xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 9db00f7e5b346877039ff3a9a0f7770fdda2c3ee)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.second)
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     assert(UnwindDests.size() <= 1 &&
1688            "There should be at most one unwind destination for wasm");
1689     return;
1690   }
1691 
1692   while (EHPadBB) {
1693     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1694     BasicBlock *NewEHPadBB = nullptr;
1695     if (isa<LandingPadInst>(Pad)) {
1696       // Stop on landingpads. They are not funclets.
1697       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1698       break;
1699     } else if (isa<CleanupPadInst>(Pad)) {
1700       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1701       // personalities.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       UnwindDests.back().first->setIsEHScopeEntry();
1704       UnwindDests.back().first->setIsEHFuncletEntry();
1705       break;
1706     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1707       // Add the catchpad handlers to the possible destinations.
1708       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1709         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1710         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1711         if (IsMSVCCXX || IsCoreCLR)
1712           UnwindDests.back().first->setIsEHFuncletEntry();
1713         if (!IsSEH)
1714           UnwindDests.back().first->setIsEHScopeEntry();
1715       }
1716       NewEHPadBB = CatchSwitch->getUnwindDest();
1717     } else {
1718       continue;
1719     }
1720 
1721     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1722     if (BPI && NewEHPadBB)
1723       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1724     EHPadBB = NewEHPadBB;
1725   }
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1729   // Update successor info.
1730   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1731   auto UnwindDest = I.getUnwindDest();
1732   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1733   BranchProbability UnwindDestProb =
1734       (BPI && UnwindDest)
1735           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1736           : BranchProbability::getZero();
1737   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1738   for (auto &UnwindDest : UnwindDests) {
1739     UnwindDest.first->setIsEHPad();
1740     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1741   }
1742   FuncInfo.MBB->normalizeSuccProbs();
1743 
1744   // Create the terminator node.
1745   SDValue Ret =
1746       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1751   report_fatal_error("visitCatchSwitch not yet implemented!");
1752 }
1753 
1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756   auto &DL = DAG.getDataLayout();
1757   SDValue Chain = getControlRoot();
1758   SmallVector<ISD::OutputArg, 8> Outs;
1759   SmallVector<SDValue, 8> OutVals;
1760 
1761   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1762   // lower
1763   //
1764   //   %val = call <ty> @llvm.experimental.deoptimize()
1765   //   ret <ty> %val
1766   //
1767   // differently.
1768   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1769     LowerDeoptimizingReturn();
1770     return;
1771   }
1772 
1773   if (!FuncInfo.CanLowerReturn) {
1774     unsigned DemoteReg = FuncInfo.DemoteRegister;
1775     const Function *F = I.getParent()->getParent();
1776 
1777     // Emit a store of the return value through the virtual register.
1778     // Leave Outs empty so that LowerReturn won't try to load return
1779     // registers the usual way.
1780     SmallVector<EVT, 1> PtrValueVTs;
1781     ComputeValueVTs(TLI, DL,
1782                     F->getReturnType()->getPointerTo(
1783                         DAG.getDataLayout().getAllocaAddrSpace()),
1784                     PtrValueVTs);
1785 
1786     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1787                                         DemoteReg, PtrValueVTs[0]);
1788     SDValue RetOp = getValue(I.getOperand(0));
1789 
1790     SmallVector<EVT, 4> ValueVTs;
1791     SmallVector<uint64_t, 4> Offsets;
1792     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1793     unsigned NumValues = ValueVTs.size();
1794 
1795     SmallVector<SDValue, 4> Chains(NumValues);
1796     for (unsigned i = 0; i != NumValues; ++i) {
1797       // An aggregate return value cannot wrap around the address space, so
1798       // offsets to its parts don't wrap either.
1799       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1800       Chains[i] = DAG.getStore(
1801           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1802           // FIXME: better loc info would be nice.
1803           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1804     }
1805 
1806     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1807                         MVT::Other, Chains);
1808   } else if (I.getNumOperands() != 0) {
1809     SmallVector<EVT, 4> ValueVTs;
1810     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1811     unsigned NumValues = ValueVTs.size();
1812     if (NumValues) {
1813       SDValue RetOp = getValue(I.getOperand(0));
1814 
1815       const Function *F = I.getParent()->getParent();
1816 
1817       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1818       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1819                                           Attribute::SExt))
1820         ExtendKind = ISD::SIGN_EXTEND;
1821       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1822                                                Attribute::ZExt))
1823         ExtendKind = ISD::ZERO_EXTEND;
1824 
1825       LLVMContext &Context = F->getContext();
1826       bool RetInReg = F->getAttributes().hasAttribute(
1827           AttributeList::ReturnIndex, Attribute::InReg);
1828 
1829       for (unsigned j = 0; j != NumValues; ++j) {
1830         EVT VT = ValueVTs[j];
1831 
1832         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1833           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1834 
1835         CallingConv::ID CC = F->getCallingConv();
1836 
1837         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1838         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1839         SmallVector<SDValue, 4> Parts(NumParts);
1840         getCopyToParts(DAG, getCurSDLoc(),
1841                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1842                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1843 
1844         // 'inreg' on function refers to return value
1845         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1846         if (RetInReg)
1847           Flags.setInReg();
1848 
1849         if (I.getOperand(0)->getType()->isPointerTy()) {
1850           Flags.setPointer();
1851           Flags.setPointerAddrSpace(
1852               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1853         }
1854 
1855         // Propagate extension type if any
1856         if (ExtendKind == ISD::SIGN_EXTEND)
1857           Flags.setSExt();
1858         else if (ExtendKind == ISD::ZERO_EXTEND)
1859           Flags.setZExt();
1860 
1861         for (unsigned i = 0; i < NumParts; ++i) {
1862           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1863                                         VT, /*isfixed=*/true, 0, 0));
1864           OutVals.push_back(Parts[i]);
1865         }
1866       }
1867     }
1868   }
1869 
1870   // Push in swifterror virtual register as the last element of Outs. This makes
1871   // sure swifterror virtual register will be returned in the swifterror
1872   // physical register.
1873   const Function *F = I.getParent()->getParent();
1874   if (TLI.supportSwiftError() &&
1875       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1876     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1877     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1878     Flags.setSwiftError();
1879     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1880                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1881                                   true /*isfixed*/, 1 /*origidx*/,
1882                                   0 /*partOffs*/));
1883     // Create SDNode for the swifterror virtual register.
1884     OutVals.push_back(
1885         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1886                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1887                         EVT(TLI.getPointerTy(DL))));
1888   }
1889 
1890   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1891   CallingConv::ID CallConv =
1892     DAG.getMachineFunction().getFunction().getCallingConv();
1893   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1894       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1895 
1896   // Verify that the target's LowerReturn behaved as expected.
1897   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1898          "LowerReturn didn't return a valid chain!");
1899 
1900   // Update the DAG with the new chain value resulting from return lowering.
1901   DAG.setRoot(Chain);
1902 }
1903 
1904 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1905 /// created for it, emit nodes to copy the value into the virtual
1906 /// registers.
1907 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1908   // Skip empty types
1909   if (V->getType()->isEmptyTy())
1910     return;
1911 
1912   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1913   if (VMI != FuncInfo.ValueMap.end()) {
1914     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1915     CopyValueToVirtualRegister(V, VMI->second);
1916   }
1917 }
1918 
1919 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1920 /// the current basic block, add it to ValueMap now so that we'll get a
1921 /// CopyTo/FromReg.
1922 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1923   // No need to export constants.
1924   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1925 
1926   // Already exported?
1927   if (FuncInfo.isExportedInst(V)) return;
1928 
1929   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1930   CopyValueToVirtualRegister(V, Reg);
1931 }
1932 
1933 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1934                                                      const BasicBlock *FromBB) {
1935   // The operands of the setcc have to be in this block.  We don't know
1936   // how to export them from some other block.
1937   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1938     // Can export from current BB.
1939     if (VI->getParent() == FromBB)
1940       return true;
1941 
1942     // Is already exported, noop.
1943     return FuncInfo.isExportedInst(V);
1944   }
1945 
1946   // If this is an argument, we can export it if the BB is the entry block or
1947   // if it is already exported.
1948   if (isa<Argument>(V)) {
1949     if (FromBB == &FromBB->getParent()->getEntryBlock())
1950       return true;
1951 
1952     // Otherwise, can only export this if it is already exported.
1953     return FuncInfo.isExportedInst(V);
1954   }
1955 
1956   // Otherwise, constants can always be exported.
1957   return true;
1958 }
1959 
1960 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1961 BranchProbability
1962 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1963                                         const MachineBasicBlock *Dst) const {
1964   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1965   const BasicBlock *SrcBB = Src->getBasicBlock();
1966   const BasicBlock *DstBB = Dst->getBasicBlock();
1967   if (!BPI) {
1968     // If BPI is not available, set the default probability as 1 / N, where N is
1969     // the number of successors.
1970     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1971     return BranchProbability(1, SuccSize);
1972   }
1973   return BPI->getEdgeProbability(SrcBB, DstBB);
1974 }
1975 
1976 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1977                                                MachineBasicBlock *Dst,
1978                                                BranchProbability Prob) {
1979   if (!FuncInfo.BPI)
1980     Src->addSuccessorWithoutProb(Dst);
1981   else {
1982     if (Prob.isUnknown())
1983       Prob = getEdgeProbability(Src, Dst);
1984     Src->addSuccessor(Dst, Prob);
1985   }
1986 }
1987 
1988 static bool InBlock(const Value *V, const BasicBlock *BB) {
1989   if (const Instruction *I = dyn_cast<Instruction>(V))
1990     return I->getParent() == BB;
1991   return true;
1992 }
1993 
1994 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1995 /// This function emits a branch and is used at the leaves of an OR or an
1996 /// AND operator tree.
1997 void
1998 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1999                                                   MachineBasicBlock *TBB,
2000                                                   MachineBasicBlock *FBB,
2001                                                   MachineBasicBlock *CurBB,
2002                                                   MachineBasicBlock *SwitchBB,
2003                                                   BranchProbability TProb,
2004                                                   BranchProbability FProb,
2005                                                   bool InvertCond) {
2006   const BasicBlock *BB = CurBB->getBasicBlock();
2007 
2008   // If the leaf of the tree is a comparison, merge the condition into
2009   // the caseblock.
2010   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2011     // The operands of the cmp have to be in this block.  We don't know
2012     // how to export them from some other block.  If this is the first block
2013     // of the sequence, no exporting is needed.
2014     if (CurBB == SwitchBB ||
2015         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2016          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2017       ISD::CondCode Condition;
2018       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2019         ICmpInst::Predicate Pred =
2020             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2021         Condition = getICmpCondCode(Pred);
2022       } else {
2023         const FCmpInst *FC = cast<FCmpInst>(Cond);
2024         FCmpInst::Predicate Pred =
2025             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2026         Condition = getFCmpCondCode(Pred);
2027         if (TM.Options.NoNaNsFPMath)
2028           Condition = getFCmpCodeWithoutNaN(Condition);
2029       }
2030 
2031       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2032                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2033       SwitchCases.push_back(CB);
2034       return;
2035     }
2036   }
2037 
2038   // Create a CaseBlock record representing this branch.
2039   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2040   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2041                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2042   SwitchCases.push_back(CB);
2043 }
2044 
2045 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2046                                                MachineBasicBlock *TBB,
2047                                                MachineBasicBlock *FBB,
2048                                                MachineBasicBlock *CurBB,
2049                                                MachineBasicBlock *SwitchBB,
2050                                                Instruction::BinaryOps Opc,
2051                                                BranchProbability TProb,
2052                                                BranchProbability FProb,
2053                                                bool InvertCond) {
2054   // Skip over not part of the tree and remember to invert op and operands at
2055   // next level.
2056   Value *NotCond;
2057   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2058       InBlock(NotCond, CurBB->getBasicBlock())) {
2059     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2060                          !InvertCond);
2061     return;
2062   }
2063 
2064   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2065   // Compute the effective opcode for Cond, taking into account whether it needs
2066   // to be inverted, e.g.
2067   //   and (not (or A, B)), C
2068   // gets lowered as
2069   //   and (and (not A, not B), C)
2070   unsigned BOpc = 0;
2071   if (BOp) {
2072     BOpc = BOp->getOpcode();
2073     if (InvertCond) {
2074       if (BOpc == Instruction::And)
2075         BOpc = Instruction::Or;
2076       else if (BOpc == Instruction::Or)
2077         BOpc = Instruction::And;
2078     }
2079   }
2080 
2081   // If this node is not part of the or/and tree, emit it as a branch.
2082   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2083       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2084       BOp->getParent() != CurBB->getBasicBlock() ||
2085       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2086       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2087     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2088                                  TProb, FProb, InvertCond);
2089     return;
2090   }
2091 
2092   //  Create TmpBB after CurBB.
2093   MachineFunction::iterator BBI(CurBB);
2094   MachineFunction &MF = DAG.getMachineFunction();
2095   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2096   CurBB->getParent()->insert(++BBI, TmpBB);
2097 
2098   if (Opc == Instruction::Or) {
2099     // Codegen X | Y as:
2100     // BB1:
2101     //   jmp_if_X TBB
2102     //   jmp TmpBB
2103     // TmpBB:
2104     //   jmp_if_Y TBB
2105     //   jmp FBB
2106     //
2107 
2108     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2109     // The requirement is that
2110     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2111     //     = TrueProb for original BB.
2112     // Assuming the original probabilities are A and B, one choice is to set
2113     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2114     // A/(1+B) and 2B/(1+B). This choice assumes that
2115     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2116     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2117     // TmpBB, but the math is more complicated.
2118 
2119     auto NewTrueProb = TProb / 2;
2120     auto NewFalseProb = TProb / 2 + FProb;
2121     // Emit the LHS condition.
2122     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2123                          NewTrueProb, NewFalseProb, InvertCond);
2124 
2125     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2126     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2127     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2128     // Emit the RHS condition into TmpBB.
2129     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2130                          Probs[0], Probs[1], InvertCond);
2131   } else {
2132     assert(Opc == Instruction::And && "Unknown merge op!");
2133     // Codegen X & Y as:
2134     // BB1:
2135     //   jmp_if_X TmpBB
2136     //   jmp FBB
2137     // TmpBB:
2138     //   jmp_if_Y TBB
2139     //   jmp FBB
2140     //
2141     //  This requires creation of TmpBB after CurBB.
2142 
2143     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2144     // The requirement is that
2145     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2146     //     = FalseProb for original BB.
2147     // Assuming the original probabilities are A and B, one choice is to set
2148     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2149     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2150     // TrueProb for BB1 * FalseProb for TmpBB.
2151 
2152     auto NewTrueProb = TProb + FProb / 2;
2153     auto NewFalseProb = FProb / 2;
2154     // Emit the LHS condition.
2155     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2156                          NewTrueProb, NewFalseProb, InvertCond);
2157 
2158     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2159     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2160     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2161     // Emit the RHS condition into TmpBB.
2162     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2163                          Probs[0], Probs[1], InvertCond);
2164   }
2165 }
2166 
2167 /// If the set of cases should be emitted as a series of branches, return true.
2168 /// If we should emit this as a bunch of and/or'd together conditions, return
2169 /// false.
2170 bool
2171 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2172   if (Cases.size() != 2) return true;
2173 
2174   // If this is two comparisons of the same values or'd or and'd together, they
2175   // will get folded into a single comparison, so don't emit two blocks.
2176   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2177        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2178       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2179        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2180     return false;
2181   }
2182 
2183   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2184   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2185   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2186       Cases[0].CC == Cases[1].CC &&
2187       isa<Constant>(Cases[0].CmpRHS) &&
2188       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2189     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2190       return false;
2191     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2192       return false;
2193   }
2194 
2195   return true;
2196 }
2197 
2198 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2199   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2200 
2201   // Update machine-CFG edges.
2202   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2203 
2204   if (I.isUnconditional()) {
2205     // Update machine-CFG edges.
2206     BrMBB->addSuccessor(Succ0MBB);
2207 
2208     // If this is not a fall-through branch or optimizations are switched off,
2209     // emit the branch.
2210     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2211       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2212                               MVT::Other, getControlRoot(),
2213                               DAG.getBasicBlock(Succ0MBB)));
2214 
2215     return;
2216   }
2217 
2218   // If this condition is one of the special cases we handle, do special stuff
2219   // now.
2220   const Value *CondVal = I.getCondition();
2221   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2222 
2223   // If this is a series of conditions that are or'd or and'd together, emit
2224   // this as a sequence of branches instead of setcc's with and/or operations.
2225   // As long as jumps are not expensive, this should improve performance.
2226   // For example, instead of something like:
2227   //     cmp A, B
2228   //     C = seteq
2229   //     cmp D, E
2230   //     F = setle
2231   //     or C, F
2232   //     jnz foo
2233   // Emit:
2234   //     cmp A, B
2235   //     je foo
2236   //     cmp D, E
2237   //     jle foo
2238   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2239     Instruction::BinaryOps Opcode = BOp->getOpcode();
2240     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2241         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2242         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2243       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2244                            Opcode,
2245                            getEdgeProbability(BrMBB, Succ0MBB),
2246                            getEdgeProbability(BrMBB, Succ1MBB),
2247                            /*InvertCond=*/false);
2248       // If the compares in later blocks need to use values not currently
2249       // exported from this block, export them now.  This block should always
2250       // be the first entry.
2251       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2252 
2253       // Allow some cases to be rejected.
2254       if (ShouldEmitAsBranches(SwitchCases)) {
2255         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2256           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2257           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2258         }
2259 
2260         // Emit the branch for this block.
2261         visitSwitchCase(SwitchCases[0], BrMBB);
2262         SwitchCases.erase(SwitchCases.begin());
2263         return;
2264       }
2265 
2266       // Okay, we decided not to do this, remove any inserted MBB's and clear
2267       // SwitchCases.
2268       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2269         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2270 
2271       SwitchCases.clear();
2272     }
2273   }
2274 
2275   // Create a CaseBlock record representing this branch.
2276   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2277                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2278 
2279   // Use visitSwitchCase to actually insert the fast branch sequence for this
2280   // cond branch.
2281   visitSwitchCase(CB, BrMBB);
2282 }
2283 
2284 /// visitSwitchCase - Emits the necessary code to represent a single node in
2285 /// the binary search tree resulting from lowering a switch instruction.
2286 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2287                                           MachineBasicBlock *SwitchBB) {
2288   SDValue Cond;
2289   SDValue CondLHS = getValue(CB.CmpLHS);
2290   SDLoc dl = CB.DL;
2291 
2292   if (CB.CC == ISD::SETTRUE) {
2293     // Branch or fall through to TrueBB.
2294     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2295     SwitchBB->normalizeSuccProbs();
2296     if (CB.TrueBB != NextBlock(SwitchBB)) {
2297       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2298                               DAG.getBasicBlock(CB.TrueBB)));
2299     }
2300     return;
2301   }
2302 
2303   // Build the setcc now.
2304   if (!CB.CmpMHS) {
2305     // Fold "(X == true)" to X and "(X == false)" to !X to
2306     // handle common cases produced by branch lowering.
2307     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2308         CB.CC == ISD::SETEQ)
2309       Cond = CondLHS;
2310     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2311              CB.CC == ISD::SETEQ) {
2312       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2313       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2314     } else
2315       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2316   } else {
2317     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2318 
2319     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2320     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2321 
2322     SDValue CmpOp = getValue(CB.CmpMHS);
2323     EVT VT = CmpOp.getValueType();
2324 
2325     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2326       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2327                           ISD::SETLE);
2328     } else {
2329       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2330                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2331       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2332                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2333     }
2334   }
2335 
2336   // Update successor info
2337   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2338   // TrueBB and FalseBB are always different unless the incoming IR is
2339   // degenerate. This only happens when running llc on weird IR.
2340   if (CB.TrueBB != CB.FalseBB)
2341     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2342   SwitchBB->normalizeSuccProbs();
2343 
2344   // If the lhs block is the next block, invert the condition so that we can
2345   // fall through to the lhs instead of the rhs block.
2346   if (CB.TrueBB == NextBlock(SwitchBB)) {
2347     std::swap(CB.TrueBB, CB.FalseBB);
2348     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2349     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2350   }
2351 
2352   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2353                                MVT::Other, getControlRoot(), Cond,
2354                                DAG.getBasicBlock(CB.TrueBB));
2355 
2356   // Insert the false branch. Do this even if it's a fall through branch,
2357   // this makes it easier to do DAG optimizations which require inverting
2358   // the branch condition.
2359   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2360                        DAG.getBasicBlock(CB.FalseBB));
2361 
2362   DAG.setRoot(BrCond);
2363 }
2364 
2365 /// visitJumpTable - Emit JumpTable node in the current MBB
2366 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2367   // Emit the code for the jump table
2368   assert(JT.Reg != -1U && "Should lower JT Header first!");
2369   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2370   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2371                                      JT.Reg, PTy);
2372   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2373   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2374                                     MVT::Other, Index.getValue(1),
2375                                     Table, Index);
2376   DAG.setRoot(BrJumpTable);
2377 }
2378 
2379 /// visitJumpTableHeader - This function emits necessary code to produce index
2380 /// in the JumpTable from switch case.
2381 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2382                                                JumpTableHeader &JTH,
2383                                                MachineBasicBlock *SwitchBB) {
2384   SDLoc dl = getCurSDLoc();
2385 
2386   // Subtract the lowest switch case value from the value being switched on.
2387   SDValue SwitchOp = getValue(JTH.SValue);
2388   EVT VT = SwitchOp.getValueType();
2389   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2390                             DAG.getConstant(JTH.First, dl, VT));
2391 
2392   // The SDNode we just created, which holds the value being switched on minus
2393   // the smallest case value, needs to be copied to a virtual register so it
2394   // can be used as an index into the jump table in a subsequent basic block.
2395   // This value may be smaller or larger than the target's pointer type, and
2396   // therefore require extension or truncating.
2397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2398   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2399 
2400   unsigned JumpTableReg =
2401       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2402   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2403                                     JumpTableReg, SwitchOp);
2404   JT.Reg = JumpTableReg;
2405 
2406   if (!JTH.OmitRangeCheck) {
2407     // Emit the range check for the jump table, and branch to the default block
2408     // for the switch statement if the value being switched on exceeds the
2409     // largest case in the switch.
2410     SDValue CMP = DAG.getSetCC(
2411         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2412                                    Sub.getValueType()),
2413         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2414 
2415     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2416                                  MVT::Other, CopyTo, CMP,
2417                                  DAG.getBasicBlock(JT.Default));
2418 
2419     // Avoid emitting unnecessary branches to the next block.
2420     if (JT.MBB != NextBlock(SwitchBB))
2421       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2422                            DAG.getBasicBlock(JT.MBB));
2423 
2424     DAG.setRoot(BrCond);
2425   } else {
2426     // Avoid emitting unnecessary branches to the next block.
2427     if (JT.MBB != NextBlock(SwitchBB))
2428       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2429                               DAG.getBasicBlock(JT.MBB)));
2430     else
2431       DAG.setRoot(CopyTo);
2432   }
2433 }
2434 
2435 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2436 /// variable if there exists one.
2437 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2438                                  SDValue &Chain) {
2439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2440   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2441   MachineFunction &MF = DAG.getMachineFunction();
2442   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2443   MachineSDNode *Node =
2444       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2445   if (Global) {
2446     MachinePointerInfo MPInfo(Global);
2447     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2448                  MachineMemOperand::MODereferenceable;
2449     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2450         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2451     DAG.setNodeMemRefs(Node, {MemRef});
2452   }
2453   return SDValue(Node, 0);
2454 }
2455 
2456 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2457 /// tail spliced into a stack protector check success bb.
2458 ///
2459 /// For a high level explanation of how this fits into the stack protector
2460 /// generation see the comment on the declaration of class
2461 /// StackProtectorDescriptor.
2462 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2463                                                   MachineBasicBlock *ParentBB) {
2464 
2465   // First create the loads to the guard/stack slot for the comparison.
2466   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2467   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2468 
2469   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2470   int FI = MFI.getStackProtectorIndex();
2471 
2472   SDValue Guard;
2473   SDLoc dl = getCurSDLoc();
2474   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2475   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2476   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2477 
2478   // Generate code to load the content of the guard slot.
2479   SDValue GuardVal = DAG.getLoad(
2480       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2481       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2482       MachineMemOperand::MOVolatile);
2483 
2484   if (TLI.useStackGuardXorFP())
2485     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2486 
2487   // Retrieve guard check function, nullptr if instrumentation is inlined.
2488   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2489     // The target provides a guard check function to validate the guard value.
2490     // Generate a call to that function with the content of the guard slot as
2491     // argument.
2492     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2493     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2494 
2495     TargetLowering::ArgListTy Args;
2496     TargetLowering::ArgListEntry Entry;
2497     Entry.Node = GuardVal;
2498     Entry.Ty = FnTy->getParamType(0);
2499     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2500       Entry.IsInReg = true;
2501     Args.push_back(Entry);
2502 
2503     TargetLowering::CallLoweringInfo CLI(DAG);
2504     CLI.setDebugLoc(getCurSDLoc())
2505         .setChain(DAG.getEntryNode())
2506         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2507                    getValue(GuardCheckFn), std::move(Args));
2508 
2509     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2510     DAG.setRoot(Result.second);
2511     return;
2512   }
2513 
2514   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2515   // Otherwise, emit a volatile load to retrieve the stack guard value.
2516   SDValue Chain = DAG.getEntryNode();
2517   if (TLI.useLoadStackGuardNode()) {
2518     Guard = getLoadStackGuard(DAG, dl, Chain);
2519   } else {
2520     const Value *IRGuard = TLI.getSDagStackGuard(M);
2521     SDValue GuardPtr = getValue(IRGuard);
2522 
2523     Guard =
2524         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2525                     Align, MachineMemOperand::MOVolatile);
2526   }
2527 
2528   // Perform the comparison via a subtract/getsetcc.
2529   EVT VT = Guard.getValueType();
2530   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2531 
2532   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2533                                                         *DAG.getContext(),
2534                                                         Sub.getValueType()),
2535                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2536 
2537   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2538   // branch to failure MBB.
2539   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2540                                MVT::Other, GuardVal.getOperand(0),
2541                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2542   // Otherwise branch to success MBB.
2543   SDValue Br = DAG.getNode(ISD::BR, dl,
2544                            MVT::Other, BrCond,
2545                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2546 
2547   DAG.setRoot(Br);
2548 }
2549 
2550 /// Codegen the failure basic block for a stack protector check.
2551 ///
2552 /// A failure stack protector machine basic block consists simply of a call to
2553 /// __stack_chk_fail().
2554 ///
2555 /// For a high level explanation of how this fits into the stack protector
2556 /// generation see the comment on the declaration of class
2557 /// StackProtectorDescriptor.
2558 void
2559 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2561   SDValue Chain =
2562       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2563                       None, false, getCurSDLoc(), false, false).second;
2564   // On PS4, the "return address" must still be within the calling function,
2565   // even if it's at the very end, so emit an explicit TRAP here.
2566   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2567   if (TM.getTargetTriple().isPS4CPU())
2568     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2569 
2570   DAG.setRoot(Chain);
2571 }
2572 
2573 /// visitBitTestHeader - This function emits necessary code to produce value
2574 /// suitable for "bit tests"
2575 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2576                                              MachineBasicBlock *SwitchBB) {
2577   SDLoc dl = getCurSDLoc();
2578 
2579   // Subtract the minimum value
2580   SDValue SwitchOp = getValue(B.SValue);
2581   EVT VT = SwitchOp.getValueType();
2582   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2583                             DAG.getConstant(B.First, dl, VT));
2584 
2585   // Check range
2586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2587   SDValue RangeCmp = DAG.getSetCC(
2588       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2589                                  Sub.getValueType()),
2590       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2591 
2592   // Determine the type of the test operands.
2593   bool UsePtrType = false;
2594   if (!TLI.isTypeLegal(VT))
2595     UsePtrType = true;
2596   else {
2597     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2598       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2599         // Switch table case range are encoded into series of masks.
2600         // Just use pointer type, it's guaranteed to fit.
2601         UsePtrType = true;
2602         break;
2603       }
2604   }
2605   if (UsePtrType) {
2606     VT = TLI.getPointerTy(DAG.getDataLayout());
2607     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2608   }
2609 
2610   B.RegVT = VT.getSimpleVT();
2611   B.Reg = FuncInfo.CreateReg(B.RegVT);
2612   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2613 
2614   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2615 
2616   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2617   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2618   SwitchBB->normalizeSuccProbs();
2619 
2620   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2621                                 MVT::Other, CopyTo, RangeCmp,
2622                                 DAG.getBasicBlock(B.Default));
2623 
2624   // Avoid emitting unnecessary branches to the next block.
2625   if (MBB != NextBlock(SwitchBB))
2626     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2627                           DAG.getBasicBlock(MBB));
2628 
2629   DAG.setRoot(BrRange);
2630 }
2631 
2632 /// visitBitTestCase - this function produces one "bit test"
2633 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2634                                            MachineBasicBlock* NextMBB,
2635                                            BranchProbability BranchProbToNext,
2636                                            unsigned Reg,
2637                                            BitTestCase &B,
2638                                            MachineBasicBlock *SwitchBB) {
2639   SDLoc dl = getCurSDLoc();
2640   MVT VT = BB.RegVT;
2641   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2642   SDValue Cmp;
2643   unsigned PopCount = countPopulation(B.Mask);
2644   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2645   if (PopCount == 1) {
2646     // Testing for a single bit; just compare the shift count with what it
2647     // would need to be to shift a 1 bit in that position.
2648     Cmp = DAG.getSetCC(
2649         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2650         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2651         ISD::SETEQ);
2652   } else if (PopCount == BB.Range) {
2653     // There is only one zero bit in the range, test for it directly.
2654     Cmp = DAG.getSetCC(
2655         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2656         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2657         ISD::SETNE);
2658   } else {
2659     // Make desired shift
2660     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2661                                     DAG.getConstant(1, dl, VT), ShiftOp);
2662 
2663     // Emit bit tests and jumps
2664     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2665                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2666     Cmp = DAG.getSetCC(
2667         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2668         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2669   }
2670 
2671   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2672   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2673   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2674   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2675   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2676   // one as they are relative probabilities (and thus work more like weights),
2677   // and hence we need to normalize them to let the sum of them become one.
2678   SwitchBB->normalizeSuccProbs();
2679 
2680   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2681                               MVT::Other, getControlRoot(),
2682                               Cmp, DAG.getBasicBlock(B.TargetBB));
2683 
2684   // Avoid emitting unnecessary branches to the next block.
2685   if (NextMBB != NextBlock(SwitchBB))
2686     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2687                         DAG.getBasicBlock(NextMBB));
2688 
2689   DAG.setRoot(BrAnd);
2690 }
2691 
2692 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2693   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2694 
2695   // Retrieve successors. Look through artificial IR level blocks like
2696   // catchswitch for successors.
2697   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2698   const BasicBlock *EHPadBB = I.getSuccessor(1);
2699 
2700   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2701   // have to do anything here to lower funclet bundles.
2702   assert(!I.hasOperandBundlesOtherThan(
2703              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2704          "Cannot lower invokes with arbitrary operand bundles yet!");
2705 
2706   const Value *Callee(I.getCalledValue());
2707   const Function *Fn = dyn_cast<Function>(Callee);
2708   if (isa<InlineAsm>(Callee))
2709     visitInlineAsm(&I);
2710   else if (Fn && Fn->isIntrinsic()) {
2711     switch (Fn->getIntrinsicID()) {
2712     default:
2713       llvm_unreachable("Cannot invoke this intrinsic");
2714     case Intrinsic::donothing:
2715       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2716       break;
2717     case Intrinsic::experimental_patchpoint_void:
2718     case Intrinsic::experimental_patchpoint_i64:
2719       visitPatchpoint(&I, EHPadBB);
2720       break;
2721     case Intrinsic::experimental_gc_statepoint:
2722       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2723       break;
2724     case Intrinsic::wasm_rethrow_in_catch: {
2725       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2726       // special because it can be invoked, so we manually lower it to a DAG
2727       // node here.
2728       SmallVector<SDValue, 8> Ops;
2729       Ops.push_back(getRoot()); // inchain
2730       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2731       Ops.push_back(
2732           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2733                                 TLI.getPointerTy(DAG.getDataLayout())));
2734       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2735       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2736       break;
2737     }
2738     }
2739   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2740     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2741     // Eventually we will support lowering the @llvm.experimental.deoptimize
2742     // intrinsic, and right now there are no plans to support other intrinsics
2743     // with deopt state.
2744     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2745   } else {
2746     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2747   }
2748 
2749   // If the value of the invoke is used outside of its defining block, make it
2750   // available as a virtual register.
2751   // We already took care of the exported value for the statepoint instruction
2752   // during call to the LowerStatepoint.
2753   if (!isStatepoint(I)) {
2754     CopyToExportRegsIfNeeded(&I);
2755   }
2756 
2757   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2758   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2759   BranchProbability EHPadBBProb =
2760       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2761           : BranchProbability::getZero();
2762   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2763 
2764   // Update successor info.
2765   addSuccessorWithProb(InvokeMBB, Return);
2766   for (auto &UnwindDest : UnwindDests) {
2767     UnwindDest.first->setIsEHPad();
2768     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2769   }
2770   InvokeMBB->normalizeSuccProbs();
2771 
2772   // Drop into normal successor.
2773   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2774                           DAG.getBasicBlock(Return)));
2775 }
2776 
2777 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2778   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2779 
2780   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2781   // have to do anything here to lower funclet bundles.
2782   assert(!I.hasOperandBundlesOtherThan(
2783              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2784          "Cannot lower callbrs with arbitrary operand bundles yet!");
2785 
2786   assert(isa<InlineAsm>(I.getCalledValue()) &&
2787          "Only know how to handle inlineasm callbr");
2788   visitInlineAsm(&I);
2789 
2790   // Retrieve successors.
2791   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2792 
2793   // Update successor info.
2794   addSuccessorWithProb(CallBrMBB, Return);
2795   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2796     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2797     addSuccessorWithProb(CallBrMBB, Target);
2798   }
2799   CallBrMBB->normalizeSuccProbs();
2800 
2801   // Drop into default successor.
2802   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2803                           MVT::Other, getControlRoot(),
2804                           DAG.getBasicBlock(Return)));
2805 }
2806 
2807 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2808   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2809 }
2810 
2811 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2812   assert(FuncInfo.MBB->isEHPad() &&
2813          "Call to landingpad not in landing pad!");
2814 
2815   // If there aren't registers to copy the values into (e.g., during SjLj
2816   // exceptions), then don't bother to create these DAG nodes.
2817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2818   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2819   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2820       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2821     return;
2822 
2823   // If landingpad's return type is token type, we don't create DAG nodes
2824   // for its exception pointer and selector value. The extraction of exception
2825   // pointer or selector value from token type landingpads is not currently
2826   // supported.
2827   if (LP.getType()->isTokenTy())
2828     return;
2829 
2830   SmallVector<EVT, 2> ValueVTs;
2831   SDLoc dl = getCurSDLoc();
2832   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2833   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2834 
2835   // Get the two live-in registers as SDValues. The physregs have already been
2836   // copied into virtual registers.
2837   SDValue Ops[2];
2838   if (FuncInfo.ExceptionPointerVirtReg) {
2839     Ops[0] = DAG.getZExtOrTrunc(
2840         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2841                            FuncInfo.ExceptionPointerVirtReg,
2842                            TLI.getPointerTy(DAG.getDataLayout())),
2843         dl, ValueVTs[0]);
2844   } else {
2845     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2846   }
2847   Ops[1] = DAG.getZExtOrTrunc(
2848       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2849                          FuncInfo.ExceptionSelectorVirtReg,
2850                          TLI.getPointerTy(DAG.getDataLayout())),
2851       dl, ValueVTs[1]);
2852 
2853   // Merge into one.
2854   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2855                             DAG.getVTList(ValueVTs), Ops);
2856   setValue(&LP, Res);
2857 }
2858 
2859 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2860 #ifndef NDEBUG
2861   for (const CaseCluster &CC : Clusters)
2862     assert(CC.Low == CC.High && "Input clusters must be single-case");
2863 #endif
2864 
2865   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2866     return a.Low->getValue().slt(b.Low->getValue());
2867   });
2868 
2869   // Merge adjacent clusters with the same destination.
2870   const unsigned N = Clusters.size();
2871   unsigned DstIndex = 0;
2872   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2873     CaseCluster &CC = Clusters[SrcIndex];
2874     const ConstantInt *CaseVal = CC.Low;
2875     MachineBasicBlock *Succ = CC.MBB;
2876 
2877     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2878         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2879       // If this case has the same successor and is a neighbour, merge it into
2880       // the previous cluster.
2881       Clusters[DstIndex - 1].High = CaseVal;
2882       Clusters[DstIndex - 1].Prob += CC.Prob;
2883     } else {
2884       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2885                    sizeof(Clusters[SrcIndex]));
2886     }
2887   }
2888   Clusters.resize(DstIndex);
2889 }
2890 
2891 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2892                                            MachineBasicBlock *Last) {
2893   // Update JTCases.
2894   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2895     if (JTCases[i].first.HeaderBB == First)
2896       JTCases[i].first.HeaderBB = Last;
2897 
2898   // Update BitTestCases.
2899   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2900     if (BitTestCases[i].Parent == First)
2901       BitTestCases[i].Parent = Last;
2902 }
2903 
2904 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2905   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2906 
2907   // Update machine-CFG edges with unique successors.
2908   SmallSet<BasicBlock*, 32> Done;
2909   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2910     BasicBlock *BB = I.getSuccessor(i);
2911     bool Inserted = Done.insert(BB).second;
2912     if (!Inserted)
2913         continue;
2914 
2915     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2916     addSuccessorWithProb(IndirectBrMBB, Succ);
2917   }
2918   IndirectBrMBB->normalizeSuccProbs();
2919 
2920   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2921                           MVT::Other, getControlRoot(),
2922                           getValue(I.getAddress())));
2923 }
2924 
2925 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2926   if (!DAG.getTarget().Options.TrapUnreachable)
2927     return;
2928 
2929   // We may be able to ignore unreachable behind a noreturn call.
2930   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2931     const BasicBlock &BB = *I.getParent();
2932     if (&I != &BB.front()) {
2933       BasicBlock::const_iterator PredI =
2934         std::prev(BasicBlock::const_iterator(&I));
2935       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2936         if (Call->doesNotReturn())
2937           return;
2938       }
2939     }
2940   }
2941 
2942   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2943 }
2944 
2945 void SelectionDAGBuilder::visitFSub(const User &I) {
2946   // -0.0 - X --> fneg
2947   Type *Ty = I.getType();
2948   if (isa<Constant>(I.getOperand(0)) &&
2949       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2950     SDValue Op2 = getValue(I.getOperand(1));
2951     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2952                              Op2.getValueType(), Op2));
2953     return;
2954   }
2955 
2956   visitBinary(I, ISD::FSUB);
2957 }
2958 
2959 /// Checks if the given instruction performs a vector reduction, in which case
2960 /// we have the freedom to alter the elements in the result as long as the
2961 /// reduction of them stays unchanged.
2962 static bool isVectorReductionOp(const User *I) {
2963   const Instruction *Inst = dyn_cast<Instruction>(I);
2964   if (!Inst || !Inst->getType()->isVectorTy())
2965     return false;
2966 
2967   auto OpCode = Inst->getOpcode();
2968   switch (OpCode) {
2969   case Instruction::Add:
2970   case Instruction::Mul:
2971   case Instruction::And:
2972   case Instruction::Or:
2973   case Instruction::Xor:
2974     break;
2975   case Instruction::FAdd:
2976   case Instruction::FMul:
2977     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2978       if (FPOp->getFastMathFlags().isFast())
2979         break;
2980     LLVM_FALLTHROUGH;
2981   default:
2982     return false;
2983   }
2984 
2985   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2986   // Ensure the reduction size is a power of 2.
2987   if (!isPowerOf2_32(ElemNum))
2988     return false;
2989 
2990   unsigned ElemNumToReduce = ElemNum;
2991 
2992   // Do DFS search on the def-use chain from the given instruction. We only
2993   // allow four kinds of operations during the search until we reach the
2994   // instruction that extracts the first element from the vector:
2995   //
2996   //   1. The reduction operation of the same opcode as the given instruction.
2997   //
2998   //   2. PHI node.
2999   //
3000   //   3. ShuffleVector instruction together with a reduction operation that
3001   //      does a partial reduction.
3002   //
3003   //   4. ExtractElement that extracts the first element from the vector, and we
3004   //      stop searching the def-use chain here.
3005   //
3006   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3007   // from 1-3 to the stack to continue the DFS. The given instruction is not
3008   // a reduction operation if we meet any other instructions other than those
3009   // listed above.
3010 
3011   SmallVector<const User *, 16> UsersToVisit{Inst};
3012   SmallPtrSet<const User *, 16> Visited;
3013   bool ReduxExtracted = false;
3014 
3015   while (!UsersToVisit.empty()) {
3016     auto User = UsersToVisit.back();
3017     UsersToVisit.pop_back();
3018     if (!Visited.insert(User).second)
3019       continue;
3020 
3021     for (const auto &U : User->users()) {
3022       auto Inst = dyn_cast<Instruction>(U);
3023       if (!Inst)
3024         return false;
3025 
3026       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3027         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3028           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3029             return false;
3030         UsersToVisit.push_back(U);
3031       } else if (const ShuffleVectorInst *ShufInst =
3032                      dyn_cast<ShuffleVectorInst>(U)) {
3033         // Detect the following pattern: A ShuffleVector instruction together
3034         // with a reduction that do partial reduction on the first and second
3035         // ElemNumToReduce / 2 elements, and store the result in
3036         // ElemNumToReduce / 2 elements in another vector.
3037 
3038         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3039         if (ResultElements < ElemNum)
3040           return false;
3041 
3042         if (ElemNumToReduce == 1)
3043           return false;
3044         if (!isa<UndefValue>(U->getOperand(1)))
3045           return false;
3046         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3047           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3048             return false;
3049         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3050           if (ShufInst->getMaskValue(i) != -1)
3051             return false;
3052 
3053         // There is only one user of this ShuffleVector instruction, which
3054         // must be a reduction operation.
3055         if (!U->hasOneUse())
3056           return false;
3057 
3058         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3059         if (!U2 || U2->getOpcode() != OpCode)
3060           return false;
3061 
3062         // Check operands of the reduction operation.
3063         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3064             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3065           UsersToVisit.push_back(U2);
3066           ElemNumToReduce /= 2;
3067         } else
3068           return false;
3069       } else if (isa<ExtractElementInst>(U)) {
3070         // At this moment we should have reduced all elements in the vector.
3071         if (ElemNumToReduce != 1)
3072           return false;
3073 
3074         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3075         if (!Val || !Val->isZero())
3076           return false;
3077 
3078         ReduxExtracted = true;
3079       } else
3080         return false;
3081     }
3082   }
3083   return ReduxExtracted;
3084 }
3085 
3086 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3087   SDNodeFlags Flags;
3088 
3089   SDValue Op = getValue(I.getOperand(0));
3090   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3091                                     Op, Flags);
3092   setValue(&I, UnNodeValue);
3093 }
3094 
3095 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3096   SDNodeFlags Flags;
3097   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3098     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3099     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3100   }
3101   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3102     Flags.setExact(ExactOp->isExact());
3103   }
3104   if (isVectorReductionOp(&I)) {
3105     Flags.setVectorReduction(true);
3106     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3107   }
3108 
3109   SDValue Op1 = getValue(I.getOperand(0));
3110   SDValue Op2 = getValue(I.getOperand(1));
3111   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3112                                      Op1, Op2, Flags);
3113   setValue(&I, BinNodeValue);
3114 }
3115 
3116 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3117   SDValue Op1 = getValue(I.getOperand(0));
3118   SDValue Op2 = getValue(I.getOperand(1));
3119 
3120   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3121       Op1.getValueType(), DAG.getDataLayout());
3122 
3123   // Coerce the shift amount to the right type if we can.
3124   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3125     unsigned ShiftSize = ShiftTy.getSizeInBits();
3126     unsigned Op2Size = Op2.getValueSizeInBits();
3127     SDLoc DL = getCurSDLoc();
3128 
3129     // If the operand is smaller than the shift count type, promote it.
3130     if (ShiftSize > Op2Size)
3131       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3132 
3133     // If the operand is larger than the shift count type but the shift
3134     // count type has enough bits to represent any shift value, truncate
3135     // it now. This is a common case and it exposes the truncate to
3136     // optimization early.
3137     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3138       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3139     // Otherwise we'll need to temporarily settle for some other convenient
3140     // type.  Type legalization will make adjustments once the shiftee is split.
3141     else
3142       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3143   }
3144 
3145   bool nuw = false;
3146   bool nsw = false;
3147   bool exact = false;
3148 
3149   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3150 
3151     if (const OverflowingBinaryOperator *OFBinOp =
3152             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3153       nuw = OFBinOp->hasNoUnsignedWrap();
3154       nsw = OFBinOp->hasNoSignedWrap();
3155     }
3156     if (const PossiblyExactOperator *ExactOp =
3157             dyn_cast<const PossiblyExactOperator>(&I))
3158       exact = ExactOp->isExact();
3159   }
3160   SDNodeFlags Flags;
3161   Flags.setExact(exact);
3162   Flags.setNoSignedWrap(nsw);
3163   Flags.setNoUnsignedWrap(nuw);
3164   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3165                             Flags);
3166   setValue(&I, Res);
3167 }
3168 
3169 void SelectionDAGBuilder::visitSDiv(const User &I) {
3170   SDValue Op1 = getValue(I.getOperand(0));
3171   SDValue Op2 = getValue(I.getOperand(1));
3172 
3173   SDNodeFlags Flags;
3174   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3175                  cast<PossiblyExactOperator>(&I)->isExact());
3176   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3177                            Op2, Flags));
3178 }
3179 
3180 void SelectionDAGBuilder::visitICmp(const User &I) {
3181   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3182   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3183     predicate = IC->getPredicate();
3184   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3185     predicate = ICmpInst::Predicate(IC->getPredicate());
3186   SDValue Op1 = getValue(I.getOperand(0));
3187   SDValue Op2 = getValue(I.getOperand(1));
3188   ISD::CondCode Opcode = getICmpCondCode(predicate);
3189 
3190   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3191                                                         I.getType());
3192   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3193 }
3194 
3195 void SelectionDAGBuilder::visitFCmp(const User &I) {
3196   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3197   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3198     predicate = FC->getPredicate();
3199   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3200     predicate = FCmpInst::Predicate(FC->getPredicate());
3201   SDValue Op1 = getValue(I.getOperand(0));
3202   SDValue Op2 = getValue(I.getOperand(1));
3203 
3204   ISD::CondCode Condition = getFCmpCondCode(predicate);
3205   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3206   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3207     Condition = getFCmpCodeWithoutNaN(Condition);
3208 
3209   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3210                                                         I.getType());
3211   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3212 }
3213 
3214 // Check if the condition of the select has one use or two users that are both
3215 // selects with the same condition.
3216 static bool hasOnlySelectUsers(const Value *Cond) {
3217   return llvm::all_of(Cond->users(), [](const Value *V) {
3218     return isa<SelectInst>(V);
3219   });
3220 }
3221 
3222 void SelectionDAGBuilder::visitSelect(const User &I) {
3223   SmallVector<EVT, 4> ValueVTs;
3224   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3225                   ValueVTs);
3226   unsigned NumValues = ValueVTs.size();
3227   if (NumValues == 0) return;
3228 
3229   SmallVector<SDValue, 4> Values(NumValues);
3230   SDValue Cond     = getValue(I.getOperand(0));
3231   SDValue LHSVal   = getValue(I.getOperand(1));
3232   SDValue RHSVal   = getValue(I.getOperand(2));
3233   auto BaseOps = {Cond};
3234   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3235     ISD::VSELECT : ISD::SELECT;
3236 
3237   bool IsUnaryAbs = false;
3238 
3239   // Min/max matching is only viable if all output VTs are the same.
3240   if (is_splat(ValueVTs)) {
3241     EVT VT = ValueVTs[0];
3242     LLVMContext &Ctx = *DAG.getContext();
3243     auto &TLI = DAG.getTargetLoweringInfo();
3244 
3245     // We care about the legality of the operation after it has been type
3246     // legalized.
3247     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3248            VT != TLI.getTypeToTransformTo(Ctx, VT))
3249       VT = TLI.getTypeToTransformTo(Ctx, VT);
3250 
3251     // If the vselect is legal, assume we want to leave this as a vector setcc +
3252     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3253     // min/max is legal on the scalar type.
3254     bool UseScalarMinMax = VT.isVector() &&
3255       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3256 
3257     Value *LHS, *RHS;
3258     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3259     ISD::NodeType Opc = ISD::DELETED_NODE;
3260     switch (SPR.Flavor) {
3261     case SPF_UMAX:    Opc = ISD::UMAX; break;
3262     case SPF_UMIN:    Opc = ISD::UMIN; break;
3263     case SPF_SMAX:    Opc = ISD::SMAX; break;
3264     case SPF_SMIN:    Opc = ISD::SMIN; break;
3265     case SPF_FMINNUM:
3266       switch (SPR.NaNBehavior) {
3267       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3268       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3269       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3270       case SPNB_RETURNS_ANY: {
3271         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3272           Opc = ISD::FMINNUM;
3273         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3274           Opc = ISD::FMINIMUM;
3275         else if (UseScalarMinMax)
3276           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3277             ISD::FMINNUM : ISD::FMINIMUM;
3278         break;
3279       }
3280       }
3281       break;
3282     case SPF_FMAXNUM:
3283       switch (SPR.NaNBehavior) {
3284       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3285       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3286       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3287       case SPNB_RETURNS_ANY:
3288 
3289         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3290           Opc = ISD::FMAXNUM;
3291         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3292           Opc = ISD::FMAXIMUM;
3293         else if (UseScalarMinMax)
3294           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3295             ISD::FMAXNUM : ISD::FMAXIMUM;
3296         break;
3297       }
3298       break;
3299     case SPF_ABS:
3300       IsUnaryAbs = true;
3301       Opc = ISD::ABS;
3302       break;
3303     case SPF_NABS:
3304       // TODO: we need to produce sub(0, abs(X)).
3305     default: break;
3306     }
3307 
3308     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3309         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3310          (UseScalarMinMax &&
3311           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3312         // If the underlying comparison instruction is used by any other
3313         // instruction, the consumed instructions won't be destroyed, so it is
3314         // not profitable to convert to a min/max.
3315         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3316       OpCode = Opc;
3317       LHSVal = getValue(LHS);
3318       RHSVal = getValue(RHS);
3319       BaseOps = {};
3320     }
3321 
3322     if (IsUnaryAbs) {
3323       OpCode = Opc;
3324       LHSVal = getValue(LHS);
3325       BaseOps = {};
3326     }
3327   }
3328 
3329   if (IsUnaryAbs) {
3330     for (unsigned i = 0; i != NumValues; ++i) {
3331       Values[i] =
3332           DAG.getNode(OpCode, getCurSDLoc(),
3333                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3334                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3335     }
3336   } else {
3337     for (unsigned i = 0; i != NumValues; ++i) {
3338       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3339       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3340       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3341       Values[i] = DAG.getNode(
3342           OpCode, getCurSDLoc(),
3343           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3344     }
3345   }
3346 
3347   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3348                            DAG.getVTList(ValueVTs), Values));
3349 }
3350 
3351 void SelectionDAGBuilder::visitTrunc(const User &I) {
3352   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3353   SDValue N = getValue(I.getOperand(0));
3354   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3355                                                         I.getType());
3356   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3357 }
3358 
3359 void SelectionDAGBuilder::visitZExt(const User &I) {
3360   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3361   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3362   SDValue N = getValue(I.getOperand(0));
3363   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3364                                                         I.getType());
3365   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3366 }
3367 
3368 void SelectionDAGBuilder::visitSExt(const User &I) {
3369   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3370   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3371   SDValue N = getValue(I.getOperand(0));
3372   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3373                                                         I.getType());
3374   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3375 }
3376 
3377 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3378   // FPTrunc is never a no-op cast, no need to check
3379   SDValue N = getValue(I.getOperand(0));
3380   SDLoc dl = getCurSDLoc();
3381   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3382   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3383   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3384                            DAG.getTargetConstant(
3385                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3386 }
3387 
3388 void SelectionDAGBuilder::visitFPExt(const User &I) {
3389   // FPExt is never a no-op cast, no need to check
3390   SDValue N = getValue(I.getOperand(0));
3391   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3392                                                         I.getType());
3393   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3394 }
3395 
3396 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3397   // FPToUI is never a no-op cast, no need to check
3398   SDValue N = getValue(I.getOperand(0));
3399   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3400                                                         I.getType());
3401   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3402 }
3403 
3404 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3405   // FPToSI is never a no-op cast, no need to check
3406   SDValue N = getValue(I.getOperand(0));
3407   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3408                                                         I.getType());
3409   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3410 }
3411 
3412 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3413   // UIToFP is never a no-op cast, no need to check
3414   SDValue N = getValue(I.getOperand(0));
3415   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3416                                                         I.getType());
3417   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3418 }
3419 
3420 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3421   // SIToFP is never a no-op cast, no need to check
3422   SDValue N = getValue(I.getOperand(0));
3423   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3424                                                         I.getType());
3425   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3426 }
3427 
3428 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3429   // What to do depends on the size of the integer and the size of the pointer.
3430   // We can either truncate, zero extend, or no-op, accordingly.
3431   SDValue N = getValue(I.getOperand(0));
3432   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3433                                                         I.getType());
3434   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3435 }
3436 
3437 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3438   // What to do depends on the size of the integer and the size of the pointer.
3439   // We can either truncate, zero extend, or no-op, accordingly.
3440   SDValue N = getValue(I.getOperand(0));
3441   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3442                                                         I.getType());
3443   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3444 }
3445 
3446 void SelectionDAGBuilder::visitBitCast(const User &I) {
3447   SDValue N = getValue(I.getOperand(0));
3448   SDLoc dl = getCurSDLoc();
3449   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3450                                                         I.getType());
3451 
3452   // BitCast assures us that source and destination are the same size so this is
3453   // either a BITCAST or a no-op.
3454   if (DestVT != N.getValueType())
3455     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3456                              DestVT, N)); // convert types.
3457   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3458   // might fold any kind of constant expression to an integer constant and that
3459   // is not what we are looking for. Only recognize a bitcast of a genuine
3460   // constant integer as an opaque constant.
3461   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3462     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3463                                  /*isOpaque*/true));
3464   else
3465     setValue(&I, N);            // noop cast.
3466 }
3467 
3468 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3470   const Value *SV = I.getOperand(0);
3471   SDValue N = getValue(SV);
3472   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3473 
3474   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3475   unsigned DestAS = I.getType()->getPointerAddressSpace();
3476 
3477   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3478     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3479 
3480   setValue(&I, N);
3481 }
3482 
3483 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3484   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3485   SDValue InVec = getValue(I.getOperand(0));
3486   SDValue InVal = getValue(I.getOperand(1));
3487   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3488                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3489   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3490                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3491                            InVec, InVal, InIdx));
3492 }
3493 
3494 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3495   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3496   SDValue InVec = getValue(I.getOperand(0));
3497   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3498                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3499   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3500                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3501                            InVec, InIdx));
3502 }
3503 
3504 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3505   SDValue Src1 = getValue(I.getOperand(0));
3506   SDValue Src2 = getValue(I.getOperand(1));
3507   SDLoc DL = getCurSDLoc();
3508 
3509   SmallVector<int, 8> Mask;
3510   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3511   unsigned MaskNumElts = Mask.size();
3512 
3513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3514   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3515   EVT SrcVT = Src1.getValueType();
3516   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3517 
3518   if (SrcNumElts == MaskNumElts) {
3519     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3520     return;
3521   }
3522 
3523   // Normalize the shuffle vector since mask and vector length don't match.
3524   if (SrcNumElts < MaskNumElts) {
3525     // Mask is longer than the source vectors. We can use concatenate vector to
3526     // make the mask and vectors lengths match.
3527 
3528     if (MaskNumElts % SrcNumElts == 0) {
3529       // Mask length is a multiple of the source vector length.
3530       // Check if the shuffle is some kind of concatenation of the input
3531       // vectors.
3532       unsigned NumConcat = MaskNumElts / SrcNumElts;
3533       bool IsConcat = true;
3534       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3535       for (unsigned i = 0; i != MaskNumElts; ++i) {
3536         int Idx = Mask[i];
3537         if (Idx < 0)
3538           continue;
3539         // Ensure the indices in each SrcVT sized piece are sequential and that
3540         // the same source is used for the whole piece.
3541         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3542             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3543              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3544           IsConcat = false;
3545           break;
3546         }
3547         // Remember which source this index came from.
3548         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3549       }
3550 
3551       // The shuffle is concatenating multiple vectors together. Just emit
3552       // a CONCAT_VECTORS operation.
3553       if (IsConcat) {
3554         SmallVector<SDValue, 8> ConcatOps;
3555         for (auto Src : ConcatSrcs) {
3556           if (Src < 0)
3557             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3558           else if (Src == 0)
3559             ConcatOps.push_back(Src1);
3560           else
3561             ConcatOps.push_back(Src2);
3562         }
3563         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3564         return;
3565       }
3566     }
3567 
3568     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3569     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3570     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3571                                     PaddedMaskNumElts);
3572 
3573     // Pad both vectors with undefs to make them the same length as the mask.
3574     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3575 
3576     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3577     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3578     MOps1[0] = Src1;
3579     MOps2[0] = Src2;
3580 
3581     Src1 = Src1.isUndef()
3582                ? DAG.getUNDEF(PaddedVT)
3583                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3584     Src2 = Src2.isUndef()
3585                ? DAG.getUNDEF(PaddedVT)
3586                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3587 
3588     // Readjust mask for new input vector length.
3589     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3590     for (unsigned i = 0; i != MaskNumElts; ++i) {
3591       int Idx = Mask[i];
3592       if (Idx >= (int)SrcNumElts)
3593         Idx -= SrcNumElts - PaddedMaskNumElts;
3594       MappedOps[i] = Idx;
3595     }
3596 
3597     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3598 
3599     // If the concatenated vector was padded, extract a subvector with the
3600     // correct number of elements.
3601     if (MaskNumElts != PaddedMaskNumElts)
3602       Result = DAG.getNode(
3603           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3604           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3605 
3606     setValue(&I, Result);
3607     return;
3608   }
3609 
3610   if (SrcNumElts > MaskNumElts) {
3611     // Analyze the access pattern of the vector to see if we can extract
3612     // two subvectors and do the shuffle.
3613     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3614     bool CanExtract = true;
3615     for (int Idx : Mask) {
3616       unsigned Input = 0;
3617       if (Idx < 0)
3618         continue;
3619 
3620       if (Idx >= (int)SrcNumElts) {
3621         Input = 1;
3622         Idx -= SrcNumElts;
3623       }
3624 
3625       // If all the indices come from the same MaskNumElts sized portion of
3626       // the sources we can use extract. Also make sure the extract wouldn't
3627       // extract past the end of the source.
3628       int NewStartIdx = alignDown(Idx, MaskNumElts);
3629       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3630           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3631         CanExtract = false;
3632       // Make sure we always update StartIdx as we use it to track if all
3633       // elements are undef.
3634       StartIdx[Input] = NewStartIdx;
3635     }
3636 
3637     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3638       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3639       return;
3640     }
3641     if (CanExtract) {
3642       // Extract appropriate subvector and generate a vector shuffle
3643       for (unsigned Input = 0; Input < 2; ++Input) {
3644         SDValue &Src = Input == 0 ? Src1 : Src2;
3645         if (StartIdx[Input] < 0)
3646           Src = DAG.getUNDEF(VT);
3647         else {
3648           Src = DAG.getNode(
3649               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3650               DAG.getConstant(StartIdx[Input], DL,
3651                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3652         }
3653       }
3654 
3655       // Calculate new mask.
3656       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3657       for (int &Idx : MappedOps) {
3658         if (Idx >= (int)SrcNumElts)
3659           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3660         else if (Idx >= 0)
3661           Idx -= StartIdx[0];
3662       }
3663 
3664       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3665       return;
3666     }
3667   }
3668 
3669   // We can't use either concat vectors or extract subvectors so fall back to
3670   // replacing the shuffle with extract and build vector.
3671   // to insert and build vector.
3672   EVT EltVT = VT.getVectorElementType();
3673   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3674   SmallVector<SDValue,8> Ops;
3675   for (int Idx : Mask) {
3676     SDValue Res;
3677 
3678     if (Idx < 0) {
3679       Res = DAG.getUNDEF(EltVT);
3680     } else {
3681       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3682       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3683 
3684       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3685                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3686     }
3687 
3688     Ops.push_back(Res);
3689   }
3690 
3691   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3692 }
3693 
3694 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3695   ArrayRef<unsigned> Indices;
3696   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3697     Indices = IV->getIndices();
3698   else
3699     Indices = cast<ConstantExpr>(&I)->getIndices();
3700 
3701   const Value *Op0 = I.getOperand(0);
3702   const Value *Op1 = I.getOperand(1);
3703   Type *AggTy = I.getType();
3704   Type *ValTy = Op1->getType();
3705   bool IntoUndef = isa<UndefValue>(Op0);
3706   bool FromUndef = isa<UndefValue>(Op1);
3707 
3708   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3709 
3710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3711   SmallVector<EVT, 4> AggValueVTs;
3712   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3713   SmallVector<EVT, 4> ValValueVTs;
3714   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3715 
3716   unsigned NumAggValues = AggValueVTs.size();
3717   unsigned NumValValues = ValValueVTs.size();
3718   SmallVector<SDValue, 4> Values(NumAggValues);
3719 
3720   // Ignore an insertvalue that produces an empty object
3721   if (!NumAggValues) {
3722     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3723     return;
3724   }
3725 
3726   SDValue Agg = getValue(Op0);
3727   unsigned i = 0;
3728   // Copy the beginning value(s) from the original aggregate.
3729   for (; i != LinearIndex; ++i)
3730     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3731                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3732   // Copy values from the inserted value(s).
3733   if (NumValValues) {
3734     SDValue Val = getValue(Op1);
3735     for (; i != LinearIndex + NumValValues; ++i)
3736       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3737                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3738   }
3739   // Copy remaining value(s) from the original aggregate.
3740   for (; i != NumAggValues; ++i)
3741     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3742                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3743 
3744   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3745                            DAG.getVTList(AggValueVTs), Values));
3746 }
3747 
3748 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3749   ArrayRef<unsigned> Indices;
3750   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3751     Indices = EV->getIndices();
3752   else
3753     Indices = cast<ConstantExpr>(&I)->getIndices();
3754 
3755   const Value *Op0 = I.getOperand(0);
3756   Type *AggTy = Op0->getType();
3757   Type *ValTy = I.getType();
3758   bool OutOfUndef = isa<UndefValue>(Op0);
3759 
3760   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3761 
3762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3763   SmallVector<EVT, 4> ValValueVTs;
3764   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3765 
3766   unsigned NumValValues = ValValueVTs.size();
3767 
3768   // Ignore a extractvalue that produces an empty object
3769   if (!NumValValues) {
3770     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3771     return;
3772   }
3773 
3774   SmallVector<SDValue, 4> Values(NumValValues);
3775 
3776   SDValue Agg = getValue(Op0);
3777   // Copy out the selected value(s).
3778   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3779     Values[i - LinearIndex] =
3780       OutOfUndef ?
3781         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3782         SDValue(Agg.getNode(), Agg.getResNo() + i);
3783 
3784   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3785                            DAG.getVTList(ValValueVTs), Values));
3786 }
3787 
3788 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3789   Value *Op0 = I.getOperand(0);
3790   // Note that the pointer operand may be a vector of pointers. Take the scalar
3791   // element which holds a pointer.
3792   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3793   SDValue N = getValue(Op0);
3794   SDLoc dl = getCurSDLoc();
3795 
3796   // Normalize Vector GEP - all scalar operands should be converted to the
3797   // splat vector.
3798   unsigned VectorWidth = I.getType()->isVectorTy() ?
3799     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3800 
3801   if (VectorWidth && !N.getValueType().isVector()) {
3802     LLVMContext &Context = *DAG.getContext();
3803     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3804     N = DAG.getSplatBuildVector(VT, dl, N);
3805   }
3806 
3807   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3808        GTI != E; ++GTI) {
3809     const Value *Idx = GTI.getOperand();
3810     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3811       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3812       if (Field) {
3813         // N = N + Offset
3814         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3815 
3816         // In an inbounds GEP with an offset that is nonnegative even when
3817         // interpreted as signed, assume there is no unsigned overflow.
3818         SDNodeFlags Flags;
3819         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3820           Flags.setNoUnsignedWrap(true);
3821 
3822         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3823                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3824       }
3825     } else {
3826       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3827       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3828       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3829 
3830       // If this is a scalar constant or a splat vector of constants,
3831       // handle it quickly.
3832       const auto *CI = dyn_cast<ConstantInt>(Idx);
3833       if (!CI && isa<ConstantDataVector>(Idx) &&
3834           cast<ConstantDataVector>(Idx)->getSplatValue())
3835         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3836 
3837       if (CI) {
3838         if (CI->isZero())
3839           continue;
3840         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3841         LLVMContext &Context = *DAG.getContext();
3842         SDValue OffsVal = VectorWidth ?
3843           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3844           DAG.getConstant(Offs, dl, IdxTy);
3845 
3846         // In an inbouds GEP with an offset that is nonnegative even when
3847         // interpreted as signed, assume there is no unsigned overflow.
3848         SDNodeFlags Flags;
3849         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3850           Flags.setNoUnsignedWrap(true);
3851 
3852         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3853         continue;
3854       }
3855 
3856       // N = N + Idx * ElementSize;
3857       SDValue IdxN = getValue(Idx);
3858 
3859       if (!IdxN.getValueType().isVector() && VectorWidth) {
3860         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3861         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3862       }
3863 
3864       // If the index is smaller or larger than intptr_t, truncate or extend
3865       // it.
3866       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3867 
3868       // If this is a multiply by a power of two, turn it into a shl
3869       // immediately.  This is a very common case.
3870       if (ElementSize != 1) {
3871         if (ElementSize.isPowerOf2()) {
3872           unsigned Amt = ElementSize.logBase2();
3873           IdxN = DAG.getNode(ISD::SHL, dl,
3874                              N.getValueType(), IdxN,
3875                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3876         } else {
3877           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3878           IdxN = DAG.getNode(ISD::MUL, dl,
3879                              N.getValueType(), IdxN, Scale);
3880         }
3881       }
3882 
3883       N = DAG.getNode(ISD::ADD, dl,
3884                       N.getValueType(), N, IdxN);
3885     }
3886   }
3887 
3888   setValue(&I, N);
3889 }
3890 
3891 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3892   // If this is a fixed sized alloca in the entry block of the function,
3893   // allocate it statically on the stack.
3894   if (FuncInfo.StaticAllocaMap.count(&I))
3895     return;   // getValue will auto-populate this.
3896 
3897   SDLoc dl = getCurSDLoc();
3898   Type *Ty = I.getAllocatedType();
3899   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3900   auto &DL = DAG.getDataLayout();
3901   uint64_t TySize = DL.getTypeAllocSize(Ty);
3902   unsigned Align =
3903       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3904 
3905   SDValue AllocSize = getValue(I.getArraySize());
3906 
3907   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3908   if (AllocSize.getValueType() != IntPtr)
3909     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3910 
3911   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3912                           AllocSize,
3913                           DAG.getConstant(TySize, dl, IntPtr));
3914 
3915   // Handle alignment.  If the requested alignment is less than or equal to
3916   // the stack alignment, ignore it.  If the size is greater than or equal to
3917   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3918   unsigned StackAlign =
3919       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3920   if (Align <= StackAlign)
3921     Align = 0;
3922 
3923   // Round the size of the allocation up to the stack alignment size
3924   // by add SA-1 to the size. This doesn't overflow because we're computing
3925   // an address inside an alloca.
3926   SDNodeFlags Flags;
3927   Flags.setNoUnsignedWrap(true);
3928   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3929                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3930 
3931   // Mask out the low bits for alignment purposes.
3932   AllocSize =
3933       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3934                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3935 
3936   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3937   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3938   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3939   setValue(&I, DSA);
3940   DAG.setRoot(DSA.getValue(1));
3941 
3942   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3943 }
3944 
3945 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3946   if (I.isAtomic())
3947     return visitAtomicLoad(I);
3948 
3949   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3950   const Value *SV = I.getOperand(0);
3951   if (TLI.supportSwiftError()) {
3952     // Swifterror values can come from either a function parameter with
3953     // swifterror attribute or an alloca with swifterror attribute.
3954     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3955       if (Arg->hasSwiftErrorAttr())
3956         return visitLoadFromSwiftError(I);
3957     }
3958 
3959     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3960       if (Alloca->isSwiftError())
3961         return visitLoadFromSwiftError(I);
3962     }
3963   }
3964 
3965   SDValue Ptr = getValue(SV);
3966 
3967   Type *Ty = I.getType();
3968 
3969   bool isVolatile = I.isVolatile();
3970   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3971   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3972   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3973   unsigned Alignment = I.getAlignment();
3974 
3975   AAMDNodes AAInfo;
3976   I.getAAMetadata(AAInfo);
3977   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3978 
3979   SmallVector<EVT, 4> ValueVTs;
3980   SmallVector<uint64_t, 4> Offsets;
3981   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3982   unsigned NumValues = ValueVTs.size();
3983   if (NumValues == 0)
3984     return;
3985 
3986   SDValue Root;
3987   bool ConstantMemory = false;
3988   if (isVolatile || NumValues > MaxParallelChains)
3989     // Serialize volatile loads with other side effects.
3990     Root = getRoot();
3991   else if (AA &&
3992            AA->pointsToConstantMemory(MemoryLocation(
3993                SV,
3994                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3995                AAInfo))) {
3996     // Do not serialize (non-volatile) loads of constant memory with anything.
3997     Root = DAG.getEntryNode();
3998     ConstantMemory = true;
3999   } else {
4000     // Do not serialize non-volatile loads against each other.
4001     Root = DAG.getRoot();
4002   }
4003 
4004   SDLoc dl = getCurSDLoc();
4005 
4006   if (isVolatile)
4007     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4008 
4009   // An aggregate load cannot wrap around the address space, so offsets to its
4010   // parts don't wrap either.
4011   SDNodeFlags Flags;
4012   Flags.setNoUnsignedWrap(true);
4013 
4014   SmallVector<SDValue, 4> Values(NumValues);
4015   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4016   EVT PtrVT = Ptr.getValueType();
4017   unsigned ChainI = 0;
4018   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4019     // Serializing loads here may result in excessive register pressure, and
4020     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4021     // could recover a bit by hoisting nodes upward in the chain by recognizing
4022     // they are side-effect free or do not alias. The optimizer should really
4023     // avoid this case by converting large object/array copies to llvm.memcpy
4024     // (MaxParallelChains should always remain as failsafe).
4025     if (ChainI == MaxParallelChains) {
4026       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4027       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4028                                   makeArrayRef(Chains.data(), ChainI));
4029       Root = Chain;
4030       ChainI = 0;
4031     }
4032     SDValue A = DAG.getNode(ISD::ADD, dl,
4033                             PtrVT, Ptr,
4034                             DAG.getConstant(Offsets[i], dl, PtrVT),
4035                             Flags);
4036     auto MMOFlags = MachineMemOperand::MONone;
4037     if (isVolatile)
4038       MMOFlags |= MachineMemOperand::MOVolatile;
4039     if (isNonTemporal)
4040       MMOFlags |= MachineMemOperand::MONonTemporal;
4041     if (isInvariant)
4042       MMOFlags |= MachineMemOperand::MOInvariant;
4043     if (isDereferenceable)
4044       MMOFlags |= MachineMemOperand::MODereferenceable;
4045     MMOFlags |= TLI.getMMOFlags(I);
4046 
4047     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
4048                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4049                             MMOFlags, AAInfo, Ranges);
4050 
4051     Values[i] = L;
4052     Chains[ChainI] = L.getValue(1);
4053   }
4054 
4055   if (!ConstantMemory) {
4056     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4057                                 makeArrayRef(Chains.data(), ChainI));
4058     if (isVolatile)
4059       DAG.setRoot(Chain);
4060     else
4061       PendingLoads.push_back(Chain);
4062   }
4063 
4064   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4065                            DAG.getVTList(ValueVTs), Values));
4066 }
4067 
4068 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4069   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4070          "call visitStoreToSwiftError when backend supports swifterror");
4071 
4072   SmallVector<EVT, 4> ValueVTs;
4073   SmallVector<uint64_t, 4> Offsets;
4074   const Value *SrcV = I.getOperand(0);
4075   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4076                   SrcV->getType(), ValueVTs, &Offsets);
4077   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4078          "expect a single EVT for swifterror");
4079 
4080   SDValue Src = getValue(SrcV);
4081   // Create a virtual register, then update the virtual register.
4082   unsigned VReg; bool CreatedVReg;
4083   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4084   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4085   // Chain can be getRoot or getControlRoot.
4086   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4087                                       SDValue(Src.getNode(), Src.getResNo()));
4088   DAG.setRoot(CopyNode);
4089   if (CreatedVReg)
4090     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4091 }
4092 
4093 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4094   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4095          "call visitLoadFromSwiftError when backend supports swifterror");
4096 
4097   assert(!I.isVolatile() &&
4098          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4099          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4100          "Support volatile, non temporal, invariant for load_from_swift_error");
4101 
4102   const Value *SV = I.getOperand(0);
4103   Type *Ty = I.getType();
4104   AAMDNodes AAInfo;
4105   I.getAAMetadata(AAInfo);
4106   assert(
4107       (!AA ||
4108        !AA->pointsToConstantMemory(MemoryLocation(
4109            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4110            AAInfo))) &&
4111       "load_from_swift_error should not be constant memory");
4112 
4113   SmallVector<EVT, 4> ValueVTs;
4114   SmallVector<uint64_t, 4> Offsets;
4115   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4116                   ValueVTs, &Offsets);
4117   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4118          "expect a single EVT for swifterror");
4119 
4120   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4121   SDValue L = DAG.getCopyFromReg(
4122       getRoot(), getCurSDLoc(),
4123       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4124       ValueVTs[0]);
4125 
4126   setValue(&I, L);
4127 }
4128 
4129 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4130   if (I.isAtomic())
4131     return visitAtomicStore(I);
4132 
4133   const Value *SrcV = I.getOperand(0);
4134   const Value *PtrV = I.getOperand(1);
4135 
4136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4137   if (TLI.supportSwiftError()) {
4138     // Swifterror values can come from either a function parameter with
4139     // swifterror attribute or an alloca with swifterror attribute.
4140     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4141       if (Arg->hasSwiftErrorAttr())
4142         return visitStoreToSwiftError(I);
4143     }
4144 
4145     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4146       if (Alloca->isSwiftError())
4147         return visitStoreToSwiftError(I);
4148     }
4149   }
4150 
4151   SmallVector<EVT, 4> ValueVTs;
4152   SmallVector<uint64_t, 4> Offsets;
4153   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4154                   SrcV->getType(), ValueVTs, &Offsets);
4155   unsigned NumValues = ValueVTs.size();
4156   if (NumValues == 0)
4157     return;
4158 
4159   // Get the lowered operands. Note that we do this after
4160   // checking if NumResults is zero, because with zero results
4161   // the operands won't have values in the map.
4162   SDValue Src = getValue(SrcV);
4163   SDValue Ptr = getValue(PtrV);
4164 
4165   SDValue Root = getRoot();
4166   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4167   SDLoc dl = getCurSDLoc();
4168   EVT PtrVT = Ptr.getValueType();
4169   unsigned Alignment = I.getAlignment();
4170   AAMDNodes AAInfo;
4171   I.getAAMetadata(AAInfo);
4172 
4173   auto MMOFlags = MachineMemOperand::MONone;
4174   if (I.isVolatile())
4175     MMOFlags |= MachineMemOperand::MOVolatile;
4176   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4177     MMOFlags |= MachineMemOperand::MONonTemporal;
4178   MMOFlags |= TLI.getMMOFlags(I);
4179 
4180   // An aggregate load cannot wrap around the address space, so offsets to its
4181   // parts don't wrap either.
4182   SDNodeFlags Flags;
4183   Flags.setNoUnsignedWrap(true);
4184 
4185   unsigned ChainI = 0;
4186   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4187     // See visitLoad comments.
4188     if (ChainI == MaxParallelChains) {
4189       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4190                                   makeArrayRef(Chains.data(), ChainI));
4191       Root = Chain;
4192       ChainI = 0;
4193     }
4194     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4195                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4196     SDValue St = DAG.getStore(
4197         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4198         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4199     Chains[ChainI] = St;
4200   }
4201 
4202   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4203                                   makeArrayRef(Chains.data(), ChainI));
4204   DAG.setRoot(StoreNode);
4205 }
4206 
4207 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4208                                            bool IsCompressing) {
4209   SDLoc sdl = getCurSDLoc();
4210 
4211   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4212                            unsigned& Alignment) {
4213     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4214     Src0 = I.getArgOperand(0);
4215     Ptr = I.getArgOperand(1);
4216     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4217     Mask = I.getArgOperand(3);
4218   };
4219   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4220                            unsigned& Alignment) {
4221     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4222     Src0 = I.getArgOperand(0);
4223     Ptr = I.getArgOperand(1);
4224     Mask = I.getArgOperand(2);
4225     Alignment = 0;
4226   };
4227 
4228   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4229   unsigned Alignment;
4230   if (IsCompressing)
4231     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4232   else
4233     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4234 
4235   SDValue Ptr = getValue(PtrOperand);
4236   SDValue Src0 = getValue(Src0Operand);
4237   SDValue Mask = getValue(MaskOperand);
4238 
4239   EVT VT = Src0.getValueType();
4240   if (!Alignment)
4241     Alignment = DAG.getEVTAlignment(VT);
4242 
4243   AAMDNodes AAInfo;
4244   I.getAAMetadata(AAInfo);
4245 
4246   MachineMemOperand *MMO =
4247     DAG.getMachineFunction().
4248     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4249                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4250                           Alignment, AAInfo);
4251   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4252                                          MMO, false /* Truncating */,
4253                                          IsCompressing);
4254   DAG.setRoot(StoreNode);
4255   setValue(&I, StoreNode);
4256 }
4257 
4258 // Get a uniform base for the Gather/Scatter intrinsic.
4259 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4260 // We try to represent it as a base pointer + vector of indices.
4261 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4262 // The first operand of the GEP may be a single pointer or a vector of pointers
4263 // Example:
4264 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4265 //  or
4266 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4267 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4268 //
4269 // When the first GEP operand is a single pointer - it is the uniform base we
4270 // are looking for. If first operand of the GEP is a splat vector - we
4271 // extract the splat value and use it as a uniform base.
4272 // In all other cases the function returns 'false'.
4273 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4274                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4275   SelectionDAG& DAG = SDB->DAG;
4276   LLVMContext &Context = *DAG.getContext();
4277 
4278   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4279   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4280   if (!GEP)
4281     return false;
4282 
4283   const Value *GEPPtr = GEP->getPointerOperand();
4284   if (!GEPPtr->getType()->isVectorTy())
4285     Ptr = GEPPtr;
4286   else if (!(Ptr = getSplatValue(GEPPtr)))
4287     return false;
4288 
4289   unsigned FinalIndex = GEP->getNumOperands() - 1;
4290   Value *IndexVal = GEP->getOperand(FinalIndex);
4291 
4292   // Ensure all the other indices are 0.
4293   for (unsigned i = 1; i < FinalIndex; ++i) {
4294     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4295     if (!C || !C->isZero())
4296       return false;
4297   }
4298 
4299   // The operands of the GEP may be defined in another basic block.
4300   // In this case we'll not find nodes for the operands.
4301   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4302     return false;
4303 
4304   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4305   const DataLayout &DL = DAG.getDataLayout();
4306   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4307                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4308   Base = SDB->getValue(Ptr);
4309   Index = SDB->getValue(IndexVal);
4310 
4311   if (!Index.getValueType().isVector()) {
4312     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4313     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4314     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4315   }
4316   return true;
4317 }
4318 
4319 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4320   SDLoc sdl = getCurSDLoc();
4321 
4322   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4323   const Value *Ptr = I.getArgOperand(1);
4324   SDValue Src0 = getValue(I.getArgOperand(0));
4325   SDValue Mask = getValue(I.getArgOperand(3));
4326   EVT VT = Src0.getValueType();
4327   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4328   if (!Alignment)
4329     Alignment = DAG.getEVTAlignment(VT);
4330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4331 
4332   AAMDNodes AAInfo;
4333   I.getAAMetadata(AAInfo);
4334 
4335   SDValue Base;
4336   SDValue Index;
4337   SDValue Scale;
4338   const Value *BasePtr = Ptr;
4339   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4340 
4341   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4342   MachineMemOperand *MMO = DAG.getMachineFunction().
4343     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4344                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4345                          Alignment, AAInfo);
4346   if (!UniformBase) {
4347     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4348     Index = getValue(Ptr);
4349     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4350   }
4351   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4352   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4353                                          Ops, MMO);
4354   DAG.setRoot(Scatter);
4355   setValue(&I, Scatter);
4356 }
4357 
4358 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4359   SDLoc sdl = getCurSDLoc();
4360 
4361   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4362                            unsigned& Alignment) {
4363     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4364     Ptr = I.getArgOperand(0);
4365     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4366     Mask = I.getArgOperand(2);
4367     Src0 = I.getArgOperand(3);
4368   };
4369   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4370                            unsigned& Alignment) {
4371     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4372     Ptr = I.getArgOperand(0);
4373     Alignment = 0;
4374     Mask = I.getArgOperand(1);
4375     Src0 = I.getArgOperand(2);
4376   };
4377 
4378   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4379   unsigned Alignment;
4380   if (IsExpanding)
4381     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4382   else
4383     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4384 
4385   SDValue Ptr = getValue(PtrOperand);
4386   SDValue Src0 = getValue(Src0Operand);
4387   SDValue Mask = getValue(MaskOperand);
4388 
4389   EVT VT = Src0.getValueType();
4390   if (!Alignment)
4391     Alignment = DAG.getEVTAlignment(VT);
4392 
4393   AAMDNodes AAInfo;
4394   I.getAAMetadata(AAInfo);
4395   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4396 
4397   // Do not serialize masked loads of constant memory with anything.
4398   bool AddToChain =
4399       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4400                  PtrOperand,
4401                  LocationSize::precise(
4402                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4403                  AAInfo));
4404   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4405 
4406   MachineMemOperand *MMO =
4407     DAG.getMachineFunction().
4408     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4409                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4410                           Alignment, AAInfo, Ranges);
4411 
4412   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4413                                    ISD::NON_EXTLOAD, IsExpanding);
4414   if (AddToChain)
4415     PendingLoads.push_back(Load.getValue(1));
4416   setValue(&I, Load);
4417 }
4418 
4419 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4420   SDLoc sdl = getCurSDLoc();
4421 
4422   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4423   const Value *Ptr = I.getArgOperand(0);
4424   SDValue Src0 = getValue(I.getArgOperand(3));
4425   SDValue Mask = getValue(I.getArgOperand(2));
4426 
4427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4428   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4429   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4430   if (!Alignment)
4431     Alignment = DAG.getEVTAlignment(VT);
4432 
4433   AAMDNodes AAInfo;
4434   I.getAAMetadata(AAInfo);
4435   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4436 
4437   SDValue Root = DAG.getRoot();
4438   SDValue Base;
4439   SDValue Index;
4440   SDValue Scale;
4441   const Value *BasePtr = Ptr;
4442   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4443   bool ConstantMemory = false;
4444   if (UniformBase && AA &&
4445       AA->pointsToConstantMemory(
4446           MemoryLocation(BasePtr,
4447                          LocationSize::precise(
4448                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4449                          AAInfo))) {
4450     // Do not serialize (non-volatile) loads of constant memory with anything.
4451     Root = DAG.getEntryNode();
4452     ConstantMemory = true;
4453   }
4454 
4455   MachineMemOperand *MMO =
4456     DAG.getMachineFunction().
4457     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4458                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4459                          Alignment, AAInfo, Ranges);
4460 
4461   if (!UniformBase) {
4462     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4463     Index = getValue(Ptr);
4464     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4465   }
4466   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4467   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4468                                        Ops, MMO);
4469 
4470   SDValue OutChain = Gather.getValue(1);
4471   if (!ConstantMemory)
4472     PendingLoads.push_back(OutChain);
4473   setValue(&I, Gather);
4474 }
4475 
4476 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4477   SDLoc dl = getCurSDLoc();
4478   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4479   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4480   SyncScope::ID SSID = I.getSyncScopeID();
4481 
4482   SDValue InChain = getRoot();
4483 
4484   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4485   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4486 
4487   auto Alignment = DAG.getEVTAlignment(MemVT);
4488 
4489   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4490   if (I.isVolatile())
4491     Flags |= MachineMemOperand::MOVolatile;
4492   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4493 
4494   MachineFunction &MF = DAG.getMachineFunction();
4495   MachineMemOperand *MMO =
4496     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4497                             Flags, MemVT.getStoreSize(), Alignment,
4498                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4499                             FailureOrdering);
4500 
4501   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4502                                    dl, MemVT, VTs, InChain,
4503                                    getValue(I.getPointerOperand()),
4504                                    getValue(I.getCompareOperand()),
4505                                    getValue(I.getNewValOperand()), MMO);
4506 
4507   SDValue OutChain = L.getValue(2);
4508 
4509   setValue(&I, L);
4510   DAG.setRoot(OutChain);
4511 }
4512 
4513 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4514   SDLoc dl = getCurSDLoc();
4515   ISD::NodeType NT;
4516   switch (I.getOperation()) {
4517   default: llvm_unreachable("Unknown atomicrmw operation");
4518   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4519   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4520   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4521   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4522   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4523   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4524   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4525   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4526   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4527   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4528   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4529   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4530   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4531   }
4532   AtomicOrdering Ordering = I.getOrdering();
4533   SyncScope::ID SSID = I.getSyncScopeID();
4534 
4535   SDValue InChain = getRoot();
4536 
4537   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4538   auto Alignment = DAG.getEVTAlignment(MemVT);
4539 
4540   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4541   if (I.isVolatile())
4542     Flags |= MachineMemOperand::MOVolatile;
4543   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4544 
4545   MachineFunction &MF = DAG.getMachineFunction();
4546   MachineMemOperand *MMO =
4547     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4548                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4549                             nullptr, SSID, Ordering);
4550 
4551   SDValue L =
4552     DAG.getAtomic(NT, dl, MemVT, InChain,
4553                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4554                   MMO);
4555 
4556   SDValue OutChain = L.getValue(1);
4557 
4558   setValue(&I, L);
4559   DAG.setRoot(OutChain);
4560 }
4561 
4562 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4563   SDLoc dl = getCurSDLoc();
4564   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4565   SDValue Ops[3];
4566   Ops[0] = getRoot();
4567   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4568                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4569   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4570                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4571   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4572 }
4573 
4574 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4575   SDLoc dl = getCurSDLoc();
4576   AtomicOrdering Order = I.getOrdering();
4577   SyncScope::ID SSID = I.getSyncScopeID();
4578 
4579   SDValue InChain = getRoot();
4580 
4581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4582   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4583 
4584   if (!TLI.supportsUnalignedAtomics() &&
4585       I.getAlignment() < VT.getStoreSize())
4586     report_fatal_error("Cannot generate unaligned atomic load");
4587 
4588   auto Flags = MachineMemOperand::MOLoad;
4589   if (I.isVolatile())
4590     Flags |= MachineMemOperand::MOVolatile;
4591   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4592     Flags |= MachineMemOperand::MOInvariant;
4593   if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout()))
4594     Flags |= MachineMemOperand::MODereferenceable;
4595 
4596   Flags |= TLI.getMMOFlags(I);
4597 
4598   MachineMemOperand *MMO =
4599       DAG.getMachineFunction().
4600       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4601                            Flags, VT.getStoreSize(),
4602                            I.getAlignment() ? I.getAlignment() :
4603                                               DAG.getEVTAlignment(VT),
4604                            AAMDNodes(), nullptr, SSID, Order);
4605 
4606   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4607   SDValue L =
4608       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4609                     getValue(I.getPointerOperand()), MMO);
4610 
4611   SDValue OutChain = L.getValue(1);
4612 
4613   setValue(&I, L);
4614   DAG.setRoot(OutChain);
4615 }
4616 
4617 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4618   SDLoc dl = getCurSDLoc();
4619 
4620   AtomicOrdering Ordering = I.getOrdering();
4621   SyncScope::ID SSID = I.getSyncScopeID();
4622 
4623   SDValue InChain = getRoot();
4624 
4625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4626   EVT VT =
4627       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4628 
4629   if (I.getAlignment() < VT.getStoreSize())
4630     report_fatal_error("Cannot generate unaligned atomic store");
4631 
4632   auto Flags = MachineMemOperand::MOStore;
4633   if (I.isVolatile())
4634     Flags |= MachineMemOperand::MOVolatile;
4635   Flags |= TLI.getMMOFlags(I);
4636 
4637   MachineFunction &MF = DAG.getMachineFunction();
4638   MachineMemOperand *MMO =
4639     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4640                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4641                             nullptr, SSID, Ordering);
4642   SDValue OutChain =
4643     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4644               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4645               MMO);
4646 
4647 
4648   DAG.setRoot(OutChain);
4649 }
4650 
4651 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4652 /// node.
4653 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4654                                                unsigned Intrinsic) {
4655   // Ignore the callsite's attributes. A specific call site may be marked with
4656   // readnone, but the lowering code will expect the chain based on the
4657   // definition.
4658   const Function *F = I.getCalledFunction();
4659   bool HasChain = !F->doesNotAccessMemory();
4660   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4661 
4662   // Build the operand list.
4663   SmallVector<SDValue, 8> Ops;
4664   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4665     if (OnlyLoad) {
4666       // We don't need to serialize loads against other loads.
4667       Ops.push_back(DAG.getRoot());
4668     } else {
4669       Ops.push_back(getRoot());
4670     }
4671   }
4672 
4673   // Info is set by getTgtMemInstrinsic
4674   TargetLowering::IntrinsicInfo Info;
4675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4676   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4677                                                DAG.getMachineFunction(),
4678                                                Intrinsic);
4679 
4680   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4681   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4682       Info.opc == ISD::INTRINSIC_W_CHAIN)
4683     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4684                                         TLI.getPointerTy(DAG.getDataLayout())));
4685 
4686   // Add all operands of the call to the operand list.
4687   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4688     SDValue Op = getValue(I.getArgOperand(i));
4689     Ops.push_back(Op);
4690   }
4691 
4692   SmallVector<EVT, 4> ValueVTs;
4693   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4694 
4695   if (HasChain)
4696     ValueVTs.push_back(MVT::Other);
4697 
4698   SDVTList VTs = DAG.getVTList(ValueVTs);
4699 
4700   // Create the node.
4701   SDValue Result;
4702   if (IsTgtIntrinsic) {
4703     // This is target intrinsic that touches memory
4704     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4705       Ops, Info.memVT,
4706       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4707       Info.flags, Info.size);
4708   } else if (!HasChain) {
4709     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4710   } else if (!I.getType()->isVoidTy()) {
4711     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4712   } else {
4713     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4714   }
4715 
4716   if (HasChain) {
4717     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4718     if (OnlyLoad)
4719       PendingLoads.push_back(Chain);
4720     else
4721       DAG.setRoot(Chain);
4722   }
4723 
4724   if (!I.getType()->isVoidTy()) {
4725     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4726       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4727       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4728     } else
4729       Result = lowerRangeToAssertZExt(DAG, I, Result);
4730 
4731     setValue(&I, Result);
4732   }
4733 }
4734 
4735 /// GetSignificand - Get the significand and build it into a floating-point
4736 /// number with exponent of 1:
4737 ///
4738 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4739 ///
4740 /// where Op is the hexadecimal representation of floating point value.
4741 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4742   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4743                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4744   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4745                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4746   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4747 }
4748 
4749 /// GetExponent - Get the exponent:
4750 ///
4751 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4752 ///
4753 /// where Op is the hexadecimal representation of floating point value.
4754 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4755                            const TargetLowering &TLI, const SDLoc &dl) {
4756   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4757                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4758   SDValue t1 = DAG.getNode(
4759       ISD::SRL, dl, MVT::i32, t0,
4760       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4761   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4762                            DAG.getConstant(127, dl, MVT::i32));
4763   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4764 }
4765 
4766 /// getF32Constant - Get 32-bit floating point constant.
4767 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4768                               const SDLoc &dl) {
4769   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4770                            MVT::f32);
4771 }
4772 
4773 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4774                                        SelectionDAG &DAG) {
4775   // TODO: What fast-math-flags should be set on the floating-point nodes?
4776 
4777   //   IntegerPartOfX = ((int32_t)(t0);
4778   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4779 
4780   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4781   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4782   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4783 
4784   //   IntegerPartOfX <<= 23;
4785   IntegerPartOfX = DAG.getNode(
4786       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4787       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4788                                   DAG.getDataLayout())));
4789 
4790   SDValue TwoToFractionalPartOfX;
4791   if (LimitFloatPrecision <= 6) {
4792     // For floating-point precision of 6:
4793     //
4794     //   TwoToFractionalPartOfX =
4795     //     0.997535578f +
4796     //       (0.735607626f + 0.252464424f * x) * x;
4797     //
4798     // error 0.0144103317, which is 6 bits
4799     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4800                              getF32Constant(DAG, 0x3e814304, dl));
4801     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4802                              getF32Constant(DAG, 0x3f3c50c8, dl));
4803     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4804     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4805                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4806   } else if (LimitFloatPrecision <= 12) {
4807     // For floating-point precision of 12:
4808     //
4809     //   TwoToFractionalPartOfX =
4810     //     0.999892986f +
4811     //       (0.696457318f +
4812     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4813     //
4814     // error 0.000107046256, which is 13 to 14 bits
4815     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4816                              getF32Constant(DAG, 0x3da235e3, dl));
4817     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4818                              getF32Constant(DAG, 0x3e65b8f3, dl));
4819     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4820     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4821                              getF32Constant(DAG, 0x3f324b07, dl));
4822     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4823     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4824                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4825   } else { // LimitFloatPrecision <= 18
4826     // For floating-point precision of 18:
4827     //
4828     //   TwoToFractionalPartOfX =
4829     //     0.999999982f +
4830     //       (0.693148872f +
4831     //         (0.240227044f +
4832     //           (0.554906021e-1f +
4833     //             (0.961591928e-2f +
4834     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4835     // error 2.47208000*10^(-7), which is better than 18 bits
4836     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4837                              getF32Constant(DAG, 0x3924b03e, dl));
4838     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4839                              getF32Constant(DAG, 0x3ab24b87, dl));
4840     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4841     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4842                              getF32Constant(DAG, 0x3c1d8c17, dl));
4843     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4844     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4845                              getF32Constant(DAG, 0x3d634a1d, dl));
4846     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4847     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4848                              getF32Constant(DAG, 0x3e75fe14, dl));
4849     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4850     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4851                               getF32Constant(DAG, 0x3f317234, dl));
4852     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4853     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4854                                          getF32Constant(DAG, 0x3f800000, dl));
4855   }
4856 
4857   // Add the exponent into the result in integer domain.
4858   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4859   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4860                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4861 }
4862 
4863 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4864 /// limited-precision mode.
4865 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4866                          const TargetLowering &TLI) {
4867   if (Op.getValueType() == MVT::f32 &&
4868       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4869 
4870     // Put the exponent in the right bit position for later addition to the
4871     // final result:
4872     //
4873     //   #define LOG2OFe 1.4426950f
4874     //   t0 = Op * LOG2OFe
4875 
4876     // TODO: What fast-math-flags should be set here?
4877     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4878                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4879     return getLimitedPrecisionExp2(t0, dl, DAG);
4880   }
4881 
4882   // No special expansion.
4883   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4884 }
4885 
4886 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4887 /// limited-precision mode.
4888 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4889                          const TargetLowering &TLI) {
4890   // TODO: What fast-math-flags should be set on the floating-point nodes?
4891 
4892   if (Op.getValueType() == MVT::f32 &&
4893       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4894     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4895 
4896     // Scale the exponent by log(2) [0.69314718f].
4897     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4898     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4899                                         getF32Constant(DAG, 0x3f317218, dl));
4900 
4901     // Get the significand and build it into a floating-point number with
4902     // exponent of 1.
4903     SDValue X = GetSignificand(DAG, Op1, dl);
4904 
4905     SDValue LogOfMantissa;
4906     if (LimitFloatPrecision <= 6) {
4907       // For floating-point precision of 6:
4908       //
4909       //   LogofMantissa =
4910       //     -1.1609546f +
4911       //       (1.4034025f - 0.23903021f * x) * x;
4912       //
4913       // error 0.0034276066, which is better than 8 bits
4914       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4915                                getF32Constant(DAG, 0xbe74c456, dl));
4916       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4917                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4918       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4919       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4920                                   getF32Constant(DAG, 0x3f949a29, dl));
4921     } else if (LimitFloatPrecision <= 12) {
4922       // For floating-point precision of 12:
4923       //
4924       //   LogOfMantissa =
4925       //     -1.7417939f +
4926       //       (2.8212026f +
4927       //         (-1.4699568f +
4928       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4929       //
4930       // error 0.000061011436, which is 14 bits
4931       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4932                                getF32Constant(DAG, 0xbd67b6d6, dl));
4933       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4934                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4935       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4936       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4937                                getF32Constant(DAG, 0x3fbc278b, dl));
4938       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4939       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4940                                getF32Constant(DAG, 0x40348e95, dl));
4941       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4942       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4943                                   getF32Constant(DAG, 0x3fdef31a, dl));
4944     } else { // LimitFloatPrecision <= 18
4945       // For floating-point precision of 18:
4946       //
4947       //   LogOfMantissa =
4948       //     -2.1072184f +
4949       //       (4.2372794f +
4950       //         (-3.7029485f +
4951       //           (2.2781945f +
4952       //             (-0.87823314f +
4953       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4954       //
4955       // error 0.0000023660568, which is better than 18 bits
4956       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4957                                getF32Constant(DAG, 0xbc91e5ac, dl));
4958       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4959                                getF32Constant(DAG, 0x3e4350aa, dl));
4960       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4961       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4962                                getF32Constant(DAG, 0x3f60d3e3, dl));
4963       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4964       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4965                                getF32Constant(DAG, 0x4011cdf0, dl));
4966       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4967       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4968                                getF32Constant(DAG, 0x406cfd1c, dl));
4969       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4970       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4971                                getF32Constant(DAG, 0x408797cb, dl));
4972       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4973       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4974                                   getF32Constant(DAG, 0x4006dcab, dl));
4975     }
4976 
4977     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4978   }
4979 
4980   // No special expansion.
4981   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4982 }
4983 
4984 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4985 /// limited-precision mode.
4986 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4987                           const TargetLowering &TLI) {
4988   // TODO: What fast-math-flags should be set on the floating-point nodes?
4989 
4990   if (Op.getValueType() == MVT::f32 &&
4991       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4992     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4993 
4994     // Get the exponent.
4995     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4996 
4997     // Get the significand and build it into a floating-point number with
4998     // exponent of 1.
4999     SDValue X = GetSignificand(DAG, Op1, dl);
5000 
5001     // Different possible minimax approximations of significand in
5002     // floating-point for various degrees of accuracy over [1,2].
5003     SDValue Log2ofMantissa;
5004     if (LimitFloatPrecision <= 6) {
5005       // For floating-point precision of 6:
5006       //
5007       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5008       //
5009       // error 0.0049451742, which is more than 7 bits
5010       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5011                                getF32Constant(DAG, 0xbeb08fe0, dl));
5012       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5013                                getF32Constant(DAG, 0x40019463, dl));
5014       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5015       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5016                                    getF32Constant(DAG, 0x3fd6633d, dl));
5017     } else if (LimitFloatPrecision <= 12) {
5018       // For floating-point precision of 12:
5019       //
5020       //   Log2ofMantissa =
5021       //     -2.51285454f +
5022       //       (4.07009056f +
5023       //         (-2.12067489f +
5024       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5025       //
5026       // error 0.0000876136000, which is better than 13 bits
5027       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5028                                getF32Constant(DAG, 0xbda7262e, dl));
5029       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5030                                getF32Constant(DAG, 0x3f25280b, dl));
5031       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5032       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5033                                getF32Constant(DAG, 0x4007b923, dl));
5034       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5035       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5036                                getF32Constant(DAG, 0x40823e2f, dl));
5037       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5038       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5039                                    getF32Constant(DAG, 0x4020d29c, dl));
5040     } else { // LimitFloatPrecision <= 18
5041       // For floating-point precision of 18:
5042       //
5043       //   Log2ofMantissa =
5044       //     -3.0400495f +
5045       //       (6.1129976f +
5046       //         (-5.3420409f +
5047       //           (3.2865683f +
5048       //             (-1.2669343f +
5049       //               (0.27515199f -
5050       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5051       //
5052       // error 0.0000018516, which is better than 18 bits
5053       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5054                                getF32Constant(DAG, 0xbcd2769e, dl));
5055       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5056                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5057       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5058       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5059                                getF32Constant(DAG, 0x3fa22ae7, dl));
5060       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5061       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5062                                getF32Constant(DAG, 0x40525723, dl));
5063       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5064       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5065                                getF32Constant(DAG, 0x40aaf200, dl));
5066       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5067       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5068                                getF32Constant(DAG, 0x40c39dad, dl));
5069       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5070       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5071                                    getF32Constant(DAG, 0x4042902c, dl));
5072     }
5073 
5074     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5075   }
5076 
5077   // No special expansion.
5078   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5079 }
5080 
5081 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5082 /// limited-precision mode.
5083 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5084                            const TargetLowering &TLI) {
5085   // TODO: What fast-math-flags should be set on the floating-point nodes?
5086 
5087   if (Op.getValueType() == MVT::f32 &&
5088       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5089     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5090 
5091     // Scale the exponent by log10(2) [0.30102999f].
5092     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5093     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5094                                         getF32Constant(DAG, 0x3e9a209a, dl));
5095 
5096     // Get the significand and build it into a floating-point number with
5097     // exponent of 1.
5098     SDValue X = GetSignificand(DAG, Op1, dl);
5099 
5100     SDValue Log10ofMantissa;
5101     if (LimitFloatPrecision <= 6) {
5102       // For floating-point precision of 6:
5103       //
5104       //   Log10ofMantissa =
5105       //     -0.50419619f +
5106       //       (0.60948995f - 0.10380950f * x) * x;
5107       //
5108       // error 0.0014886165, which is 6 bits
5109       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5110                                getF32Constant(DAG, 0xbdd49a13, dl));
5111       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5112                                getF32Constant(DAG, 0x3f1c0789, dl));
5113       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5114       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5115                                     getF32Constant(DAG, 0x3f011300, dl));
5116     } else if (LimitFloatPrecision <= 12) {
5117       // For floating-point precision of 12:
5118       //
5119       //   Log10ofMantissa =
5120       //     -0.64831180f +
5121       //       (0.91751397f +
5122       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5123       //
5124       // error 0.00019228036, which is better than 12 bits
5125       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5126                                getF32Constant(DAG, 0x3d431f31, dl));
5127       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5128                                getF32Constant(DAG, 0x3ea21fb2, dl));
5129       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5130       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5131                                getF32Constant(DAG, 0x3f6ae232, dl));
5132       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5133       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5134                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5135     } else { // LimitFloatPrecision <= 18
5136       // For floating-point precision of 18:
5137       //
5138       //   Log10ofMantissa =
5139       //     -0.84299375f +
5140       //       (1.5327582f +
5141       //         (-1.0688956f +
5142       //           (0.49102474f +
5143       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5144       //
5145       // error 0.0000037995730, which is better than 18 bits
5146       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5147                                getF32Constant(DAG, 0x3c5d51ce, dl));
5148       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5149                                getF32Constant(DAG, 0x3e00685a, dl));
5150       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5151       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5152                                getF32Constant(DAG, 0x3efb6798, dl));
5153       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5154       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5155                                getF32Constant(DAG, 0x3f88d192, dl));
5156       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5157       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5158                                getF32Constant(DAG, 0x3fc4316c, dl));
5159       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5160       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5161                                     getF32Constant(DAG, 0x3f57ce70, dl));
5162     }
5163 
5164     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5165   }
5166 
5167   // No special expansion.
5168   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5169 }
5170 
5171 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5172 /// limited-precision mode.
5173 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5174                           const TargetLowering &TLI) {
5175   if (Op.getValueType() == MVT::f32 &&
5176       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5177     return getLimitedPrecisionExp2(Op, dl, DAG);
5178 
5179   // No special expansion.
5180   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5181 }
5182 
5183 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5184 /// limited-precision mode with x == 10.0f.
5185 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5186                          SelectionDAG &DAG, const TargetLowering &TLI) {
5187   bool IsExp10 = false;
5188   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5189       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5190     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5191       APFloat Ten(10.0f);
5192       IsExp10 = LHSC->isExactlyValue(Ten);
5193     }
5194   }
5195 
5196   // TODO: What fast-math-flags should be set on the FMUL node?
5197   if (IsExp10) {
5198     // Put the exponent in the right bit position for later addition to the
5199     // final result:
5200     //
5201     //   #define LOG2OF10 3.3219281f
5202     //   t0 = Op * LOG2OF10;
5203     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5204                              getF32Constant(DAG, 0x40549a78, dl));
5205     return getLimitedPrecisionExp2(t0, dl, DAG);
5206   }
5207 
5208   // No special expansion.
5209   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5210 }
5211 
5212 /// ExpandPowI - Expand a llvm.powi intrinsic.
5213 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5214                           SelectionDAG &DAG) {
5215   // If RHS is a constant, we can expand this out to a multiplication tree,
5216   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5217   // optimizing for size, we only want to do this if the expansion would produce
5218   // a small number of multiplies, otherwise we do the full expansion.
5219   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5220     // Get the exponent as a positive value.
5221     unsigned Val = RHSC->getSExtValue();
5222     if ((int)Val < 0) Val = -Val;
5223 
5224     // powi(x, 0) -> 1.0
5225     if (Val == 0)
5226       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5227 
5228     const Function &F = DAG.getMachineFunction().getFunction();
5229     if (!F.hasOptSize() ||
5230         // If optimizing for size, don't insert too many multiplies.
5231         // This inserts up to 5 multiplies.
5232         countPopulation(Val) + Log2_32(Val) < 7) {
5233       // We use the simple binary decomposition method to generate the multiply
5234       // sequence.  There are more optimal ways to do this (for example,
5235       // powi(x,15) generates one more multiply than it should), but this has
5236       // the benefit of being both really simple and much better than a libcall.
5237       SDValue Res;  // Logically starts equal to 1.0
5238       SDValue CurSquare = LHS;
5239       // TODO: Intrinsics should have fast-math-flags that propagate to these
5240       // nodes.
5241       while (Val) {
5242         if (Val & 1) {
5243           if (Res.getNode())
5244             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5245           else
5246             Res = CurSquare;  // 1.0*CurSquare.
5247         }
5248 
5249         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5250                                 CurSquare, CurSquare);
5251         Val >>= 1;
5252       }
5253 
5254       // If the original was negative, invert the result, producing 1/(x*x*x).
5255       if (RHSC->getSExtValue() < 0)
5256         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5257                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5258       return Res;
5259     }
5260   }
5261 
5262   // Otherwise, expand to a libcall.
5263   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5264 }
5265 
5266 // getUnderlyingArgReg - Find underlying register used for a truncated or
5267 // bitcasted argument.
5268 static unsigned getUnderlyingArgReg(const SDValue &N) {
5269   switch (N.getOpcode()) {
5270   case ISD::CopyFromReg:
5271     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5272   case ISD::BITCAST:
5273   case ISD::AssertZext:
5274   case ISD::AssertSext:
5275   case ISD::TRUNCATE:
5276     return getUnderlyingArgReg(N.getOperand(0));
5277   default:
5278     return 0;
5279   }
5280 }
5281 
5282 /// If the DbgValueInst is a dbg_value of a function argument, create the
5283 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5284 /// instruction selection, they will be inserted to the entry BB.
5285 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5286     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5287     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5288   const Argument *Arg = dyn_cast<Argument>(V);
5289   if (!Arg)
5290     return false;
5291 
5292   if (!IsDbgDeclare) {
5293     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5294     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5295     // the entry block.
5296     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5297     if (!IsInEntryBlock)
5298       return false;
5299 
5300     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5301     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5302     // variable that also is a param.
5303     //
5304     // Although, if we are at the top of the entry block already, we can still
5305     // emit using ArgDbgValue. This might catch some situations when the
5306     // dbg.value refers to an argument that isn't used in the entry block, so
5307     // any CopyToReg node would be optimized out and the only way to express
5308     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5309     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5310     // we should only emit as ArgDbgValue if the Variable is an argument to the
5311     // current function, and the dbg.value intrinsic is found in the entry
5312     // block.
5313     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5314         !DL->getInlinedAt();
5315     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5316     if (!IsInPrologue && !VariableIsFunctionInputArg)
5317       return false;
5318 
5319     // Here we assume that a function argument on IR level only can be used to
5320     // describe one input parameter on source level. If we for example have
5321     // source code like this
5322     //
5323     //    struct A { long x, y; };
5324     //    void foo(struct A a, long b) {
5325     //      ...
5326     //      b = a.x;
5327     //      ...
5328     //    }
5329     //
5330     // and IR like this
5331     //
5332     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5333     //  entry:
5334     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5335     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5336     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5337     //    ...
5338     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5339     //    ...
5340     //
5341     // then the last dbg.value is describing a parameter "b" using a value that
5342     // is an argument. But since we already has used %a1 to describe a parameter
5343     // we should not handle that last dbg.value here (that would result in an
5344     // incorrect hoisting of the DBG_VALUE to the function entry).
5345     // Notice that we allow one dbg.value per IR level argument, to accomodate
5346     // for the situation with fragments above.
5347     if (VariableIsFunctionInputArg) {
5348       unsigned ArgNo = Arg->getArgNo();
5349       if (ArgNo >= FuncInfo.DescribedArgs.size())
5350         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5351       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5352         return false;
5353       FuncInfo.DescribedArgs.set(ArgNo);
5354     }
5355   }
5356 
5357   MachineFunction &MF = DAG.getMachineFunction();
5358   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5359 
5360   bool IsIndirect = false;
5361   Optional<MachineOperand> Op;
5362   // Some arguments' frame index is recorded during argument lowering.
5363   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5364   if (FI != std::numeric_limits<int>::max())
5365     Op = MachineOperand::CreateFI(FI);
5366 
5367   if (!Op && N.getNode()) {
5368     unsigned Reg = getUnderlyingArgReg(N);
5369     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5370       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5371       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5372       if (PR)
5373         Reg = PR;
5374     }
5375     if (Reg) {
5376       Op = MachineOperand::CreateReg(Reg, false);
5377       IsIndirect = IsDbgDeclare;
5378     }
5379   }
5380 
5381   if (!Op && N.getNode()) {
5382     // Check if frame index is available.
5383     SDValue LCandidate = peekThroughBitcasts(N);
5384     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5385       if (FrameIndexSDNode *FINode =
5386           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5387         Op = MachineOperand::CreateFI(FINode->getIndex());
5388   }
5389 
5390   if (!Op) {
5391     // Check if ValueMap has reg number.
5392     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5393     if (VMI != FuncInfo.ValueMap.end()) {
5394       const auto &TLI = DAG.getTargetLoweringInfo();
5395       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5396                        V->getType(), getABIRegCopyCC(V));
5397       if (RFV.occupiesMultipleRegs()) {
5398         unsigned Offset = 0;
5399         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5400           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5401           auto FragmentExpr = DIExpression::createFragmentExpression(
5402               Expr, Offset, RegAndSize.second);
5403           if (!FragmentExpr)
5404             continue;
5405           FuncInfo.ArgDbgValues.push_back(
5406               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5407                       Op->getReg(), Variable, *FragmentExpr));
5408           Offset += RegAndSize.second;
5409         }
5410         return true;
5411       }
5412       Op = MachineOperand::CreateReg(VMI->second, false);
5413       IsIndirect = IsDbgDeclare;
5414     }
5415   }
5416 
5417   if (!Op)
5418     return false;
5419 
5420   assert(Variable->isValidLocationForIntrinsic(DL) &&
5421          "Expected inlined-at fields to agree");
5422   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5423   FuncInfo.ArgDbgValues.push_back(
5424       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5425               *Op, Variable, Expr));
5426 
5427   return true;
5428 }
5429 
5430 /// Return the appropriate SDDbgValue based on N.
5431 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5432                                              DILocalVariable *Variable,
5433                                              DIExpression *Expr,
5434                                              const DebugLoc &dl,
5435                                              unsigned DbgSDNodeOrder) {
5436   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5437     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5438     // stack slot locations.
5439     //
5440     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5441     // debug values here after optimization:
5442     //
5443     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5444     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5445     //
5446     // Both describe the direct values of their associated variables.
5447     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5448                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5449   }
5450   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5451                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5452 }
5453 
5454 // VisualStudio defines setjmp as _setjmp
5455 #if defined(_MSC_VER) && defined(setjmp) && \
5456                          !defined(setjmp_undefined_for_msvc)
5457 #  pragma push_macro("setjmp")
5458 #  undef setjmp
5459 #  define setjmp_undefined_for_msvc
5460 #endif
5461 
5462 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5463   switch (Intrinsic) {
5464   case Intrinsic::smul_fix:
5465     return ISD::SMULFIX;
5466   case Intrinsic::umul_fix:
5467     return ISD::UMULFIX;
5468   default:
5469     llvm_unreachable("Unhandled fixed point intrinsic");
5470   }
5471 }
5472 
5473 /// Lower the call to the specified intrinsic function. If we want to emit this
5474 /// as a call to a named external function, return the name. Otherwise, lower it
5475 /// and return null.
5476 const char *
5477 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5479   SDLoc sdl = getCurSDLoc();
5480   DebugLoc dl = getCurDebugLoc();
5481   SDValue Res;
5482 
5483   switch (Intrinsic) {
5484   default:
5485     // By default, turn this into a target intrinsic node.
5486     visitTargetIntrinsic(I, Intrinsic);
5487     return nullptr;
5488   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5489   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5490   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5491   case Intrinsic::returnaddress:
5492     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5493                              TLI.getPointerTy(DAG.getDataLayout()),
5494                              getValue(I.getArgOperand(0))));
5495     return nullptr;
5496   case Intrinsic::addressofreturnaddress:
5497     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5498                              TLI.getPointerTy(DAG.getDataLayout())));
5499     return nullptr;
5500   case Intrinsic::sponentry:
5501     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5502                              TLI.getPointerTy(DAG.getDataLayout())));
5503     return nullptr;
5504   case Intrinsic::frameaddress:
5505     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5506                              TLI.getPointerTy(DAG.getDataLayout()),
5507                              getValue(I.getArgOperand(0))));
5508     return nullptr;
5509   case Intrinsic::read_register: {
5510     Value *Reg = I.getArgOperand(0);
5511     SDValue Chain = getRoot();
5512     SDValue RegName =
5513         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5514     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5515     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5516       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5517     setValue(&I, Res);
5518     DAG.setRoot(Res.getValue(1));
5519     return nullptr;
5520   }
5521   case Intrinsic::write_register: {
5522     Value *Reg = I.getArgOperand(0);
5523     Value *RegValue = I.getArgOperand(1);
5524     SDValue Chain = getRoot();
5525     SDValue RegName =
5526         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5527     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5528                             RegName, getValue(RegValue)));
5529     return nullptr;
5530   }
5531   case Intrinsic::setjmp:
5532     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5533   case Intrinsic::longjmp:
5534     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5535   case Intrinsic::memcpy: {
5536     const auto &MCI = cast<MemCpyInst>(I);
5537     SDValue Op1 = getValue(I.getArgOperand(0));
5538     SDValue Op2 = getValue(I.getArgOperand(1));
5539     SDValue Op3 = getValue(I.getArgOperand(2));
5540     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5541     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5542     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5543     unsigned Align = MinAlign(DstAlign, SrcAlign);
5544     bool isVol = MCI.isVolatile();
5545     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5546     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5547     // node.
5548     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5549                                false, isTC,
5550                                MachinePointerInfo(I.getArgOperand(0)),
5551                                MachinePointerInfo(I.getArgOperand(1)));
5552     updateDAGForMaybeTailCall(MC);
5553     return nullptr;
5554   }
5555   case Intrinsic::memset: {
5556     const auto &MSI = cast<MemSetInst>(I);
5557     SDValue Op1 = getValue(I.getArgOperand(0));
5558     SDValue Op2 = getValue(I.getArgOperand(1));
5559     SDValue Op3 = getValue(I.getArgOperand(2));
5560     // @llvm.memset defines 0 and 1 to both mean no alignment.
5561     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5562     bool isVol = MSI.isVolatile();
5563     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5564     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5565                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5566     updateDAGForMaybeTailCall(MS);
5567     return nullptr;
5568   }
5569   case Intrinsic::memmove: {
5570     const auto &MMI = cast<MemMoveInst>(I);
5571     SDValue Op1 = getValue(I.getArgOperand(0));
5572     SDValue Op2 = getValue(I.getArgOperand(1));
5573     SDValue Op3 = getValue(I.getArgOperand(2));
5574     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5575     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5576     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5577     unsigned Align = MinAlign(DstAlign, SrcAlign);
5578     bool isVol = MMI.isVolatile();
5579     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5580     // FIXME: Support passing different dest/src alignments to the memmove DAG
5581     // node.
5582     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5583                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5584                                 MachinePointerInfo(I.getArgOperand(1)));
5585     updateDAGForMaybeTailCall(MM);
5586     return nullptr;
5587   }
5588   case Intrinsic::memcpy_element_unordered_atomic: {
5589     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5590     SDValue Dst = getValue(MI.getRawDest());
5591     SDValue Src = getValue(MI.getRawSource());
5592     SDValue Length = getValue(MI.getLength());
5593 
5594     unsigned DstAlign = MI.getDestAlignment();
5595     unsigned SrcAlign = MI.getSourceAlignment();
5596     Type *LengthTy = MI.getLength()->getType();
5597     unsigned ElemSz = MI.getElementSizeInBytes();
5598     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5599     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5600                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5601                                      MachinePointerInfo(MI.getRawDest()),
5602                                      MachinePointerInfo(MI.getRawSource()));
5603     updateDAGForMaybeTailCall(MC);
5604     return nullptr;
5605   }
5606   case Intrinsic::memmove_element_unordered_atomic: {
5607     auto &MI = cast<AtomicMemMoveInst>(I);
5608     SDValue Dst = getValue(MI.getRawDest());
5609     SDValue Src = getValue(MI.getRawSource());
5610     SDValue Length = getValue(MI.getLength());
5611 
5612     unsigned DstAlign = MI.getDestAlignment();
5613     unsigned SrcAlign = MI.getSourceAlignment();
5614     Type *LengthTy = MI.getLength()->getType();
5615     unsigned ElemSz = MI.getElementSizeInBytes();
5616     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5617     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5618                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5619                                       MachinePointerInfo(MI.getRawDest()),
5620                                       MachinePointerInfo(MI.getRawSource()));
5621     updateDAGForMaybeTailCall(MC);
5622     return nullptr;
5623   }
5624   case Intrinsic::memset_element_unordered_atomic: {
5625     auto &MI = cast<AtomicMemSetInst>(I);
5626     SDValue Dst = getValue(MI.getRawDest());
5627     SDValue Val = getValue(MI.getValue());
5628     SDValue Length = getValue(MI.getLength());
5629 
5630     unsigned DstAlign = MI.getDestAlignment();
5631     Type *LengthTy = MI.getLength()->getType();
5632     unsigned ElemSz = MI.getElementSizeInBytes();
5633     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5634     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5635                                      LengthTy, ElemSz, isTC,
5636                                      MachinePointerInfo(MI.getRawDest()));
5637     updateDAGForMaybeTailCall(MC);
5638     return nullptr;
5639   }
5640   case Intrinsic::dbg_addr:
5641   case Intrinsic::dbg_declare: {
5642     const auto &DI = cast<DbgVariableIntrinsic>(I);
5643     DILocalVariable *Variable = DI.getVariable();
5644     DIExpression *Expression = DI.getExpression();
5645     dropDanglingDebugInfo(Variable, Expression);
5646     assert(Variable && "Missing variable");
5647 
5648     // Check if address has undef value.
5649     const Value *Address = DI.getVariableLocation();
5650     if (!Address || isa<UndefValue>(Address) ||
5651         (Address->use_empty() && !isa<Argument>(Address))) {
5652       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5653       return nullptr;
5654     }
5655 
5656     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5657 
5658     // Check if this variable can be described by a frame index, typically
5659     // either as a static alloca or a byval parameter.
5660     int FI = std::numeric_limits<int>::max();
5661     if (const auto *AI =
5662             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5663       if (AI->isStaticAlloca()) {
5664         auto I = FuncInfo.StaticAllocaMap.find(AI);
5665         if (I != FuncInfo.StaticAllocaMap.end())
5666           FI = I->second;
5667       }
5668     } else if (const auto *Arg = dyn_cast<Argument>(
5669                    Address->stripInBoundsConstantOffsets())) {
5670       FI = FuncInfo.getArgumentFrameIndex(Arg);
5671     }
5672 
5673     // llvm.dbg.addr is control dependent and always generates indirect
5674     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5675     // the MachineFunction variable table.
5676     if (FI != std::numeric_limits<int>::max()) {
5677       if (Intrinsic == Intrinsic::dbg_addr) {
5678         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5679             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5680         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5681       }
5682       return nullptr;
5683     }
5684 
5685     SDValue &N = NodeMap[Address];
5686     if (!N.getNode() && isa<Argument>(Address))
5687       // Check unused arguments map.
5688       N = UnusedArgNodeMap[Address];
5689     SDDbgValue *SDV;
5690     if (N.getNode()) {
5691       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5692         Address = BCI->getOperand(0);
5693       // Parameters are handled specially.
5694       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5695       if (isParameter && FINode) {
5696         // Byval parameter. We have a frame index at this point.
5697         SDV =
5698             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5699                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5700       } else if (isa<Argument>(Address)) {
5701         // Address is an argument, so try to emit its dbg value using
5702         // virtual register info from the FuncInfo.ValueMap.
5703         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5704         return nullptr;
5705       } else {
5706         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5707                               true, dl, SDNodeOrder);
5708       }
5709       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5710     } else {
5711       // If Address is an argument then try to emit its dbg value using
5712       // virtual register info from the FuncInfo.ValueMap.
5713       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5714                                     N)) {
5715         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5716       }
5717     }
5718     return nullptr;
5719   }
5720   case Intrinsic::dbg_label: {
5721     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5722     DILabel *Label = DI.getLabel();
5723     assert(Label && "Missing label");
5724 
5725     SDDbgLabel *SDV;
5726     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5727     DAG.AddDbgLabel(SDV);
5728     return nullptr;
5729   }
5730   case Intrinsic::dbg_value: {
5731     const DbgValueInst &DI = cast<DbgValueInst>(I);
5732     assert(DI.getVariable() && "Missing variable");
5733 
5734     DILocalVariable *Variable = DI.getVariable();
5735     DIExpression *Expression = DI.getExpression();
5736     dropDanglingDebugInfo(Variable, Expression);
5737     const Value *V = DI.getValue();
5738     if (!V)
5739       return nullptr;
5740 
5741     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5742         SDNodeOrder))
5743       return nullptr;
5744 
5745     // TODO: Dangling debug info will eventually either be resolved or produce
5746     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5747     // between the original dbg.value location and its resolved DBG_VALUE, which
5748     // we should ideally fill with an extra Undef DBG_VALUE.
5749 
5750     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5751     return nullptr;
5752   }
5753 
5754   case Intrinsic::eh_typeid_for: {
5755     // Find the type id for the given typeinfo.
5756     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5757     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5758     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5759     setValue(&I, Res);
5760     return nullptr;
5761   }
5762 
5763   case Intrinsic::eh_return_i32:
5764   case Intrinsic::eh_return_i64:
5765     DAG.getMachineFunction().setCallsEHReturn(true);
5766     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5767                             MVT::Other,
5768                             getControlRoot(),
5769                             getValue(I.getArgOperand(0)),
5770                             getValue(I.getArgOperand(1))));
5771     return nullptr;
5772   case Intrinsic::eh_unwind_init:
5773     DAG.getMachineFunction().setCallsUnwindInit(true);
5774     return nullptr;
5775   case Intrinsic::eh_dwarf_cfa:
5776     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5777                              TLI.getPointerTy(DAG.getDataLayout()),
5778                              getValue(I.getArgOperand(0))));
5779     return nullptr;
5780   case Intrinsic::eh_sjlj_callsite: {
5781     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5782     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5783     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5784     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5785 
5786     MMI.setCurrentCallSite(CI->getZExtValue());
5787     return nullptr;
5788   }
5789   case Intrinsic::eh_sjlj_functioncontext: {
5790     // Get and store the index of the function context.
5791     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5792     AllocaInst *FnCtx =
5793       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5794     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5795     MFI.setFunctionContextIndex(FI);
5796     return nullptr;
5797   }
5798   case Intrinsic::eh_sjlj_setjmp: {
5799     SDValue Ops[2];
5800     Ops[0] = getRoot();
5801     Ops[1] = getValue(I.getArgOperand(0));
5802     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5803                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5804     setValue(&I, Op.getValue(0));
5805     DAG.setRoot(Op.getValue(1));
5806     return nullptr;
5807   }
5808   case Intrinsic::eh_sjlj_longjmp:
5809     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5810                             getRoot(), getValue(I.getArgOperand(0))));
5811     return nullptr;
5812   case Intrinsic::eh_sjlj_setup_dispatch:
5813     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5814                             getRoot()));
5815     return nullptr;
5816   case Intrinsic::masked_gather:
5817     visitMaskedGather(I);
5818     return nullptr;
5819   case Intrinsic::masked_load:
5820     visitMaskedLoad(I);
5821     return nullptr;
5822   case Intrinsic::masked_scatter:
5823     visitMaskedScatter(I);
5824     return nullptr;
5825   case Intrinsic::masked_store:
5826     visitMaskedStore(I);
5827     return nullptr;
5828   case Intrinsic::masked_expandload:
5829     visitMaskedLoad(I, true /* IsExpanding */);
5830     return nullptr;
5831   case Intrinsic::masked_compressstore:
5832     visitMaskedStore(I, true /* IsCompressing */);
5833     return nullptr;
5834   case Intrinsic::x86_mmx_pslli_w:
5835   case Intrinsic::x86_mmx_pslli_d:
5836   case Intrinsic::x86_mmx_pslli_q:
5837   case Intrinsic::x86_mmx_psrli_w:
5838   case Intrinsic::x86_mmx_psrli_d:
5839   case Intrinsic::x86_mmx_psrli_q:
5840   case Intrinsic::x86_mmx_psrai_w:
5841   case Intrinsic::x86_mmx_psrai_d: {
5842     SDValue ShAmt = getValue(I.getArgOperand(1));
5843     if (isa<ConstantSDNode>(ShAmt)) {
5844       visitTargetIntrinsic(I, Intrinsic);
5845       return nullptr;
5846     }
5847     unsigned NewIntrinsic = 0;
5848     EVT ShAmtVT = MVT::v2i32;
5849     switch (Intrinsic) {
5850     case Intrinsic::x86_mmx_pslli_w:
5851       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5852       break;
5853     case Intrinsic::x86_mmx_pslli_d:
5854       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5855       break;
5856     case Intrinsic::x86_mmx_pslli_q:
5857       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5858       break;
5859     case Intrinsic::x86_mmx_psrli_w:
5860       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5861       break;
5862     case Intrinsic::x86_mmx_psrli_d:
5863       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5864       break;
5865     case Intrinsic::x86_mmx_psrli_q:
5866       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5867       break;
5868     case Intrinsic::x86_mmx_psrai_w:
5869       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5870       break;
5871     case Intrinsic::x86_mmx_psrai_d:
5872       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5873       break;
5874     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5875     }
5876 
5877     // The vector shift intrinsics with scalars uses 32b shift amounts but
5878     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5879     // to be zero.
5880     // We must do this early because v2i32 is not a legal type.
5881     SDValue ShOps[2];
5882     ShOps[0] = ShAmt;
5883     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5884     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5885     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5886     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5887     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5888                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5889                        getValue(I.getArgOperand(0)), ShAmt);
5890     setValue(&I, Res);
5891     return nullptr;
5892   }
5893   case Intrinsic::powi:
5894     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5895                             getValue(I.getArgOperand(1)), DAG));
5896     return nullptr;
5897   case Intrinsic::log:
5898     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5899     return nullptr;
5900   case Intrinsic::log2:
5901     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5902     return nullptr;
5903   case Intrinsic::log10:
5904     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5905     return nullptr;
5906   case Intrinsic::exp:
5907     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5908     return nullptr;
5909   case Intrinsic::exp2:
5910     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5911     return nullptr;
5912   case Intrinsic::pow:
5913     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5914                            getValue(I.getArgOperand(1)), DAG, TLI));
5915     return nullptr;
5916   case Intrinsic::sqrt:
5917   case Intrinsic::fabs:
5918   case Intrinsic::sin:
5919   case Intrinsic::cos:
5920   case Intrinsic::floor:
5921   case Intrinsic::ceil:
5922   case Intrinsic::trunc:
5923   case Intrinsic::rint:
5924   case Intrinsic::nearbyint:
5925   case Intrinsic::round:
5926   case Intrinsic::canonicalize: {
5927     unsigned Opcode;
5928     switch (Intrinsic) {
5929     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5930     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5931     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5932     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5933     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5934     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5935     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5936     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5937     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5938     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5939     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5940     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5941     }
5942 
5943     setValue(&I, DAG.getNode(Opcode, sdl,
5944                              getValue(I.getArgOperand(0)).getValueType(),
5945                              getValue(I.getArgOperand(0))));
5946     return nullptr;
5947   }
5948   case Intrinsic::minnum: {
5949     auto VT = getValue(I.getArgOperand(0)).getValueType();
5950     unsigned Opc =
5951         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5952             ? ISD::FMINIMUM
5953             : ISD::FMINNUM;
5954     setValue(&I, DAG.getNode(Opc, sdl, VT,
5955                              getValue(I.getArgOperand(0)),
5956                              getValue(I.getArgOperand(1))));
5957     return nullptr;
5958   }
5959   case Intrinsic::maxnum: {
5960     auto VT = getValue(I.getArgOperand(0)).getValueType();
5961     unsigned Opc =
5962         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5963             ? ISD::FMAXIMUM
5964             : ISD::FMAXNUM;
5965     setValue(&I, DAG.getNode(Opc, sdl, VT,
5966                              getValue(I.getArgOperand(0)),
5967                              getValue(I.getArgOperand(1))));
5968     return nullptr;
5969   }
5970   case Intrinsic::minimum:
5971     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5972                              getValue(I.getArgOperand(0)).getValueType(),
5973                              getValue(I.getArgOperand(0)),
5974                              getValue(I.getArgOperand(1))));
5975     return nullptr;
5976   case Intrinsic::maximum:
5977     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5978                              getValue(I.getArgOperand(0)).getValueType(),
5979                              getValue(I.getArgOperand(0)),
5980                              getValue(I.getArgOperand(1))));
5981     return nullptr;
5982   case Intrinsic::copysign:
5983     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5984                              getValue(I.getArgOperand(0)).getValueType(),
5985                              getValue(I.getArgOperand(0)),
5986                              getValue(I.getArgOperand(1))));
5987     return nullptr;
5988   case Intrinsic::fma:
5989     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5990                              getValue(I.getArgOperand(0)).getValueType(),
5991                              getValue(I.getArgOperand(0)),
5992                              getValue(I.getArgOperand(1)),
5993                              getValue(I.getArgOperand(2))));
5994     return nullptr;
5995   case Intrinsic::experimental_constrained_fadd:
5996   case Intrinsic::experimental_constrained_fsub:
5997   case Intrinsic::experimental_constrained_fmul:
5998   case Intrinsic::experimental_constrained_fdiv:
5999   case Intrinsic::experimental_constrained_frem:
6000   case Intrinsic::experimental_constrained_fma:
6001   case Intrinsic::experimental_constrained_sqrt:
6002   case Intrinsic::experimental_constrained_pow:
6003   case Intrinsic::experimental_constrained_powi:
6004   case Intrinsic::experimental_constrained_sin:
6005   case Intrinsic::experimental_constrained_cos:
6006   case Intrinsic::experimental_constrained_exp:
6007   case Intrinsic::experimental_constrained_exp2:
6008   case Intrinsic::experimental_constrained_log:
6009   case Intrinsic::experimental_constrained_log10:
6010   case Intrinsic::experimental_constrained_log2:
6011   case Intrinsic::experimental_constrained_rint:
6012   case Intrinsic::experimental_constrained_nearbyint:
6013   case Intrinsic::experimental_constrained_maxnum:
6014   case Intrinsic::experimental_constrained_minnum:
6015   case Intrinsic::experimental_constrained_ceil:
6016   case Intrinsic::experimental_constrained_floor:
6017   case Intrinsic::experimental_constrained_round:
6018   case Intrinsic::experimental_constrained_trunc:
6019     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6020     return nullptr;
6021   case Intrinsic::fmuladd: {
6022     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6023     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6024         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6025       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6026                                getValue(I.getArgOperand(0)).getValueType(),
6027                                getValue(I.getArgOperand(0)),
6028                                getValue(I.getArgOperand(1)),
6029                                getValue(I.getArgOperand(2))));
6030     } else {
6031       // TODO: Intrinsic calls should have fast-math-flags.
6032       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6033                                 getValue(I.getArgOperand(0)).getValueType(),
6034                                 getValue(I.getArgOperand(0)),
6035                                 getValue(I.getArgOperand(1)));
6036       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6037                                 getValue(I.getArgOperand(0)).getValueType(),
6038                                 Mul,
6039                                 getValue(I.getArgOperand(2)));
6040       setValue(&I, Add);
6041     }
6042     return nullptr;
6043   }
6044   case Intrinsic::convert_to_fp16:
6045     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6046                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6047                                          getValue(I.getArgOperand(0)),
6048                                          DAG.getTargetConstant(0, sdl,
6049                                                                MVT::i32))));
6050     return nullptr;
6051   case Intrinsic::convert_from_fp16:
6052     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6053                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6054                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6055                                          getValue(I.getArgOperand(0)))));
6056     return nullptr;
6057   case Intrinsic::pcmarker: {
6058     SDValue Tmp = getValue(I.getArgOperand(0));
6059     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6060     return nullptr;
6061   }
6062   case Intrinsic::readcyclecounter: {
6063     SDValue Op = getRoot();
6064     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6065                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6066     setValue(&I, Res);
6067     DAG.setRoot(Res.getValue(1));
6068     return nullptr;
6069   }
6070   case Intrinsic::bitreverse:
6071     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6072                              getValue(I.getArgOperand(0)).getValueType(),
6073                              getValue(I.getArgOperand(0))));
6074     return nullptr;
6075   case Intrinsic::bswap:
6076     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6077                              getValue(I.getArgOperand(0)).getValueType(),
6078                              getValue(I.getArgOperand(0))));
6079     return nullptr;
6080   case Intrinsic::cttz: {
6081     SDValue Arg = getValue(I.getArgOperand(0));
6082     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6083     EVT Ty = Arg.getValueType();
6084     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6085                              sdl, Ty, Arg));
6086     return nullptr;
6087   }
6088   case Intrinsic::ctlz: {
6089     SDValue Arg = getValue(I.getArgOperand(0));
6090     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6091     EVT Ty = Arg.getValueType();
6092     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6093                              sdl, Ty, Arg));
6094     return nullptr;
6095   }
6096   case Intrinsic::ctpop: {
6097     SDValue Arg = getValue(I.getArgOperand(0));
6098     EVT Ty = Arg.getValueType();
6099     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6100     return nullptr;
6101   }
6102   case Intrinsic::fshl:
6103   case Intrinsic::fshr: {
6104     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6105     SDValue X = getValue(I.getArgOperand(0));
6106     SDValue Y = getValue(I.getArgOperand(1));
6107     SDValue Z = getValue(I.getArgOperand(2));
6108     EVT VT = X.getValueType();
6109     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6110     SDValue Zero = DAG.getConstant(0, sdl, VT);
6111     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6112 
6113     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6114     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6115       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6116       return nullptr;
6117     }
6118 
6119     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6120     // avoid the select that is necessary in the general case to filter out
6121     // the 0-shift possibility that leads to UB.
6122     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6123       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6124       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6125         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6126         return nullptr;
6127       }
6128 
6129       // Some targets only rotate one way. Try the opposite direction.
6130       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6131       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6132         // Negate the shift amount because it is safe to ignore the high bits.
6133         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6134         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6135         return nullptr;
6136       }
6137 
6138       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6139       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6140       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6141       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6142       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6143       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6144       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6145       return nullptr;
6146     }
6147 
6148     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6149     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6150     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6151     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6152     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6153     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6154 
6155     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6156     // and that is undefined. We must compare and select to avoid UB.
6157     EVT CCVT = MVT::i1;
6158     if (VT.isVector())
6159       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6160 
6161     // For fshl, 0-shift returns the 1st arg (X).
6162     // For fshr, 0-shift returns the 2nd arg (Y).
6163     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6164     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6165     return nullptr;
6166   }
6167   case Intrinsic::sadd_sat: {
6168     SDValue Op1 = getValue(I.getArgOperand(0));
6169     SDValue Op2 = getValue(I.getArgOperand(1));
6170     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6171     return nullptr;
6172   }
6173   case Intrinsic::uadd_sat: {
6174     SDValue Op1 = getValue(I.getArgOperand(0));
6175     SDValue Op2 = getValue(I.getArgOperand(1));
6176     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6177     return nullptr;
6178   }
6179   case Intrinsic::ssub_sat: {
6180     SDValue Op1 = getValue(I.getArgOperand(0));
6181     SDValue Op2 = getValue(I.getArgOperand(1));
6182     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6183     return nullptr;
6184   }
6185   case Intrinsic::usub_sat: {
6186     SDValue Op1 = getValue(I.getArgOperand(0));
6187     SDValue Op2 = getValue(I.getArgOperand(1));
6188     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6189     return nullptr;
6190   }
6191   case Intrinsic::smul_fix:
6192   case Intrinsic::umul_fix: {
6193     SDValue Op1 = getValue(I.getArgOperand(0));
6194     SDValue Op2 = getValue(I.getArgOperand(1));
6195     SDValue Op3 = getValue(I.getArgOperand(2));
6196     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6197                              Op1.getValueType(), Op1, Op2, Op3));
6198     return nullptr;
6199   }
6200   case Intrinsic::stacksave: {
6201     SDValue Op = getRoot();
6202     Res = DAG.getNode(
6203         ISD::STACKSAVE, sdl,
6204         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6205     setValue(&I, Res);
6206     DAG.setRoot(Res.getValue(1));
6207     return nullptr;
6208   }
6209   case Intrinsic::stackrestore:
6210     Res = getValue(I.getArgOperand(0));
6211     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6212     return nullptr;
6213   case Intrinsic::get_dynamic_area_offset: {
6214     SDValue Op = getRoot();
6215     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6216     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6217     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6218     // target.
6219     if (PtrTy != ResTy)
6220       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6221                          " intrinsic!");
6222     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6223                       Op);
6224     DAG.setRoot(Op);
6225     setValue(&I, Res);
6226     return nullptr;
6227   }
6228   case Intrinsic::stackguard: {
6229     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6230     MachineFunction &MF = DAG.getMachineFunction();
6231     const Module &M = *MF.getFunction().getParent();
6232     SDValue Chain = getRoot();
6233     if (TLI.useLoadStackGuardNode()) {
6234       Res = getLoadStackGuard(DAG, sdl, Chain);
6235     } else {
6236       const Value *Global = TLI.getSDagStackGuard(M);
6237       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6238       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6239                         MachinePointerInfo(Global, 0), Align,
6240                         MachineMemOperand::MOVolatile);
6241     }
6242     if (TLI.useStackGuardXorFP())
6243       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6244     DAG.setRoot(Chain);
6245     setValue(&I, Res);
6246     return nullptr;
6247   }
6248   case Intrinsic::stackprotector: {
6249     // Emit code into the DAG to store the stack guard onto the stack.
6250     MachineFunction &MF = DAG.getMachineFunction();
6251     MachineFrameInfo &MFI = MF.getFrameInfo();
6252     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6253     SDValue Src, Chain = getRoot();
6254 
6255     if (TLI.useLoadStackGuardNode())
6256       Src = getLoadStackGuard(DAG, sdl, Chain);
6257     else
6258       Src = getValue(I.getArgOperand(0));   // The guard's value.
6259 
6260     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6261 
6262     int FI = FuncInfo.StaticAllocaMap[Slot];
6263     MFI.setStackProtectorIndex(FI);
6264 
6265     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6266 
6267     // Store the stack protector onto the stack.
6268     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6269                                                  DAG.getMachineFunction(), FI),
6270                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6271     setValue(&I, Res);
6272     DAG.setRoot(Res);
6273     return nullptr;
6274   }
6275   case Intrinsic::objectsize: {
6276     // If we don't know by now, we're never going to know.
6277     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6278 
6279     assert(CI && "Non-constant type in __builtin_object_size?");
6280 
6281     SDValue Arg = getValue(I.getCalledValue());
6282     EVT Ty = Arg.getValueType();
6283 
6284     if (CI->isZero())
6285       Res = DAG.getConstant(-1ULL, sdl, Ty);
6286     else
6287       Res = DAG.getConstant(0, sdl, Ty);
6288 
6289     setValue(&I, Res);
6290     return nullptr;
6291   }
6292 
6293   case Intrinsic::is_constant:
6294     // If this wasn't constant-folded away by now, then it's not a
6295     // constant.
6296     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6297     return nullptr;
6298 
6299   case Intrinsic::annotation:
6300   case Intrinsic::ptr_annotation:
6301   case Intrinsic::launder_invariant_group:
6302   case Intrinsic::strip_invariant_group:
6303     // Drop the intrinsic, but forward the value
6304     setValue(&I, getValue(I.getOperand(0)));
6305     return nullptr;
6306   case Intrinsic::assume:
6307   case Intrinsic::var_annotation:
6308   case Intrinsic::sideeffect:
6309     // Discard annotate attributes, assumptions, and artificial side-effects.
6310     return nullptr;
6311 
6312   case Intrinsic::codeview_annotation: {
6313     // Emit a label associated with this metadata.
6314     MachineFunction &MF = DAG.getMachineFunction();
6315     MCSymbol *Label =
6316         MF.getMMI().getContext().createTempSymbol("annotation", true);
6317     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6318     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6319     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6320     DAG.setRoot(Res);
6321     return nullptr;
6322   }
6323 
6324   case Intrinsic::init_trampoline: {
6325     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6326 
6327     SDValue Ops[6];
6328     Ops[0] = getRoot();
6329     Ops[1] = getValue(I.getArgOperand(0));
6330     Ops[2] = getValue(I.getArgOperand(1));
6331     Ops[3] = getValue(I.getArgOperand(2));
6332     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6333     Ops[5] = DAG.getSrcValue(F);
6334 
6335     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6336 
6337     DAG.setRoot(Res);
6338     return nullptr;
6339   }
6340   case Intrinsic::adjust_trampoline:
6341     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6342                              TLI.getPointerTy(DAG.getDataLayout()),
6343                              getValue(I.getArgOperand(0))));
6344     return nullptr;
6345   case Intrinsic::gcroot: {
6346     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6347            "only valid in functions with gc specified, enforced by Verifier");
6348     assert(GFI && "implied by previous");
6349     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6350     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6351 
6352     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6353     GFI->addStackRoot(FI->getIndex(), TypeMap);
6354     return nullptr;
6355   }
6356   case Intrinsic::gcread:
6357   case Intrinsic::gcwrite:
6358     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6359   case Intrinsic::flt_rounds:
6360     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6361     return nullptr;
6362 
6363   case Intrinsic::expect:
6364     // Just replace __builtin_expect(exp, c) with EXP.
6365     setValue(&I, getValue(I.getArgOperand(0)));
6366     return nullptr;
6367 
6368   case Intrinsic::debugtrap:
6369   case Intrinsic::trap: {
6370     StringRef TrapFuncName =
6371         I.getAttributes()
6372             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6373             .getValueAsString();
6374     if (TrapFuncName.empty()) {
6375       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6376         ISD::TRAP : ISD::DEBUGTRAP;
6377       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6378       return nullptr;
6379     }
6380     TargetLowering::ArgListTy Args;
6381 
6382     TargetLowering::CallLoweringInfo CLI(DAG);
6383     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6384         CallingConv::C, I.getType(),
6385         DAG.getExternalSymbol(TrapFuncName.data(),
6386                               TLI.getPointerTy(DAG.getDataLayout())),
6387         std::move(Args));
6388 
6389     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6390     DAG.setRoot(Result.second);
6391     return nullptr;
6392   }
6393 
6394   case Intrinsic::uadd_with_overflow:
6395   case Intrinsic::sadd_with_overflow:
6396   case Intrinsic::usub_with_overflow:
6397   case Intrinsic::ssub_with_overflow:
6398   case Intrinsic::umul_with_overflow:
6399   case Intrinsic::smul_with_overflow: {
6400     ISD::NodeType Op;
6401     switch (Intrinsic) {
6402     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6403     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6404     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6405     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6406     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6407     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6408     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6409     }
6410     SDValue Op1 = getValue(I.getArgOperand(0));
6411     SDValue Op2 = getValue(I.getArgOperand(1));
6412 
6413     EVT ResultVT = Op1.getValueType();
6414     EVT OverflowVT = MVT::i1;
6415     if (ResultVT.isVector())
6416       OverflowVT = EVT::getVectorVT(
6417           *Context, OverflowVT, ResultVT.getVectorNumElements());
6418 
6419     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6420     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6421     return nullptr;
6422   }
6423   case Intrinsic::prefetch: {
6424     SDValue Ops[5];
6425     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6426     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6427     Ops[0] = DAG.getRoot();
6428     Ops[1] = getValue(I.getArgOperand(0));
6429     Ops[2] = getValue(I.getArgOperand(1));
6430     Ops[3] = getValue(I.getArgOperand(2));
6431     Ops[4] = getValue(I.getArgOperand(3));
6432     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6433                                              DAG.getVTList(MVT::Other), Ops,
6434                                              EVT::getIntegerVT(*Context, 8),
6435                                              MachinePointerInfo(I.getArgOperand(0)),
6436                                              0, /* align */
6437                                              Flags);
6438 
6439     // Chain the prefetch in parallell with any pending loads, to stay out of
6440     // the way of later optimizations.
6441     PendingLoads.push_back(Result);
6442     Result = getRoot();
6443     DAG.setRoot(Result);
6444     return nullptr;
6445   }
6446   case Intrinsic::lifetime_start:
6447   case Intrinsic::lifetime_end: {
6448     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6449     // Stack coloring is not enabled in O0, discard region information.
6450     if (TM.getOptLevel() == CodeGenOpt::None)
6451       return nullptr;
6452 
6453     const int64_t ObjectSize =
6454         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6455     Value *const ObjectPtr = I.getArgOperand(1);
6456     SmallVector<Value *, 4> Allocas;
6457     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6458 
6459     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6460            E = Allocas.end(); Object != E; ++Object) {
6461       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6462 
6463       // Could not find an Alloca.
6464       if (!LifetimeObject)
6465         continue;
6466 
6467       // First check that the Alloca is static, otherwise it won't have a
6468       // valid frame index.
6469       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6470       if (SI == FuncInfo.StaticAllocaMap.end())
6471         return nullptr;
6472 
6473       const int FrameIndex = SI->second;
6474       int64_t Offset;
6475       if (GetPointerBaseWithConstantOffset(
6476               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6477         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6478       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6479                                 Offset);
6480       DAG.setRoot(Res);
6481     }
6482     return nullptr;
6483   }
6484   case Intrinsic::invariant_start:
6485     // Discard region information.
6486     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6487     return nullptr;
6488   case Intrinsic::invariant_end:
6489     // Discard region information.
6490     return nullptr;
6491   case Intrinsic::clear_cache:
6492     return TLI.getClearCacheBuiltinName();
6493   case Intrinsic::donothing:
6494     // ignore
6495     return nullptr;
6496   case Intrinsic::experimental_stackmap:
6497     visitStackmap(I);
6498     return nullptr;
6499   case Intrinsic::experimental_patchpoint_void:
6500   case Intrinsic::experimental_patchpoint_i64:
6501     visitPatchpoint(&I);
6502     return nullptr;
6503   case Intrinsic::experimental_gc_statepoint:
6504     LowerStatepoint(ImmutableStatepoint(&I));
6505     return nullptr;
6506   case Intrinsic::experimental_gc_result:
6507     visitGCResult(cast<GCResultInst>(I));
6508     return nullptr;
6509   case Intrinsic::experimental_gc_relocate:
6510     visitGCRelocate(cast<GCRelocateInst>(I));
6511     return nullptr;
6512   case Intrinsic::instrprof_increment:
6513     llvm_unreachable("instrprof failed to lower an increment");
6514   case Intrinsic::instrprof_value_profile:
6515     llvm_unreachable("instrprof failed to lower a value profiling call");
6516   case Intrinsic::localescape: {
6517     MachineFunction &MF = DAG.getMachineFunction();
6518     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6519 
6520     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6521     // is the same on all targets.
6522     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6523       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6524       if (isa<ConstantPointerNull>(Arg))
6525         continue; // Skip null pointers. They represent a hole in index space.
6526       AllocaInst *Slot = cast<AllocaInst>(Arg);
6527       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6528              "can only escape static allocas");
6529       int FI = FuncInfo.StaticAllocaMap[Slot];
6530       MCSymbol *FrameAllocSym =
6531           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6532               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6533       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6534               TII->get(TargetOpcode::LOCAL_ESCAPE))
6535           .addSym(FrameAllocSym)
6536           .addFrameIndex(FI);
6537     }
6538 
6539     return nullptr;
6540   }
6541 
6542   case Intrinsic::localrecover: {
6543     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6544     MachineFunction &MF = DAG.getMachineFunction();
6545     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6546 
6547     // Get the symbol that defines the frame offset.
6548     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6549     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6550     unsigned IdxVal =
6551         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6552     MCSymbol *FrameAllocSym =
6553         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6554             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6555 
6556     // Create a MCSymbol for the label to avoid any target lowering
6557     // that would make this PC relative.
6558     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6559     SDValue OffsetVal =
6560         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6561 
6562     // Add the offset to the FP.
6563     Value *FP = I.getArgOperand(1);
6564     SDValue FPVal = getValue(FP);
6565     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6566     setValue(&I, Add);
6567 
6568     return nullptr;
6569   }
6570 
6571   case Intrinsic::eh_exceptionpointer:
6572   case Intrinsic::eh_exceptioncode: {
6573     // Get the exception pointer vreg, copy from it, and resize it to fit.
6574     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6575     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6576     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6577     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6578     SDValue N =
6579         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6580     if (Intrinsic == Intrinsic::eh_exceptioncode)
6581       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6582     setValue(&I, N);
6583     return nullptr;
6584   }
6585   case Intrinsic::xray_customevent: {
6586     // Here we want to make sure that the intrinsic behaves as if it has a
6587     // specific calling convention, and only for x86_64.
6588     // FIXME: Support other platforms later.
6589     const auto &Triple = DAG.getTarget().getTargetTriple();
6590     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6591       return nullptr;
6592 
6593     SDLoc DL = getCurSDLoc();
6594     SmallVector<SDValue, 8> Ops;
6595 
6596     // We want to say that we always want the arguments in registers.
6597     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6598     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6599     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6600     SDValue Chain = getRoot();
6601     Ops.push_back(LogEntryVal);
6602     Ops.push_back(StrSizeVal);
6603     Ops.push_back(Chain);
6604 
6605     // We need to enforce the calling convention for the callsite, so that
6606     // argument ordering is enforced correctly, and that register allocation can
6607     // see that some registers may be assumed clobbered and have to preserve
6608     // them across calls to the intrinsic.
6609     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6610                                            DL, NodeTys, Ops);
6611     SDValue patchableNode = SDValue(MN, 0);
6612     DAG.setRoot(patchableNode);
6613     setValue(&I, patchableNode);
6614     return nullptr;
6615   }
6616   case Intrinsic::xray_typedevent: {
6617     // Here we want to make sure that the intrinsic behaves as if it has a
6618     // specific calling convention, and only for x86_64.
6619     // FIXME: Support other platforms later.
6620     const auto &Triple = DAG.getTarget().getTargetTriple();
6621     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6622       return nullptr;
6623 
6624     SDLoc DL = getCurSDLoc();
6625     SmallVector<SDValue, 8> Ops;
6626 
6627     // We want to say that we always want the arguments in registers.
6628     // It's unclear to me how manipulating the selection DAG here forces callers
6629     // to provide arguments in registers instead of on the stack.
6630     SDValue LogTypeId = getValue(I.getArgOperand(0));
6631     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6632     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6633     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6634     SDValue Chain = getRoot();
6635     Ops.push_back(LogTypeId);
6636     Ops.push_back(LogEntryVal);
6637     Ops.push_back(StrSizeVal);
6638     Ops.push_back(Chain);
6639 
6640     // We need to enforce the calling convention for the callsite, so that
6641     // argument ordering is enforced correctly, and that register allocation can
6642     // see that some registers may be assumed clobbered and have to preserve
6643     // them across calls to the intrinsic.
6644     MachineSDNode *MN = DAG.getMachineNode(
6645         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6646     SDValue patchableNode = SDValue(MN, 0);
6647     DAG.setRoot(patchableNode);
6648     setValue(&I, patchableNode);
6649     return nullptr;
6650   }
6651   case Intrinsic::experimental_deoptimize:
6652     LowerDeoptimizeCall(&I);
6653     return nullptr;
6654 
6655   case Intrinsic::experimental_vector_reduce_fadd:
6656   case Intrinsic::experimental_vector_reduce_fmul:
6657   case Intrinsic::experimental_vector_reduce_add:
6658   case Intrinsic::experimental_vector_reduce_mul:
6659   case Intrinsic::experimental_vector_reduce_and:
6660   case Intrinsic::experimental_vector_reduce_or:
6661   case Intrinsic::experimental_vector_reduce_xor:
6662   case Intrinsic::experimental_vector_reduce_smax:
6663   case Intrinsic::experimental_vector_reduce_smin:
6664   case Intrinsic::experimental_vector_reduce_umax:
6665   case Intrinsic::experimental_vector_reduce_umin:
6666   case Intrinsic::experimental_vector_reduce_fmax:
6667   case Intrinsic::experimental_vector_reduce_fmin:
6668     visitVectorReduce(I, Intrinsic);
6669     return nullptr;
6670 
6671   case Intrinsic::icall_branch_funnel: {
6672     SmallVector<SDValue, 16> Ops;
6673     Ops.push_back(DAG.getRoot());
6674     Ops.push_back(getValue(I.getArgOperand(0)));
6675 
6676     int64_t Offset;
6677     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6678         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6679     if (!Base)
6680       report_fatal_error(
6681           "llvm.icall.branch.funnel operand must be a GlobalValue");
6682     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6683 
6684     struct BranchFunnelTarget {
6685       int64_t Offset;
6686       SDValue Target;
6687     };
6688     SmallVector<BranchFunnelTarget, 8> Targets;
6689 
6690     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6691       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6692           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6693       if (ElemBase != Base)
6694         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6695                            "to the same GlobalValue");
6696 
6697       SDValue Val = getValue(I.getArgOperand(Op + 1));
6698       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6699       if (!GA)
6700         report_fatal_error(
6701             "llvm.icall.branch.funnel operand must be a GlobalValue");
6702       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6703                                      GA->getGlobal(), getCurSDLoc(),
6704                                      Val.getValueType(), GA->getOffset())});
6705     }
6706     llvm::sort(Targets,
6707                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6708                  return T1.Offset < T2.Offset;
6709                });
6710 
6711     for (auto &T : Targets) {
6712       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6713       Ops.push_back(T.Target);
6714     }
6715 
6716     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6717                                  getCurSDLoc(), MVT::Other, Ops),
6718               0);
6719     DAG.setRoot(N);
6720     setValue(&I, N);
6721     HasTailCall = true;
6722     return nullptr;
6723   }
6724 
6725   case Intrinsic::wasm_landingpad_index:
6726     // Information this intrinsic contained has been transferred to
6727     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6728     // delete it now.
6729     return nullptr;
6730   }
6731 }
6732 
6733 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6734     const ConstrainedFPIntrinsic &FPI) {
6735   SDLoc sdl = getCurSDLoc();
6736   unsigned Opcode;
6737   switch (FPI.getIntrinsicID()) {
6738   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6739   case Intrinsic::experimental_constrained_fadd:
6740     Opcode = ISD::STRICT_FADD;
6741     break;
6742   case Intrinsic::experimental_constrained_fsub:
6743     Opcode = ISD::STRICT_FSUB;
6744     break;
6745   case Intrinsic::experimental_constrained_fmul:
6746     Opcode = ISD::STRICT_FMUL;
6747     break;
6748   case Intrinsic::experimental_constrained_fdiv:
6749     Opcode = ISD::STRICT_FDIV;
6750     break;
6751   case Intrinsic::experimental_constrained_frem:
6752     Opcode = ISD::STRICT_FREM;
6753     break;
6754   case Intrinsic::experimental_constrained_fma:
6755     Opcode = ISD::STRICT_FMA;
6756     break;
6757   case Intrinsic::experimental_constrained_sqrt:
6758     Opcode = ISD::STRICT_FSQRT;
6759     break;
6760   case Intrinsic::experimental_constrained_pow:
6761     Opcode = ISD::STRICT_FPOW;
6762     break;
6763   case Intrinsic::experimental_constrained_powi:
6764     Opcode = ISD::STRICT_FPOWI;
6765     break;
6766   case Intrinsic::experimental_constrained_sin:
6767     Opcode = ISD::STRICT_FSIN;
6768     break;
6769   case Intrinsic::experimental_constrained_cos:
6770     Opcode = ISD::STRICT_FCOS;
6771     break;
6772   case Intrinsic::experimental_constrained_exp:
6773     Opcode = ISD::STRICT_FEXP;
6774     break;
6775   case Intrinsic::experimental_constrained_exp2:
6776     Opcode = ISD::STRICT_FEXP2;
6777     break;
6778   case Intrinsic::experimental_constrained_log:
6779     Opcode = ISD::STRICT_FLOG;
6780     break;
6781   case Intrinsic::experimental_constrained_log10:
6782     Opcode = ISD::STRICT_FLOG10;
6783     break;
6784   case Intrinsic::experimental_constrained_log2:
6785     Opcode = ISD::STRICT_FLOG2;
6786     break;
6787   case Intrinsic::experimental_constrained_rint:
6788     Opcode = ISD::STRICT_FRINT;
6789     break;
6790   case Intrinsic::experimental_constrained_nearbyint:
6791     Opcode = ISD::STRICT_FNEARBYINT;
6792     break;
6793   case Intrinsic::experimental_constrained_maxnum:
6794     Opcode = ISD::STRICT_FMAXNUM;
6795     break;
6796   case Intrinsic::experimental_constrained_minnum:
6797     Opcode = ISD::STRICT_FMINNUM;
6798     break;
6799   case Intrinsic::experimental_constrained_ceil:
6800     Opcode = ISD::STRICT_FCEIL;
6801     break;
6802   case Intrinsic::experimental_constrained_floor:
6803     Opcode = ISD::STRICT_FFLOOR;
6804     break;
6805   case Intrinsic::experimental_constrained_round:
6806     Opcode = ISD::STRICT_FROUND;
6807     break;
6808   case Intrinsic::experimental_constrained_trunc:
6809     Opcode = ISD::STRICT_FTRUNC;
6810     break;
6811   }
6812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6813   SDValue Chain = getRoot();
6814   SmallVector<EVT, 4> ValueVTs;
6815   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6816   ValueVTs.push_back(MVT::Other); // Out chain
6817 
6818   SDVTList VTs = DAG.getVTList(ValueVTs);
6819   SDValue Result;
6820   if (FPI.isUnaryOp())
6821     Result = DAG.getNode(Opcode, sdl, VTs,
6822                          { Chain, getValue(FPI.getArgOperand(0)) });
6823   else if (FPI.isTernaryOp())
6824     Result = DAG.getNode(Opcode, sdl, VTs,
6825                          { Chain, getValue(FPI.getArgOperand(0)),
6826                                   getValue(FPI.getArgOperand(1)),
6827                                   getValue(FPI.getArgOperand(2)) });
6828   else
6829     Result = DAG.getNode(Opcode, sdl, VTs,
6830                          { Chain, getValue(FPI.getArgOperand(0)),
6831                            getValue(FPI.getArgOperand(1))  });
6832 
6833   assert(Result.getNode()->getNumValues() == 2);
6834   SDValue OutChain = Result.getValue(1);
6835   DAG.setRoot(OutChain);
6836   SDValue FPResult = Result.getValue(0);
6837   setValue(&FPI, FPResult);
6838 }
6839 
6840 std::pair<SDValue, SDValue>
6841 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6842                                     const BasicBlock *EHPadBB) {
6843   MachineFunction &MF = DAG.getMachineFunction();
6844   MachineModuleInfo &MMI = MF.getMMI();
6845   MCSymbol *BeginLabel = nullptr;
6846 
6847   if (EHPadBB) {
6848     // Insert a label before the invoke call to mark the try range.  This can be
6849     // used to detect deletion of the invoke via the MachineModuleInfo.
6850     BeginLabel = MMI.getContext().createTempSymbol();
6851 
6852     // For SjLj, keep track of which landing pads go with which invokes
6853     // so as to maintain the ordering of pads in the LSDA.
6854     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6855     if (CallSiteIndex) {
6856       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6857       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6858 
6859       // Now that the call site is handled, stop tracking it.
6860       MMI.setCurrentCallSite(0);
6861     }
6862 
6863     // Both PendingLoads and PendingExports must be flushed here;
6864     // this call might not return.
6865     (void)getRoot();
6866     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6867 
6868     CLI.setChain(getRoot());
6869   }
6870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6871   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6872 
6873   assert((CLI.IsTailCall || Result.second.getNode()) &&
6874          "Non-null chain expected with non-tail call!");
6875   assert((Result.second.getNode() || !Result.first.getNode()) &&
6876          "Null value expected with tail call!");
6877 
6878   if (!Result.second.getNode()) {
6879     // As a special case, a null chain means that a tail call has been emitted
6880     // and the DAG root is already updated.
6881     HasTailCall = true;
6882 
6883     // Since there's no actual continuation from this block, nothing can be
6884     // relying on us setting vregs for them.
6885     PendingExports.clear();
6886   } else {
6887     DAG.setRoot(Result.second);
6888   }
6889 
6890   if (EHPadBB) {
6891     // Insert a label at the end of the invoke call to mark the try range.  This
6892     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6893     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6894     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6895 
6896     // Inform MachineModuleInfo of range.
6897     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6898     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6899     // actually use outlined funclets and their LSDA info style.
6900     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6901       assert(CLI.CS);
6902       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6903       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6904                                 BeginLabel, EndLabel);
6905     } else if (!isScopedEHPersonality(Pers)) {
6906       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6907     }
6908   }
6909 
6910   return Result;
6911 }
6912 
6913 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6914                                       bool isTailCall,
6915                                       const BasicBlock *EHPadBB) {
6916   auto &DL = DAG.getDataLayout();
6917   FunctionType *FTy = CS.getFunctionType();
6918   Type *RetTy = CS.getType();
6919 
6920   TargetLowering::ArgListTy Args;
6921   Args.reserve(CS.arg_size());
6922 
6923   const Value *SwiftErrorVal = nullptr;
6924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6925 
6926   // We can't tail call inside a function with a swifterror argument. Lowering
6927   // does not support this yet. It would have to move into the swifterror
6928   // register before the call.
6929   auto *Caller = CS.getInstruction()->getParent()->getParent();
6930   if (TLI.supportSwiftError() &&
6931       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6932     isTailCall = false;
6933 
6934   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6935        i != e; ++i) {
6936     TargetLowering::ArgListEntry Entry;
6937     const Value *V = *i;
6938 
6939     // Skip empty types
6940     if (V->getType()->isEmptyTy())
6941       continue;
6942 
6943     SDValue ArgNode = getValue(V);
6944     Entry.Node = ArgNode; Entry.Ty = V->getType();
6945 
6946     Entry.setAttributes(&CS, i - CS.arg_begin());
6947 
6948     // Use swifterror virtual register as input to the call.
6949     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6950       SwiftErrorVal = V;
6951       // We find the virtual register for the actual swifterror argument.
6952       // Instead of using the Value, we use the virtual register instead.
6953       Entry.Node = DAG.getRegister(FuncInfo
6954                                        .getOrCreateSwiftErrorVRegUseAt(
6955                                            CS.getInstruction(), FuncInfo.MBB, V)
6956                                        .first,
6957                                    EVT(TLI.getPointerTy(DL)));
6958     }
6959 
6960     Args.push_back(Entry);
6961 
6962     // If we have an explicit sret argument that is an Instruction, (i.e., it
6963     // might point to function-local memory), we can't meaningfully tail-call.
6964     if (Entry.IsSRet && isa<Instruction>(V))
6965       isTailCall = false;
6966   }
6967 
6968   // Check if target-independent constraints permit a tail call here.
6969   // Target-dependent constraints are checked within TLI->LowerCallTo.
6970   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6971     isTailCall = false;
6972 
6973   // Disable tail calls if there is an swifterror argument. Targets have not
6974   // been updated to support tail calls.
6975   if (TLI.supportSwiftError() && SwiftErrorVal)
6976     isTailCall = false;
6977 
6978   TargetLowering::CallLoweringInfo CLI(DAG);
6979   CLI.setDebugLoc(getCurSDLoc())
6980       .setChain(getRoot())
6981       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6982       .setTailCall(isTailCall)
6983       .setConvergent(CS.isConvergent());
6984   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6985 
6986   if (Result.first.getNode()) {
6987     const Instruction *Inst = CS.getInstruction();
6988     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6989     setValue(Inst, Result.first);
6990   }
6991 
6992   // The last element of CLI.InVals has the SDValue for swifterror return.
6993   // Here we copy it to a virtual register and update SwiftErrorMap for
6994   // book-keeping.
6995   if (SwiftErrorVal && TLI.supportSwiftError()) {
6996     // Get the last element of InVals.
6997     SDValue Src = CLI.InVals.back();
6998     unsigned VReg; bool CreatedVReg;
6999     std::tie(VReg, CreatedVReg) =
7000         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
7001     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7002     // We update the virtual register for the actual swifterror argument.
7003     if (CreatedVReg)
7004       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
7005     DAG.setRoot(CopyNode);
7006   }
7007 }
7008 
7009 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7010                              SelectionDAGBuilder &Builder) {
7011   // Check to see if this load can be trivially constant folded, e.g. if the
7012   // input is from a string literal.
7013   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7014     // Cast pointer to the type we really want to load.
7015     Type *LoadTy =
7016         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7017     if (LoadVT.isVector())
7018       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7019 
7020     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7021                                          PointerType::getUnqual(LoadTy));
7022 
7023     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7024             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7025       return Builder.getValue(LoadCst);
7026   }
7027 
7028   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7029   // still constant memory, the input chain can be the entry node.
7030   SDValue Root;
7031   bool ConstantMemory = false;
7032 
7033   // Do not serialize (non-volatile) loads of constant memory with anything.
7034   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7035     Root = Builder.DAG.getEntryNode();
7036     ConstantMemory = true;
7037   } else {
7038     // Do not serialize non-volatile loads against each other.
7039     Root = Builder.DAG.getRoot();
7040   }
7041 
7042   SDValue Ptr = Builder.getValue(PtrVal);
7043   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7044                                         Ptr, MachinePointerInfo(PtrVal),
7045                                         /* Alignment = */ 1);
7046 
7047   if (!ConstantMemory)
7048     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7049   return LoadVal;
7050 }
7051 
7052 /// Record the value for an instruction that produces an integer result,
7053 /// converting the type where necessary.
7054 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7055                                                   SDValue Value,
7056                                                   bool IsSigned) {
7057   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7058                                                     I.getType(), true);
7059   if (IsSigned)
7060     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7061   else
7062     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7063   setValue(&I, Value);
7064 }
7065 
7066 /// See if we can lower a memcmp call into an optimized form. If so, return
7067 /// true and lower it. Otherwise return false, and it will be lowered like a
7068 /// normal call.
7069 /// The caller already checked that \p I calls the appropriate LibFunc with a
7070 /// correct prototype.
7071 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7072   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7073   const Value *Size = I.getArgOperand(2);
7074   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7075   if (CSize && CSize->getZExtValue() == 0) {
7076     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7077                                                           I.getType(), true);
7078     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7079     return true;
7080   }
7081 
7082   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7083   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7084       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7085       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7086   if (Res.first.getNode()) {
7087     processIntegerCallValue(I, Res.first, true);
7088     PendingLoads.push_back(Res.second);
7089     return true;
7090   }
7091 
7092   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7093   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7094   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7095     return false;
7096 
7097   // If the target has a fast compare for the given size, it will return a
7098   // preferred load type for that size. Require that the load VT is legal and
7099   // that the target supports unaligned loads of that type. Otherwise, return
7100   // INVALID.
7101   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7102     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7103     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7104     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7105       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7106       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7107       // TODO: Check alignment of src and dest ptrs.
7108       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7109       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7110       if (!TLI.isTypeLegal(LVT) ||
7111           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7112           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7113         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7114     }
7115 
7116     return LVT;
7117   };
7118 
7119   // This turns into unaligned loads. We only do this if the target natively
7120   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7121   // we'll only produce a small number of byte loads.
7122   MVT LoadVT;
7123   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7124   switch (NumBitsToCompare) {
7125   default:
7126     return false;
7127   case 16:
7128     LoadVT = MVT::i16;
7129     break;
7130   case 32:
7131     LoadVT = MVT::i32;
7132     break;
7133   case 64:
7134   case 128:
7135   case 256:
7136     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7137     break;
7138   }
7139 
7140   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7141     return false;
7142 
7143   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7144   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7145 
7146   // Bitcast to a wide integer type if the loads are vectors.
7147   if (LoadVT.isVector()) {
7148     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7149     LoadL = DAG.getBitcast(CmpVT, LoadL);
7150     LoadR = DAG.getBitcast(CmpVT, LoadR);
7151   }
7152 
7153   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7154   processIntegerCallValue(I, Cmp, false);
7155   return true;
7156 }
7157 
7158 /// See if we can lower a memchr call into an optimized form. If so, return
7159 /// true and lower it. Otherwise return false, and it will be lowered like a
7160 /// normal call.
7161 /// The caller already checked that \p I calls the appropriate LibFunc with a
7162 /// correct prototype.
7163 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7164   const Value *Src = I.getArgOperand(0);
7165   const Value *Char = I.getArgOperand(1);
7166   const Value *Length = I.getArgOperand(2);
7167 
7168   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7169   std::pair<SDValue, SDValue> Res =
7170     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7171                                 getValue(Src), getValue(Char), getValue(Length),
7172                                 MachinePointerInfo(Src));
7173   if (Res.first.getNode()) {
7174     setValue(&I, Res.first);
7175     PendingLoads.push_back(Res.second);
7176     return true;
7177   }
7178 
7179   return false;
7180 }
7181 
7182 /// See if we can lower a mempcpy call into an optimized form. If so, return
7183 /// true and lower it. Otherwise return false, and it will be lowered like a
7184 /// normal call.
7185 /// The caller already checked that \p I calls the appropriate LibFunc with a
7186 /// correct prototype.
7187 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7188   SDValue Dst = getValue(I.getArgOperand(0));
7189   SDValue Src = getValue(I.getArgOperand(1));
7190   SDValue Size = getValue(I.getArgOperand(2));
7191 
7192   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7193   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7194   unsigned Align = std::min(DstAlign, SrcAlign);
7195   if (Align == 0) // Alignment of one or both could not be inferred.
7196     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7197 
7198   bool isVol = false;
7199   SDLoc sdl = getCurSDLoc();
7200 
7201   // In the mempcpy context we need to pass in a false value for isTailCall
7202   // because the return pointer needs to be adjusted by the size of
7203   // the copied memory.
7204   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7205                              false, /*isTailCall=*/false,
7206                              MachinePointerInfo(I.getArgOperand(0)),
7207                              MachinePointerInfo(I.getArgOperand(1)));
7208   assert(MC.getNode() != nullptr &&
7209          "** memcpy should not be lowered as TailCall in mempcpy context **");
7210   DAG.setRoot(MC);
7211 
7212   // Check if Size needs to be truncated or extended.
7213   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7214 
7215   // Adjust return pointer to point just past the last dst byte.
7216   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7217                                     Dst, Size);
7218   setValue(&I, DstPlusSize);
7219   return true;
7220 }
7221 
7222 /// See if we can lower a strcpy call into an optimized form.  If so, return
7223 /// true and lower it, otherwise return false and it will be lowered like a
7224 /// normal call.
7225 /// The caller already checked that \p I calls the appropriate LibFunc with a
7226 /// correct prototype.
7227 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7228   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7229 
7230   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7231   std::pair<SDValue, SDValue> Res =
7232     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7233                                 getValue(Arg0), getValue(Arg1),
7234                                 MachinePointerInfo(Arg0),
7235                                 MachinePointerInfo(Arg1), isStpcpy);
7236   if (Res.first.getNode()) {
7237     setValue(&I, Res.first);
7238     DAG.setRoot(Res.second);
7239     return true;
7240   }
7241 
7242   return false;
7243 }
7244 
7245 /// See if we can lower a strcmp call into an optimized form.  If so, return
7246 /// true and lower it, otherwise return false and it will be lowered like a
7247 /// normal call.
7248 /// The caller already checked that \p I calls the appropriate LibFunc with a
7249 /// correct prototype.
7250 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7251   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7252 
7253   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7254   std::pair<SDValue, SDValue> Res =
7255     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7256                                 getValue(Arg0), getValue(Arg1),
7257                                 MachinePointerInfo(Arg0),
7258                                 MachinePointerInfo(Arg1));
7259   if (Res.first.getNode()) {
7260     processIntegerCallValue(I, Res.first, true);
7261     PendingLoads.push_back(Res.second);
7262     return true;
7263   }
7264 
7265   return false;
7266 }
7267 
7268 /// See if we can lower a strlen call into an optimized form.  If so, return
7269 /// true and lower it, otherwise return false and it will be lowered like a
7270 /// normal call.
7271 /// The caller already checked that \p I calls the appropriate LibFunc with a
7272 /// correct prototype.
7273 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7274   const Value *Arg0 = I.getArgOperand(0);
7275 
7276   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7277   std::pair<SDValue, SDValue> Res =
7278     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7279                                 getValue(Arg0), MachinePointerInfo(Arg0));
7280   if (Res.first.getNode()) {
7281     processIntegerCallValue(I, Res.first, false);
7282     PendingLoads.push_back(Res.second);
7283     return true;
7284   }
7285 
7286   return false;
7287 }
7288 
7289 /// See if we can lower a strnlen call into an optimized form.  If so, return
7290 /// true and lower it, otherwise return false and it will be lowered like a
7291 /// normal call.
7292 /// The caller already checked that \p I calls the appropriate LibFunc with a
7293 /// correct prototype.
7294 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7295   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7296 
7297   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7298   std::pair<SDValue, SDValue> Res =
7299     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7300                                  getValue(Arg0), getValue(Arg1),
7301                                  MachinePointerInfo(Arg0));
7302   if (Res.first.getNode()) {
7303     processIntegerCallValue(I, Res.first, false);
7304     PendingLoads.push_back(Res.second);
7305     return true;
7306   }
7307 
7308   return false;
7309 }
7310 
7311 /// See if we can lower a unary floating-point operation into an SDNode with
7312 /// the specified Opcode.  If so, return true and lower it, otherwise return
7313 /// false and it will be lowered like a normal call.
7314 /// The caller already checked that \p I calls the appropriate LibFunc with a
7315 /// correct prototype.
7316 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7317                                               unsigned Opcode) {
7318   // We already checked this call's prototype; verify it doesn't modify errno.
7319   if (!I.onlyReadsMemory())
7320     return false;
7321 
7322   SDValue Tmp = getValue(I.getArgOperand(0));
7323   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7324   return true;
7325 }
7326 
7327 /// See if we can lower a binary floating-point operation into an SDNode with
7328 /// the specified Opcode. If so, return true and lower it. Otherwise return
7329 /// false, and it will be lowered like a normal call.
7330 /// The caller already checked that \p I calls the appropriate LibFunc with a
7331 /// correct prototype.
7332 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7333                                                unsigned Opcode) {
7334   // We already checked this call's prototype; verify it doesn't modify errno.
7335   if (!I.onlyReadsMemory())
7336     return false;
7337 
7338   SDValue Tmp0 = getValue(I.getArgOperand(0));
7339   SDValue Tmp1 = getValue(I.getArgOperand(1));
7340   EVT VT = Tmp0.getValueType();
7341   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7342   return true;
7343 }
7344 
7345 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7346   // Handle inline assembly differently.
7347   if (isa<InlineAsm>(I.getCalledValue())) {
7348     visitInlineAsm(&I);
7349     return;
7350   }
7351 
7352   const char *RenameFn = nullptr;
7353   if (Function *F = I.getCalledFunction()) {
7354     if (F->isDeclaration()) {
7355       // Is this an LLVM intrinsic or a target-specific intrinsic?
7356       unsigned IID = F->getIntrinsicID();
7357       if (!IID)
7358         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7359           IID = II->getIntrinsicID(F);
7360 
7361       if (IID) {
7362         RenameFn = visitIntrinsicCall(I, IID);
7363         if (!RenameFn)
7364           return;
7365       }
7366     }
7367 
7368     // Check for well-known libc/libm calls.  If the function is internal, it
7369     // can't be a library call.  Don't do the check if marked as nobuiltin for
7370     // some reason or the call site requires strict floating point semantics.
7371     LibFunc Func;
7372     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7373         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7374         LibInfo->hasOptimizedCodeGen(Func)) {
7375       switch (Func) {
7376       default: break;
7377       case LibFunc_copysign:
7378       case LibFunc_copysignf:
7379       case LibFunc_copysignl:
7380         // We already checked this call's prototype; verify it doesn't modify
7381         // errno.
7382         if (I.onlyReadsMemory()) {
7383           SDValue LHS = getValue(I.getArgOperand(0));
7384           SDValue RHS = getValue(I.getArgOperand(1));
7385           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7386                                    LHS.getValueType(), LHS, RHS));
7387           return;
7388         }
7389         break;
7390       case LibFunc_fabs:
7391       case LibFunc_fabsf:
7392       case LibFunc_fabsl:
7393         if (visitUnaryFloatCall(I, ISD::FABS))
7394           return;
7395         break;
7396       case LibFunc_fmin:
7397       case LibFunc_fminf:
7398       case LibFunc_fminl:
7399         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7400           return;
7401         break;
7402       case LibFunc_fmax:
7403       case LibFunc_fmaxf:
7404       case LibFunc_fmaxl:
7405         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7406           return;
7407         break;
7408       case LibFunc_sin:
7409       case LibFunc_sinf:
7410       case LibFunc_sinl:
7411         if (visitUnaryFloatCall(I, ISD::FSIN))
7412           return;
7413         break;
7414       case LibFunc_cos:
7415       case LibFunc_cosf:
7416       case LibFunc_cosl:
7417         if (visitUnaryFloatCall(I, ISD::FCOS))
7418           return;
7419         break;
7420       case LibFunc_sqrt:
7421       case LibFunc_sqrtf:
7422       case LibFunc_sqrtl:
7423       case LibFunc_sqrt_finite:
7424       case LibFunc_sqrtf_finite:
7425       case LibFunc_sqrtl_finite:
7426         if (visitUnaryFloatCall(I, ISD::FSQRT))
7427           return;
7428         break;
7429       case LibFunc_floor:
7430       case LibFunc_floorf:
7431       case LibFunc_floorl:
7432         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7433           return;
7434         break;
7435       case LibFunc_nearbyint:
7436       case LibFunc_nearbyintf:
7437       case LibFunc_nearbyintl:
7438         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7439           return;
7440         break;
7441       case LibFunc_ceil:
7442       case LibFunc_ceilf:
7443       case LibFunc_ceill:
7444         if (visitUnaryFloatCall(I, ISD::FCEIL))
7445           return;
7446         break;
7447       case LibFunc_rint:
7448       case LibFunc_rintf:
7449       case LibFunc_rintl:
7450         if (visitUnaryFloatCall(I, ISD::FRINT))
7451           return;
7452         break;
7453       case LibFunc_round:
7454       case LibFunc_roundf:
7455       case LibFunc_roundl:
7456         if (visitUnaryFloatCall(I, ISD::FROUND))
7457           return;
7458         break;
7459       case LibFunc_trunc:
7460       case LibFunc_truncf:
7461       case LibFunc_truncl:
7462         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7463           return;
7464         break;
7465       case LibFunc_log2:
7466       case LibFunc_log2f:
7467       case LibFunc_log2l:
7468         if (visitUnaryFloatCall(I, ISD::FLOG2))
7469           return;
7470         break;
7471       case LibFunc_exp2:
7472       case LibFunc_exp2f:
7473       case LibFunc_exp2l:
7474         if (visitUnaryFloatCall(I, ISD::FEXP2))
7475           return;
7476         break;
7477       case LibFunc_memcmp:
7478         if (visitMemCmpCall(I))
7479           return;
7480         break;
7481       case LibFunc_mempcpy:
7482         if (visitMemPCpyCall(I))
7483           return;
7484         break;
7485       case LibFunc_memchr:
7486         if (visitMemChrCall(I))
7487           return;
7488         break;
7489       case LibFunc_strcpy:
7490         if (visitStrCpyCall(I, false))
7491           return;
7492         break;
7493       case LibFunc_stpcpy:
7494         if (visitStrCpyCall(I, true))
7495           return;
7496         break;
7497       case LibFunc_strcmp:
7498         if (visitStrCmpCall(I))
7499           return;
7500         break;
7501       case LibFunc_strlen:
7502         if (visitStrLenCall(I))
7503           return;
7504         break;
7505       case LibFunc_strnlen:
7506         if (visitStrNLenCall(I))
7507           return;
7508         break;
7509       }
7510     }
7511   }
7512 
7513   SDValue Callee;
7514   if (!RenameFn)
7515     Callee = getValue(I.getCalledValue());
7516   else
7517     Callee = DAG.getExternalSymbol(
7518         RenameFn,
7519         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7520 
7521   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7522   // have to do anything here to lower funclet bundles.
7523   assert(!I.hasOperandBundlesOtherThan(
7524              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7525          "Cannot lower calls with arbitrary operand bundles!");
7526 
7527   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7528     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7529   else
7530     // Check if we can potentially perform a tail call. More detailed checking
7531     // is be done within LowerCallTo, after more information about the call is
7532     // known.
7533     LowerCallTo(&I, Callee, I.isTailCall());
7534 }
7535 
7536 namespace {
7537 
7538 /// AsmOperandInfo - This contains information for each constraint that we are
7539 /// lowering.
7540 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7541 public:
7542   /// CallOperand - If this is the result output operand or a clobber
7543   /// this is null, otherwise it is the incoming operand to the CallInst.
7544   /// This gets modified as the asm is processed.
7545   SDValue CallOperand;
7546 
7547   /// AssignedRegs - If this is a register or register class operand, this
7548   /// contains the set of register corresponding to the operand.
7549   RegsForValue AssignedRegs;
7550 
7551   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7552     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7553   }
7554 
7555   /// Whether or not this operand accesses memory
7556   bool hasMemory(const TargetLowering &TLI) const {
7557     // Indirect operand accesses access memory.
7558     if (isIndirect)
7559       return true;
7560 
7561     for (const auto &Code : Codes)
7562       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7563         return true;
7564 
7565     return false;
7566   }
7567 
7568   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7569   /// corresponds to.  If there is no Value* for this operand, it returns
7570   /// MVT::Other.
7571   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7572                            const DataLayout &DL) const {
7573     if (!CallOperandVal) return MVT::Other;
7574 
7575     if (isa<BasicBlock>(CallOperandVal))
7576       return TLI.getPointerTy(DL);
7577 
7578     llvm::Type *OpTy = CallOperandVal->getType();
7579 
7580     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7581     // If this is an indirect operand, the operand is a pointer to the
7582     // accessed type.
7583     if (isIndirect) {
7584       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7585       if (!PtrTy)
7586         report_fatal_error("Indirect operand for inline asm not a pointer!");
7587       OpTy = PtrTy->getElementType();
7588     }
7589 
7590     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7591     if (StructType *STy = dyn_cast<StructType>(OpTy))
7592       if (STy->getNumElements() == 1)
7593         OpTy = STy->getElementType(0);
7594 
7595     // If OpTy is not a single value, it may be a struct/union that we
7596     // can tile with integers.
7597     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7598       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7599       switch (BitSize) {
7600       default: break;
7601       case 1:
7602       case 8:
7603       case 16:
7604       case 32:
7605       case 64:
7606       case 128:
7607         OpTy = IntegerType::get(Context, BitSize);
7608         break;
7609       }
7610     }
7611 
7612     return TLI.getValueType(DL, OpTy, true);
7613   }
7614 };
7615 
7616 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7617 
7618 } // end anonymous namespace
7619 
7620 /// Make sure that the output operand \p OpInfo and its corresponding input
7621 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7622 /// out).
7623 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7624                                SDISelAsmOperandInfo &MatchingOpInfo,
7625                                SelectionDAG &DAG) {
7626   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7627     return;
7628 
7629   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7630   const auto &TLI = DAG.getTargetLoweringInfo();
7631 
7632   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7633       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7634                                        OpInfo.ConstraintVT);
7635   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7636       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7637                                        MatchingOpInfo.ConstraintVT);
7638   if ((OpInfo.ConstraintVT.isInteger() !=
7639        MatchingOpInfo.ConstraintVT.isInteger()) ||
7640       (MatchRC.second != InputRC.second)) {
7641     // FIXME: error out in a more elegant fashion
7642     report_fatal_error("Unsupported asm: input constraint"
7643                        " with a matching output constraint of"
7644                        " incompatible type!");
7645   }
7646   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7647 }
7648 
7649 /// Get a direct memory input to behave well as an indirect operand.
7650 /// This may introduce stores, hence the need for a \p Chain.
7651 /// \return The (possibly updated) chain.
7652 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7653                                         SDISelAsmOperandInfo &OpInfo,
7654                                         SelectionDAG &DAG) {
7655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7656 
7657   // If we don't have an indirect input, put it in the constpool if we can,
7658   // otherwise spill it to a stack slot.
7659   // TODO: This isn't quite right. We need to handle these according to
7660   // the addressing mode that the constraint wants. Also, this may take
7661   // an additional register for the computation and we don't want that
7662   // either.
7663 
7664   // If the operand is a float, integer, or vector constant, spill to a
7665   // constant pool entry to get its address.
7666   const Value *OpVal = OpInfo.CallOperandVal;
7667   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7668       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7669     OpInfo.CallOperand = DAG.getConstantPool(
7670         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7671     return Chain;
7672   }
7673 
7674   // Otherwise, create a stack slot and emit a store to it before the asm.
7675   Type *Ty = OpVal->getType();
7676   auto &DL = DAG.getDataLayout();
7677   uint64_t TySize = DL.getTypeAllocSize(Ty);
7678   unsigned Align = DL.getPrefTypeAlignment(Ty);
7679   MachineFunction &MF = DAG.getMachineFunction();
7680   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7681   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7682   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7683                        MachinePointerInfo::getFixedStack(MF, SSFI));
7684   OpInfo.CallOperand = StackSlot;
7685 
7686   return Chain;
7687 }
7688 
7689 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7690 /// specified operand.  We prefer to assign virtual registers, to allow the
7691 /// register allocator to handle the assignment process.  However, if the asm
7692 /// uses features that we can't model on machineinstrs, we have SDISel do the
7693 /// allocation.  This produces generally horrible, but correct, code.
7694 ///
7695 ///   OpInfo describes the operand
7696 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7697 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7698                                  SDISelAsmOperandInfo &OpInfo,
7699                                  SDISelAsmOperandInfo &RefOpInfo) {
7700   LLVMContext &Context = *DAG.getContext();
7701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7702 
7703   MachineFunction &MF = DAG.getMachineFunction();
7704   SmallVector<unsigned, 4> Regs;
7705   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7706 
7707   // No work to do for memory operations.
7708   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7709     return;
7710 
7711   // If this is a constraint for a single physreg, or a constraint for a
7712   // register class, find it.
7713   unsigned AssignedReg;
7714   const TargetRegisterClass *RC;
7715   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7716       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7717   // RC is unset only on failure. Return immediately.
7718   if (!RC)
7719     return;
7720 
7721   // Get the actual register value type.  This is important, because the user
7722   // may have asked for (e.g.) the AX register in i32 type.  We need to
7723   // remember that AX is actually i16 to get the right extension.
7724   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7725 
7726   if (OpInfo.ConstraintVT != MVT::Other) {
7727     // If this is an FP operand in an integer register (or visa versa), or more
7728     // generally if the operand value disagrees with the register class we plan
7729     // to stick it in, fix the operand type.
7730     //
7731     // If this is an input value, the bitcast to the new type is done now.
7732     // Bitcast for output value is done at the end of visitInlineAsm().
7733     if ((OpInfo.Type == InlineAsm::isOutput ||
7734          OpInfo.Type == InlineAsm::isInput) &&
7735         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7736       // Try to convert to the first EVT that the reg class contains.  If the
7737       // types are identical size, use a bitcast to convert (e.g. two differing
7738       // vector types).  Note: output bitcast is done at the end of
7739       // visitInlineAsm().
7740       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7741         // Exclude indirect inputs while they are unsupported because the code
7742         // to perform the load is missing and thus OpInfo.CallOperand still
7743         // refers to the input address rather than the pointed-to value.
7744         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7745           OpInfo.CallOperand =
7746               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7747         OpInfo.ConstraintVT = RegVT;
7748         // If the operand is an FP value and we want it in integer registers,
7749         // use the corresponding integer type. This turns an f64 value into
7750         // i64, which can be passed with two i32 values on a 32-bit machine.
7751       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7752         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7753         if (OpInfo.Type == InlineAsm::isInput)
7754           OpInfo.CallOperand =
7755               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7756         OpInfo.ConstraintVT = VT;
7757       }
7758     }
7759   }
7760 
7761   // No need to allocate a matching input constraint since the constraint it's
7762   // matching to has already been allocated.
7763   if (OpInfo.isMatchingInputConstraint())
7764     return;
7765 
7766   EVT ValueVT = OpInfo.ConstraintVT;
7767   if (OpInfo.ConstraintVT == MVT::Other)
7768     ValueVT = RegVT;
7769 
7770   // Initialize NumRegs.
7771   unsigned NumRegs = 1;
7772   if (OpInfo.ConstraintVT != MVT::Other)
7773     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7774 
7775   // If this is a constraint for a specific physical register, like {r17},
7776   // assign it now.
7777 
7778   // If this associated to a specific register, initialize iterator to correct
7779   // place. If virtual, make sure we have enough registers
7780 
7781   // Initialize iterator if necessary
7782   TargetRegisterClass::iterator I = RC->begin();
7783   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7784 
7785   // Do not check for single registers.
7786   if (AssignedReg) {
7787       for (; *I != AssignedReg; ++I)
7788         assert(I != RC->end() && "AssignedReg should be member of RC");
7789   }
7790 
7791   for (; NumRegs; --NumRegs, ++I) {
7792     assert(I != RC->end() && "Ran out of registers to allocate!");
7793     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7794     Regs.push_back(R);
7795   }
7796 
7797   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7798 }
7799 
7800 static unsigned
7801 findMatchingInlineAsmOperand(unsigned OperandNo,
7802                              const std::vector<SDValue> &AsmNodeOperands) {
7803   // Scan until we find the definition we already emitted of this operand.
7804   unsigned CurOp = InlineAsm::Op_FirstOperand;
7805   for (; OperandNo; --OperandNo) {
7806     // Advance to the next operand.
7807     unsigned OpFlag =
7808         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7809     assert((InlineAsm::isRegDefKind(OpFlag) ||
7810             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7811             InlineAsm::isMemKind(OpFlag)) &&
7812            "Skipped past definitions?");
7813     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7814   }
7815   return CurOp;
7816 }
7817 
7818 namespace {
7819 
7820 class ExtraFlags {
7821   unsigned Flags = 0;
7822 
7823 public:
7824   explicit ExtraFlags(ImmutableCallSite CS) {
7825     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7826     if (IA->hasSideEffects())
7827       Flags |= InlineAsm::Extra_HasSideEffects;
7828     if (IA->isAlignStack())
7829       Flags |= InlineAsm::Extra_IsAlignStack;
7830     if (CS.isConvergent())
7831       Flags |= InlineAsm::Extra_IsConvergent;
7832     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7833   }
7834 
7835   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7836     // Ideally, we would only check against memory constraints.  However, the
7837     // meaning of an Other constraint can be target-specific and we can't easily
7838     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7839     // for Other constraints as well.
7840     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7841         OpInfo.ConstraintType == TargetLowering::C_Other) {
7842       if (OpInfo.Type == InlineAsm::isInput)
7843         Flags |= InlineAsm::Extra_MayLoad;
7844       else if (OpInfo.Type == InlineAsm::isOutput)
7845         Flags |= InlineAsm::Extra_MayStore;
7846       else if (OpInfo.Type == InlineAsm::isClobber)
7847         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7848     }
7849   }
7850 
7851   unsigned get() const { return Flags; }
7852 };
7853 
7854 } // end anonymous namespace
7855 
7856 /// visitInlineAsm - Handle a call to an InlineAsm object.
7857 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7858   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7859 
7860   /// ConstraintOperands - Information about all of the constraints.
7861   SDISelAsmOperandInfoVector ConstraintOperands;
7862 
7863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7864   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7865       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7866 
7867   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7868   // AsmDialect, MayLoad, MayStore).
7869   bool HasSideEffect = IA->hasSideEffects();
7870   ExtraFlags ExtraInfo(CS);
7871 
7872   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7873   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7874   for (auto &T : TargetConstraints) {
7875     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7876     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7877 
7878     // Compute the value type for each operand.
7879     if (OpInfo.Type == InlineAsm::isInput ||
7880         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7881       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7882 
7883       // Process the call argument. BasicBlocks are labels, currently appearing
7884       // only in asm's.
7885       const Instruction *I = CS.getInstruction();
7886       if (isa<CallBrInst>(I) &&
7887           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7888                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7889         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7890         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7891         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7892       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7893         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7894       } else {
7895         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7896       }
7897 
7898       OpInfo.ConstraintVT =
7899           OpInfo
7900               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7901               .getSimpleVT();
7902     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7903       // The return value of the call is this value.  As such, there is no
7904       // corresponding argument.
7905       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7906       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7907         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7908             DAG.getDataLayout(), STy->getElementType(ResNo));
7909       } else {
7910         assert(ResNo == 0 && "Asm only has one result!");
7911         OpInfo.ConstraintVT =
7912             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7913       }
7914       ++ResNo;
7915     } else {
7916       OpInfo.ConstraintVT = MVT::Other;
7917     }
7918 
7919     if (!HasSideEffect)
7920       HasSideEffect = OpInfo.hasMemory(TLI);
7921 
7922     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7923     // FIXME: Could we compute this on OpInfo rather than T?
7924 
7925     // Compute the constraint code and ConstraintType to use.
7926     TLI.ComputeConstraintToUse(T, SDValue());
7927 
7928     ExtraInfo.update(T);
7929   }
7930 
7931   // We won't need to flush pending loads if this asm doesn't touch
7932   // memory and is nonvolatile.
7933   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7934 
7935   // Second pass over the constraints: compute which constraint option to use.
7936   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7937     // If this is an output operand with a matching input operand, look up the
7938     // matching input. If their types mismatch, e.g. one is an integer, the
7939     // other is floating point, or their sizes are different, flag it as an
7940     // error.
7941     if (OpInfo.hasMatchingInput()) {
7942       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7943       patchMatchingInput(OpInfo, Input, DAG);
7944     }
7945 
7946     // Compute the constraint code and ConstraintType to use.
7947     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7948 
7949     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7950         OpInfo.Type == InlineAsm::isClobber)
7951       continue;
7952 
7953     // If this is a memory input, and if the operand is not indirect, do what we
7954     // need to provide an address for the memory input.
7955     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7956         !OpInfo.isIndirect) {
7957       assert((OpInfo.isMultipleAlternative ||
7958               (OpInfo.Type == InlineAsm::isInput)) &&
7959              "Can only indirectify direct input operands!");
7960 
7961       // Memory operands really want the address of the value.
7962       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7963 
7964       // There is no longer a Value* corresponding to this operand.
7965       OpInfo.CallOperandVal = nullptr;
7966 
7967       // It is now an indirect operand.
7968       OpInfo.isIndirect = true;
7969     }
7970 
7971   }
7972 
7973   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7974   std::vector<SDValue> AsmNodeOperands;
7975   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7976   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7977       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7978 
7979   // If we have a !srcloc metadata node associated with it, we want to attach
7980   // this to the ultimately generated inline asm machineinstr.  To do this, we
7981   // pass in the third operand as this (potentially null) inline asm MDNode.
7982   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7983   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7984 
7985   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7986   // bits as operand 3.
7987   AsmNodeOperands.push_back(DAG.getTargetConstant(
7988       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7989 
7990   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7991   // this, assign virtual and physical registers for inputs and otput.
7992   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7993     // Assign Registers.
7994     SDISelAsmOperandInfo &RefOpInfo =
7995         OpInfo.isMatchingInputConstraint()
7996             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7997             : OpInfo;
7998     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7999 
8000     switch (OpInfo.Type) {
8001     case InlineAsm::isOutput:
8002       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8003           (OpInfo.ConstraintType == TargetLowering::C_Other &&
8004            OpInfo.isIndirect)) {
8005         unsigned ConstraintID =
8006             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8007         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8008                "Failed to convert memory constraint code to constraint id.");
8009 
8010         // Add information to the INLINEASM node to know about this output.
8011         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8012         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8013         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8014                                                         MVT::i32));
8015         AsmNodeOperands.push_back(OpInfo.CallOperand);
8016         break;
8017       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
8018                   !OpInfo.isIndirect) ||
8019                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8020                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8021         // Otherwise, this outputs to a register (directly for C_Register /
8022         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8023         // register that we can use.
8024         if (OpInfo.AssignedRegs.Regs.empty()) {
8025           emitInlineAsmError(
8026               CS, "couldn't allocate output register for constraint '" +
8027                       Twine(OpInfo.ConstraintCode) + "'");
8028           return;
8029         }
8030 
8031         // Add information to the INLINEASM node to know that this register is
8032         // set.
8033         OpInfo.AssignedRegs.AddInlineAsmOperands(
8034             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8035                                   : InlineAsm::Kind_RegDef,
8036             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8037       }
8038       break;
8039 
8040     case InlineAsm::isInput: {
8041       SDValue InOperandVal = OpInfo.CallOperand;
8042 
8043       if (OpInfo.isMatchingInputConstraint()) {
8044         // If this is required to match an output register we have already set,
8045         // just use its register.
8046         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8047                                                   AsmNodeOperands);
8048         unsigned OpFlag =
8049           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8050         if (InlineAsm::isRegDefKind(OpFlag) ||
8051             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8052           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8053           if (OpInfo.isIndirect) {
8054             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8055             emitInlineAsmError(CS, "inline asm not supported yet:"
8056                                    " don't know how to handle tied "
8057                                    "indirect register inputs");
8058             return;
8059           }
8060 
8061           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8062           SmallVector<unsigned, 4> Regs;
8063 
8064           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8065             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8066             MachineRegisterInfo &RegInfo =
8067                 DAG.getMachineFunction().getRegInfo();
8068             for (unsigned i = 0; i != NumRegs; ++i)
8069               Regs.push_back(RegInfo.createVirtualRegister(RC));
8070           } else {
8071             emitInlineAsmError(CS, "inline asm error: This value type register "
8072                                    "class is not natively supported!");
8073             return;
8074           }
8075 
8076           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8077 
8078           SDLoc dl = getCurSDLoc();
8079           // Use the produced MatchedRegs object to
8080           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8081                                     CS.getInstruction());
8082           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8083                                            true, OpInfo.getMatchedOperand(), dl,
8084                                            DAG, AsmNodeOperands);
8085           break;
8086         }
8087 
8088         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8089         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8090                "Unexpected number of operands");
8091         // Add information to the INLINEASM node to know about this input.
8092         // See InlineAsm.h isUseOperandTiedToDef.
8093         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8094         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8095                                                     OpInfo.getMatchedOperand());
8096         AsmNodeOperands.push_back(DAG.getTargetConstant(
8097             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8098         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8099         break;
8100       }
8101 
8102       // Treat indirect 'X' constraint as memory.
8103       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8104           OpInfo.isIndirect)
8105         OpInfo.ConstraintType = TargetLowering::C_Memory;
8106 
8107       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8108         std::vector<SDValue> Ops;
8109         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8110                                           Ops, DAG);
8111         if (Ops.empty()) {
8112           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8113                                      Twine(OpInfo.ConstraintCode) + "'");
8114           return;
8115         }
8116 
8117         // Add information to the INLINEASM node to know about this input.
8118         unsigned ResOpType =
8119           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8120         AsmNodeOperands.push_back(DAG.getTargetConstant(
8121             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8122         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8123         break;
8124       }
8125 
8126       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8127         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8128         assert(InOperandVal.getValueType() ==
8129                    TLI.getPointerTy(DAG.getDataLayout()) &&
8130                "Memory operands expect pointer values");
8131 
8132         unsigned ConstraintID =
8133             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8134         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8135                "Failed to convert memory constraint code to constraint id.");
8136 
8137         // Add information to the INLINEASM node to know about this input.
8138         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8139         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8140         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8141                                                         getCurSDLoc(),
8142                                                         MVT::i32));
8143         AsmNodeOperands.push_back(InOperandVal);
8144         break;
8145       }
8146 
8147       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8148               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8149              "Unknown constraint type!");
8150 
8151       // TODO: Support this.
8152       if (OpInfo.isIndirect) {
8153         emitInlineAsmError(
8154             CS, "Don't know how to handle indirect register inputs yet "
8155                 "for constraint '" +
8156                     Twine(OpInfo.ConstraintCode) + "'");
8157         return;
8158       }
8159 
8160       // Copy the input into the appropriate registers.
8161       if (OpInfo.AssignedRegs.Regs.empty()) {
8162         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8163                                    Twine(OpInfo.ConstraintCode) + "'");
8164         return;
8165       }
8166 
8167       SDLoc dl = getCurSDLoc();
8168 
8169       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8170                                         Chain, &Flag, CS.getInstruction());
8171 
8172       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8173                                                dl, DAG, AsmNodeOperands);
8174       break;
8175     }
8176     case InlineAsm::isClobber:
8177       // Add the clobbered value to the operand list, so that the register
8178       // allocator is aware that the physreg got clobbered.
8179       if (!OpInfo.AssignedRegs.Regs.empty())
8180         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8181                                                  false, 0, getCurSDLoc(), DAG,
8182                                                  AsmNodeOperands);
8183       break;
8184     }
8185   }
8186 
8187   // Finish up input operands.  Set the input chain and add the flag last.
8188   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8189   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8190 
8191   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR
8192                                                          : ISD::INLINEASM;
8193   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8194                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8195   Flag = Chain.getValue(1);
8196 
8197   // Do additional work to generate outputs.
8198 
8199   SmallVector<EVT, 1> ResultVTs;
8200   SmallVector<SDValue, 1> ResultValues;
8201   SmallVector<SDValue, 8> OutChains;
8202 
8203   llvm::Type *CSResultType = CS.getType();
8204   ArrayRef<Type *> ResultTypes;
8205   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8206     ResultTypes = StructResult->elements();
8207   else if (!CSResultType->isVoidTy())
8208     ResultTypes = makeArrayRef(CSResultType);
8209 
8210   auto CurResultType = ResultTypes.begin();
8211   auto handleRegAssign = [&](SDValue V) {
8212     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8213     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8214     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8215     ++CurResultType;
8216     // If the type of the inline asm call site return value is different but has
8217     // same size as the type of the asm output bitcast it.  One example of this
8218     // is for vectors with different width / number of elements.  This can
8219     // happen for register classes that can contain multiple different value
8220     // types.  The preg or vreg allocated may not have the same VT as was
8221     // expected.
8222     //
8223     // This can also happen for a return value that disagrees with the register
8224     // class it is put in, eg. a double in a general-purpose register on a
8225     // 32-bit machine.
8226     if (ResultVT != V.getValueType() &&
8227         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8228       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8229     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8230              V.getValueType().isInteger()) {
8231       // If a result value was tied to an input value, the computed result
8232       // may have a wider width than the expected result.  Extract the
8233       // relevant portion.
8234       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8235     }
8236     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8237     ResultVTs.push_back(ResultVT);
8238     ResultValues.push_back(V);
8239   };
8240 
8241   // Deal with output operands.
8242   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8243     if (OpInfo.Type == InlineAsm::isOutput) {
8244       SDValue Val;
8245       // Skip trivial output operands.
8246       if (OpInfo.AssignedRegs.Regs.empty())
8247         continue;
8248 
8249       switch (OpInfo.ConstraintType) {
8250       case TargetLowering::C_Register:
8251       case TargetLowering::C_RegisterClass:
8252         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8253             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8254         break;
8255       case TargetLowering::C_Other:
8256         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8257                                               OpInfo, DAG);
8258         break;
8259       case TargetLowering::C_Memory:
8260         break; // Already handled.
8261       case TargetLowering::C_Unknown:
8262         assert(false && "Unexpected unknown constraint");
8263       }
8264 
8265       // Indirect output manifest as stores. Record output chains.
8266       if (OpInfo.isIndirect) {
8267         const Value *Ptr = OpInfo.CallOperandVal;
8268         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8269         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8270                                      MachinePointerInfo(Ptr));
8271         OutChains.push_back(Store);
8272       } else {
8273         // generate CopyFromRegs to associated registers.
8274         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8275         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8276           for (const SDValue &V : Val->op_values())
8277             handleRegAssign(V);
8278         } else
8279           handleRegAssign(Val);
8280       }
8281     }
8282   }
8283 
8284   // Set results.
8285   if (!ResultValues.empty()) {
8286     assert(CurResultType == ResultTypes.end() &&
8287            "Mismatch in number of ResultTypes");
8288     assert(ResultValues.size() == ResultTypes.size() &&
8289            "Mismatch in number of output operands in asm result");
8290 
8291     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8292                             DAG.getVTList(ResultVTs), ResultValues);
8293     setValue(CS.getInstruction(), V);
8294   }
8295 
8296   // Collect store chains.
8297   if (!OutChains.empty())
8298     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8299 
8300   // Only Update Root if inline assembly has a memory effect.
8301   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8302     DAG.setRoot(Chain);
8303 }
8304 
8305 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8306                                              const Twine &Message) {
8307   LLVMContext &Ctx = *DAG.getContext();
8308   Ctx.emitError(CS.getInstruction(), Message);
8309 
8310   // Make sure we leave the DAG in a valid state
8311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8312   SmallVector<EVT, 1> ValueVTs;
8313   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8314 
8315   if (ValueVTs.empty())
8316     return;
8317 
8318   SmallVector<SDValue, 1> Ops;
8319   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8320     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8321 
8322   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8323 }
8324 
8325 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8326   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8327                           MVT::Other, getRoot(),
8328                           getValue(I.getArgOperand(0)),
8329                           DAG.getSrcValue(I.getArgOperand(0))));
8330 }
8331 
8332 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8333   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8334   const DataLayout &DL = DAG.getDataLayout();
8335   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8336                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8337                            DAG.getSrcValue(I.getOperand(0)),
8338                            DL.getABITypeAlignment(I.getType()));
8339   setValue(&I, V);
8340   DAG.setRoot(V.getValue(1));
8341 }
8342 
8343 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8344   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8345                           MVT::Other, getRoot(),
8346                           getValue(I.getArgOperand(0)),
8347                           DAG.getSrcValue(I.getArgOperand(0))));
8348 }
8349 
8350 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8351   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8352                           MVT::Other, getRoot(),
8353                           getValue(I.getArgOperand(0)),
8354                           getValue(I.getArgOperand(1)),
8355                           DAG.getSrcValue(I.getArgOperand(0)),
8356                           DAG.getSrcValue(I.getArgOperand(1))));
8357 }
8358 
8359 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8360                                                     const Instruction &I,
8361                                                     SDValue Op) {
8362   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8363   if (!Range)
8364     return Op;
8365 
8366   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8367   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8368     return Op;
8369 
8370   APInt Lo = CR.getUnsignedMin();
8371   if (!Lo.isMinValue())
8372     return Op;
8373 
8374   APInt Hi = CR.getUnsignedMax();
8375   unsigned Bits = std::max(Hi.getActiveBits(),
8376                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8377 
8378   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8379 
8380   SDLoc SL = getCurSDLoc();
8381 
8382   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8383                              DAG.getValueType(SmallVT));
8384   unsigned NumVals = Op.getNode()->getNumValues();
8385   if (NumVals == 1)
8386     return ZExt;
8387 
8388   SmallVector<SDValue, 4> Ops;
8389 
8390   Ops.push_back(ZExt);
8391   for (unsigned I = 1; I != NumVals; ++I)
8392     Ops.push_back(Op.getValue(I));
8393 
8394   return DAG.getMergeValues(Ops, SL);
8395 }
8396 
8397 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8398 /// the call being lowered.
8399 ///
8400 /// This is a helper for lowering intrinsics that follow a target calling
8401 /// convention or require stack pointer adjustment. Only a subset of the
8402 /// intrinsic's operands need to participate in the calling convention.
8403 void SelectionDAGBuilder::populateCallLoweringInfo(
8404     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8405     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8406     bool IsPatchPoint) {
8407   TargetLowering::ArgListTy Args;
8408   Args.reserve(NumArgs);
8409 
8410   // Populate the argument list.
8411   // Attributes for args start at offset 1, after the return attribute.
8412   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8413        ArgI != ArgE; ++ArgI) {
8414     const Value *V = Call->getOperand(ArgI);
8415 
8416     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8417 
8418     TargetLowering::ArgListEntry Entry;
8419     Entry.Node = getValue(V);
8420     Entry.Ty = V->getType();
8421     Entry.setAttributes(Call, ArgI);
8422     Args.push_back(Entry);
8423   }
8424 
8425   CLI.setDebugLoc(getCurSDLoc())
8426       .setChain(getRoot())
8427       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8428       .setDiscardResult(Call->use_empty())
8429       .setIsPatchPoint(IsPatchPoint);
8430 }
8431 
8432 /// Add a stack map intrinsic call's live variable operands to a stackmap
8433 /// or patchpoint target node's operand list.
8434 ///
8435 /// Constants are converted to TargetConstants purely as an optimization to
8436 /// avoid constant materialization and register allocation.
8437 ///
8438 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8439 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8440 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8441 /// address materialization and register allocation, but may also be required
8442 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8443 /// alloca in the entry block, then the runtime may assume that the alloca's
8444 /// StackMap location can be read immediately after compilation and that the
8445 /// location is valid at any point during execution (this is similar to the
8446 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8447 /// only available in a register, then the runtime would need to trap when
8448 /// execution reaches the StackMap in order to read the alloca's location.
8449 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8450                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8451                                 SelectionDAGBuilder &Builder) {
8452   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8453     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8454     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8455       Ops.push_back(
8456         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8457       Ops.push_back(
8458         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8459     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8460       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8461       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8462           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8463     } else
8464       Ops.push_back(OpVal);
8465   }
8466 }
8467 
8468 /// Lower llvm.experimental.stackmap directly to its target opcode.
8469 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8470   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8471   //                                  [live variables...])
8472 
8473   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8474 
8475   SDValue Chain, InFlag, Callee, NullPtr;
8476   SmallVector<SDValue, 32> Ops;
8477 
8478   SDLoc DL = getCurSDLoc();
8479   Callee = getValue(CI.getCalledValue());
8480   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8481 
8482   // The stackmap intrinsic only records the live variables (the arguemnts
8483   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8484   // intrinsic, this won't be lowered to a function call. This means we don't
8485   // have to worry about calling conventions and target specific lowering code.
8486   // Instead we perform the call lowering right here.
8487   //
8488   // chain, flag = CALLSEQ_START(chain, 0, 0)
8489   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8490   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8491   //
8492   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8493   InFlag = Chain.getValue(1);
8494 
8495   // Add the <id> and <numBytes> constants.
8496   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8497   Ops.push_back(DAG.getTargetConstant(
8498                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8499   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8500   Ops.push_back(DAG.getTargetConstant(
8501                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8502                   MVT::i32));
8503 
8504   // Push live variables for the stack map.
8505   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8506 
8507   // We are not pushing any register mask info here on the operands list,
8508   // because the stackmap doesn't clobber anything.
8509 
8510   // Push the chain and the glue flag.
8511   Ops.push_back(Chain);
8512   Ops.push_back(InFlag);
8513 
8514   // Create the STACKMAP node.
8515   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8516   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8517   Chain = SDValue(SM, 0);
8518   InFlag = Chain.getValue(1);
8519 
8520   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8521 
8522   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8523 
8524   // Set the root to the target-lowered call chain.
8525   DAG.setRoot(Chain);
8526 
8527   // Inform the Frame Information that we have a stackmap in this function.
8528   FuncInfo.MF->getFrameInfo().setHasStackMap();
8529 }
8530 
8531 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8532 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8533                                           const BasicBlock *EHPadBB) {
8534   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8535   //                                                 i32 <numBytes>,
8536   //                                                 i8* <target>,
8537   //                                                 i32 <numArgs>,
8538   //                                                 [Args...],
8539   //                                                 [live variables...])
8540 
8541   CallingConv::ID CC = CS.getCallingConv();
8542   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8543   bool HasDef = !CS->getType()->isVoidTy();
8544   SDLoc dl = getCurSDLoc();
8545   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8546 
8547   // Handle immediate and symbolic callees.
8548   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8549     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8550                                    /*isTarget=*/true);
8551   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8552     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8553                                          SDLoc(SymbolicCallee),
8554                                          SymbolicCallee->getValueType(0));
8555 
8556   // Get the real number of arguments participating in the call <numArgs>
8557   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8558   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8559 
8560   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8561   // Intrinsics include all meta-operands up to but not including CC.
8562   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8563   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8564          "Not enough arguments provided to the patchpoint intrinsic");
8565 
8566   // For AnyRegCC the arguments are lowered later on manually.
8567   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8568   Type *ReturnTy =
8569     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8570 
8571   TargetLowering::CallLoweringInfo CLI(DAG);
8572   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8573                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8574   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8575 
8576   SDNode *CallEnd = Result.second.getNode();
8577   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8578     CallEnd = CallEnd->getOperand(0).getNode();
8579 
8580   /// Get a call instruction from the call sequence chain.
8581   /// Tail calls are not allowed.
8582   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8583          "Expected a callseq node.");
8584   SDNode *Call = CallEnd->getOperand(0).getNode();
8585   bool HasGlue = Call->getGluedNode();
8586 
8587   // Replace the target specific call node with the patchable intrinsic.
8588   SmallVector<SDValue, 8> Ops;
8589 
8590   // Add the <id> and <numBytes> constants.
8591   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8592   Ops.push_back(DAG.getTargetConstant(
8593                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8594   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8595   Ops.push_back(DAG.getTargetConstant(
8596                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8597                   MVT::i32));
8598 
8599   // Add the callee.
8600   Ops.push_back(Callee);
8601 
8602   // Adjust <numArgs> to account for any arguments that have been passed on the
8603   // stack instead.
8604   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8605   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8606   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8607   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8608 
8609   // Add the calling convention
8610   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8611 
8612   // Add the arguments we omitted previously. The register allocator should
8613   // place these in any free register.
8614   if (IsAnyRegCC)
8615     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8616       Ops.push_back(getValue(CS.getArgument(i)));
8617 
8618   // Push the arguments from the call instruction up to the register mask.
8619   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8620   Ops.append(Call->op_begin() + 2, e);
8621 
8622   // Push live variables for the stack map.
8623   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8624 
8625   // Push the register mask info.
8626   if (HasGlue)
8627     Ops.push_back(*(Call->op_end()-2));
8628   else
8629     Ops.push_back(*(Call->op_end()-1));
8630 
8631   // Push the chain (this is originally the first operand of the call, but
8632   // becomes now the last or second to last operand).
8633   Ops.push_back(*(Call->op_begin()));
8634 
8635   // Push the glue flag (last operand).
8636   if (HasGlue)
8637     Ops.push_back(*(Call->op_end()-1));
8638 
8639   SDVTList NodeTys;
8640   if (IsAnyRegCC && HasDef) {
8641     // Create the return types based on the intrinsic definition
8642     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8643     SmallVector<EVT, 3> ValueVTs;
8644     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8645     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8646 
8647     // There is always a chain and a glue type at the end
8648     ValueVTs.push_back(MVT::Other);
8649     ValueVTs.push_back(MVT::Glue);
8650     NodeTys = DAG.getVTList(ValueVTs);
8651   } else
8652     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8653 
8654   // Replace the target specific call node with a PATCHPOINT node.
8655   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8656                                          dl, NodeTys, Ops);
8657 
8658   // Update the NodeMap.
8659   if (HasDef) {
8660     if (IsAnyRegCC)
8661       setValue(CS.getInstruction(), SDValue(MN, 0));
8662     else
8663       setValue(CS.getInstruction(), Result.first);
8664   }
8665 
8666   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8667   // call sequence. Furthermore the location of the chain and glue can change
8668   // when the AnyReg calling convention is used and the intrinsic returns a
8669   // value.
8670   if (IsAnyRegCC && HasDef) {
8671     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8672     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8673     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8674   } else
8675     DAG.ReplaceAllUsesWith(Call, MN);
8676   DAG.DeleteNode(Call);
8677 
8678   // Inform the Frame Information that we have a patchpoint in this function.
8679   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8680 }
8681 
8682 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8683                                             unsigned Intrinsic) {
8684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8685   SDValue Op1 = getValue(I.getArgOperand(0));
8686   SDValue Op2;
8687   if (I.getNumArgOperands() > 1)
8688     Op2 = getValue(I.getArgOperand(1));
8689   SDLoc dl = getCurSDLoc();
8690   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8691   SDValue Res;
8692   FastMathFlags FMF;
8693   if (isa<FPMathOperator>(I))
8694     FMF = I.getFastMathFlags();
8695 
8696   switch (Intrinsic) {
8697   case Intrinsic::experimental_vector_reduce_fadd:
8698     if (FMF.isFast())
8699       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8700     else
8701       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8702     break;
8703   case Intrinsic::experimental_vector_reduce_fmul:
8704     if (FMF.isFast())
8705       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8706     else
8707       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8708     break;
8709   case Intrinsic::experimental_vector_reduce_add:
8710     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8711     break;
8712   case Intrinsic::experimental_vector_reduce_mul:
8713     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8714     break;
8715   case Intrinsic::experimental_vector_reduce_and:
8716     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8717     break;
8718   case Intrinsic::experimental_vector_reduce_or:
8719     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8720     break;
8721   case Intrinsic::experimental_vector_reduce_xor:
8722     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8723     break;
8724   case Intrinsic::experimental_vector_reduce_smax:
8725     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8726     break;
8727   case Intrinsic::experimental_vector_reduce_smin:
8728     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8729     break;
8730   case Intrinsic::experimental_vector_reduce_umax:
8731     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8732     break;
8733   case Intrinsic::experimental_vector_reduce_umin:
8734     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8735     break;
8736   case Intrinsic::experimental_vector_reduce_fmax:
8737     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8738     break;
8739   case Intrinsic::experimental_vector_reduce_fmin:
8740     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8741     break;
8742   default:
8743     llvm_unreachable("Unhandled vector reduce intrinsic");
8744   }
8745   setValue(&I, Res);
8746 }
8747 
8748 /// Returns an AttributeList representing the attributes applied to the return
8749 /// value of the given call.
8750 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8751   SmallVector<Attribute::AttrKind, 2> Attrs;
8752   if (CLI.RetSExt)
8753     Attrs.push_back(Attribute::SExt);
8754   if (CLI.RetZExt)
8755     Attrs.push_back(Attribute::ZExt);
8756   if (CLI.IsInReg)
8757     Attrs.push_back(Attribute::InReg);
8758 
8759   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8760                             Attrs);
8761 }
8762 
8763 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8764 /// implementation, which just calls LowerCall.
8765 /// FIXME: When all targets are
8766 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8767 std::pair<SDValue, SDValue>
8768 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8769   // Handle the incoming return values from the call.
8770   CLI.Ins.clear();
8771   Type *OrigRetTy = CLI.RetTy;
8772   SmallVector<EVT, 4> RetTys;
8773   SmallVector<uint64_t, 4> Offsets;
8774   auto &DL = CLI.DAG.getDataLayout();
8775   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8776 
8777   if (CLI.IsPostTypeLegalization) {
8778     // If we are lowering a libcall after legalization, split the return type.
8779     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8780     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8781     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8782       EVT RetVT = OldRetTys[i];
8783       uint64_t Offset = OldOffsets[i];
8784       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8785       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8786       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8787       RetTys.append(NumRegs, RegisterVT);
8788       for (unsigned j = 0; j != NumRegs; ++j)
8789         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8790     }
8791   }
8792 
8793   SmallVector<ISD::OutputArg, 4> Outs;
8794   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8795 
8796   bool CanLowerReturn =
8797       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8798                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8799 
8800   SDValue DemoteStackSlot;
8801   int DemoteStackIdx = -100;
8802   if (!CanLowerReturn) {
8803     // FIXME: equivalent assert?
8804     // assert(!CS.hasInAllocaArgument() &&
8805     //        "sret demotion is incompatible with inalloca");
8806     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8807     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8808     MachineFunction &MF = CLI.DAG.getMachineFunction();
8809     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8810     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8811                                               DL.getAllocaAddrSpace());
8812 
8813     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8814     ArgListEntry Entry;
8815     Entry.Node = DemoteStackSlot;
8816     Entry.Ty = StackSlotPtrType;
8817     Entry.IsSExt = false;
8818     Entry.IsZExt = false;
8819     Entry.IsInReg = false;
8820     Entry.IsSRet = true;
8821     Entry.IsNest = false;
8822     Entry.IsByVal = false;
8823     Entry.IsReturned = false;
8824     Entry.IsSwiftSelf = false;
8825     Entry.IsSwiftError = false;
8826     Entry.Alignment = Align;
8827     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8828     CLI.NumFixedArgs += 1;
8829     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8830 
8831     // sret demotion isn't compatible with tail-calls, since the sret argument
8832     // points into the callers stack frame.
8833     CLI.IsTailCall = false;
8834   } else {
8835     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8836       EVT VT = RetTys[I];
8837       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8838                                                      CLI.CallConv, VT);
8839       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8840                                                        CLI.CallConv, VT);
8841       for (unsigned i = 0; i != NumRegs; ++i) {
8842         ISD::InputArg MyFlags;
8843         MyFlags.Flags = Flags;
8844         MyFlags.VT = RegisterVT;
8845         MyFlags.ArgVT = VT;
8846         MyFlags.Used = CLI.IsReturnValueUsed;
8847         if (CLI.RetTy->isPointerTy()) {
8848           MyFlags.Flags.setPointer();
8849           MyFlags.Flags.setPointerAddrSpace(
8850               cast<PointerType>(CLI.RetTy)->getAddressSpace());
8851         }
8852         if (CLI.RetSExt)
8853           MyFlags.Flags.setSExt();
8854         if (CLI.RetZExt)
8855           MyFlags.Flags.setZExt();
8856         if (CLI.IsInReg)
8857           MyFlags.Flags.setInReg();
8858         CLI.Ins.push_back(MyFlags);
8859       }
8860     }
8861   }
8862 
8863   // We push in swifterror return as the last element of CLI.Ins.
8864   ArgListTy &Args = CLI.getArgs();
8865   if (supportSwiftError()) {
8866     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8867       if (Args[i].IsSwiftError) {
8868         ISD::InputArg MyFlags;
8869         MyFlags.VT = getPointerTy(DL);
8870         MyFlags.ArgVT = EVT(getPointerTy(DL));
8871         MyFlags.Flags.setSwiftError();
8872         CLI.Ins.push_back(MyFlags);
8873       }
8874     }
8875   }
8876 
8877   // Handle all of the outgoing arguments.
8878   CLI.Outs.clear();
8879   CLI.OutVals.clear();
8880   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8881     SmallVector<EVT, 4> ValueVTs;
8882     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8883     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8884     Type *FinalType = Args[i].Ty;
8885     if (Args[i].IsByVal)
8886       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8887     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8888         FinalType, CLI.CallConv, CLI.IsVarArg);
8889     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8890          ++Value) {
8891       EVT VT = ValueVTs[Value];
8892       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8893       SDValue Op = SDValue(Args[i].Node.getNode(),
8894                            Args[i].Node.getResNo() + Value);
8895       ISD::ArgFlagsTy Flags;
8896 
8897       // Certain targets (such as MIPS), may have a different ABI alignment
8898       // for a type depending on the context. Give the target a chance to
8899       // specify the alignment it wants.
8900       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8901 
8902       if (Args[i].Ty->isPointerTy()) {
8903         Flags.setPointer();
8904         Flags.setPointerAddrSpace(
8905             cast<PointerType>(Args[i].Ty)->getAddressSpace());
8906       }
8907       if (Args[i].IsZExt)
8908         Flags.setZExt();
8909       if (Args[i].IsSExt)
8910         Flags.setSExt();
8911       if (Args[i].IsInReg) {
8912         // If we are using vectorcall calling convention, a structure that is
8913         // passed InReg - is surely an HVA
8914         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8915             isa<StructType>(FinalType)) {
8916           // The first value of a structure is marked
8917           if (0 == Value)
8918             Flags.setHvaStart();
8919           Flags.setHva();
8920         }
8921         // Set InReg Flag
8922         Flags.setInReg();
8923       }
8924       if (Args[i].IsSRet)
8925         Flags.setSRet();
8926       if (Args[i].IsSwiftSelf)
8927         Flags.setSwiftSelf();
8928       if (Args[i].IsSwiftError)
8929         Flags.setSwiftError();
8930       if (Args[i].IsByVal)
8931         Flags.setByVal();
8932       if (Args[i].IsInAlloca) {
8933         Flags.setInAlloca();
8934         // Set the byval flag for CCAssignFn callbacks that don't know about
8935         // inalloca.  This way we can know how many bytes we should've allocated
8936         // and how many bytes a callee cleanup function will pop.  If we port
8937         // inalloca to more targets, we'll have to add custom inalloca handling
8938         // in the various CC lowering callbacks.
8939         Flags.setByVal();
8940       }
8941       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8942         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8943         Type *ElementTy = Ty->getElementType();
8944         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8945         // For ByVal, alignment should come from FE.  BE will guess if this
8946         // info is not there but there are cases it cannot get right.
8947         unsigned FrameAlign;
8948         if (Args[i].Alignment)
8949           FrameAlign = Args[i].Alignment;
8950         else
8951           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8952         Flags.setByValAlign(FrameAlign);
8953       }
8954       if (Args[i].IsNest)
8955         Flags.setNest();
8956       if (NeedsRegBlock)
8957         Flags.setInConsecutiveRegs();
8958       Flags.setOrigAlign(OriginalAlignment);
8959 
8960       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8961                                                  CLI.CallConv, VT);
8962       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8963                                                         CLI.CallConv, VT);
8964       SmallVector<SDValue, 4> Parts(NumParts);
8965       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8966 
8967       if (Args[i].IsSExt)
8968         ExtendKind = ISD::SIGN_EXTEND;
8969       else if (Args[i].IsZExt)
8970         ExtendKind = ISD::ZERO_EXTEND;
8971 
8972       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8973       // for now.
8974       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8975           CanLowerReturn) {
8976         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8977                "unexpected use of 'returned'");
8978         // Before passing 'returned' to the target lowering code, ensure that
8979         // either the register MVT and the actual EVT are the same size or that
8980         // the return value and argument are extended in the same way; in these
8981         // cases it's safe to pass the argument register value unchanged as the
8982         // return register value (although it's at the target's option whether
8983         // to do so)
8984         // TODO: allow code generation to take advantage of partially preserved
8985         // registers rather than clobbering the entire register when the
8986         // parameter extension method is not compatible with the return
8987         // extension method
8988         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8989             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8990              CLI.RetZExt == Args[i].IsZExt))
8991           Flags.setReturned();
8992       }
8993 
8994       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8995                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8996 
8997       for (unsigned j = 0; j != NumParts; ++j) {
8998         // if it isn't first piece, alignment must be 1
8999         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9000                                i < CLI.NumFixedArgs,
9001                                i, j*Parts[j].getValueType().getStoreSize());
9002         if (NumParts > 1 && j == 0)
9003           MyFlags.Flags.setSplit();
9004         else if (j != 0) {
9005           MyFlags.Flags.setOrigAlign(1);
9006           if (j == NumParts - 1)
9007             MyFlags.Flags.setSplitEnd();
9008         }
9009 
9010         CLI.Outs.push_back(MyFlags);
9011         CLI.OutVals.push_back(Parts[j]);
9012       }
9013 
9014       if (NeedsRegBlock && Value == NumValues - 1)
9015         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9016     }
9017   }
9018 
9019   SmallVector<SDValue, 4> InVals;
9020   CLI.Chain = LowerCall(CLI, InVals);
9021 
9022   // Update CLI.InVals to use outside of this function.
9023   CLI.InVals = InVals;
9024 
9025   // Verify that the target's LowerCall behaved as expected.
9026   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9027          "LowerCall didn't return a valid chain!");
9028   assert((!CLI.IsTailCall || InVals.empty()) &&
9029          "LowerCall emitted a return value for a tail call!");
9030   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9031          "LowerCall didn't emit the correct number of values!");
9032 
9033   // For a tail call, the return value is merely live-out and there aren't
9034   // any nodes in the DAG representing it. Return a special value to
9035   // indicate that a tail call has been emitted and no more Instructions
9036   // should be processed in the current block.
9037   if (CLI.IsTailCall) {
9038     CLI.DAG.setRoot(CLI.Chain);
9039     return std::make_pair(SDValue(), SDValue());
9040   }
9041 
9042 #ifndef NDEBUG
9043   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9044     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9045     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9046            "LowerCall emitted a value with the wrong type!");
9047   }
9048 #endif
9049 
9050   SmallVector<SDValue, 4> ReturnValues;
9051   if (!CanLowerReturn) {
9052     // The instruction result is the result of loading from the
9053     // hidden sret parameter.
9054     SmallVector<EVT, 1> PVTs;
9055     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9056 
9057     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9058     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9059     EVT PtrVT = PVTs[0];
9060 
9061     unsigned NumValues = RetTys.size();
9062     ReturnValues.resize(NumValues);
9063     SmallVector<SDValue, 4> Chains(NumValues);
9064 
9065     // An aggregate return value cannot wrap around the address space, so
9066     // offsets to its parts don't wrap either.
9067     SDNodeFlags Flags;
9068     Flags.setNoUnsignedWrap(true);
9069 
9070     for (unsigned i = 0; i < NumValues; ++i) {
9071       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9072                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9073                                                         PtrVT), Flags);
9074       SDValue L = CLI.DAG.getLoad(
9075           RetTys[i], CLI.DL, CLI.Chain, Add,
9076           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9077                                             DemoteStackIdx, Offsets[i]),
9078           /* Alignment = */ 1);
9079       ReturnValues[i] = L;
9080       Chains[i] = L.getValue(1);
9081     }
9082 
9083     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9084   } else {
9085     // Collect the legal value parts into potentially illegal values
9086     // that correspond to the original function's return values.
9087     Optional<ISD::NodeType> AssertOp;
9088     if (CLI.RetSExt)
9089       AssertOp = ISD::AssertSext;
9090     else if (CLI.RetZExt)
9091       AssertOp = ISD::AssertZext;
9092     unsigned CurReg = 0;
9093     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9094       EVT VT = RetTys[I];
9095       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9096                                                      CLI.CallConv, VT);
9097       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9098                                                        CLI.CallConv, VT);
9099 
9100       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9101                                               NumRegs, RegisterVT, VT, nullptr,
9102                                               CLI.CallConv, AssertOp));
9103       CurReg += NumRegs;
9104     }
9105 
9106     // For a function returning void, there is no return value. We can't create
9107     // such a node, so we just return a null return value in that case. In
9108     // that case, nothing will actually look at the value.
9109     if (ReturnValues.empty())
9110       return std::make_pair(SDValue(), CLI.Chain);
9111   }
9112 
9113   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9114                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9115   return std::make_pair(Res, CLI.Chain);
9116 }
9117 
9118 void TargetLowering::LowerOperationWrapper(SDNode *N,
9119                                            SmallVectorImpl<SDValue> &Results,
9120                                            SelectionDAG &DAG) const {
9121   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9122     Results.push_back(Res);
9123 }
9124 
9125 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9126   llvm_unreachable("LowerOperation not implemented for this target!");
9127 }
9128 
9129 void
9130 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9131   SDValue Op = getNonRegisterValue(V);
9132   assert((Op.getOpcode() != ISD::CopyFromReg ||
9133           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9134          "Copy from a reg to the same reg!");
9135   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9136 
9137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9138   // If this is an InlineAsm we have to match the registers required, not the
9139   // notional registers required by the type.
9140 
9141   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9142                    None); // This is not an ABI copy.
9143   SDValue Chain = DAG.getEntryNode();
9144 
9145   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9146                               FuncInfo.PreferredExtendType.end())
9147                                  ? ISD::ANY_EXTEND
9148                                  : FuncInfo.PreferredExtendType[V];
9149   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9150   PendingExports.push_back(Chain);
9151 }
9152 
9153 #include "llvm/CodeGen/SelectionDAGISel.h"
9154 
9155 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9156 /// entry block, return true.  This includes arguments used by switches, since
9157 /// the switch may expand into multiple basic blocks.
9158 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9159   // With FastISel active, we may be splitting blocks, so force creation
9160   // of virtual registers for all non-dead arguments.
9161   if (FastISel)
9162     return A->use_empty();
9163 
9164   const BasicBlock &Entry = A->getParent()->front();
9165   for (const User *U : A->users())
9166     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9167       return false;  // Use not in entry block.
9168 
9169   return true;
9170 }
9171 
9172 using ArgCopyElisionMapTy =
9173     DenseMap<const Argument *,
9174              std::pair<const AllocaInst *, const StoreInst *>>;
9175 
9176 /// Scan the entry block of the function in FuncInfo for arguments that look
9177 /// like copies into a local alloca. Record any copied arguments in
9178 /// ArgCopyElisionCandidates.
9179 static void
9180 findArgumentCopyElisionCandidates(const DataLayout &DL,
9181                                   FunctionLoweringInfo *FuncInfo,
9182                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9183   // Record the state of every static alloca used in the entry block. Argument
9184   // allocas are all used in the entry block, so we need approximately as many
9185   // entries as we have arguments.
9186   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9187   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9188   unsigned NumArgs = FuncInfo->Fn->arg_size();
9189   StaticAllocas.reserve(NumArgs * 2);
9190 
9191   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9192     if (!V)
9193       return nullptr;
9194     V = V->stripPointerCasts();
9195     const auto *AI = dyn_cast<AllocaInst>(V);
9196     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9197       return nullptr;
9198     auto Iter = StaticAllocas.insert({AI, Unknown});
9199     return &Iter.first->second;
9200   };
9201 
9202   // Look for stores of arguments to static allocas. Look through bitcasts and
9203   // GEPs to handle type coercions, as long as the alloca is fully initialized
9204   // by the store. Any non-store use of an alloca escapes it and any subsequent
9205   // unanalyzed store might write it.
9206   // FIXME: Handle structs initialized with multiple stores.
9207   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9208     // Look for stores, and handle non-store uses conservatively.
9209     const auto *SI = dyn_cast<StoreInst>(&I);
9210     if (!SI) {
9211       // We will look through cast uses, so ignore them completely.
9212       if (I.isCast())
9213         continue;
9214       // Ignore debug info intrinsics, they don't escape or store to allocas.
9215       if (isa<DbgInfoIntrinsic>(I))
9216         continue;
9217       // This is an unknown instruction. Assume it escapes or writes to all
9218       // static alloca operands.
9219       for (const Use &U : I.operands()) {
9220         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9221           *Info = StaticAllocaInfo::Clobbered;
9222       }
9223       continue;
9224     }
9225 
9226     // If the stored value is a static alloca, mark it as escaped.
9227     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9228       *Info = StaticAllocaInfo::Clobbered;
9229 
9230     // Check if the destination is a static alloca.
9231     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9232     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9233     if (!Info)
9234       continue;
9235     const AllocaInst *AI = cast<AllocaInst>(Dst);
9236 
9237     // Skip allocas that have been initialized or clobbered.
9238     if (*Info != StaticAllocaInfo::Unknown)
9239       continue;
9240 
9241     // Check if the stored value is an argument, and that this store fully
9242     // initializes the alloca. Don't elide copies from the same argument twice.
9243     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9244     const auto *Arg = dyn_cast<Argument>(Val);
9245     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9246         Arg->getType()->isEmptyTy() ||
9247         DL.getTypeStoreSize(Arg->getType()) !=
9248             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9249         ArgCopyElisionCandidates.count(Arg)) {
9250       *Info = StaticAllocaInfo::Clobbered;
9251       continue;
9252     }
9253 
9254     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9255                       << '\n');
9256 
9257     // Mark this alloca and store for argument copy elision.
9258     *Info = StaticAllocaInfo::Elidable;
9259     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9260 
9261     // Stop scanning if we've seen all arguments. This will happen early in -O0
9262     // builds, which is useful, because -O0 builds have large entry blocks and
9263     // many allocas.
9264     if (ArgCopyElisionCandidates.size() == NumArgs)
9265       break;
9266   }
9267 }
9268 
9269 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9270 /// ArgVal is a load from a suitable fixed stack object.
9271 static void tryToElideArgumentCopy(
9272     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9273     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9274     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9275     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9276     SDValue ArgVal, bool &ArgHasUses) {
9277   // Check if this is a load from a fixed stack object.
9278   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9279   if (!LNode)
9280     return;
9281   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9282   if (!FINode)
9283     return;
9284 
9285   // Check that the fixed stack object is the right size and alignment.
9286   // Look at the alignment that the user wrote on the alloca instead of looking
9287   // at the stack object.
9288   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9289   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9290   const AllocaInst *AI = ArgCopyIter->second.first;
9291   int FixedIndex = FINode->getIndex();
9292   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9293   int OldIndex = AllocaIndex;
9294   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9295   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9296     LLVM_DEBUG(
9297         dbgs() << "  argument copy elision failed due to bad fixed stack "
9298                   "object size\n");
9299     return;
9300   }
9301   unsigned RequiredAlignment = AI->getAlignment();
9302   if (!RequiredAlignment) {
9303     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9304         AI->getAllocatedType());
9305   }
9306   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9307     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9308                          "greater than stack argument alignment ("
9309                       << RequiredAlignment << " vs "
9310                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9311     return;
9312   }
9313 
9314   // Perform the elision. Delete the old stack object and replace its only use
9315   // in the variable info map. Mark the stack object as mutable.
9316   LLVM_DEBUG({
9317     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9318            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9319            << '\n';
9320   });
9321   MFI.RemoveStackObject(OldIndex);
9322   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9323   AllocaIndex = FixedIndex;
9324   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9325   Chains.push_back(ArgVal.getValue(1));
9326 
9327   // Avoid emitting code for the store implementing the copy.
9328   const StoreInst *SI = ArgCopyIter->second.second;
9329   ElidedArgCopyInstrs.insert(SI);
9330 
9331   // Check for uses of the argument again so that we can avoid exporting ArgVal
9332   // if it is't used by anything other than the store.
9333   for (const Value *U : Arg.users()) {
9334     if (U != SI) {
9335       ArgHasUses = true;
9336       break;
9337     }
9338   }
9339 }
9340 
9341 void SelectionDAGISel::LowerArguments(const Function &F) {
9342   SelectionDAG &DAG = SDB->DAG;
9343   SDLoc dl = SDB->getCurSDLoc();
9344   const DataLayout &DL = DAG.getDataLayout();
9345   SmallVector<ISD::InputArg, 16> Ins;
9346 
9347   if (!FuncInfo->CanLowerReturn) {
9348     // Put in an sret pointer parameter before all the other parameters.
9349     SmallVector<EVT, 1> ValueVTs;
9350     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9351                     F.getReturnType()->getPointerTo(
9352                         DAG.getDataLayout().getAllocaAddrSpace()),
9353                     ValueVTs);
9354 
9355     // NOTE: Assuming that a pointer will never break down to more than one VT
9356     // or one register.
9357     ISD::ArgFlagsTy Flags;
9358     Flags.setSRet();
9359     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9360     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9361                          ISD::InputArg::NoArgIndex, 0);
9362     Ins.push_back(RetArg);
9363   }
9364 
9365   // Look for stores of arguments to static allocas. Mark such arguments with a
9366   // flag to ask the target to give us the memory location of that argument if
9367   // available.
9368   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9369   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9370 
9371   // Set up the incoming argument description vector.
9372   for (const Argument &Arg : F.args()) {
9373     unsigned ArgNo = Arg.getArgNo();
9374     SmallVector<EVT, 4> ValueVTs;
9375     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9376     bool isArgValueUsed = !Arg.use_empty();
9377     unsigned PartBase = 0;
9378     Type *FinalType = Arg.getType();
9379     if (Arg.hasAttribute(Attribute::ByVal))
9380       FinalType = cast<PointerType>(FinalType)->getElementType();
9381     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9382         FinalType, F.getCallingConv(), F.isVarArg());
9383     for (unsigned Value = 0, NumValues = ValueVTs.size();
9384          Value != NumValues; ++Value) {
9385       EVT VT = ValueVTs[Value];
9386       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9387       ISD::ArgFlagsTy Flags;
9388 
9389       // Certain targets (such as MIPS), may have a different ABI alignment
9390       // for a type depending on the context. Give the target a chance to
9391       // specify the alignment it wants.
9392       unsigned OriginalAlignment =
9393           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9394 
9395       if (Arg.getType()->isPointerTy()) {
9396         Flags.setPointer();
9397         Flags.setPointerAddrSpace(
9398             cast<PointerType>(Arg.getType())->getAddressSpace());
9399       }
9400       if (Arg.hasAttribute(Attribute::ZExt))
9401         Flags.setZExt();
9402       if (Arg.hasAttribute(Attribute::SExt))
9403         Flags.setSExt();
9404       if (Arg.hasAttribute(Attribute::InReg)) {
9405         // If we are using vectorcall calling convention, a structure that is
9406         // passed InReg - is surely an HVA
9407         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9408             isa<StructType>(Arg.getType())) {
9409           // The first value of a structure is marked
9410           if (0 == Value)
9411             Flags.setHvaStart();
9412           Flags.setHva();
9413         }
9414         // Set InReg Flag
9415         Flags.setInReg();
9416       }
9417       if (Arg.hasAttribute(Attribute::StructRet))
9418         Flags.setSRet();
9419       if (Arg.hasAttribute(Attribute::SwiftSelf))
9420         Flags.setSwiftSelf();
9421       if (Arg.hasAttribute(Attribute::SwiftError))
9422         Flags.setSwiftError();
9423       if (Arg.hasAttribute(Attribute::ByVal))
9424         Flags.setByVal();
9425       if (Arg.hasAttribute(Attribute::InAlloca)) {
9426         Flags.setInAlloca();
9427         // Set the byval flag for CCAssignFn callbacks that don't know about
9428         // inalloca.  This way we can know how many bytes we should've allocated
9429         // and how many bytes a callee cleanup function will pop.  If we port
9430         // inalloca to more targets, we'll have to add custom inalloca handling
9431         // in the various CC lowering callbacks.
9432         Flags.setByVal();
9433       }
9434       if (F.getCallingConv() == CallingConv::X86_INTR) {
9435         // IA Interrupt passes frame (1st parameter) by value in the stack.
9436         if (ArgNo == 0)
9437           Flags.setByVal();
9438       }
9439       if (Flags.isByVal() || Flags.isInAlloca()) {
9440         PointerType *Ty = cast<PointerType>(Arg.getType());
9441         Type *ElementTy = Ty->getElementType();
9442         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9443         // For ByVal, alignment should be passed from FE.  BE will guess if
9444         // this info is not there but there are cases it cannot get right.
9445         unsigned FrameAlign;
9446         if (Arg.getParamAlignment())
9447           FrameAlign = Arg.getParamAlignment();
9448         else
9449           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9450         Flags.setByValAlign(FrameAlign);
9451       }
9452       if (Arg.hasAttribute(Attribute::Nest))
9453         Flags.setNest();
9454       if (NeedsRegBlock)
9455         Flags.setInConsecutiveRegs();
9456       Flags.setOrigAlign(OriginalAlignment);
9457       if (ArgCopyElisionCandidates.count(&Arg))
9458         Flags.setCopyElisionCandidate();
9459 
9460       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9461           *CurDAG->getContext(), F.getCallingConv(), VT);
9462       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9463           *CurDAG->getContext(), F.getCallingConv(), VT);
9464       for (unsigned i = 0; i != NumRegs; ++i) {
9465         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9466                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9467         if (NumRegs > 1 && i == 0)
9468           MyFlags.Flags.setSplit();
9469         // if it isn't first piece, alignment must be 1
9470         else if (i > 0) {
9471           MyFlags.Flags.setOrigAlign(1);
9472           if (i == NumRegs - 1)
9473             MyFlags.Flags.setSplitEnd();
9474         }
9475         Ins.push_back(MyFlags);
9476       }
9477       if (NeedsRegBlock && Value == NumValues - 1)
9478         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9479       PartBase += VT.getStoreSize();
9480     }
9481   }
9482 
9483   // Call the target to set up the argument values.
9484   SmallVector<SDValue, 8> InVals;
9485   SDValue NewRoot = TLI->LowerFormalArguments(
9486       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9487 
9488   // Verify that the target's LowerFormalArguments behaved as expected.
9489   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9490          "LowerFormalArguments didn't return a valid chain!");
9491   assert(InVals.size() == Ins.size() &&
9492          "LowerFormalArguments didn't emit the correct number of values!");
9493   LLVM_DEBUG({
9494     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9495       assert(InVals[i].getNode() &&
9496              "LowerFormalArguments emitted a null value!");
9497       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9498              "LowerFormalArguments emitted a value with the wrong type!");
9499     }
9500   });
9501 
9502   // Update the DAG with the new chain value resulting from argument lowering.
9503   DAG.setRoot(NewRoot);
9504 
9505   // Set up the argument values.
9506   unsigned i = 0;
9507   if (!FuncInfo->CanLowerReturn) {
9508     // Create a virtual register for the sret pointer, and put in a copy
9509     // from the sret argument into it.
9510     SmallVector<EVT, 1> ValueVTs;
9511     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9512                     F.getReturnType()->getPointerTo(
9513                         DAG.getDataLayout().getAllocaAddrSpace()),
9514                     ValueVTs);
9515     MVT VT = ValueVTs[0].getSimpleVT();
9516     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9517     Optional<ISD::NodeType> AssertOp = None;
9518     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9519                                         nullptr, F.getCallingConv(), AssertOp);
9520 
9521     MachineFunction& MF = SDB->DAG.getMachineFunction();
9522     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9523     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9524     FuncInfo->DemoteRegister = SRetReg;
9525     NewRoot =
9526         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9527     DAG.setRoot(NewRoot);
9528 
9529     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9530     ++i;
9531   }
9532 
9533   SmallVector<SDValue, 4> Chains;
9534   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9535   for (const Argument &Arg : F.args()) {
9536     SmallVector<SDValue, 4> ArgValues;
9537     SmallVector<EVT, 4> ValueVTs;
9538     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9539     unsigned NumValues = ValueVTs.size();
9540     if (NumValues == 0)
9541       continue;
9542 
9543     bool ArgHasUses = !Arg.use_empty();
9544 
9545     // Elide the copying store if the target loaded this argument from a
9546     // suitable fixed stack object.
9547     if (Ins[i].Flags.isCopyElisionCandidate()) {
9548       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9549                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9550                              InVals[i], ArgHasUses);
9551     }
9552 
9553     // If this argument is unused then remember its value. It is used to generate
9554     // debugging information.
9555     bool isSwiftErrorArg =
9556         TLI->supportSwiftError() &&
9557         Arg.hasAttribute(Attribute::SwiftError);
9558     if (!ArgHasUses && !isSwiftErrorArg) {
9559       SDB->setUnusedArgValue(&Arg, InVals[i]);
9560 
9561       // Also remember any frame index for use in FastISel.
9562       if (FrameIndexSDNode *FI =
9563           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9564         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9565     }
9566 
9567     for (unsigned Val = 0; Val != NumValues; ++Val) {
9568       EVT VT = ValueVTs[Val];
9569       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9570                                                       F.getCallingConv(), VT);
9571       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9572           *CurDAG->getContext(), F.getCallingConv(), VT);
9573 
9574       // Even an apparant 'unused' swifterror argument needs to be returned. So
9575       // we do generate a copy for it that can be used on return from the
9576       // function.
9577       if (ArgHasUses || isSwiftErrorArg) {
9578         Optional<ISD::NodeType> AssertOp;
9579         if (Arg.hasAttribute(Attribute::SExt))
9580           AssertOp = ISD::AssertSext;
9581         else if (Arg.hasAttribute(Attribute::ZExt))
9582           AssertOp = ISD::AssertZext;
9583 
9584         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9585                                              PartVT, VT, nullptr,
9586                                              F.getCallingConv(), AssertOp));
9587       }
9588 
9589       i += NumParts;
9590     }
9591 
9592     // We don't need to do anything else for unused arguments.
9593     if (ArgValues.empty())
9594       continue;
9595 
9596     // Note down frame index.
9597     if (FrameIndexSDNode *FI =
9598         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9599       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9600 
9601     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9602                                      SDB->getCurSDLoc());
9603 
9604     SDB->setValue(&Arg, Res);
9605     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9606       // We want to associate the argument with the frame index, among
9607       // involved operands, that correspond to the lowest address. The
9608       // getCopyFromParts function, called earlier, is swapping the order of
9609       // the operands to BUILD_PAIR depending on endianness. The result of
9610       // that swapping is that the least significant bits of the argument will
9611       // be in the first operand of the BUILD_PAIR node, and the most
9612       // significant bits will be in the second operand.
9613       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9614       if (LoadSDNode *LNode =
9615           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9616         if (FrameIndexSDNode *FI =
9617             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9618           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9619     }
9620 
9621     // Update the SwiftErrorVRegDefMap.
9622     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9623       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9624       if (TargetRegisterInfo::isVirtualRegister(Reg))
9625         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9626                                            FuncInfo->SwiftErrorArg, Reg);
9627     }
9628 
9629     // If this argument is live outside of the entry block, insert a copy from
9630     // wherever we got it to the vreg that other BB's will reference it as.
9631     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9632       // If we can, though, try to skip creating an unnecessary vreg.
9633       // FIXME: This isn't very clean... it would be nice to make this more
9634       // general.  It's also subtly incompatible with the hacks FastISel
9635       // uses with vregs.
9636       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9637       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9638         FuncInfo->ValueMap[&Arg] = Reg;
9639         continue;
9640       }
9641     }
9642     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9643       FuncInfo->InitializeRegForValue(&Arg);
9644       SDB->CopyToExportRegsIfNeeded(&Arg);
9645     }
9646   }
9647 
9648   if (!Chains.empty()) {
9649     Chains.push_back(NewRoot);
9650     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9651   }
9652 
9653   DAG.setRoot(NewRoot);
9654 
9655   assert(i == InVals.size() && "Argument register count mismatch!");
9656 
9657   // If any argument copy elisions occurred and we have debug info, update the
9658   // stale frame indices used in the dbg.declare variable info table.
9659   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9660   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9661     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9662       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9663       if (I != ArgCopyElisionFrameIndexMap.end())
9664         VI.Slot = I->second;
9665     }
9666   }
9667 
9668   // Finally, if the target has anything special to do, allow it to do so.
9669   EmitFunctionEntryCode();
9670 }
9671 
9672 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9673 /// ensure constants are generated when needed.  Remember the virtual registers
9674 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9675 /// directly add them, because expansion might result in multiple MBB's for one
9676 /// BB.  As such, the start of the BB might correspond to a different MBB than
9677 /// the end.
9678 void
9679 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9680   const Instruction *TI = LLVMBB->getTerminator();
9681 
9682   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9683 
9684   // Check PHI nodes in successors that expect a value to be available from this
9685   // block.
9686   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9687     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9688     if (!isa<PHINode>(SuccBB->begin())) continue;
9689     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9690 
9691     // If this terminator has multiple identical successors (common for
9692     // switches), only handle each succ once.
9693     if (!SuccsHandled.insert(SuccMBB).second)
9694       continue;
9695 
9696     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9697 
9698     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9699     // nodes and Machine PHI nodes, but the incoming operands have not been
9700     // emitted yet.
9701     for (const PHINode &PN : SuccBB->phis()) {
9702       // Ignore dead phi's.
9703       if (PN.use_empty())
9704         continue;
9705 
9706       // Skip empty types
9707       if (PN.getType()->isEmptyTy())
9708         continue;
9709 
9710       unsigned Reg;
9711       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9712 
9713       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9714         unsigned &RegOut = ConstantsOut[C];
9715         if (RegOut == 0) {
9716           RegOut = FuncInfo.CreateRegs(C->getType());
9717           CopyValueToVirtualRegister(C, RegOut);
9718         }
9719         Reg = RegOut;
9720       } else {
9721         DenseMap<const Value *, unsigned>::iterator I =
9722           FuncInfo.ValueMap.find(PHIOp);
9723         if (I != FuncInfo.ValueMap.end())
9724           Reg = I->second;
9725         else {
9726           assert(isa<AllocaInst>(PHIOp) &&
9727                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9728                  "Didn't codegen value into a register!??");
9729           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9730           CopyValueToVirtualRegister(PHIOp, Reg);
9731         }
9732       }
9733 
9734       // Remember that this register needs to added to the machine PHI node as
9735       // the input for this MBB.
9736       SmallVector<EVT, 4> ValueVTs;
9737       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9738       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9739       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9740         EVT VT = ValueVTs[vti];
9741         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9742         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9743           FuncInfo.PHINodesToUpdate.push_back(
9744               std::make_pair(&*MBBI++, Reg + i));
9745         Reg += NumRegisters;
9746       }
9747     }
9748   }
9749 
9750   ConstantsOut.clear();
9751 }
9752 
9753 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9754 /// is 0.
9755 MachineBasicBlock *
9756 SelectionDAGBuilder::StackProtectorDescriptor::
9757 AddSuccessorMBB(const BasicBlock *BB,
9758                 MachineBasicBlock *ParentMBB,
9759                 bool IsLikely,
9760                 MachineBasicBlock *SuccMBB) {
9761   // If SuccBB has not been created yet, create it.
9762   if (!SuccMBB) {
9763     MachineFunction *MF = ParentMBB->getParent();
9764     MachineFunction::iterator BBI(ParentMBB);
9765     SuccMBB = MF->CreateMachineBasicBlock(BB);
9766     MF->insert(++BBI, SuccMBB);
9767   }
9768   // Add it as a successor of ParentMBB.
9769   ParentMBB->addSuccessor(
9770       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9771   return SuccMBB;
9772 }
9773 
9774 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9775   MachineFunction::iterator I(MBB);
9776   if (++I == FuncInfo.MF->end())
9777     return nullptr;
9778   return &*I;
9779 }
9780 
9781 /// During lowering new call nodes can be created (such as memset, etc.).
9782 /// Those will become new roots of the current DAG, but complications arise
9783 /// when they are tail calls. In such cases, the call lowering will update
9784 /// the root, but the builder still needs to know that a tail call has been
9785 /// lowered in order to avoid generating an additional return.
9786 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9787   // If the node is null, we do have a tail call.
9788   if (MaybeTC.getNode() != nullptr)
9789     DAG.setRoot(MaybeTC);
9790   else
9791     HasTailCall = true;
9792 }
9793 
9794 uint64_t
9795 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9796                                        unsigned First, unsigned Last) const {
9797   assert(Last >= First);
9798   const APInt &LowCase = Clusters[First].Low->getValue();
9799   const APInt &HighCase = Clusters[Last].High->getValue();
9800   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9801 
9802   // FIXME: A range of consecutive cases has 100% density, but only requires one
9803   // comparison to lower. We should discriminate against such consecutive ranges
9804   // in jump tables.
9805 
9806   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9807 }
9808 
9809 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9810     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9811     unsigned Last) const {
9812   assert(Last >= First);
9813   assert(TotalCases[Last] >= TotalCases[First]);
9814   uint64_t NumCases =
9815       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9816   return NumCases;
9817 }
9818 
9819 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9820                                          unsigned First, unsigned Last,
9821                                          const SwitchInst *SI,
9822                                          MachineBasicBlock *DefaultMBB,
9823                                          CaseCluster &JTCluster) {
9824   assert(First <= Last);
9825 
9826   auto Prob = BranchProbability::getZero();
9827   unsigned NumCmps = 0;
9828   std::vector<MachineBasicBlock*> Table;
9829   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9830 
9831   // Initialize probabilities in JTProbs.
9832   for (unsigned I = First; I <= Last; ++I)
9833     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9834 
9835   for (unsigned I = First; I <= Last; ++I) {
9836     assert(Clusters[I].Kind == CC_Range);
9837     Prob += Clusters[I].Prob;
9838     const APInt &Low = Clusters[I].Low->getValue();
9839     const APInt &High = Clusters[I].High->getValue();
9840     NumCmps += (Low == High) ? 1 : 2;
9841     if (I != First) {
9842       // Fill the gap between this and the previous cluster.
9843       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9844       assert(PreviousHigh.slt(Low));
9845       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9846       for (uint64_t J = 0; J < Gap; J++)
9847         Table.push_back(DefaultMBB);
9848     }
9849     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9850     for (uint64_t J = 0; J < ClusterSize; ++J)
9851       Table.push_back(Clusters[I].MBB);
9852     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9853   }
9854 
9855   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9856   unsigned NumDests = JTProbs.size();
9857   if (TLI.isSuitableForBitTests(
9858           NumDests, NumCmps, Clusters[First].Low->getValue(),
9859           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9860     // Clusters[First..Last] should be lowered as bit tests instead.
9861     return false;
9862   }
9863 
9864   // Create the MBB that will load from and jump through the table.
9865   // Note: We create it here, but it's not inserted into the function yet.
9866   MachineFunction *CurMF = FuncInfo.MF;
9867   MachineBasicBlock *JumpTableMBB =
9868       CurMF->CreateMachineBasicBlock(SI->getParent());
9869 
9870   // Add successors. Note: use table order for determinism.
9871   SmallPtrSet<MachineBasicBlock *, 8> Done;
9872   for (MachineBasicBlock *Succ : Table) {
9873     if (Done.count(Succ))
9874       continue;
9875     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9876     Done.insert(Succ);
9877   }
9878   JumpTableMBB->normalizeSuccProbs();
9879 
9880   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9881                      ->createJumpTableIndex(Table);
9882 
9883   // Set up the jump table info.
9884   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9885   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9886                       Clusters[Last].High->getValue(), SI->getCondition(),
9887                       nullptr, false);
9888   JTCases.emplace_back(std::move(JTH), std::move(JT));
9889 
9890   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9891                                      JTCases.size() - 1, Prob);
9892   return true;
9893 }
9894 
9895 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9896                                          const SwitchInst *SI,
9897                                          MachineBasicBlock *DefaultMBB) {
9898 #ifndef NDEBUG
9899   // Clusters must be non-empty, sorted, and only contain Range clusters.
9900   assert(!Clusters.empty());
9901   for (CaseCluster &C : Clusters)
9902     assert(C.Kind == CC_Range);
9903   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9904     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9905 #endif
9906 
9907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9908   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9909     return;
9910 
9911   const int64_t N = Clusters.size();
9912   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9913   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9914 
9915   if (N < 2 || N < MinJumpTableEntries)
9916     return;
9917 
9918   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9919   SmallVector<unsigned, 8> TotalCases(N);
9920   for (unsigned i = 0; i < N; ++i) {
9921     const APInt &Hi = Clusters[i].High->getValue();
9922     const APInt &Lo = Clusters[i].Low->getValue();
9923     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9924     if (i != 0)
9925       TotalCases[i] += TotalCases[i - 1];
9926   }
9927 
9928   // Cheap case: the whole range may be suitable for jump table.
9929   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9930   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9931   assert(NumCases < UINT64_MAX / 100);
9932   assert(Range >= NumCases);
9933   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9934     CaseCluster JTCluster;
9935     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9936       Clusters[0] = JTCluster;
9937       Clusters.resize(1);
9938       return;
9939     }
9940   }
9941 
9942   // The algorithm below is not suitable for -O0.
9943   if (TM.getOptLevel() == CodeGenOpt::None)
9944     return;
9945 
9946   // Split Clusters into minimum number of dense partitions. The algorithm uses
9947   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9948   // for the Case Statement'" (1994), but builds the MinPartitions array in
9949   // reverse order to make it easier to reconstruct the partitions in ascending
9950   // order. In the choice between two optimal partitionings, it picks the one
9951   // which yields more jump tables.
9952 
9953   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9954   SmallVector<unsigned, 8> MinPartitions(N);
9955   // LastElement[i] is the last element of the partition starting at i.
9956   SmallVector<unsigned, 8> LastElement(N);
9957   // PartitionsScore[i] is used to break ties when choosing between two
9958   // partitionings resulting in the same number of partitions.
9959   SmallVector<unsigned, 8> PartitionsScore(N);
9960   // For PartitionsScore, a small number of comparisons is considered as good as
9961   // a jump table and a single comparison is considered better than a jump
9962   // table.
9963   enum PartitionScores : unsigned {
9964     NoTable = 0,
9965     Table = 1,
9966     FewCases = 1,
9967     SingleCase = 2
9968   };
9969 
9970   // Base case: There is only one way to partition Clusters[N-1].
9971   MinPartitions[N - 1] = 1;
9972   LastElement[N - 1] = N - 1;
9973   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9974 
9975   // Note: loop indexes are signed to avoid underflow.
9976   for (int64_t i = N - 2; i >= 0; i--) {
9977     // Find optimal partitioning of Clusters[i..N-1].
9978     // Baseline: Put Clusters[i] into a partition on its own.
9979     MinPartitions[i] = MinPartitions[i + 1] + 1;
9980     LastElement[i] = i;
9981     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9982 
9983     // Search for a solution that results in fewer partitions.
9984     for (int64_t j = N - 1; j > i; j--) {
9985       // Try building a partition from Clusters[i..j].
9986       uint64_t Range = getJumpTableRange(Clusters, i, j);
9987       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9988       assert(NumCases < UINT64_MAX / 100);
9989       assert(Range >= NumCases);
9990       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9991         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9992         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9993         int64_t NumEntries = j - i + 1;
9994 
9995         if (NumEntries == 1)
9996           Score += PartitionScores::SingleCase;
9997         else if (NumEntries <= SmallNumberOfEntries)
9998           Score += PartitionScores::FewCases;
9999         else if (NumEntries >= MinJumpTableEntries)
10000           Score += PartitionScores::Table;
10001 
10002         // If this leads to fewer partitions, or to the same number of
10003         // partitions with better score, it is a better partitioning.
10004         if (NumPartitions < MinPartitions[i] ||
10005             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
10006           MinPartitions[i] = NumPartitions;
10007           LastElement[i] = j;
10008           PartitionsScore[i] = Score;
10009         }
10010       }
10011     }
10012   }
10013 
10014   // Iterate over the partitions, replacing some with jump tables in-place.
10015   unsigned DstIndex = 0;
10016   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10017     Last = LastElement[First];
10018     assert(Last >= First);
10019     assert(DstIndex <= First);
10020     unsigned NumClusters = Last - First + 1;
10021 
10022     CaseCluster JTCluster;
10023     if (NumClusters >= MinJumpTableEntries &&
10024         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
10025       Clusters[DstIndex++] = JTCluster;
10026     } else {
10027       for (unsigned I = First; I <= Last; ++I)
10028         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
10029     }
10030   }
10031   Clusters.resize(DstIndex);
10032 }
10033 
10034 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
10035                                         unsigned First, unsigned Last,
10036                                         const SwitchInst *SI,
10037                                         CaseCluster &BTCluster) {
10038   assert(First <= Last);
10039   if (First == Last)
10040     return false;
10041 
10042   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10043   unsigned NumCmps = 0;
10044   for (int64_t I = First; I <= Last; ++I) {
10045     assert(Clusters[I].Kind == CC_Range);
10046     Dests.set(Clusters[I].MBB->getNumber());
10047     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10048   }
10049   unsigned NumDests = Dests.count();
10050 
10051   APInt Low = Clusters[First].Low->getValue();
10052   APInt High = Clusters[Last].High->getValue();
10053   assert(Low.slt(High));
10054 
10055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10056   const DataLayout &DL = DAG.getDataLayout();
10057   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10058     return false;
10059 
10060   APInt LowBound;
10061   APInt CmpRange;
10062 
10063   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10064   assert(TLI.rangeFitsInWord(Low, High, DL) &&
10065          "Case range must fit in bit mask!");
10066 
10067   // Check if the clusters cover a contiguous range such that no value in the
10068   // range will jump to the default statement.
10069   bool ContiguousRange = true;
10070   for (int64_t I = First + 1; I <= Last; ++I) {
10071     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10072       ContiguousRange = false;
10073       break;
10074     }
10075   }
10076 
10077   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10078     // Optimize the case where all the case values fit in a word without having
10079     // to subtract minValue. In this case, we can optimize away the subtraction.
10080     LowBound = APInt::getNullValue(Low.getBitWidth());
10081     CmpRange = High;
10082     ContiguousRange = false;
10083   } else {
10084     LowBound = Low;
10085     CmpRange = High - Low;
10086   }
10087 
10088   CaseBitsVector CBV;
10089   auto TotalProb = BranchProbability::getZero();
10090   for (unsigned i = First; i <= Last; ++i) {
10091     // Find the CaseBits for this destination.
10092     unsigned j;
10093     for (j = 0; j < CBV.size(); ++j)
10094       if (CBV[j].BB == Clusters[i].MBB)
10095         break;
10096     if (j == CBV.size())
10097       CBV.push_back(
10098           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10099     CaseBits *CB = &CBV[j];
10100 
10101     // Update Mask, Bits and ExtraProb.
10102     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10103     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10104     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10105     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10106     CB->Bits += Hi - Lo + 1;
10107     CB->ExtraProb += Clusters[i].Prob;
10108     TotalProb += Clusters[i].Prob;
10109   }
10110 
10111   BitTestInfo BTI;
10112   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10113     // Sort by probability first, number of bits second, bit mask third.
10114     if (a.ExtraProb != b.ExtraProb)
10115       return a.ExtraProb > b.ExtraProb;
10116     if (a.Bits != b.Bits)
10117       return a.Bits > b.Bits;
10118     return a.Mask < b.Mask;
10119   });
10120 
10121   for (auto &CB : CBV) {
10122     MachineBasicBlock *BitTestBB =
10123         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10124     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10125   }
10126   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10127                             SI->getCondition(), -1U, MVT::Other, false,
10128                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10129                             TotalProb);
10130 
10131   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10132                                     BitTestCases.size() - 1, TotalProb);
10133   return true;
10134 }
10135 
10136 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10137                                               const SwitchInst *SI) {
10138 // Partition Clusters into as few subsets as possible, where each subset has a
10139 // range that fits in a machine word and has <= 3 unique destinations.
10140 
10141 #ifndef NDEBUG
10142   // Clusters must be sorted and contain Range or JumpTable clusters.
10143   assert(!Clusters.empty());
10144   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10145   for (const CaseCluster &C : Clusters)
10146     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10147   for (unsigned i = 1; i < Clusters.size(); ++i)
10148     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10149 #endif
10150 
10151   // The algorithm below is not suitable for -O0.
10152   if (TM.getOptLevel() == CodeGenOpt::None)
10153     return;
10154 
10155   // If target does not have legal shift left, do not emit bit tests at all.
10156   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10157   const DataLayout &DL = DAG.getDataLayout();
10158 
10159   EVT PTy = TLI.getPointerTy(DL);
10160   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10161     return;
10162 
10163   int BitWidth = PTy.getSizeInBits();
10164   const int64_t N = Clusters.size();
10165 
10166   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10167   SmallVector<unsigned, 8> MinPartitions(N);
10168   // LastElement[i] is the last element of the partition starting at i.
10169   SmallVector<unsigned, 8> LastElement(N);
10170 
10171   // FIXME: This might not be the best algorithm for finding bit test clusters.
10172 
10173   // Base case: There is only one way to partition Clusters[N-1].
10174   MinPartitions[N - 1] = 1;
10175   LastElement[N - 1] = N - 1;
10176 
10177   // Note: loop indexes are signed to avoid underflow.
10178   for (int64_t i = N - 2; i >= 0; --i) {
10179     // Find optimal partitioning of Clusters[i..N-1].
10180     // Baseline: Put Clusters[i] into a partition on its own.
10181     MinPartitions[i] = MinPartitions[i + 1] + 1;
10182     LastElement[i] = i;
10183 
10184     // Search for a solution that results in fewer partitions.
10185     // Note: the search is limited by BitWidth, reducing time complexity.
10186     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10187       // Try building a partition from Clusters[i..j].
10188 
10189       // Check the range.
10190       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10191                                Clusters[j].High->getValue(), DL))
10192         continue;
10193 
10194       // Check nbr of destinations and cluster types.
10195       // FIXME: This works, but doesn't seem very efficient.
10196       bool RangesOnly = true;
10197       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10198       for (int64_t k = i; k <= j; k++) {
10199         if (Clusters[k].Kind != CC_Range) {
10200           RangesOnly = false;
10201           break;
10202         }
10203         Dests.set(Clusters[k].MBB->getNumber());
10204       }
10205       if (!RangesOnly || Dests.count() > 3)
10206         break;
10207 
10208       // Check if it's a better partition.
10209       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10210       if (NumPartitions < MinPartitions[i]) {
10211         // Found a better partition.
10212         MinPartitions[i] = NumPartitions;
10213         LastElement[i] = j;
10214       }
10215     }
10216   }
10217 
10218   // Iterate over the partitions, replacing with bit-test clusters in-place.
10219   unsigned DstIndex = 0;
10220   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10221     Last = LastElement[First];
10222     assert(First <= Last);
10223     assert(DstIndex <= First);
10224 
10225     CaseCluster BitTestCluster;
10226     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10227       Clusters[DstIndex++] = BitTestCluster;
10228     } else {
10229       size_t NumClusters = Last - First + 1;
10230       std::memmove(&Clusters[DstIndex], &Clusters[First],
10231                    sizeof(Clusters[0]) * NumClusters);
10232       DstIndex += NumClusters;
10233     }
10234   }
10235   Clusters.resize(DstIndex);
10236 }
10237 
10238 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10239                                         MachineBasicBlock *SwitchMBB,
10240                                         MachineBasicBlock *DefaultMBB) {
10241   MachineFunction *CurMF = FuncInfo.MF;
10242   MachineBasicBlock *NextMBB = nullptr;
10243   MachineFunction::iterator BBI(W.MBB);
10244   if (++BBI != FuncInfo.MF->end())
10245     NextMBB = &*BBI;
10246 
10247   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10248 
10249   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10250 
10251   if (Size == 2 && W.MBB == SwitchMBB) {
10252     // If any two of the cases has the same destination, and if one value
10253     // is the same as the other, but has one bit unset that the other has set,
10254     // use bit manipulation to do two compares at once.  For example:
10255     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10256     // TODO: This could be extended to merge any 2 cases in switches with 3
10257     // cases.
10258     // TODO: Handle cases where W.CaseBB != SwitchBB.
10259     CaseCluster &Small = *W.FirstCluster;
10260     CaseCluster &Big = *W.LastCluster;
10261 
10262     if (Small.Low == Small.High && Big.Low == Big.High &&
10263         Small.MBB == Big.MBB) {
10264       const APInt &SmallValue = Small.Low->getValue();
10265       const APInt &BigValue = Big.Low->getValue();
10266 
10267       // Check that there is only one bit different.
10268       APInt CommonBit = BigValue ^ SmallValue;
10269       if (CommonBit.isPowerOf2()) {
10270         SDValue CondLHS = getValue(Cond);
10271         EVT VT = CondLHS.getValueType();
10272         SDLoc DL = getCurSDLoc();
10273 
10274         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10275                                  DAG.getConstant(CommonBit, DL, VT));
10276         SDValue Cond = DAG.getSetCC(
10277             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10278             ISD::SETEQ);
10279 
10280         // Update successor info.
10281         // Both Small and Big will jump to Small.BB, so we sum up the
10282         // probabilities.
10283         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10284         if (BPI)
10285           addSuccessorWithProb(
10286               SwitchMBB, DefaultMBB,
10287               // The default destination is the first successor in IR.
10288               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10289         else
10290           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10291 
10292         // Insert the true branch.
10293         SDValue BrCond =
10294             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10295                         DAG.getBasicBlock(Small.MBB));
10296         // Insert the false branch.
10297         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10298                              DAG.getBasicBlock(DefaultMBB));
10299 
10300         DAG.setRoot(BrCond);
10301         return;
10302       }
10303     }
10304   }
10305 
10306   if (TM.getOptLevel() != CodeGenOpt::None) {
10307     // Here, we order cases by probability so the most likely case will be
10308     // checked first. However, two clusters can have the same probability in
10309     // which case their relative ordering is non-deterministic. So we use Low
10310     // as a tie-breaker as clusters are guaranteed to never overlap.
10311     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10312                [](const CaseCluster &a, const CaseCluster &b) {
10313       return a.Prob != b.Prob ?
10314              a.Prob > b.Prob :
10315              a.Low->getValue().slt(b.Low->getValue());
10316     });
10317 
10318     // Rearrange the case blocks so that the last one falls through if possible
10319     // without changing the order of probabilities.
10320     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10321       --I;
10322       if (I->Prob > W.LastCluster->Prob)
10323         break;
10324       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10325         std::swap(*I, *W.LastCluster);
10326         break;
10327       }
10328     }
10329   }
10330 
10331   // Compute total probability.
10332   BranchProbability DefaultProb = W.DefaultProb;
10333   BranchProbability UnhandledProbs = DefaultProb;
10334   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10335     UnhandledProbs += I->Prob;
10336 
10337   MachineBasicBlock *CurMBB = W.MBB;
10338   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10339     bool FallthroughUnreachable = false;
10340     MachineBasicBlock *Fallthrough;
10341     if (I == W.LastCluster) {
10342       // For the last cluster, fall through to the default destination.
10343       Fallthrough = DefaultMBB;
10344       FallthroughUnreachable = isa<UnreachableInst>(
10345           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10346     } else {
10347       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10348       CurMF->insert(BBI, Fallthrough);
10349       // Put Cond in a virtual register to make it available from the new blocks.
10350       ExportFromCurrentBlock(Cond);
10351     }
10352     UnhandledProbs -= I->Prob;
10353 
10354     switch (I->Kind) {
10355       case CC_JumpTable: {
10356         // FIXME: Optimize away range check based on pivot comparisons.
10357         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10358         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10359 
10360         // The jump block hasn't been inserted yet; insert it here.
10361         MachineBasicBlock *JumpMBB = JT->MBB;
10362         CurMF->insert(BBI, JumpMBB);
10363 
10364         auto JumpProb = I->Prob;
10365         auto FallthroughProb = UnhandledProbs;
10366 
10367         // If the default statement is a target of the jump table, we evenly
10368         // distribute the default probability to successors of CurMBB. Also
10369         // update the probability on the edge from JumpMBB to Fallthrough.
10370         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10371                                               SE = JumpMBB->succ_end();
10372              SI != SE; ++SI) {
10373           if (*SI == DefaultMBB) {
10374             JumpProb += DefaultProb / 2;
10375             FallthroughProb -= DefaultProb / 2;
10376             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10377             JumpMBB->normalizeSuccProbs();
10378             break;
10379           }
10380         }
10381 
10382         if (FallthroughUnreachable) {
10383           // Skip the range check if the fallthrough block is unreachable.
10384           JTH->OmitRangeCheck = true;
10385         }
10386 
10387         if (!JTH->OmitRangeCheck)
10388           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10389         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10390         CurMBB->normalizeSuccProbs();
10391 
10392         // The jump table header will be inserted in our current block, do the
10393         // range check, and fall through to our fallthrough block.
10394         JTH->HeaderBB = CurMBB;
10395         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10396 
10397         // If we're in the right place, emit the jump table header right now.
10398         if (CurMBB == SwitchMBB) {
10399           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10400           JTH->Emitted = true;
10401         }
10402         break;
10403       }
10404       case CC_BitTests: {
10405         // FIXME: If Fallthrough is unreachable, skip the range check.
10406 
10407         // FIXME: Optimize away range check based on pivot comparisons.
10408         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10409 
10410         // The bit test blocks haven't been inserted yet; insert them here.
10411         for (BitTestCase &BTC : BTB->Cases)
10412           CurMF->insert(BBI, BTC.ThisBB);
10413 
10414         // Fill in fields of the BitTestBlock.
10415         BTB->Parent = CurMBB;
10416         BTB->Default = Fallthrough;
10417 
10418         BTB->DefaultProb = UnhandledProbs;
10419         // If the cases in bit test don't form a contiguous range, we evenly
10420         // distribute the probability on the edge to Fallthrough to two
10421         // successors of CurMBB.
10422         if (!BTB->ContiguousRange) {
10423           BTB->Prob += DefaultProb / 2;
10424           BTB->DefaultProb -= DefaultProb / 2;
10425         }
10426 
10427         // If we're in the right place, emit the bit test header right now.
10428         if (CurMBB == SwitchMBB) {
10429           visitBitTestHeader(*BTB, SwitchMBB);
10430           BTB->Emitted = true;
10431         }
10432         break;
10433       }
10434       case CC_Range: {
10435         const Value *RHS, *LHS, *MHS;
10436         ISD::CondCode CC;
10437         if (I->Low == I->High) {
10438           // Check Cond == I->Low.
10439           CC = ISD::SETEQ;
10440           LHS = Cond;
10441           RHS=I->Low;
10442           MHS = nullptr;
10443         } else {
10444           // Check I->Low <= Cond <= I->High.
10445           CC = ISD::SETLE;
10446           LHS = I->Low;
10447           MHS = Cond;
10448           RHS = I->High;
10449         }
10450 
10451         // If Fallthrough is unreachable, fold away the comparison.
10452         if (FallthroughUnreachable)
10453           CC = ISD::SETTRUE;
10454 
10455         // The false probability is the sum of all unhandled cases.
10456         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10457                      getCurSDLoc(), I->Prob, UnhandledProbs);
10458 
10459         if (CurMBB == SwitchMBB)
10460           visitSwitchCase(CB, SwitchMBB);
10461         else
10462           SwitchCases.push_back(CB);
10463 
10464         break;
10465       }
10466     }
10467     CurMBB = Fallthrough;
10468   }
10469 }
10470 
10471 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10472                                               CaseClusterIt First,
10473                                               CaseClusterIt Last) {
10474   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10475     if (X.Prob != CC.Prob)
10476       return X.Prob > CC.Prob;
10477 
10478     // Ties are broken by comparing the case value.
10479     return X.Low->getValue().slt(CC.Low->getValue());
10480   });
10481 }
10482 
10483 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10484                                         const SwitchWorkListItem &W,
10485                                         Value *Cond,
10486                                         MachineBasicBlock *SwitchMBB) {
10487   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10488          "Clusters not sorted?");
10489 
10490   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10491 
10492   // Balance the tree based on branch probabilities to create a near-optimal (in
10493   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10494   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10495   CaseClusterIt LastLeft = W.FirstCluster;
10496   CaseClusterIt FirstRight = W.LastCluster;
10497   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10498   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10499 
10500   // Move LastLeft and FirstRight towards each other from opposite directions to
10501   // find a partitioning of the clusters which balances the probability on both
10502   // sides. If LeftProb and RightProb are equal, alternate which side is
10503   // taken to ensure 0-probability nodes are distributed evenly.
10504   unsigned I = 0;
10505   while (LastLeft + 1 < FirstRight) {
10506     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10507       LeftProb += (++LastLeft)->Prob;
10508     else
10509       RightProb += (--FirstRight)->Prob;
10510     I++;
10511   }
10512 
10513   while (true) {
10514     // Our binary search tree differs from a typical BST in that ours can have up
10515     // to three values in each leaf. The pivot selection above doesn't take that
10516     // into account, which means the tree might require more nodes and be less
10517     // efficient. We compensate for this here.
10518 
10519     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10520     unsigned NumRight = W.LastCluster - FirstRight + 1;
10521 
10522     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10523       // If one side has less than 3 clusters, and the other has more than 3,
10524       // consider taking a cluster from the other side.
10525 
10526       if (NumLeft < NumRight) {
10527         // Consider moving the first cluster on the right to the left side.
10528         CaseCluster &CC = *FirstRight;
10529         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10530         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10531         if (LeftSideRank <= RightSideRank) {
10532           // Moving the cluster to the left does not demote it.
10533           ++LastLeft;
10534           ++FirstRight;
10535           continue;
10536         }
10537       } else {
10538         assert(NumRight < NumLeft);
10539         // Consider moving the last element on the left to the right side.
10540         CaseCluster &CC = *LastLeft;
10541         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10542         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10543         if (RightSideRank <= LeftSideRank) {
10544           // Moving the cluster to the right does not demot it.
10545           --LastLeft;
10546           --FirstRight;
10547           continue;
10548         }
10549       }
10550     }
10551     break;
10552   }
10553 
10554   assert(LastLeft + 1 == FirstRight);
10555   assert(LastLeft >= W.FirstCluster);
10556   assert(FirstRight <= W.LastCluster);
10557 
10558   // Use the first element on the right as pivot since we will make less-than
10559   // comparisons against it.
10560   CaseClusterIt PivotCluster = FirstRight;
10561   assert(PivotCluster > W.FirstCluster);
10562   assert(PivotCluster <= W.LastCluster);
10563 
10564   CaseClusterIt FirstLeft = W.FirstCluster;
10565   CaseClusterIt LastRight = W.LastCluster;
10566 
10567   const ConstantInt *Pivot = PivotCluster->Low;
10568 
10569   // New blocks will be inserted immediately after the current one.
10570   MachineFunction::iterator BBI(W.MBB);
10571   ++BBI;
10572 
10573   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10574   // we can branch to its destination directly if it's squeezed exactly in
10575   // between the known lower bound and Pivot - 1.
10576   MachineBasicBlock *LeftMBB;
10577   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10578       FirstLeft->Low == W.GE &&
10579       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10580     LeftMBB = FirstLeft->MBB;
10581   } else {
10582     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10583     FuncInfo.MF->insert(BBI, LeftMBB);
10584     WorkList.push_back(
10585         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10586     // Put Cond in a virtual register to make it available from the new blocks.
10587     ExportFromCurrentBlock(Cond);
10588   }
10589 
10590   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10591   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10592   // directly if RHS.High equals the current upper bound.
10593   MachineBasicBlock *RightMBB;
10594   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10595       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10596     RightMBB = FirstRight->MBB;
10597   } else {
10598     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10599     FuncInfo.MF->insert(BBI, RightMBB);
10600     WorkList.push_back(
10601         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10602     // Put Cond in a virtual register to make it available from the new blocks.
10603     ExportFromCurrentBlock(Cond);
10604   }
10605 
10606   // Create the CaseBlock record that will be used to lower the branch.
10607   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10608                getCurSDLoc(), LeftProb, RightProb);
10609 
10610   if (W.MBB == SwitchMBB)
10611     visitSwitchCase(CB, SwitchMBB);
10612   else
10613     SwitchCases.push_back(CB);
10614 }
10615 
10616 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10617 // from the swith statement.
10618 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10619                                             BranchProbability PeeledCaseProb) {
10620   if (PeeledCaseProb == BranchProbability::getOne())
10621     return BranchProbability::getZero();
10622   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10623 
10624   uint32_t Numerator = CaseProb.getNumerator();
10625   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10626   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10627 }
10628 
10629 // Try to peel the top probability case if it exceeds the threshold.
10630 // Return current MachineBasicBlock for the switch statement if the peeling
10631 // does not occur.
10632 // If the peeling is performed, return the newly created MachineBasicBlock
10633 // for the peeled switch statement. Also update Clusters to remove the peeled
10634 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10635 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10636     const SwitchInst &SI, CaseClusterVector &Clusters,
10637     BranchProbability &PeeledCaseProb) {
10638   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10639   // Don't perform if there is only one cluster or optimizing for size.
10640   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10641       TM.getOptLevel() == CodeGenOpt::None ||
10642       SwitchMBB->getParent()->getFunction().hasMinSize())
10643     return SwitchMBB;
10644 
10645   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10646   unsigned PeeledCaseIndex = 0;
10647   bool SwitchPeeled = false;
10648   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10649     CaseCluster &CC = Clusters[Index];
10650     if (CC.Prob < TopCaseProb)
10651       continue;
10652     TopCaseProb = CC.Prob;
10653     PeeledCaseIndex = Index;
10654     SwitchPeeled = true;
10655   }
10656   if (!SwitchPeeled)
10657     return SwitchMBB;
10658 
10659   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10660                     << TopCaseProb << "\n");
10661 
10662   // Record the MBB for the peeled switch statement.
10663   MachineFunction::iterator BBI(SwitchMBB);
10664   ++BBI;
10665   MachineBasicBlock *PeeledSwitchMBB =
10666       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10667   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10668 
10669   ExportFromCurrentBlock(SI.getCondition());
10670   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10671   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10672                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10673   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10674 
10675   Clusters.erase(PeeledCaseIt);
10676   for (CaseCluster &CC : Clusters) {
10677     LLVM_DEBUG(
10678         dbgs() << "Scale the probablity for one cluster, before scaling: "
10679                << CC.Prob << "\n");
10680     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10681     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10682   }
10683   PeeledCaseProb = TopCaseProb;
10684   return PeeledSwitchMBB;
10685 }
10686 
10687 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10688   // Extract cases from the switch.
10689   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10690   CaseClusterVector Clusters;
10691   Clusters.reserve(SI.getNumCases());
10692   for (auto I : SI.cases()) {
10693     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10694     const ConstantInt *CaseVal = I.getCaseValue();
10695     BranchProbability Prob =
10696         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10697             : BranchProbability(1, SI.getNumCases() + 1);
10698     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10699   }
10700 
10701   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10702 
10703   // Cluster adjacent cases with the same destination. We do this at all
10704   // optimization levels because it's cheap to do and will make codegen faster
10705   // if there are many clusters.
10706   sortAndRangeify(Clusters);
10707 
10708   // The branch probablity of the peeled case.
10709   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10710   MachineBasicBlock *PeeledSwitchMBB =
10711       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10712 
10713   // If there is only the default destination, jump there directly.
10714   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10715   if (Clusters.empty()) {
10716     assert(PeeledSwitchMBB == SwitchMBB);
10717     SwitchMBB->addSuccessor(DefaultMBB);
10718     if (DefaultMBB != NextBlock(SwitchMBB)) {
10719       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10720                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10721     }
10722     return;
10723   }
10724 
10725   findJumpTables(Clusters, &SI, DefaultMBB);
10726   findBitTestClusters(Clusters, &SI);
10727 
10728   LLVM_DEBUG({
10729     dbgs() << "Case clusters: ";
10730     for (const CaseCluster &C : Clusters) {
10731       if (C.Kind == CC_JumpTable)
10732         dbgs() << "JT:";
10733       if (C.Kind == CC_BitTests)
10734         dbgs() << "BT:";
10735 
10736       C.Low->getValue().print(dbgs(), true);
10737       if (C.Low != C.High) {
10738         dbgs() << '-';
10739         C.High->getValue().print(dbgs(), true);
10740       }
10741       dbgs() << ' ';
10742     }
10743     dbgs() << '\n';
10744   });
10745 
10746   assert(!Clusters.empty());
10747   SwitchWorkList WorkList;
10748   CaseClusterIt First = Clusters.begin();
10749   CaseClusterIt Last = Clusters.end() - 1;
10750   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10751   // Scale the branchprobability for DefaultMBB if the peel occurs and
10752   // DefaultMBB is not replaced.
10753   if (PeeledCaseProb != BranchProbability::getZero() &&
10754       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10755     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10756   WorkList.push_back(
10757       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10758 
10759   while (!WorkList.empty()) {
10760     SwitchWorkListItem W = WorkList.back();
10761     WorkList.pop_back();
10762     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10763 
10764     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10765         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10766       // For optimized builds, lower large range as a balanced binary tree.
10767       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10768       continue;
10769     }
10770 
10771     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10772   }
10773 }
10774