1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.second) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 assert(UnwindDests.size() <= 1 && 1688 "There should be at most one unwind destination for wasm"); 1689 return; 1690 } 1691 1692 while (EHPadBB) { 1693 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1694 BasicBlock *NewEHPadBB = nullptr; 1695 if (isa<LandingPadInst>(Pad)) { 1696 // Stop on landingpads. They are not funclets. 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1698 break; 1699 } else if (isa<CleanupPadInst>(Pad)) { 1700 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1701 // personalities. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 UnwindDests.back().first->setIsEHFuncletEntry(); 1705 break; 1706 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1707 // Add the catchpad handlers to the possible destinations. 1708 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1709 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1710 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1711 if (IsMSVCCXX || IsCoreCLR) 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 if (!IsSEH) 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 } 1716 NewEHPadBB = CatchSwitch->getUnwindDest(); 1717 } else { 1718 continue; 1719 } 1720 1721 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1722 if (BPI && NewEHPadBB) 1723 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1724 EHPadBB = NewEHPadBB; 1725 } 1726 } 1727 1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1729 // Update successor info. 1730 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1731 auto UnwindDest = I.getUnwindDest(); 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 BranchProbability UnwindDestProb = 1734 (BPI && UnwindDest) 1735 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1736 : BranchProbability::getZero(); 1737 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1738 for (auto &UnwindDest : UnwindDests) { 1739 UnwindDest.first->setIsEHPad(); 1740 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1741 } 1742 FuncInfo.MBB->normalizeSuccProbs(); 1743 1744 // Create the terminator node. 1745 SDValue Ret = 1746 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1751 report_fatal_error("visitCatchSwitch not yet implemented!"); 1752 } 1753 1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1756 auto &DL = DAG.getDataLayout(); 1757 SDValue Chain = getControlRoot(); 1758 SmallVector<ISD::OutputArg, 8> Outs; 1759 SmallVector<SDValue, 8> OutVals; 1760 1761 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1762 // lower 1763 // 1764 // %val = call <ty> @llvm.experimental.deoptimize() 1765 // ret <ty> %val 1766 // 1767 // differently. 1768 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1769 LowerDeoptimizingReturn(); 1770 return; 1771 } 1772 1773 if (!FuncInfo.CanLowerReturn) { 1774 unsigned DemoteReg = FuncInfo.DemoteRegister; 1775 const Function *F = I.getParent()->getParent(); 1776 1777 // Emit a store of the return value through the virtual register. 1778 // Leave Outs empty so that LowerReturn won't try to load return 1779 // registers the usual way. 1780 SmallVector<EVT, 1> PtrValueVTs; 1781 ComputeValueVTs(TLI, DL, 1782 F->getReturnType()->getPointerTo( 1783 DAG.getDataLayout().getAllocaAddrSpace()), 1784 PtrValueVTs); 1785 1786 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1787 DemoteReg, PtrValueVTs[0]); 1788 SDValue RetOp = getValue(I.getOperand(0)); 1789 1790 SmallVector<EVT, 4> ValueVTs; 1791 SmallVector<uint64_t, 4> Offsets; 1792 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1793 unsigned NumValues = ValueVTs.size(); 1794 1795 SmallVector<SDValue, 4> Chains(NumValues); 1796 for (unsigned i = 0; i != NumValues; ++i) { 1797 // An aggregate return value cannot wrap around the address space, so 1798 // offsets to its parts don't wrap either. 1799 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1800 Chains[i] = DAG.getStore( 1801 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1802 // FIXME: better loc info would be nice. 1803 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1804 } 1805 1806 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1807 MVT::Other, Chains); 1808 } else if (I.getNumOperands() != 0) { 1809 SmallVector<EVT, 4> ValueVTs; 1810 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1811 unsigned NumValues = ValueVTs.size(); 1812 if (NumValues) { 1813 SDValue RetOp = getValue(I.getOperand(0)); 1814 1815 const Function *F = I.getParent()->getParent(); 1816 1817 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1818 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1819 Attribute::SExt)) 1820 ExtendKind = ISD::SIGN_EXTEND; 1821 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1822 Attribute::ZExt)) 1823 ExtendKind = ISD::ZERO_EXTEND; 1824 1825 LLVMContext &Context = F->getContext(); 1826 bool RetInReg = F->getAttributes().hasAttribute( 1827 AttributeList::ReturnIndex, Attribute::InReg); 1828 1829 for (unsigned j = 0; j != NumValues; ++j) { 1830 EVT VT = ValueVTs[j]; 1831 1832 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1833 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1834 1835 CallingConv::ID CC = F->getCallingConv(); 1836 1837 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1838 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1839 SmallVector<SDValue, 4> Parts(NumParts); 1840 getCopyToParts(DAG, getCurSDLoc(), 1841 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1842 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1843 1844 // 'inreg' on function refers to return value 1845 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1846 if (RetInReg) 1847 Flags.setInReg(); 1848 1849 if (I.getOperand(0)->getType()->isPointerTy()) { 1850 Flags.setPointer(); 1851 Flags.setPointerAddrSpace( 1852 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1853 } 1854 1855 // Propagate extension type if any 1856 if (ExtendKind == ISD::SIGN_EXTEND) 1857 Flags.setSExt(); 1858 else if (ExtendKind == ISD::ZERO_EXTEND) 1859 Flags.setZExt(); 1860 1861 for (unsigned i = 0; i < NumParts; ++i) { 1862 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1863 VT, /*isfixed=*/true, 0, 0)); 1864 OutVals.push_back(Parts[i]); 1865 } 1866 } 1867 } 1868 } 1869 1870 // Push in swifterror virtual register as the last element of Outs. This makes 1871 // sure swifterror virtual register will be returned in the swifterror 1872 // physical register. 1873 const Function *F = I.getParent()->getParent(); 1874 if (TLI.supportSwiftError() && 1875 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1876 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1877 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1878 Flags.setSwiftError(); 1879 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1880 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1881 true /*isfixed*/, 1 /*origidx*/, 1882 0 /*partOffs*/)); 1883 // Create SDNode for the swifterror virtual register. 1884 OutVals.push_back( 1885 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1886 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1887 EVT(TLI.getPointerTy(DL)))); 1888 } 1889 1890 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1891 CallingConv::ID CallConv = 1892 DAG.getMachineFunction().getFunction().getCallingConv(); 1893 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1894 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1895 1896 // Verify that the target's LowerReturn behaved as expected. 1897 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1898 "LowerReturn didn't return a valid chain!"); 1899 1900 // Update the DAG with the new chain value resulting from return lowering. 1901 DAG.setRoot(Chain); 1902 } 1903 1904 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1905 /// created for it, emit nodes to copy the value into the virtual 1906 /// registers. 1907 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1908 // Skip empty types 1909 if (V->getType()->isEmptyTy()) 1910 return; 1911 1912 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1913 if (VMI != FuncInfo.ValueMap.end()) { 1914 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1915 CopyValueToVirtualRegister(V, VMI->second); 1916 } 1917 } 1918 1919 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1920 /// the current basic block, add it to ValueMap now so that we'll get a 1921 /// CopyTo/FromReg. 1922 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1923 // No need to export constants. 1924 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1925 1926 // Already exported? 1927 if (FuncInfo.isExportedInst(V)) return; 1928 1929 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1930 CopyValueToVirtualRegister(V, Reg); 1931 } 1932 1933 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1934 const BasicBlock *FromBB) { 1935 // The operands of the setcc have to be in this block. We don't know 1936 // how to export them from some other block. 1937 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1938 // Can export from current BB. 1939 if (VI->getParent() == FromBB) 1940 return true; 1941 1942 // Is already exported, noop. 1943 return FuncInfo.isExportedInst(V); 1944 } 1945 1946 // If this is an argument, we can export it if the BB is the entry block or 1947 // if it is already exported. 1948 if (isa<Argument>(V)) { 1949 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1950 return true; 1951 1952 // Otherwise, can only export this if it is already exported. 1953 return FuncInfo.isExportedInst(V); 1954 } 1955 1956 // Otherwise, constants can always be exported. 1957 return true; 1958 } 1959 1960 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1961 BranchProbability 1962 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1963 const MachineBasicBlock *Dst) const { 1964 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1965 const BasicBlock *SrcBB = Src->getBasicBlock(); 1966 const BasicBlock *DstBB = Dst->getBasicBlock(); 1967 if (!BPI) { 1968 // If BPI is not available, set the default probability as 1 / N, where N is 1969 // the number of successors. 1970 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1971 return BranchProbability(1, SuccSize); 1972 } 1973 return BPI->getEdgeProbability(SrcBB, DstBB); 1974 } 1975 1976 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1977 MachineBasicBlock *Dst, 1978 BranchProbability Prob) { 1979 if (!FuncInfo.BPI) 1980 Src->addSuccessorWithoutProb(Dst); 1981 else { 1982 if (Prob.isUnknown()) 1983 Prob = getEdgeProbability(Src, Dst); 1984 Src->addSuccessor(Dst, Prob); 1985 } 1986 } 1987 1988 static bool InBlock(const Value *V, const BasicBlock *BB) { 1989 if (const Instruction *I = dyn_cast<Instruction>(V)) 1990 return I->getParent() == BB; 1991 return true; 1992 } 1993 1994 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1995 /// This function emits a branch and is used at the leaves of an OR or an 1996 /// AND operator tree. 1997 void 1998 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1999 MachineBasicBlock *TBB, 2000 MachineBasicBlock *FBB, 2001 MachineBasicBlock *CurBB, 2002 MachineBasicBlock *SwitchBB, 2003 BranchProbability TProb, 2004 BranchProbability FProb, 2005 bool InvertCond) { 2006 const BasicBlock *BB = CurBB->getBasicBlock(); 2007 2008 // If the leaf of the tree is a comparison, merge the condition into 2009 // the caseblock. 2010 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2011 // The operands of the cmp have to be in this block. We don't know 2012 // how to export them from some other block. If this is the first block 2013 // of the sequence, no exporting is needed. 2014 if (CurBB == SwitchBB || 2015 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2016 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2017 ISD::CondCode Condition; 2018 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2019 ICmpInst::Predicate Pred = 2020 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2021 Condition = getICmpCondCode(Pred); 2022 } else { 2023 const FCmpInst *FC = cast<FCmpInst>(Cond); 2024 FCmpInst::Predicate Pred = 2025 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2026 Condition = getFCmpCondCode(Pred); 2027 if (TM.Options.NoNaNsFPMath) 2028 Condition = getFCmpCodeWithoutNaN(Condition); 2029 } 2030 2031 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2032 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2033 SwitchCases.push_back(CB); 2034 return; 2035 } 2036 } 2037 2038 // Create a CaseBlock record representing this branch. 2039 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2040 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2041 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2042 SwitchCases.push_back(CB); 2043 } 2044 2045 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2046 MachineBasicBlock *TBB, 2047 MachineBasicBlock *FBB, 2048 MachineBasicBlock *CurBB, 2049 MachineBasicBlock *SwitchBB, 2050 Instruction::BinaryOps Opc, 2051 BranchProbability TProb, 2052 BranchProbability FProb, 2053 bool InvertCond) { 2054 // Skip over not part of the tree and remember to invert op and operands at 2055 // next level. 2056 Value *NotCond; 2057 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2058 InBlock(NotCond, CurBB->getBasicBlock())) { 2059 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2060 !InvertCond); 2061 return; 2062 } 2063 2064 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2065 // Compute the effective opcode for Cond, taking into account whether it needs 2066 // to be inverted, e.g. 2067 // and (not (or A, B)), C 2068 // gets lowered as 2069 // and (and (not A, not B), C) 2070 unsigned BOpc = 0; 2071 if (BOp) { 2072 BOpc = BOp->getOpcode(); 2073 if (InvertCond) { 2074 if (BOpc == Instruction::And) 2075 BOpc = Instruction::Or; 2076 else if (BOpc == Instruction::Or) 2077 BOpc = Instruction::And; 2078 } 2079 } 2080 2081 // If this node is not part of the or/and tree, emit it as a branch. 2082 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2083 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2084 BOp->getParent() != CurBB->getBasicBlock() || 2085 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2086 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2087 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2088 TProb, FProb, InvertCond); 2089 return; 2090 } 2091 2092 // Create TmpBB after CurBB. 2093 MachineFunction::iterator BBI(CurBB); 2094 MachineFunction &MF = DAG.getMachineFunction(); 2095 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2096 CurBB->getParent()->insert(++BBI, TmpBB); 2097 2098 if (Opc == Instruction::Or) { 2099 // Codegen X | Y as: 2100 // BB1: 2101 // jmp_if_X TBB 2102 // jmp TmpBB 2103 // TmpBB: 2104 // jmp_if_Y TBB 2105 // jmp FBB 2106 // 2107 2108 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2109 // The requirement is that 2110 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2111 // = TrueProb for original BB. 2112 // Assuming the original probabilities are A and B, one choice is to set 2113 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2114 // A/(1+B) and 2B/(1+B). This choice assumes that 2115 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2116 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2117 // TmpBB, but the math is more complicated. 2118 2119 auto NewTrueProb = TProb / 2; 2120 auto NewFalseProb = TProb / 2 + FProb; 2121 // Emit the LHS condition. 2122 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2123 NewTrueProb, NewFalseProb, InvertCond); 2124 2125 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2126 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2127 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2128 // Emit the RHS condition into TmpBB. 2129 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2130 Probs[0], Probs[1], InvertCond); 2131 } else { 2132 assert(Opc == Instruction::And && "Unknown merge op!"); 2133 // Codegen X & Y as: 2134 // BB1: 2135 // jmp_if_X TmpBB 2136 // jmp FBB 2137 // TmpBB: 2138 // jmp_if_Y TBB 2139 // jmp FBB 2140 // 2141 // This requires creation of TmpBB after CurBB. 2142 2143 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2144 // The requirement is that 2145 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2146 // = FalseProb for original BB. 2147 // Assuming the original probabilities are A and B, one choice is to set 2148 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2149 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2150 // TrueProb for BB1 * FalseProb for TmpBB. 2151 2152 auto NewTrueProb = TProb + FProb / 2; 2153 auto NewFalseProb = FProb / 2; 2154 // Emit the LHS condition. 2155 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2156 NewTrueProb, NewFalseProb, InvertCond); 2157 2158 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2159 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2160 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2161 // Emit the RHS condition into TmpBB. 2162 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2163 Probs[0], Probs[1], InvertCond); 2164 } 2165 } 2166 2167 /// If the set of cases should be emitted as a series of branches, return true. 2168 /// If we should emit this as a bunch of and/or'd together conditions, return 2169 /// false. 2170 bool 2171 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2172 if (Cases.size() != 2) return true; 2173 2174 // If this is two comparisons of the same values or'd or and'd together, they 2175 // will get folded into a single comparison, so don't emit two blocks. 2176 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2177 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2178 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2179 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2180 return false; 2181 } 2182 2183 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2184 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2185 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2186 Cases[0].CC == Cases[1].CC && 2187 isa<Constant>(Cases[0].CmpRHS) && 2188 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2189 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2190 return false; 2191 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2192 return false; 2193 } 2194 2195 return true; 2196 } 2197 2198 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2199 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2200 2201 // Update machine-CFG edges. 2202 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2203 2204 if (I.isUnconditional()) { 2205 // Update machine-CFG edges. 2206 BrMBB->addSuccessor(Succ0MBB); 2207 2208 // If this is not a fall-through branch or optimizations are switched off, 2209 // emit the branch. 2210 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2211 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2212 MVT::Other, getControlRoot(), 2213 DAG.getBasicBlock(Succ0MBB))); 2214 2215 return; 2216 } 2217 2218 // If this condition is one of the special cases we handle, do special stuff 2219 // now. 2220 const Value *CondVal = I.getCondition(); 2221 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2222 2223 // If this is a series of conditions that are or'd or and'd together, emit 2224 // this as a sequence of branches instead of setcc's with and/or operations. 2225 // As long as jumps are not expensive, this should improve performance. 2226 // For example, instead of something like: 2227 // cmp A, B 2228 // C = seteq 2229 // cmp D, E 2230 // F = setle 2231 // or C, F 2232 // jnz foo 2233 // Emit: 2234 // cmp A, B 2235 // je foo 2236 // cmp D, E 2237 // jle foo 2238 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2239 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2240 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2241 !I.getMetadata(LLVMContext::MD_unpredictable) && 2242 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2243 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2244 Opcode, 2245 getEdgeProbability(BrMBB, Succ0MBB), 2246 getEdgeProbability(BrMBB, Succ1MBB), 2247 /*InvertCond=*/false); 2248 // If the compares in later blocks need to use values not currently 2249 // exported from this block, export them now. This block should always 2250 // be the first entry. 2251 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2252 2253 // Allow some cases to be rejected. 2254 if (ShouldEmitAsBranches(SwitchCases)) { 2255 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2256 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2257 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2258 } 2259 2260 // Emit the branch for this block. 2261 visitSwitchCase(SwitchCases[0], BrMBB); 2262 SwitchCases.erase(SwitchCases.begin()); 2263 return; 2264 } 2265 2266 // Okay, we decided not to do this, remove any inserted MBB's and clear 2267 // SwitchCases. 2268 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2269 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2270 2271 SwitchCases.clear(); 2272 } 2273 } 2274 2275 // Create a CaseBlock record representing this branch. 2276 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2277 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2278 2279 // Use visitSwitchCase to actually insert the fast branch sequence for this 2280 // cond branch. 2281 visitSwitchCase(CB, BrMBB); 2282 } 2283 2284 /// visitSwitchCase - Emits the necessary code to represent a single node in 2285 /// the binary search tree resulting from lowering a switch instruction. 2286 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2287 MachineBasicBlock *SwitchBB) { 2288 SDValue Cond; 2289 SDValue CondLHS = getValue(CB.CmpLHS); 2290 SDLoc dl = CB.DL; 2291 2292 if (CB.CC == ISD::SETTRUE) { 2293 // Branch or fall through to TrueBB. 2294 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2295 SwitchBB->normalizeSuccProbs(); 2296 if (CB.TrueBB != NextBlock(SwitchBB)) { 2297 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2298 DAG.getBasicBlock(CB.TrueBB))); 2299 } 2300 return; 2301 } 2302 2303 // Build the setcc now. 2304 if (!CB.CmpMHS) { 2305 // Fold "(X == true)" to X and "(X == false)" to !X to 2306 // handle common cases produced by branch lowering. 2307 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2308 CB.CC == ISD::SETEQ) 2309 Cond = CondLHS; 2310 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2311 CB.CC == ISD::SETEQ) { 2312 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2313 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2314 } else 2315 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2316 } else { 2317 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2318 2319 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2320 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2321 2322 SDValue CmpOp = getValue(CB.CmpMHS); 2323 EVT VT = CmpOp.getValueType(); 2324 2325 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2326 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2327 ISD::SETLE); 2328 } else { 2329 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2330 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2331 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2332 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2333 } 2334 } 2335 2336 // Update successor info 2337 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2338 // TrueBB and FalseBB are always different unless the incoming IR is 2339 // degenerate. This only happens when running llc on weird IR. 2340 if (CB.TrueBB != CB.FalseBB) 2341 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2342 SwitchBB->normalizeSuccProbs(); 2343 2344 // If the lhs block is the next block, invert the condition so that we can 2345 // fall through to the lhs instead of the rhs block. 2346 if (CB.TrueBB == NextBlock(SwitchBB)) { 2347 std::swap(CB.TrueBB, CB.FalseBB); 2348 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2349 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2350 } 2351 2352 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2353 MVT::Other, getControlRoot(), Cond, 2354 DAG.getBasicBlock(CB.TrueBB)); 2355 2356 // Insert the false branch. Do this even if it's a fall through branch, 2357 // this makes it easier to do DAG optimizations which require inverting 2358 // the branch condition. 2359 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2360 DAG.getBasicBlock(CB.FalseBB)); 2361 2362 DAG.setRoot(BrCond); 2363 } 2364 2365 /// visitJumpTable - Emit JumpTable node in the current MBB 2366 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2367 // Emit the code for the jump table 2368 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2369 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2370 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2371 JT.Reg, PTy); 2372 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2373 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2374 MVT::Other, Index.getValue(1), 2375 Table, Index); 2376 DAG.setRoot(BrJumpTable); 2377 } 2378 2379 /// visitJumpTableHeader - This function emits necessary code to produce index 2380 /// in the JumpTable from switch case. 2381 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2382 JumpTableHeader &JTH, 2383 MachineBasicBlock *SwitchBB) { 2384 SDLoc dl = getCurSDLoc(); 2385 2386 // Subtract the lowest switch case value from the value being switched on. 2387 SDValue SwitchOp = getValue(JTH.SValue); 2388 EVT VT = SwitchOp.getValueType(); 2389 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2390 DAG.getConstant(JTH.First, dl, VT)); 2391 2392 // The SDNode we just created, which holds the value being switched on minus 2393 // the smallest case value, needs to be copied to a virtual register so it 2394 // can be used as an index into the jump table in a subsequent basic block. 2395 // This value may be smaller or larger than the target's pointer type, and 2396 // therefore require extension or truncating. 2397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2398 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2399 2400 unsigned JumpTableReg = 2401 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2402 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2403 JumpTableReg, SwitchOp); 2404 JT.Reg = JumpTableReg; 2405 2406 if (!JTH.OmitRangeCheck) { 2407 // Emit the range check for the jump table, and branch to the default block 2408 // for the switch statement if the value being switched on exceeds the 2409 // largest case in the switch. 2410 SDValue CMP = DAG.getSetCC( 2411 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2412 Sub.getValueType()), 2413 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2414 2415 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2416 MVT::Other, CopyTo, CMP, 2417 DAG.getBasicBlock(JT.Default)); 2418 2419 // Avoid emitting unnecessary branches to the next block. 2420 if (JT.MBB != NextBlock(SwitchBB)) 2421 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2422 DAG.getBasicBlock(JT.MBB)); 2423 2424 DAG.setRoot(BrCond); 2425 } else { 2426 // Avoid emitting unnecessary branches to the next block. 2427 if (JT.MBB != NextBlock(SwitchBB)) 2428 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2429 DAG.getBasicBlock(JT.MBB))); 2430 else 2431 DAG.setRoot(CopyTo); 2432 } 2433 } 2434 2435 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2436 /// variable if there exists one. 2437 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2438 SDValue &Chain) { 2439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2440 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2441 MachineFunction &MF = DAG.getMachineFunction(); 2442 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2443 MachineSDNode *Node = 2444 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2445 if (Global) { 2446 MachinePointerInfo MPInfo(Global); 2447 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2448 MachineMemOperand::MODereferenceable; 2449 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2450 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2451 DAG.setNodeMemRefs(Node, {MemRef}); 2452 } 2453 return SDValue(Node, 0); 2454 } 2455 2456 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2457 /// tail spliced into a stack protector check success bb. 2458 /// 2459 /// For a high level explanation of how this fits into the stack protector 2460 /// generation see the comment on the declaration of class 2461 /// StackProtectorDescriptor. 2462 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2463 MachineBasicBlock *ParentBB) { 2464 2465 // First create the loads to the guard/stack slot for the comparison. 2466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2467 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2468 2469 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2470 int FI = MFI.getStackProtectorIndex(); 2471 2472 SDValue Guard; 2473 SDLoc dl = getCurSDLoc(); 2474 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2475 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2476 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2477 2478 // Generate code to load the content of the guard slot. 2479 SDValue GuardVal = DAG.getLoad( 2480 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2481 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2482 MachineMemOperand::MOVolatile); 2483 2484 if (TLI.useStackGuardXorFP()) 2485 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2486 2487 // Retrieve guard check function, nullptr if instrumentation is inlined. 2488 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2489 // The target provides a guard check function to validate the guard value. 2490 // Generate a call to that function with the content of the guard slot as 2491 // argument. 2492 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2493 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2494 2495 TargetLowering::ArgListTy Args; 2496 TargetLowering::ArgListEntry Entry; 2497 Entry.Node = GuardVal; 2498 Entry.Ty = FnTy->getParamType(0); 2499 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2500 Entry.IsInReg = true; 2501 Args.push_back(Entry); 2502 2503 TargetLowering::CallLoweringInfo CLI(DAG); 2504 CLI.setDebugLoc(getCurSDLoc()) 2505 .setChain(DAG.getEntryNode()) 2506 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2507 getValue(GuardCheckFn), std::move(Args)); 2508 2509 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2510 DAG.setRoot(Result.second); 2511 return; 2512 } 2513 2514 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2515 // Otherwise, emit a volatile load to retrieve the stack guard value. 2516 SDValue Chain = DAG.getEntryNode(); 2517 if (TLI.useLoadStackGuardNode()) { 2518 Guard = getLoadStackGuard(DAG, dl, Chain); 2519 } else { 2520 const Value *IRGuard = TLI.getSDagStackGuard(M); 2521 SDValue GuardPtr = getValue(IRGuard); 2522 2523 Guard = 2524 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2525 Align, MachineMemOperand::MOVolatile); 2526 } 2527 2528 // Perform the comparison via a subtract/getsetcc. 2529 EVT VT = Guard.getValueType(); 2530 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2531 2532 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2533 *DAG.getContext(), 2534 Sub.getValueType()), 2535 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2536 2537 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2538 // branch to failure MBB. 2539 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2540 MVT::Other, GuardVal.getOperand(0), 2541 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2542 // Otherwise branch to success MBB. 2543 SDValue Br = DAG.getNode(ISD::BR, dl, 2544 MVT::Other, BrCond, 2545 DAG.getBasicBlock(SPD.getSuccessMBB())); 2546 2547 DAG.setRoot(Br); 2548 } 2549 2550 /// Codegen the failure basic block for a stack protector check. 2551 /// 2552 /// A failure stack protector machine basic block consists simply of a call to 2553 /// __stack_chk_fail(). 2554 /// 2555 /// For a high level explanation of how this fits into the stack protector 2556 /// generation see the comment on the declaration of class 2557 /// StackProtectorDescriptor. 2558 void 2559 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2561 SDValue Chain = 2562 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2563 None, false, getCurSDLoc(), false, false).second; 2564 // On PS4, the "return address" must still be within the calling function, 2565 // even if it's at the very end, so emit an explicit TRAP here. 2566 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2567 if (TM.getTargetTriple().isPS4CPU()) 2568 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2569 2570 DAG.setRoot(Chain); 2571 } 2572 2573 /// visitBitTestHeader - This function emits necessary code to produce value 2574 /// suitable for "bit tests" 2575 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2576 MachineBasicBlock *SwitchBB) { 2577 SDLoc dl = getCurSDLoc(); 2578 2579 // Subtract the minimum value 2580 SDValue SwitchOp = getValue(B.SValue); 2581 EVT VT = SwitchOp.getValueType(); 2582 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2583 DAG.getConstant(B.First, dl, VT)); 2584 2585 // Check range 2586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2587 SDValue RangeCmp = DAG.getSetCC( 2588 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2589 Sub.getValueType()), 2590 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2591 2592 // Determine the type of the test operands. 2593 bool UsePtrType = false; 2594 if (!TLI.isTypeLegal(VT)) 2595 UsePtrType = true; 2596 else { 2597 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2598 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2599 // Switch table case range are encoded into series of masks. 2600 // Just use pointer type, it's guaranteed to fit. 2601 UsePtrType = true; 2602 break; 2603 } 2604 } 2605 if (UsePtrType) { 2606 VT = TLI.getPointerTy(DAG.getDataLayout()); 2607 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2608 } 2609 2610 B.RegVT = VT.getSimpleVT(); 2611 B.Reg = FuncInfo.CreateReg(B.RegVT); 2612 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2613 2614 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2615 2616 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2617 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2618 SwitchBB->normalizeSuccProbs(); 2619 2620 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2621 MVT::Other, CopyTo, RangeCmp, 2622 DAG.getBasicBlock(B.Default)); 2623 2624 // Avoid emitting unnecessary branches to the next block. 2625 if (MBB != NextBlock(SwitchBB)) 2626 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2627 DAG.getBasicBlock(MBB)); 2628 2629 DAG.setRoot(BrRange); 2630 } 2631 2632 /// visitBitTestCase - this function produces one "bit test" 2633 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2634 MachineBasicBlock* NextMBB, 2635 BranchProbability BranchProbToNext, 2636 unsigned Reg, 2637 BitTestCase &B, 2638 MachineBasicBlock *SwitchBB) { 2639 SDLoc dl = getCurSDLoc(); 2640 MVT VT = BB.RegVT; 2641 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2642 SDValue Cmp; 2643 unsigned PopCount = countPopulation(B.Mask); 2644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2645 if (PopCount == 1) { 2646 // Testing for a single bit; just compare the shift count with what it 2647 // would need to be to shift a 1 bit in that position. 2648 Cmp = DAG.getSetCC( 2649 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2650 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2651 ISD::SETEQ); 2652 } else if (PopCount == BB.Range) { 2653 // There is only one zero bit in the range, test for it directly. 2654 Cmp = DAG.getSetCC( 2655 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2656 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2657 ISD::SETNE); 2658 } else { 2659 // Make desired shift 2660 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2661 DAG.getConstant(1, dl, VT), ShiftOp); 2662 2663 // Emit bit tests and jumps 2664 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2665 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2666 Cmp = DAG.getSetCC( 2667 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2668 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2669 } 2670 2671 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2672 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2673 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2674 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2675 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2676 // one as they are relative probabilities (and thus work more like weights), 2677 // and hence we need to normalize them to let the sum of them become one. 2678 SwitchBB->normalizeSuccProbs(); 2679 2680 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2681 MVT::Other, getControlRoot(), 2682 Cmp, DAG.getBasicBlock(B.TargetBB)); 2683 2684 // Avoid emitting unnecessary branches to the next block. 2685 if (NextMBB != NextBlock(SwitchBB)) 2686 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2687 DAG.getBasicBlock(NextMBB)); 2688 2689 DAG.setRoot(BrAnd); 2690 } 2691 2692 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2693 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2694 2695 // Retrieve successors. Look through artificial IR level blocks like 2696 // catchswitch for successors. 2697 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2698 const BasicBlock *EHPadBB = I.getSuccessor(1); 2699 2700 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2701 // have to do anything here to lower funclet bundles. 2702 assert(!I.hasOperandBundlesOtherThan( 2703 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2704 "Cannot lower invokes with arbitrary operand bundles yet!"); 2705 2706 const Value *Callee(I.getCalledValue()); 2707 const Function *Fn = dyn_cast<Function>(Callee); 2708 if (isa<InlineAsm>(Callee)) 2709 visitInlineAsm(&I); 2710 else if (Fn && Fn->isIntrinsic()) { 2711 switch (Fn->getIntrinsicID()) { 2712 default: 2713 llvm_unreachable("Cannot invoke this intrinsic"); 2714 case Intrinsic::donothing: 2715 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2716 break; 2717 case Intrinsic::experimental_patchpoint_void: 2718 case Intrinsic::experimental_patchpoint_i64: 2719 visitPatchpoint(&I, EHPadBB); 2720 break; 2721 case Intrinsic::experimental_gc_statepoint: 2722 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2723 break; 2724 case Intrinsic::wasm_rethrow_in_catch: { 2725 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2726 // special because it can be invoked, so we manually lower it to a DAG 2727 // node here. 2728 SmallVector<SDValue, 8> Ops; 2729 Ops.push_back(getRoot()); // inchain 2730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2731 Ops.push_back( 2732 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2733 TLI.getPointerTy(DAG.getDataLayout()))); 2734 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2735 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2736 break; 2737 } 2738 } 2739 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2740 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2741 // Eventually we will support lowering the @llvm.experimental.deoptimize 2742 // intrinsic, and right now there are no plans to support other intrinsics 2743 // with deopt state. 2744 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2745 } else { 2746 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2747 } 2748 2749 // If the value of the invoke is used outside of its defining block, make it 2750 // available as a virtual register. 2751 // We already took care of the exported value for the statepoint instruction 2752 // during call to the LowerStatepoint. 2753 if (!isStatepoint(I)) { 2754 CopyToExportRegsIfNeeded(&I); 2755 } 2756 2757 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2758 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2759 BranchProbability EHPadBBProb = 2760 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2761 : BranchProbability::getZero(); 2762 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2763 2764 // Update successor info. 2765 addSuccessorWithProb(InvokeMBB, Return); 2766 for (auto &UnwindDest : UnwindDests) { 2767 UnwindDest.first->setIsEHPad(); 2768 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2769 } 2770 InvokeMBB->normalizeSuccProbs(); 2771 2772 // Drop into normal successor. 2773 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2774 DAG.getBasicBlock(Return))); 2775 } 2776 2777 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2778 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2779 2780 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2781 // have to do anything here to lower funclet bundles. 2782 assert(!I.hasOperandBundlesOtherThan( 2783 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2784 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2785 2786 assert(isa<InlineAsm>(I.getCalledValue()) && 2787 "Only know how to handle inlineasm callbr"); 2788 visitInlineAsm(&I); 2789 2790 // Retrieve successors. 2791 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2792 2793 // Update successor info. 2794 addSuccessorWithProb(CallBrMBB, Return); 2795 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2796 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2797 addSuccessorWithProb(CallBrMBB, Target); 2798 } 2799 CallBrMBB->normalizeSuccProbs(); 2800 2801 // Drop into default successor. 2802 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2803 MVT::Other, getControlRoot(), 2804 DAG.getBasicBlock(Return))); 2805 } 2806 2807 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2808 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2809 } 2810 2811 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2812 assert(FuncInfo.MBB->isEHPad() && 2813 "Call to landingpad not in landing pad!"); 2814 2815 // If there aren't registers to copy the values into (e.g., during SjLj 2816 // exceptions), then don't bother to create these DAG nodes. 2817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2818 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2819 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2820 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2821 return; 2822 2823 // If landingpad's return type is token type, we don't create DAG nodes 2824 // for its exception pointer and selector value. The extraction of exception 2825 // pointer or selector value from token type landingpads is not currently 2826 // supported. 2827 if (LP.getType()->isTokenTy()) 2828 return; 2829 2830 SmallVector<EVT, 2> ValueVTs; 2831 SDLoc dl = getCurSDLoc(); 2832 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2833 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2834 2835 // Get the two live-in registers as SDValues. The physregs have already been 2836 // copied into virtual registers. 2837 SDValue Ops[2]; 2838 if (FuncInfo.ExceptionPointerVirtReg) { 2839 Ops[0] = DAG.getZExtOrTrunc( 2840 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2841 FuncInfo.ExceptionPointerVirtReg, 2842 TLI.getPointerTy(DAG.getDataLayout())), 2843 dl, ValueVTs[0]); 2844 } else { 2845 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2846 } 2847 Ops[1] = DAG.getZExtOrTrunc( 2848 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2849 FuncInfo.ExceptionSelectorVirtReg, 2850 TLI.getPointerTy(DAG.getDataLayout())), 2851 dl, ValueVTs[1]); 2852 2853 // Merge into one. 2854 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2855 DAG.getVTList(ValueVTs), Ops); 2856 setValue(&LP, Res); 2857 } 2858 2859 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2860 #ifndef NDEBUG 2861 for (const CaseCluster &CC : Clusters) 2862 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2863 #endif 2864 2865 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2866 return a.Low->getValue().slt(b.Low->getValue()); 2867 }); 2868 2869 // Merge adjacent clusters with the same destination. 2870 const unsigned N = Clusters.size(); 2871 unsigned DstIndex = 0; 2872 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2873 CaseCluster &CC = Clusters[SrcIndex]; 2874 const ConstantInt *CaseVal = CC.Low; 2875 MachineBasicBlock *Succ = CC.MBB; 2876 2877 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2878 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2879 // If this case has the same successor and is a neighbour, merge it into 2880 // the previous cluster. 2881 Clusters[DstIndex - 1].High = CaseVal; 2882 Clusters[DstIndex - 1].Prob += CC.Prob; 2883 } else { 2884 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2885 sizeof(Clusters[SrcIndex])); 2886 } 2887 } 2888 Clusters.resize(DstIndex); 2889 } 2890 2891 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2892 MachineBasicBlock *Last) { 2893 // Update JTCases. 2894 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2895 if (JTCases[i].first.HeaderBB == First) 2896 JTCases[i].first.HeaderBB = Last; 2897 2898 // Update BitTestCases. 2899 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2900 if (BitTestCases[i].Parent == First) 2901 BitTestCases[i].Parent = Last; 2902 } 2903 2904 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2905 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2906 2907 // Update machine-CFG edges with unique successors. 2908 SmallSet<BasicBlock*, 32> Done; 2909 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2910 BasicBlock *BB = I.getSuccessor(i); 2911 bool Inserted = Done.insert(BB).second; 2912 if (!Inserted) 2913 continue; 2914 2915 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2916 addSuccessorWithProb(IndirectBrMBB, Succ); 2917 } 2918 IndirectBrMBB->normalizeSuccProbs(); 2919 2920 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2921 MVT::Other, getControlRoot(), 2922 getValue(I.getAddress()))); 2923 } 2924 2925 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2926 if (!DAG.getTarget().Options.TrapUnreachable) 2927 return; 2928 2929 // We may be able to ignore unreachable behind a noreturn call. 2930 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2931 const BasicBlock &BB = *I.getParent(); 2932 if (&I != &BB.front()) { 2933 BasicBlock::const_iterator PredI = 2934 std::prev(BasicBlock::const_iterator(&I)); 2935 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2936 if (Call->doesNotReturn()) 2937 return; 2938 } 2939 } 2940 } 2941 2942 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2943 } 2944 2945 void SelectionDAGBuilder::visitFSub(const User &I) { 2946 // -0.0 - X --> fneg 2947 Type *Ty = I.getType(); 2948 if (isa<Constant>(I.getOperand(0)) && 2949 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2950 SDValue Op2 = getValue(I.getOperand(1)); 2951 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2952 Op2.getValueType(), Op2)); 2953 return; 2954 } 2955 2956 visitBinary(I, ISD::FSUB); 2957 } 2958 2959 /// Checks if the given instruction performs a vector reduction, in which case 2960 /// we have the freedom to alter the elements in the result as long as the 2961 /// reduction of them stays unchanged. 2962 static bool isVectorReductionOp(const User *I) { 2963 const Instruction *Inst = dyn_cast<Instruction>(I); 2964 if (!Inst || !Inst->getType()->isVectorTy()) 2965 return false; 2966 2967 auto OpCode = Inst->getOpcode(); 2968 switch (OpCode) { 2969 case Instruction::Add: 2970 case Instruction::Mul: 2971 case Instruction::And: 2972 case Instruction::Or: 2973 case Instruction::Xor: 2974 break; 2975 case Instruction::FAdd: 2976 case Instruction::FMul: 2977 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2978 if (FPOp->getFastMathFlags().isFast()) 2979 break; 2980 LLVM_FALLTHROUGH; 2981 default: 2982 return false; 2983 } 2984 2985 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2986 // Ensure the reduction size is a power of 2. 2987 if (!isPowerOf2_32(ElemNum)) 2988 return false; 2989 2990 unsigned ElemNumToReduce = ElemNum; 2991 2992 // Do DFS search on the def-use chain from the given instruction. We only 2993 // allow four kinds of operations during the search until we reach the 2994 // instruction that extracts the first element from the vector: 2995 // 2996 // 1. The reduction operation of the same opcode as the given instruction. 2997 // 2998 // 2. PHI node. 2999 // 3000 // 3. ShuffleVector instruction together with a reduction operation that 3001 // does a partial reduction. 3002 // 3003 // 4. ExtractElement that extracts the first element from the vector, and we 3004 // stop searching the def-use chain here. 3005 // 3006 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3007 // from 1-3 to the stack to continue the DFS. The given instruction is not 3008 // a reduction operation if we meet any other instructions other than those 3009 // listed above. 3010 3011 SmallVector<const User *, 16> UsersToVisit{Inst}; 3012 SmallPtrSet<const User *, 16> Visited; 3013 bool ReduxExtracted = false; 3014 3015 while (!UsersToVisit.empty()) { 3016 auto User = UsersToVisit.back(); 3017 UsersToVisit.pop_back(); 3018 if (!Visited.insert(User).second) 3019 continue; 3020 3021 for (const auto &U : User->users()) { 3022 auto Inst = dyn_cast<Instruction>(U); 3023 if (!Inst) 3024 return false; 3025 3026 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3027 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3028 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3029 return false; 3030 UsersToVisit.push_back(U); 3031 } else if (const ShuffleVectorInst *ShufInst = 3032 dyn_cast<ShuffleVectorInst>(U)) { 3033 // Detect the following pattern: A ShuffleVector instruction together 3034 // with a reduction that do partial reduction on the first and second 3035 // ElemNumToReduce / 2 elements, and store the result in 3036 // ElemNumToReduce / 2 elements in another vector. 3037 3038 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3039 if (ResultElements < ElemNum) 3040 return false; 3041 3042 if (ElemNumToReduce == 1) 3043 return false; 3044 if (!isa<UndefValue>(U->getOperand(1))) 3045 return false; 3046 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3047 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3048 return false; 3049 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3050 if (ShufInst->getMaskValue(i) != -1) 3051 return false; 3052 3053 // There is only one user of this ShuffleVector instruction, which 3054 // must be a reduction operation. 3055 if (!U->hasOneUse()) 3056 return false; 3057 3058 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3059 if (!U2 || U2->getOpcode() != OpCode) 3060 return false; 3061 3062 // Check operands of the reduction operation. 3063 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3064 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3065 UsersToVisit.push_back(U2); 3066 ElemNumToReduce /= 2; 3067 } else 3068 return false; 3069 } else if (isa<ExtractElementInst>(U)) { 3070 // At this moment we should have reduced all elements in the vector. 3071 if (ElemNumToReduce != 1) 3072 return false; 3073 3074 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3075 if (!Val || !Val->isZero()) 3076 return false; 3077 3078 ReduxExtracted = true; 3079 } else 3080 return false; 3081 } 3082 } 3083 return ReduxExtracted; 3084 } 3085 3086 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3087 SDNodeFlags Flags; 3088 3089 SDValue Op = getValue(I.getOperand(0)); 3090 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3091 Op, Flags); 3092 setValue(&I, UnNodeValue); 3093 } 3094 3095 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3096 SDNodeFlags Flags; 3097 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3098 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3099 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3100 } 3101 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3102 Flags.setExact(ExactOp->isExact()); 3103 } 3104 if (isVectorReductionOp(&I)) { 3105 Flags.setVectorReduction(true); 3106 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3107 } 3108 3109 SDValue Op1 = getValue(I.getOperand(0)); 3110 SDValue Op2 = getValue(I.getOperand(1)); 3111 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3112 Op1, Op2, Flags); 3113 setValue(&I, BinNodeValue); 3114 } 3115 3116 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3117 SDValue Op1 = getValue(I.getOperand(0)); 3118 SDValue Op2 = getValue(I.getOperand(1)); 3119 3120 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3121 Op1.getValueType(), DAG.getDataLayout()); 3122 3123 // Coerce the shift amount to the right type if we can. 3124 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3125 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3126 unsigned Op2Size = Op2.getValueSizeInBits(); 3127 SDLoc DL = getCurSDLoc(); 3128 3129 // If the operand is smaller than the shift count type, promote it. 3130 if (ShiftSize > Op2Size) 3131 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3132 3133 // If the operand is larger than the shift count type but the shift 3134 // count type has enough bits to represent any shift value, truncate 3135 // it now. This is a common case and it exposes the truncate to 3136 // optimization early. 3137 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3138 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3139 // Otherwise we'll need to temporarily settle for some other convenient 3140 // type. Type legalization will make adjustments once the shiftee is split. 3141 else 3142 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3143 } 3144 3145 bool nuw = false; 3146 bool nsw = false; 3147 bool exact = false; 3148 3149 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3150 3151 if (const OverflowingBinaryOperator *OFBinOp = 3152 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3153 nuw = OFBinOp->hasNoUnsignedWrap(); 3154 nsw = OFBinOp->hasNoSignedWrap(); 3155 } 3156 if (const PossiblyExactOperator *ExactOp = 3157 dyn_cast<const PossiblyExactOperator>(&I)) 3158 exact = ExactOp->isExact(); 3159 } 3160 SDNodeFlags Flags; 3161 Flags.setExact(exact); 3162 Flags.setNoSignedWrap(nsw); 3163 Flags.setNoUnsignedWrap(nuw); 3164 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3165 Flags); 3166 setValue(&I, Res); 3167 } 3168 3169 void SelectionDAGBuilder::visitSDiv(const User &I) { 3170 SDValue Op1 = getValue(I.getOperand(0)); 3171 SDValue Op2 = getValue(I.getOperand(1)); 3172 3173 SDNodeFlags Flags; 3174 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3175 cast<PossiblyExactOperator>(&I)->isExact()); 3176 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3177 Op2, Flags)); 3178 } 3179 3180 void SelectionDAGBuilder::visitICmp(const User &I) { 3181 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3182 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3183 predicate = IC->getPredicate(); 3184 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3185 predicate = ICmpInst::Predicate(IC->getPredicate()); 3186 SDValue Op1 = getValue(I.getOperand(0)); 3187 SDValue Op2 = getValue(I.getOperand(1)); 3188 ISD::CondCode Opcode = getICmpCondCode(predicate); 3189 3190 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3191 I.getType()); 3192 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3193 } 3194 3195 void SelectionDAGBuilder::visitFCmp(const User &I) { 3196 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3197 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3198 predicate = FC->getPredicate(); 3199 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3200 predicate = FCmpInst::Predicate(FC->getPredicate()); 3201 SDValue Op1 = getValue(I.getOperand(0)); 3202 SDValue Op2 = getValue(I.getOperand(1)); 3203 3204 ISD::CondCode Condition = getFCmpCondCode(predicate); 3205 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3206 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3207 Condition = getFCmpCodeWithoutNaN(Condition); 3208 3209 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3210 I.getType()); 3211 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3212 } 3213 3214 // Check if the condition of the select has one use or two users that are both 3215 // selects with the same condition. 3216 static bool hasOnlySelectUsers(const Value *Cond) { 3217 return llvm::all_of(Cond->users(), [](const Value *V) { 3218 return isa<SelectInst>(V); 3219 }); 3220 } 3221 3222 void SelectionDAGBuilder::visitSelect(const User &I) { 3223 SmallVector<EVT, 4> ValueVTs; 3224 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3225 ValueVTs); 3226 unsigned NumValues = ValueVTs.size(); 3227 if (NumValues == 0) return; 3228 3229 SmallVector<SDValue, 4> Values(NumValues); 3230 SDValue Cond = getValue(I.getOperand(0)); 3231 SDValue LHSVal = getValue(I.getOperand(1)); 3232 SDValue RHSVal = getValue(I.getOperand(2)); 3233 auto BaseOps = {Cond}; 3234 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3235 ISD::VSELECT : ISD::SELECT; 3236 3237 bool IsUnaryAbs = false; 3238 3239 // Min/max matching is only viable if all output VTs are the same. 3240 if (is_splat(ValueVTs)) { 3241 EVT VT = ValueVTs[0]; 3242 LLVMContext &Ctx = *DAG.getContext(); 3243 auto &TLI = DAG.getTargetLoweringInfo(); 3244 3245 // We care about the legality of the operation after it has been type 3246 // legalized. 3247 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3248 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3249 VT = TLI.getTypeToTransformTo(Ctx, VT); 3250 3251 // If the vselect is legal, assume we want to leave this as a vector setcc + 3252 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3253 // min/max is legal on the scalar type. 3254 bool UseScalarMinMax = VT.isVector() && 3255 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3256 3257 Value *LHS, *RHS; 3258 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3259 ISD::NodeType Opc = ISD::DELETED_NODE; 3260 switch (SPR.Flavor) { 3261 case SPF_UMAX: Opc = ISD::UMAX; break; 3262 case SPF_UMIN: Opc = ISD::UMIN; break; 3263 case SPF_SMAX: Opc = ISD::SMAX; break; 3264 case SPF_SMIN: Opc = ISD::SMIN; break; 3265 case SPF_FMINNUM: 3266 switch (SPR.NaNBehavior) { 3267 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3268 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3269 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3270 case SPNB_RETURNS_ANY: { 3271 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3272 Opc = ISD::FMINNUM; 3273 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3274 Opc = ISD::FMINIMUM; 3275 else if (UseScalarMinMax) 3276 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3277 ISD::FMINNUM : ISD::FMINIMUM; 3278 break; 3279 } 3280 } 3281 break; 3282 case SPF_FMAXNUM: 3283 switch (SPR.NaNBehavior) { 3284 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3285 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3286 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3287 case SPNB_RETURNS_ANY: 3288 3289 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3290 Opc = ISD::FMAXNUM; 3291 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3292 Opc = ISD::FMAXIMUM; 3293 else if (UseScalarMinMax) 3294 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3295 ISD::FMAXNUM : ISD::FMAXIMUM; 3296 break; 3297 } 3298 break; 3299 case SPF_ABS: 3300 IsUnaryAbs = true; 3301 Opc = ISD::ABS; 3302 break; 3303 case SPF_NABS: 3304 // TODO: we need to produce sub(0, abs(X)). 3305 default: break; 3306 } 3307 3308 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3309 (TLI.isOperationLegalOrCustom(Opc, VT) || 3310 (UseScalarMinMax && 3311 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3312 // If the underlying comparison instruction is used by any other 3313 // instruction, the consumed instructions won't be destroyed, so it is 3314 // not profitable to convert to a min/max. 3315 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3316 OpCode = Opc; 3317 LHSVal = getValue(LHS); 3318 RHSVal = getValue(RHS); 3319 BaseOps = {}; 3320 } 3321 3322 if (IsUnaryAbs) { 3323 OpCode = Opc; 3324 LHSVal = getValue(LHS); 3325 BaseOps = {}; 3326 } 3327 } 3328 3329 if (IsUnaryAbs) { 3330 for (unsigned i = 0; i != NumValues; ++i) { 3331 Values[i] = 3332 DAG.getNode(OpCode, getCurSDLoc(), 3333 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3334 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3335 } 3336 } else { 3337 for (unsigned i = 0; i != NumValues; ++i) { 3338 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3339 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3340 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3341 Values[i] = DAG.getNode( 3342 OpCode, getCurSDLoc(), 3343 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3344 } 3345 } 3346 3347 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3348 DAG.getVTList(ValueVTs), Values)); 3349 } 3350 3351 void SelectionDAGBuilder::visitTrunc(const User &I) { 3352 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3353 SDValue N = getValue(I.getOperand(0)); 3354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3355 I.getType()); 3356 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3357 } 3358 3359 void SelectionDAGBuilder::visitZExt(const User &I) { 3360 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3361 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3362 SDValue N = getValue(I.getOperand(0)); 3363 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3364 I.getType()); 3365 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3366 } 3367 3368 void SelectionDAGBuilder::visitSExt(const User &I) { 3369 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3370 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3371 SDValue N = getValue(I.getOperand(0)); 3372 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3373 I.getType()); 3374 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3375 } 3376 3377 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3378 // FPTrunc is never a no-op cast, no need to check 3379 SDValue N = getValue(I.getOperand(0)); 3380 SDLoc dl = getCurSDLoc(); 3381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3382 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3383 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3384 DAG.getTargetConstant( 3385 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3386 } 3387 3388 void SelectionDAGBuilder::visitFPExt(const User &I) { 3389 // FPExt is never a no-op cast, no need to check 3390 SDValue N = getValue(I.getOperand(0)); 3391 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3392 I.getType()); 3393 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3394 } 3395 3396 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3397 // FPToUI is never a no-op cast, no need to check 3398 SDValue N = getValue(I.getOperand(0)); 3399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3400 I.getType()); 3401 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3402 } 3403 3404 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3405 // FPToSI is never a no-op cast, no need to check 3406 SDValue N = getValue(I.getOperand(0)); 3407 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3408 I.getType()); 3409 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3410 } 3411 3412 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3413 // UIToFP is never a no-op cast, no need to check 3414 SDValue N = getValue(I.getOperand(0)); 3415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3416 I.getType()); 3417 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3418 } 3419 3420 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3421 // SIToFP is never a no-op cast, no need to check 3422 SDValue N = getValue(I.getOperand(0)); 3423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3424 I.getType()); 3425 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3426 } 3427 3428 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3429 // What to do depends on the size of the integer and the size of the pointer. 3430 // We can either truncate, zero extend, or no-op, accordingly. 3431 SDValue N = getValue(I.getOperand(0)); 3432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3433 I.getType()); 3434 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3435 } 3436 3437 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3438 // What to do depends on the size of the integer and the size of the pointer. 3439 // We can either truncate, zero extend, or no-op, accordingly. 3440 SDValue N = getValue(I.getOperand(0)); 3441 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3442 I.getType()); 3443 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3444 } 3445 3446 void SelectionDAGBuilder::visitBitCast(const User &I) { 3447 SDValue N = getValue(I.getOperand(0)); 3448 SDLoc dl = getCurSDLoc(); 3449 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3450 I.getType()); 3451 3452 // BitCast assures us that source and destination are the same size so this is 3453 // either a BITCAST or a no-op. 3454 if (DestVT != N.getValueType()) 3455 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3456 DestVT, N)); // convert types. 3457 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3458 // might fold any kind of constant expression to an integer constant and that 3459 // is not what we are looking for. Only recognize a bitcast of a genuine 3460 // constant integer as an opaque constant. 3461 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3462 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3463 /*isOpaque*/true)); 3464 else 3465 setValue(&I, N); // noop cast. 3466 } 3467 3468 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3470 const Value *SV = I.getOperand(0); 3471 SDValue N = getValue(SV); 3472 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3473 3474 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3475 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3476 3477 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3478 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3479 3480 setValue(&I, N); 3481 } 3482 3483 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3485 SDValue InVec = getValue(I.getOperand(0)); 3486 SDValue InVal = getValue(I.getOperand(1)); 3487 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3488 TLI.getVectorIdxTy(DAG.getDataLayout())); 3489 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3490 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3491 InVec, InVal, InIdx)); 3492 } 3493 3494 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3496 SDValue InVec = getValue(I.getOperand(0)); 3497 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3498 TLI.getVectorIdxTy(DAG.getDataLayout())); 3499 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3500 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3501 InVec, InIdx)); 3502 } 3503 3504 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3505 SDValue Src1 = getValue(I.getOperand(0)); 3506 SDValue Src2 = getValue(I.getOperand(1)); 3507 SDLoc DL = getCurSDLoc(); 3508 3509 SmallVector<int, 8> Mask; 3510 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3511 unsigned MaskNumElts = Mask.size(); 3512 3513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3514 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3515 EVT SrcVT = Src1.getValueType(); 3516 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3517 3518 if (SrcNumElts == MaskNumElts) { 3519 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3520 return; 3521 } 3522 3523 // Normalize the shuffle vector since mask and vector length don't match. 3524 if (SrcNumElts < MaskNumElts) { 3525 // Mask is longer than the source vectors. We can use concatenate vector to 3526 // make the mask and vectors lengths match. 3527 3528 if (MaskNumElts % SrcNumElts == 0) { 3529 // Mask length is a multiple of the source vector length. 3530 // Check if the shuffle is some kind of concatenation of the input 3531 // vectors. 3532 unsigned NumConcat = MaskNumElts / SrcNumElts; 3533 bool IsConcat = true; 3534 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3535 for (unsigned i = 0; i != MaskNumElts; ++i) { 3536 int Idx = Mask[i]; 3537 if (Idx < 0) 3538 continue; 3539 // Ensure the indices in each SrcVT sized piece are sequential and that 3540 // the same source is used for the whole piece. 3541 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3542 (ConcatSrcs[i / SrcNumElts] >= 0 && 3543 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3544 IsConcat = false; 3545 break; 3546 } 3547 // Remember which source this index came from. 3548 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3549 } 3550 3551 // The shuffle is concatenating multiple vectors together. Just emit 3552 // a CONCAT_VECTORS operation. 3553 if (IsConcat) { 3554 SmallVector<SDValue, 8> ConcatOps; 3555 for (auto Src : ConcatSrcs) { 3556 if (Src < 0) 3557 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3558 else if (Src == 0) 3559 ConcatOps.push_back(Src1); 3560 else 3561 ConcatOps.push_back(Src2); 3562 } 3563 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3564 return; 3565 } 3566 } 3567 3568 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3569 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3570 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3571 PaddedMaskNumElts); 3572 3573 // Pad both vectors with undefs to make them the same length as the mask. 3574 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3575 3576 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3577 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3578 MOps1[0] = Src1; 3579 MOps2[0] = Src2; 3580 3581 Src1 = Src1.isUndef() 3582 ? DAG.getUNDEF(PaddedVT) 3583 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3584 Src2 = Src2.isUndef() 3585 ? DAG.getUNDEF(PaddedVT) 3586 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3587 3588 // Readjust mask for new input vector length. 3589 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3590 for (unsigned i = 0; i != MaskNumElts; ++i) { 3591 int Idx = Mask[i]; 3592 if (Idx >= (int)SrcNumElts) 3593 Idx -= SrcNumElts - PaddedMaskNumElts; 3594 MappedOps[i] = Idx; 3595 } 3596 3597 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3598 3599 // If the concatenated vector was padded, extract a subvector with the 3600 // correct number of elements. 3601 if (MaskNumElts != PaddedMaskNumElts) 3602 Result = DAG.getNode( 3603 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3604 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3605 3606 setValue(&I, Result); 3607 return; 3608 } 3609 3610 if (SrcNumElts > MaskNumElts) { 3611 // Analyze the access pattern of the vector to see if we can extract 3612 // two subvectors and do the shuffle. 3613 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3614 bool CanExtract = true; 3615 for (int Idx : Mask) { 3616 unsigned Input = 0; 3617 if (Idx < 0) 3618 continue; 3619 3620 if (Idx >= (int)SrcNumElts) { 3621 Input = 1; 3622 Idx -= SrcNumElts; 3623 } 3624 3625 // If all the indices come from the same MaskNumElts sized portion of 3626 // the sources we can use extract. Also make sure the extract wouldn't 3627 // extract past the end of the source. 3628 int NewStartIdx = alignDown(Idx, MaskNumElts); 3629 if (NewStartIdx + MaskNumElts > SrcNumElts || 3630 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3631 CanExtract = false; 3632 // Make sure we always update StartIdx as we use it to track if all 3633 // elements are undef. 3634 StartIdx[Input] = NewStartIdx; 3635 } 3636 3637 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3638 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3639 return; 3640 } 3641 if (CanExtract) { 3642 // Extract appropriate subvector and generate a vector shuffle 3643 for (unsigned Input = 0; Input < 2; ++Input) { 3644 SDValue &Src = Input == 0 ? Src1 : Src2; 3645 if (StartIdx[Input] < 0) 3646 Src = DAG.getUNDEF(VT); 3647 else { 3648 Src = DAG.getNode( 3649 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3650 DAG.getConstant(StartIdx[Input], DL, 3651 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3652 } 3653 } 3654 3655 // Calculate new mask. 3656 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3657 for (int &Idx : MappedOps) { 3658 if (Idx >= (int)SrcNumElts) 3659 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3660 else if (Idx >= 0) 3661 Idx -= StartIdx[0]; 3662 } 3663 3664 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3665 return; 3666 } 3667 } 3668 3669 // We can't use either concat vectors or extract subvectors so fall back to 3670 // replacing the shuffle with extract and build vector. 3671 // to insert and build vector. 3672 EVT EltVT = VT.getVectorElementType(); 3673 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3674 SmallVector<SDValue,8> Ops; 3675 for (int Idx : Mask) { 3676 SDValue Res; 3677 3678 if (Idx < 0) { 3679 Res = DAG.getUNDEF(EltVT); 3680 } else { 3681 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3682 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3683 3684 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3685 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3686 } 3687 3688 Ops.push_back(Res); 3689 } 3690 3691 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3692 } 3693 3694 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3695 ArrayRef<unsigned> Indices; 3696 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3697 Indices = IV->getIndices(); 3698 else 3699 Indices = cast<ConstantExpr>(&I)->getIndices(); 3700 3701 const Value *Op0 = I.getOperand(0); 3702 const Value *Op1 = I.getOperand(1); 3703 Type *AggTy = I.getType(); 3704 Type *ValTy = Op1->getType(); 3705 bool IntoUndef = isa<UndefValue>(Op0); 3706 bool FromUndef = isa<UndefValue>(Op1); 3707 3708 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3709 3710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3711 SmallVector<EVT, 4> AggValueVTs; 3712 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3713 SmallVector<EVT, 4> ValValueVTs; 3714 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3715 3716 unsigned NumAggValues = AggValueVTs.size(); 3717 unsigned NumValValues = ValValueVTs.size(); 3718 SmallVector<SDValue, 4> Values(NumAggValues); 3719 3720 // Ignore an insertvalue that produces an empty object 3721 if (!NumAggValues) { 3722 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3723 return; 3724 } 3725 3726 SDValue Agg = getValue(Op0); 3727 unsigned i = 0; 3728 // Copy the beginning value(s) from the original aggregate. 3729 for (; i != LinearIndex; ++i) 3730 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3731 SDValue(Agg.getNode(), Agg.getResNo() + i); 3732 // Copy values from the inserted value(s). 3733 if (NumValValues) { 3734 SDValue Val = getValue(Op1); 3735 for (; i != LinearIndex + NumValValues; ++i) 3736 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3737 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3738 } 3739 // Copy remaining value(s) from the original aggregate. 3740 for (; i != NumAggValues; ++i) 3741 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3742 SDValue(Agg.getNode(), Agg.getResNo() + i); 3743 3744 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3745 DAG.getVTList(AggValueVTs), Values)); 3746 } 3747 3748 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3749 ArrayRef<unsigned> Indices; 3750 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3751 Indices = EV->getIndices(); 3752 else 3753 Indices = cast<ConstantExpr>(&I)->getIndices(); 3754 3755 const Value *Op0 = I.getOperand(0); 3756 Type *AggTy = Op0->getType(); 3757 Type *ValTy = I.getType(); 3758 bool OutOfUndef = isa<UndefValue>(Op0); 3759 3760 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3761 3762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3763 SmallVector<EVT, 4> ValValueVTs; 3764 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3765 3766 unsigned NumValValues = ValValueVTs.size(); 3767 3768 // Ignore a extractvalue that produces an empty object 3769 if (!NumValValues) { 3770 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3771 return; 3772 } 3773 3774 SmallVector<SDValue, 4> Values(NumValValues); 3775 3776 SDValue Agg = getValue(Op0); 3777 // Copy out the selected value(s). 3778 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3779 Values[i - LinearIndex] = 3780 OutOfUndef ? 3781 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3782 SDValue(Agg.getNode(), Agg.getResNo() + i); 3783 3784 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3785 DAG.getVTList(ValValueVTs), Values)); 3786 } 3787 3788 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3789 Value *Op0 = I.getOperand(0); 3790 // Note that the pointer operand may be a vector of pointers. Take the scalar 3791 // element which holds a pointer. 3792 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3793 SDValue N = getValue(Op0); 3794 SDLoc dl = getCurSDLoc(); 3795 3796 // Normalize Vector GEP - all scalar operands should be converted to the 3797 // splat vector. 3798 unsigned VectorWidth = I.getType()->isVectorTy() ? 3799 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3800 3801 if (VectorWidth && !N.getValueType().isVector()) { 3802 LLVMContext &Context = *DAG.getContext(); 3803 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3804 N = DAG.getSplatBuildVector(VT, dl, N); 3805 } 3806 3807 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3808 GTI != E; ++GTI) { 3809 const Value *Idx = GTI.getOperand(); 3810 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3811 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3812 if (Field) { 3813 // N = N + Offset 3814 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3815 3816 // In an inbounds GEP with an offset that is nonnegative even when 3817 // interpreted as signed, assume there is no unsigned overflow. 3818 SDNodeFlags Flags; 3819 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3820 Flags.setNoUnsignedWrap(true); 3821 3822 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3823 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3824 } 3825 } else { 3826 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3827 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3828 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3829 3830 // If this is a scalar constant or a splat vector of constants, 3831 // handle it quickly. 3832 const auto *CI = dyn_cast<ConstantInt>(Idx); 3833 if (!CI && isa<ConstantDataVector>(Idx) && 3834 cast<ConstantDataVector>(Idx)->getSplatValue()) 3835 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3836 3837 if (CI) { 3838 if (CI->isZero()) 3839 continue; 3840 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3841 LLVMContext &Context = *DAG.getContext(); 3842 SDValue OffsVal = VectorWidth ? 3843 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3844 DAG.getConstant(Offs, dl, IdxTy); 3845 3846 // In an inbouds GEP with an offset that is nonnegative even when 3847 // interpreted as signed, assume there is no unsigned overflow. 3848 SDNodeFlags Flags; 3849 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3850 Flags.setNoUnsignedWrap(true); 3851 3852 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3853 continue; 3854 } 3855 3856 // N = N + Idx * ElementSize; 3857 SDValue IdxN = getValue(Idx); 3858 3859 if (!IdxN.getValueType().isVector() && VectorWidth) { 3860 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3861 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3862 } 3863 3864 // If the index is smaller or larger than intptr_t, truncate or extend 3865 // it. 3866 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3867 3868 // If this is a multiply by a power of two, turn it into a shl 3869 // immediately. This is a very common case. 3870 if (ElementSize != 1) { 3871 if (ElementSize.isPowerOf2()) { 3872 unsigned Amt = ElementSize.logBase2(); 3873 IdxN = DAG.getNode(ISD::SHL, dl, 3874 N.getValueType(), IdxN, 3875 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3876 } else { 3877 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3878 IdxN = DAG.getNode(ISD::MUL, dl, 3879 N.getValueType(), IdxN, Scale); 3880 } 3881 } 3882 3883 N = DAG.getNode(ISD::ADD, dl, 3884 N.getValueType(), N, IdxN); 3885 } 3886 } 3887 3888 setValue(&I, N); 3889 } 3890 3891 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3892 // If this is a fixed sized alloca in the entry block of the function, 3893 // allocate it statically on the stack. 3894 if (FuncInfo.StaticAllocaMap.count(&I)) 3895 return; // getValue will auto-populate this. 3896 3897 SDLoc dl = getCurSDLoc(); 3898 Type *Ty = I.getAllocatedType(); 3899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3900 auto &DL = DAG.getDataLayout(); 3901 uint64_t TySize = DL.getTypeAllocSize(Ty); 3902 unsigned Align = 3903 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3904 3905 SDValue AllocSize = getValue(I.getArraySize()); 3906 3907 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3908 if (AllocSize.getValueType() != IntPtr) 3909 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3910 3911 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3912 AllocSize, 3913 DAG.getConstant(TySize, dl, IntPtr)); 3914 3915 // Handle alignment. If the requested alignment is less than or equal to 3916 // the stack alignment, ignore it. If the size is greater than or equal to 3917 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3918 unsigned StackAlign = 3919 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3920 if (Align <= StackAlign) 3921 Align = 0; 3922 3923 // Round the size of the allocation up to the stack alignment size 3924 // by add SA-1 to the size. This doesn't overflow because we're computing 3925 // an address inside an alloca. 3926 SDNodeFlags Flags; 3927 Flags.setNoUnsignedWrap(true); 3928 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3929 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3930 3931 // Mask out the low bits for alignment purposes. 3932 AllocSize = 3933 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3934 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3935 3936 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3937 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3938 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3939 setValue(&I, DSA); 3940 DAG.setRoot(DSA.getValue(1)); 3941 3942 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3943 } 3944 3945 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3946 if (I.isAtomic()) 3947 return visitAtomicLoad(I); 3948 3949 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3950 const Value *SV = I.getOperand(0); 3951 if (TLI.supportSwiftError()) { 3952 // Swifterror values can come from either a function parameter with 3953 // swifterror attribute or an alloca with swifterror attribute. 3954 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3955 if (Arg->hasSwiftErrorAttr()) 3956 return visitLoadFromSwiftError(I); 3957 } 3958 3959 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3960 if (Alloca->isSwiftError()) 3961 return visitLoadFromSwiftError(I); 3962 } 3963 } 3964 3965 SDValue Ptr = getValue(SV); 3966 3967 Type *Ty = I.getType(); 3968 3969 bool isVolatile = I.isVolatile(); 3970 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3971 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3972 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3973 unsigned Alignment = I.getAlignment(); 3974 3975 AAMDNodes AAInfo; 3976 I.getAAMetadata(AAInfo); 3977 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3978 3979 SmallVector<EVT, 4> ValueVTs; 3980 SmallVector<uint64_t, 4> Offsets; 3981 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3982 unsigned NumValues = ValueVTs.size(); 3983 if (NumValues == 0) 3984 return; 3985 3986 SDValue Root; 3987 bool ConstantMemory = false; 3988 if (isVolatile || NumValues > MaxParallelChains) 3989 // Serialize volatile loads with other side effects. 3990 Root = getRoot(); 3991 else if (AA && 3992 AA->pointsToConstantMemory(MemoryLocation( 3993 SV, 3994 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3995 AAInfo))) { 3996 // Do not serialize (non-volatile) loads of constant memory with anything. 3997 Root = DAG.getEntryNode(); 3998 ConstantMemory = true; 3999 } else { 4000 // Do not serialize non-volatile loads against each other. 4001 Root = DAG.getRoot(); 4002 } 4003 4004 SDLoc dl = getCurSDLoc(); 4005 4006 if (isVolatile) 4007 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4008 4009 // An aggregate load cannot wrap around the address space, so offsets to its 4010 // parts don't wrap either. 4011 SDNodeFlags Flags; 4012 Flags.setNoUnsignedWrap(true); 4013 4014 SmallVector<SDValue, 4> Values(NumValues); 4015 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4016 EVT PtrVT = Ptr.getValueType(); 4017 unsigned ChainI = 0; 4018 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4019 // Serializing loads here may result in excessive register pressure, and 4020 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4021 // could recover a bit by hoisting nodes upward in the chain by recognizing 4022 // they are side-effect free or do not alias. The optimizer should really 4023 // avoid this case by converting large object/array copies to llvm.memcpy 4024 // (MaxParallelChains should always remain as failsafe). 4025 if (ChainI == MaxParallelChains) { 4026 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4027 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4028 makeArrayRef(Chains.data(), ChainI)); 4029 Root = Chain; 4030 ChainI = 0; 4031 } 4032 SDValue A = DAG.getNode(ISD::ADD, dl, 4033 PtrVT, Ptr, 4034 DAG.getConstant(Offsets[i], dl, PtrVT), 4035 Flags); 4036 auto MMOFlags = MachineMemOperand::MONone; 4037 if (isVolatile) 4038 MMOFlags |= MachineMemOperand::MOVolatile; 4039 if (isNonTemporal) 4040 MMOFlags |= MachineMemOperand::MONonTemporal; 4041 if (isInvariant) 4042 MMOFlags |= MachineMemOperand::MOInvariant; 4043 if (isDereferenceable) 4044 MMOFlags |= MachineMemOperand::MODereferenceable; 4045 MMOFlags |= TLI.getMMOFlags(I); 4046 4047 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 4048 MachinePointerInfo(SV, Offsets[i]), Alignment, 4049 MMOFlags, AAInfo, Ranges); 4050 4051 Values[i] = L; 4052 Chains[ChainI] = L.getValue(1); 4053 } 4054 4055 if (!ConstantMemory) { 4056 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4057 makeArrayRef(Chains.data(), ChainI)); 4058 if (isVolatile) 4059 DAG.setRoot(Chain); 4060 else 4061 PendingLoads.push_back(Chain); 4062 } 4063 4064 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4065 DAG.getVTList(ValueVTs), Values)); 4066 } 4067 4068 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4069 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4070 "call visitStoreToSwiftError when backend supports swifterror"); 4071 4072 SmallVector<EVT, 4> ValueVTs; 4073 SmallVector<uint64_t, 4> Offsets; 4074 const Value *SrcV = I.getOperand(0); 4075 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4076 SrcV->getType(), ValueVTs, &Offsets); 4077 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4078 "expect a single EVT for swifterror"); 4079 4080 SDValue Src = getValue(SrcV); 4081 // Create a virtual register, then update the virtual register. 4082 unsigned VReg; bool CreatedVReg; 4083 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4084 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4085 // Chain can be getRoot or getControlRoot. 4086 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4087 SDValue(Src.getNode(), Src.getResNo())); 4088 DAG.setRoot(CopyNode); 4089 if (CreatedVReg) 4090 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4091 } 4092 4093 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4094 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4095 "call visitLoadFromSwiftError when backend supports swifterror"); 4096 4097 assert(!I.isVolatile() && 4098 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4099 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4100 "Support volatile, non temporal, invariant for load_from_swift_error"); 4101 4102 const Value *SV = I.getOperand(0); 4103 Type *Ty = I.getType(); 4104 AAMDNodes AAInfo; 4105 I.getAAMetadata(AAInfo); 4106 assert( 4107 (!AA || 4108 !AA->pointsToConstantMemory(MemoryLocation( 4109 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4110 AAInfo))) && 4111 "load_from_swift_error should not be constant memory"); 4112 4113 SmallVector<EVT, 4> ValueVTs; 4114 SmallVector<uint64_t, 4> Offsets; 4115 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4116 ValueVTs, &Offsets); 4117 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4118 "expect a single EVT for swifterror"); 4119 4120 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4121 SDValue L = DAG.getCopyFromReg( 4122 getRoot(), getCurSDLoc(), 4123 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4124 ValueVTs[0]); 4125 4126 setValue(&I, L); 4127 } 4128 4129 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4130 if (I.isAtomic()) 4131 return visitAtomicStore(I); 4132 4133 const Value *SrcV = I.getOperand(0); 4134 const Value *PtrV = I.getOperand(1); 4135 4136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4137 if (TLI.supportSwiftError()) { 4138 // Swifterror values can come from either a function parameter with 4139 // swifterror attribute or an alloca with swifterror attribute. 4140 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4141 if (Arg->hasSwiftErrorAttr()) 4142 return visitStoreToSwiftError(I); 4143 } 4144 4145 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4146 if (Alloca->isSwiftError()) 4147 return visitStoreToSwiftError(I); 4148 } 4149 } 4150 4151 SmallVector<EVT, 4> ValueVTs; 4152 SmallVector<uint64_t, 4> Offsets; 4153 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4154 SrcV->getType(), ValueVTs, &Offsets); 4155 unsigned NumValues = ValueVTs.size(); 4156 if (NumValues == 0) 4157 return; 4158 4159 // Get the lowered operands. Note that we do this after 4160 // checking if NumResults is zero, because with zero results 4161 // the operands won't have values in the map. 4162 SDValue Src = getValue(SrcV); 4163 SDValue Ptr = getValue(PtrV); 4164 4165 SDValue Root = getRoot(); 4166 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4167 SDLoc dl = getCurSDLoc(); 4168 EVT PtrVT = Ptr.getValueType(); 4169 unsigned Alignment = I.getAlignment(); 4170 AAMDNodes AAInfo; 4171 I.getAAMetadata(AAInfo); 4172 4173 auto MMOFlags = MachineMemOperand::MONone; 4174 if (I.isVolatile()) 4175 MMOFlags |= MachineMemOperand::MOVolatile; 4176 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4177 MMOFlags |= MachineMemOperand::MONonTemporal; 4178 MMOFlags |= TLI.getMMOFlags(I); 4179 4180 // An aggregate load cannot wrap around the address space, so offsets to its 4181 // parts don't wrap either. 4182 SDNodeFlags Flags; 4183 Flags.setNoUnsignedWrap(true); 4184 4185 unsigned ChainI = 0; 4186 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4187 // See visitLoad comments. 4188 if (ChainI == MaxParallelChains) { 4189 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4190 makeArrayRef(Chains.data(), ChainI)); 4191 Root = Chain; 4192 ChainI = 0; 4193 } 4194 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4195 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4196 SDValue St = DAG.getStore( 4197 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4198 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4199 Chains[ChainI] = St; 4200 } 4201 4202 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4203 makeArrayRef(Chains.data(), ChainI)); 4204 DAG.setRoot(StoreNode); 4205 } 4206 4207 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4208 bool IsCompressing) { 4209 SDLoc sdl = getCurSDLoc(); 4210 4211 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4212 unsigned& Alignment) { 4213 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4214 Src0 = I.getArgOperand(0); 4215 Ptr = I.getArgOperand(1); 4216 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4217 Mask = I.getArgOperand(3); 4218 }; 4219 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4220 unsigned& Alignment) { 4221 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4222 Src0 = I.getArgOperand(0); 4223 Ptr = I.getArgOperand(1); 4224 Mask = I.getArgOperand(2); 4225 Alignment = 0; 4226 }; 4227 4228 Value *PtrOperand, *MaskOperand, *Src0Operand; 4229 unsigned Alignment; 4230 if (IsCompressing) 4231 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4232 else 4233 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4234 4235 SDValue Ptr = getValue(PtrOperand); 4236 SDValue Src0 = getValue(Src0Operand); 4237 SDValue Mask = getValue(MaskOperand); 4238 4239 EVT VT = Src0.getValueType(); 4240 if (!Alignment) 4241 Alignment = DAG.getEVTAlignment(VT); 4242 4243 AAMDNodes AAInfo; 4244 I.getAAMetadata(AAInfo); 4245 4246 MachineMemOperand *MMO = 4247 DAG.getMachineFunction(). 4248 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4249 MachineMemOperand::MOStore, VT.getStoreSize(), 4250 Alignment, AAInfo); 4251 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4252 MMO, false /* Truncating */, 4253 IsCompressing); 4254 DAG.setRoot(StoreNode); 4255 setValue(&I, StoreNode); 4256 } 4257 4258 // Get a uniform base for the Gather/Scatter intrinsic. 4259 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4260 // We try to represent it as a base pointer + vector of indices. 4261 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4262 // The first operand of the GEP may be a single pointer or a vector of pointers 4263 // Example: 4264 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4265 // or 4266 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4267 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4268 // 4269 // When the first GEP operand is a single pointer - it is the uniform base we 4270 // are looking for. If first operand of the GEP is a splat vector - we 4271 // extract the splat value and use it as a uniform base. 4272 // In all other cases the function returns 'false'. 4273 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4274 SDValue &Scale, SelectionDAGBuilder* SDB) { 4275 SelectionDAG& DAG = SDB->DAG; 4276 LLVMContext &Context = *DAG.getContext(); 4277 4278 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4279 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4280 if (!GEP) 4281 return false; 4282 4283 const Value *GEPPtr = GEP->getPointerOperand(); 4284 if (!GEPPtr->getType()->isVectorTy()) 4285 Ptr = GEPPtr; 4286 else if (!(Ptr = getSplatValue(GEPPtr))) 4287 return false; 4288 4289 unsigned FinalIndex = GEP->getNumOperands() - 1; 4290 Value *IndexVal = GEP->getOperand(FinalIndex); 4291 4292 // Ensure all the other indices are 0. 4293 for (unsigned i = 1; i < FinalIndex; ++i) { 4294 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4295 if (!C || !C->isZero()) 4296 return false; 4297 } 4298 4299 // The operands of the GEP may be defined in another basic block. 4300 // In this case we'll not find nodes for the operands. 4301 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4302 return false; 4303 4304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4305 const DataLayout &DL = DAG.getDataLayout(); 4306 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4307 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4308 Base = SDB->getValue(Ptr); 4309 Index = SDB->getValue(IndexVal); 4310 4311 if (!Index.getValueType().isVector()) { 4312 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4313 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4314 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4315 } 4316 return true; 4317 } 4318 4319 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4320 SDLoc sdl = getCurSDLoc(); 4321 4322 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4323 const Value *Ptr = I.getArgOperand(1); 4324 SDValue Src0 = getValue(I.getArgOperand(0)); 4325 SDValue Mask = getValue(I.getArgOperand(3)); 4326 EVT VT = Src0.getValueType(); 4327 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4328 if (!Alignment) 4329 Alignment = DAG.getEVTAlignment(VT); 4330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4331 4332 AAMDNodes AAInfo; 4333 I.getAAMetadata(AAInfo); 4334 4335 SDValue Base; 4336 SDValue Index; 4337 SDValue Scale; 4338 const Value *BasePtr = Ptr; 4339 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4340 4341 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4342 MachineMemOperand *MMO = DAG.getMachineFunction(). 4343 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4344 MachineMemOperand::MOStore, VT.getStoreSize(), 4345 Alignment, AAInfo); 4346 if (!UniformBase) { 4347 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4348 Index = getValue(Ptr); 4349 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4350 } 4351 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4352 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4353 Ops, MMO); 4354 DAG.setRoot(Scatter); 4355 setValue(&I, Scatter); 4356 } 4357 4358 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4359 SDLoc sdl = getCurSDLoc(); 4360 4361 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4362 unsigned& Alignment) { 4363 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4364 Ptr = I.getArgOperand(0); 4365 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4366 Mask = I.getArgOperand(2); 4367 Src0 = I.getArgOperand(3); 4368 }; 4369 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4370 unsigned& Alignment) { 4371 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4372 Ptr = I.getArgOperand(0); 4373 Alignment = 0; 4374 Mask = I.getArgOperand(1); 4375 Src0 = I.getArgOperand(2); 4376 }; 4377 4378 Value *PtrOperand, *MaskOperand, *Src0Operand; 4379 unsigned Alignment; 4380 if (IsExpanding) 4381 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4382 else 4383 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4384 4385 SDValue Ptr = getValue(PtrOperand); 4386 SDValue Src0 = getValue(Src0Operand); 4387 SDValue Mask = getValue(MaskOperand); 4388 4389 EVT VT = Src0.getValueType(); 4390 if (!Alignment) 4391 Alignment = DAG.getEVTAlignment(VT); 4392 4393 AAMDNodes AAInfo; 4394 I.getAAMetadata(AAInfo); 4395 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4396 4397 // Do not serialize masked loads of constant memory with anything. 4398 bool AddToChain = 4399 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4400 PtrOperand, 4401 LocationSize::precise( 4402 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4403 AAInfo)); 4404 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4405 4406 MachineMemOperand *MMO = 4407 DAG.getMachineFunction(). 4408 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4409 MachineMemOperand::MOLoad, VT.getStoreSize(), 4410 Alignment, AAInfo, Ranges); 4411 4412 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4413 ISD::NON_EXTLOAD, IsExpanding); 4414 if (AddToChain) 4415 PendingLoads.push_back(Load.getValue(1)); 4416 setValue(&I, Load); 4417 } 4418 4419 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4420 SDLoc sdl = getCurSDLoc(); 4421 4422 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4423 const Value *Ptr = I.getArgOperand(0); 4424 SDValue Src0 = getValue(I.getArgOperand(3)); 4425 SDValue Mask = getValue(I.getArgOperand(2)); 4426 4427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4428 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4429 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4430 if (!Alignment) 4431 Alignment = DAG.getEVTAlignment(VT); 4432 4433 AAMDNodes AAInfo; 4434 I.getAAMetadata(AAInfo); 4435 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4436 4437 SDValue Root = DAG.getRoot(); 4438 SDValue Base; 4439 SDValue Index; 4440 SDValue Scale; 4441 const Value *BasePtr = Ptr; 4442 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4443 bool ConstantMemory = false; 4444 if (UniformBase && AA && 4445 AA->pointsToConstantMemory( 4446 MemoryLocation(BasePtr, 4447 LocationSize::precise( 4448 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4449 AAInfo))) { 4450 // Do not serialize (non-volatile) loads of constant memory with anything. 4451 Root = DAG.getEntryNode(); 4452 ConstantMemory = true; 4453 } 4454 4455 MachineMemOperand *MMO = 4456 DAG.getMachineFunction(). 4457 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4458 MachineMemOperand::MOLoad, VT.getStoreSize(), 4459 Alignment, AAInfo, Ranges); 4460 4461 if (!UniformBase) { 4462 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4463 Index = getValue(Ptr); 4464 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4465 } 4466 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4467 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4468 Ops, MMO); 4469 4470 SDValue OutChain = Gather.getValue(1); 4471 if (!ConstantMemory) 4472 PendingLoads.push_back(OutChain); 4473 setValue(&I, Gather); 4474 } 4475 4476 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4477 SDLoc dl = getCurSDLoc(); 4478 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4479 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4480 SyncScope::ID SSID = I.getSyncScopeID(); 4481 4482 SDValue InChain = getRoot(); 4483 4484 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4485 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4486 4487 auto Alignment = DAG.getEVTAlignment(MemVT); 4488 4489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4490 if (I.isVolatile()) 4491 Flags |= MachineMemOperand::MOVolatile; 4492 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4493 4494 MachineFunction &MF = DAG.getMachineFunction(); 4495 MachineMemOperand *MMO = 4496 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4497 Flags, MemVT.getStoreSize(), Alignment, 4498 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4499 FailureOrdering); 4500 4501 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4502 dl, MemVT, VTs, InChain, 4503 getValue(I.getPointerOperand()), 4504 getValue(I.getCompareOperand()), 4505 getValue(I.getNewValOperand()), MMO); 4506 4507 SDValue OutChain = L.getValue(2); 4508 4509 setValue(&I, L); 4510 DAG.setRoot(OutChain); 4511 } 4512 4513 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4514 SDLoc dl = getCurSDLoc(); 4515 ISD::NodeType NT; 4516 switch (I.getOperation()) { 4517 default: llvm_unreachable("Unknown atomicrmw operation"); 4518 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4519 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4520 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4521 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4522 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4523 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4524 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4525 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4526 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4527 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4528 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4529 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4530 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4531 } 4532 AtomicOrdering Ordering = I.getOrdering(); 4533 SyncScope::ID SSID = I.getSyncScopeID(); 4534 4535 SDValue InChain = getRoot(); 4536 4537 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4538 auto Alignment = DAG.getEVTAlignment(MemVT); 4539 4540 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4541 if (I.isVolatile()) 4542 Flags |= MachineMemOperand::MOVolatile; 4543 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4544 4545 MachineFunction &MF = DAG.getMachineFunction(); 4546 MachineMemOperand *MMO = 4547 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4548 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4549 nullptr, SSID, Ordering); 4550 4551 SDValue L = 4552 DAG.getAtomic(NT, dl, MemVT, InChain, 4553 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4554 MMO); 4555 4556 SDValue OutChain = L.getValue(1); 4557 4558 setValue(&I, L); 4559 DAG.setRoot(OutChain); 4560 } 4561 4562 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4563 SDLoc dl = getCurSDLoc(); 4564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4565 SDValue Ops[3]; 4566 Ops[0] = getRoot(); 4567 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4568 TLI.getFenceOperandTy(DAG.getDataLayout())); 4569 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4570 TLI.getFenceOperandTy(DAG.getDataLayout())); 4571 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4572 } 4573 4574 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4575 SDLoc dl = getCurSDLoc(); 4576 AtomicOrdering Order = I.getOrdering(); 4577 SyncScope::ID SSID = I.getSyncScopeID(); 4578 4579 SDValue InChain = getRoot(); 4580 4581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4582 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4583 4584 if (!TLI.supportsUnalignedAtomics() && 4585 I.getAlignment() < VT.getStoreSize()) 4586 report_fatal_error("Cannot generate unaligned atomic load"); 4587 4588 auto Flags = MachineMemOperand::MOLoad; 4589 if (I.isVolatile()) 4590 Flags |= MachineMemOperand::MOVolatile; 4591 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4592 Flags |= MachineMemOperand::MOInvariant; 4593 if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout())) 4594 Flags |= MachineMemOperand::MODereferenceable; 4595 4596 Flags |= TLI.getMMOFlags(I); 4597 4598 MachineMemOperand *MMO = 4599 DAG.getMachineFunction(). 4600 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4601 Flags, VT.getStoreSize(), 4602 I.getAlignment() ? I.getAlignment() : 4603 DAG.getEVTAlignment(VT), 4604 AAMDNodes(), nullptr, SSID, Order); 4605 4606 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4607 SDValue L = 4608 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4609 getValue(I.getPointerOperand()), MMO); 4610 4611 SDValue OutChain = L.getValue(1); 4612 4613 setValue(&I, L); 4614 DAG.setRoot(OutChain); 4615 } 4616 4617 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4618 SDLoc dl = getCurSDLoc(); 4619 4620 AtomicOrdering Ordering = I.getOrdering(); 4621 SyncScope::ID SSID = I.getSyncScopeID(); 4622 4623 SDValue InChain = getRoot(); 4624 4625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4626 EVT VT = 4627 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4628 4629 if (I.getAlignment() < VT.getStoreSize()) 4630 report_fatal_error("Cannot generate unaligned atomic store"); 4631 4632 auto Flags = MachineMemOperand::MOStore; 4633 if (I.isVolatile()) 4634 Flags |= MachineMemOperand::MOVolatile; 4635 Flags |= TLI.getMMOFlags(I); 4636 4637 MachineFunction &MF = DAG.getMachineFunction(); 4638 MachineMemOperand *MMO = 4639 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4640 VT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4641 nullptr, SSID, Ordering); 4642 SDValue OutChain = 4643 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, 4644 getValue(I.getPointerOperand()), getValue(I.getValueOperand()), 4645 MMO); 4646 4647 4648 DAG.setRoot(OutChain); 4649 } 4650 4651 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4652 /// node. 4653 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4654 unsigned Intrinsic) { 4655 // Ignore the callsite's attributes. A specific call site may be marked with 4656 // readnone, but the lowering code will expect the chain based on the 4657 // definition. 4658 const Function *F = I.getCalledFunction(); 4659 bool HasChain = !F->doesNotAccessMemory(); 4660 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4661 4662 // Build the operand list. 4663 SmallVector<SDValue, 8> Ops; 4664 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4665 if (OnlyLoad) { 4666 // We don't need to serialize loads against other loads. 4667 Ops.push_back(DAG.getRoot()); 4668 } else { 4669 Ops.push_back(getRoot()); 4670 } 4671 } 4672 4673 // Info is set by getTgtMemInstrinsic 4674 TargetLowering::IntrinsicInfo Info; 4675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4676 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4677 DAG.getMachineFunction(), 4678 Intrinsic); 4679 4680 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4681 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4682 Info.opc == ISD::INTRINSIC_W_CHAIN) 4683 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4684 TLI.getPointerTy(DAG.getDataLayout()))); 4685 4686 // Add all operands of the call to the operand list. 4687 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4688 SDValue Op = getValue(I.getArgOperand(i)); 4689 Ops.push_back(Op); 4690 } 4691 4692 SmallVector<EVT, 4> ValueVTs; 4693 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4694 4695 if (HasChain) 4696 ValueVTs.push_back(MVT::Other); 4697 4698 SDVTList VTs = DAG.getVTList(ValueVTs); 4699 4700 // Create the node. 4701 SDValue Result; 4702 if (IsTgtIntrinsic) { 4703 // This is target intrinsic that touches memory 4704 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4705 Ops, Info.memVT, 4706 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4707 Info.flags, Info.size); 4708 } else if (!HasChain) { 4709 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4710 } else if (!I.getType()->isVoidTy()) { 4711 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4712 } else { 4713 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4714 } 4715 4716 if (HasChain) { 4717 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4718 if (OnlyLoad) 4719 PendingLoads.push_back(Chain); 4720 else 4721 DAG.setRoot(Chain); 4722 } 4723 4724 if (!I.getType()->isVoidTy()) { 4725 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4726 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4727 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4728 } else 4729 Result = lowerRangeToAssertZExt(DAG, I, Result); 4730 4731 setValue(&I, Result); 4732 } 4733 } 4734 4735 /// GetSignificand - Get the significand and build it into a floating-point 4736 /// number with exponent of 1: 4737 /// 4738 /// Op = (Op & 0x007fffff) | 0x3f800000; 4739 /// 4740 /// where Op is the hexadecimal representation of floating point value. 4741 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4742 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4743 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4744 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4745 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4746 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4747 } 4748 4749 /// GetExponent - Get the exponent: 4750 /// 4751 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4752 /// 4753 /// where Op is the hexadecimal representation of floating point value. 4754 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4755 const TargetLowering &TLI, const SDLoc &dl) { 4756 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4757 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4758 SDValue t1 = DAG.getNode( 4759 ISD::SRL, dl, MVT::i32, t0, 4760 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4761 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4762 DAG.getConstant(127, dl, MVT::i32)); 4763 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4764 } 4765 4766 /// getF32Constant - Get 32-bit floating point constant. 4767 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4768 const SDLoc &dl) { 4769 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4770 MVT::f32); 4771 } 4772 4773 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4774 SelectionDAG &DAG) { 4775 // TODO: What fast-math-flags should be set on the floating-point nodes? 4776 4777 // IntegerPartOfX = ((int32_t)(t0); 4778 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4779 4780 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4781 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4782 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4783 4784 // IntegerPartOfX <<= 23; 4785 IntegerPartOfX = DAG.getNode( 4786 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4787 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4788 DAG.getDataLayout()))); 4789 4790 SDValue TwoToFractionalPartOfX; 4791 if (LimitFloatPrecision <= 6) { 4792 // For floating-point precision of 6: 4793 // 4794 // TwoToFractionalPartOfX = 4795 // 0.997535578f + 4796 // (0.735607626f + 0.252464424f * x) * x; 4797 // 4798 // error 0.0144103317, which is 6 bits 4799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4800 getF32Constant(DAG, 0x3e814304, dl)); 4801 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4802 getF32Constant(DAG, 0x3f3c50c8, dl)); 4803 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4804 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4805 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4806 } else if (LimitFloatPrecision <= 12) { 4807 // For floating-point precision of 12: 4808 // 4809 // TwoToFractionalPartOfX = 4810 // 0.999892986f + 4811 // (0.696457318f + 4812 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4813 // 4814 // error 0.000107046256, which is 13 to 14 bits 4815 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4816 getF32Constant(DAG, 0x3da235e3, dl)); 4817 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4818 getF32Constant(DAG, 0x3e65b8f3, dl)); 4819 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4820 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4821 getF32Constant(DAG, 0x3f324b07, dl)); 4822 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4823 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4824 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4825 } else { // LimitFloatPrecision <= 18 4826 // For floating-point precision of 18: 4827 // 4828 // TwoToFractionalPartOfX = 4829 // 0.999999982f + 4830 // (0.693148872f + 4831 // (0.240227044f + 4832 // (0.554906021e-1f + 4833 // (0.961591928e-2f + 4834 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4835 // error 2.47208000*10^(-7), which is better than 18 bits 4836 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4837 getF32Constant(DAG, 0x3924b03e, dl)); 4838 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4839 getF32Constant(DAG, 0x3ab24b87, dl)); 4840 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4841 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4842 getF32Constant(DAG, 0x3c1d8c17, dl)); 4843 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4844 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4845 getF32Constant(DAG, 0x3d634a1d, dl)); 4846 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4847 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4848 getF32Constant(DAG, 0x3e75fe14, dl)); 4849 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4850 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4851 getF32Constant(DAG, 0x3f317234, dl)); 4852 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4853 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4854 getF32Constant(DAG, 0x3f800000, dl)); 4855 } 4856 4857 // Add the exponent into the result in integer domain. 4858 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4859 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4860 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4861 } 4862 4863 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4864 /// limited-precision mode. 4865 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4866 const TargetLowering &TLI) { 4867 if (Op.getValueType() == MVT::f32 && 4868 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4869 4870 // Put the exponent in the right bit position for later addition to the 4871 // final result: 4872 // 4873 // #define LOG2OFe 1.4426950f 4874 // t0 = Op * LOG2OFe 4875 4876 // TODO: What fast-math-flags should be set here? 4877 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4878 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4879 return getLimitedPrecisionExp2(t0, dl, DAG); 4880 } 4881 4882 // No special expansion. 4883 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4884 } 4885 4886 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4887 /// limited-precision mode. 4888 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4889 const TargetLowering &TLI) { 4890 // TODO: What fast-math-flags should be set on the floating-point nodes? 4891 4892 if (Op.getValueType() == MVT::f32 && 4893 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4894 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4895 4896 // Scale the exponent by log(2) [0.69314718f]. 4897 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4898 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4899 getF32Constant(DAG, 0x3f317218, dl)); 4900 4901 // Get the significand and build it into a floating-point number with 4902 // exponent of 1. 4903 SDValue X = GetSignificand(DAG, Op1, dl); 4904 4905 SDValue LogOfMantissa; 4906 if (LimitFloatPrecision <= 6) { 4907 // For floating-point precision of 6: 4908 // 4909 // LogofMantissa = 4910 // -1.1609546f + 4911 // (1.4034025f - 0.23903021f * x) * x; 4912 // 4913 // error 0.0034276066, which is better than 8 bits 4914 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4915 getF32Constant(DAG, 0xbe74c456, dl)); 4916 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4917 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4918 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4919 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4920 getF32Constant(DAG, 0x3f949a29, dl)); 4921 } else if (LimitFloatPrecision <= 12) { 4922 // For floating-point precision of 12: 4923 // 4924 // LogOfMantissa = 4925 // -1.7417939f + 4926 // (2.8212026f + 4927 // (-1.4699568f + 4928 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4929 // 4930 // error 0.000061011436, which is 14 bits 4931 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4932 getF32Constant(DAG, 0xbd67b6d6, dl)); 4933 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4934 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4935 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4936 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4937 getF32Constant(DAG, 0x3fbc278b, dl)); 4938 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4939 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4940 getF32Constant(DAG, 0x40348e95, dl)); 4941 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4942 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4943 getF32Constant(DAG, 0x3fdef31a, dl)); 4944 } else { // LimitFloatPrecision <= 18 4945 // For floating-point precision of 18: 4946 // 4947 // LogOfMantissa = 4948 // -2.1072184f + 4949 // (4.2372794f + 4950 // (-3.7029485f + 4951 // (2.2781945f + 4952 // (-0.87823314f + 4953 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4954 // 4955 // error 0.0000023660568, which is better than 18 bits 4956 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4957 getF32Constant(DAG, 0xbc91e5ac, dl)); 4958 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4959 getF32Constant(DAG, 0x3e4350aa, dl)); 4960 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4961 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4962 getF32Constant(DAG, 0x3f60d3e3, dl)); 4963 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4964 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4965 getF32Constant(DAG, 0x4011cdf0, dl)); 4966 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4967 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4968 getF32Constant(DAG, 0x406cfd1c, dl)); 4969 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4970 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4971 getF32Constant(DAG, 0x408797cb, dl)); 4972 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4973 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4974 getF32Constant(DAG, 0x4006dcab, dl)); 4975 } 4976 4977 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4978 } 4979 4980 // No special expansion. 4981 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4982 } 4983 4984 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4985 /// limited-precision mode. 4986 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4987 const TargetLowering &TLI) { 4988 // TODO: What fast-math-flags should be set on the floating-point nodes? 4989 4990 if (Op.getValueType() == MVT::f32 && 4991 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4992 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4993 4994 // Get the exponent. 4995 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4996 4997 // Get the significand and build it into a floating-point number with 4998 // exponent of 1. 4999 SDValue X = GetSignificand(DAG, Op1, dl); 5000 5001 // Different possible minimax approximations of significand in 5002 // floating-point for various degrees of accuracy over [1,2]. 5003 SDValue Log2ofMantissa; 5004 if (LimitFloatPrecision <= 6) { 5005 // For floating-point precision of 6: 5006 // 5007 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5008 // 5009 // error 0.0049451742, which is more than 7 bits 5010 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5011 getF32Constant(DAG, 0xbeb08fe0, dl)); 5012 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5013 getF32Constant(DAG, 0x40019463, dl)); 5014 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5015 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5016 getF32Constant(DAG, 0x3fd6633d, dl)); 5017 } else if (LimitFloatPrecision <= 12) { 5018 // For floating-point precision of 12: 5019 // 5020 // Log2ofMantissa = 5021 // -2.51285454f + 5022 // (4.07009056f + 5023 // (-2.12067489f + 5024 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5025 // 5026 // error 0.0000876136000, which is better than 13 bits 5027 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5028 getF32Constant(DAG, 0xbda7262e, dl)); 5029 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5030 getF32Constant(DAG, 0x3f25280b, dl)); 5031 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5032 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5033 getF32Constant(DAG, 0x4007b923, dl)); 5034 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5035 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5036 getF32Constant(DAG, 0x40823e2f, dl)); 5037 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5038 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5039 getF32Constant(DAG, 0x4020d29c, dl)); 5040 } else { // LimitFloatPrecision <= 18 5041 // For floating-point precision of 18: 5042 // 5043 // Log2ofMantissa = 5044 // -3.0400495f + 5045 // (6.1129976f + 5046 // (-5.3420409f + 5047 // (3.2865683f + 5048 // (-1.2669343f + 5049 // (0.27515199f - 5050 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5051 // 5052 // error 0.0000018516, which is better than 18 bits 5053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5054 getF32Constant(DAG, 0xbcd2769e, dl)); 5055 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5056 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5057 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5058 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5059 getF32Constant(DAG, 0x3fa22ae7, dl)); 5060 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5061 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5062 getF32Constant(DAG, 0x40525723, dl)); 5063 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5064 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5065 getF32Constant(DAG, 0x40aaf200, dl)); 5066 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5067 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5068 getF32Constant(DAG, 0x40c39dad, dl)); 5069 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5070 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5071 getF32Constant(DAG, 0x4042902c, dl)); 5072 } 5073 5074 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5075 } 5076 5077 // No special expansion. 5078 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5079 } 5080 5081 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5082 /// limited-precision mode. 5083 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5084 const TargetLowering &TLI) { 5085 // TODO: What fast-math-flags should be set on the floating-point nodes? 5086 5087 if (Op.getValueType() == MVT::f32 && 5088 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5089 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5090 5091 // Scale the exponent by log10(2) [0.30102999f]. 5092 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5093 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5094 getF32Constant(DAG, 0x3e9a209a, dl)); 5095 5096 // Get the significand and build it into a floating-point number with 5097 // exponent of 1. 5098 SDValue X = GetSignificand(DAG, Op1, dl); 5099 5100 SDValue Log10ofMantissa; 5101 if (LimitFloatPrecision <= 6) { 5102 // For floating-point precision of 6: 5103 // 5104 // Log10ofMantissa = 5105 // -0.50419619f + 5106 // (0.60948995f - 0.10380950f * x) * x; 5107 // 5108 // error 0.0014886165, which is 6 bits 5109 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5110 getF32Constant(DAG, 0xbdd49a13, dl)); 5111 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5112 getF32Constant(DAG, 0x3f1c0789, dl)); 5113 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5114 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5115 getF32Constant(DAG, 0x3f011300, dl)); 5116 } else if (LimitFloatPrecision <= 12) { 5117 // For floating-point precision of 12: 5118 // 5119 // Log10ofMantissa = 5120 // -0.64831180f + 5121 // (0.91751397f + 5122 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5123 // 5124 // error 0.00019228036, which is better than 12 bits 5125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5126 getF32Constant(DAG, 0x3d431f31, dl)); 5127 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5128 getF32Constant(DAG, 0x3ea21fb2, dl)); 5129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5130 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5131 getF32Constant(DAG, 0x3f6ae232, dl)); 5132 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5133 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5134 getF32Constant(DAG, 0x3f25f7c3, dl)); 5135 } else { // LimitFloatPrecision <= 18 5136 // For floating-point precision of 18: 5137 // 5138 // Log10ofMantissa = 5139 // -0.84299375f + 5140 // (1.5327582f + 5141 // (-1.0688956f + 5142 // (0.49102474f + 5143 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5144 // 5145 // error 0.0000037995730, which is better than 18 bits 5146 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5147 getF32Constant(DAG, 0x3c5d51ce, dl)); 5148 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5149 getF32Constant(DAG, 0x3e00685a, dl)); 5150 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5151 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5152 getF32Constant(DAG, 0x3efb6798, dl)); 5153 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5154 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5155 getF32Constant(DAG, 0x3f88d192, dl)); 5156 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5157 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5158 getF32Constant(DAG, 0x3fc4316c, dl)); 5159 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5160 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5161 getF32Constant(DAG, 0x3f57ce70, dl)); 5162 } 5163 5164 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5165 } 5166 5167 // No special expansion. 5168 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5169 } 5170 5171 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5172 /// limited-precision mode. 5173 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5174 const TargetLowering &TLI) { 5175 if (Op.getValueType() == MVT::f32 && 5176 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5177 return getLimitedPrecisionExp2(Op, dl, DAG); 5178 5179 // No special expansion. 5180 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5181 } 5182 5183 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5184 /// limited-precision mode with x == 10.0f. 5185 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5186 SelectionDAG &DAG, const TargetLowering &TLI) { 5187 bool IsExp10 = false; 5188 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5189 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5190 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5191 APFloat Ten(10.0f); 5192 IsExp10 = LHSC->isExactlyValue(Ten); 5193 } 5194 } 5195 5196 // TODO: What fast-math-flags should be set on the FMUL node? 5197 if (IsExp10) { 5198 // Put the exponent in the right bit position for later addition to the 5199 // final result: 5200 // 5201 // #define LOG2OF10 3.3219281f 5202 // t0 = Op * LOG2OF10; 5203 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5204 getF32Constant(DAG, 0x40549a78, dl)); 5205 return getLimitedPrecisionExp2(t0, dl, DAG); 5206 } 5207 5208 // No special expansion. 5209 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5210 } 5211 5212 /// ExpandPowI - Expand a llvm.powi intrinsic. 5213 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5214 SelectionDAG &DAG) { 5215 // If RHS is a constant, we can expand this out to a multiplication tree, 5216 // otherwise we end up lowering to a call to __powidf2 (for example). When 5217 // optimizing for size, we only want to do this if the expansion would produce 5218 // a small number of multiplies, otherwise we do the full expansion. 5219 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5220 // Get the exponent as a positive value. 5221 unsigned Val = RHSC->getSExtValue(); 5222 if ((int)Val < 0) Val = -Val; 5223 5224 // powi(x, 0) -> 1.0 5225 if (Val == 0) 5226 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5227 5228 const Function &F = DAG.getMachineFunction().getFunction(); 5229 if (!F.hasOptSize() || 5230 // If optimizing for size, don't insert too many multiplies. 5231 // This inserts up to 5 multiplies. 5232 countPopulation(Val) + Log2_32(Val) < 7) { 5233 // We use the simple binary decomposition method to generate the multiply 5234 // sequence. There are more optimal ways to do this (for example, 5235 // powi(x,15) generates one more multiply than it should), but this has 5236 // the benefit of being both really simple and much better than a libcall. 5237 SDValue Res; // Logically starts equal to 1.0 5238 SDValue CurSquare = LHS; 5239 // TODO: Intrinsics should have fast-math-flags that propagate to these 5240 // nodes. 5241 while (Val) { 5242 if (Val & 1) { 5243 if (Res.getNode()) 5244 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5245 else 5246 Res = CurSquare; // 1.0*CurSquare. 5247 } 5248 5249 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5250 CurSquare, CurSquare); 5251 Val >>= 1; 5252 } 5253 5254 // If the original was negative, invert the result, producing 1/(x*x*x). 5255 if (RHSC->getSExtValue() < 0) 5256 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5257 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5258 return Res; 5259 } 5260 } 5261 5262 // Otherwise, expand to a libcall. 5263 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5264 } 5265 5266 // getUnderlyingArgReg - Find underlying register used for a truncated or 5267 // bitcasted argument. 5268 static unsigned getUnderlyingArgReg(const SDValue &N) { 5269 switch (N.getOpcode()) { 5270 case ISD::CopyFromReg: 5271 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5272 case ISD::BITCAST: 5273 case ISD::AssertZext: 5274 case ISD::AssertSext: 5275 case ISD::TRUNCATE: 5276 return getUnderlyingArgReg(N.getOperand(0)); 5277 default: 5278 return 0; 5279 } 5280 } 5281 5282 /// If the DbgValueInst is a dbg_value of a function argument, create the 5283 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5284 /// instruction selection, they will be inserted to the entry BB. 5285 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5286 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5287 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5288 const Argument *Arg = dyn_cast<Argument>(V); 5289 if (!Arg) 5290 return false; 5291 5292 if (!IsDbgDeclare) { 5293 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5294 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5295 // the entry block. 5296 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5297 if (!IsInEntryBlock) 5298 return false; 5299 5300 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5301 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5302 // variable that also is a param. 5303 // 5304 // Although, if we are at the top of the entry block already, we can still 5305 // emit using ArgDbgValue. This might catch some situations when the 5306 // dbg.value refers to an argument that isn't used in the entry block, so 5307 // any CopyToReg node would be optimized out and the only way to express 5308 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5309 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5310 // we should only emit as ArgDbgValue if the Variable is an argument to the 5311 // current function, and the dbg.value intrinsic is found in the entry 5312 // block. 5313 bool VariableIsFunctionInputArg = Variable->isParameter() && 5314 !DL->getInlinedAt(); 5315 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5316 if (!IsInPrologue && !VariableIsFunctionInputArg) 5317 return false; 5318 5319 // Here we assume that a function argument on IR level only can be used to 5320 // describe one input parameter on source level. If we for example have 5321 // source code like this 5322 // 5323 // struct A { long x, y; }; 5324 // void foo(struct A a, long b) { 5325 // ... 5326 // b = a.x; 5327 // ... 5328 // } 5329 // 5330 // and IR like this 5331 // 5332 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5333 // entry: 5334 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5335 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5336 // call void @llvm.dbg.value(metadata i32 %b, "b", 5337 // ... 5338 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5339 // ... 5340 // 5341 // then the last dbg.value is describing a parameter "b" using a value that 5342 // is an argument. But since we already has used %a1 to describe a parameter 5343 // we should not handle that last dbg.value here (that would result in an 5344 // incorrect hoisting of the DBG_VALUE to the function entry). 5345 // Notice that we allow one dbg.value per IR level argument, to accomodate 5346 // for the situation with fragments above. 5347 if (VariableIsFunctionInputArg) { 5348 unsigned ArgNo = Arg->getArgNo(); 5349 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5350 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5351 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5352 return false; 5353 FuncInfo.DescribedArgs.set(ArgNo); 5354 } 5355 } 5356 5357 MachineFunction &MF = DAG.getMachineFunction(); 5358 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5359 5360 bool IsIndirect = false; 5361 Optional<MachineOperand> Op; 5362 // Some arguments' frame index is recorded during argument lowering. 5363 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5364 if (FI != std::numeric_limits<int>::max()) 5365 Op = MachineOperand::CreateFI(FI); 5366 5367 if (!Op && N.getNode()) { 5368 unsigned Reg = getUnderlyingArgReg(N); 5369 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5370 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5371 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5372 if (PR) 5373 Reg = PR; 5374 } 5375 if (Reg) { 5376 Op = MachineOperand::CreateReg(Reg, false); 5377 IsIndirect = IsDbgDeclare; 5378 } 5379 } 5380 5381 if (!Op && N.getNode()) { 5382 // Check if frame index is available. 5383 SDValue LCandidate = peekThroughBitcasts(N); 5384 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5385 if (FrameIndexSDNode *FINode = 5386 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5387 Op = MachineOperand::CreateFI(FINode->getIndex()); 5388 } 5389 5390 if (!Op) { 5391 // Check if ValueMap has reg number. 5392 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5393 if (VMI != FuncInfo.ValueMap.end()) { 5394 const auto &TLI = DAG.getTargetLoweringInfo(); 5395 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5396 V->getType(), getABIRegCopyCC(V)); 5397 if (RFV.occupiesMultipleRegs()) { 5398 unsigned Offset = 0; 5399 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5400 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5401 auto FragmentExpr = DIExpression::createFragmentExpression( 5402 Expr, Offset, RegAndSize.second); 5403 if (!FragmentExpr) 5404 continue; 5405 FuncInfo.ArgDbgValues.push_back( 5406 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5407 Op->getReg(), Variable, *FragmentExpr)); 5408 Offset += RegAndSize.second; 5409 } 5410 return true; 5411 } 5412 Op = MachineOperand::CreateReg(VMI->second, false); 5413 IsIndirect = IsDbgDeclare; 5414 } 5415 } 5416 5417 if (!Op) 5418 return false; 5419 5420 assert(Variable->isValidLocationForIntrinsic(DL) && 5421 "Expected inlined-at fields to agree"); 5422 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5423 FuncInfo.ArgDbgValues.push_back( 5424 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5425 *Op, Variable, Expr)); 5426 5427 return true; 5428 } 5429 5430 /// Return the appropriate SDDbgValue based on N. 5431 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5432 DILocalVariable *Variable, 5433 DIExpression *Expr, 5434 const DebugLoc &dl, 5435 unsigned DbgSDNodeOrder) { 5436 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5437 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5438 // stack slot locations. 5439 // 5440 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5441 // debug values here after optimization: 5442 // 5443 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5444 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5445 // 5446 // Both describe the direct values of their associated variables. 5447 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5448 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5449 } 5450 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5451 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5452 } 5453 5454 // VisualStudio defines setjmp as _setjmp 5455 #if defined(_MSC_VER) && defined(setjmp) && \ 5456 !defined(setjmp_undefined_for_msvc) 5457 # pragma push_macro("setjmp") 5458 # undef setjmp 5459 # define setjmp_undefined_for_msvc 5460 #endif 5461 5462 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5463 switch (Intrinsic) { 5464 case Intrinsic::smul_fix: 5465 return ISD::SMULFIX; 5466 case Intrinsic::umul_fix: 5467 return ISD::UMULFIX; 5468 default: 5469 llvm_unreachable("Unhandled fixed point intrinsic"); 5470 } 5471 } 5472 5473 /// Lower the call to the specified intrinsic function. If we want to emit this 5474 /// as a call to a named external function, return the name. Otherwise, lower it 5475 /// and return null. 5476 const char * 5477 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5479 SDLoc sdl = getCurSDLoc(); 5480 DebugLoc dl = getCurDebugLoc(); 5481 SDValue Res; 5482 5483 switch (Intrinsic) { 5484 default: 5485 // By default, turn this into a target intrinsic node. 5486 visitTargetIntrinsic(I, Intrinsic); 5487 return nullptr; 5488 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5489 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5490 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5491 case Intrinsic::returnaddress: 5492 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5493 TLI.getPointerTy(DAG.getDataLayout()), 5494 getValue(I.getArgOperand(0)))); 5495 return nullptr; 5496 case Intrinsic::addressofreturnaddress: 5497 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5498 TLI.getPointerTy(DAG.getDataLayout()))); 5499 return nullptr; 5500 case Intrinsic::sponentry: 5501 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5502 TLI.getPointerTy(DAG.getDataLayout()))); 5503 return nullptr; 5504 case Intrinsic::frameaddress: 5505 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5506 TLI.getPointerTy(DAG.getDataLayout()), 5507 getValue(I.getArgOperand(0)))); 5508 return nullptr; 5509 case Intrinsic::read_register: { 5510 Value *Reg = I.getArgOperand(0); 5511 SDValue Chain = getRoot(); 5512 SDValue RegName = 5513 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5514 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5515 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5516 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5517 setValue(&I, Res); 5518 DAG.setRoot(Res.getValue(1)); 5519 return nullptr; 5520 } 5521 case Intrinsic::write_register: { 5522 Value *Reg = I.getArgOperand(0); 5523 Value *RegValue = I.getArgOperand(1); 5524 SDValue Chain = getRoot(); 5525 SDValue RegName = 5526 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5527 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5528 RegName, getValue(RegValue))); 5529 return nullptr; 5530 } 5531 case Intrinsic::setjmp: 5532 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5533 case Intrinsic::longjmp: 5534 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5535 case Intrinsic::memcpy: { 5536 const auto &MCI = cast<MemCpyInst>(I); 5537 SDValue Op1 = getValue(I.getArgOperand(0)); 5538 SDValue Op2 = getValue(I.getArgOperand(1)); 5539 SDValue Op3 = getValue(I.getArgOperand(2)); 5540 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5541 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5542 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5543 unsigned Align = MinAlign(DstAlign, SrcAlign); 5544 bool isVol = MCI.isVolatile(); 5545 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5546 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5547 // node. 5548 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5549 false, isTC, 5550 MachinePointerInfo(I.getArgOperand(0)), 5551 MachinePointerInfo(I.getArgOperand(1))); 5552 updateDAGForMaybeTailCall(MC); 5553 return nullptr; 5554 } 5555 case Intrinsic::memset: { 5556 const auto &MSI = cast<MemSetInst>(I); 5557 SDValue Op1 = getValue(I.getArgOperand(0)); 5558 SDValue Op2 = getValue(I.getArgOperand(1)); 5559 SDValue Op3 = getValue(I.getArgOperand(2)); 5560 // @llvm.memset defines 0 and 1 to both mean no alignment. 5561 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5562 bool isVol = MSI.isVolatile(); 5563 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5564 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5565 isTC, MachinePointerInfo(I.getArgOperand(0))); 5566 updateDAGForMaybeTailCall(MS); 5567 return nullptr; 5568 } 5569 case Intrinsic::memmove: { 5570 const auto &MMI = cast<MemMoveInst>(I); 5571 SDValue Op1 = getValue(I.getArgOperand(0)); 5572 SDValue Op2 = getValue(I.getArgOperand(1)); 5573 SDValue Op3 = getValue(I.getArgOperand(2)); 5574 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5575 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5576 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5577 unsigned Align = MinAlign(DstAlign, SrcAlign); 5578 bool isVol = MMI.isVolatile(); 5579 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5580 // FIXME: Support passing different dest/src alignments to the memmove DAG 5581 // node. 5582 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5583 isTC, MachinePointerInfo(I.getArgOperand(0)), 5584 MachinePointerInfo(I.getArgOperand(1))); 5585 updateDAGForMaybeTailCall(MM); 5586 return nullptr; 5587 } 5588 case Intrinsic::memcpy_element_unordered_atomic: { 5589 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5590 SDValue Dst = getValue(MI.getRawDest()); 5591 SDValue Src = getValue(MI.getRawSource()); 5592 SDValue Length = getValue(MI.getLength()); 5593 5594 unsigned DstAlign = MI.getDestAlignment(); 5595 unsigned SrcAlign = MI.getSourceAlignment(); 5596 Type *LengthTy = MI.getLength()->getType(); 5597 unsigned ElemSz = MI.getElementSizeInBytes(); 5598 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5599 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5600 SrcAlign, Length, LengthTy, ElemSz, isTC, 5601 MachinePointerInfo(MI.getRawDest()), 5602 MachinePointerInfo(MI.getRawSource())); 5603 updateDAGForMaybeTailCall(MC); 5604 return nullptr; 5605 } 5606 case Intrinsic::memmove_element_unordered_atomic: { 5607 auto &MI = cast<AtomicMemMoveInst>(I); 5608 SDValue Dst = getValue(MI.getRawDest()); 5609 SDValue Src = getValue(MI.getRawSource()); 5610 SDValue Length = getValue(MI.getLength()); 5611 5612 unsigned DstAlign = MI.getDestAlignment(); 5613 unsigned SrcAlign = MI.getSourceAlignment(); 5614 Type *LengthTy = MI.getLength()->getType(); 5615 unsigned ElemSz = MI.getElementSizeInBytes(); 5616 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5617 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5618 SrcAlign, Length, LengthTy, ElemSz, isTC, 5619 MachinePointerInfo(MI.getRawDest()), 5620 MachinePointerInfo(MI.getRawSource())); 5621 updateDAGForMaybeTailCall(MC); 5622 return nullptr; 5623 } 5624 case Intrinsic::memset_element_unordered_atomic: { 5625 auto &MI = cast<AtomicMemSetInst>(I); 5626 SDValue Dst = getValue(MI.getRawDest()); 5627 SDValue Val = getValue(MI.getValue()); 5628 SDValue Length = getValue(MI.getLength()); 5629 5630 unsigned DstAlign = MI.getDestAlignment(); 5631 Type *LengthTy = MI.getLength()->getType(); 5632 unsigned ElemSz = MI.getElementSizeInBytes(); 5633 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5634 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5635 LengthTy, ElemSz, isTC, 5636 MachinePointerInfo(MI.getRawDest())); 5637 updateDAGForMaybeTailCall(MC); 5638 return nullptr; 5639 } 5640 case Intrinsic::dbg_addr: 5641 case Intrinsic::dbg_declare: { 5642 const auto &DI = cast<DbgVariableIntrinsic>(I); 5643 DILocalVariable *Variable = DI.getVariable(); 5644 DIExpression *Expression = DI.getExpression(); 5645 dropDanglingDebugInfo(Variable, Expression); 5646 assert(Variable && "Missing variable"); 5647 5648 // Check if address has undef value. 5649 const Value *Address = DI.getVariableLocation(); 5650 if (!Address || isa<UndefValue>(Address) || 5651 (Address->use_empty() && !isa<Argument>(Address))) { 5652 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5653 return nullptr; 5654 } 5655 5656 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5657 5658 // Check if this variable can be described by a frame index, typically 5659 // either as a static alloca or a byval parameter. 5660 int FI = std::numeric_limits<int>::max(); 5661 if (const auto *AI = 5662 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5663 if (AI->isStaticAlloca()) { 5664 auto I = FuncInfo.StaticAllocaMap.find(AI); 5665 if (I != FuncInfo.StaticAllocaMap.end()) 5666 FI = I->second; 5667 } 5668 } else if (const auto *Arg = dyn_cast<Argument>( 5669 Address->stripInBoundsConstantOffsets())) { 5670 FI = FuncInfo.getArgumentFrameIndex(Arg); 5671 } 5672 5673 // llvm.dbg.addr is control dependent and always generates indirect 5674 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5675 // the MachineFunction variable table. 5676 if (FI != std::numeric_limits<int>::max()) { 5677 if (Intrinsic == Intrinsic::dbg_addr) { 5678 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5679 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5680 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5681 } 5682 return nullptr; 5683 } 5684 5685 SDValue &N = NodeMap[Address]; 5686 if (!N.getNode() && isa<Argument>(Address)) 5687 // Check unused arguments map. 5688 N = UnusedArgNodeMap[Address]; 5689 SDDbgValue *SDV; 5690 if (N.getNode()) { 5691 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5692 Address = BCI->getOperand(0); 5693 // Parameters are handled specially. 5694 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5695 if (isParameter && FINode) { 5696 // Byval parameter. We have a frame index at this point. 5697 SDV = 5698 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5699 /*IsIndirect*/ true, dl, SDNodeOrder); 5700 } else if (isa<Argument>(Address)) { 5701 // Address is an argument, so try to emit its dbg value using 5702 // virtual register info from the FuncInfo.ValueMap. 5703 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5704 return nullptr; 5705 } else { 5706 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5707 true, dl, SDNodeOrder); 5708 } 5709 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5710 } else { 5711 // If Address is an argument then try to emit its dbg value using 5712 // virtual register info from the FuncInfo.ValueMap. 5713 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5714 N)) { 5715 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5716 } 5717 } 5718 return nullptr; 5719 } 5720 case Intrinsic::dbg_label: { 5721 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5722 DILabel *Label = DI.getLabel(); 5723 assert(Label && "Missing label"); 5724 5725 SDDbgLabel *SDV; 5726 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5727 DAG.AddDbgLabel(SDV); 5728 return nullptr; 5729 } 5730 case Intrinsic::dbg_value: { 5731 const DbgValueInst &DI = cast<DbgValueInst>(I); 5732 assert(DI.getVariable() && "Missing variable"); 5733 5734 DILocalVariable *Variable = DI.getVariable(); 5735 DIExpression *Expression = DI.getExpression(); 5736 dropDanglingDebugInfo(Variable, Expression); 5737 const Value *V = DI.getValue(); 5738 if (!V) 5739 return nullptr; 5740 5741 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5742 SDNodeOrder)) 5743 return nullptr; 5744 5745 // TODO: Dangling debug info will eventually either be resolved or produce 5746 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5747 // between the original dbg.value location and its resolved DBG_VALUE, which 5748 // we should ideally fill with an extra Undef DBG_VALUE. 5749 5750 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5751 return nullptr; 5752 } 5753 5754 case Intrinsic::eh_typeid_for: { 5755 // Find the type id for the given typeinfo. 5756 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5757 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5758 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5759 setValue(&I, Res); 5760 return nullptr; 5761 } 5762 5763 case Intrinsic::eh_return_i32: 5764 case Intrinsic::eh_return_i64: 5765 DAG.getMachineFunction().setCallsEHReturn(true); 5766 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5767 MVT::Other, 5768 getControlRoot(), 5769 getValue(I.getArgOperand(0)), 5770 getValue(I.getArgOperand(1)))); 5771 return nullptr; 5772 case Intrinsic::eh_unwind_init: 5773 DAG.getMachineFunction().setCallsUnwindInit(true); 5774 return nullptr; 5775 case Intrinsic::eh_dwarf_cfa: 5776 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5777 TLI.getPointerTy(DAG.getDataLayout()), 5778 getValue(I.getArgOperand(0)))); 5779 return nullptr; 5780 case Intrinsic::eh_sjlj_callsite: { 5781 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5782 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5783 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5784 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5785 5786 MMI.setCurrentCallSite(CI->getZExtValue()); 5787 return nullptr; 5788 } 5789 case Intrinsic::eh_sjlj_functioncontext: { 5790 // Get and store the index of the function context. 5791 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5792 AllocaInst *FnCtx = 5793 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5794 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5795 MFI.setFunctionContextIndex(FI); 5796 return nullptr; 5797 } 5798 case Intrinsic::eh_sjlj_setjmp: { 5799 SDValue Ops[2]; 5800 Ops[0] = getRoot(); 5801 Ops[1] = getValue(I.getArgOperand(0)); 5802 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5803 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5804 setValue(&I, Op.getValue(0)); 5805 DAG.setRoot(Op.getValue(1)); 5806 return nullptr; 5807 } 5808 case Intrinsic::eh_sjlj_longjmp: 5809 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5810 getRoot(), getValue(I.getArgOperand(0)))); 5811 return nullptr; 5812 case Intrinsic::eh_sjlj_setup_dispatch: 5813 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5814 getRoot())); 5815 return nullptr; 5816 case Intrinsic::masked_gather: 5817 visitMaskedGather(I); 5818 return nullptr; 5819 case Intrinsic::masked_load: 5820 visitMaskedLoad(I); 5821 return nullptr; 5822 case Intrinsic::masked_scatter: 5823 visitMaskedScatter(I); 5824 return nullptr; 5825 case Intrinsic::masked_store: 5826 visitMaskedStore(I); 5827 return nullptr; 5828 case Intrinsic::masked_expandload: 5829 visitMaskedLoad(I, true /* IsExpanding */); 5830 return nullptr; 5831 case Intrinsic::masked_compressstore: 5832 visitMaskedStore(I, true /* IsCompressing */); 5833 return nullptr; 5834 case Intrinsic::x86_mmx_pslli_w: 5835 case Intrinsic::x86_mmx_pslli_d: 5836 case Intrinsic::x86_mmx_pslli_q: 5837 case Intrinsic::x86_mmx_psrli_w: 5838 case Intrinsic::x86_mmx_psrli_d: 5839 case Intrinsic::x86_mmx_psrli_q: 5840 case Intrinsic::x86_mmx_psrai_w: 5841 case Intrinsic::x86_mmx_psrai_d: { 5842 SDValue ShAmt = getValue(I.getArgOperand(1)); 5843 if (isa<ConstantSDNode>(ShAmt)) { 5844 visitTargetIntrinsic(I, Intrinsic); 5845 return nullptr; 5846 } 5847 unsigned NewIntrinsic = 0; 5848 EVT ShAmtVT = MVT::v2i32; 5849 switch (Intrinsic) { 5850 case Intrinsic::x86_mmx_pslli_w: 5851 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5852 break; 5853 case Intrinsic::x86_mmx_pslli_d: 5854 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5855 break; 5856 case Intrinsic::x86_mmx_pslli_q: 5857 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5858 break; 5859 case Intrinsic::x86_mmx_psrli_w: 5860 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5861 break; 5862 case Intrinsic::x86_mmx_psrli_d: 5863 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5864 break; 5865 case Intrinsic::x86_mmx_psrli_q: 5866 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5867 break; 5868 case Intrinsic::x86_mmx_psrai_w: 5869 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5870 break; 5871 case Intrinsic::x86_mmx_psrai_d: 5872 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5873 break; 5874 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5875 } 5876 5877 // The vector shift intrinsics with scalars uses 32b shift amounts but 5878 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5879 // to be zero. 5880 // We must do this early because v2i32 is not a legal type. 5881 SDValue ShOps[2]; 5882 ShOps[0] = ShAmt; 5883 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5884 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5885 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5886 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5887 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5888 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5889 getValue(I.getArgOperand(0)), ShAmt); 5890 setValue(&I, Res); 5891 return nullptr; 5892 } 5893 case Intrinsic::powi: 5894 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5895 getValue(I.getArgOperand(1)), DAG)); 5896 return nullptr; 5897 case Intrinsic::log: 5898 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5899 return nullptr; 5900 case Intrinsic::log2: 5901 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5902 return nullptr; 5903 case Intrinsic::log10: 5904 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5905 return nullptr; 5906 case Intrinsic::exp: 5907 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5908 return nullptr; 5909 case Intrinsic::exp2: 5910 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5911 return nullptr; 5912 case Intrinsic::pow: 5913 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5914 getValue(I.getArgOperand(1)), DAG, TLI)); 5915 return nullptr; 5916 case Intrinsic::sqrt: 5917 case Intrinsic::fabs: 5918 case Intrinsic::sin: 5919 case Intrinsic::cos: 5920 case Intrinsic::floor: 5921 case Intrinsic::ceil: 5922 case Intrinsic::trunc: 5923 case Intrinsic::rint: 5924 case Intrinsic::nearbyint: 5925 case Intrinsic::round: 5926 case Intrinsic::canonicalize: { 5927 unsigned Opcode; 5928 switch (Intrinsic) { 5929 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5930 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5931 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5932 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5933 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5934 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5935 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5936 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5937 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5938 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5939 case Intrinsic::round: Opcode = ISD::FROUND; break; 5940 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5941 } 5942 5943 setValue(&I, DAG.getNode(Opcode, sdl, 5944 getValue(I.getArgOperand(0)).getValueType(), 5945 getValue(I.getArgOperand(0)))); 5946 return nullptr; 5947 } 5948 case Intrinsic::minnum: { 5949 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5950 unsigned Opc = 5951 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5952 ? ISD::FMINIMUM 5953 : ISD::FMINNUM; 5954 setValue(&I, DAG.getNode(Opc, sdl, VT, 5955 getValue(I.getArgOperand(0)), 5956 getValue(I.getArgOperand(1)))); 5957 return nullptr; 5958 } 5959 case Intrinsic::maxnum: { 5960 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5961 unsigned Opc = 5962 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5963 ? ISD::FMAXIMUM 5964 : ISD::FMAXNUM; 5965 setValue(&I, DAG.getNode(Opc, sdl, VT, 5966 getValue(I.getArgOperand(0)), 5967 getValue(I.getArgOperand(1)))); 5968 return nullptr; 5969 } 5970 case Intrinsic::minimum: 5971 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5972 getValue(I.getArgOperand(0)).getValueType(), 5973 getValue(I.getArgOperand(0)), 5974 getValue(I.getArgOperand(1)))); 5975 return nullptr; 5976 case Intrinsic::maximum: 5977 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5978 getValue(I.getArgOperand(0)).getValueType(), 5979 getValue(I.getArgOperand(0)), 5980 getValue(I.getArgOperand(1)))); 5981 return nullptr; 5982 case Intrinsic::copysign: 5983 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5984 getValue(I.getArgOperand(0)).getValueType(), 5985 getValue(I.getArgOperand(0)), 5986 getValue(I.getArgOperand(1)))); 5987 return nullptr; 5988 case Intrinsic::fma: 5989 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5990 getValue(I.getArgOperand(0)).getValueType(), 5991 getValue(I.getArgOperand(0)), 5992 getValue(I.getArgOperand(1)), 5993 getValue(I.getArgOperand(2)))); 5994 return nullptr; 5995 case Intrinsic::experimental_constrained_fadd: 5996 case Intrinsic::experimental_constrained_fsub: 5997 case Intrinsic::experimental_constrained_fmul: 5998 case Intrinsic::experimental_constrained_fdiv: 5999 case Intrinsic::experimental_constrained_frem: 6000 case Intrinsic::experimental_constrained_fma: 6001 case Intrinsic::experimental_constrained_sqrt: 6002 case Intrinsic::experimental_constrained_pow: 6003 case Intrinsic::experimental_constrained_powi: 6004 case Intrinsic::experimental_constrained_sin: 6005 case Intrinsic::experimental_constrained_cos: 6006 case Intrinsic::experimental_constrained_exp: 6007 case Intrinsic::experimental_constrained_exp2: 6008 case Intrinsic::experimental_constrained_log: 6009 case Intrinsic::experimental_constrained_log10: 6010 case Intrinsic::experimental_constrained_log2: 6011 case Intrinsic::experimental_constrained_rint: 6012 case Intrinsic::experimental_constrained_nearbyint: 6013 case Intrinsic::experimental_constrained_maxnum: 6014 case Intrinsic::experimental_constrained_minnum: 6015 case Intrinsic::experimental_constrained_ceil: 6016 case Intrinsic::experimental_constrained_floor: 6017 case Intrinsic::experimental_constrained_round: 6018 case Intrinsic::experimental_constrained_trunc: 6019 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6020 return nullptr; 6021 case Intrinsic::fmuladd: { 6022 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6023 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6024 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6025 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6026 getValue(I.getArgOperand(0)).getValueType(), 6027 getValue(I.getArgOperand(0)), 6028 getValue(I.getArgOperand(1)), 6029 getValue(I.getArgOperand(2)))); 6030 } else { 6031 // TODO: Intrinsic calls should have fast-math-flags. 6032 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6033 getValue(I.getArgOperand(0)).getValueType(), 6034 getValue(I.getArgOperand(0)), 6035 getValue(I.getArgOperand(1))); 6036 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6037 getValue(I.getArgOperand(0)).getValueType(), 6038 Mul, 6039 getValue(I.getArgOperand(2))); 6040 setValue(&I, Add); 6041 } 6042 return nullptr; 6043 } 6044 case Intrinsic::convert_to_fp16: 6045 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6046 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6047 getValue(I.getArgOperand(0)), 6048 DAG.getTargetConstant(0, sdl, 6049 MVT::i32)))); 6050 return nullptr; 6051 case Intrinsic::convert_from_fp16: 6052 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6053 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6054 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6055 getValue(I.getArgOperand(0))))); 6056 return nullptr; 6057 case Intrinsic::pcmarker: { 6058 SDValue Tmp = getValue(I.getArgOperand(0)); 6059 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6060 return nullptr; 6061 } 6062 case Intrinsic::readcyclecounter: { 6063 SDValue Op = getRoot(); 6064 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6065 DAG.getVTList(MVT::i64, MVT::Other), Op); 6066 setValue(&I, Res); 6067 DAG.setRoot(Res.getValue(1)); 6068 return nullptr; 6069 } 6070 case Intrinsic::bitreverse: 6071 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6072 getValue(I.getArgOperand(0)).getValueType(), 6073 getValue(I.getArgOperand(0)))); 6074 return nullptr; 6075 case Intrinsic::bswap: 6076 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6077 getValue(I.getArgOperand(0)).getValueType(), 6078 getValue(I.getArgOperand(0)))); 6079 return nullptr; 6080 case Intrinsic::cttz: { 6081 SDValue Arg = getValue(I.getArgOperand(0)); 6082 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6083 EVT Ty = Arg.getValueType(); 6084 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6085 sdl, Ty, Arg)); 6086 return nullptr; 6087 } 6088 case Intrinsic::ctlz: { 6089 SDValue Arg = getValue(I.getArgOperand(0)); 6090 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6091 EVT Ty = Arg.getValueType(); 6092 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6093 sdl, Ty, Arg)); 6094 return nullptr; 6095 } 6096 case Intrinsic::ctpop: { 6097 SDValue Arg = getValue(I.getArgOperand(0)); 6098 EVT Ty = Arg.getValueType(); 6099 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6100 return nullptr; 6101 } 6102 case Intrinsic::fshl: 6103 case Intrinsic::fshr: { 6104 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6105 SDValue X = getValue(I.getArgOperand(0)); 6106 SDValue Y = getValue(I.getArgOperand(1)); 6107 SDValue Z = getValue(I.getArgOperand(2)); 6108 EVT VT = X.getValueType(); 6109 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6110 SDValue Zero = DAG.getConstant(0, sdl, VT); 6111 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6112 6113 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6114 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6115 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6116 return nullptr; 6117 } 6118 6119 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6120 // avoid the select that is necessary in the general case to filter out 6121 // the 0-shift possibility that leads to UB. 6122 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6123 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6124 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6125 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6126 return nullptr; 6127 } 6128 6129 // Some targets only rotate one way. Try the opposite direction. 6130 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6131 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6132 // Negate the shift amount because it is safe to ignore the high bits. 6133 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6134 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6135 return nullptr; 6136 } 6137 6138 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6139 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6140 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6141 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6142 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6143 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6144 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6145 return nullptr; 6146 } 6147 6148 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6149 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6150 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6151 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6152 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6153 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6154 6155 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6156 // and that is undefined. We must compare and select to avoid UB. 6157 EVT CCVT = MVT::i1; 6158 if (VT.isVector()) 6159 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6160 6161 // For fshl, 0-shift returns the 1st arg (X). 6162 // For fshr, 0-shift returns the 2nd arg (Y). 6163 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6164 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6165 return nullptr; 6166 } 6167 case Intrinsic::sadd_sat: { 6168 SDValue Op1 = getValue(I.getArgOperand(0)); 6169 SDValue Op2 = getValue(I.getArgOperand(1)); 6170 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6171 return nullptr; 6172 } 6173 case Intrinsic::uadd_sat: { 6174 SDValue Op1 = getValue(I.getArgOperand(0)); 6175 SDValue Op2 = getValue(I.getArgOperand(1)); 6176 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6177 return nullptr; 6178 } 6179 case Intrinsic::ssub_sat: { 6180 SDValue Op1 = getValue(I.getArgOperand(0)); 6181 SDValue Op2 = getValue(I.getArgOperand(1)); 6182 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6183 return nullptr; 6184 } 6185 case Intrinsic::usub_sat: { 6186 SDValue Op1 = getValue(I.getArgOperand(0)); 6187 SDValue Op2 = getValue(I.getArgOperand(1)); 6188 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6189 return nullptr; 6190 } 6191 case Intrinsic::smul_fix: 6192 case Intrinsic::umul_fix: { 6193 SDValue Op1 = getValue(I.getArgOperand(0)); 6194 SDValue Op2 = getValue(I.getArgOperand(1)); 6195 SDValue Op3 = getValue(I.getArgOperand(2)); 6196 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6197 Op1.getValueType(), Op1, Op2, Op3)); 6198 return nullptr; 6199 } 6200 case Intrinsic::stacksave: { 6201 SDValue Op = getRoot(); 6202 Res = DAG.getNode( 6203 ISD::STACKSAVE, sdl, 6204 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6205 setValue(&I, Res); 6206 DAG.setRoot(Res.getValue(1)); 6207 return nullptr; 6208 } 6209 case Intrinsic::stackrestore: 6210 Res = getValue(I.getArgOperand(0)); 6211 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6212 return nullptr; 6213 case Intrinsic::get_dynamic_area_offset: { 6214 SDValue Op = getRoot(); 6215 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6216 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6217 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6218 // target. 6219 if (PtrTy != ResTy) 6220 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6221 " intrinsic!"); 6222 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6223 Op); 6224 DAG.setRoot(Op); 6225 setValue(&I, Res); 6226 return nullptr; 6227 } 6228 case Intrinsic::stackguard: { 6229 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6230 MachineFunction &MF = DAG.getMachineFunction(); 6231 const Module &M = *MF.getFunction().getParent(); 6232 SDValue Chain = getRoot(); 6233 if (TLI.useLoadStackGuardNode()) { 6234 Res = getLoadStackGuard(DAG, sdl, Chain); 6235 } else { 6236 const Value *Global = TLI.getSDagStackGuard(M); 6237 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6238 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6239 MachinePointerInfo(Global, 0), Align, 6240 MachineMemOperand::MOVolatile); 6241 } 6242 if (TLI.useStackGuardXorFP()) 6243 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6244 DAG.setRoot(Chain); 6245 setValue(&I, Res); 6246 return nullptr; 6247 } 6248 case Intrinsic::stackprotector: { 6249 // Emit code into the DAG to store the stack guard onto the stack. 6250 MachineFunction &MF = DAG.getMachineFunction(); 6251 MachineFrameInfo &MFI = MF.getFrameInfo(); 6252 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6253 SDValue Src, Chain = getRoot(); 6254 6255 if (TLI.useLoadStackGuardNode()) 6256 Src = getLoadStackGuard(DAG, sdl, Chain); 6257 else 6258 Src = getValue(I.getArgOperand(0)); // The guard's value. 6259 6260 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6261 6262 int FI = FuncInfo.StaticAllocaMap[Slot]; 6263 MFI.setStackProtectorIndex(FI); 6264 6265 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6266 6267 // Store the stack protector onto the stack. 6268 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6269 DAG.getMachineFunction(), FI), 6270 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6271 setValue(&I, Res); 6272 DAG.setRoot(Res); 6273 return nullptr; 6274 } 6275 case Intrinsic::objectsize: { 6276 // If we don't know by now, we're never going to know. 6277 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6278 6279 assert(CI && "Non-constant type in __builtin_object_size?"); 6280 6281 SDValue Arg = getValue(I.getCalledValue()); 6282 EVT Ty = Arg.getValueType(); 6283 6284 if (CI->isZero()) 6285 Res = DAG.getConstant(-1ULL, sdl, Ty); 6286 else 6287 Res = DAG.getConstant(0, sdl, Ty); 6288 6289 setValue(&I, Res); 6290 return nullptr; 6291 } 6292 6293 case Intrinsic::is_constant: 6294 // If this wasn't constant-folded away by now, then it's not a 6295 // constant. 6296 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6297 return nullptr; 6298 6299 case Intrinsic::annotation: 6300 case Intrinsic::ptr_annotation: 6301 case Intrinsic::launder_invariant_group: 6302 case Intrinsic::strip_invariant_group: 6303 // Drop the intrinsic, but forward the value 6304 setValue(&I, getValue(I.getOperand(0))); 6305 return nullptr; 6306 case Intrinsic::assume: 6307 case Intrinsic::var_annotation: 6308 case Intrinsic::sideeffect: 6309 // Discard annotate attributes, assumptions, and artificial side-effects. 6310 return nullptr; 6311 6312 case Intrinsic::codeview_annotation: { 6313 // Emit a label associated with this metadata. 6314 MachineFunction &MF = DAG.getMachineFunction(); 6315 MCSymbol *Label = 6316 MF.getMMI().getContext().createTempSymbol("annotation", true); 6317 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6318 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6319 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6320 DAG.setRoot(Res); 6321 return nullptr; 6322 } 6323 6324 case Intrinsic::init_trampoline: { 6325 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6326 6327 SDValue Ops[6]; 6328 Ops[0] = getRoot(); 6329 Ops[1] = getValue(I.getArgOperand(0)); 6330 Ops[2] = getValue(I.getArgOperand(1)); 6331 Ops[3] = getValue(I.getArgOperand(2)); 6332 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6333 Ops[5] = DAG.getSrcValue(F); 6334 6335 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6336 6337 DAG.setRoot(Res); 6338 return nullptr; 6339 } 6340 case Intrinsic::adjust_trampoline: 6341 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6342 TLI.getPointerTy(DAG.getDataLayout()), 6343 getValue(I.getArgOperand(0)))); 6344 return nullptr; 6345 case Intrinsic::gcroot: { 6346 assert(DAG.getMachineFunction().getFunction().hasGC() && 6347 "only valid in functions with gc specified, enforced by Verifier"); 6348 assert(GFI && "implied by previous"); 6349 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6350 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6351 6352 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6353 GFI->addStackRoot(FI->getIndex(), TypeMap); 6354 return nullptr; 6355 } 6356 case Intrinsic::gcread: 6357 case Intrinsic::gcwrite: 6358 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6359 case Intrinsic::flt_rounds: 6360 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6361 return nullptr; 6362 6363 case Intrinsic::expect: 6364 // Just replace __builtin_expect(exp, c) with EXP. 6365 setValue(&I, getValue(I.getArgOperand(0))); 6366 return nullptr; 6367 6368 case Intrinsic::debugtrap: 6369 case Intrinsic::trap: { 6370 StringRef TrapFuncName = 6371 I.getAttributes() 6372 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6373 .getValueAsString(); 6374 if (TrapFuncName.empty()) { 6375 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6376 ISD::TRAP : ISD::DEBUGTRAP; 6377 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6378 return nullptr; 6379 } 6380 TargetLowering::ArgListTy Args; 6381 6382 TargetLowering::CallLoweringInfo CLI(DAG); 6383 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6384 CallingConv::C, I.getType(), 6385 DAG.getExternalSymbol(TrapFuncName.data(), 6386 TLI.getPointerTy(DAG.getDataLayout())), 6387 std::move(Args)); 6388 6389 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6390 DAG.setRoot(Result.second); 6391 return nullptr; 6392 } 6393 6394 case Intrinsic::uadd_with_overflow: 6395 case Intrinsic::sadd_with_overflow: 6396 case Intrinsic::usub_with_overflow: 6397 case Intrinsic::ssub_with_overflow: 6398 case Intrinsic::umul_with_overflow: 6399 case Intrinsic::smul_with_overflow: { 6400 ISD::NodeType Op; 6401 switch (Intrinsic) { 6402 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6403 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6404 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6405 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6406 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6407 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6408 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6409 } 6410 SDValue Op1 = getValue(I.getArgOperand(0)); 6411 SDValue Op2 = getValue(I.getArgOperand(1)); 6412 6413 EVT ResultVT = Op1.getValueType(); 6414 EVT OverflowVT = MVT::i1; 6415 if (ResultVT.isVector()) 6416 OverflowVT = EVT::getVectorVT( 6417 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6418 6419 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6420 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6421 return nullptr; 6422 } 6423 case Intrinsic::prefetch: { 6424 SDValue Ops[5]; 6425 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6426 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6427 Ops[0] = DAG.getRoot(); 6428 Ops[1] = getValue(I.getArgOperand(0)); 6429 Ops[2] = getValue(I.getArgOperand(1)); 6430 Ops[3] = getValue(I.getArgOperand(2)); 6431 Ops[4] = getValue(I.getArgOperand(3)); 6432 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6433 DAG.getVTList(MVT::Other), Ops, 6434 EVT::getIntegerVT(*Context, 8), 6435 MachinePointerInfo(I.getArgOperand(0)), 6436 0, /* align */ 6437 Flags); 6438 6439 // Chain the prefetch in parallell with any pending loads, to stay out of 6440 // the way of later optimizations. 6441 PendingLoads.push_back(Result); 6442 Result = getRoot(); 6443 DAG.setRoot(Result); 6444 return nullptr; 6445 } 6446 case Intrinsic::lifetime_start: 6447 case Intrinsic::lifetime_end: { 6448 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6449 // Stack coloring is not enabled in O0, discard region information. 6450 if (TM.getOptLevel() == CodeGenOpt::None) 6451 return nullptr; 6452 6453 const int64_t ObjectSize = 6454 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6455 Value *const ObjectPtr = I.getArgOperand(1); 6456 SmallVector<Value *, 4> Allocas; 6457 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6458 6459 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6460 E = Allocas.end(); Object != E; ++Object) { 6461 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6462 6463 // Could not find an Alloca. 6464 if (!LifetimeObject) 6465 continue; 6466 6467 // First check that the Alloca is static, otherwise it won't have a 6468 // valid frame index. 6469 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6470 if (SI == FuncInfo.StaticAllocaMap.end()) 6471 return nullptr; 6472 6473 const int FrameIndex = SI->second; 6474 int64_t Offset; 6475 if (GetPointerBaseWithConstantOffset( 6476 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6477 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6478 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6479 Offset); 6480 DAG.setRoot(Res); 6481 } 6482 return nullptr; 6483 } 6484 case Intrinsic::invariant_start: 6485 // Discard region information. 6486 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6487 return nullptr; 6488 case Intrinsic::invariant_end: 6489 // Discard region information. 6490 return nullptr; 6491 case Intrinsic::clear_cache: 6492 return TLI.getClearCacheBuiltinName(); 6493 case Intrinsic::donothing: 6494 // ignore 6495 return nullptr; 6496 case Intrinsic::experimental_stackmap: 6497 visitStackmap(I); 6498 return nullptr; 6499 case Intrinsic::experimental_patchpoint_void: 6500 case Intrinsic::experimental_patchpoint_i64: 6501 visitPatchpoint(&I); 6502 return nullptr; 6503 case Intrinsic::experimental_gc_statepoint: 6504 LowerStatepoint(ImmutableStatepoint(&I)); 6505 return nullptr; 6506 case Intrinsic::experimental_gc_result: 6507 visitGCResult(cast<GCResultInst>(I)); 6508 return nullptr; 6509 case Intrinsic::experimental_gc_relocate: 6510 visitGCRelocate(cast<GCRelocateInst>(I)); 6511 return nullptr; 6512 case Intrinsic::instrprof_increment: 6513 llvm_unreachable("instrprof failed to lower an increment"); 6514 case Intrinsic::instrprof_value_profile: 6515 llvm_unreachable("instrprof failed to lower a value profiling call"); 6516 case Intrinsic::localescape: { 6517 MachineFunction &MF = DAG.getMachineFunction(); 6518 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6519 6520 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6521 // is the same on all targets. 6522 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6523 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6524 if (isa<ConstantPointerNull>(Arg)) 6525 continue; // Skip null pointers. They represent a hole in index space. 6526 AllocaInst *Slot = cast<AllocaInst>(Arg); 6527 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6528 "can only escape static allocas"); 6529 int FI = FuncInfo.StaticAllocaMap[Slot]; 6530 MCSymbol *FrameAllocSym = 6531 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6532 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6533 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6534 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6535 .addSym(FrameAllocSym) 6536 .addFrameIndex(FI); 6537 } 6538 6539 return nullptr; 6540 } 6541 6542 case Intrinsic::localrecover: { 6543 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6544 MachineFunction &MF = DAG.getMachineFunction(); 6545 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6546 6547 // Get the symbol that defines the frame offset. 6548 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6549 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6550 unsigned IdxVal = 6551 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6552 MCSymbol *FrameAllocSym = 6553 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6554 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6555 6556 // Create a MCSymbol for the label to avoid any target lowering 6557 // that would make this PC relative. 6558 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6559 SDValue OffsetVal = 6560 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6561 6562 // Add the offset to the FP. 6563 Value *FP = I.getArgOperand(1); 6564 SDValue FPVal = getValue(FP); 6565 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6566 setValue(&I, Add); 6567 6568 return nullptr; 6569 } 6570 6571 case Intrinsic::eh_exceptionpointer: 6572 case Intrinsic::eh_exceptioncode: { 6573 // Get the exception pointer vreg, copy from it, and resize it to fit. 6574 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6575 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6576 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6577 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6578 SDValue N = 6579 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6580 if (Intrinsic == Intrinsic::eh_exceptioncode) 6581 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6582 setValue(&I, N); 6583 return nullptr; 6584 } 6585 case Intrinsic::xray_customevent: { 6586 // Here we want to make sure that the intrinsic behaves as if it has a 6587 // specific calling convention, and only for x86_64. 6588 // FIXME: Support other platforms later. 6589 const auto &Triple = DAG.getTarget().getTargetTriple(); 6590 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6591 return nullptr; 6592 6593 SDLoc DL = getCurSDLoc(); 6594 SmallVector<SDValue, 8> Ops; 6595 6596 // We want to say that we always want the arguments in registers. 6597 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6598 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6599 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6600 SDValue Chain = getRoot(); 6601 Ops.push_back(LogEntryVal); 6602 Ops.push_back(StrSizeVal); 6603 Ops.push_back(Chain); 6604 6605 // We need to enforce the calling convention for the callsite, so that 6606 // argument ordering is enforced correctly, and that register allocation can 6607 // see that some registers may be assumed clobbered and have to preserve 6608 // them across calls to the intrinsic. 6609 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6610 DL, NodeTys, Ops); 6611 SDValue patchableNode = SDValue(MN, 0); 6612 DAG.setRoot(patchableNode); 6613 setValue(&I, patchableNode); 6614 return nullptr; 6615 } 6616 case Intrinsic::xray_typedevent: { 6617 // Here we want to make sure that the intrinsic behaves as if it has a 6618 // specific calling convention, and only for x86_64. 6619 // FIXME: Support other platforms later. 6620 const auto &Triple = DAG.getTarget().getTargetTriple(); 6621 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6622 return nullptr; 6623 6624 SDLoc DL = getCurSDLoc(); 6625 SmallVector<SDValue, 8> Ops; 6626 6627 // We want to say that we always want the arguments in registers. 6628 // It's unclear to me how manipulating the selection DAG here forces callers 6629 // to provide arguments in registers instead of on the stack. 6630 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6631 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6632 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6633 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6634 SDValue Chain = getRoot(); 6635 Ops.push_back(LogTypeId); 6636 Ops.push_back(LogEntryVal); 6637 Ops.push_back(StrSizeVal); 6638 Ops.push_back(Chain); 6639 6640 // We need to enforce the calling convention for the callsite, so that 6641 // argument ordering is enforced correctly, and that register allocation can 6642 // see that some registers may be assumed clobbered and have to preserve 6643 // them across calls to the intrinsic. 6644 MachineSDNode *MN = DAG.getMachineNode( 6645 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6646 SDValue patchableNode = SDValue(MN, 0); 6647 DAG.setRoot(patchableNode); 6648 setValue(&I, patchableNode); 6649 return nullptr; 6650 } 6651 case Intrinsic::experimental_deoptimize: 6652 LowerDeoptimizeCall(&I); 6653 return nullptr; 6654 6655 case Intrinsic::experimental_vector_reduce_fadd: 6656 case Intrinsic::experimental_vector_reduce_fmul: 6657 case Intrinsic::experimental_vector_reduce_add: 6658 case Intrinsic::experimental_vector_reduce_mul: 6659 case Intrinsic::experimental_vector_reduce_and: 6660 case Intrinsic::experimental_vector_reduce_or: 6661 case Intrinsic::experimental_vector_reduce_xor: 6662 case Intrinsic::experimental_vector_reduce_smax: 6663 case Intrinsic::experimental_vector_reduce_smin: 6664 case Intrinsic::experimental_vector_reduce_umax: 6665 case Intrinsic::experimental_vector_reduce_umin: 6666 case Intrinsic::experimental_vector_reduce_fmax: 6667 case Intrinsic::experimental_vector_reduce_fmin: 6668 visitVectorReduce(I, Intrinsic); 6669 return nullptr; 6670 6671 case Intrinsic::icall_branch_funnel: { 6672 SmallVector<SDValue, 16> Ops; 6673 Ops.push_back(DAG.getRoot()); 6674 Ops.push_back(getValue(I.getArgOperand(0))); 6675 6676 int64_t Offset; 6677 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6678 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6679 if (!Base) 6680 report_fatal_error( 6681 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6682 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6683 6684 struct BranchFunnelTarget { 6685 int64_t Offset; 6686 SDValue Target; 6687 }; 6688 SmallVector<BranchFunnelTarget, 8> Targets; 6689 6690 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6691 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6692 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6693 if (ElemBase != Base) 6694 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6695 "to the same GlobalValue"); 6696 6697 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6698 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6699 if (!GA) 6700 report_fatal_error( 6701 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6702 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6703 GA->getGlobal(), getCurSDLoc(), 6704 Val.getValueType(), GA->getOffset())}); 6705 } 6706 llvm::sort(Targets, 6707 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6708 return T1.Offset < T2.Offset; 6709 }); 6710 6711 for (auto &T : Targets) { 6712 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6713 Ops.push_back(T.Target); 6714 } 6715 6716 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6717 getCurSDLoc(), MVT::Other, Ops), 6718 0); 6719 DAG.setRoot(N); 6720 setValue(&I, N); 6721 HasTailCall = true; 6722 return nullptr; 6723 } 6724 6725 case Intrinsic::wasm_landingpad_index: 6726 // Information this intrinsic contained has been transferred to 6727 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6728 // delete it now. 6729 return nullptr; 6730 } 6731 } 6732 6733 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6734 const ConstrainedFPIntrinsic &FPI) { 6735 SDLoc sdl = getCurSDLoc(); 6736 unsigned Opcode; 6737 switch (FPI.getIntrinsicID()) { 6738 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6739 case Intrinsic::experimental_constrained_fadd: 6740 Opcode = ISD::STRICT_FADD; 6741 break; 6742 case Intrinsic::experimental_constrained_fsub: 6743 Opcode = ISD::STRICT_FSUB; 6744 break; 6745 case Intrinsic::experimental_constrained_fmul: 6746 Opcode = ISD::STRICT_FMUL; 6747 break; 6748 case Intrinsic::experimental_constrained_fdiv: 6749 Opcode = ISD::STRICT_FDIV; 6750 break; 6751 case Intrinsic::experimental_constrained_frem: 6752 Opcode = ISD::STRICT_FREM; 6753 break; 6754 case Intrinsic::experimental_constrained_fma: 6755 Opcode = ISD::STRICT_FMA; 6756 break; 6757 case Intrinsic::experimental_constrained_sqrt: 6758 Opcode = ISD::STRICT_FSQRT; 6759 break; 6760 case Intrinsic::experimental_constrained_pow: 6761 Opcode = ISD::STRICT_FPOW; 6762 break; 6763 case Intrinsic::experimental_constrained_powi: 6764 Opcode = ISD::STRICT_FPOWI; 6765 break; 6766 case Intrinsic::experimental_constrained_sin: 6767 Opcode = ISD::STRICT_FSIN; 6768 break; 6769 case Intrinsic::experimental_constrained_cos: 6770 Opcode = ISD::STRICT_FCOS; 6771 break; 6772 case Intrinsic::experimental_constrained_exp: 6773 Opcode = ISD::STRICT_FEXP; 6774 break; 6775 case Intrinsic::experimental_constrained_exp2: 6776 Opcode = ISD::STRICT_FEXP2; 6777 break; 6778 case Intrinsic::experimental_constrained_log: 6779 Opcode = ISD::STRICT_FLOG; 6780 break; 6781 case Intrinsic::experimental_constrained_log10: 6782 Opcode = ISD::STRICT_FLOG10; 6783 break; 6784 case Intrinsic::experimental_constrained_log2: 6785 Opcode = ISD::STRICT_FLOG2; 6786 break; 6787 case Intrinsic::experimental_constrained_rint: 6788 Opcode = ISD::STRICT_FRINT; 6789 break; 6790 case Intrinsic::experimental_constrained_nearbyint: 6791 Opcode = ISD::STRICT_FNEARBYINT; 6792 break; 6793 case Intrinsic::experimental_constrained_maxnum: 6794 Opcode = ISD::STRICT_FMAXNUM; 6795 break; 6796 case Intrinsic::experimental_constrained_minnum: 6797 Opcode = ISD::STRICT_FMINNUM; 6798 break; 6799 case Intrinsic::experimental_constrained_ceil: 6800 Opcode = ISD::STRICT_FCEIL; 6801 break; 6802 case Intrinsic::experimental_constrained_floor: 6803 Opcode = ISD::STRICT_FFLOOR; 6804 break; 6805 case Intrinsic::experimental_constrained_round: 6806 Opcode = ISD::STRICT_FROUND; 6807 break; 6808 case Intrinsic::experimental_constrained_trunc: 6809 Opcode = ISD::STRICT_FTRUNC; 6810 break; 6811 } 6812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6813 SDValue Chain = getRoot(); 6814 SmallVector<EVT, 4> ValueVTs; 6815 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6816 ValueVTs.push_back(MVT::Other); // Out chain 6817 6818 SDVTList VTs = DAG.getVTList(ValueVTs); 6819 SDValue Result; 6820 if (FPI.isUnaryOp()) 6821 Result = DAG.getNode(Opcode, sdl, VTs, 6822 { Chain, getValue(FPI.getArgOperand(0)) }); 6823 else if (FPI.isTernaryOp()) 6824 Result = DAG.getNode(Opcode, sdl, VTs, 6825 { Chain, getValue(FPI.getArgOperand(0)), 6826 getValue(FPI.getArgOperand(1)), 6827 getValue(FPI.getArgOperand(2)) }); 6828 else 6829 Result = DAG.getNode(Opcode, sdl, VTs, 6830 { Chain, getValue(FPI.getArgOperand(0)), 6831 getValue(FPI.getArgOperand(1)) }); 6832 6833 assert(Result.getNode()->getNumValues() == 2); 6834 SDValue OutChain = Result.getValue(1); 6835 DAG.setRoot(OutChain); 6836 SDValue FPResult = Result.getValue(0); 6837 setValue(&FPI, FPResult); 6838 } 6839 6840 std::pair<SDValue, SDValue> 6841 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6842 const BasicBlock *EHPadBB) { 6843 MachineFunction &MF = DAG.getMachineFunction(); 6844 MachineModuleInfo &MMI = MF.getMMI(); 6845 MCSymbol *BeginLabel = nullptr; 6846 6847 if (EHPadBB) { 6848 // Insert a label before the invoke call to mark the try range. This can be 6849 // used to detect deletion of the invoke via the MachineModuleInfo. 6850 BeginLabel = MMI.getContext().createTempSymbol(); 6851 6852 // For SjLj, keep track of which landing pads go with which invokes 6853 // so as to maintain the ordering of pads in the LSDA. 6854 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6855 if (CallSiteIndex) { 6856 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6857 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6858 6859 // Now that the call site is handled, stop tracking it. 6860 MMI.setCurrentCallSite(0); 6861 } 6862 6863 // Both PendingLoads and PendingExports must be flushed here; 6864 // this call might not return. 6865 (void)getRoot(); 6866 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6867 6868 CLI.setChain(getRoot()); 6869 } 6870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6871 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6872 6873 assert((CLI.IsTailCall || Result.second.getNode()) && 6874 "Non-null chain expected with non-tail call!"); 6875 assert((Result.second.getNode() || !Result.first.getNode()) && 6876 "Null value expected with tail call!"); 6877 6878 if (!Result.second.getNode()) { 6879 // As a special case, a null chain means that a tail call has been emitted 6880 // and the DAG root is already updated. 6881 HasTailCall = true; 6882 6883 // Since there's no actual continuation from this block, nothing can be 6884 // relying on us setting vregs for them. 6885 PendingExports.clear(); 6886 } else { 6887 DAG.setRoot(Result.second); 6888 } 6889 6890 if (EHPadBB) { 6891 // Insert a label at the end of the invoke call to mark the try range. This 6892 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6893 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6894 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6895 6896 // Inform MachineModuleInfo of range. 6897 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6898 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6899 // actually use outlined funclets and their LSDA info style. 6900 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6901 assert(CLI.CS); 6902 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6903 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6904 BeginLabel, EndLabel); 6905 } else if (!isScopedEHPersonality(Pers)) { 6906 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6907 } 6908 } 6909 6910 return Result; 6911 } 6912 6913 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6914 bool isTailCall, 6915 const BasicBlock *EHPadBB) { 6916 auto &DL = DAG.getDataLayout(); 6917 FunctionType *FTy = CS.getFunctionType(); 6918 Type *RetTy = CS.getType(); 6919 6920 TargetLowering::ArgListTy Args; 6921 Args.reserve(CS.arg_size()); 6922 6923 const Value *SwiftErrorVal = nullptr; 6924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6925 6926 // We can't tail call inside a function with a swifterror argument. Lowering 6927 // does not support this yet. It would have to move into the swifterror 6928 // register before the call. 6929 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6930 if (TLI.supportSwiftError() && 6931 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6932 isTailCall = false; 6933 6934 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6935 i != e; ++i) { 6936 TargetLowering::ArgListEntry Entry; 6937 const Value *V = *i; 6938 6939 // Skip empty types 6940 if (V->getType()->isEmptyTy()) 6941 continue; 6942 6943 SDValue ArgNode = getValue(V); 6944 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6945 6946 Entry.setAttributes(&CS, i - CS.arg_begin()); 6947 6948 // Use swifterror virtual register as input to the call. 6949 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6950 SwiftErrorVal = V; 6951 // We find the virtual register for the actual swifterror argument. 6952 // Instead of using the Value, we use the virtual register instead. 6953 Entry.Node = DAG.getRegister(FuncInfo 6954 .getOrCreateSwiftErrorVRegUseAt( 6955 CS.getInstruction(), FuncInfo.MBB, V) 6956 .first, 6957 EVT(TLI.getPointerTy(DL))); 6958 } 6959 6960 Args.push_back(Entry); 6961 6962 // If we have an explicit sret argument that is an Instruction, (i.e., it 6963 // might point to function-local memory), we can't meaningfully tail-call. 6964 if (Entry.IsSRet && isa<Instruction>(V)) 6965 isTailCall = false; 6966 } 6967 6968 // Check if target-independent constraints permit a tail call here. 6969 // Target-dependent constraints are checked within TLI->LowerCallTo. 6970 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6971 isTailCall = false; 6972 6973 // Disable tail calls if there is an swifterror argument. Targets have not 6974 // been updated to support tail calls. 6975 if (TLI.supportSwiftError() && SwiftErrorVal) 6976 isTailCall = false; 6977 6978 TargetLowering::CallLoweringInfo CLI(DAG); 6979 CLI.setDebugLoc(getCurSDLoc()) 6980 .setChain(getRoot()) 6981 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6982 .setTailCall(isTailCall) 6983 .setConvergent(CS.isConvergent()); 6984 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6985 6986 if (Result.first.getNode()) { 6987 const Instruction *Inst = CS.getInstruction(); 6988 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6989 setValue(Inst, Result.first); 6990 } 6991 6992 // The last element of CLI.InVals has the SDValue for swifterror return. 6993 // Here we copy it to a virtual register and update SwiftErrorMap for 6994 // book-keeping. 6995 if (SwiftErrorVal && TLI.supportSwiftError()) { 6996 // Get the last element of InVals. 6997 SDValue Src = CLI.InVals.back(); 6998 unsigned VReg; bool CreatedVReg; 6999 std::tie(VReg, CreatedVReg) = 7000 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 7001 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7002 // We update the virtual register for the actual swifterror argument. 7003 if (CreatedVReg) 7004 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 7005 DAG.setRoot(CopyNode); 7006 } 7007 } 7008 7009 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7010 SelectionDAGBuilder &Builder) { 7011 // Check to see if this load can be trivially constant folded, e.g. if the 7012 // input is from a string literal. 7013 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7014 // Cast pointer to the type we really want to load. 7015 Type *LoadTy = 7016 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7017 if (LoadVT.isVector()) 7018 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7019 7020 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7021 PointerType::getUnqual(LoadTy)); 7022 7023 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7024 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7025 return Builder.getValue(LoadCst); 7026 } 7027 7028 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7029 // still constant memory, the input chain can be the entry node. 7030 SDValue Root; 7031 bool ConstantMemory = false; 7032 7033 // Do not serialize (non-volatile) loads of constant memory with anything. 7034 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7035 Root = Builder.DAG.getEntryNode(); 7036 ConstantMemory = true; 7037 } else { 7038 // Do not serialize non-volatile loads against each other. 7039 Root = Builder.DAG.getRoot(); 7040 } 7041 7042 SDValue Ptr = Builder.getValue(PtrVal); 7043 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7044 Ptr, MachinePointerInfo(PtrVal), 7045 /* Alignment = */ 1); 7046 7047 if (!ConstantMemory) 7048 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7049 return LoadVal; 7050 } 7051 7052 /// Record the value for an instruction that produces an integer result, 7053 /// converting the type where necessary. 7054 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7055 SDValue Value, 7056 bool IsSigned) { 7057 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7058 I.getType(), true); 7059 if (IsSigned) 7060 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7061 else 7062 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7063 setValue(&I, Value); 7064 } 7065 7066 /// See if we can lower a memcmp call into an optimized form. If so, return 7067 /// true and lower it. Otherwise return false, and it will be lowered like a 7068 /// normal call. 7069 /// The caller already checked that \p I calls the appropriate LibFunc with a 7070 /// correct prototype. 7071 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7072 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7073 const Value *Size = I.getArgOperand(2); 7074 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7075 if (CSize && CSize->getZExtValue() == 0) { 7076 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7077 I.getType(), true); 7078 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7079 return true; 7080 } 7081 7082 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7083 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7084 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7085 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7086 if (Res.first.getNode()) { 7087 processIntegerCallValue(I, Res.first, true); 7088 PendingLoads.push_back(Res.second); 7089 return true; 7090 } 7091 7092 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7093 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7094 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7095 return false; 7096 7097 // If the target has a fast compare for the given size, it will return a 7098 // preferred load type for that size. Require that the load VT is legal and 7099 // that the target supports unaligned loads of that type. Otherwise, return 7100 // INVALID. 7101 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7103 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7104 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7105 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7106 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7107 // TODO: Check alignment of src and dest ptrs. 7108 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7109 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7110 if (!TLI.isTypeLegal(LVT) || 7111 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7112 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7113 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7114 } 7115 7116 return LVT; 7117 }; 7118 7119 // This turns into unaligned loads. We only do this if the target natively 7120 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7121 // we'll only produce a small number of byte loads. 7122 MVT LoadVT; 7123 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7124 switch (NumBitsToCompare) { 7125 default: 7126 return false; 7127 case 16: 7128 LoadVT = MVT::i16; 7129 break; 7130 case 32: 7131 LoadVT = MVT::i32; 7132 break; 7133 case 64: 7134 case 128: 7135 case 256: 7136 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7137 break; 7138 } 7139 7140 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7141 return false; 7142 7143 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7144 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7145 7146 // Bitcast to a wide integer type if the loads are vectors. 7147 if (LoadVT.isVector()) { 7148 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7149 LoadL = DAG.getBitcast(CmpVT, LoadL); 7150 LoadR = DAG.getBitcast(CmpVT, LoadR); 7151 } 7152 7153 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7154 processIntegerCallValue(I, Cmp, false); 7155 return true; 7156 } 7157 7158 /// See if we can lower a memchr call into an optimized form. If so, return 7159 /// true and lower it. Otherwise return false, and it will be lowered like a 7160 /// normal call. 7161 /// The caller already checked that \p I calls the appropriate LibFunc with a 7162 /// correct prototype. 7163 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7164 const Value *Src = I.getArgOperand(0); 7165 const Value *Char = I.getArgOperand(1); 7166 const Value *Length = I.getArgOperand(2); 7167 7168 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7169 std::pair<SDValue, SDValue> Res = 7170 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7171 getValue(Src), getValue(Char), getValue(Length), 7172 MachinePointerInfo(Src)); 7173 if (Res.first.getNode()) { 7174 setValue(&I, Res.first); 7175 PendingLoads.push_back(Res.second); 7176 return true; 7177 } 7178 7179 return false; 7180 } 7181 7182 /// See if we can lower a mempcpy call into an optimized form. If so, return 7183 /// true and lower it. Otherwise return false, and it will be lowered like a 7184 /// normal call. 7185 /// The caller already checked that \p I calls the appropriate LibFunc with a 7186 /// correct prototype. 7187 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7188 SDValue Dst = getValue(I.getArgOperand(0)); 7189 SDValue Src = getValue(I.getArgOperand(1)); 7190 SDValue Size = getValue(I.getArgOperand(2)); 7191 7192 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7193 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7194 unsigned Align = std::min(DstAlign, SrcAlign); 7195 if (Align == 0) // Alignment of one or both could not be inferred. 7196 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7197 7198 bool isVol = false; 7199 SDLoc sdl = getCurSDLoc(); 7200 7201 // In the mempcpy context we need to pass in a false value for isTailCall 7202 // because the return pointer needs to be adjusted by the size of 7203 // the copied memory. 7204 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7205 false, /*isTailCall=*/false, 7206 MachinePointerInfo(I.getArgOperand(0)), 7207 MachinePointerInfo(I.getArgOperand(1))); 7208 assert(MC.getNode() != nullptr && 7209 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7210 DAG.setRoot(MC); 7211 7212 // Check if Size needs to be truncated or extended. 7213 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7214 7215 // Adjust return pointer to point just past the last dst byte. 7216 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7217 Dst, Size); 7218 setValue(&I, DstPlusSize); 7219 return true; 7220 } 7221 7222 /// See if we can lower a strcpy call into an optimized form. If so, return 7223 /// true and lower it, otherwise return false and it will be lowered like a 7224 /// normal call. 7225 /// The caller already checked that \p I calls the appropriate LibFunc with a 7226 /// correct prototype. 7227 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7228 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7229 7230 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7231 std::pair<SDValue, SDValue> Res = 7232 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7233 getValue(Arg0), getValue(Arg1), 7234 MachinePointerInfo(Arg0), 7235 MachinePointerInfo(Arg1), isStpcpy); 7236 if (Res.first.getNode()) { 7237 setValue(&I, Res.first); 7238 DAG.setRoot(Res.second); 7239 return true; 7240 } 7241 7242 return false; 7243 } 7244 7245 /// See if we can lower a strcmp call into an optimized form. If so, return 7246 /// true and lower it, otherwise return false and it will be lowered like a 7247 /// normal call. 7248 /// The caller already checked that \p I calls the appropriate LibFunc with a 7249 /// correct prototype. 7250 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7251 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7252 7253 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7254 std::pair<SDValue, SDValue> Res = 7255 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7256 getValue(Arg0), getValue(Arg1), 7257 MachinePointerInfo(Arg0), 7258 MachinePointerInfo(Arg1)); 7259 if (Res.first.getNode()) { 7260 processIntegerCallValue(I, Res.first, true); 7261 PendingLoads.push_back(Res.second); 7262 return true; 7263 } 7264 7265 return false; 7266 } 7267 7268 /// See if we can lower a strlen call into an optimized form. If so, return 7269 /// true and lower it, otherwise return false and it will be lowered like a 7270 /// normal call. 7271 /// The caller already checked that \p I calls the appropriate LibFunc with a 7272 /// correct prototype. 7273 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7274 const Value *Arg0 = I.getArgOperand(0); 7275 7276 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7277 std::pair<SDValue, SDValue> Res = 7278 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7279 getValue(Arg0), MachinePointerInfo(Arg0)); 7280 if (Res.first.getNode()) { 7281 processIntegerCallValue(I, Res.first, false); 7282 PendingLoads.push_back(Res.second); 7283 return true; 7284 } 7285 7286 return false; 7287 } 7288 7289 /// See if we can lower a strnlen call into an optimized form. If so, return 7290 /// true and lower it, otherwise return false and it will be lowered like a 7291 /// normal call. 7292 /// The caller already checked that \p I calls the appropriate LibFunc with a 7293 /// correct prototype. 7294 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7295 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7296 7297 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7298 std::pair<SDValue, SDValue> Res = 7299 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7300 getValue(Arg0), getValue(Arg1), 7301 MachinePointerInfo(Arg0)); 7302 if (Res.first.getNode()) { 7303 processIntegerCallValue(I, Res.first, false); 7304 PendingLoads.push_back(Res.second); 7305 return true; 7306 } 7307 7308 return false; 7309 } 7310 7311 /// See if we can lower a unary floating-point operation into an SDNode with 7312 /// the specified Opcode. If so, return true and lower it, otherwise return 7313 /// false and it will be lowered like a normal call. 7314 /// The caller already checked that \p I calls the appropriate LibFunc with a 7315 /// correct prototype. 7316 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7317 unsigned Opcode) { 7318 // We already checked this call's prototype; verify it doesn't modify errno. 7319 if (!I.onlyReadsMemory()) 7320 return false; 7321 7322 SDValue Tmp = getValue(I.getArgOperand(0)); 7323 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7324 return true; 7325 } 7326 7327 /// See if we can lower a binary floating-point operation into an SDNode with 7328 /// the specified Opcode. If so, return true and lower it. Otherwise return 7329 /// false, and it will be lowered like a normal call. 7330 /// The caller already checked that \p I calls the appropriate LibFunc with a 7331 /// correct prototype. 7332 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7333 unsigned Opcode) { 7334 // We already checked this call's prototype; verify it doesn't modify errno. 7335 if (!I.onlyReadsMemory()) 7336 return false; 7337 7338 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7339 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7340 EVT VT = Tmp0.getValueType(); 7341 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7342 return true; 7343 } 7344 7345 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7346 // Handle inline assembly differently. 7347 if (isa<InlineAsm>(I.getCalledValue())) { 7348 visitInlineAsm(&I); 7349 return; 7350 } 7351 7352 const char *RenameFn = nullptr; 7353 if (Function *F = I.getCalledFunction()) { 7354 if (F->isDeclaration()) { 7355 // Is this an LLVM intrinsic or a target-specific intrinsic? 7356 unsigned IID = F->getIntrinsicID(); 7357 if (!IID) 7358 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7359 IID = II->getIntrinsicID(F); 7360 7361 if (IID) { 7362 RenameFn = visitIntrinsicCall(I, IID); 7363 if (!RenameFn) 7364 return; 7365 } 7366 } 7367 7368 // Check for well-known libc/libm calls. If the function is internal, it 7369 // can't be a library call. Don't do the check if marked as nobuiltin for 7370 // some reason or the call site requires strict floating point semantics. 7371 LibFunc Func; 7372 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7373 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7374 LibInfo->hasOptimizedCodeGen(Func)) { 7375 switch (Func) { 7376 default: break; 7377 case LibFunc_copysign: 7378 case LibFunc_copysignf: 7379 case LibFunc_copysignl: 7380 // We already checked this call's prototype; verify it doesn't modify 7381 // errno. 7382 if (I.onlyReadsMemory()) { 7383 SDValue LHS = getValue(I.getArgOperand(0)); 7384 SDValue RHS = getValue(I.getArgOperand(1)); 7385 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7386 LHS.getValueType(), LHS, RHS)); 7387 return; 7388 } 7389 break; 7390 case LibFunc_fabs: 7391 case LibFunc_fabsf: 7392 case LibFunc_fabsl: 7393 if (visitUnaryFloatCall(I, ISD::FABS)) 7394 return; 7395 break; 7396 case LibFunc_fmin: 7397 case LibFunc_fminf: 7398 case LibFunc_fminl: 7399 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7400 return; 7401 break; 7402 case LibFunc_fmax: 7403 case LibFunc_fmaxf: 7404 case LibFunc_fmaxl: 7405 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7406 return; 7407 break; 7408 case LibFunc_sin: 7409 case LibFunc_sinf: 7410 case LibFunc_sinl: 7411 if (visitUnaryFloatCall(I, ISD::FSIN)) 7412 return; 7413 break; 7414 case LibFunc_cos: 7415 case LibFunc_cosf: 7416 case LibFunc_cosl: 7417 if (visitUnaryFloatCall(I, ISD::FCOS)) 7418 return; 7419 break; 7420 case LibFunc_sqrt: 7421 case LibFunc_sqrtf: 7422 case LibFunc_sqrtl: 7423 case LibFunc_sqrt_finite: 7424 case LibFunc_sqrtf_finite: 7425 case LibFunc_sqrtl_finite: 7426 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7427 return; 7428 break; 7429 case LibFunc_floor: 7430 case LibFunc_floorf: 7431 case LibFunc_floorl: 7432 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7433 return; 7434 break; 7435 case LibFunc_nearbyint: 7436 case LibFunc_nearbyintf: 7437 case LibFunc_nearbyintl: 7438 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7439 return; 7440 break; 7441 case LibFunc_ceil: 7442 case LibFunc_ceilf: 7443 case LibFunc_ceill: 7444 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7445 return; 7446 break; 7447 case LibFunc_rint: 7448 case LibFunc_rintf: 7449 case LibFunc_rintl: 7450 if (visitUnaryFloatCall(I, ISD::FRINT)) 7451 return; 7452 break; 7453 case LibFunc_round: 7454 case LibFunc_roundf: 7455 case LibFunc_roundl: 7456 if (visitUnaryFloatCall(I, ISD::FROUND)) 7457 return; 7458 break; 7459 case LibFunc_trunc: 7460 case LibFunc_truncf: 7461 case LibFunc_truncl: 7462 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7463 return; 7464 break; 7465 case LibFunc_log2: 7466 case LibFunc_log2f: 7467 case LibFunc_log2l: 7468 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7469 return; 7470 break; 7471 case LibFunc_exp2: 7472 case LibFunc_exp2f: 7473 case LibFunc_exp2l: 7474 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7475 return; 7476 break; 7477 case LibFunc_memcmp: 7478 if (visitMemCmpCall(I)) 7479 return; 7480 break; 7481 case LibFunc_mempcpy: 7482 if (visitMemPCpyCall(I)) 7483 return; 7484 break; 7485 case LibFunc_memchr: 7486 if (visitMemChrCall(I)) 7487 return; 7488 break; 7489 case LibFunc_strcpy: 7490 if (visitStrCpyCall(I, false)) 7491 return; 7492 break; 7493 case LibFunc_stpcpy: 7494 if (visitStrCpyCall(I, true)) 7495 return; 7496 break; 7497 case LibFunc_strcmp: 7498 if (visitStrCmpCall(I)) 7499 return; 7500 break; 7501 case LibFunc_strlen: 7502 if (visitStrLenCall(I)) 7503 return; 7504 break; 7505 case LibFunc_strnlen: 7506 if (visitStrNLenCall(I)) 7507 return; 7508 break; 7509 } 7510 } 7511 } 7512 7513 SDValue Callee; 7514 if (!RenameFn) 7515 Callee = getValue(I.getCalledValue()); 7516 else 7517 Callee = DAG.getExternalSymbol( 7518 RenameFn, 7519 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7520 7521 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7522 // have to do anything here to lower funclet bundles. 7523 assert(!I.hasOperandBundlesOtherThan( 7524 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7525 "Cannot lower calls with arbitrary operand bundles!"); 7526 7527 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7528 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7529 else 7530 // Check if we can potentially perform a tail call. More detailed checking 7531 // is be done within LowerCallTo, after more information about the call is 7532 // known. 7533 LowerCallTo(&I, Callee, I.isTailCall()); 7534 } 7535 7536 namespace { 7537 7538 /// AsmOperandInfo - This contains information for each constraint that we are 7539 /// lowering. 7540 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7541 public: 7542 /// CallOperand - If this is the result output operand or a clobber 7543 /// this is null, otherwise it is the incoming operand to the CallInst. 7544 /// This gets modified as the asm is processed. 7545 SDValue CallOperand; 7546 7547 /// AssignedRegs - If this is a register or register class operand, this 7548 /// contains the set of register corresponding to the operand. 7549 RegsForValue AssignedRegs; 7550 7551 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7552 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7553 } 7554 7555 /// Whether or not this operand accesses memory 7556 bool hasMemory(const TargetLowering &TLI) const { 7557 // Indirect operand accesses access memory. 7558 if (isIndirect) 7559 return true; 7560 7561 for (const auto &Code : Codes) 7562 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7563 return true; 7564 7565 return false; 7566 } 7567 7568 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7569 /// corresponds to. If there is no Value* for this operand, it returns 7570 /// MVT::Other. 7571 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7572 const DataLayout &DL) const { 7573 if (!CallOperandVal) return MVT::Other; 7574 7575 if (isa<BasicBlock>(CallOperandVal)) 7576 return TLI.getPointerTy(DL); 7577 7578 llvm::Type *OpTy = CallOperandVal->getType(); 7579 7580 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7581 // If this is an indirect operand, the operand is a pointer to the 7582 // accessed type. 7583 if (isIndirect) { 7584 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7585 if (!PtrTy) 7586 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7587 OpTy = PtrTy->getElementType(); 7588 } 7589 7590 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7591 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7592 if (STy->getNumElements() == 1) 7593 OpTy = STy->getElementType(0); 7594 7595 // If OpTy is not a single value, it may be a struct/union that we 7596 // can tile with integers. 7597 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7598 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7599 switch (BitSize) { 7600 default: break; 7601 case 1: 7602 case 8: 7603 case 16: 7604 case 32: 7605 case 64: 7606 case 128: 7607 OpTy = IntegerType::get(Context, BitSize); 7608 break; 7609 } 7610 } 7611 7612 return TLI.getValueType(DL, OpTy, true); 7613 } 7614 }; 7615 7616 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7617 7618 } // end anonymous namespace 7619 7620 /// Make sure that the output operand \p OpInfo and its corresponding input 7621 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7622 /// out). 7623 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7624 SDISelAsmOperandInfo &MatchingOpInfo, 7625 SelectionDAG &DAG) { 7626 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7627 return; 7628 7629 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7630 const auto &TLI = DAG.getTargetLoweringInfo(); 7631 7632 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7633 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7634 OpInfo.ConstraintVT); 7635 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7636 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7637 MatchingOpInfo.ConstraintVT); 7638 if ((OpInfo.ConstraintVT.isInteger() != 7639 MatchingOpInfo.ConstraintVT.isInteger()) || 7640 (MatchRC.second != InputRC.second)) { 7641 // FIXME: error out in a more elegant fashion 7642 report_fatal_error("Unsupported asm: input constraint" 7643 " with a matching output constraint of" 7644 " incompatible type!"); 7645 } 7646 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7647 } 7648 7649 /// Get a direct memory input to behave well as an indirect operand. 7650 /// This may introduce stores, hence the need for a \p Chain. 7651 /// \return The (possibly updated) chain. 7652 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7653 SDISelAsmOperandInfo &OpInfo, 7654 SelectionDAG &DAG) { 7655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7656 7657 // If we don't have an indirect input, put it in the constpool if we can, 7658 // otherwise spill it to a stack slot. 7659 // TODO: This isn't quite right. We need to handle these according to 7660 // the addressing mode that the constraint wants. Also, this may take 7661 // an additional register for the computation and we don't want that 7662 // either. 7663 7664 // If the operand is a float, integer, or vector constant, spill to a 7665 // constant pool entry to get its address. 7666 const Value *OpVal = OpInfo.CallOperandVal; 7667 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7668 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7669 OpInfo.CallOperand = DAG.getConstantPool( 7670 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7671 return Chain; 7672 } 7673 7674 // Otherwise, create a stack slot and emit a store to it before the asm. 7675 Type *Ty = OpVal->getType(); 7676 auto &DL = DAG.getDataLayout(); 7677 uint64_t TySize = DL.getTypeAllocSize(Ty); 7678 unsigned Align = DL.getPrefTypeAlignment(Ty); 7679 MachineFunction &MF = DAG.getMachineFunction(); 7680 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7681 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7682 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7683 MachinePointerInfo::getFixedStack(MF, SSFI)); 7684 OpInfo.CallOperand = StackSlot; 7685 7686 return Chain; 7687 } 7688 7689 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7690 /// specified operand. We prefer to assign virtual registers, to allow the 7691 /// register allocator to handle the assignment process. However, if the asm 7692 /// uses features that we can't model on machineinstrs, we have SDISel do the 7693 /// allocation. This produces generally horrible, but correct, code. 7694 /// 7695 /// OpInfo describes the operand 7696 /// RefOpInfo describes the matching operand if any, the operand otherwise 7697 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7698 SDISelAsmOperandInfo &OpInfo, 7699 SDISelAsmOperandInfo &RefOpInfo) { 7700 LLVMContext &Context = *DAG.getContext(); 7701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7702 7703 MachineFunction &MF = DAG.getMachineFunction(); 7704 SmallVector<unsigned, 4> Regs; 7705 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7706 7707 // No work to do for memory operations. 7708 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7709 return; 7710 7711 // If this is a constraint for a single physreg, or a constraint for a 7712 // register class, find it. 7713 unsigned AssignedReg; 7714 const TargetRegisterClass *RC; 7715 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7716 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7717 // RC is unset only on failure. Return immediately. 7718 if (!RC) 7719 return; 7720 7721 // Get the actual register value type. This is important, because the user 7722 // may have asked for (e.g.) the AX register in i32 type. We need to 7723 // remember that AX is actually i16 to get the right extension. 7724 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7725 7726 if (OpInfo.ConstraintVT != MVT::Other) { 7727 // If this is an FP operand in an integer register (or visa versa), or more 7728 // generally if the operand value disagrees with the register class we plan 7729 // to stick it in, fix the operand type. 7730 // 7731 // If this is an input value, the bitcast to the new type is done now. 7732 // Bitcast for output value is done at the end of visitInlineAsm(). 7733 if ((OpInfo.Type == InlineAsm::isOutput || 7734 OpInfo.Type == InlineAsm::isInput) && 7735 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7736 // Try to convert to the first EVT that the reg class contains. If the 7737 // types are identical size, use a bitcast to convert (e.g. two differing 7738 // vector types). Note: output bitcast is done at the end of 7739 // visitInlineAsm(). 7740 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7741 // Exclude indirect inputs while they are unsupported because the code 7742 // to perform the load is missing and thus OpInfo.CallOperand still 7743 // refers to the input address rather than the pointed-to value. 7744 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7745 OpInfo.CallOperand = 7746 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7747 OpInfo.ConstraintVT = RegVT; 7748 // If the operand is an FP value and we want it in integer registers, 7749 // use the corresponding integer type. This turns an f64 value into 7750 // i64, which can be passed with two i32 values on a 32-bit machine. 7751 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7752 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7753 if (OpInfo.Type == InlineAsm::isInput) 7754 OpInfo.CallOperand = 7755 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7756 OpInfo.ConstraintVT = VT; 7757 } 7758 } 7759 } 7760 7761 // No need to allocate a matching input constraint since the constraint it's 7762 // matching to has already been allocated. 7763 if (OpInfo.isMatchingInputConstraint()) 7764 return; 7765 7766 EVT ValueVT = OpInfo.ConstraintVT; 7767 if (OpInfo.ConstraintVT == MVT::Other) 7768 ValueVT = RegVT; 7769 7770 // Initialize NumRegs. 7771 unsigned NumRegs = 1; 7772 if (OpInfo.ConstraintVT != MVT::Other) 7773 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7774 7775 // If this is a constraint for a specific physical register, like {r17}, 7776 // assign it now. 7777 7778 // If this associated to a specific register, initialize iterator to correct 7779 // place. If virtual, make sure we have enough registers 7780 7781 // Initialize iterator if necessary 7782 TargetRegisterClass::iterator I = RC->begin(); 7783 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7784 7785 // Do not check for single registers. 7786 if (AssignedReg) { 7787 for (; *I != AssignedReg; ++I) 7788 assert(I != RC->end() && "AssignedReg should be member of RC"); 7789 } 7790 7791 for (; NumRegs; --NumRegs, ++I) { 7792 assert(I != RC->end() && "Ran out of registers to allocate!"); 7793 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7794 Regs.push_back(R); 7795 } 7796 7797 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7798 } 7799 7800 static unsigned 7801 findMatchingInlineAsmOperand(unsigned OperandNo, 7802 const std::vector<SDValue> &AsmNodeOperands) { 7803 // Scan until we find the definition we already emitted of this operand. 7804 unsigned CurOp = InlineAsm::Op_FirstOperand; 7805 for (; OperandNo; --OperandNo) { 7806 // Advance to the next operand. 7807 unsigned OpFlag = 7808 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7809 assert((InlineAsm::isRegDefKind(OpFlag) || 7810 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7811 InlineAsm::isMemKind(OpFlag)) && 7812 "Skipped past definitions?"); 7813 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7814 } 7815 return CurOp; 7816 } 7817 7818 namespace { 7819 7820 class ExtraFlags { 7821 unsigned Flags = 0; 7822 7823 public: 7824 explicit ExtraFlags(ImmutableCallSite CS) { 7825 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7826 if (IA->hasSideEffects()) 7827 Flags |= InlineAsm::Extra_HasSideEffects; 7828 if (IA->isAlignStack()) 7829 Flags |= InlineAsm::Extra_IsAlignStack; 7830 if (CS.isConvergent()) 7831 Flags |= InlineAsm::Extra_IsConvergent; 7832 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7833 } 7834 7835 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7836 // Ideally, we would only check against memory constraints. However, the 7837 // meaning of an Other constraint can be target-specific and we can't easily 7838 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7839 // for Other constraints as well. 7840 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7841 OpInfo.ConstraintType == TargetLowering::C_Other) { 7842 if (OpInfo.Type == InlineAsm::isInput) 7843 Flags |= InlineAsm::Extra_MayLoad; 7844 else if (OpInfo.Type == InlineAsm::isOutput) 7845 Flags |= InlineAsm::Extra_MayStore; 7846 else if (OpInfo.Type == InlineAsm::isClobber) 7847 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7848 } 7849 } 7850 7851 unsigned get() const { return Flags; } 7852 }; 7853 7854 } // end anonymous namespace 7855 7856 /// visitInlineAsm - Handle a call to an InlineAsm object. 7857 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7858 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7859 7860 /// ConstraintOperands - Information about all of the constraints. 7861 SDISelAsmOperandInfoVector ConstraintOperands; 7862 7863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7864 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7865 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7866 7867 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7868 // AsmDialect, MayLoad, MayStore). 7869 bool HasSideEffect = IA->hasSideEffects(); 7870 ExtraFlags ExtraInfo(CS); 7871 7872 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7873 unsigned ResNo = 0; // ResNo - The result number of the next output. 7874 for (auto &T : TargetConstraints) { 7875 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7876 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7877 7878 // Compute the value type for each operand. 7879 if (OpInfo.Type == InlineAsm::isInput || 7880 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7881 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7882 7883 // Process the call argument. BasicBlocks are labels, currently appearing 7884 // only in asm's. 7885 const Instruction *I = CS.getInstruction(); 7886 if (isa<CallBrInst>(I) && 7887 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7888 cast<CallBrInst>(I)->getNumIndirectDests())) { 7889 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7890 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7891 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7892 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7893 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7894 } else { 7895 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7896 } 7897 7898 OpInfo.ConstraintVT = 7899 OpInfo 7900 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7901 .getSimpleVT(); 7902 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7903 // The return value of the call is this value. As such, there is no 7904 // corresponding argument. 7905 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7906 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7907 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7908 DAG.getDataLayout(), STy->getElementType(ResNo)); 7909 } else { 7910 assert(ResNo == 0 && "Asm only has one result!"); 7911 OpInfo.ConstraintVT = 7912 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7913 } 7914 ++ResNo; 7915 } else { 7916 OpInfo.ConstraintVT = MVT::Other; 7917 } 7918 7919 if (!HasSideEffect) 7920 HasSideEffect = OpInfo.hasMemory(TLI); 7921 7922 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7923 // FIXME: Could we compute this on OpInfo rather than T? 7924 7925 // Compute the constraint code and ConstraintType to use. 7926 TLI.ComputeConstraintToUse(T, SDValue()); 7927 7928 ExtraInfo.update(T); 7929 } 7930 7931 // We won't need to flush pending loads if this asm doesn't touch 7932 // memory and is nonvolatile. 7933 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7934 7935 // Second pass over the constraints: compute which constraint option to use. 7936 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7937 // If this is an output operand with a matching input operand, look up the 7938 // matching input. If their types mismatch, e.g. one is an integer, the 7939 // other is floating point, or their sizes are different, flag it as an 7940 // error. 7941 if (OpInfo.hasMatchingInput()) { 7942 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7943 patchMatchingInput(OpInfo, Input, DAG); 7944 } 7945 7946 // Compute the constraint code and ConstraintType to use. 7947 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7948 7949 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7950 OpInfo.Type == InlineAsm::isClobber) 7951 continue; 7952 7953 // If this is a memory input, and if the operand is not indirect, do what we 7954 // need to provide an address for the memory input. 7955 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7956 !OpInfo.isIndirect) { 7957 assert((OpInfo.isMultipleAlternative || 7958 (OpInfo.Type == InlineAsm::isInput)) && 7959 "Can only indirectify direct input operands!"); 7960 7961 // Memory operands really want the address of the value. 7962 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7963 7964 // There is no longer a Value* corresponding to this operand. 7965 OpInfo.CallOperandVal = nullptr; 7966 7967 // It is now an indirect operand. 7968 OpInfo.isIndirect = true; 7969 } 7970 7971 } 7972 7973 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7974 std::vector<SDValue> AsmNodeOperands; 7975 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7976 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7977 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7978 7979 // If we have a !srcloc metadata node associated with it, we want to attach 7980 // this to the ultimately generated inline asm machineinstr. To do this, we 7981 // pass in the third operand as this (potentially null) inline asm MDNode. 7982 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7983 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7984 7985 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7986 // bits as operand 3. 7987 AsmNodeOperands.push_back(DAG.getTargetConstant( 7988 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7989 7990 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7991 // this, assign virtual and physical registers for inputs and otput. 7992 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7993 // Assign Registers. 7994 SDISelAsmOperandInfo &RefOpInfo = 7995 OpInfo.isMatchingInputConstraint() 7996 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7997 : OpInfo; 7998 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7999 8000 switch (OpInfo.Type) { 8001 case InlineAsm::isOutput: 8002 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8003 (OpInfo.ConstraintType == TargetLowering::C_Other && 8004 OpInfo.isIndirect)) { 8005 unsigned ConstraintID = 8006 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8007 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8008 "Failed to convert memory constraint code to constraint id."); 8009 8010 // Add information to the INLINEASM node to know about this output. 8011 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8012 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8013 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8014 MVT::i32)); 8015 AsmNodeOperands.push_back(OpInfo.CallOperand); 8016 break; 8017 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 8018 !OpInfo.isIndirect) || 8019 OpInfo.ConstraintType == TargetLowering::C_Register || 8020 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8021 // Otherwise, this outputs to a register (directly for C_Register / 8022 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 8023 // register that we can use. 8024 if (OpInfo.AssignedRegs.Regs.empty()) { 8025 emitInlineAsmError( 8026 CS, "couldn't allocate output register for constraint '" + 8027 Twine(OpInfo.ConstraintCode) + "'"); 8028 return; 8029 } 8030 8031 // Add information to the INLINEASM node to know that this register is 8032 // set. 8033 OpInfo.AssignedRegs.AddInlineAsmOperands( 8034 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8035 : InlineAsm::Kind_RegDef, 8036 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8037 } 8038 break; 8039 8040 case InlineAsm::isInput: { 8041 SDValue InOperandVal = OpInfo.CallOperand; 8042 8043 if (OpInfo.isMatchingInputConstraint()) { 8044 // If this is required to match an output register we have already set, 8045 // just use its register. 8046 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8047 AsmNodeOperands); 8048 unsigned OpFlag = 8049 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8050 if (InlineAsm::isRegDefKind(OpFlag) || 8051 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8052 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8053 if (OpInfo.isIndirect) { 8054 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8055 emitInlineAsmError(CS, "inline asm not supported yet:" 8056 " don't know how to handle tied " 8057 "indirect register inputs"); 8058 return; 8059 } 8060 8061 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8062 SmallVector<unsigned, 4> Regs; 8063 8064 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8065 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8066 MachineRegisterInfo &RegInfo = 8067 DAG.getMachineFunction().getRegInfo(); 8068 for (unsigned i = 0; i != NumRegs; ++i) 8069 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8070 } else { 8071 emitInlineAsmError(CS, "inline asm error: This value type register " 8072 "class is not natively supported!"); 8073 return; 8074 } 8075 8076 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8077 8078 SDLoc dl = getCurSDLoc(); 8079 // Use the produced MatchedRegs object to 8080 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8081 CS.getInstruction()); 8082 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8083 true, OpInfo.getMatchedOperand(), dl, 8084 DAG, AsmNodeOperands); 8085 break; 8086 } 8087 8088 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8089 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8090 "Unexpected number of operands"); 8091 // Add information to the INLINEASM node to know about this input. 8092 // See InlineAsm.h isUseOperandTiedToDef. 8093 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8094 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8095 OpInfo.getMatchedOperand()); 8096 AsmNodeOperands.push_back(DAG.getTargetConstant( 8097 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8098 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8099 break; 8100 } 8101 8102 // Treat indirect 'X' constraint as memory. 8103 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8104 OpInfo.isIndirect) 8105 OpInfo.ConstraintType = TargetLowering::C_Memory; 8106 8107 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8108 std::vector<SDValue> Ops; 8109 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8110 Ops, DAG); 8111 if (Ops.empty()) { 8112 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8113 Twine(OpInfo.ConstraintCode) + "'"); 8114 return; 8115 } 8116 8117 // Add information to the INLINEASM node to know about this input. 8118 unsigned ResOpType = 8119 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8120 AsmNodeOperands.push_back(DAG.getTargetConstant( 8121 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8122 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8123 break; 8124 } 8125 8126 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8127 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8128 assert(InOperandVal.getValueType() == 8129 TLI.getPointerTy(DAG.getDataLayout()) && 8130 "Memory operands expect pointer values"); 8131 8132 unsigned ConstraintID = 8133 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8134 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8135 "Failed to convert memory constraint code to constraint id."); 8136 8137 // Add information to the INLINEASM node to know about this input. 8138 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8139 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8140 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8141 getCurSDLoc(), 8142 MVT::i32)); 8143 AsmNodeOperands.push_back(InOperandVal); 8144 break; 8145 } 8146 8147 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8148 OpInfo.ConstraintType == TargetLowering::C_Register) && 8149 "Unknown constraint type!"); 8150 8151 // TODO: Support this. 8152 if (OpInfo.isIndirect) { 8153 emitInlineAsmError( 8154 CS, "Don't know how to handle indirect register inputs yet " 8155 "for constraint '" + 8156 Twine(OpInfo.ConstraintCode) + "'"); 8157 return; 8158 } 8159 8160 // Copy the input into the appropriate registers. 8161 if (OpInfo.AssignedRegs.Regs.empty()) { 8162 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8163 Twine(OpInfo.ConstraintCode) + "'"); 8164 return; 8165 } 8166 8167 SDLoc dl = getCurSDLoc(); 8168 8169 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8170 Chain, &Flag, CS.getInstruction()); 8171 8172 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8173 dl, DAG, AsmNodeOperands); 8174 break; 8175 } 8176 case InlineAsm::isClobber: 8177 // Add the clobbered value to the operand list, so that the register 8178 // allocator is aware that the physreg got clobbered. 8179 if (!OpInfo.AssignedRegs.Regs.empty()) 8180 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8181 false, 0, getCurSDLoc(), DAG, 8182 AsmNodeOperands); 8183 break; 8184 } 8185 } 8186 8187 // Finish up input operands. Set the input chain and add the flag last. 8188 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8189 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8190 8191 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR 8192 : ISD::INLINEASM; 8193 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8194 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8195 Flag = Chain.getValue(1); 8196 8197 // Do additional work to generate outputs. 8198 8199 SmallVector<EVT, 1> ResultVTs; 8200 SmallVector<SDValue, 1> ResultValues; 8201 SmallVector<SDValue, 8> OutChains; 8202 8203 llvm::Type *CSResultType = CS.getType(); 8204 ArrayRef<Type *> ResultTypes; 8205 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8206 ResultTypes = StructResult->elements(); 8207 else if (!CSResultType->isVoidTy()) 8208 ResultTypes = makeArrayRef(CSResultType); 8209 8210 auto CurResultType = ResultTypes.begin(); 8211 auto handleRegAssign = [&](SDValue V) { 8212 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8213 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8214 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8215 ++CurResultType; 8216 // If the type of the inline asm call site return value is different but has 8217 // same size as the type of the asm output bitcast it. One example of this 8218 // is for vectors with different width / number of elements. This can 8219 // happen for register classes that can contain multiple different value 8220 // types. The preg or vreg allocated may not have the same VT as was 8221 // expected. 8222 // 8223 // This can also happen for a return value that disagrees with the register 8224 // class it is put in, eg. a double in a general-purpose register on a 8225 // 32-bit machine. 8226 if (ResultVT != V.getValueType() && 8227 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8228 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8229 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8230 V.getValueType().isInteger()) { 8231 // If a result value was tied to an input value, the computed result 8232 // may have a wider width than the expected result. Extract the 8233 // relevant portion. 8234 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8235 } 8236 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8237 ResultVTs.push_back(ResultVT); 8238 ResultValues.push_back(V); 8239 }; 8240 8241 // Deal with output operands. 8242 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8243 if (OpInfo.Type == InlineAsm::isOutput) { 8244 SDValue Val; 8245 // Skip trivial output operands. 8246 if (OpInfo.AssignedRegs.Regs.empty()) 8247 continue; 8248 8249 switch (OpInfo.ConstraintType) { 8250 case TargetLowering::C_Register: 8251 case TargetLowering::C_RegisterClass: 8252 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8253 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8254 break; 8255 case TargetLowering::C_Other: 8256 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8257 OpInfo, DAG); 8258 break; 8259 case TargetLowering::C_Memory: 8260 break; // Already handled. 8261 case TargetLowering::C_Unknown: 8262 assert(false && "Unexpected unknown constraint"); 8263 } 8264 8265 // Indirect output manifest as stores. Record output chains. 8266 if (OpInfo.isIndirect) { 8267 const Value *Ptr = OpInfo.CallOperandVal; 8268 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8269 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8270 MachinePointerInfo(Ptr)); 8271 OutChains.push_back(Store); 8272 } else { 8273 // generate CopyFromRegs to associated registers. 8274 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8275 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8276 for (const SDValue &V : Val->op_values()) 8277 handleRegAssign(V); 8278 } else 8279 handleRegAssign(Val); 8280 } 8281 } 8282 } 8283 8284 // Set results. 8285 if (!ResultValues.empty()) { 8286 assert(CurResultType == ResultTypes.end() && 8287 "Mismatch in number of ResultTypes"); 8288 assert(ResultValues.size() == ResultTypes.size() && 8289 "Mismatch in number of output operands in asm result"); 8290 8291 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8292 DAG.getVTList(ResultVTs), ResultValues); 8293 setValue(CS.getInstruction(), V); 8294 } 8295 8296 // Collect store chains. 8297 if (!OutChains.empty()) 8298 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8299 8300 // Only Update Root if inline assembly has a memory effect. 8301 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8302 DAG.setRoot(Chain); 8303 } 8304 8305 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8306 const Twine &Message) { 8307 LLVMContext &Ctx = *DAG.getContext(); 8308 Ctx.emitError(CS.getInstruction(), Message); 8309 8310 // Make sure we leave the DAG in a valid state 8311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8312 SmallVector<EVT, 1> ValueVTs; 8313 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8314 8315 if (ValueVTs.empty()) 8316 return; 8317 8318 SmallVector<SDValue, 1> Ops; 8319 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8320 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8321 8322 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8323 } 8324 8325 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8326 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8327 MVT::Other, getRoot(), 8328 getValue(I.getArgOperand(0)), 8329 DAG.getSrcValue(I.getArgOperand(0)))); 8330 } 8331 8332 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8334 const DataLayout &DL = DAG.getDataLayout(); 8335 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8336 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8337 DAG.getSrcValue(I.getOperand(0)), 8338 DL.getABITypeAlignment(I.getType())); 8339 setValue(&I, V); 8340 DAG.setRoot(V.getValue(1)); 8341 } 8342 8343 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8344 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8345 MVT::Other, getRoot(), 8346 getValue(I.getArgOperand(0)), 8347 DAG.getSrcValue(I.getArgOperand(0)))); 8348 } 8349 8350 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8351 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8352 MVT::Other, getRoot(), 8353 getValue(I.getArgOperand(0)), 8354 getValue(I.getArgOperand(1)), 8355 DAG.getSrcValue(I.getArgOperand(0)), 8356 DAG.getSrcValue(I.getArgOperand(1)))); 8357 } 8358 8359 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8360 const Instruction &I, 8361 SDValue Op) { 8362 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8363 if (!Range) 8364 return Op; 8365 8366 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8367 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8368 return Op; 8369 8370 APInt Lo = CR.getUnsignedMin(); 8371 if (!Lo.isMinValue()) 8372 return Op; 8373 8374 APInt Hi = CR.getUnsignedMax(); 8375 unsigned Bits = std::max(Hi.getActiveBits(), 8376 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8377 8378 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8379 8380 SDLoc SL = getCurSDLoc(); 8381 8382 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8383 DAG.getValueType(SmallVT)); 8384 unsigned NumVals = Op.getNode()->getNumValues(); 8385 if (NumVals == 1) 8386 return ZExt; 8387 8388 SmallVector<SDValue, 4> Ops; 8389 8390 Ops.push_back(ZExt); 8391 for (unsigned I = 1; I != NumVals; ++I) 8392 Ops.push_back(Op.getValue(I)); 8393 8394 return DAG.getMergeValues(Ops, SL); 8395 } 8396 8397 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8398 /// the call being lowered. 8399 /// 8400 /// This is a helper for lowering intrinsics that follow a target calling 8401 /// convention or require stack pointer adjustment. Only a subset of the 8402 /// intrinsic's operands need to participate in the calling convention. 8403 void SelectionDAGBuilder::populateCallLoweringInfo( 8404 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8405 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8406 bool IsPatchPoint) { 8407 TargetLowering::ArgListTy Args; 8408 Args.reserve(NumArgs); 8409 8410 // Populate the argument list. 8411 // Attributes for args start at offset 1, after the return attribute. 8412 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8413 ArgI != ArgE; ++ArgI) { 8414 const Value *V = Call->getOperand(ArgI); 8415 8416 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8417 8418 TargetLowering::ArgListEntry Entry; 8419 Entry.Node = getValue(V); 8420 Entry.Ty = V->getType(); 8421 Entry.setAttributes(Call, ArgI); 8422 Args.push_back(Entry); 8423 } 8424 8425 CLI.setDebugLoc(getCurSDLoc()) 8426 .setChain(getRoot()) 8427 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8428 .setDiscardResult(Call->use_empty()) 8429 .setIsPatchPoint(IsPatchPoint); 8430 } 8431 8432 /// Add a stack map intrinsic call's live variable operands to a stackmap 8433 /// or patchpoint target node's operand list. 8434 /// 8435 /// Constants are converted to TargetConstants purely as an optimization to 8436 /// avoid constant materialization and register allocation. 8437 /// 8438 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8439 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8440 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8441 /// address materialization and register allocation, but may also be required 8442 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8443 /// alloca in the entry block, then the runtime may assume that the alloca's 8444 /// StackMap location can be read immediately after compilation and that the 8445 /// location is valid at any point during execution (this is similar to the 8446 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8447 /// only available in a register, then the runtime would need to trap when 8448 /// execution reaches the StackMap in order to read the alloca's location. 8449 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8450 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8451 SelectionDAGBuilder &Builder) { 8452 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8453 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8454 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8455 Ops.push_back( 8456 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8457 Ops.push_back( 8458 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8459 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8460 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8461 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8462 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8463 } else 8464 Ops.push_back(OpVal); 8465 } 8466 } 8467 8468 /// Lower llvm.experimental.stackmap directly to its target opcode. 8469 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8470 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8471 // [live variables...]) 8472 8473 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8474 8475 SDValue Chain, InFlag, Callee, NullPtr; 8476 SmallVector<SDValue, 32> Ops; 8477 8478 SDLoc DL = getCurSDLoc(); 8479 Callee = getValue(CI.getCalledValue()); 8480 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8481 8482 // The stackmap intrinsic only records the live variables (the arguemnts 8483 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8484 // intrinsic, this won't be lowered to a function call. This means we don't 8485 // have to worry about calling conventions and target specific lowering code. 8486 // Instead we perform the call lowering right here. 8487 // 8488 // chain, flag = CALLSEQ_START(chain, 0, 0) 8489 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8490 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8491 // 8492 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8493 InFlag = Chain.getValue(1); 8494 8495 // Add the <id> and <numBytes> constants. 8496 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8497 Ops.push_back(DAG.getTargetConstant( 8498 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8499 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8500 Ops.push_back(DAG.getTargetConstant( 8501 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8502 MVT::i32)); 8503 8504 // Push live variables for the stack map. 8505 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8506 8507 // We are not pushing any register mask info here on the operands list, 8508 // because the stackmap doesn't clobber anything. 8509 8510 // Push the chain and the glue flag. 8511 Ops.push_back(Chain); 8512 Ops.push_back(InFlag); 8513 8514 // Create the STACKMAP node. 8515 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8516 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8517 Chain = SDValue(SM, 0); 8518 InFlag = Chain.getValue(1); 8519 8520 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8521 8522 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8523 8524 // Set the root to the target-lowered call chain. 8525 DAG.setRoot(Chain); 8526 8527 // Inform the Frame Information that we have a stackmap in this function. 8528 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8529 } 8530 8531 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8532 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8533 const BasicBlock *EHPadBB) { 8534 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8535 // i32 <numBytes>, 8536 // i8* <target>, 8537 // i32 <numArgs>, 8538 // [Args...], 8539 // [live variables...]) 8540 8541 CallingConv::ID CC = CS.getCallingConv(); 8542 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8543 bool HasDef = !CS->getType()->isVoidTy(); 8544 SDLoc dl = getCurSDLoc(); 8545 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8546 8547 // Handle immediate and symbolic callees. 8548 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8549 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8550 /*isTarget=*/true); 8551 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8552 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8553 SDLoc(SymbolicCallee), 8554 SymbolicCallee->getValueType(0)); 8555 8556 // Get the real number of arguments participating in the call <numArgs> 8557 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8558 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8559 8560 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8561 // Intrinsics include all meta-operands up to but not including CC. 8562 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8563 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8564 "Not enough arguments provided to the patchpoint intrinsic"); 8565 8566 // For AnyRegCC the arguments are lowered later on manually. 8567 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8568 Type *ReturnTy = 8569 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8570 8571 TargetLowering::CallLoweringInfo CLI(DAG); 8572 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8573 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8574 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8575 8576 SDNode *CallEnd = Result.second.getNode(); 8577 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8578 CallEnd = CallEnd->getOperand(0).getNode(); 8579 8580 /// Get a call instruction from the call sequence chain. 8581 /// Tail calls are not allowed. 8582 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8583 "Expected a callseq node."); 8584 SDNode *Call = CallEnd->getOperand(0).getNode(); 8585 bool HasGlue = Call->getGluedNode(); 8586 8587 // Replace the target specific call node with the patchable intrinsic. 8588 SmallVector<SDValue, 8> Ops; 8589 8590 // Add the <id> and <numBytes> constants. 8591 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8592 Ops.push_back(DAG.getTargetConstant( 8593 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8594 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8595 Ops.push_back(DAG.getTargetConstant( 8596 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8597 MVT::i32)); 8598 8599 // Add the callee. 8600 Ops.push_back(Callee); 8601 8602 // Adjust <numArgs> to account for any arguments that have been passed on the 8603 // stack instead. 8604 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8605 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8606 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8607 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8608 8609 // Add the calling convention 8610 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8611 8612 // Add the arguments we omitted previously. The register allocator should 8613 // place these in any free register. 8614 if (IsAnyRegCC) 8615 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8616 Ops.push_back(getValue(CS.getArgument(i))); 8617 8618 // Push the arguments from the call instruction up to the register mask. 8619 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8620 Ops.append(Call->op_begin() + 2, e); 8621 8622 // Push live variables for the stack map. 8623 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8624 8625 // Push the register mask info. 8626 if (HasGlue) 8627 Ops.push_back(*(Call->op_end()-2)); 8628 else 8629 Ops.push_back(*(Call->op_end()-1)); 8630 8631 // Push the chain (this is originally the first operand of the call, but 8632 // becomes now the last or second to last operand). 8633 Ops.push_back(*(Call->op_begin())); 8634 8635 // Push the glue flag (last operand). 8636 if (HasGlue) 8637 Ops.push_back(*(Call->op_end()-1)); 8638 8639 SDVTList NodeTys; 8640 if (IsAnyRegCC && HasDef) { 8641 // Create the return types based on the intrinsic definition 8642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8643 SmallVector<EVT, 3> ValueVTs; 8644 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8645 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8646 8647 // There is always a chain and a glue type at the end 8648 ValueVTs.push_back(MVT::Other); 8649 ValueVTs.push_back(MVT::Glue); 8650 NodeTys = DAG.getVTList(ValueVTs); 8651 } else 8652 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8653 8654 // Replace the target specific call node with a PATCHPOINT node. 8655 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8656 dl, NodeTys, Ops); 8657 8658 // Update the NodeMap. 8659 if (HasDef) { 8660 if (IsAnyRegCC) 8661 setValue(CS.getInstruction(), SDValue(MN, 0)); 8662 else 8663 setValue(CS.getInstruction(), Result.first); 8664 } 8665 8666 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8667 // call sequence. Furthermore the location of the chain and glue can change 8668 // when the AnyReg calling convention is used and the intrinsic returns a 8669 // value. 8670 if (IsAnyRegCC && HasDef) { 8671 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8672 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8673 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8674 } else 8675 DAG.ReplaceAllUsesWith(Call, MN); 8676 DAG.DeleteNode(Call); 8677 8678 // Inform the Frame Information that we have a patchpoint in this function. 8679 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8680 } 8681 8682 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8683 unsigned Intrinsic) { 8684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8685 SDValue Op1 = getValue(I.getArgOperand(0)); 8686 SDValue Op2; 8687 if (I.getNumArgOperands() > 1) 8688 Op2 = getValue(I.getArgOperand(1)); 8689 SDLoc dl = getCurSDLoc(); 8690 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8691 SDValue Res; 8692 FastMathFlags FMF; 8693 if (isa<FPMathOperator>(I)) 8694 FMF = I.getFastMathFlags(); 8695 8696 switch (Intrinsic) { 8697 case Intrinsic::experimental_vector_reduce_fadd: 8698 if (FMF.isFast()) 8699 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8700 else 8701 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8702 break; 8703 case Intrinsic::experimental_vector_reduce_fmul: 8704 if (FMF.isFast()) 8705 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8706 else 8707 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8708 break; 8709 case Intrinsic::experimental_vector_reduce_add: 8710 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8711 break; 8712 case Intrinsic::experimental_vector_reduce_mul: 8713 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8714 break; 8715 case Intrinsic::experimental_vector_reduce_and: 8716 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8717 break; 8718 case Intrinsic::experimental_vector_reduce_or: 8719 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8720 break; 8721 case Intrinsic::experimental_vector_reduce_xor: 8722 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8723 break; 8724 case Intrinsic::experimental_vector_reduce_smax: 8725 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8726 break; 8727 case Intrinsic::experimental_vector_reduce_smin: 8728 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8729 break; 8730 case Intrinsic::experimental_vector_reduce_umax: 8731 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8732 break; 8733 case Intrinsic::experimental_vector_reduce_umin: 8734 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8735 break; 8736 case Intrinsic::experimental_vector_reduce_fmax: 8737 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8738 break; 8739 case Intrinsic::experimental_vector_reduce_fmin: 8740 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8741 break; 8742 default: 8743 llvm_unreachable("Unhandled vector reduce intrinsic"); 8744 } 8745 setValue(&I, Res); 8746 } 8747 8748 /// Returns an AttributeList representing the attributes applied to the return 8749 /// value of the given call. 8750 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8751 SmallVector<Attribute::AttrKind, 2> Attrs; 8752 if (CLI.RetSExt) 8753 Attrs.push_back(Attribute::SExt); 8754 if (CLI.RetZExt) 8755 Attrs.push_back(Attribute::ZExt); 8756 if (CLI.IsInReg) 8757 Attrs.push_back(Attribute::InReg); 8758 8759 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8760 Attrs); 8761 } 8762 8763 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8764 /// implementation, which just calls LowerCall. 8765 /// FIXME: When all targets are 8766 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8767 std::pair<SDValue, SDValue> 8768 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8769 // Handle the incoming return values from the call. 8770 CLI.Ins.clear(); 8771 Type *OrigRetTy = CLI.RetTy; 8772 SmallVector<EVT, 4> RetTys; 8773 SmallVector<uint64_t, 4> Offsets; 8774 auto &DL = CLI.DAG.getDataLayout(); 8775 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8776 8777 if (CLI.IsPostTypeLegalization) { 8778 // If we are lowering a libcall after legalization, split the return type. 8779 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8780 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8781 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8782 EVT RetVT = OldRetTys[i]; 8783 uint64_t Offset = OldOffsets[i]; 8784 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8785 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8786 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8787 RetTys.append(NumRegs, RegisterVT); 8788 for (unsigned j = 0; j != NumRegs; ++j) 8789 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8790 } 8791 } 8792 8793 SmallVector<ISD::OutputArg, 4> Outs; 8794 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8795 8796 bool CanLowerReturn = 8797 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8798 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8799 8800 SDValue DemoteStackSlot; 8801 int DemoteStackIdx = -100; 8802 if (!CanLowerReturn) { 8803 // FIXME: equivalent assert? 8804 // assert(!CS.hasInAllocaArgument() && 8805 // "sret demotion is incompatible with inalloca"); 8806 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8807 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8808 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8809 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8810 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8811 DL.getAllocaAddrSpace()); 8812 8813 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8814 ArgListEntry Entry; 8815 Entry.Node = DemoteStackSlot; 8816 Entry.Ty = StackSlotPtrType; 8817 Entry.IsSExt = false; 8818 Entry.IsZExt = false; 8819 Entry.IsInReg = false; 8820 Entry.IsSRet = true; 8821 Entry.IsNest = false; 8822 Entry.IsByVal = false; 8823 Entry.IsReturned = false; 8824 Entry.IsSwiftSelf = false; 8825 Entry.IsSwiftError = false; 8826 Entry.Alignment = Align; 8827 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8828 CLI.NumFixedArgs += 1; 8829 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8830 8831 // sret demotion isn't compatible with tail-calls, since the sret argument 8832 // points into the callers stack frame. 8833 CLI.IsTailCall = false; 8834 } else { 8835 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8836 EVT VT = RetTys[I]; 8837 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8838 CLI.CallConv, VT); 8839 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8840 CLI.CallConv, VT); 8841 for (unsigned i = 0; i != NumRegs; ++i) { 8842 ISD::InputArg MyFlags; 8843 MyFlags.Flags = Flags; 8844 MyFlags.VT = RegisterVT; 8845 MyFlags.ArgVT = VT; 8846 MyFlags.Used = CLI.IsReturnValueUsed; 8847 if (CLI.RetTy->isPointerTy()) { 8848 MyFlags.Flags.setPointer(); 8849 MyFlags.Flags.setPointerAddrSpace( 8850 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 8851 } 8852 if (CLI.RetSExt) 8853 MyFlags.Flags.setSExt(); 8854 if (CLI.RetZExt) 8855 MyFlags.Flags.setZExt(); 8856 if (CLI.IsInReg) 8857 MyFlags.Flags.setInReg(); 8858 CLI.Ins.push_back(MyFlags); 8859 } 8860 } 8861 } 8862 8863 // We push in swifterror return as the last element of CLI.Ins. 8864 ArgListTy &Args = CLI.getArgs(); 8865 if (supportSwiftError()) { 8866 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8867 if (Args[i].IsSwiftError) { 8868 ISD::InputArg MyFlags; 8869 MyFlags.VT = getPointerTy(DL); 8870 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8871 MyFlags.Flags.setSwiftError(); 8872 CLI.Ins.push_back(MyFlags); 8873 } 8874 } 8875 } 8876 8877 // Handle all of the outgoing arguments. 8878 CLI.Outs.clear(); 8879 CLI.OutVals.clear(); 8880 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8881 SmallVector<EVT, 4> ValueVTs; 8882 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8883 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8884 Type *FinalType = Args[i].Ty; 8885 if (Args[i].IsByVal) 8886 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8887 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8888 FinalType, CLI.CallConv, CLI.IsVarArg); 8889 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8890 ++Value) { 8891 EVT VT = ValueVTs[Value]; 8892 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8893 SDValue Op = SDValue(Args[i].Node.getNode(), 8894 Args[i].Node.getResNo() + Value); 8895 ISD::ArgFlagsTy Flags; 8896 8897 // Certain targets (such as MIPS), may have a different ABI alignment 8898 // for a type depending on the context. Give the target a chance to 8899 // specify the alignment it wants. 8900 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8901 8902 if (Args[i].Ty->isPointerTy()) { 8903 Flags.setPointer(); 8904 Flags.setPointerAddrSpace( 8905 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 8906 } 8907 if (Args[i].IsZExt) 8908 Flags.setZExt(); 8909 if (Args[i].IsSExt) 8910 Flags.setSExt(); 8911 if (Args[i].IsInReg) { 8912 // If we are using vectorcall calling convention, a structure that is 8913 // passed InReg - is surely an HVA 8914 if (CLI.CallConv == CallingConv::X86_VectorCall && 8915 isa<StructType>(FinalType)) { 8916 // The first value of a structure is marked 8917 if (0 == Value) 8918 Flags.setHvaStart(); 8919 Flags.setHva(); 8920 } 8921 // Set InReg Flag 8922 Flags.setInReg(); 8923 } 8924 if (Args[i].IsSRet) 8925 Flags.setSRet(); 8926 if (Args[i].IsSwiftSelf) 8927 Flags.setSwiftSelf(); 8928 if (Args[i].IsSwiftError) 8929 Flags.setSwiftError(); 8930 if (Args[i].IsByVal) 8931 Flags.setByVal(); 8932 if (Args[i].IsInAlloca) { 8933 Flags.setInAlloca(); 8934 // Set the byval flag for CCAssignFn callbacks that don't know about 8935 // inalloca. This way we can know how many bytes we should've allocated 8936 // and how many bytes a callee cleanup function will pop. If we port 8937 // inalloca to more targets, we'll have to add custom inalloca handling 8938 // in the various CC lowering callbacks. 8939 Flags.setByVal(); 8940 } 8941 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8942 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8943 Type *ElementTy = Ty->getElementType(); 8944 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8945 // For ByVal, alignment should come from FE. BE will guess if this 8946 // info is not there but there are cases it cannot get right. 8947 unsigned FrameAlign; 8948 if (Args[i].Alignment) 8949 FrameAlign = Args[i].Alignment; 8950 else 8951 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8952 Flags.setByValAlign(FrameAlign); 8953 } 8954 if (Args[i].IsNest) 8955 Flags.setNest(); 8956 if (NeedsRegBlock) 8957 Flags.setInConsecutiveRegs(); 8958 Flags.setOrigAlign(OriginalAlignment); 8959 8960 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8961 CLI.CallConv, VT); 8962 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8963 CLI.CallConv, VT); 8964 SmallVector<SDValue, 4> Parts(NumParts); 8965 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8966 8967 if (Args[i].IsSExt) 8968 ExtendKind = ISD::SIGN_EXTEND; 8969 else if (Args[i].IsZExt) 8970 ExtendKind = ISD::ZERO_EXTEND; 8971 8972 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8973 // for now. 8974 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8975 CanLowerReturn) { 8976 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8977 "unexpected use of 'returned'"); 8978 // Before passing 'returned' to the target lowering code, ensure that 8979 // either the register MVT and the actual EVT are the same size or that 8980 // the return value and argument are extended in the same way; in these 8981 // cases it's safe to pass the argument register value unchanged as the 8982 // return register value (although it's at the target's option whether 8983 // to do so) 8984 // TODO: allow code generation to take advantage of partially preserved 8985 // registers rather than clobbering the entire register when the 8986 // parameter extension method is not compatible with the return 8987 // extension method 8988 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8989 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8990 CLI.RetZExt == Args[i].IsZExt)) 8991 Flags.setReturned(); 8992 } 8993 8994 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8995 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8996 8997 for (unsigned j = 0; j != NumParts; ++j) { 8998 // if it isn't first piece, alignment must be 1 8999 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9000 i < CLI.NumFixedArgs, 9001 i, j*Parts[j].getValueType().getStoreSize()); 9002 if (NumParts > 1 && j == 0) 9003 MyFlags.Flags.setSplit(); 9004 else if (j != 0) { 9005 MyFlags.Flags.setOrigAlign(1); 9006 if (j == NumParts - 1) 9007 MyFlags.Flags.setSplitEnd(); 9008 } 9009 9010 CLI.Outs.push_back(MyFlags); 9011 CLI.OutVals.push_back(Parts[j]); 9012 } 9013 9014 if (NeedsRegBlock && Value == NumValues - 1) 9015 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9016 } 9017 } 9018 9019 SmallVector<SDValue, 4> InVals; 9020 CLI.Chain = LowerCall(CLI, InVals); 9021 9022 // Update CLI.InVals to use outside of this function. 9023 CLI.InVals = InVals; 9024 9025 // Verify that the target's LowerCall behaved as expected. 9026 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9027 "LowerCall didn't return a valid chain!"); 9028 assert((!CLI.IsTailCall || InVals.empty()) && 9029 "LowerCall emitted a return value for a tail call!"); 9030 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9031 "LowerCall didn't emit the correct number of values!"); 9032 9033 // For a tail call, the return value is merely live-out and there aren't 9034 // any nodes in the DAG representing it. Return a special value to 9035 // indicate that a tail call has been emitted and no more Instructions 9036 // should be processed in the current block. 9037 if (CLI.IsTailCall) { 9038 CLI.DAG.setRoot(CLI.Chain); 9039 return std::make_pair(SDValue(), SDValue()); 9040 } 9041 9042 #ifndef NDEBUG 9043 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9044 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9045 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9046 "LowerCall emitted a value with the wrong type!"); 9047 } 9048 #endif 9049 9050 SmallVector<SDValue, 4> ReturnValues; 9051 if (!CanLowerReturn) { 9052 // The instruction result is the result of loading from the 9053 // hidden sret parameter. 9054 SmallVector<EVT, 1> PVTs; 9055 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9056 9057 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9058 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9059 EVT PtrVT = PVTs[0]; 9060 9061 unsigned NumValues = RetTys.size(); 9062 ReturnValues.resize(NumValues); 9063 SmallVector<SDValue, 4> Chains(NumValues); 9064 9065 // An aggregate return value cannot wrap around the address space, so 9066 // offsets to its parts don't wrap either. 9067 SDNodeFlags Flags; 9068 Flags.setNoUnsignedWrap(true); 9069 9070 for (unsigned i = 0; i < NumValues; ++i) { 9071 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9072 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9073 PtrVT), Flags); 9074 SDValue L = CLI.DAG.getLoad( 9075 RetTys[i], CLI.DL, CLI.Chain, Add, 9076 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9077 DemoteStackIdx, Offsets[i]), 9078 /* Alignment = */ 1); 9079 ReturnValues[i] = L; 9080 Chains[i] = L.getValue(1); 9081 } 9082 9083 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9084 } else { 9085 // Collect the legal value parts into potentially illegal values 9086 // that correspond to the original function's return values. 9087 Optional<ISD::NodeType> AssertOp; 9088 if (CLI.RetSExt) 9089 AssertOp = ISD::AssertSext; 9090 else if (CLI.RetZExt) 9091 AssertOp = ISD::AssertZext; 9092 unsigned CurReg = 0; 9093 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9094 EVT VT = RetTys[I]; 9095 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9096 CLI.CallConv, VT); 9097 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9098 CLI.CallConv, VT); 9099 9100 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9101 NumRegs, RegisterVT, VT, nullptr, 9102 CLI.CallConv, AssertOp)); 9103 CurReg += NumRegs; 9104 } 9105 9106 // For a function returning void, there is no return value. We can't create 9107 // such a node, so we just return a null return value in that case. In 9108 // that case, nothing will actually look at the value. 9109 if (ReturnValues.empty()) 9110 return std::make_pair(SDValue(), CLI.Chain); 9111 } 9112 9113 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9114 CLI.DAG.getVTList(RetTys), ReturnValues); 9115 return std::make_pair(Res, CLI.Chain); 9116 } 9117 9118 void TargetLowering::LowerOperationWrapper(SDNode *N, 9119 SmallVectorImpl<SDValue> &Results, 9120 SelectionDAG &DAG) const { 9121 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9122 Results.push_back(Res); 9123 } 9124 9125 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9126 llvm_unreachable("LowerOperation not implemented for this target!"); 9127 } 9128 9129 void 9130 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9131 SDValue Op = getNonRegisterValue(V); 9132 assert((Op.getOpcode() != ISD::CopyFromReg || 9133 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9134 "Copy from a reg to the same reg!"); 9135 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9136 9137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9138 // If this is an InlineAsm we have to match the registers required, not the 9139 // notional registers required by the type. 9140 9141 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9142 None); // This is not an ABI copy. 9143 SDValue Chain = DAG.getEntryNode(); 9144 9145 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9146 FuncInfo.PreferredExtendType.end()) 9147 ? ISD::ANY_EXTEND 9148 : FuncInfo.PreferredExtendType[V]; 9149 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9150 PendingExports.push_back(Chain); 9151 } 9152 9153 #include "llvm/CodeGen/SelectionDAGISel.h" 9154 9155 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9156 /// entry block, return true. This includes arguments used by switches, since 9157 /// the switch may expand into multiple basic blocks. 9158 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9159 // With FastISel active, we may be splitting blocks, so force creation 9160 // of virtual registers for all non-dead arguments. 9161 if (FastISel) 9162 return A->use_empty(); 9163 9164 const BasicBlock &Entry = A->getParent()->front(); 9165 for (const User *U : A->users()) 9166 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9167 return false; // Use not in entry block. 9168 9169 return true; 9170 } 9171 9172 using ArgCopyElisionMapTy = 9173 DenseMap<const Argument *, 9174 std::pair<const AllocaInst *, const StoreInst *>>; 9175 9176 /// Scan the entry block of the function in FuncInfo for arguments that look 9177 /// like copies into a local alloca. Record any copied arguments in 9178 /// ArgCopyElisionCandidates. 9179 static void 9180 findArgumentCopyElisionCandidates(const DataLayout &DL, 9181 FunctionLoweringInfo *FuncInfo, 9182 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9183 // Record the state of every static alloca used in the entry block. Argument 9184 // allocas are all used in the entry block, so we need approximately as many 9185 // entries as we have arguments. 9186 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9187 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9188 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9189 StaticAllocas.reserve(NumArgs * 2); 9190 9191 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9192 if (!V) 9193 return nullptr; 9194 V = V->stripPointerCasts(); 9195 const auto *AI = dyn_cast<AllocaInst>(V); 9196 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9197 return nullptr; 9198 auto Iter = StaticAllocas.insert({AI, Unknown}); 9199 return &Iter.first->second; 9200 }; 9201 9202 // Look for stores of arguments to static allocas. Look through bitcasts and 9203 // GEPs to handle type coercions, as long as the alloca is fully initialized 9204 // by the store. Any non-store use of an alloca escapes it and any subsequent 9205 // unanalyzed store might write it. 9206 // FIXME: Handle structs initialized with multiple stores. 9207 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9208 // Look for stores, and handle non-store uses conservatively. 9209 const auto *SI = dyn_cast<StoreInst>(&I); 9210 if (!SI) { 9211 // We will look through cast uses, so ignore them completely. 9212 if (I.isCast()) 9213 continue; 9214 // Ignore debug info intrinsics, they don't escape or store to allocas. 9215 if (isa<DbgInfoIntrinsic>(I)) 9216 continue; 9217 // This is an unknown instruction. Assume it escapes or writes to all 9218 // static alloca operands. 9219 for (const Use &U : I.operands()) { 9220 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9221 *Info = StaticAllocaInfo::Clobbered; 9222 } 9223 continue; 9224 } 9225 9226 // If the stored value is a static alloca, mark it as escaped. 9227 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9228 *Info = StaticAllocaInfo::Clobbered; 9229 9230 // Check if the destination is a static alloca. 9231 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9232 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9233 if (!Info) 9234 continue; 9235 const AllocaInst *AI = cast<AllocaInst>(Dst); 9236 9237 // Skip allocas that have been initialized or clobbered. 9238 if (*Info != StaticAllocaInfo::Unknown) 9239 continue; 9240 9241 // Check if the stored value is an argument, and that this store fully 9242 // initializes the alloca. Don't elide copies from the same argument twice. 9243 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9244 const auto *Arg = dyn_cast<Argument>(Val); 9245 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9246 Arg->getType()->isEmptyTy() || 9247 DL.getTypeStoreSize(Arg->getType()) != 9248 DL.getTypeAllocSize(AI->getAllocatedType()) || 9249 ArgCopyElisionCandidates.count(Arg)) { 9250 *Info = StaticAllocaInfo::Clobbered; 9251 continue; 9252 } 9253 9254 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9255 << '\n'); 9256 9257 // Mark this alloca and store for argument copy elision. 9258 *Info = StaticAllocaInfo::Elidable; 9259 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9260 9261 // Stop scanning if we've seen all arguments. This will happen early in -O0 9262 // builds, which is useful, because -O0 builds have large entry blocks and 9263 // many allocas. 9264 if (ArgCopyElisionCandidates.size() == NumArgs) 9265 break; 9266 } 9267 } 9268 9269 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9270 /// ArgVal is a load from a suitable fixed stack object. 9271 static void tryToElideArgumentCopy( 9272 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9273 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9274 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9275 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9276 SDValue ArgVal, bool &ArgHasUses) { 9277 // Check if this is a load from a fixed stack object. 9278 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9279 if (!LNode) 9280 return; 9281 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9282 if (!FINode) 9283 return; 9284 9285 // Check that the fixed stack object is the right size and alignment. 9286 // Look at the alignment that the user wrote on the alloca instead of looking 9287 // at the stack object. 9288 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9289 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9290 const AllocaInst *AI = ArgCopyIter->second.first; 9291 int FixedIndex = FINode->getIndex(); 9292 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9293 int OldIndex = AllocaIndex; 9294 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9295 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9296 LLVM_DEBUG( 9297 dbgs() << " argument copy elision failed due to bad fixed stack " 9298 "object size\n"); 9299 return; 9300 } 9301 unsigned RequiredAlignment = AI->getAlignment(); 9302 if (!RequiredAlignment) { 9303 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9304 AI->getAllocatedType()); 9305 } 9306 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9307 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9308 "greater than stack argument alignment (" 9309 << RequiredAlignment << " vs " 9310 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9311 return; 9312 } 9313 9314 // Perform the elision. Delete the old stack object and replace its only use 9315 // in the variable info map. Mark the stack object as mutable. 9316 LLVM_DEBUG({ 9317 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9318 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9319 << '\n'; 9320 }); 9321 MFI.RemoveStackObject(OldIndex); 9322 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9323 AllocaIndex = FixedIndex; 9324 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9325 Chains.push_back(ArgVal.getValue(1)); 9326 9327 // Avoid emitting code for the store implementing the copy. 9328 const StoreInst *SI = ArgCopyIter->second.second; 9329 ElidedArgCopyInstrs.insert(SI); 9330 9331 // Check for uses of the argument again so that we can avoid exporting ArgVal 9332 // if it is't used by anything other than the store. 9333 for (const Value *U : Arg.users()) { 9334 if (U != SI) { 9335 ArgHasUses = true; 9336 break; 9337 } 9338 } 9339 } 9340 9341 void SelectionDAGISel::LowerArguments(const Function &F) { 9342 SelectionDAG &DAG = SDB->DAG; 9343 SDLoc dl = SDB->getCurSDLoc(); 9344 const DataLayout &DL = DAG.getDataLayout(); 9345 SmallVector<ISD::InputArg, 16> Ins; 9346 9347 if (!FuncInfo->CanLowerReturn) { 9348 // Put in an sret pointer parameter before all the other parameters. 9349 SmallVector<EVT, 1> ValueVTs; 9350 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9351 F.getReturnType()->getPointerTo( 9352 DAG.getDataLayout().getAllocaAddrSpace()), 9353 ValueVTs); 9354 9355 // NOTE: Assuming that a pointer will never break down to more than one VT 9356 // or one register. 9357 ISD::ArgFlagsTy Flags; 9358 Flags.setSRet(); 9359 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9360 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9361 ISD::InputArg::NoArgIndex, 0); 9362 Ins.push_back(RetArg); 9363 } 9364 9365 // Look for stores of arguments to static allocas. Mark such arguments with a 9366 // flag to ask the target to give us the memory location of that argument if 9367 // available. 9368 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9369 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9370 9371 // Set up the incoming argument description vector. 9372 for (const Argument &Arg : F.args()) { 9373 unsigned ArgNo = Arg.getArgNo(); 9374 SmallVector<EVT, 4> ValueVTs; 9375 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9376 bool isArgValueUsed = !Arg.use_empty(); 9377 unsigned PartBase = 0; 9378 Type *FinalType = Arg.getType(); 9379 if (Arg.hasAttribute(Attribute::ByVal)) 9380 FinalType = cast<PointerType>(FinalType)->getElementType(); 9381 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9382 FinalType, F.getCallingConv(), F.isVarArg()); 9383 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9384 Value != NumValues; ++Value) { 9385 EVT VT = ValueVTs[Value]; 9386 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9387 ISD::ArgFlagsTy Flags; 9388 9389 // Certain targets (such as MIPS), may have a different ABI alignment 9390 // for a type depending on the context. Give the target a chance to 9391 // specify the alignment it wants. 9392 unsigned OriginalAlignment = 9393 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9394 9395 if (Arg.getType()->isPointerTy()) { 9396 Flags.setPointer(); 9397 Flags.setPointerAddrSpace( 9398 cast<PointerType>(Arg.getType())->getAddressSpace()); 9399 } 9400 if (Arg.hasAttribute(Attribute::ZExt)) 9401 Flags.setZExt(); 9402 if (Arg.hasAttribute(Attribute::SExt)) 9403 Flags.setSExt(); 9404 if (Arg.hasAttribute(Attribute::InReg)) { 9405 // If we are using vectorcall calling convention, a structure that is 9406 // passed InReg - is surely an HVA 9407 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9408 isa<StructType>(Arg.getType())) { 9409 // The first value of a structure is marked 9410 if (0 == Value) 9411 Flags.setHvaStart(); 9412 Flags.setHva(); 9413 } 9414 // Set InReg Flag 9415 Flags.setInReg(); 9416 } 9417 if (Arg.hasAttribute(Attribute::StructRet)) 9418 Flags.setSRet(); 9419 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9420 Flags.setSwiftSelf(); 9421 if (Arg.hasAttribute(Attribute::SwiftError)) 9422 Flags.setSwiftError(); 9423 if (Arg.hasAttribute(Attribute::ByVal)) 9424 Flags.setByVal(); 9425 if (Arg.hasAttribute(Attribute::InAlloca)) { 9426 Flags.setInAlloca(); 9427 // Set the byval flag for CCAssignFn callbacks that don't know about 9428 // inalloca. This way we can know how many bytes we should've allocated 9429 // and how many bytes a callee cleanup function will pop. If we port 9430 // inalloca to more targets, we'll have to add custom inalloca handling 9431 // in the various CC lowering callbacks. 9432 Flags.setByVal(); 9433 } 9434 if (F.getCallingConv() == CallingConv::X86_INTR) { 9435 // IA Interrupt passes frame (1st parameter) by value in the stack. 9436 if (ArgNo == 0) 9437 Flags.setByVal(); 9438 } 9439 if (Flags.isByVal() || Flags.isInAlloca()) { 9440 PointerType *Ty = cast<PointerType>(Arg.getType()); 9441 Type *ElementTy = Ty->getElementType(); 9442 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9443 // For ByVal, alignment should be passed from FE. BE will guess if 9444 // this info is not there but there are cases it cannot get right. 9445 unsigned FrameAlign; 9446 if (Arg.getParamAlignment()) 9447 FrameAlign = Arg.getParamAlignment(); 9448 else 9449 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9450 Flags.setByValAlign(FrameAlign); 9451 } 9452 if (Arg.hasAttribute(Attribute::Nest)) 9453 Flags.setNest(); 9454 if (NeedsRegBlock) 9455 Flags.setInConsecutiveRegs(); 9456 Flags.setOrigAlign(OriginalAlignment); 9457 if (ArgCopyElisionCandidates.count(&Arg)) 9458 Flags.setCopyElisionCandidate(); 9459 9460 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9461 *CurDAG->getContext(), F.getCallingConv(), VT); 9462 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9463 *CurDAG->getContext(), F.getCallingConv(), VT); 9464 for (unsigned i = 0; i != NumRegs; ++i) { 9465 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9466 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9467 if (NumRegs > 1 && i == 0) 9468 MyFlags.Flags.setSplit(); 9469 // if it isn't first piece, alignment must be 1 9470 else if (i > 0) { 9471 MyFlags.Flags.setOrigAlign(1); 9472 if (i == NumRegs - 1) 9473 MyFlags.Flags.setSplitEnd(); 9474 } 9475 Ins.push_back(MyFlags); 9476 } 9477 if (NeedsRegBlock && Value == NumValues - 1) 9478 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9479 PartBase += VT.getStoreSize(); 9480 } 9481 } 9482 9483 // Call the target to set up the argument values. 9484 SmallVector<SDValue, 8> InVals; 9485 SDValue NewRoot = TLI->LowerFormalArguments( 9486 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9487 9488 // Verify that the target's LowerFormalArguments behaved as expected. 9489 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9490 "LowerFormalArguments didn't return a valid chain!"); 9491 assert(InVals.size() == Ins.size() && 9492 "LowerFormalArguments didn't emit the correct number of values!"); 9493 LLVM_DEBUG({ 9494 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9495 assert(InVals[i].getNode() && 9496 "LowerFormalArguments emitted a null value!"); 9497 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9498 "LowerFormalArguments emitted a value with the wrong type!"); 9499 } 9500 }); 9501 9502 // Update the DAG with the new chain value resulting from argument lowering. 9503 DAG.setRoot(NewRoot); 9504 9505 // Set up the argument values. 9506 unsigned i = 0; 9507 if (!FuncInfo->CanLowerReturn) { 9508 // Create a virtual register for the sret pointer, and put in a copy 9509 // from the sret argument into it. 9510 SmallVector<EVT, 1> ValueVTs; 9511 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9512 F.getReturnType()->getPointerTo( 9513 DAG.getDataLayout().getAllocaAddrSpace()), 9514 ValueVTs); 9515 MVT VT = ValueVTs[0].getSimpleVT(); 9516 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9517 Optional<ISD::NodeType> AssertOp = None; 9518 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9519 nullptr, F.getCallingConv(), AssertOp); 9520 9521 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9522 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9523 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9524 FuncInfo->DemoteRegister = SRetReg; 9525 NewRoot = 9526 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9527 DAG.setRoot(NewRoot); 9528 9529 // i indexes lowered arguments. Bump it past the hidden sret argument. 9530 ++i; 9531 } 9532 9533 SmallVector<SDValue, 4> Chains; 9534 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9535 for (const Argument &Arg : F.args()) { 9536 SmallVector<SDValue, 4> ArgValues; 9537 SmallVector<EVT, 4> ValueVTs; 9538 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9539 unsigned NumValues = ValueVTs.size(); 9540 if (NumValues == 0) 9541 continue; 9542 9543 bool ArgHasUses = !Arg.use_empty(); 9544 9545 // Elide the copying store if the target loaded this argument from a 9546 // suitable fixed stack object. 9547 if (Ins[i].Flags.isCopyElisionCandidate()) { 9548 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9549 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9550 InVals[i], ArgHasUses); 9551 } 9552 9553 // If this argument is unused then remember its value. It is used to generate 9554 // debugging information. 9555 bool isSwiftErrorArg = 9556 TLI->supportSwiftError() && 9557 Arg.hasAttribute(Attribute::SwiftError); 9558 if (!ArgHasUses && !isSwiftErrorArg) { 9559 SDB->setUnusedArgValue(&Arg, InVals[i]); 9560 9561 // Also remember any frame index for use in FastISel. 9562 if (FrameIndexSDNode *FI = 9563 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9564 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9565 } 9566 9567 for (unsigned Val = 0; Val != NumValues; ++Val) { 9568 EVT VT = ValueVTs[Val]; 9569 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9570 F.getCallingConv(), VT); 9571 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9572 *CurDAG->getContext(), F.getCallingConv(), VT); 9573 9574 // Even an apparant 'unused' swifterror argument needs to be returned. So 9575 // we do generate a copy for it that can be used on return from the 9576 // function. 9577 if (ArgHasUses || isSwiftErrorArg) { 9578 Optional<ISD::NodeType> AssertOp; 9579 if (Arg.hasAttribute(Attribute::SExt)) 9580 AssertOp = ISD::AssertSext; 9581 else if (Arg.hasAttribute(Attribute::ZExt)) 9582 AssertOp = ISD::AssertZext; 9583 9584 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9585 PartVT, VT, nullptr, 9586 F.getCallingConv(), AssertOp)); 9587 } 9588 9589 i += NumParts; 9590 } 9591 9592 // We don't need to do anything else for unused arguments. 9593 if (ArgValues.empty()) 9594 continue; 9595 9596 // Note down frame index. 9597 if (FrameIndexSDNode *FI = 9598 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9599 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9600 9601 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9602 SDB->getCurSDLoc()); 9603 9604 SDB->setValue(&Arg, Res); 9605 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9606 // We want to associate the argument with the frame index, among 9607 // involved operands, that correspond to the lowest address. The 9608 // getCopyFromParts function, called earlier, is swapping the order of 9609 // the operands to BUILD_PAIR depending on endianness. The result of 9610 // that swapping is that the least significant bits of the argument will 9611 // be in the first operand of the BUILD_PAIR node, and the most 9612 // significant bits will be in the second operand. 9613 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9614 if (LoadSDNode *LNode = 9615 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9616 if (FrameIndexSDNode *FI = 9617 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9618 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9619 } 9620 9621 // Update the SwiftErrorVRegDefMap. 9622 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9623 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9624 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9625 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9626 FuncInfo->SwiftErrorArg, Reg); 9627 } 9628 9629 // If this argument is live outside of the entry block, insert a copy from 9630 // wherever we got it to the vreg that other BB's will reference it as. 9631 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9632 // If we can, though, try to skip creating an unnecessary vreg. 9633 // FIXME: This isn't very clean... it would be nice to make this more 9634 // general. It's also subtly incompatible with the hacks FastISel 9635 // uses with vregs. 9636 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9637 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9638 FuncInfo->ValueMap[&Arg] = Reg; 9639 continue; 9640 } 9641 } 9642 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9643 FuncInfo->InitializeRegForValue(&Arg); 9644 SDB->CopyToExportRegsIfNeeded(&Arg); 9645 } 9646 } 9647 9648 if (!Chains.empty()) { 9649 Chains.push_back(NewRoot); 9650 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9651 } 9652 9653 DAG.setRoot(NewRoot); 9654 9655 assert(i == InVals.size() && "Argument register count mismatch!"); 9656 9657 // If any argument copy elisions occurred and we have debug info, update the 9658 // stale frame indices used in the dbg.declare variable info table. 9659 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9660 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9661 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9662 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9663 if (I != ArgCopyElisionFrameIndexMap.end()) 9664 VI.Slot = I->second; 9665 } 9666 } 9667 9668 // Finally, if the target has anything special to do, allow it to do so. 9669 EmitFunctionEntryCode(); 9670 } 9671 9672 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9673 /// ensure constants are generated when needed. Remember the virtual registers 9674 /// that need to be added to the Machine PHI nodes as input. We cannot just 9675 /// directly add them, because expansion might result in multiple MBB's for one 9676 /// BB. As such, the start of the BB might correspond to a different MBB than 9677 /// the end. 9678 void 9679 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9680 const Instruction *TI = LLVMBB->getTerminator(); 9681 9682 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9683 9684 // Check PHI nodes in successors that expect a value to be available from this 9685 // block. 9686 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9687 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9688 if (!isa<PHINode>(SuccBB->begin())) continue; 9689 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9690 9691 // If this terminator has multiple identical successors (common for 9692 // switches), only handle each succ once. 9693 if (!SuccsHandled.insert(SuccMBB).second) 9694 continue; 9695 9696 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9697 9698 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9699 // nodes and Machine PHI nodes, but the incoming operands have not been 9700 // emitted yet. 9701 for (const PHINode &PN : SuccBB->phis()) { 9702 // Ignore dead phi's. 9703 if (PN.use_empty()) 9704 continue; 9705 9706 // Skip empty types 9707 if (PN.getType()->isEmptyTy()) 9708 continue; 9709 9710 unsigned Reg; 9711 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9712 9713 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9714 unsigned &RegOut = ConstantsOut[C]; 9715 if (RegOut == 0) { 9716 RegOut = FuncInfo.CreateRegs(C->getType()); 9717 CopyValueToVirtualRegister(C, RegOut); 9718 } 9719 Reg = RegOut; 9720 } else { 9721 DenseMap<const Value *, unsigned>::iterator I = 9722 FuncInfo.ValueMap.find(PHIOp); 9723 if (I != FuncInfo.ValueMap.end()) 9724 Reg = I->second; 9725 else { 9726 assert(isa<AllocaInst>(PHIOp) && 9727 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9728 "Didn't codegen value into a register!??"); 9729 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9730 CopyValueToVirtualRegister(PHIOp, Reg); 9731 } 9732 } 9733 9734 // Remember that this register needs to added to the machine PHI node as 9735 // the input for this MBB. 9736 SmallVector<EVT, 4> ValueVTs; 9737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9738 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9739 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9740 EVT VT = ValueVTs[vti]; 9741 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9742 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9743 FuncInfo.PHINodesToUpdate.push_back( 9744 std::make_pair(&*MBBI++, Reg + i)); 9745 Reg += NumRegisters; 9746 } 9747 } 9748 } 9749 9750 ConstantsOut.clear(); 9751 } 9752 9753 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9754 /// is 0. 9755 MachineBasicBlock * 9756 SelectionDAGBuilder::StackProtectorDescriptor:: 9757 AddSuccessorMBB(const BasicBlock *BB, 9758 MachineBasicBlock *ParentMBB, 9759 bool IsLikely, 9760 MachineBasicBlock *SuccMBB) { 9761 // If SuccBB has not been created yet, create it. 9762 if (!SuccMBB) { 9763 MachineFunction *MF = ParentMBB->getParent(); 9764 MachineFunction::iterator BBI(ParentMBB); 9765 SuccMBB = MF->CreateMachineBasicBlock(BB); 9766 MF->insert(++BBI, SuccMBB); 9767 } 9768 // Add it as a successor of ParentMBB. 9769 ParentMBB->addSuccessor( 9770 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9771 return SuccMBB; 9772 } 9773 9774 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9775 MachineFunction::iterator I(MBB); 9776 if (++I == FuncInfo.MF->end()) 9777 return nullptr; 9778 return &*I; 9779 } 9780 9781 /// During lowering new call nodes can be created (such as memset, etc.). 9782 /// Those will become new roots of the current DAG, but complications arise 9783 /// when they are tail calls. In such cases, the call lowering will update 9784 /// the root, but the builder still needs to know that a tail call has been 9785 /// lowered in order to avoid generating an additional return. 9786 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9787 // If the node is null, we do have a tail call. 9788 if (MaybeTC.getNode() != nullptr) 9789 DAG.setRoot(MaybeTC); 9790 else 9791 HasTailCall = true; 9792 } 9793 9794 uint64_t 9795 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9796 unsigned First, unsigned Last) const { 9797 assert(Last >= First); 9798 const APInt &LowCase = Clusters[First].Low->getValue(); 9799 const APInt &HighCase = Clusters[Last].High->getValue(); 9800 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9801 9802 // FIXME: A range of consecutive cases has 100% density, but only requires one 9803 // comparison to lower. We should discriminate against such consecutive ranges 9804 // in jump tables. 9805 9806 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9807 } 9808 9809 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9810 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9811 unsigned Last) const { 9812 assert(Last >= First); 9813 assert(TotalCases[Last] >= TotalCases[First]); 9814 uint64_t NumCases = 9815 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9816 return NumCases; 9817 } 9818 9819 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9820 unsigned First, unsigned Last, 9821 const SwitchInst *SI, 9822 MachineBasicBlock *DefaultMBB, 9823 CaseCluster &JTCluster) { 9824 assert(First <= Last); 9825 9826 auto Prob = BranchProbability::getZero(); 9827 unsigned NumCmps = 0; 9828 std::vector<MachineBasicBlock*> Table; 9829 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9830 9831 // Initialize probabilities in JTProbs. 9832 for (unsigned I = First; I <= Last; ++I) 9833 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9834 9835 for (unsigned I = First; I <= Last; ++I) { 9836 assert(Clusters[I].Kind == CC_Range); 9837 Prob += Clusters[I].Prob; 9838 const APInt &Low = Clusters[I].Low->getValue(); 9839 const APInt &High = Clusters[I].High->getValue(); 9840 NumCmps += (Low == High) ? 1 : 2; 9841 if (I != First) { 9842 // Fill the gap between this and the previous cluster. 9843 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9844 assert(PreviousHigh.slt(Low)); 9845 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9846 for (uint64_t J = 0; J < Gap; J++) 9847 Table.push_back(DefaultMBB); 9848 } 9849 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9850 for (uint64_t J = 0; J < ClusterSize; ++J) 9851 Table.push_back(Clusters[I].MBB); 9852 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9853 } 9854 9855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9856 unsigned NumDests = JTProbs.size(); 9857 if (TLI.isSuitableForBitTests( 9858 NumDests, NumCmps, Clusters[First].Low->getValue(), 9859 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9860 // Clusters[First..Last] should be lowered as bit tests instead. 9861 return false; 9862 } 9863 9864 // Create the MBB that will load from and jump through the table. 9865 // Note: We create it here, but it's not inserted into the function yet. 9866 MachineFunction *CurMF = FuncInfo.MF; 9867 MachineBasicBlock *JumpTableMBB = 9868 CurMF->CreateMachineBasicBlock(SI->getParent()); 9869 9870 // Add successors. Note: use table order for determinism. 9871 SmallPtrSet<MachineBasicBlock *, 8> Done; 9872 for (MachineBasicBlock *Succ : Table) { 9873 if (Done.count(Succ)) 9874 continue; 9875 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9876 Done.insert(Succ); 9877 } 9878 JumpTableMBB->normalizeSuccProbs(); 9879 9880 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9881 ->createJumpTableIndex(Table); 9882 9883 // Set up the jump table info. 9884 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9885 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9886 Clusters[Last].High->getValue(), SI->getCondition(), 9887 nullptr, false); 9888 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9889 9890 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9891 JTCases.size() - 1, Prob); 9892 return true; 9893 } 9894 9895 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9896 const SwitchInst *SI, 9897 MachineBasicBlock *DefaultMBB) { 9898 #ifndef NDEBUG 9899 // Clusters must be non-empty, sorted, and only contain Range clusters. 9900 assert(!Clusters.empty()); 9901 for (CaseCluster &C : Clusters) 9902 assert(C.Kind == CC_Range); 9903 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9904 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9905 #endif 9906 9907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9908 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9909 return; 9910 9911 const int64_t N = Clusters.size(); 9912 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9913 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9914 9915 if (N < 2 || N < MinJumpTableEntries) 9916 return; 9917 9918 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9919 SmallVector<unsigned, 8> TotalCases(N); 9920 for (unsigned i = 0; i < N; ++i) { 9921 const APInt &Hi = Clusters[i].High->getValue(); 9922 const APInt &Lo = Clusters[i].Low->getValue(); 9923 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9924 if (i != 0) 9925 TotalCases[i] += TotalCases[i - 1]; 9926 } 9927 9928 // Cheap case: the whole range may be suitable for jump table. 9929 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9930 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9931 assert(NumCases < UINT64_MAX / 100); 9932 assert(Range >= NumCases); 9933 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9934 CaseCluster JTCluster; 9935 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9936 Clusters[0] = JTCluster; 9937 Clusters.resize(1); 9938 return; 9939 } 9940 } 9941 9942 // The algorithm below is not suitable for -O0. 9943 if (TM.getOptLevel() == CodeGenOpt::None) 9944 return; 9945 9946 // Split Clusters into minimum number of dense partitions. The algorithm uses 9947 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9948 // for the Case Statement'" (1994), but builds the MinPartitions array in 9949 // reverse order to make it easier to reconstruct the partitions in ascending 9950 // order. In the choice between two optimal partitionings, it picks the one 9951 // which yields more jump tables. 9952 9953 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9954 SmallVector<unsigned, 8> MinPartitions(N); 9955 // LastElement[i] is the last element of the partition starting at i. 9956 SmallVector<unsigned, 8> LastElement(N); 9957 // PartitionsScore[i] is used to break ties when choosing between two 9958 // partitionings resulting in the same number of partitions. 9959 SmallVector<unsigned, 8> PartitionsScore(N); 9960 // For PartitionsScore, a small number of comparisons is considered as good as 9961 // a jump table and a single comparison is considered better than a jump 9962 // table. 9963 enum PartitionScores : unsigned { 9964 NoTable = 0, 9965 Table = 1, 9966 FewCases = 1, 9967 SingleCase = 2 9968 }; 9969 9970 // Base case: There is only one way to partition Clusters[N-1]. 9971 MinPartitions[N - 1] = 1; 9972 LastElement[N - 1] = N - 1; 9973 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9974 9975 // Note: loop indexes are signed to avoid underflow. 9976 for (int64_t i = N - 2; i >= 0; i--) { 9977 // Find optimal partitioning of Clusters[i..N-1]. 9978 // Baseline: Put Clusters[i] into a partition on its own. 9979 MinPartitions[i] = MinPartitions[i + 1] + 1; 9980 LastElement[i] = i; 9981 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9982 9983 // Search for a solution that results in fewer partitions. 9984 for (int64_t j = N - 1; j > i; j--) { 9985 // Try building a partition from Clusters[i..j]. 9986 uint64_t Range = getJumpTableRange(Clusters, i, j); 9987 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9988 assert(NumCases < UINT64_MAX / 100); 9989 assert(Range >= NumCases); 9990 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9991 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9992 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9993 int64_t NumEntries = j - i + 1; 9994 9995 if (NumEntries == 1) 9996 Score += PartitionScores::SingleCase; 9997 else if (NumEntries <= SmallNumberOfEntries) 9998 Score += PartitionScores::FewCases; 9999 else if (NumEntries >= MinJumpTableEntries) 10000 Score += PartitionScores::Table; 10001 10002 // If this leads to fewer partitions, or to the same number of 10003 // partitions with better score, it is a better partitioning. 10004 if (NumPartitions < MinPartitions[i] || 10005 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 10006 MinPartitions[i] = NumPartitions; 10007 LastElement[i] = j; 10008 PartitionsScore[i] = Score; 10009 } 10010 } 10011 } 10012 } 10013 10014 // Iterate over the partitions, replacing some with jump tables in-place. 10015 unsigned DstIndex = 0; 10016 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10017 Last = LastElement[First]; 10018 assert(Last >= First); 10019 assert(DstIndex <= First); 10020 unsigned NumClusters = Last - First + 1; 10021 10022 CaseCluster JTCluster; 10023 if (NumClusters >= MinJumpTableEntries && 10024 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 10025 Clusters[DstIndex++] = JTCluster; 10026 } else { 10027 for (unsigned I = First; I <= Last; ++I) 10028 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 10029 } 10030 } 10031 Clusters.resize(DstIndex); 10032 } 10033 10034 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 10035 unsigned First, unsigned Last, 10036 const SwitchInst *SI, 10037 CaseCluster &BTCluster) { 10038 assert(First <= Last); 10039 if (First == Last) 10040 return false; 10041 10042 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10043 unsigned NumCmps = 0; 10044 for (int64_t I = First; I <= Last; ++I) { 10045 assert(Clusters[I].Kind == CC_Range); 10046 Dests.set(Clusters[I].MBB->getNumber()); 10047 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 10048 } 10049 unsigned NumDests = Dests.count(); 10050 10051 APInt Low = Clusters[First].Low->getValue(); 10052 APInt High = Clusters[Last].High->getValue(); 10053 assert(Low.slt(High)); 10054 10055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10056 const DataLayout &DL = DAG.getDataLayout(); 10057 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 10058 return false; 10059 10060 APInt LowBound; 10061 APInt CmpRange; 10062 10063 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 10064 assert(TLI.rangeFitsInWord(Low, High, DL) && 10065 "Case range must fit in bit mask!"); 10066 10067 // Check if the clusters cover a contiguous range such that no value in the 10068 // range will jump to the default statement. 10069 bool ContiguousRange = true; 10070 for (int64_t I = First + 1; I <= Last; ++I) { 10071 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 10072 ContiguousRange = false; 10073 break; 10074 } 10075 } 10076 10077 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 10078 // Optimize the case where all the case values fit in a word without having 10079 // to subtract minValue. In this case, we can optimize away the subtraction. 10080 LowBound = APInt::getNullValue(Low.getBitWidth()); 10081 CmpRange = High; 10082 ContiguousRange = false; 10083 } else { 10084 LowBound = Low; 10085 CmpRange = High - Low; 10086 } 10087 10088 CaseBitsVector CBV; 10089 auto TotalProb = BranchProbability::getZero(); 10090 for (unsigned i = First; i <= Last; ++i) { 10091 // Find the CaseBits for this destination. 10092 unsigned j; 10093 for (j = 0; j < CBV.size(); ++j) 10094 if (CBV[j].BB == Clusters[i].MBB) 10095 break; 10096 if (j == CBV.size()) 10097 CBV.push_back( 10098 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10099 CaseBits *CB = &CBV[j]; 10100 10101 // Update Mask, Bits and ExtraProb. 10102 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10103 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10104 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10105 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10106 CB->Bits += Hi - Lo + 1; 10107 CB->ExtraProb += Clusters[i].Prob; 10108 TotalProb += Clusters[i].Prob; 10109 } 10110 10111 BitTestInfo BTI; 10112 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10113 // Sort by probability first, number of bits second, bit mask third. 10114 if (a.ExtraProb != b.ExtraProb) 10115 return a.ExtraProb > b.ExtraProb; 10116 if (a.Bits != b.Bits) 10117 return a.Bits > b.Bits; 10118 return a.Mask < b.Mask; 10119 }); 10120 10121 for (auto &CB : CBV) { 10122 MachineBasicBlock *BitTestBB = 10123 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10124 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10125 } 10126 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10127 SI->getCondition(), -1U, MVT::Other, false, 10128 ContiguousRange, nullptr, nullptr, std::move(BTI), 10129 TotalProb); 10130 10131 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10132 BitTestCases.size() - 1, TotalProb); 10133 return true; 10134 } 10135 10136 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10137 const SwitchInst *SI) { 10138 // Partition Clusters into as few subsets as possible, where each subset has a 10139 // range that fits in a machine word and has <= 3 unique destinations. 10140 10141 #ifndef NDEBUG 10142 // Clusters must be sorted and contain Range or JumpTable clusters. 10143 assert(!Clusters.empty()); 10144 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10145 for (const CaseCluster &C : Clusters) 10146 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10147 for (unsigned i = 1; i < Clusters.size(); ++i) 10148 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10149 #endif 10150 10151 // The algorithm below is not suitable for -O0. 10152 if (TM.getOptLevel() == CodeGenOpt::None) 10153 return; 10154 10155 // If target does not have legal shift left, do not emit bit tests at all. 10156 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10157 const DataLayout &DL = DAG.getDataLayout(); 10158 10159 EVT PTy = TLI.getPointerTy(DL); 10160 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10161 return; 10162 10163 int BitWidth = PTy.getSizeInBits(); 10164 const int64_t N = Clusters.size(); 10165 10166 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10167 SmallVector<unsigned, 8> MinPartitions(N); 10168 // LastElement[i] is the last element of the partition starting at i. 10169 SmallVector<unsigned, 8> LastElement(N); 10170 10171 // FIXME: This might not be the best algorithm for finding bit test clusters. 10172 10173 // Base case: There is only one way to partition Clusters[N-1]. 10174 MinPartitions[N - 1] = 1; 10175 LastElement[N - 1] = N - 1; 10176 10177 // Note: loop indexes are signed to avoid underflow. 10178 for (int64_t i = N - 2; i >= 0; --i) { 10179 // Find optimal partitioning of Clusters[i..N-1]. 10180 // Baseline: Put Clusters[i] into a partition on its own. 10181 MinPartitions[i] = MinPartitions[i + 1] + 1; 10182 LastElement[i] = i; 10183 10184 // Search for a solution that results in fewer partitions. 10185 // Note: the search is limited by BitWidth, reducing time complexity. 10186 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10187 // Try building a partition from Clusters[i..j]. 10188 10189 // Check the range. 10190 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10191 Clusters[j].High->getValue(), DL)) 10192 continue; 10193 10194 // Check nbr of destinations and cluster types. 10195 // FIXME: This works, but doesn't seem very efficient. 10196 bool RangesOnly = true; 10197 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10198 for (int64_t k = i; k <= j; k++) { 10199 if (Clusters[k].Kind != CC_Range) { 10200 RangesOnly = false; 10201 break; 10202 } 10203 Dests.set(Clusters[k].MBB->getNumber()); 10204 } 10205 if (!RangesOnly || Dests.count() > 3) 10206 break; 10207 10208 // Check if it's a better partition. 10209 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10210 if (NumPartitions < MinPartitions[i]) { 10211 // Found a better partition. 10212 MinPartitions[i] = NumPartitions; 10213 LastElement[i] = j; 10214 } 10215 } 10216 } 10217 10218 // Iterate over the partitions, replacing with bit-test clusters in-place. 10219 unsigned DstIndex = 0; 10220 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10221 Last = LastElement[First]; 10222 assert(First <= Last); 10223 assert(DstIndex <= First); 10224 10225 CaseCluster BitTestCluster; 10226 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10227 Clusters[DstIndex++] = BitTestCluster; 10228 } else { 10229 size_t NumClusters = Last - First + 1; 10230 std::memmove(&Clusters[DstIndex], &Clusters[First], 10231 sizeof(Clusters[0]) * NumClusters); 10232 DstIndex += NumClusters; 10233 } 10234 } 10235 Clusters.resize(DstIndex); 10236 } 10237 10238 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10239 MachineBasicBlock *SwitchMBB, 10240 MachineBasicBlock *DefaultMBB) { 10241 MachineFunction *CurMF = FuncInfo.MF; 10242 MachineBasicBlock *NextMBB = nullptr; 10243 MachineFunction::iterator BBI(W.MBB); 10244 if (++BBI != FuncInfo.MF->end()) 10245 NextMBB = &*BBI; 10246 10247 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10248 10249 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10250 10251 if (Size == 2 && W.MBB == SwitchMBB) { 10252 // If any two of the cases has the same destination, and if one value 10253 // is the same as the other, but has one bit unset that the other has set, 10254 // use bit manipulation to do two compares at once. For example: 10255 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10256 // TODO: This could be extended to merge any 2 cases in switches with 3 10257 // cases. 10258 // TODO: Handle cases where W.CaseBB != SwitchBB. 10259 CaseCluster &Small = *W.FirstCluster; 10260 CaseCluster &Big = *W.LastCluster; 10261 10262 if (Small.Low == Small.High && Big.Low == Big.High && 10263 Small.MBB == Big.MBB) { 10264 const APInt &SmallValue = Small.Low->getValue(); 10265 const APInt &BigValue = Big.Low->getValue(); 10266 10267 // Check that there is only one bit different. 10268 APInt CommonBit = BigValue ^ SmallValue; 10269 if (CommonBit.isPowerOf2()) { 10270 SDValue CondLHS = getValue(Cond); 10271 EVT VT = CondLHS.getValueType(); 10272 SDLoc DL = getCurSDLoc(); 10273 10274 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10275 DAG.getConstant(CommonBit, DL, VT)); 10276 SDValue Cond = DAG.getSetCC( 10277 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10278 ISD::SETEQ); 10279 10280 // Update successor info. 10281 // Both Small and Big will jump to Small.BB, so we sum up the 10282 // probabilities. 10283 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10284 if (BPI) 10285 addSuccessorWithProb( 10286 SwitchMBB, DefaultMBB, 10287 // The default destination is the first successor in IR. 10288 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10289 else 10290 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10291 10292 // Insert the true branch. 10293 SDValue BrCond = 10294 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10295 DAG.getBasicBlock(Small.MBB)); 10296 // Insert the false branch. 10297 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10298 DAG.getBasicBlock(DefaultMBB)); 10299 10300 DAG.setRoot(BrCond); 10301 return; 10302 } 10303 } 10304 } 10305 10306 if (TM.getOptLevel() != CodeGenOpt::None) { 10307 // Here, we order cases by probability so the most likely case will be 10308 // checked first. However, two clusters can have the same probability in 10309 // which case their relative ordering is non-deterministic. So we use Low 10310 // as a tie-breaker as clusters are guaranteed to never overlap. 10311 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10312 [](const CaseCluster &a, const CaseCluster &b) { 10313 return a.Prob != b.Prob ? 10314 a.Prob > b.Prob : 10315 a.Low->getValue().slt(b.Low->getValue()); 10316 }); 10317 10318 // Rearrange the case blocks so that the last one falls through if possible 10319 // without changing the order of probabilities. 10320 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10321 --I; 10322 if (I->Prob > W.LastCluster->Prob) 10323 break; 10324 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10325 std::swap(*I, *W.LastCluster); 10326 break; 10327 } 10328 } 10329 } 10330 10331 // Compute total probability. 10332 BranchProbability DefaultProb = W.DefaultProb; 10333 BranchProbability UnhandledProbs = DefaultProb; 10334 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10335 UnhandledProbs += I->Prob; 10336 10337 MachineBasicBlock *CurMBB = W.MBB; 10338 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10339 bool FallthroughUnreachable = false; 10340 MachineBasicBlock *Fallthrough; 10341 if (I == W.LastCluster) { 10342 // For the last cluster, fall through to the default destination. 10343 Fallthrough = DefaultMBB; 10344 FallthroughUnreachable = isa<UnreachableInst>( 10345 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10346 } else { 10347 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10348 CurMF->insert(BBI, Fallthrough); 10349 // Put Cond in a virtual register to make it available from the new blocks. 10350 ExportFromCurrentBlock(Cond); 10351 } 10352 UnhandledProbs -= I->Prob; 10353 10354 switch (I->Kind) { 10355 case CC_JumpTable: { 10356 // FIXME: Optimize away range check based on pivot comparisons. 10357 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10358 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10359 10360 // The jump block hasn't been inserted yet; insert it here. 10361 MachineBasicBlock *JumpMBB = JT->MBB; 10362 CurMF->insert(BBI, JumpMBB); 10363 10364 auto JumpProb = I->Prob; 10365 auto FallthroughProb = UnhandledProbs; 10366 10367 // If the default statement is a target of the jump table, we evenly 10368 // distribute the default probability to successors of CurMBB. Also 10369 // update the probability on the edge from JumpMBB to Fallthrough. 10370 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10371 SE = JumpMBB->succ_end(); 10372 SI != SE; ++SI) { 10373 if (*SI == DefaultMBB) { 10374 JumpProb += DefaultProb / 2; 10375 FallthroughProb -= DefaultProb / 2; 10376 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10377 JumpMBB->normalizeSuccProbs(); 10378 break; 10379 } 10380 } 10381 10382 if (FallthroughUnreachable) { 10383 // Skip the range check if the fallthrough block is unreachable. 10384 JTH->OmitRangeCheck = true; 10385 } 10386 10387 if (!JTH->OmitRangeCheck) 10388 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10389 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10390 CurMBB->normalizeSuccProbs(); 10391 10392 // The jump table header will be inserted in our current block, do the 10393 // range check, and fall through to our fallthrough block. 10394 JTH->HeaderBB = CurMBB; 10395 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10396 10397 // If we're in the right place, emit the jump table header right now. 10398 if (CurMBB == SwitchMBB) { 10399 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10400 JTH->Emitted = true; 10401 } 10402 break; 10403 } 10404 case CC_BitTests: { 10405 // FIXME: If Fallthrough is unreachable, skip the range check. 10406 10407 // FIXME: Optimize away range check based on pivot comparisons. 10408 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10409 10410 // The bit test blocks haven't been inserted yet; insert them here. 10411 for (BitTestCase &BTC : BTB->Cases) 10412 CurMF->insert(BBI, BTC.ThisBB); 10413 10414 // Fill in fields of the BitTestBlock. 10415 BTB->Parent = CurMBB; 10416 BTB->Default = Fallthrough; 10417 10418 BTB->DefaultProb = UnhandledProbs; 10419 // If the cases in bit test don't form a contiguous range, we evenly 10420 // distribute the probability on the edge to Fallthrough to two 10421 // successors of CurMBB. 10422 if (!BTB->ContiguousRange) { 10423 BTB->Prob += DefaultProb / 2; 10424 BTB->DefaultProb -= DefaultProb / 2; 10425 } 10426 10427 // If we're in the right place, emit the bit test header right now. 10428 if (CurMBB == SwitchMBB) { 10429 visitBitTestHeader(*BTB, SwitchMBB); 10430 BTB->Emitted = true; 10431 } 10432 break; 10433 } 10434 case CC_Range: { 10435 const Value *RHS, *LHS, *MHS; 10436 ISD::CondCode CC; 10437 if (I->Low == I->High) { 10438 // Check Cond == I->Low. 10439 CC = ISD::SETEQ; 10440 LHS = Cond; 10441 RHS=I->Low; 10442 MHS = nullptr; 10443 } else { 10444 // Check I->Low <= Cond <= I->High. 10445 CC = ISD::SETLE; 10446 LHS = I->Low; 10447 MHS = Cond; 10448 RHS = I->High; 10449 } 10450 10451 // If Fallthrough is unreachable, fold away the comparison. 10452 if (FallthroughUnreachable) 10453 CC = ISD::SETTRUE; 10454 10455 // The false probability is the sum of all unhandled cases. 10456 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10457 getCurSDLoc(), I->Prob, UnhandledProbs); 10458 10459 if (CurMBB == SwitchMBB) 10460 visitSwitchCase(CB, SwitchMBB); 10461 else 10462 SwitchCases.push_back(CB); 10463 10464 break; 10465 } 10466 } 10467 CurMBB = Fallthrough; 10468 } 10469 } 10470 10471 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10472 CaseClusterIt First, 10473 CaseClusterIt Last) { 10474 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10475 if (X.Prob != CC.Prob) 10476 return X.Prob > CC.Prob; 10477 10478 // Ties are broken by comparing the case value. 10479 return X.Low->getValue().slt(CC.Low->getValue()); 10480 }); 10481 } 10482 10483 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10484 const SwitchWorkListItem &W, 10485 Value *Cond, 10486 MachineBasicBlock *SwitchMBB) { 10487 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10488 "Clusters not sorted?"); 10489 10490 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10491 10492 // Balance the tree based on branch probabilities to create a near-optimal (in 10493 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10494 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10495 CaseClusterIt LastLeft = W.FirstCluster; 10496 CaseClusterIt FirstRight = W.LastCluster; 10497 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10498 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10499 10500 // Move LastLeft and FirstRight towards each other from opposite directions to 10501 // find a partitioning of the clusters which balances the probability on both 10502 // sides. If LeftProb and RightProb are equal, alternate which side is 10503 // taken to ensure 0-probability nodes are distributed evenly. 10504 unsigned I = 0; 10505 while (LastLeft + 1 < FirstRight) { 10506 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10507 LeftProb += (++LastLeft)->Prob; 10508 else 10509 RightProb += (--FirstRight)->Prob; 10510 I++; 10511 } 10512 10513 while (true) { 10514 // Our binary search tree differs from a typical BST in that ours can have up 10515 // to three values in each leaf. The pivot selection above doesn't take that 10516 // into account, which means the tree might require more nodes and be less 10517 // efficient. We compensate for this here. 10518 10519 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10520 unsigned NumRight = W.LastCluster - FirstRight + 1; 10521 10522 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10523 // If one side has less than 3 clusters, and the other has more than 3, 10524 // consider taking a cluster from the other side. 10525 10526 if (NumLeft < NumRight) { 10527 // Consider moving the first cluster on the right to the left side. 10528 CaseCluster &CC = *FirstRight; 10529 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10530 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10531 if (LeftSideRank <= RightSideRank) { 10532 // Moving the cluster to the left does not demote it. 10533 ++LastLeft; 10534 ++FirstRight; 10535 continue; 10536 } 10537 } else { 10538 assert(NumRight < NumLeft); 10539 // Consider moving the last element on the left to the right side. 10540 CaseCluster &CC = *LastLeft; 10541 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10542 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10543 if (RightSideRank <= LeftSideRank) { 10544 // Moving the cluster to the right does not demot it. 10545 --LastLeft; 10546 --FirstRight; 10547 continue; 10548 } 10549 } 10550 } 10551 break; 10552 } 10553 10554 assert(LastLeft + 1 == FirstRight); 10555 assert(LastLeft >= W.FirstCluster); 10556 assert(FirstRight <= W.LastCluster); 10557 10558 // Use the first element on the right as pivot since we will make less-than 10559 // comparisons against it. 10560 CaseClusterIt PivotCluster = FirstRight; 10561 assert(PivotCluster > W.FirstCluster); 10562 assert(PivotCluster <= W.LastCluster); 10563 10564 CaseClusterIt FirstLeft = W.FirstCluster; 10565 CaseClusterIt LastRight = W.LastCluster; 10566 10567 const ConstantInt *Pivot = PivotCluster->Low; 10568 10569 // New blocks will be inserted immediately after the current one. 10570 MachineFunction::iterator BBI(W.MBB); 10571 ++BBI; 10572 10573 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10574 // we can branch to its destination directly if it's squeezed exactly in 10575 // between the known lower bound and Pivot - 1. 10576 MachineBasicBlock *LeftMBB; 10577 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10578 FirstLeft->Low == W.GE && 10579 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10580 LeftMBB = FirstLeft->MBB; 10581 } else { 10582 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10583 FuncInfo.MF->insert(BBI, LeftMBB); 10584 WorkList.push_back( 10585 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10586 // Put Cond in a virtual register to make it available from the new blocks. 10587 ExportFromCurrentBlock(Cond); 10588 } 10589 10590 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10591 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10592 // directly if RHS.High equals the current upper bound. 10593 MachineBasicBlock *RightMBB; 10594 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10595 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10596 RightMBB = FirstRight->MBB; 10597 } else { 10598 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10599 FuncInfo.MF->insert(BBI, RightMBB); 10600 WorkList.push_back( 10601 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10602 // Put Cond in a virtual register to make it available from the new blocks. 10603 ExportFromCurrentBlock(Cond); 10604 } 10605 10606 // Create the CaseBlock record that will be used to lower the branch. 10607 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10608 getCurSDLoc(), LeftProb, RightProb); 10609 10610 if (W.MBB == SwitchMBB) 10611 visitSwitchCase(CB, SwitchMBB); 10612 else 10613 SwitchCases.push_back(CB); 10614 } 10615 10616 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10617 // from the swith statement. 10618 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10619 BranchProbability PeeledCaseProb) { 10620 if (PeeledCaseProb == BranchProbability::getOne()) 10621 return BranchProbability::getZero(); 10622 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10623 10624 uint32_t Numerator = CaseProb.getNumerator(); 10625 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10626 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10627 } 10628 10629 // Try to peel the top probability case if it exceeds the threshold. 10630 // Return current MachineBasicBlock for the switch statement if the peeling 10631 // does not occur. 10632 // If the peeling is performed, return the newly created MachineBasicBlock 10633 // for the peeled switch statement. Also update Clusters to remove the peeled 10634 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10635 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10636 const SwitchInst &SI, CaseClusterVector &Clusters, 10637 BranchProbability &PeeledCaseProb) { 10638 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10639 // Don't perform if there is only one cluster or optimizing for size. 10640 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10641 TM.getOptLevel() == CodeGenOpt::None || 10642 SwitchMBB->getParent()->getFunction().hasMinSize()) 10643 return SwitchMBB; 10644 10645 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10646 unsigned PeeledCaseIndex = 0; 10647 bool SwitchPeeled = false; 10648 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10649 CaseCluster &CC = Clusters[Index]; 10650 if (CC.Prob < TopCaseProb) 10651 continue; 10652 TopCaseProb = CC.Prob; 10653 PeeledCaseIndex = Index; 10654 SwitchPeeled = true; 10655 } 10656 if (!SwitchPeeled) 10657 return SwitchMBB; 10658 10659 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10660 << TopCaseProb << "\n"); 10661 10662 // Record the MBB for the peeled switch statement. 10663 MachineFunction::iterator BBI(SwitchMBB); 10664 ++BBI; 10665 MachineBasicBlock *PeeledSwitchMBB = 10666 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10667 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10668 10669 ExportFromCurrentBlock(SI.getCondition()); 10670 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10671 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10672 nullptr, nullptr, TopCaseProb.getCompl()}; 10673 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10674 10675 Clusters.erase(PeeledCaseIt); 10676 for (CaseCluster &CC : Clusters) { 10677 LLVM_DEBUG( 10678 dbgs() << "Scale the probablity for one cluster, before scaling: " 10679 << CC.Prob << "\n"); 10680 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10681 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10682 } 10683 PeeledCaseProb = TopCaseProb; 10684 return PeeledSwitchMBB; 10685 } 10686 10687 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10688 // Extract cases from the switch. 10689 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10690 CaseClusterVector Clusters; 10691 Clusters.reserve(SI.getNumCases()); 10692 for (auto I : SI.cases()) { 10693 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10694 const ConstantInt *CaseVal = I.getCaseValue(); 10695 BranchProbability Prob = 10696 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10697 : BranchProbability(1, SI.getNumCases() + 1); 10698 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10699 } 10700 10701 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10702 10703 // Cluster adjacent cases with the same destination. We do this at all 10704 // optimization levels because it's cheap to do and will make codegen faster 10705 // if there are many clusters. 10706 sortAndRangeify(Clusters); 10707 10708 // The branch probablity of the peeled case. 10709 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10710 MachineBasicBlock *PeeledSwitchMBB = 10711 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10712 10713 // If there is only the default destination, jump there directly. 10714 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10715 if (Clusters.empty()) { 10716 assert(PeeledSwitchMBB == SwitchMBB); 10717 SwitchMBB->addSuccessor(DefaultMBB); 10718 if (DefaultMBB != NextBlock(SwitchMBB)) { 10719 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10720 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10721 } 10722 return; 10723 } 10724 10725 findJumpTables(Clusters, &SI, DefaultMBB); 10726 findBitTestClusters(Clusters, &SI); 10727 10728 LLVM_DEBUG({ 10729 dbgs() << "Case clusters: "; 10730 for (const CaseCluster &C : Clusters) { 10731 if (C.Kind == CC_JumpTable) 10732 dbgs() << "JT:"; 10733 if (C.Kind == CC_BitTests) 10734 dbgs() << "BT:"; 10735 10736 C.Low->getValue().print(dbgs(), true); 10737 if (C.Low != C.High) { 10738 dbgs() << '-'; 10739 C.High->getValue().print(dbgs(), true); 10740 } 10741 dbgs() << ' '; 10742 } 10743 dbgs() << '\n'; 10744 }); 10745 10746 assert(!Clusters.empty()); 10747 SwitchWorkList WorkList; 10748 CaseClusterIt First = Clusters.begin(); 10749 CaseClusterIt Last = Clusters.end() - 1; 10750 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10751 // Scale the branchprobability for DefaultMBB if the peel occurs and 10752 // DefaultMBB is not replaced. 10753 if (PeeledCaseProb != BranchProbability::getZero() && 10754 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10755 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10756 WorkList.push_back( 10757 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10758 10759 while (!WorkList.empty()) { 10760 SwitchWorkListItem W = WorkList.back(); 10761 WorkList.pop_back(); 10762 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10763 10764 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10765 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10766 // For optimized builds, lower large range as a balanced binary tree. 10767 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10768 continue; 10769 } 10770 10771 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10772 } 10773 } 10774