.getNode()) {
8411     setValue(&I, Res.first);
8412     DAG.setRoot(Res.second);
8413     return true;
8414   }
8415 
8416   return false;
8417 }
8418 
8419 /// See if we can lower a strcmp call into an optimized form.  If so, return
8420 /// true and lower it, otherwise return false and it will be lowered like a
8421 /// normal call.
8422 /// The caller already checked that \p I calls the appropriate LibFunc with a
8423 /// correct prototype.
8424 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8425   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8426 
8427   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8428   std::pair<SDValue, SDValue> Res =
8429     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8430                                 getValue(Arg0), getValue(Arg1),
8431                                 MachinePointerInfo(Arg0),
8432                                 MachinePointerInfo(Arg1));
8433   if (Res.first.getNode()) {
8434     processIntegerCallValue(I, Res.first, true);
8435     PendingLoads.push_back(Res.second);
8436     return true;
8437   }
8438 
8439   return false;
8440 }
8441 
8442 /// See if we can lower a strlen call into an optimized form.  If so, return
8443 /// true and lower it, otherwise return false and it will be lowered like a
8444 /// normal call.
8445 /// The caller already checked that \p I calls the appropriate LibFunc with a
8446 /// correct prototype.
8447 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8448   const Value *Arg0 = I.getArgOperand(0);
8449 
8450   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8451   std::pair<SDValue, SDValue> Res =
8452     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8453                                 getValue(Arg0), MachinePointerInfo(Arg0));
8454   if (Res.first.getNode()) {
8455     processIntegerCallValue(I, Res.first, false);
8456     PendingLoads.push_back(Res.second);
8457     return true;
8458   }
8459 
8460   return false;
8461 }
8462 
8463 /// See if we can lower a strnlen call into an optimized form.  If so, return
8464 /// true and lower it, otherwise return false and it will be lowered like a
8465 /// normal call.
8466 /// The caller already checked that \p I calls the appropriate LibFunc with a
8467 /// correct prototype.
8468 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8469   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8470 
8471   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8472   std::pair<SDValue, SDValue> Res =
8473     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8474                                  getValue(Arg0), getValue(Arg1),
8475                                  MachinePointerInfo(Arg0));
8476   if (Res.first.getNode()) {
8477     processIntegerCallValue(I, Res.first, false);
8478     PendingLoads.push_back(Res.second);
8479     return true;
8480   }
8481 
8482   return false;
8483 }
8484 
8485 /// See if we can lower a unary floating-point operation into an SDNode with
8486 /// the specified Opcode.  If so, return true and lower it, otherwise return
8487 /// false and it will be lowered like a normal call.
8488 /// The caller already checked that \p I calls the appropriate LibFunc with a
8489 /// correct prototype.
8490 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8491                                               unsigned Opcode) {
8492   // We already checked this call's prototype; verify it doesn't modify errno.
8493   if (!I.onlyReadsMemory())
8494     return false;
8495 
8496   SDNodeFlags Flags;
8497   Flags.copyFMF(cast<FPMathOperator>(I));
8498 
8499   SDValue Tmp = getValue(I.getArgOperand(0));
8500   setValue(&I,
8501            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8502   return true;
8503 }
8504 
8505 /// See if we can lower a binary floating-point operation into an SDNode with
8506 /// the specified Opcode. If so, return true and lower it. Otherwise return
8507 /// false, and it will be lowered like a normal call.
8508 /// The caller already checked that \p I calls the appropriate LibFunc with a
8509 /// correct prototype.
8510 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8511                                                unsigned Opcode) {
8512   // We already checked this call's prototype; verify it doesn't modify errno.
8513   if (!I.onlyReadsMemory())
8514     return false;
8515 
8516   SDNodeFlags Flags;
8517   Flags.copyFMF(cast<FPMathOperator>(I));
8518 
8519   SDValue Tmp0 = getValue(I.getArgOperand(0));
8520   SDValue Tmp1 = getValue(I.getArgOperand(1));
8521   EVT VT = Tmp0.getValueType();
8522   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8523   return true;
8524 }
8525 
8526 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8527   // Handle inline assembly differently.
8528   if (I.isInlineAsm()) {
8529     visitInlineAsm(I);
8530     return;
8531   }
8532 
8533   diagnoseDontCall(I);
8534 
8535   if (Function *F = I.getCalledFunction()) {
8536     if (F->isDeclaration()) {
8537       // Is this an LLVM intrinsic or a target-specific intrinsic?
8538       unsigned IID = F->getIntrinsicID();
8539       if (!IID)
8540         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8541           IID = II->getIntrinsicID(F);
8542 
8543       if (IID) {
8544         visitIntrinsicCall(I, IID);
8545         return;
8546       }
8547     }
8548 
8549     // Check for well-known libc/libm calls.  If the function is internal, it
8550     // can't be a library call.  Don't do the check if marked as nobuiltin for
8551     // some reason or the call site requires strict floating point semantics.
8552     LibFunc Func;
8553     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8554         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8555         LibInfo->hasOptimizedCodeGen(Func)) {
8556       switch (Func) {
8557       default: break;
8558       case LibFunc_bcmp:
8559         if (visitMemCmpBCmpCall(I))
8560           return;
8561         break;
8562       case LibFunc_copysign:
8563       case LibFunc_copysignf:
8564       case LibFunc_copysignl:
8565         // We already checked this call's prototype; verify it doesn't modify
8566         // errno.
8567         if (I.onlyReadsMemory()) {
8568           SDValue LHS = getValue(I.getArgOperand(0));
8569           SDValue RHS = getValue(I.getArgOperand(1));
8570           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8571                                    LHS.getValueType(), LHS, RHS));
8572           return;
8573         }
8574         break;
8575       case LibFunc_fabs:
8576       case LibFunc_fabsf:
8577       case LibFunc_fabsl:
8578         if (visitUnaryFloatCall(I, ISD::FABS))
8579           return;
8580         break;
8581       case LibFunc_fmin:
8582       case LibFunc_fminf:
8583       case LibFunc_fminl:
8584         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8585           return;
8586         break;
8587       case LibFunc_fmax:
8588       case LibFunc_fmaxf:
8589       case LibFunc_fmaxl:
8590         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8591           return;
8592         break;
8593       case LibFunc_sin:
8594       case LibFunc_sinf:
8595       case LibFunc_sinl:
8596         if (visitUnaryFloatCall(I, ISD::FSIN))
8597           return;
8598         break;
8599       case LibFunc_cos:
8600       case LibFunc_cosf:
8601       case LibFunc_cosl:
8602         if (visitUnaryFloatCall(I, ISD::FCOS))
8603           return;
8604         break;
8605       case LibFunc_sqrt:
8606       case LibFunc_sqrtf:
8607       case LibFunc_sqrtl:
8608       case LibFunc_sqrt_finite:
8609       case LibFunc_sqrtf_finite:
8610       case LibFunc_sqrtl_finite:
8611         if (visitUnaryFloatCall(I, ISD::FSQRT))
8612           return;
8613         break;
8614       case LibFunc_floor:
8615       case LibFunc_floorf:
8616       case LibFunc_floorl:
8617         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8618           return;
8619         break;
8620       case LibFunc_nearbyint:
8621       case LibFunc_nearbyintf:
8622       case LibFunc_nearbyintl:
8623         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8624           return;
8625         break;
8626       case LibFunc_ceil:
8627       case LibFunc_ceilf:
8628       case LibFunc_ceill:
8629         if (visitUnaryFloatCall(I, ISD::FCEIL))
8630           return;
8631         break;
8632       case LibFunc_rint:
8633       case LibFunc_rintf:
8634       case LibFunc_rintl:
8635         if (visitUnaryFloatCall(I, ISD::FRINT))
8636           return;
8637         break;
8638       case LibFunc_round:
8639       case LibFunc_roundf:
8640       case LibFunc_roundl:
8641         if (visitUnaryFloatCall(I, ISD::FROUND))
8642           return;
8643         break;
8644       case LibFunc_trunc:
8645       case LibFunc_truncf:
8646       case LibFunc_truncl:
8647         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8648           return;
8649         break;
8650       case LibFunc_log2:
8651       case LibFunc_log2f:
8652       case LibFunc_log2l:
8653         if (visitUnaryFloatCall(I, ISD::FLOG2))
8654           return;
8655         break;
8656       case LibFunc_exp2:
8657       case LibFunc_exp2f:
8658       case LibFunc_exp2l:
8659         if (visitUnaryFloatCall(I, ISD::FEXP2))
8660           return;
8661         break;
8662       case LibFunc_ldexp:
8663       case LibFunc_ldexpf:
8664       case LibFunc_ldexpl:
8665         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8666           return;
8667         break;
8668       case LibFunc_memcmp:
8669         if (visitMemCmpBCmpCall(I))
8670           return;
8671         break;
8672       case LibFunc_mempcpy:
8673         if (visitMemPCpyCall(I))
8674           return;
8675         break;
8676       case LibFunc_memchr:
8677         if (visitMemChrCall(I))
8678           return;
8679         break;
8680       case LibFunc_strcpy:
8681         if (visitStrCpyCall(I, false))
8682           return;
8683         break;
8684       case LibFunc_stpcpy:
8685         if (visitStrCpyCall(I, true))
8686           return;
8687         break;
8688       case LibFunc_strcmp:
8689         if (visitStrCmpCall(I))
8690           return;
8691         break;
8692       case LibFunc_strlen:
8693         if (visitStrLenCall(I))
8694           return;
8695         break;
8696       case LibFunc_strnlen:
8697         if (visitStrNLenCall(I))
8698           return;
8699         break;
8700       }
8701     }
8702   }
8703 
8704   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8705   // have to do anything here to lower funclet bundles.
8706   // CFGuardTarget bundles are lowered in LowerCallTo.
8707   assert(!I.hasOperandBundlesOtherThan(
8708              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8709               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8710               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8711          "Cannot lower calls with arbitrary operand bundles!");
8712 
8713   SDValue Callee = getValue(I.getCalledOperand());
8714 
8715   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8716     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8717   else
8718     // Check if we can potentially perform a tail call. More detailed checking
8719     // is be done within LowerCallTo, after more information about the call is
8720     // known.
8721     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8722 }
8723 
8724 namespace {
8725 
8726 /// AsmOperandInfo - This contains information for each constraint that we are
8727 /// lowering.
8728 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8729 public:
8730   /// CallOperand - If this is the result output operand or a clobber
8731   /// this is null, otherwise it is the incoming operand to the CallInst.
8732   /// This gets modified as the asm is processed.
8733   SDValue CallOperand;
8734 
8735   /// AssignedRegs - If this is a register or register class operand, this
8736   /// contains the set of register corresponding to the operand.
8737   RegsForValue AssignedRegs;
8738 
8739   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8740     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8741   }
8742 
8743   /// Whether or not this operand accesses memory
8744   bool hasMemory(const TargetLowering &TLI) const {
8745     // Indirect operand accesses access memory.
8746     if (isIndirect)
8747       return true;
8748 
8749     for (const auto &Code : Codes)
8750       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8751         return true;
8752 
8753     return false;
8754   }
8755 };
8756 
8757 
8758 } // end anonymous namespace
8759 
8760 /// Make sure that the output operand \p OpInfo and its corresponding input
8761 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8762 /// out).
8763 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8764                                SDISelAsmOperandInfo &MatchingOpInfo,
8765                                SelectionDAG &DAG) {
8766   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8767     return;
8768 
8769   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8770   const auto &TLI = DAG.getTargetLoweringInfo();
8771 
8772   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8773       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8774                                        OpInfo.ConstraintVT);
8775   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8776       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8777                                        MatchingOpInfo.ConstraintVT);
8778   if ((OpInfo.ConstraintVT.isInteger() !=
8779        MatchingOpInfo.ConstraintVT.isInteger()) ||
8780       (MatchRC.second != InputRC.second)) {
8781     // FIXME: error out in a more elegant fashion
8782     report_fatal_error("Unsupported asm: input constraint"
8783                        " with a matching output constraint of"
8784                        " incompatible type!");
8785   }
8786   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8787 }
8788 
8789 /// Get a direct memory input to behave well as an indirect operand.
8790 /// This may introduce stores, hence the need for a \p Chain.
8791 /// \return The (possibly updated) chain.
8792 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8793                                         SDISelAsmOperandInfo &OpInfo,
8794                                         SelectionDAG &DAG) {
8795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8796 
8797   // If we don't have an indirect input, put it in the constpool if we can,
8798   // otherwise spill it to a stack slot.
8799   // TODO: This isn't quite right. We need to handle these according to
8800   // the addressing mode that the constraint wants. Also, this may take
8801   // an additional register for the computation and we don't want that
8802   // either.
8803 
8804   // If the operand is a float, integer, or vector constant, spill to a
8805   // constant pool entry to get its address.
8806   const Value *OpVal = OpInfo.CallOperandVal;
8807   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8808       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8809     OpInfo.CallOperand = DAG.getConstantPool(
8810         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8811     return Chain;
8812   }
8813 
8814   // Otherwise, create a stack slot and emit a store to it before the asm.
8815   Type *Ty = OpVal->getType();
8816   auto &DL = DAG.getDataLayout();
8817   uint64_t TySize = DL.getTypeAllocSize(Ty);
8818   MachineFunction &MF = DAG.getMachineFunction();
8819   int SSFI = MF.getFrameInfo().CreateStackObject(
8820       TySize, DL.getPrefTypeAlign(Ty), false);
8821   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8822   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8823                             MachinePointerInfo::getFixedStack(MF, SSFI),
8824                             TLI.getMemValueType(DL, Ty));
8825   OpInfo.CallOperand = StackSlot;
8826 
8827   return Chain;
8828 }
8829 
8830 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8831 /// specified operand.  We prefer to assign virtual registers, to allow the
8832 /// register allocator to handle the assignment process.  However, if the asm
8833 /// uses features that we can't model on machineinstrs, we have SDISel do the
8834 /// allocation.  This produces generally horrible, but correct, code.
8835 ///
8836 ///   OpInfo describes the operand
8837 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8838 static std::optional<unsigned>
8839 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8840                      SDISelAsmOperandInfo &OpInfo,
8841                      SDISelAsmOperandInfo &RefOpInfo) {
8842   LLVMContext &Context = *DAG.getContext();
8843   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8844 
8845   MachineFunction &MF = DAG.getMachineFunction();
8846   SmallVector<unsigned, 4> Regs;
8847   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8848 
8849   // No work to do for memory/address operands.
8850   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8851       OpInfo.ConstraintType == TargetLowering::C_Address)
8852     return std::nullopt;
8853 
8854   // If this is a constraint for a single physreg, or a constraint for a
8855   // register class, find it.
8856   unsigned AssignedReg;
8857   const TargetRegisterClass *RC;
8858   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8859       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8860   // RC is unset only on failure. Return immediately.
8861   if (!RC)
8862     return std::nullopt;
8863 
8864   // Get the actual register value type.  This is important, because the user
8865   // may have asked for (e.g.) the AX register in i32 type.  We need to
8866   // remember that AX is actually i16 to get the right extension.
8867   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8868 
8869   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8870     // If this is an FP operand in an integer register (or visa versa), or more
8871     // generally if the operand value disagrees with the register class we plan
8872     // to stick it in, fix the operand type.
8873     //
8874     // If this is an input value, the bitcast to the new type is done now.
8875     // Bitcast for output value is done at the end of visitInlineAsm().
8876     if ((OpInfo.Type == InlineAsm::isOutput ||
8877          OpInfo.Type == InlineAsm::isInput) &&
8878         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8879       // Try to convert to the first EVT that the reg class contains.  If the
8880       // types are identical size, use a bitcast to convert (e.g. two differing
8881       // vector types).  Note: output bitcast is done at the end of
8882       // visitInlineAsm().
8883       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8884         // Exclude indirect inputs while they are unsupported because the code
8885         // to perform the load is missing and thus OpInfo.CallOperand still
8886         // refers to the input address rather than the pointed-to value.
8887         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8888           OpInfo.CallOperand =
8889               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8890         OpInfo.ConstraintVT = RegVT;
8891         // If the operand is an FP value and we want it in integer registers,
8892         // use the corresponding integer type. This turns an f64 value into
8893         // i64, which can be passed with two i32 values on a 32-bit machine.
8894       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8895         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8896         if (OpInfo.Type == InlineAsm::isInput)
8897           OpInfo.CallOperand =
8898               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8899         OpInfo.ConstraintVT = VT;
8900       }
8901     }
8902   }
8903 
8904   // No need to allocate a matching input constraint since the constraint it's
8905   // matching to has already been allocated.
8906   if (OpInfo.isMatchingInputConstraint())
8907     return std::nullopt;
8908 
8909   EVT ValueVT = OpInfo.ConstraintVT;
8910   if (OpInfo.ConstraintVT == MVT::Other)
8911     ValueVT = RegVT;
8912 
8913   // Initialize NumRegs.
8914   unsigned NumRegs = 1;
8915   if (OpInfo.ConstraintVT != MVT::Other)
8916     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8917 
8918   // If this is a constraint for a specific physical register, like {r17},
8919   // assign it now.
8920 
8921   // If this associated to a specific register, initialize iterator to correct
8922   // place. If virtual, make sure we have enough registers
8923 
8924   // Initialize iterator if necessary
8925   TargetRegisterClass::iterator I = RC->begin();
8926   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8927 
8928   // Do not check for single registers.
8929   if (AssignedReg) {
8930     I = std::find(I, RC->end(), AssignedReg);
8931     if (I == RC->end()) {
8932       // RC does not contain the selected register, which indicates a
8933       // mismatch between the register and the required type/bitwidth.
8934       return {AssignedReg};
8935     }
8936   }
8937 
8938   for (; NumRegs; --NumRegs, ++I) {
8939     assert(I != RC->end() && "Ran out of registers to allocate!");
8940     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8941     Regs.push_back(R);
8942   }
8943 
8944   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8945   return std::nullopt;
8946 }
8947 
8948 static unsigned
8949 findMatchingInlineAsmOperand(unsigned OperandNo,
8950                              const std::vector<SDValue> &AsmNodeOperands) {
8951   // Scan until we find the definition we already emitted of this operand.
8952   unsigned CurOp = InlineAsm::Op_FirstOperand;
8953   for (; OperandNo; --OperandNo) {
8954     // Advance to the next operand.
8955     unsigned OpFlag =
8956         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8957     assert((InlineAsm::isRegDefKind(OpFlag) ||
8958             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8959             InlineAsm::isMemKind(OpFlag)) &&
8960            "Skipped past definitions?");
8961     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8962   }
8963   return CurOp;
8964 }
8965 
8966 namespace {
8967 
8968 class ExtraFlags {
8969   unsigned Flags = 0;
8970 
8971 public:
8972   explicit ExtraFlags(const CallBase &Call) {
8973     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8974     if (IA->hasSideEffects())
8975       Flags |= InlineAsm::Extra_HasSideEffects;
8976     if (IA->isAlignStack())
8977       Flags |= InlineAsm::Extra_IsAlignStack;
8978     if (Call.isConvergent())
8979       Flags |= InlineAsm::Extra_IsConvergent;
8980     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8981   }
8982 
8983   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8984     // Ideally, we would only check against memory constraints.  However, the
8985     // meaning of an Other constraint can be target-specific and we can't easily
8986     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8987     // for Other constraints as well.
8988     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8989         OpInfo.ConstraintType == TargetLowering::C_Other) {
8990       if (OpInfo.Type == InlineAsm::isInput)
8991         Flags |= InlineAsm::Extra_MayLoad;
8992       else if (OpInfo.Type == InlineAsm::isOutput)
8993         Flags |= InlineAsm::Extra_MayStore;
8994       else if (OpInfo.Type == InlineAsm::isClobber)
8995         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8996     }
8997   }
8998 
8999   unsigned get() const { return Flags; }
9000 };
9001 
9002 } // end anonymous namespace
9003 
9004 static bool isFunction(SDValue Op) {
9005   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9006     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9007       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9008 
9009       // In normal "call dllimport func" instruction (non-inlineasm) it force
9010       // indirect access by specifing call opcode. And usually specially print
9011       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9012       // not do in this way now. (In fact, this is similar with "Data Access"
9013       // action). So here we ignore dllimport function.
9014       if (Fn && !Fn->hasDLLImportStorageClass())
9015         return true;
9016     }
9017   }
9018   return false;
9019 }
9020 
9021 /// visitInlineAsm - Handle a call to an InlineAsm object.
9022 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9023                                          const BasicBlock *EHPadBB) {
9024   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9025 
9026   /// ConstraintOperands - Information about all of the constraints.
9027   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9028 
9029   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9030   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9031       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9032 
9033   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9034   // AsmDialect, MayLoad, MayStore).
9035   bool HasSideEffect = IA->hasSideEffects();
9036   ExtraFlags ExtraInfo(Call);
9037 
9038   for (auto &T : TargetConstraints) {
9039     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9040     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9041 
9042     if (OpInfo.CallOperandVal)
9043       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9044 
9045     if (!HasSideEffect)
9046       HasSideEffect = OpInfo.hasMemory(TLI);
9047 
9048     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9049     // FIXME: Could we compute this on OpInfo rather than T?
9050 
9051     // Compute the constraint code and ConstraintType to use.
9052     TLI.ComputeConstraintToUse(T, SDValue());
9053 
9054     if (T.ConstraintType == TargetLowering::C_Immediate &&
9055         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9056       // We've delayed emitting a diagnostic like the "n" constraint because
9057       // inlining could cause an integer showing up.
9058       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9059                                           "' expects an integer constant "
9060                                           "expression");
9061 
9062     ExtraInfo.update(T);
9063   }
9064 
9065   // We won't need to flush pending loads if this asm doesn't touch
9066   // memory and is nonvolatile.
9067   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9068 
9069   bool EmitEHLabels = isa<InvokeInst>(Call);
9070   if (EmitEHLabels) {
9071     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9072   }
9073   bool IsCallBr = isa<CallBrInst>(Call);
9074 
9075   if (IsCallBr || EmitEHLabels) {
9076     // If this is a callbr or invoke we need to flush pending exports since
9077     // inlineasm_br and invoke are terminators.
9078     // We need to do this before nodes are glued to the inlineasm_br node.
9079     Chain = getControlRoot();
9080   }
9081 
9082   MCSymbol *BeginLabel = nullptr;
9083   if (EmitEHLabels) {
9084     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9085   }
9086 
9087   int OpNo = -1;
9088   SmallVector<StringRef> AsmStrs;
9089   IA->collectAsmStrs(AsmStrs);
9090 
9091   // Second pass over the constraints: compute which constraint option to use.
9092   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9093     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9094       OpNo++;
9095 
9096     // If this is an output operand with a matching input operand, look up the
9097     // matching input. If their types mismatch, e.g. one is an integer, the
9098     // other is floating point, or their sizes are different, flag it as an
9099     // error.
9100     if (OpInfo.hasMatchingInput()) {
9101       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9102       patchMatchingInput(OpInfo, Input, DAG);
9103     }
9104 
9105     // Compute the constraint code and ConstraintType to use.
9106     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9107 
9108     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9109          OpInfo.Type == InlineAsm::isClobber) ||
9110         OpInfo.ConstraintType == TargetLowering::C_Address)
9111       continue;
9112 
9113     // In Linux PIC model, there are 4 cases about value/label addressing:
9114     //
9115     // 1: Function call or Label jmp inside the module.
9116     // 2: Data access (such as global variable, static variable) inside module.
9117     // 3: Function call or Label jmp outside the module.
9118     // 4: Data access (such as global variable) outside the module.
9119     //
9120     // Due to current llvm inline asm architecture designed to not "recognize"
9121     // the asm code, there are quite troubles for us to treat mem addressing
9122     // differently for same value/adress used in different instuctions.
9123     // For example, in pic model, call a func may in plt way or direclty
9124     // pc-related, but lea/mov a function adress may use got.
9125     //
9126     // Here we try to "recognize" function call for the case 1 and case 3 in
9127     // inline asm. And try to adjust the constraint for them.
9128     //
9129     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9130     // label, so here we don't handle jmp function label now, but we need to
9131     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9132     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9133         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9134         TM.getCodeModel() != CodeModel::Large) {
9135       OpInfo.isIndirect = false;
9136       OpInfo.ConstraintType = TargetLowering::C_Address;
9137     }
9138 
9139     // If this is a memory input, and if the operand is not indirect, do what we
9140     // need to provide an address for the memory input.
9141     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9142         !OpInfo.isIndirect) {
9143       assert((OpInfo.isMultipleAlternative ||
9144               (OpInfo.Type == InlineAsm::isInput)) &&
9145              "Can only indirectify direct input operands!");
9146 
9147       // Memory operands really want the address of the value.
9148       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9149 
9150       // There is no longer a Value* corresponding to this operand.
9151       OpInfo.CallOperandVal = nullptr;
9152 
9153       // It is now an indirect operand.
9154       OpInfo.isIndirect = true;
9155     }
9156 
9157   }
9158 
9159   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9160   std::vector<SDValue> AsmNodeOperands;
9161   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9162   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9163       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9164 
9165   // If we have a !srcloc metadata node associated with it, we want to attach
9166   // this to the ultimately generated inline asm machineinstr.  To do this, we
9167   // pass in the third operand as this (potentially null) inline asm MDNode.
9168   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9169   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9170 
9171   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9172   // bits as operand 3.
9173   AsmNodeOperands.push_back(DAG.getTargetConstant(
9174       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9175 
9176   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9177   // this, assign virtual and physical registers for inputs and otput.
9178   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9179     // Assign Registers.
9180     SDISelAsmOperandInfo &RefOpInfo =
9181         OpInfo.isMatchingInputConstraint()
9182             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9183             : OpInfo;
9184     const auto RegError =
9185         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9186     if (RegError) {
9187       const MachineFunction &MF = DAG.getMachineFunction();
9188       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9189       const char *RegName = TRI.getName(*RegError);
9190       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9191                                    "' allocated for constraint '" +
9192                                    Twine(OpInfo.ConstraintCode) +
9193                                    "' does not match required type");
9194       return;
9195     }
9196 
9197     auto DetectWriteToReservedRegister = [&]() {
9198       const MachineFunction &MF = DAG.getMachineFunction();
9199       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9200       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9201         if (Register::isPhysicalRegister(Reg) &&
9202             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9203           const char *RegName = TRI.getName(Reg);
9204           emitInlineAsmError(Call, "write to reserved register '" +
9205                                        Twine(RegName) + "'");
9206           return true;
9207         }
9208       }
9209       return false;
9210     };
9211     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9212             (OpInfo.Type == InlineAsm::isInput &&
9213              !OpInfo.isMatchingInputConstraint())) &&
9214            "Only address as input operand is allowed.");
9215 
9216     switch (OpInfo.Type) {
9217     case InlineAsm::isOutput:
9218       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9219         unsigned ConstraintID =
9220             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9221         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9222                "Failed to convert memory constraint code to constraint id.");
9223 
9224         // Add information to the INLINEASM node to know about this output.
9225         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9226         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9227         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9228                                                         MVT::i32));
9229         AsmNodeOperands.push_back(OpInfo.CallOperand);
9230       } else {
9231         // Otherwise, this outputs to a register (directly for C_Register /
9232         // C_RegisterClass, and a target-defined fashion for
9233         // C_Immediate/C_Other). Find a register that we can use.
9234         if (OpInfo.AssignedRegs.Regs.empty()) {
9235           emitInlineAsmError(
9236               Call, "couldn't allocate output register for constraint '" +
9237                         Twine(OpInfo.ConstraintCode) + "'");
9238           return;
9239         }
9240 
9241         if (DetectWriteToReservedRegister())
9242           return;
9243 
9244         // Add information to the INLINEASM node to know that this register is
9245         // set.
9246         OpInfo.AssignedRegs.AddInlineAsmOperands(
9247             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9248                                   : InlineAsm::Kind_RegDef,
9249             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9250       }
9251       break;
9252 
9253     case InlineAsm::isInput:
9254     case InlineAsm::isLabel: {
9255       SDValue InOperandVal = OpInfo.CallOperand;
9256 
9257       if (OpInfo.isMatchingInputConstraint()) {
9258         // If this is required to match an output register we have already set,
9259         // just use its register.
9260         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9261                                                   AsmNodeOperands);
9262         unsigned OpFlag =
9263           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9264         if (InlineAsm::isRegDefKind(OpFlag) ||
9265             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9266           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9267           if (OpInfo.isIndirect) {
9268             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9269             emitInlineAsmError(Call, "inline asm not supported yet: "
9270                                      "don't know how to handle tied "
9271                                      "indirect register inputs");
9272             return;
9273           }
9274 
9275           SmallVector<unsigned, 4> Regs;
9276           MachineFunction &MF = DAG.getMachineFunction();
9277           MachineRegisterInfo &MRI = MF.getRegInfo();
9278           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9279           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9280           Register TiedReg = R->getReg();
9281           MVT RegVT = R->getSimpleValueType(0);
9282           const TargetRegisterClass *RC =
9283               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9284               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9285                                       : TRI.getMinimalPhysRegClass(TiedReg);
9286           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9287           for (unsigned i = 0; i != NumRegs; ++i)
9288             Regs.push_back(MRI.createVirtualRegister(RC));
9289 
9290           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9291 
9292           SDLoc dl = getCurSDLoc();
9293           // Use the produced MatchedRegs object to
9294           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9295           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9296                                            true, OpInfo.getMatchedOperand(), dl,
9297                                            DAG, AsmNodeOperands);
9298           break;
9299         }
9300 
9301         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9302         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9303                "Unexpected number of operands");
9304         // Add information to the INLINEASM node to know about this input.
9305         // See InlineAsm.h isUseOperandTiedToDef.
9306         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9307         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9308                                                     OpInfo.getMatchedOperand());
9309         AsmNodeOperands.push_back(DAG.getTargetConstant(
9310             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9311         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9312         break;
9313       }
9314 
9315       // Treat indirect 'X' constraint as memory.
9316       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9317           OpInfo.isIndirect)
9318         OpInfo.ConstraintType = TargetLowering::C_Memory;
9319 
9320       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9321           OpInfo.ConstraintType == TargetLowering::C_Other) {
9322         std::vector<SDValue> Ops;
9323         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9324                                           Ops, DAG);
9325         if (Ops.empty()) {
9326           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9327             if (isa<ConstantSDNode>(InOperandVal)) {
9328               emitInlineAsmError(Call, "value out of range for constraint '" +
9329                                            Twine(OpInfo.ConstraintCode) + "'");
9330               return;
9331             }
9332 
9333           emitInlineAsmError(Call,
9334                              "invalid operand for inline asm constraint '" +
9335                                  Twine(OpInfo.ConstraintCode) + "'");
9336           return;
9337         }
9338 
9339         // Add information to the INLINEASM node to know about this input.
9340         unsigned ResOpType =
9341           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9342         AsmNodeOperands.push_back(DAG.getTargetConstant(
9343             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9344         llvm::append_range(AsmNodeOperands, Ops);
9345         break;
9346       }
9347 
9348       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9349         assert((OpInfo.isIndirect ||
9350                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9351                "Operand must be indirect to be a mem!");
9352         assert(InOperandVal.getValueType() ==
9353                    TLI.getPointerTy(DAG.getDataLayout()) &&
9354                "Memory operands expect pointer values");
9355 
9356         unsigned ConstraintID =
9357             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9358         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9359                "Failed to convert memory constraint code to constraint id.");
9360 
9361         // Add information to the INLINEASM node to know about this input.
9362         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9363         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9364         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9365                                                         getCurSDLoc(),
9366                                                         MVT::i32));
9367         AsmNodeOperands.push_back(InOperandVal);
9368         break;
9369       }
9370 
9371       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9372         unsigned ConstraintID =
9373             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9374         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9375                "Failed to convert memory constraint code to constraint id.");
9376 
9377         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9378 
9379         SDValue AsmOp = InOperandVal;
9380         if (isFunction(InOperandVal)) {
9381           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9382           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9383           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9384                                              InOperandVal.getValueType(),
9385                                              GA->getOffset());
9386         }
9387 
9388         // Add information to the INLINEASM node to know about this input.
9389         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9390 
9391         AsmNodeOperands.push_back(
9392             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9393 
9394         AsmNodeOperands.push_back(AsmOp);
9395         break;
9396       }
9397 
9398       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9399               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9400              "Unknown constraint type!");
9401 
9402       // TODO: Support this.
9403       if (OpInfo.isIndirect) {
9404         emitInlineAsmError(
9405             Call, "Don't know how to handle indirect register inputs yet "
9406                   "for constraint '" +
9407                       Twine(OpInfo.ConstraintCode) + "'");
9408         return;
9409       }
9410 
9411       // Copy the input into the appropriate registers.
9412       if (OpInfo.AssignedRegs.Regs.empty()) {
9413         emitInlineAsmError(Call,
9414                            "couldn't allocate input reg for constraint '" +
9415                                Twine(OpInfo.ConstraintCode) + "'");
9416         return;
9417       }
9418 
9419       if (DetectWriteToReservedRegister())
9420         return;
9421 
9422       SDLoc dl = getCurSDLoc();
9423 
9424       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9425                                         &Call);
9426 
9427       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9428                                                dl, DAG, AsmNodeOperands);
9429       break;
9430     }
9431     case InlineAsm::isClobber:
9432       // Add the clobbered value to the operand list, so that the register
9433       // allocator is aware that the physreg got clobbered.
9434       if (!OpInfo.AssignedRegs.Regs.empty())
9435         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9436                                                  false, 0, getCurSDLoc(), DAG,
9437                                                  AsmNodeOperands);
9438       break;
9439     }
9440   }
9441 
9442   // Finish up input operands.  Set the input chain and add the flag last.
9443   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9444   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9445 
9446   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9447   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9448                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9449   Glue = Chain.getValue(1);
9450 
9451   // Do additional work to generate outputs.
9452 
9453   SmallVector<EVT, 1> ResultVTs;
9454   SmallVector<SDValue, 1> ResultValues;
9455   SmallVector<SDValue, 8> OutChains;
9456 
9457   llvm::Type *CallResultType = Call.getType();
9458   ArrayRef<Type *> ResultTypes;
9459   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9460     ResultTypes = StructResult->elements();
9461   else if (!CallResultType->isVoidTy())
9462     ResultTypes = ArrayRef(CallResultType);
9463 
9464   auto CurResultType = ResultTypes.begin();
9465   auto handleRegAssign = [&](SDValue V) {
9466     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9467     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9468     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9469     ++CurResultType;
9470     // If the type of the inline asm call site return value is different but has
9471     // same size as the type of the asm output bitcast it.  One example of this
9472     // is for vectors with different width / number of elements.  This can
9473     // happen for register classes that can contain multiple different value
9474     // types.  The preg or vreg allocated may not have the same VT as was
9475     // expected.
9476     //
9477     // This can also happen for a return value that disagrees with the register
9478     // class it is put in, eg. a double in a general-purpose register on a
9479     // 32-bit machine.
9480     if (ResultVT != V.getValueType() &&
9481         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9482       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9483     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9484              V.getValueType().isInteger()) {
9485       // If a result value was tied to an input value, the computed result
9486       // may have a wider width than the expected result.  Extract the
9487       // relevant portion.
9488       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9489     }
9490     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9491     ResultVTs.push_back(ResultVT);
9492     ResultValues.push_back(V);
9493   };
9494 
9495   // Deal with output operands.
9496   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9497     if (OpInfo.Type == InlineAsm::isOutput) {
9498       SDValue Val;
9499       // Skip trivial output operands.
9500       if (OpInfo.AssignedRegs.Regs.empty())
9501         continue;
9502 
9503       switch (OpInfo.ConstraintType) {
9504       case TargetLowering::C_Register:
9505       case TargetLowering::C_RegisterClass:
9506         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9507                                                   Chain, &Glue, &Call);
9508         break;
9509       case TargetLowering::C_Immediate:
9510       case TargetLowering::C_Other:
9511         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9512                                               OpInfo, DAG);
9513         break;
9514       case TargetLowering::C_Memory:
9515         break; // Already handled.
9516       case TargetLowering::C_Address:
9517         break; // Silence warning.
9518       case TargetLowering::C_Unknown:
9519         assert(false && "Unexpected unknown constraint");
9520       }
9521 
9522       // Indirect output manifest as stores. Record output chains.
9523       if (OpInfo.isIndirect) {
9524         const Value *Ptr = OpInfo.CallOperandVal;
9525         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9526         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9527                                      MachinePointerInfo(Ptr));
9528         OutChains.push_back(Store);
9529       } else {
9530         // generate CopyFromRegs to associated registers.
9531         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9532         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9533           for (const SDValue &V : Val->op_values())
9534             handleRegAssign(V);
9535         } else
9536           handleRegAssign(Val);
9537       }
9538     }
9539   }
9540 
9541   // Set results.
9542   if (!ResultValues.empty()) {
9543     assert(CurResultType == ResultTypes.end() &&
9544            "Mismatch in number of ResultTypes");
9545     assert(ResultValues.size() == ResultTypes.size() &&
9546            "Mismatch in number of output operands in asm result");
9547 
9548     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9549                             DAG.getVTList(ResultVTs), ResultValues);
9550     setValue(&Call, V);
9551   }
9552 
9553   // Collect store chains.
9554   if (!OutChains.empty())
9555     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9556 
9557   if (EmitEHLabels) {
9558     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9559   }
9560 
9561   // Only Update Root if inline assembly has a memory effect.
9562   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9563       EmitEHLabels)
9564     DAG.setRoot(Chain);
9565 }
9566 
9567 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9568                                              const Twine &Message) {
9569   LLVMContext &Ctx = *DAG.getContext();
9570   Ctx.emitError(&Call, Message);
9571 
9572   // Make sure we leave the DAG in a valid state
9573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9574   SmallVector<EVT, 1> ValueVTs;
9575   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9576 
9577   if (ValueVTs.empty())
9578     return;
9579 
9580   SmallVector<SDValue, 1> Ops;
9581   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9582     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9583 
9584   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9585 }
9586 
9587 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9588   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9589                           MVT::Other, getRoot(),
9590                           getValue(I.getArgOperand(0)),
9591                           DAG.getSrcValue(I.getArgOperand(0))));
9592 }
9593 
9594 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9595   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9596   const DataLayout &DL = DAG.getDataLayout();
9597   SDValue V = DAG.getVAArg(
9598       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9599       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9600       DL.getABITypeAlign(I.getType()).value());
9601   DAG.setRoot(V.getValue(1));
9602 
9603   if (I.getType()->isPointerTy())
9604     V = DAG.getPtrExtOrTrunc(
9605         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9606   setValue(&I, V);
9607 }
9608 
9609 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9610   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9611                           MVT::Other, getRoot(),
9612                           getValue(I.getArgOperand(0)),
9613                           DAG.getSrcValue(I.getArgOperand(0))));
9614 }
9615 
9616 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9617   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9618                           MVT::Other, getRoot(),
9619                           getValue(I.getArgOperand(0)),
9620                           getValue(I.getArgOperand(1)),
9621                           DAG.getSrcValue(I.getArgOperand(0)),
9622                           DAG.getSrcValue(I.getArgOperand(1))));
9623 }
9624 
9625 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9626                                                     const Instruction &I,
9627                                                     SDValue Op) {
9628   const MDNode *Range = getRangeMetadata(I);
9629   if (!Range)
9630     return Op;
9631 
9632   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9633   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9634     return Op;
9635 
9636   APInt Lo = CR.getUnsignedMin();
9637   if (!Lo.isMinValue())
9638     return Op;
9639 
9640   APInt Hi = CR.getUnsignedMax();
9641   unsigned Bits = std::max(Hi.getActiveBits(),
9642                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9643 
9644   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9645 
9646   SDLoc SL = getCurSDLoc();
9647 
9648   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9649                              DAG.getValueType(SmallVT));
9650   unsigned NumVals = Op.getNode()->getNumValues();
9651   if (NumVals == 1)
9652     return ZExt;
9653 
9654   SmallVector<SDValue, 4> Ops;
9655 
9656   Ops.push_back(ZExt);
9657   for (unsigned I = 1; I != NumVals; ++I)
9658     Ops.push_back(Op.getValue(I));
9659 
9660   return DAG.getMergeValues(Ops, SL);
9661 }
9662 
9663 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9664 /// the call being lowered.
9665 ///
9666 /// This is a helper for lowering intrinsics that follow a target calling
9667 /// convention or require stack pointer adjustment. Only a subset of the
9668 /// intrinsic's operands need to participate in the calling convention.
9669 void SelectionDAGBuilder::populateCallLoweringInfo(
9670     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9671     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9672     bool IsPatchPoint) {
9673   TargetLowering::ArgListTy Args;
9674   Args.reserve(NumArgs);
9675 
9676   // Populate the argument list.
9677   // Attributes for args start at offset 1, after the return attribute.
9678   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9679        ArgI != ArgE; ++ArgI) {
9680     const Value *V = Call->getOperand(ArgI);
9681 
9682     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9683 
9684     TargetLowering::ArgListEntry Entry;
9685     Entry.Node = getValue(V);
9686     Entry.Ty = V->getType();
9687     Entry.setAttributes(Call, ArgI);
9688     Args.push_back(Entry);
9689   }
9690 
9691   CLI.setDebugLoc(getCurSDLoc())
9692       .setChain(getRoot())
9693       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9694       .setDiscardResult(Call->use_empty())
9695       .setIsPatchPoint(IsPatchPoint)
9696       .setIsPreallocated(
9697           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9698 }
9699 
9700 /// Add a stack map intrinsic call's live variable operands to a stackmap
9701 /// or patchpoint target node's operand list.
9702 ///
9703 /// Constants are converted to TargetConstants purely as an optimization to
9704 /// avoid constant materialization and register allocation.
9705 ///
9706 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9707 /// generate addess computation nodes, and so FinalizeISel can convert the
9708 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9709 /// address materialization and register allocation, but may also be required
9710 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9711 /// alloca in the entry block, then the runtime may assume that the alloca's
9712 /// StackMap location can be read immediately after compilation and that the
9713 /// location is valid at any point during execution (this is similar to the
9714 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9715 /// only available in a register, then the runtime would need to trap when
9716 /// execution reaches the StackMap in order to read the alloca's location.
9717 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9718                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9719                                 SelectionDAGBuilder &Builder) {
9720   SelectionDAG &DAG = Builder.DAG;
9721   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9722     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9723 
9724     // Things on the stack are pointer-typed, meaning that they are already
9725     // legal and can be emitted directly to target nodes.
9726     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9727       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9728     } else {
9729       // Otherwise emit a target independent node to be legalised.
9730       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9731     }
9732   }
9733 }
9734 
9735 /// Lower llvm.experimental.stackmap.
9736 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9737   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9738   //                                  [live variables...])
9739 
9740   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9741 
9742   SDValue Chain, InGlue, Callee;
9743   SmallVector<SDValue, 32> Ops;
9744 
9745   SDLoc DL = getCurSDLoc();
9746   Callee = getValue(CI.getCalledOperand());
9747 
9748   // The stackmap intrinsic only records the live variables (the arguments
9749   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9750   // intrinsic, this won't be lowered to a function call. This means we don't
9751   // have to worry about calling conventions and target specific lowering code.
9752   // Instead we perform the call lowering right here.
9753   //
9754   // chain, flag = CALLSEQ_START(chain, 0, 0)
9755   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9756   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9757   //
9758   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9759   InGlue = Chain.getValue(1);
9760 
9761   // Add the STACKMAP operands, starting with DAG house-keeping.
9762   Ops.push_back(Chain);
9763   Ops.push_back(InGlue);
9764 
9765   // Add the <id>, <numShadowBytes> operands.
9766   //
9767   // These do not require legalisation, and can be emitted directly to target
9768   // constant nodes.
9769   SDValue ID = getValue(CI.getArgOperand(0));
9770   assert(ID.getValueType() == MVT::i64);
9771   SDValue IDConst = DAG.getTargetConstant(
9772       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9773   Ops.push_back(IDConst);
9774 
9775   SDValue Shad = getValue(CI.getArgOperand(1));
9776   assert(Shad.getValueType() == MVT::i32);
9777   SDValue ShadConst = DAG.getTargetConstant(
9778       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9779   Ops.push_back(ShadConst);
9780 
9781   // Add the live variables.
9782   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9783 
9784   // Create the STACKMAP node.
9785   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9786   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9787   InGlue = Chain.getValue(1);
9788 
9789   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9790 
9791   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9792 
9793   // Set the root to the target-lowered call chain.
9794   DAG.setRoot(Chain);
9795 
9796   // Inform the Frame Information that we have a stackmap in this function.
9797   FuncInfo.MF->getFrameInfo().setHasStackMap();
9798 }
9799 
9800 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9801 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9802                                           const BasicBlock *EHPadBB) {
9803   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9804   //                                                 i32 <numBytes>,
9805   //                                                 i8* <target>,
9806   //                                                 i32 <numArgs>,
9807   //                                                 [Args...],
9808   //                                                 [live variables...])
9809 
9810   CallingConv::ID CC = CB.getCallingConv();
9811   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9812   bool HasDef = !CB.getType()->isVoidTy();
9813   SDLoc dl = getCurSDLoc();
9814   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9815 
9816   // Handle immediate and symbolic callees.
9817   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9818     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9819                                    /*isTarget=*/true);
9820   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9821     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9822                                          SDLoc(SymbolicCallee),
9823                                          SymbolicCallee->getValueType(0));
9824 
9825   // Get the real number of arguments participating in the call <numArgs>
9826   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9827   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9828 
9829   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9830   // Intrinsics include all meta-operands up to but not including CC.
9831   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9832   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9833          "Not enough arguments provided to the patchpoint intrinsic");
9834 
9835   // For AnyRegCC the arguments are lowered later on manually.
9836   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9837   Type *ReturnTy =
9838       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9839 
9840   TargetLowering::CallLoweringInfo CLI(DAG);
9841   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9842                            ReturnTy, true);
9843   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9844 
9845   SDNode *CallEnd = Result.second.getNode();
9846   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9847     CallEnd = CallEnd->getOperand(0).getNode();
9848 
9849   /// Get a call instruction from the call sequence chain.
9850   /// Tail calls are not allowed.
9851   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9852          "Expected a callseq node.");
9853   SDNode *Call = CallEnd->getOperand(0).getNode();
9854   bool HasGlue = Call->getGluedNode();
9855 
9856   // Replace the target specific call node with the patchable intrinsic.
9857   SmallVector<SDValue, 8> Ops;
9858 
9859   // Push the chain.
9860   Ops.push_back(*(Call->op_begin()));
9861 
9862   // Optionally, push the glue (if any).
9863   if (HasGlue)
9864     Ops.push_back(*(Call->op_end() - 1));
9865 
9866   // Push the register mask info.
9867   if (HasGlue)
9868     Ops.push_back(*(Call->op_end() - 2));
9869   else
9870     Ops.push_back(*(Call->op_end() - 1));
9871 
9872   // Add the <id> and <numBytes> constants.
9873   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9874   Ops.push_back(DAG.getTargetConstant(
9875                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9876   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9877   Ops.push_back(DAG.getTargetConstant(
9878                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9879                   MVT::i32));
9880 
9881   // Add the callee.
9882   Ops.push_back(Callee);
9883 
9884   // Adjust <numArgs> to account for any arguments that have been passed on the
9885   // stack instead.
9886   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9887   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9888   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9889   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9890 
9891   // Add the calling convention
9892   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9893 
9894   // Add the arguments we omitted previously. The register allocator should
9895   // place these in any free register.
9896   if (IsAnyRegCC)
9897     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9898       Ops.push_back(getValue(CB.getArgOperand(i)));
9899 
9900   // Push the arguments from the call instruction.
9901   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9902   Ops.append(Call->op_begin() + 2, e);
9903 
9904   // Push live variables for the stack map.
9905   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9906 
9907   SDVTList NodeTys;
9908   if (IsAnyRegCC && HasDef) {
9909     // Create the return types based on the intrinsic definition
9910     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9911     SmallVector<EVT, 3> ValueVTs;
9912     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9913     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9914 
9915     // There is always a chain and a glue type at the end
9916     ValueVTs.push_back(MVT::Other);
9917     ValueVTs.push_back(MVT::Glue);
9918     NodeTys = DAG.getVTList(ValueVTs);
9919   } else
9920     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9921 
9922   // Replace the target specific call node with a PATCHPOINT node.
9923   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9924 
9925   // Update the NodeMap.
9926   if (HasDef) {
9927     if (IsAnyRegCC)
9928       setValue(&CB, SDValue(PPV.getNode(), 0));
9929     else
9930       setValue(&CB, Result.first);
9931   }
9932 
9933   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9934   // call sequence. Furthermore the location of the chain and glue can change
9935   // when the AnyReg calling convention is used and the intrinsic returns a
9936   // value.
9937   if (IsAnyRegCC && HasDef) {
9938     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9939     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9940     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9941   } else
9942     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9943   DAG.DeleteNode(Call);
9944 
9945   // Inform the Frame Information that we have a patchpoint in this function.
9946   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9947 }
9948 
9949 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9950                                             unsigned Intrinsic) {
9951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9952   SDValue Op1 = getValue(I.getArgOperand(0));
9953   SDValue Op2;
9954   if (I.arg_size() > 1)
9955     Op2 = getValue(I.getArgOperand(1));
9956   SDLoc dl = getCurSDLoc();
9957   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9958   SDValue Res;
9959   SDNodeFlags SDFlags;
9960   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9961     SDFlags.copyFMF(*FPMO);
9962 
9963   switch (Intrinsic) {
9964   case Intrinsic::vector_reduce_fadd:
9965     if (SDFlags.hasAllowReassociation())
9966       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9967                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9968                         SDFlags);
9969     else
9970       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9971     break;
9972   case Intrinsic::vector_reduce_fmul:
9973     if (SDFlags.hasAllowReassociation())
9974       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9975                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9976                         SDFlags);
9977     else
9978       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9979     break;
9980   case Intrinsic::vector_reduce_add:
9981     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9982     break;
9983   case Intrinsic::vector_reduce_mul:
9984     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9985     break;
9986   case Intrinsic::vector_reduce_and:
9987     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9988     break;
9989   case Intrinsic::vector_reduce_or:
9990     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9991     break;
9992   case Intrinsic::vector_reduce_xor:
9993     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9994     break;
9995   case Intrinsic::vector_reduce_smax:
9996     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9997     break;
9998   case Intrinsic::vector_reduce_smin:
9999     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10000     break;
10001   case Intrinsic::vector_reduce_umax:
10002     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10003     break;
10004   case Intrinsic::vector_reduce_umin:
10005     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10006     break;
10007   case Intrinsic::vector_reduce_fmax:
10008     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10009     break;
10010   case Intrinsic::vector_reduce_fmin:
10011     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10012     break;
10013   case Intrinsic::vector_reduce_fmaximum:
10014     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10015     break;
10016   case Intrinsic::vector_reduce_fminimum:
10017     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10018     break;
10019   default:
10020     llvm_unreachable("Unhandled vector reduce intrinsic");
10021   }
10022   setValue(&I, Res);
10023 }
10024 
10025 /// Returns an AttributeList representing the attributes applied to the return
10026 /// value of the given call.
10027 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10028   SmallVector<Attribute::AttrKind, 2> Attrs;
10029   if (CLI.RetSExt)
10030     Attrs.push_back(Attribute::SExt);
10031   if (CLI.RetZExt)
10032     Attrs.push_back(Attribute::ZExt);
10033   if (CLI.IsInReg)
10034     Attrs.push_back(Attribute::InReg);
10035 
10036   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10037                             Attrs);
10038 }
10039 
10040 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10041 /// implementation, which just calls LowerCall.
10042 /// FIXME: When all targets are
10043 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10044 std::pair<SDValue, SDValue>
10045 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10046   // Handle the incoming return values from the call.
10047   CLI.Ins.clear();
10048   Type *OrigRetTy = CLI.RetTy;
10049   SmallVector<EVT, 4> RetTys;
10050   SmallVector<uint64_t, 4> Offsets;
10051   auto &DL = CLI.DAG.getDataLayout();
10052   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10053 
10054   if (CLI.IsPostTypeLegalization) {
10055     // If we are lowering a libcall after legalization, split the return type.
10056     SmallVector<EVT, 4> OldRetTys;
10057     SmallVector<uint64_t, 4> OldOffsets;
10058     RetTys.swap(OldRetTys);
10059     Offsets.swap(OldOffsets);
10060 
10061     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10062       EVT RetVT = OldRetTys[i];
10063       uint64_t Offset = OldOffsets[i];
10064       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10065       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10066       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10067       RetTys.append(NumRegs, RegisterVT);
10068       for (unsigned j = 0; j != NumRegs; ++j)
10069         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10070     }
10071   }
10072 
10073   SmallVector<ISD::OutputArg, 4> Outs;
10074   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10075 
10076   bool CanLowerReturn =
10077       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10078                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10079 
10080   SDValue DemoteStackSlot;
10081   int DemoteStackIdx = -100;
10082   if (!CanLowerReturn) {
10083     // FIXME: equivalent assert?
10084     // assert(!CS.hasInAllocaArgument() &&
10085     //        "sret demotion is incompatible with inalloca");
10086     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10087     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10088     MachineFunction &MF = CLI.DAG.getMachineFunction();
10089     DemoteStackIdx =
10090         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10091     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10092                                               DL.getAllocaAddrSpace());
10093 
10094     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10095     ArgListEntry Entry;
10096     Entry.Node = DemoteStackSlot;
10097     Entry.Ty = StackSlotPtrType;
10098     Entry.IsSExt = false;
10099     Entry.IsZExt = false;
10100     Entry.IsInReg = false;
10101     Entry.IsSRet = true;
10102     Entry.IsNest = false;
10103     Entry.IsByVal = false;
10104     Entry.IsByRef = false;
10105     Entry.IsReturned = false;
10106     Entry.IsSwiftSelf = false;
10107     Entry.IsSwiftAsync = false;
10108     Entry.IsSwiftError = false;
10109     Entry.IsCFGuardTarget = false;
10110     Entry.Alignment = Alignment;
10111     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10112     CLI.NumFixedArgs += 1;
10113     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10114     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10115 
10116     // sret demotion isn't compatible with tail-calls, since the sret argument
10117     // points into the callers stack frame.
10118     CLI.IsTailCall = false;
10119   } else {
10120     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10121         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10122     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10123       ISD::ArgFlagsTy Flags;
10124       if (NeedsRegBlock) {
10125         Flags.setInConsecutiveRegs();
10126         if (I == RetTys.size() - 1)
10127           Flags.setInConsecutiveRegsLast();
10128       }
10129       EVT VT = RetTys[I];
10130       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10131                                                      CLI.CallConv, VT);
10132       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10133                                                        CLI.CallConv, VT);
10134       for (unsigned i = 0; i != NumRegs; ++i) {
10135         ISD::InputArg MyFlags;
10136         MyFlags.Flags = Flags;
10137         MyFlags.VT = RegisterVT;
10138         MyFlags.ArgVT = VT;
10139         MyFlags.Used = CLI.IsReturnValueUsed;
10140         if (CLI.RetTy->isPointerTy()) {
10141           MyFlags.Flags.setPointer();
10142           MyFlags.Flags.setPointerAddrSpace(
10143               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10144         }
10145         if (CLI.RetSExt)
10146           MyFlags.Flags.setSExt();
10147         if (CLI.RetZExt)
10148           MyFlags.Flags.setZExt();
10149         if (CLI.IsInReg)
10150           MyFlags.Flags.setInReg();
10151         CLI.Ins.push_back(MyFlags);
10152       }
10153     }
10154   }
10155 
10156   // We push in swifterror return as the last element of CLI.Ins.
10157   ArgListTy &Args = CLI.getArgs();
10158   if (supportSwiftError()) {
10159     for (const ArgListEntry &Arg : Args) {
10160       if (Arg.IsSwiftError) {
10161         ISD::InputArg MyFlags;
10162         MyFlags.VT = getPointerTy(DL);
10163         MyFlags.ArgVT = EVT(getPointerTy(DL));
10164         MyFlags.Flags.setSwiftError();
10165         CLI.Ins.push_back(MyFlags);
10166       }
10167     }
10168   }
10169 
10170   // Handle all of the outgoing arguments.
10171   CLI.Outs.clear();
10172   CLI.OutVals.clear();
10173   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10174     SmallVector<EVT, 4> ValueVTs;
10175     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10176     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10177     Type *FinalType = Args[i].Ty;
10178     if (Args[i].IsByVal)
10179       FinalType = Args[i].IndirectType;
10180     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10181         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10182     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10183          ++Value) {
10184       EVT VT = ValueVTs[Value];
10185       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10186       SDValue Op = SDValue(Args[i].Node.getNode(),
10187                            Args[i].Node.getResNo() + Value);
10188       ISD::ArgFlagsTy Flags;
10189 
10190       // Certain targets (such as MIPS), may have a different ABI alignment
10191       // for a type depending on the context. Give the target a chance to
10192       // specify the alignment it wants.
10193       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10194       Flags.setOrigAlign(OriginalAlignment);
10195 
10196       if (Args[i].Ty->isPointerTy()) {
10197         Flags.setPointer();
10198         Flags.setPointerAddrSpace(
10199             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10200       }
10201       if (Args[i].IsZExt)
10202         Flags.setZExt();
10203       if (Args[i].IsSExt)
10204         Flags.setSExt();
10205       if (Args[i].IsInReg) {
10206         // If we are using vectorcall calling convention, a structure that is
10207         // passed InReg - is surely an HVA
10208         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10209             isa<StructType>(FinalType)) {
10210           // The first value of a structure is marked
10211           if (0 == Value)
10212             Flags.setHvaStart();
10213           Flags.setHva();
10214         }
10215         // Set InReg Flag
10216         Flags.setInReg();
10217       }
10218       if (Args[i].IsSRet)
10219         Flags.setSRet();
10220       if (Args[i].IsSwiftSelf)
10221         Flags.setSwiftSelf();
10222       if (Args[i].IsSwiftAsync)
10223         Flags.setSwiftAsync();
10224       if (Args[i].IsSwiftError)
10225         Flags.setSwiftError();
10226       if (Args[i].IsCFGuardTarget)
10227         Flags.setCFGuardTarget();
10228       if (Args[i].IsByVal)
10229         Flags.setByVal();
10230       if (Args[i].IsByRef)
10231         Flags.setByRef();
10232       if (Args[i].IsPreallocated) {
10233         Flags.setPreallocated();
10234         // Set the byval flag for CCAssignFn callbacks that don't know about
10235         // preallocated.  This way we can know how many bytes we should've
10236         // allocated and how many bytes a callee cleanup function will pop.  If
10237         // we port preallocated to more targets, we'll have to add custom
10238         // preallocated handling in the various CC lowering callbacks.
10239         Flags.setByVal();
10240       }
10241       if (Args[i].IsInAlloca) {
10242         Flags.setInAlloca();
10243         // Set the byval flag for CCAssignFn callbacks that don't know about
10244         // inalloca.  This way we can know how many bytes we should've allocated
10245         // and how many bytes a callee cleanup function will pop.  If we port
10246         // inalloca to more targets, we'll have to add custom inalloca handling
10247         // in the various CC lowering callbacks.
10248         Flags.setByVal();
10249       }
10250       Align MemAlign;
10251       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10252         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10253         Flags.setByValSize(FrameSize);
10254 
10255         // info is not there but there are cases it cannot get right.
10256         if (auto MA = Args[i].Alignment)
10257           MemAlign = *MA;
10258         else
10259           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10260       } else if (auto MA = Args[i].Alignment) {
10261         MemAlign = *MA;
10262       } else {
10263         MemAlign = OriginalAlignment;
10264       }
10265       Flags.setMemAlign(MemAlign);
10266       if (Args[i].IsNest)
10267         Flags.setNest();
10268       if (NeedsRegBlock)
10269         Flags.setInConsecutiveRegs();
10270 
10271       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10272                                                  CLI.CallConv, VT);
10273       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10274                                                         CLI.CallConv, VT);
10275       SmallVector<SDValue, 4> Parts(NumParts);
10276       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10277 
10278       if (Args[i].IsSExt)
10279         ExtendKind = ISD::SIGN_EXTEND;
10280       else if (Args[i].IsZExt)
10281         ExtendKind = ISD::ZERO_EXTEND;
10282 
10283       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10284       // for now.
10285       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10286           CanLowerReturn) {
10287         assert((CLI.RetTy == Args[i].Ty ||
10288                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10289                  CLI.RetTy->getPointerAddressSpace() ==
10290                      Args[i].Ty->getPointerAddressSpace())) &&
10291                RetTys.size() == NumValues && "unexpected use of 'returned'");
10292         // Before passing 'returned' to the target lowering code, ensure that
10293         // either the register MVT and the actual EVT are the same size or that
10294         // the return value and argument are extended in the same way; in these
10295         // cases it's safe to pass the argument register value unchanged as the
10296         // return register value (although it's at the target's option whether
10297         // to do so)
10298         // TODO: allow code generation to take advantage of partially preserved
10299         // registers rather than clobbering the entire register when the
10300         // parameter extension method is not compatible with the return
10301         // extension method
10302         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10303             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10304              CLI.RetZExt == Args[i].IsZExt))
10305           Flags.setReturned();
10306       }
10307 
10308       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10309                      CLI.CallConv, ExtendKind);
10310 
10311       for (unsigned j = 0; j != NumParts; ++j) {
10312         // if it isn't first piece, alignment must be 1
10313         // For scalable vectors the scalable part is currently handled
10314         // by individual targets, so we just use the known minimum size here.
10315         ISD::OutputArg MyFlags(
10316             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10317             i < CLI.NumFixedArgs, i,
10318             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10319         if (NumParts > 1 && j == 0)
10320           MyFlags.Flags.setSplit();
10321         else if (j != 0) {
10322           MyFlags.Flags.setOrigAlign(Align(1));
10323           if (j == NumParts - 1)
10324             MyFlags.Flags.setSplitEnd();
10325         }
10326 
10327         CLI.Outs.push_back(MyFlags);
10328         CLI.OutVals.push_back(Parts[j]);
10329       }
10330 
10331       if (NeedsRegBlock && Value == NumValues - 1)
10332         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10333     }
10334   }
10335 
10336   SmallVector<SDValue, 4> InVals;
10337   CLI.Chain = LowerCall(CLI, InVals);
10338 
10339   // Update CLI.InVals to use outside of this function.
10340   CLI.InVals = InVals;
10341 
10342   // Verify that the target's LowerCall behaved as expected.
10343   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10344          "LowerCall didn't return a valid chain!");
10345   assert((!CLI.IsTailCall || InVals.empty()) &&
10346          "LowerCall emitted a return value for a tail call!");
10347   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10348          "LowerCall didn't emit the correct number of values!");
10349 
10350   // For a tail call, the return value is merely live-out and there aren't
10351   // any nodes in the DAG representing it. Return a special value to
10352   // indicate that a tail call has been emitted and no more Instructions
10353   // should be processed in the current block.
10354   if (CLI.IsTailCall) {
10355     CLI.DAG.setRoot(CLI.Chain);
10356     return std::make_pair(SDValue(), SDValue());
10357   }
10358 
10359 #ifndef NDEBUG
10360   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10361     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10362     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10363            "LowerCall emitted a value with the wrong type!");
10364   }
10365 #endif
10366 
10367   SmallVector<SDValue, 4> ReturnValues;
10368   if (!CanLowerReturn) {
10369     // The instruction result is the result of loading from the
10370     // hidden sret parameter.
10371     SmallVector<EVT, 1> PVTs;
10372     Type *PtrRetTy =
10373         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10374 
10375     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10376     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10377     EVT PtrVT = PVTs[0];
10378 
10379     unsigned NumValues = RetTys.size();
10380     ReturnValues.resize(NumValues);
10381     SmallVector<SDValue, 4> Chains(NumValues);
10382 
10383     // An aggregate return value cannot wrap around the address space, so
10384     // offsets to its parts don't wrap either.
10385     SDNodeFlags Flags;
10386     Flags.setNoUnsignedWrap(true);
10387 
10388     MachineFunction &MF = CLI.DAG.getMachineFunction();
10389     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10390     for (unsigned i = 0; i < NumValues; ++i) {
10391       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10392                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10393                                                         PtrVT), Flags);
10394       SDValue L = CLI.DAG.getLoad(
10395           RetTys[i], CLI.DL, CLI.Chain, Add,
10396           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10397                                             DemoteStackIdx, Offsets[i]),
10398           HiddenSRetAlign);
10399       ReturnValues[i] = L;
10400       Chains[i] = L.getValue(1);
10401     }
10402 
10403     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10404   } else {
10405     // Collect the legal value parts into potentially illegal values
10406     // that correspond to the original function's return values.
10407     std::optional<ISD::NodeType> AssertOp;
10408     if (CLI.RetSExt)
10409       AssertOp = ISD::AssertSext;
10410     else if (CLI.RetZExt)
10411       AssertOp = ISD::AssertZext;
10412     unsigned CurReg = 0;
10413     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10414       EVT VT = RetTys[I];
10415       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10416                                                      CLI.CallConv, VT);
10417       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10418                                                        CLI.CallConv, VT);
10419 
10420       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10421                                               NumRegs, RegisterVT, VT, nullptr,
10422                                               CLI.CallConv, AssertOp));
10423       CurReg += NumRegs;
10424     }
10425 
10426     // For a function returning void, there is no return value. We can't create
10427     // such a node, so we just return a null return value in that case. In
10428     // that case, nothing will actually look at the value.
10429     if (ReturnValues.empty())
10430       return std::make_pair(SDValue(), CLI.Chain);
10431   }
10432 
10433   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10434                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10435   return std::make_pair(Res, CLI.Chain);
10436 }
10437 
10438 /// Places new result values for the node in Results (their number
10439 /// and types must exactly match those of the original return values of
10440 /// the node), or leaves Results empty, which indicates that the node is not
10441 /// to be custom lowered after all.
10442 void TargetLowering::LowerOperationWrapper(SDNode *N,
10443                                            SmallVectorImpl<SDValue> &Results,
10444                                            SelectionDAG &DAG) const {
10445   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10446 
10447   if (!Res.getNode())
10448     return;
10449 
10450   // If the original node has one result, take the return value from
10451   // LowerOperation as is. It might not be result number 0.
10452   if (N->getNumValues() == 1) {
10453     Results.push_back(Res);
10454     return;
10455   }
10456 
10457   // If the original node has multiple results, then the return node should
10458   // have the same number of results.
10459   assert((N->getNumValues() == Res->getNumValues()) &&
10460       "Lowering returned the wrong number of results!");
10461 
10462   // Places new result values base on N result number.
10463   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10464     Results.push_back(Res.getValue(I));
10465 }
10466 
10467 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10468   llvm_unreachable("LowerOperation not implemented for this target!");
10469 }
10470 
10471 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10472                                                      unsigned Reg,
10473                                                      ISD::NodeType ExtendType) {
10474   SDValue Op = getNonRegisterValue(V);
10475   assert((Op.getOpcode() != ISD::CopyFromReg ||
10476           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10477          "Copy from a reg to the same reg!");
10478   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10479 
10480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10481   // If this is an InlineAsm we have to match the registers required, not the
10482   // notional registers required by the type.
10483 
10484   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10485                    std::nullopt); // This is not an ABI copy.
10486   SDValue Chain = DAG.getEntryNode();
10487 
10488   if (ExtendType == ISD::ANY_EXTEND) {
10489     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10490     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10491       ExtendType = PreferredExtendIt->second;
10492   }
10493   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10494   PendingExports.push_back(Chain);
10495 }
10496 
10497 #include "llvm/CodeGen/SelectionDAGISel.h"
10498 
10499 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10500 /// entry block, return true.  This includes arguments used by switches, since
10501 /// the switch may expand into multiple basic blocks.
10502 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10503   // With FastISel active, we may be splitting blocks, so force creation
10504   // of virtual registers for all non-dead arguments.
10505   if (FastISel)
10506     return A->use_empty();
10507 
10508   const BasicBlock &Entry = A->getParent()->front();
10509   for (const User *U : A->users())
10510     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10511       return false;  // Use not in entry block.
10512 
10513   return true;
10514 }
10515 
10516 using ArgCopyElisionMapTy =
10517     DenseMap<const Argument *,
10518              std::pair<const AllocaInst *, const StoreInst *>>;
10519 
10520 /// Scan the entry block of the function in FuncInfo for arguments that look
10521 /// like copies into a local alloca. Record any copied arguments in
10522 /// ArgCopyElisionCandidates.
10523 static void
10524 findArgumentCopyElisionCandidates(const DataLayout &DL,
10525                                   FunctionLoweringInfo *FuncInfo,
10526                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10527   // Record the state of every static alloca used in the entry block. Argument
10528   // allocas are all used in the entry block, so we need approximately as many
10529   // entries as we have arguments.
10530   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10531   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10532   unsigned NumArgs = FuncInfo->Fn->arg_size();
10533   StaticAllocas.reserve(NumArgs * 2);
10534 
10535   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10536     if (!V)
10537       return nullptr;
10538     V = V->stripPointerCasts();
10539     const auto *AI = dyn_cast<AllocaInst>(V);
10540     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10541       return nullptr;
10542     auto Iter = StaticAllocas.insert({AI, Unknown});
10543     return &Iter.first->second;
10544   };
10545 
10546   // Look for stores of arguments to static allocas. Look through bitcasts and
10547   // GEPs to handle type coercions, as long as the alloca is fully initialized
10548   // by the store. Any non-store use of an alloca escapes it and any subsequent
10549   // unanalyzed store might write it.
10550   // FIXME: Handle structs initialized with multiple stores.
10551   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10552     // Look for stores, and handle non-store uses conservatively.
10553     const auto *SI = dyn_cast<StoreInst>(&I);
10554     if (!SI) {
10555       // We will look through cast uses, so ignore them completely.
10556       if (I.isCast())
10557         continue;
10558       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10559       // to allocas.
10560       if (I.isDebugOrPseudoInst())
10561         continue;
10562       // This is an unknown instruction. Assume it escapes or writes to all
10563       // static alloca operands.
10564       for (const Use &U : I.operands()) {
10565         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10566           *Info = StaticAllocaInfo::Clobbered;
10567       }
10568       continue;
10569     }
10570 
10571     // If the stored value is a static alloca, mark it as escaped.
10572     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10573       *Info = StaticAllocaInfo::Clobbered;
10574 
10575     // Check if the destination is a static alloca.
10576     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10577     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10578     if (!Info)
10579       continue;
10580     const AllocaInst *AI = cast<AllocaInst>(Dst);
10581 
10582     // Skip allocas that have been initialized or clobbered.
10583     if (*Info != StaticAllocaInfo::Unknown)
10584       continue;
10585 
10586     // Check if the stored value is an argument, and that this store fully
10587     // initializes the alloca.
10588     // If the argument type has padding bits we can't directly forward a pointer
10589     // as the upper bits may contain garbage.
10590     // Don't elide copies from the same argument twice.
10591     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10592     const auto *Arg = dyn_cast<Argument>(Val);
10593     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10594         Arg->getType()->isEmptyTy() ||
10595         DL.getTypeStoreSize(Arg->getType()) !=
10596             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10597         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10598         ArgCopyElisionCandidates.count(Arg)) {
10599       *Info = StaticAllocaInfo::Clobbered;
10600       continue;
10601     }
10602 
10603     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10604                       << '\n');
10605 
10606     // Mark this alloca and store for argument copy elision.
10607     *Info = StaticAllocaInfo::Elidable;
10608     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10609 
10610     // Stop scanning if we've seen all arguments. This will happen early in -O0
10611     // builds, which is useful, because -O0 builds have large entry blocks and
10612     // many allocas.
10613     if (ArgCopyElisionCandidates.size() == NumArgs)
10614       break;
10615   }
10616 }
10617 
10618 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10619 /// ArgVal is a load from a suitable fixed stack object.
10620 static void tryToElideArgumentCopy(
10621     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10622     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10623     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10624     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10625     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10626   // Check if this is a load from a fixed stack object.
10627   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10628   if (!LNode)
10629     return;
10630   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10631   if (!FINode)
10632     return;
10633 
10634   // Check that the fixed stack object is the right size and alignment.
10635   // Look at the alignment that the user wrote on the alloca instead of looking
10636   // at the stack object.
10637   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10638   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10639   const AllocaInst *AI = ArgCopyIter->second.first;
10640   int FixedIndex = FINode->getIndex();
10641   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10642   int OldIndex = AllocaIndex;
10643   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10644   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10645     LLVM_DEBUG(
10646         dbgs() << "  argument copy elision failed due to bad fixed stack "
10647                   "object size\n");
10648     return;
10649   }
10650   Align RequiredAlignment = AI->getAlign();
10651   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10652     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10653                          "greater than stack argument alignment ("
10654                       << DebugStr(RequiredAlignment) << " vs "
10655                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10656     return;
10657   }
10658 
10659   // Perform the elision. Delete the old stack object and replace its only use
10660   // in the variable info map. Mark the stack object as mutable.
10661   LLVM_DEBUG({
10662     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10663            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10664            << '\n';
10665   });
10666   MFI.RemoveStackObject(OldIndex);
10667   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10668   AllocaIndex = FixedIndex;
10669   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10670   for (SDValue ArgVal : ArgVals)
10671     Chains.push_back(ArgVal.getValue(1));
10672 
10673   // Avoid emitting code for the store implementing the copy.
10674   const StoreInst *SI = ArgCopyIter->second.second;
10675   ElidedArgCopyInstrs.insert(SI);
10676 
10677   // Check for uses of the argument again so that we can avoid exporting ArgVal
10678   // if it is't used by anything other than the store.
10679   for (const Value *U : Arg.users()) {
10680     if (U != SI) {
10681       ArgHasUses = true;
10682       break;
10683     }
10684   }
10685 }
10686 
10687 void SelectionDAGISel::LowerArguments(const Function &F) {
10688   SelectionDAG &DAG = SDB->DAG;
10689   SDLoc dl = SDB->getCurSDLoc();
10690   const DataLayout &DL = DAG.getDataLayout();
10691   SmallVector<ISD::InputArg, 16> Ins;
10692 
10693   // In Naked functions we aren't going to save any registers.
10694   if (F.hasFnAttribute(Attribute::Naked))
10695     return;
10696 
10697   if (!FuncInfo->CanLowerReturn) {
10698     // Put in an sret pointer parameter before all the other parameters.
10699     SmallVector<EVT, 1> ValueVTs;
10700     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10701                     PointerType::get(F.getContext(),
10702                                      DAG.getDataLayout().getAllocaAddrSpace()),
10703                     ValueVTs);
10704 
10705     // NOTE: Assuming that a pointer will never break down to more than one VT
10706     // or one register.
10707     ISD::ArgFlagsTy Flags;
10708     Flags.setSRet();
10709     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10710     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10711                          ISD::InputArg::NoArgIndex, 0);
10712     Ins.push_back(RetArg);
10713   }
10714 
10715   // Look for stores of arguments to static allocas. Mark such arguments with a
10716   // flag to ask the target to give us the memory location of that argument if
10717   // available.
10718   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10719   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10720                                     ArgCopyElisionCandidates);
10721 
10722   // Set up the incoming argument description vector.
10723   for (const Argument &Arg : F.args()) {
10724     unsigned ArgNo = Arg.getArgNo();
10725     SmallVector<EVT, 4> ValueVTs;
10726     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10727     bool isArgValueUsed = !Arg.use_empty();
10728     unsigned PartBase = 0;
10729     Type *FinalType = Arg.getType();
10730     if (Arg.hasAttribute(Attribute::ByVal))
10731       FinalType = Arg.getParamByValType();
10732     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10733         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10734     for (unsigned Value = 0, NumValues = ValueVTs.size();
10735          Value != NumValues; ++Value) {
10736       EVT VT = ValueVTs[Value];
10737       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10738       ISD::ArgFlagsTy Flags;
10739 
10740 
10741       if (Arg.getType()->isPointerTy()) {
10742         Flags.setPointer();
10743         Flags.setPointerAddrSpace(
10744             cast<PointerType>(Arg.getType())->getAddressSpace());
10745       }
10746       if (Arg.hasAttribute(Attribute::ZExt))
10747         Flags.setZExt();
10748       if (Arg.hasAttribute(Attribute::SExt))
10749         Flags.setSExt();
10750       if (Arg.hasAttribute(Attribute::InReg)) {
10751         // If we are using vectorcall calling convention, a structure that is
10752         // passed InReg - is surely an HVA
10753         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10754             isa<StructType>(Arg.getType())) {
10755           // The first value of a structure is marked
10756           if (0 == Value)
10757             Flags.setHvaStart();
10758           Flags.setHva();
10759         }
10760         // Set InReg Flag
10761         Flags.setInReg();
10762       }
10763       if (Arg.hasAttribute(Attribute::StructRet))
10764         Flags.setSRet();
10765       if (Arg.hasAttribute(Attribute::SwiftSelf))
10766         Flags.setSwiftSelf();
10767       if (Arg.hasAttribute(Attribute::SwiftAsync))
10768         Flags.setSwiftAsync();
10769       if (Arg.hasAttribute(Attribute::SwiftError))
10770         Flags.setSwiftError();
10771       if (Arg.hasAttribute(Attribute::ByVal))
10772         Flags.setByVal();
10773       if (Arg.hasAttribute(Attribute::ByRef))
10774         Flags.setByRef();
10775       if (Arg.hasAttribute(Attribute::InAlloca)) {
10776         Flags.setInAlloca();
10777         // Set the byval flag for CCAssignFn callbacks that don't know about
10778         // inalloca.  This way we can know how many bytes we should've allocated
10779         // and how many bytes a callee cleanup function will pop.  If we port
10780         // inalloca to more targets, we'll have to add custom inalloca handling
10781         // in the various CC lowering callbacks.
10782         Flags.setByVal();
10783       }
10784       if (Arg.hasAttribute(Attribute::Preallocated)) {
10785         Flags.setPreallocated();
10786         // Set the byval flag for CCAssignFn callbacks that don't know about
10787         // preallocated.  This way we can know how many bytes we should've
10788         // allocated and how many bytes a callee cleanup function will pop.  If
10789         // we port preallocated to more targets, we'll have to add custom
10790         // preallocated handling in the various CC lowering callbacks.
10791         Flags.setByVal();
10792       }
10793 
10794       // Certain targets (such as MIPS), may have a different ABI alignment
10795       // for a type depending on the context. Give the target a chance to
10796       // specify the alignment it wants.
10797       const Align OriginalAlignment(
10798           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10799       Flags.setOrigAlign(OriginalAlignment);
10800 
10801       Align MemAlign;
10802       Type *ArgMemTy = nullptr;
10803       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10804           Flags.isByRef()) {
10805         if (!ArgMemTy)
10806           ArgMemTy = Arg.getPointeeInMemoryValueType();
10807 
10808         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10809 
10810         // For in-memory arguments, size and alignment should be passed from FE.
10811         // BE will guess if this info is not there but there are cases it cannot
10812         // get right.
10813         if (auto ParamAlign = Arg.getParamStackAlign())
10814           MemAlign = *ParamAlign;
10815         else if ((ParamAlign = Arg.getParamAlign()))
10816           MemAlign = *ParamAlign;
10817         else
10818           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10819         if (Flags.isByRef())
10820           Flags.setByRefSize(MemSize);
10821         else
10822           Flags.setByValSize(MemSize);
10823       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10824         MemAlign = *ParamAlign;
10825       } else {
10826         MemAlign = OriginalAlignment;
10827       }
10828       Flags.setMemAlign(MemAlign);
10829 
10830       if (Arg.hasAttribute(Attribute::Nest))
10831         Flags.setNest();
10832       if (NeedsRegBlock)
10833         Flags.setInConsecutiveRegs();
10834       if (ArgCopyElisionCandidates.count(&Arg))
10835         Flags.setCopyElisionCandidate();
10836       if (Arg.hasAttribute(Attribute::Returned))
10837         Flags.setReturned();
10838 
10839       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10840           *CurDAG->getContext(), F.getCallingConv(), VT);
10841       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10842           *CurDAG->getContext(), F.getCallingConv(), VT);
10843       for (unsigned i = 0; i != NumRegs; ++i) {
10844         // For scalable vectors, use the minimum size; individual targets
10845         // are responsible for handling scalable vector arguments and
10846         // return values.
10847         ISD::InputArg MyFlags(
10848             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10849             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10850         if (NumRegs > 1 && i == 0)
10851           MyFlags.Flags.setSplit();
10852         // if it isn't first piece, alignment must be 1
10853         else if (i > 0) {
10854           MyFlags.Flags.setOrigAlign(Align(1));
10855           if (i == NumRegs - 1)
10856             MyFlags.Flags.setSplitEnd();
10857         }
10858         Ins.push_back(MyFlags);
10859       }
10860       if (NeedsRegBlock && Value == NumValues - 1)
10861         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10862       PartBase += VT.getStoreSize().getKnownMinValue();
10863     }
10864   }
10865 
10866   // Call the target to set up the argument values.
10867   SmallVector<SDValue, 8> InVals;
10868   SDValue NewRoot = TLI->LowerFormalArguments(
10869       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10870 
10871   // Verify that the target's LowerFormalArguments behaved as expected.
10872   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10873          "LowerFormalArguments didn't return a valid chain!");
10874   assert(InVals.size() == Ins.size() &&
10875          "LowerFormalArguments didn't emit the correct number of values!");
10876   LLVM_DEBUG({
10877     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10878       assert(InVals[i].getNode() &&
10879              "LowerFormalArguments emitted a null value!");
10880       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10881              "LowerFormalArguments emitted a value with the wrong type!");
10882     }
10883   });
10884 
10885   // Update the DAG with the new chain value resulting from argument lowering.
10886   DAG.setRoot(NewRoot);
10887 
10888   // Set up the argument values.
10889   unsigned i = 0;
10890   if (!FuncInfo->CanLowerReturn) {
10891     // Create a virtual register for the sret pointer, and put in a copy
10892     // from the sret argument into it.
10893     SmallVector<EVT, 1> ValueVTs;
10894     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10895                     PointerType::get(F.getContext(),
10896                                      DAG.getDataLayout().getAllocaAddrSpace()),
10897                     ValueVTs);
10898     MVT VT = ValueVTs[0].getSimpleVT();
10899     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10900     std::optional<ISD::NodeType> AssertOp;
10901     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10902                                         nullptr, F.getCallingConv(), AssertOp);
10903 
10904     MachineFunction& MF = SDB->DAG.getMachineFunction();
10905     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10906     Register SRetReg =
10907         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10908     FuncInfo->DemoteRegister = SRetReg;
10909     NewRoot =
10910         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10911     DAG.setRoot(NewRoot);
10912 
10913     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10914     ++i;
10915   }
10916 
10917   SmallVector<SDValue, 4> Chains;
10918   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10919   for (const Argument &Arg : F.args()) {
10920     SmallVector<SDValue, 4> ArgValues;
10921     SmallVector<EVT, 4> ValueVTs;
10922     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10923     unsigned NumValues = ValueVTs.size();
10924     if (NumValues == 0)
10925       continue;
10926 
10927     bool ArgHasUses = !Arg.use_empty();
10928 
10929     // Elide the copying store if the target loaded this argument from a
10930     // suitable fixed stack object.
10931     if (Ins[i].Flags.isCopyElisionCandidate()) {
10932       unsigned NumParts = 0;
10933       for (EVT VT : ValueVTs)
10934         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
10935                                                        F.getCallingConv(), VT);
10936 
10937       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10938                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10939                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
10940     }
10941 
10942     // If this argument is unused then remember its value. It is used to generate
10943     // debugging information.
10944     bool isSwiftErrorArg =
10945         TLI->supportSwiftError() &&
10946         Arg.hasAttribute(Attribute::SwiftError);
10947     if (!ArgHasUses && !isSwiftErrorArg) {
10948       SDB->setUnusedArgValue(&Arg, InVals[i]);
10949 
10950       // Also remember any frame index for use in FastISel.
10951       if (FrameIndexSDNode *FI =
10952           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10953         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10954     }
10955 
10956     for (unsigned Val = 0; Val != NumValues; ++Val) {
10957       EVT VT = ValueVTs[Val];
10958       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10959                                                       F.getCallingConv(), VT);
10960       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10961           *CurDAG->getContext(), F.getCallingConv(), VT);
10962 
10963       // Even an apparent 'unused' swifterror argument needs to be returned. So
10964       // we do generate a copy for it that can be used on return from the
10965       // function.
10966       if (ArgHasUses || isSwiftErrorArg) {
10967         std::optional<ISD::NodeType> AssertOp;
10968         if (Arg.hasAttribute(Attribute::SExt))
10969           AssertOp = ISD::AssertSext;
10970         else if (Arg.hasAttribute(Attribute::ZExt))
10971           AssertOp = ISD::AssertZext;
10972 
10973         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10974                                              PartVT, VT, nullptr,
10975                                              F.getCallingConv(), AssertOp));
10976       }
10977 
10978       i += NumParts;
10979     }
10980 
10981     // We don't need to do anything else for unused arguments.
10982     if (ArgValues.empty())
10983       continue;
10984 
10985     // Note down frame index.
10986     if (FrameIndexSDNode *FI =
10987         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10988       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10989 
10990     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10991                                      SDB->getCurSDLoc());
10992 
10993     SDB->setValue(&Arg, Res);
10994     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10995       // We want to associate the argument with the frame index, among
10996       // involved operands, that correspond to the lowest address. The
10997       // getCopyFromParts function, called earlier, is swapping the order of
10998       // the operands to BUILD_PAIR depending on endianness. The result of
10999       // that swapping is that the least significant bits of the argument will
11000       // be in the first operand of the BUILD_PAIR node, and the most
11001       // significant bits will be in the second operand.
11002       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11003       if (LoadSDNode *LNode =
11004           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11005         if (FrameIndexSDNode *FI =
11006             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11007           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11008     }
11009 
11010     // Analyses past this point are naive and don't expect an assertion.
11011     if (Res.getOpcode() == ISD::AssertZext)
11012       Res = Res.getOperand(0);
11013 
11014     // Update the SwiftErrorVRegDefMap.
11015     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11016       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11017       if (Register::isVirtualRegister(Reg))
11018         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11019                                    Reg);
11020     }
11021 
11022     // If this argument is live outside of the entry block, insert a copy from
11023     // wherever we got it to the vreg that other BB's will reference it as.
11024     if (Res.getOpcode() == ISD::CopyFromReg) {
11025       // If we can, though, try to skip creating an unnecessary vreg.
11026       // FIXME: This isn't very clean... it would be nice to make this more
11027       // general.
11028       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11029       if (Register::isVirtualRegister(Reg)) {
11030         FuncInfo->ValueMap[&Arg] = Reg;
11031         continue;
11032       }
11033     }
11034     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11035       FuncInfo->InitializeRegForValue(&Arg);
11036       SDB->CopyToExportRegsIfNeeded(&Arg);
11037     }
11038   }
11039 
11040   if (!Chains.empty()) {
11041     Chains.push_back(NewRoot);
11042     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11043   }
11044 
11045   DAG.setRoot(NewRoot);
11046 
11047   assert(i == InVals.size() && "Argument register count mismatch!");
11048 
11049   // If any argument copy elisions occurred and we have debug info, update the
11050   // stale frame indices used in the dbg.declare variable info table.
11051   if (!ArgCopyElisionFrameIndexMap.empty()) {
11052     for (MachineFunction::VariableDbgInfo &VI :
11053          MF->getInStackSlotVariableDbgInfo()) {
11054       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11055       if (I != ArgCopyElisionFrameIndexMap.end())
11056         VI.updateStackSlot(I->second);
11057     }
11058   }
11059 
11060   // Finally, if the target has anything special to do, allow it to do so.
11061   emitFunctionEntryCode();
11062 }
11063 
11064 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11065 /// ensure constants are generated when needed.  Remember the virtual registers
11066 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11067 /// directly add them, because expansion might result in multiple MBB's for one
11068 /// BB.  As such, the start of the BB might correspond to a different MBB than
11069 /// the end.
11070 void
11071 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11073 
11074   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11075 
11076   // Check PHI nodes in successors that expect a value to be available from this
11077   // block.
11078   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11079     if (!isa<PHINode>(SuccBB->begin())) continue;
11080     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11081 
11082     // If this terminator has multiple identical successors (common for
11083     // switches), only handle each succ once.
11084     if (!SuccsHandled.insert(SuccMBB).second)
11085       continue;
11086 
11087     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11088 
11089     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11090     // nodes and Machine PHI nodes, but the incoming operands have not been
11091     // emitted yet.
11092     for (const PHINode &PN : SuccBB->phis()) {
11093       // Ignore dead phi's.
11094       if (PN.use_empty())
11095         continue;
11096 
11097       // Skip empty types
11098       if (PN.getType()->isEmptyTy())
11099         continue;
11100 
11101       unsigned Reg;
11102       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11103 
11104       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11105         unsigned &RegOut = ConstantsOut[C];
11106         if (RegOut == 0) {
11107           RegOut = FuncInfo.CreateRegs(C);
11108           // We need to zero/sign extend ConstantInt phi operands to match
11109           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11110           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11111           if (auto *CI = dyn_cast<ConstantInt>(C))
11112             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11113                                                     : ISD::ZERO_EXTEND;
11114           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11115         }
11116         Reg = RegOut;
11117       } else {
11118         DenseMap<const Value *, Register>::iterator I =
11119           FuncInfo.ValueMap.find(PHIOp);
11120         if (I != FuncInfo.ValueMap.end())
11121           Reg = I->second;
11122         else {
11123           assert(isa<AllocaInst>(PHIOp) &&
11124                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11125                  "Didn't codegen value into a register!??");
11126           Reg = FuncInfo.CreateRegs(PHIOp);
11127           CopyValueToVirtualRegister(PHIOp, Reg);
11128         }
11129       }
11130 
11131       // Remember that this register needs to added to the machine PHI node as
11132       // the input for this MBB.
11133       SmallVector<EVT, 4> ValueVTs;
11134       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11135       for (EVT VT : ValueVTs) {
11136         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11137         for (unsigned i = 0; i != NumRegisters; ++i)
11138           FuncInfo.PHINodesToUpdate.push_back(
11139               std::make_pair(&*MBBI++, Reg + i));
11140         Reg += NumRegisters;
11141       }
11142     }
11143   }
11144 
11145   ConstantsOut.clear();
11146 }
11147 
11148 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11149   MachineFunction::iterator I(MBB);
11150   if (++I == FuncInfo.MF->end())
11151     return nullptr;
11152   return &*I;
11153 }
11154 
11155 /// During lowering new call nodes can be created (such as memset, etc.).
11156 /// Those will become new roots of the current DAG, but complications arise
11157 /// when they are tail calls. In such cases, the call lowering will update
11158 /// the root, but the builder still needs to know that a tail call has been
11159 /// lowered in order to avoid generating an additional return.
11160 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11161   // If the node is null, we do have a tail call.
11162   if (MaybeTC.getNode() != nullptr)
11163     DAG.setRoot(MaybeTC);
11164   else
11165     HasTailCall = true;
11166 }
11167 
11168 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11169                                         MachineBasicBlock *SwitchMBB,
11170                                         MachineBasicBlock *DefaultMBB) {
11171   MachineFunction *CurMF = FuncInfo.MF;
11172   MachineBasicBlock *NextMBB = nullptr;
11173   MachineFunction::iterator BBI(W.MBB);
11174   if (++BBI != FuncInfo.MF->end())
11175     NextMBB = &*BBI;
11176 
11177   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11178 
11179   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11180 
11181   if (Size == 2 && W.MBB == SwitchMBB) {
11182     // If any two of the cases has the same destination, and if one value
11183     // is the same as the other, but has one bit unset that the other has set,
11184     // use bit manipulation to do two compares at once.  For example:
11185     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11186     // TODO: This could be extended to merge any 2 cases in switches with 3
11187     // cases.
11188     // TODO: Handle cases where W.CaseBB != SwitchBB.
11189     CaseCluster &Small = *W.FirstCluster;
11190     CaseCluster &Big = *W.LastCluster;
11191 
11192     if (Small.Low == Small.High && Big.Low == Big.High &&
11193         Small.MBB == Big.MBB) {
11194       const APInt &SmallValue = Small.Low->getValue();
11195       const APInt &BigValue = Big.Low->getValue();
11196 
11197       // Check that there is only one bit different.
11198       APInt CommonBit = BigValue ^ SmallValue;
11199       if (CommonBit.isPowerOf2()) {
11200         SDValue CondLHS = getValue(Cond);
11201         EVT VT = CondLHS.getValueType();
11202         SDLoc DL = getCurSDLoc();
11203 
11204         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11205                                  DAG.getConstant(CommonBit, DL, VT));
11206         SDValue Cond = DAG.getSetCC(
11207             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11208             ISD::SETEQ);
11209 
11210         // Update successor info.
11211         // Both Small and Big will jump to Small.BB, so we sum up the
11212         // probabilities.
11213         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11214         if (BPI)
11215           addSuccessorWithProb(
11216               SwitchMBB, DefaultMBB,
11217               // The default destination is the first successor in IR.
11218               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11219         else
11220           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11221 
11222         // Insert the true branch.
11223         SDValue BrCond =
11224             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11225                         DAG.getBasicBlock(Small.MBB));
11226         // Insert the false branch.
11227         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11228                              DAG.getBasicBlock(DefaultMBB));
11229 
11230         DAG.setRoot(BrCond);
11231         return;
11232       }
11233     }
11234   }
11235 
11236   if (TM.getOptLevel() != CodeGenOpt::None) {
11237     // Here, we order cases by probability so the most likely case will be
11238     // checked first. However, two clusters can have the same probability in
11239     // which case their relative ordering is non-deterministic. So we use Low
11240     // as a tie-breaker as clusters are guaranteed to never overlap.
11241     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11242                [](const CaseCluster &a, const CaseCluster &b) {
11243       return a.Prob != b.Prob ?
11244              a.Prob > b.Prob :
11245              a.Low->getValue().slt(b.Low->getValue());
11246     });
11247 
11248     // Rearrange the case blocks so that the last one falls through if possible
11249     // without changing the order of probabilities.
11250     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11251       --I;
11252       if (I->Prob > W.LastCluster->Prob)
11253         break;
11254       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11255         std::swap(*I, *W.LastCluster);
11256         break;
11257       }
11258     }
11259   }
11260 
11261   // Compute total probability.
11262   BranchProbability DefaultProb = W.DefaultProb;
11263   BranchProbability UnhandledProbs = DefaultProb;
11264   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11265     UnhandledProbs += I->Prob;
11266 
11267   MachineBasicBlock *CurMBB = W.MBB;
11268   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11269     bool FallthroughUnreachable = false;
11270     MachineBasicBlock *Fallthrough;
11271     if (I == W.LastCluster) {
11272       // For the last cluster, fall through to the default destination.
11273       Fallthrough = DefaultMBB;
11274       FallthroughUnreachable = isa<UnreachableInst>(
11275           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11276     } else {
11277       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11278       CurMF->insert(BBI, Fallthrough);
11279       // Put Cond in a virtual register to make it available from the new blocks.
11280       ExportFromCurrentBlock(Cond);
11281     }
11282     UnhandledProbs -= I->Prob;
11283 
11284     switch (I->Kind) {
11285       case CC_JumpTable: {
11286         // FIXME: Optimize away range check based on pivot comparisons.
11287         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11288         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11289 
11290         // The jump block hasn't been inserted yet; insert it here.
11291         MachineBasicBlock *JumpMBB = JT->MBB;
11292         CurMF->insert(BBI, JumpMBB);
11293 
11294         auto JumpProb = I->Prob;
11295         auto FallthroughProb = UnhandledProbs;
11296 
11297         // If the default statement is a target of the jump table, we evenly
11298         // distribute the default probability to successors of CurMBB. Also
11299         // update the probability on the edge from JumpMBB to Fallthrough.
11300         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11301                                               SE = JumpMBB->succ_end();
11302              SI != SE; ++SI) {
11303           if (*SI == DefaultMBB) {
11304             JumpProb += DefaultProb / 2;
11305             FallthroughProb -= DefaultProb / 2;
11306             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11307             JumpMBB->normalizeSuccProbs();
11308             break;
11309           }
11310         }
11311 
11312         // If the default clause is unreachable, propagate that knowledge into
11313         // JTH->FallthroughUnreachable which will use it to suppress the range
11314         // check.
11315         //
11316         // However, don't do this if we're doing branch target enforcement,
11317         // because a table branch _without_ a range check can be a tempting JOP
11318         // gadget - out-of-bounds inputs that are impossible in correct
11319         // execution become possible again if an attacker can influence the
11320         // control flow. So if an attacker doesn't already have a BTI bypass
11321         // available, we don't want them to be able to get one out of this
11322         // table branch.
11323         if (FallthroughUnreachable) {
11324           Function &CurFunc = CurMF->getFunction();
11325           bool HasBranchTargetEnforcement = false;
11326           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11327             HasBranchTargetEnforcement =
11328                 CurFunc.getFnAttribute("branch-target-enforcement")
11329                     .getValueAsBool();
11330           } else {
11331             HasBranchTargetEnforcement =
11332                 CurMF->getMMI().getModule()->getModuleFlag(
11333                     "branch-target-enforcement");
11334           }
11335           if (!HasBranchTargetEnforcement)
11336             JTH->FallthroughUnreachable = true;
11337         }
11338 
11339         if (!JTH->FallthroughUnreachable)
11340           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11341         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11342         CurMBB->normalizeSuccProbs();
11343 
11344         // The jump table header will be inserted in our current block, do the
11345         // range check, and fall through to our fallthrough block.
11346         JTH->HeaderBB = CurMBB;
11347         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11348 
11349         // If we're in the right place, emit the jump table header right now.
11350         if (CurMBB == SwitchMBB) {
11351           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11352           JTH->Emitted = true;
11353         }
11354         break;
11355       }
11356       case CC_BitTests: {
11357         // FIXME: Optimize away range check based on pivot comparisons.
11358         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11359 
11360         // The bit test blocks haven't been inserted yet; insert them here.
11361         for (BitTestCase &BTC : BTB->Cases)
11362           CurMF->insert(BBI, BTC.ThisBB);
11363 
11364         // Fill in fields of the BitTestBlock.
11365         BTB->Parent = CurMBB;
11366         BTB->Default = Fallthrough;
11367 
11368         BTB->DefaultProb = UnhandledProbs;
11369         // If the cases in bit test don't form a contiguous range, we evenly
11370         // distribute the probability on the edge to Fallthrough to two
11371         // successors of CurMBB.
11372         if (!BTB->ContiguousRange) {
11373           BTB->Prob += DefaultProb / 2;
11374           BTB->DefaultProb -= DefaultProb / 2;
11375         }
11376 
11377         if (FallthroughUnreachable)
11378           BTB->FallthroughUnreachable = true;
11379 
11380         // If we're in the right place, emit the bit test header right now.
11381         if (CurMBB == SwitchMBB) {
11382           visitBitTestHeader(*BTB, SwitchMBB);
11383           BTB->Emitted = true;
11384         }
11385         break;
11386       }
11387       case CC_Range: {
11388         const Value *RHS, *LHS, *MHS;
11389         ISD::CondCode CC;
11390         if (I->Low == I->High) {
11391           // Check Cond == I->Low.
11392           CC = ISD::SETEQ;
11393           LHS = Cond;
11394           RHS=I->Low;
11395           MHS = nullptr;
11396         } else {
11397           // Check I->Low <= Cond <= I->High.
11398           CC = ISD::SETLE;
11399           LHS = I->Low;
11400           MHS = Cond;
11401           RHS = I->High;
11402         }
11403 
11404         // If Fallthrough is unreachable, fold away the comparison.
11405         if (FallthroughUnreachable)
11406           CC = ISD::SETTRUE;
11407 
11408         // The false probability is the sum of all unhandled cases.
11409         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11410                      getCurSDLoc(), I->Prob, UnhandledProbs);
11411 
11412         if (CurMBB == SwitchMBB)
11413           visitSwitchCase(CB, SwitchMBB);
11414         else
11415           SL->SwitchCases.push_back(CB);
11416 
11417         break;
11418       }
11419     }
11420     CurMBB = Fallthrough;
11421   }
11422 }
11423 
11424 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11425                                               CaseClusterIt First,
11426                                               CaseClusterIt Last) {
11427   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11428     if (X.Prob != CC.Prob)
11429       return X.Prob > CC.Prob;
11430 
11431     // Ties are broken by comparing the case value.
11432     return X.Low->getValue().slt(CC.Low->getValue());
11433   });
11434 }
11435 
11436 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11437                                         const SwitchWorkListItem &W,
11438                                         Value *Cond,
11439                                         MachineBasicBlock *SwitchMBB) {
11440   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11441          "Clusters not sorted?");
11442 
11443   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11444 
11445   // Balance the tree based on branch probabilities to create a near-optimal (in
11446   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11447   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11448   CaseClusterIt LastLeft = W.FirstCluster;
11449   CaseClusterIt FirstRight = W.LastCluster;
11450   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11451   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11452 
11453   // Move LastLeft and FirstRight towards each other from opposite directions to
11454   // find a partitioning of the clusters which balances the probability on both
11455   // sides. If LeftProb and RightProb are equal, alternate which side is
11456   // taken to ensure 0-probability nodes are distributed evenly.
11457   unsigned I = 0;
11458   while (LastLeft + 1 < FirstRight) {
11459     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11460       LeftProb += (++LastLeft)->Prob;
11461     else
11462       RightProb += (--FirstRight)->Prob;
11463     I++;
11464   }
11465 
11466   while (true) {
11467     // Our binary search tree differs from a typical BST in that ours can have up
11468     // to three values in each leaf. The pivot selection above doesn't take that
11469     // into account, which means the tree might require more nodes and be less
11470     // efficient. We compensate for this here.
11471 
11472     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11473     unsigned NumRight = W.LastCluster - FirstRight + 1;
11474 
11475     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11476       // If one side has less than 3 clusters, and the other has more than 3,
11477       // consider taking a cluster from the other side.
11478 
11479       if (NumLeft < NumRight) {
11480         // Consider moving the first cluster on the right to the left side.
11481         CaseCluster &CC = *FirstRight;
11482         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11483         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11484         if (LeftSideRank <= RightSideRank) {
11485           // Moving the cluster to the left does not demote it.
11486           ++LastLeft;
11487           ++FirstRight;
11488           continue;
11489         }
11490       } else {
11491         assert(NumRight < NumLeft);
11492         // Consider moving the last element on the left to the right side.
11493         CaseCluster &CC = *LastLeft;
11494         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11495         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11496         if (RightSideRank <= LeftSideRank) {
11497           // Moving the cluster to the right does not demot it.
11498           --LastLeft;
11499           --FirstRight;
11500           continue;
11501         }
11502       }
11503     }
11504     break;
11505   }
11506 
11507   assert(LastLeft + 1 == FirstRight);
11508   assert(LastLeft >= W.FirstCluster);
11509   assert(FirstRight <= W.LastCluster);
11510 
11511   // Use the first element on the right as pivot since we will make less-than
11512   // comparisons against it.
11513   CaseClusterIt PivotCluster = FirstRight;
11514   assert(PivotCluster > W.FirstCluster);
11515   assert(PivotCluster <= W.LastCluster);
11516 
11517   CaseClusterIt FirstLeft = W.FirstCluster;
11518   CaseClusterIt LastRight = W.LastCluster;
11519 
11520   const ConstantInt *Pivot = PivotCluster->Low;
11521 
11522   // New blocks will be inserted immediately after the current one.
11523   MachineFunction::iterator BBI(W.MBB);
11524   ++BBI;
11525 
11526   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11527   // we can branch to its destination directly if it's squeezed exactly in
11528   // between the known lower bound and Pivot - 1.
11529   MachineBasicBlock *LeftMBB;
11530   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11531       FirstLeft->Low == W.GE &&
11532       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11533     LeftMBB = FirstLeft->MBB;
11534   } else {
11535     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11536     FuncInfo.MF->insert(BBI, LeftMBB);
11537     WorkList.push_back(
11538         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11539     // Put Cond in a virtual register to make it available from the new blocks.
11540     ExportFromCurrentBlock(Cond);
11541   }
11542 
11543   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11544   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11545   // directly if RHS.High equals the current upper bound.
11546   MachineBasicBlock *RightMBB;
11547   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11548       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11549     RightMBB = FirstRight->MBB;
11550   } else {
11551     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11552     FuncInfo.MF->insert(BBI, RightMBB);
11553     WorkList.push_back(
11554         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11555     // Put Cond in a virtual register to make it available from the new blocks.
11556     ExportFromCurrentBlock(Cond);
11557   }
11558 
11559   // Create the CaseBlock record that will be used to lower the branch.
11560   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11561                getCurSDLoc(), LeftProb, RightProb);
11562 
11563   if (W.MBB == SwitchMBB)
11564     visitSwitchCase(CB, SwitchMBB);
11565   else
11566     SL->SwitchCases.push_back(CB);
11567 }
11568 
11569 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11570 // from the swith statement.
11571 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11572                                             BranchProbability PeeledCaseProb) {
11573   if (PeeledCaseProb == BranchProbability::getOne())
11574     return BranchProbability::getZero();
11575   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11576 
11577   uint32_t Numerator = CaseProb.getNumerator();
11578   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11579   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11580 }
11581 
11582 // Try to peel the top probability case if it exceeds the threshold.
11583 // Return current MachineBasicBlock for the switch statement if the peeling
11584 // does not occur.
11585 // If the peeling is performed, return the newly created MachineBasicBlock
11586 // for the peeled switch statement. Also update Clusters to remove the peeled
11587 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11588 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11589     const SwitchInst &SI, CaseClusterVector &Clusters,
11590     BranchProbability &PeeledCaseProb) {
11591   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11592   // Don't perform if there is only one cluster or optimizing for size.
11593   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11594       TM.getOptLevel() == CodeGenOpt::None ||
11595       SwitchMBB->getParent()->getFunction().hasMinSize())
11596     return SwitchMBB;
11597 
11598   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11599   unsigned PeeledCaseIndex = 0;
11600   bool SwitchPeeled = false;
11601   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11602     CaseCluster &CC = Clusters[Index];
11603     if (CC.Prob < TopCaseProb)
11604       continue;
11605     TopCaseProb = CC.Prob;
11606     PeeledCaseIndex = Index;
11607     SwitchPeeled = true;
11608   }
11609   if (!SwitchPeeled)
11610     return SwitchMBB;
11611 
11612   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11613                     << TopCaseProb << "\n");
11614 
11615   // Record the MBB for the peeled switch statement.
11616   MachineFunction::iterator BBI(SwitchMBB);
11617   ++BBI;
11618   MachineBasicBlock *PeeledSwitchMBB =
11619       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11620   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11621 
11622   ExportFromCurrentBlock(SI.getCondition());
11623   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11624   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11625                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11626   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11627 
11628   Clusters.erase(PeeledCaseIt);
11629   for (CaseCluster &CC : Clusters) {
11630     LLVM_DEBUG(
11631         dbgs() << "Scale the probablity for one cluster, before scaling: "
11632                << CC.Prob << "\n");
11633     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11634     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11635   }
11636   PeeledCaseProb = TopCaseProb;
11637   return PeeledSwitchMBB;
11638 }
11639 
11640 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11641   // Extract cases from the switch.
11642   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11643   CaseClusterVector Clusters;
11644   Clusters.reserve(SI.getNumCases());
11645   for (auto I : SI.cases()) {
11646     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11647     const ConstantInt *CaseVal = I.getCaseValue();
11648     BranchProbability Prob =
11649         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11650             : BranchProbability(1, SI.getNumCases() + 1);
11651     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11652   }
11653 
11654   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11655 
11656   // Cluster adjacent cases with the same destination. We do this at all
11657   // optimization levels because it's cheap to do and will make codegen faster
11658   // if there are many clusters.
11659   sortAndRangeify(Clusters);
11660 
11661   // The branch probablity of the peeled case.
11662   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11663   MachineBasicBlock *PeeledSwitchMBB =
11664       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11665 
11666   // If there is only the default destination, jump there directly.
11667   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11668   if (Clusters.empty()) {
11669     assert(PeeledSwitchMBB == SwitchMBB);
11670     SwitchMBB->addSuccessor(DefaultMBB);
11671     if (DefaultMBB != NextBlock(SwitchMBB)) {
11672       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11673                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11674     }
11675     return;
11676   }
11677 
11678   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11679   SL->findBitTestClusters(Clusters, &SI);
11680 
11681   LLVM_DEBUG({
11682     dbgs() << "Case clusters: ";
11683     for (const CaseCluster &C : Clusters) {
11684       if (C.Kind == CC_JumpTable)
11685         dbgs() << "JT:";
11686       if (C.Kind == CC_BitTests)
11687         dbgs() << "BT:";
11688 
11689       C.Low->getValue().print(dbgs(), true);
11690       if (C.Low != C.High) {
11691         dbgs() << '-';
11692         C.High->getValue().print(dbgs(), true);
11693       }
11694       dbgs() << ' ';
11695     }
11696     dbgs() << '\n';
11697   });
11698 
11699   assert(!Clusters.empty());
11700   SwitchWorkList WorkList;
11701   CaseClusterIt First = Clusters.begin();
11702   CaseClusterIt Last = Clusters.end() - 1;
11703   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11704   // Scale the branchprobability for DefaultMBB if the peel occurs and
11705   // DefaultMBB is not replaced.
11706   if (PeeledCaseProb != BranchProbability::getZero() &&
11707       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11708     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11709   WorkList.push_back(
11710       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11711 
11712   while (!WorkList.empty()) {
11713     SwitchWorkListItem W = WorkList.pop_back_val();
11714     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11715 
11716     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11717         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11718       // For optimized builds, lower large range as a balanced binary tree.
11719       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11720       continue;
11721     }
11722 
11723     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11724   }
11725 }
11726 
11727 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11728   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11729   auto DL = getCurSDLoc();
11730   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11731   setValue(&I, DAG.getStepVector(DL, ResultVT));
11732 }
11733 
11734 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11735   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11736   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11737 
11738   SDLoc DL = getCurSDLoc();
11739   SDValue V = getValue(I.getOperand(0));
11740   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11741 
11742   if (VT.isScalableVector()) {
11743     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11744     return;
11745   }
11746 
11747   // Use VECTOR_SHUFFLE for the fixed-length vector
11748   // to maintain existing behavior.
11749   SmallVector<int, 8> Mask;
11750   unsigned NumElts = VT.getVectorMinNumElements();
11751   for (unsigned i = 0; i != NumElts; ++i)
11752     Mask.push_back(NumElts - 1 - i);
11753 
11754   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11755 }
11756 
11757 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11758   auto DL = getCurSDLoc();
11759   SDValue InVec = getValue(I.getOperand(0));
11760   EVT OutVT =
11761       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11762 
11763   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11764 
11765   // ISD Node needs the input vectors split into two equal parts
11766   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11767                            DAG.getVectorIdxConstant(0, DL));
11768   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11769                            DAG.getVectorIdxConstant(OutNumElts, DL));
11770 
11771   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11772   // legalisation and combines.
11773   if (OutVT.isFixedLengthVector()) {
11774     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11775                                         createStrideMask(0, 2, OutNumElts));
11776     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11777                                        createStrideMask(1, 2, OutNumElts));
11778     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11779     setValue(&I, Res);
11780     return;
11781   }
11782 
11783   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11784                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11785   setValue(&I, Res);
11786 }
11787 
11788 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11789   auto DL = getCurSDLoc();
11790   EVT InVT = getValue(I.getOperand(0)).getValueType();
11791   SDValue InVec0 = getValue(I.getOperand(0));
11792   SDValue InVec1 = getValue(I.getOperand(1));
11793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11794   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11795 
11796   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11797   // legalisation and combines.
11798   if (OutVT.isFixedLengthVector()) {
11799     unsigned NumElts = InVT.getVectorMinNumElements();
11800     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11801     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11802                                       createInterleaveMask(NumElts, 2)));
11803     return;
11804   }
11805 
11806   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11807                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11808   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11809                     Res.getValue(1));
11810   setValue(&I, Res);
11811 }
11812 
11813 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11814   SmallVector<EVT, 4> ValueVTs;
11815   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11816                   ValueVTs);
11817   unsigned NumValues = ValueVTs.size();
11818   if (NumValues == 0) return;
11819 
11820   SmallVector<SDValue, 4> Values(NumValues);
11821   SDValue Op = getValue(I.getOperand(0));
11822 
11823   for (unsigned i = 0; i != NumValues; ++i)
11824     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11825                             SDValue(Op.getNode(), Op.getResNo() + i));
11826 
11827   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11828                            DAG.getVTList(ValueVTs), Values));
11829 }
11830 
11831 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11833   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11834 
11835   SDLoc DL = getCurSDLoc();
11836   SDValue V1 = getValue(I.getOperand(0));
11837   SDValue V2 = getValue(I.getOperand(1));
11838   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11839 
11840   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11841   if (VT.isScalableVector()) {
11842     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11843     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11844                              DAG.getConstant(Imm, DL, IdxVT)));
11845     return;
11846   }
11847 
11848   unsigned NumElts = VT.getVectorNumElements();
11849 
11850   uint64_t Idx = (NumElts + Imm) % NumElts;
11851 
11852   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11853   SmallVector<int, 8> Mask;
11854   for (unsigned i = 0; i < NumElts; ++i)
11855     Mask.push_back(Idx + i);
11856   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11857 }
11858 
11859 // Consider the following MIR after SelectionDAG, which produces output in
11860 // phyregs in the first case or virtregs in the second case.
11861 //
11862 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11863 // %5:gr32 = COPY $ebx
11864 // %6:gr32 = COPY $edx
11865 // %1:gr32 = COPY %6:gr32
11866 // %0:gr32 = COPY %5:gr32
11867 //
11868 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11869 // %1:gr32 = COPY %6:gr32
11870 // %0:gr32 = COPY %5:gr32
11871 //
11872 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11873 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11874 //
11875 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11876 // to a single virtreg (such as %0). The remaining outputs monotonically
11877 // increase in virtreg number from there. If a callbr has no outputs, then it
11878 // should not have a corresponding callbr landingpad; in fact, the callbr
11879 // landingpad would not even be able to refer to such a callbr.
11880 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11881   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11882   // There is definitely at least one copy.
11883   assert(MI->getOpcode() == TargetOpcode::COPY &&
11884          "start of copy chain MUST be COPY");
11885   Reg = MI->getOperand(1).getReg();
11886   MI = MRI.def_begin(Reg)->getParent();
11887   // There may be an optional second copy.
11888   if (MI->getOpcode() == TargetOpcode::COPY) {
11889     assert(Reg.isVirtual() && "expected COPY of virtual register");
11890     Reg = MI->getOperand(1).getReg();
11891     assert(Reg.isPhysical() && "expected COPY of physical register");
11892     MI = MRI.def_begin(Reg)->getParent();
11893   }
11894   // The start of the chain must be an INLINEASM_BR.
11895   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11896          "end of copy chain MUST be INLINEASM_BR");
11897   return Reg;
11898 }
11899 
11900 // We must do this walk rather than the simpler
11901 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11902 // otherwise we will end up with copies of virtregs only valid along direct
11903 // edges.
11904 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11905   SmallVector<EVT, 8> ResultVTs;
11906   SmallVector<SDValue, 8> ResultValues;
11907   const auto *CBR =
11908       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11909 
11910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11911   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11912   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11913 
11914   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11915   SDValue Chain = DAG.getRoot();
11916 
11917   // Re-parse the asm constraints string.
11918   TargetLowering::AsmOperandInfoVector TargetConstraints =
11919       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11920   for (auto &T : TargetConstraints) {
11921     SDISelAsmOperandInfo OpInfo(T);
11922     if (OpInfo.Type != InlineAsm::isOutput)
11923       continue;
11924 
11925     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11926     // individual constraint.
11927     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11928 
11929     switch (OpInfo.ConstraintType) {
11930     case TargetLowering::C_Register:
11931     case TargetLowering::C_RegisterClass: {
11932       // Fill in OpInfo.AssignedRegs.Regs.
11933       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11934 
11935       // getRegistersForValue may produce 1 to many registers based on whether
11936       // the OpInfo.ConstraintVT is legal on the target or not.
11937       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11938         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11939         if (Register::isPhysicalRegister(OriginalDef))
11940           FuncInfo.MBB->addLiveIn(OriginalDef);
11941         // Update the assigned registers to use the original defs.
11942         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11943       }
11944 
11945       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11946           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11947       ResultValues.push_back(V);
11948       ResultVTs.push_back(OpInfo.ConstraintVT);
11949       break;
11950     }
11951     case TargetLowering::C_Other: {
11952       SDValue Flag;
11953       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11954                                                   OpInfo, DAG);
11955       ++InitialDef;
11956       ResultValues.push_back(V);
11957       ResultVTs.push_back(OpInfo.ConstraintVT);
11958       break;
11959     }
11960     default:
11961       break;
11962     }
11963   }
11964   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11965                           DAG.getVTList(ResultVTs), ResultValues);
11966   setValue(&I, V);
11967 }
11968