1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits, DL)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, DL, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, 524 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasInlineAsmWithSPAdjust()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = DAG.getTarget().getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 963 Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1015 /// Create an SDValue for the given value. 1016 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1018 1019 if (const Constant *C = dyn_cast<Constant>(V)) { 1020 EVT VT = TLI.getValueType(V->getType(), true); 1021 1022 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1023 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1024 1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1026 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1027 1028 if (isa<ConstantPointerNull>(C)) { 1029 unsigned AS = V->getType()->getPointerAddressSpace(); 1030 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1031 } 1032 1033 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1034 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1035 1036 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1037 return DAG.getUNDEF(VT); 1038 1039 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1040 visit(CE->getOpcode(), *CE); 1041 SDValue N1 = NodeMap[V]; 1042 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1043 return N1; 1044 } 1045 1046 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1047 SmallVector<SDValue, 4> Constants; 1048 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1049 OI != OE; ++OI) { 1050 SDNode *Val = getValue(*OI).getNode(); 1051 // If the operand is an empty aggregate, there are no values. 1052 if (!Val) continue; 1053 // Add each leaf value from the operand to the Constants list 1054 // to form a flattened list of all the values. 1055 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1056 Constants.push_back(SDValue(Val, i)); 1057 } 1058 1059 return DAG.getMergeValues(Constants, getCurSDLoc()); 1060 } 1061 1062 if (const ConstantDataSequential *CDS = 1063 dyn_cast<ConstantDataSequential>(C)) { 1064 SmallVector<SDValue, 4> Ops; 1065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1066 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Ops.push_back(SDValue(Val, i)); 1071 } 1072 1073 if (isa<ArrayType>(CDS->getType())) 1074 return DAG.getMergeValues(Ops, getCurSDLoc()); 1075 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1076 VT, Ops); 1077 } 1078 1079 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1080 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1081 "Unknown struct or array constant!"); 1082 1083 SmallVector<EVT, 4> ValueVTs; 1084 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1085 unsigned NumElts = ValueVTs.size(); 1086 if (NumElts == 0) 1087 return SDValue(); // empty struct 1088 SmallVector<SDValue, 4> Constants(NumElts); 1089 for (unsigned i = 0; i != NumElts; ++i) { 1090 EVT EltVT = ValueVTs[i]; 1091 if (isa<UndefValue>(C)) 1092 Constants[i] = DAG.getUNDEF(EltVT); 1093 else if (EltVT.isFloatingPoint()) 1094 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1095 else 1096 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1097 } 1098 1099 return DAG.getMergeValues(Constants, getCurSDLoc()); 1100 } 1101 1102 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1103 return DAG.getBlockAddress(BA, VT); 1104 1105 VectorType *VecTy = cast<VectorType>(V->getType()); 1106 unsigned NumElements = VecTy->getNumElements(); 1107 1108 // Now that we know the number and type of the elements, get that number of 1109 // elements into the Ops array based on what kind of constant it is. 1110 SmallVector<SDValue, 16> Ops; 1111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1112 for (unsigned i = 0; i != NumElements; ++i) 1113 Ops.push_back(getValue(CV->getOperand(i))); 1114 } else { 1115 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1116 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1117 1118 SDValue Op; 1119 if (EltVT.isFloatingPoint()) 1120 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1121 else 1122 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1123 Ops.assign(NumElements, Op); 1124 } 1125 1126 // Create a BUILD_VECTOR node. 1127 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1128 } 1129 1130 // If this is a static alloca, generate it as the frameindex instead of 1131 // computation. 1132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1133 DenseMap<const AllocaInst*, int>::iterator SI = 1134 FuncInfo.StaticAllocaMap.find(AI); 1135 if (SI != FuncInfo.StaticAllocaMap.end()) 1136 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1137 } 1138 1139 // If this is an instruction which fast-isel has deferred, select it now. 1140 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1141 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1142 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1143 SDValue Chain = DAG.getEntryNode(); 1144 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1145 } 1146 1147 llvm_unreachable("Can't get register for value!"); 1148 } 1149 1150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1152 SDValue Chain = getControlRoot(); 1153 SmallVector<ISD::OutputArg, 8> Outs; 1154 SmallVector<SDValue, 8> OutVals; 1155 1156 if (!FuncInfo.CanLowerReturn) { 1157 unsigned DemoteReg = FuncInfo.DemoteRegister; 1158 const Function *F = I.getParent()->getParent(); 1159 1160 // Emit a store of the return value through the virtual register. 1161 // Leave Outs empty so that LowerReturn won't try to load return 1162 // registers the usual way. 1163 SmallVector<EVT, 1> PtrValueVTs; 1164 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1165 PtrValueVTs); 1166 1167 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1168 SDValue RetOp = getValue(I.getOperand(0)); 1169 1170 SmallVector<EVT, 4> ValueVTs; 1171 SmallVector<uint64_t, 4> Offsets; 1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1173 unsigned NumValues = ValueVTs.size(); 1174 1175 SmallVector<SDValue, 4> Chains(NumValues); 1176 for (unsigned i = 0; i != NumValues; ++i) { 1177 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1178 RetPtr.getValueType(), RetPtr, 1179 DAG.getIntPtrConstant(Offsets[i], 1180 getCurSDLoc())); 1181 Chains[i] = 1182 DAG.getStore(Chain, getCurSDLoc(), 1183 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1184 // FIXME: better loc info would be nice. 1185 Add, MachinePointerInfo(), false, false, 0); 1186 } 1187 1188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1189 MVT::Other, Chains); 1190 } else if (I.getNumOperands() != 0) { 1191 SmallVector<EVT, 4> ValueVTs; 1192 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1193 unsigned NumValues = ValueVTs.size(); 1194 if (NumValues) { 1195 SDValue RetOp = getValue(I.getOperand(0)); 1196 1197 const Function *F = I.getParent()->getParent(); 1198 1199 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1200 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1201 Attribute::SExt)) 1202 ExtendKind = ISD::SIGN_EXTEND; 1203 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1204 Attribute::ZExt)) 1205 ExtendKind = ISD::ZERO_EXTEND; 1206 1207 LLVMContext &Context = F->getContext(); 1208 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1209 Attribute::InReg); 1210 1211 for (unsigned j = 0; j != NumValues; ++j) { 1212 EVT VT = ValueVTs[j]; 1213 1214 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1215 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1216 1217 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1218 MVT PartVT = TLI.getRegisterType(Context, VT); 1219 SmallVector<SDValue, 4> Parts(NumParts); 1220 getCopyToParts(DAG, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1222 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1223 1224 // 'inreg' on function refers to return value 1225 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1226 if (RetInReg) 1227 Flags.setInReg(); 1228 1229 // Propagate extension type if any 1230 if (ExtendKind == ISD::SIGN_EXTEND) 1231 Flags.setSExt(); 1232 else if (ExtendKind == ISD::ZERO_EXTEND) 1233 Flags.setZExt(); 1234 1235 for (unsigned i = 0; i < NumParts; ++i) { 1236 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1237 VT, /*isfixed=*/true, 0, 0)); 1238 OutVals.push_back(Parts[i]); 1239 } 1240 } 1241 } 1242 } 1243 1244 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1245 CallingConv::ID CallConv = 1246 DAG.getMachineFunction().getFunction()->getCallingConv(); 1247 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1248 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1249 1250 // Verify that the target's LowerReturn behaved as expected. 1251 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1252 "LowerReturn didn't return a valid chain!"); 1253 1254 // Update the DAG with the new chain value resulting from return lowering. 1255 DAG.setRoot(Chain); 1256 } 1257 1258 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1259 /// created for it, emit nodes to copy the value into the virtual 1260 /// registers. 1261 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1262 // Skip empty types 1263 if (V->getType()->isEmptyTy()) 1264 return; 1265 1266 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1267 if (VMI != FuncInfo.ValueMap.end()) { 1268 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1269 CopyValueToVirtualRegister(V, VMI->second); 1270 } 1271 } 1272 1273 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1274 /// the current basic block, add it to ValueMap now so that we'll get a 1275 /// CopyTo/FromReg. 1276 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1277 // No need to export constants. 1278 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1279 1280 // Already exported? 1281 if (FuncInfo.isExportedInst(V)) return; 1282 1283 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1284 CopyValueToVirtualRegister(V, Reg); 1285 } 1286 1287 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1288 const BasicBlock *FromBB) { 1289 // The operands of the setcc have to be in this block. We don't know 1290 // how to export them from some other block. 1291 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1292 // Can export from current BB. 1293 if (VI->getParent() == FromBB) 1294 return true; 1295 1296 // Is already exported, noop. 1297 return FuncInfo.isExportedInst(V); 1298 } 1299 1300 // If this is an argument, we can export it if the BB is the entry block or 1301 // if it is already exported. 1302 if (isa<Argument>(V)) { 1303 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1304 return true; 1305 1306 // Otherwise, can only export this if it is already exported. 1307 return FuncInfo.isExportedInst(V); 1308 } 1309 1310 // Otherwise, constants can always be exported. 1311 return true; 1312 } 1313 1314 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1315 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1316 const MachineBasicBlock *Dst) const { 1317 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1318 if (!BPI) 1319 return 0; 1320 const BasicBlock *SrcBB = Src->getBasicBlock(); 1321 const BasicBlock *DstBB = Dst->getBasicBlock(); 1322 return BPI->getEdgeWeight(SrcBB, DstBB); 1323 } 1324 1325 void SelectionDAGBuilder:: 1326 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1327 uint32_t Weight /* = 0 */) { 1328 if (!Weight) 1329 Weight = getEdgeWeight(Src, Dst); 1330 Src->addSuccessor(Dst, Weight); 1331 } 1332 1333 1334 static bool InBlock(const Value *V, const BasicBlock *BB) { 1335 if (const Instruction *I = dyn_cast<Instruction>(V)) 1336 return I->getParent() == BB; 1337 return true; 1338 } 1339 1340 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1341 /// This function emits a branch and is used at the leaves of an OR or an 1342 /// AND operator tree. 1343 /// 1344 void 1345 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1346 MachineBasicBlock *TBB, 1347 MachineBasicBlock *FBB, 1348 MachineBasicBlock *CurBB, 1349 MachineBasicBlock *SwitchBB, 1350 uint32_t TWeight, 1351 uint32_t FWeight) { 1352 const BasicBlock *BB = CurBB->getBasicBlock(); 1353 1354 // If the leaf of the tree is a comparison, merge the condition into 1355 // the caseblock. 1356 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1357 // The operands of the cmp have to be in this block. We don't know 1358 // how to export them from some other block. If this is the first block 1359 // of the sequence, no exporting is needed. 1360 if (CurBB == SwitchBB || 1361 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1362 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1363 ISD::CondCode Condition; 1364 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1365 Condition = getICmpCondCode(IC->getPredicate()); 1366 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1367 Condition = getFCmpCondCode(FC->getPredicate()); 1368 if (TM.Options.NoNaNsFPMath) 1369 Condition = getFCmpCodeWithoutNaN(Condition); 1370 } else { 1371 (void)Condition; // silence warning. 1372 llvm_unreachable("Unknown compare instruction"); 1373 } 1374 1375 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1376 TBB, FBB, CurBB, TWeight, FWeight); 1377 SwitchCases.push_back(CB); 1378 return; 1379 } 1380 } 1381 1382 // Create a CaseBlock record representing this branch. 1383 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1384 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1385 SwitchCases.push_back(CB); 1386 } 1387 1388 /// Scale down both weights to fit into uint32_t. 1389 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1390 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1391 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1392 NewTrue = NewTrue / Scale; 1393 NewFalse = NewFalse / Scale; 1394 } 1395 1396 /// FindMergedConditions - If Cond is an expression like 1397 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1398 MachineBasicBlock *TBB, 1399 MachineBasicBlock *FBB, 1400 MachineBasicBlock *CurBB, 1401 MachineBasicBlock *SwitchBB, 1402 unsigned Opc, uint32_t TWeight, 1403 uint32_t FWeight) { 1404 // If this node is not part of the or/and tree, emit it as a branch. 1405 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1408 BOp->getParent() != CurBB->getBasicBlock() || 1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1412 TWeight, FWeight); 1413 return; 1414 } 1415 1416 // Create TmpBB after CurBB. 1417 MachineFunction::iterator BBI = CurBB; 1418 MachineFunction &MF = DAG.getMachineFunction(); 1419 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1420 CurBB->getParent()->insert(++BBI, TmpBB); 1421 1422 if (Opc == Instruction::Or) { 1423 // Codegen X | Y as: 1424 // BB1: 1425 // jmp_if_X TBB 1426 // jmp TmpBB 1427 // TmpBB: 1428 // jmp_if_Y TBB 1429 // jmp FBB 1430 // 1431 1432 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1433 // The requirement is that 1434 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1435 // = TrueProb for orignal BB. 1436 // Assuming the orignal weights are A and B, one choice is to set BB1's 1437 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1438 // assumes that 1439 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1440 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1441 // TmpBB, but the math is more complicated. 1442 1443 uint64_t NewTrueWeight = TWeight; 1444 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1445 ScaleWeights(NewTrueWeight, NewFalseWeight); 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1448 NewTrueWeight, NewFalseWeight); 1449 1450 NewTrueWeight = TWeight; 1451 NewFalseWeight = 2 * (uint64_t)FWeight; 1452 ScaleWeights(NewTrueWeight, NewFalseWeight); 1453 // Emit the RHS condition into TmpBB. 1454 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1455 NewTrueWeight, NewFalseWeight); 1456 } else { 1457 assert(Opc == Instruction::And && "Unknown merge op!"); 1458 // Codegen X & Y as: 1459 // BB1: 1460 // jmp_if_X TmpBB 1461 // jmp FBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 // This requires creation of TmpBB after CurBB. 1467 1468 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1469 // The requirement is that 1470 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1471 // = FalseProb for orignal BB. 1472 // Assuming the orignal weights are A and B, one choice is to set BB1's 1473 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1474 // assumes that 1475 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1476 1477 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1478 uint64_t NewFalseWeight = FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = 2 * (uint64_t)TWeight; 1485 NewFalseWeight = FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } 1491 } 1492 1493 /// If the set of cases should be emitted as a series of branches, return true. 1494 /// If we should emit this as a bunch of and/or'd together conditions, return 1495 /// false. 1496 bool 1497 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1498 if (Cases.size() != 2) return true; 1499 1500 // If this is two comparisons of the same values or'd or and'd together, they 1501 // will get folded into a single comparison, so don't emit two blocks. 1502 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1503 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1504 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1505 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1506 return false; 1507 } 1508 1509 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1510 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1511 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1512 Cases[0].CC == Cases[1].CC && 1513 isa<Constant>(Cases[0].CmpRHS) && 1514 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1515 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1516 return false; 1517 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1518 return false; 1519 } 1520 1521 return true; 1522 } 1523 1524 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1525 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1526 1527 // Update machine-CFG edges. 1528 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1529 1530 if (I.isUnconditional()) { 1531 // Update machine-CFG edges. 1532 BrMBB->addSuccessor(Succ0MBB); 1533 1534 // If this is not a fall-through branch or optimizations are switched off, 1535 // emit the branch. 1536 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1537 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1538 MVT::Other, getControlRoot(), 1539 DAG.getBasicBlock(Succ0MBB))); 1540 1541 return; 1542 } 1543 1544 // If this condition is one of the special cases we handle, do special stuff 1545 // now. 1546 const Value *CondVal = I.getCondition(); 1547 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1548 1549 // If this is a series of conditions that are or'd or and'd together, emit 1550 // this as a sequence of branches instead of setcc's with and/or operations. 1551 // As long as jumps are not expensive, this should improve performance. 1552 // For example, instead of something like: 1553 // cmp A, B 1554 // C = seteq 1555 // cmp D, E 1556 // F = setle 1557 // or C, F 1558 // jnz foo 1559 // Emit: 1560 // cmp A, B 1561 // je foo 1562 // cmp D, E 1563 // jle foo 1564 // 1565 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1566 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1567 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1568 BOp->getOpcode() == Instruction::Or)) { 1569 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1570 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1571 getEdgeWeight(BrMBB, Succ1MBB)); 1572 // If the compares in later blocks need to use values not currently 1573 // exported from this block, export them now. This block should always 1574 // be the first entry. 1575 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1576 1577 // Allow some cases to be rejected. 1578 if (ShouldEmitAsBranches(SwitchCases)) { 1579 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1580 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1581 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1582 } 1583 1584 // Emit the branch for this block. 1585 visitSwitchCase(SwitchCases[0], BrMBB); 1586 SwitchCases.erase(SwitchCases.begin()); 1587 return; 1588 } 1589 1590 // Okay, we decided not to do this, remove any inserted MBB's and clear 1591 // SwitchCases. 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1593 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1594 1595 SwitchCases.clear(); 1596 } 1597 } 1598 1599 // Create a CaseBlock record representing this branch. 1600 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1601 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1602 1603 // Use visitSwitchCase to actually insert the fast branch sequence for this 1604 // cond branch. 1605 visitSwitchCase(CB, BrMBB); 1606 } 1607 1608 /// visitSwitchCase - Emits the necessary code to represent a single node in 1609 /// the binary search tree resulting from lowering a switch instruction. 1610 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1611 MachineBasicBlock *SwitchBB) { 1612 SDValue Cond; 1613 SDValue CondLHS = getValue(CB.CmpLHS); 1614 SDLoc dl = getCurSDLoc(); 1615 1616 // Build the setcc now. 1617 if (!CB.CmpMHS) { 1618 // Fold "(X == true)" to X and "(X == false)" to !X to 1619 // handle common cases produced by branch lowering. 1620 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1621 CB.CC == ISD::SETEQ) 1622 Cond = CondLHS; 1623 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1624 CB.CC == ISD::SETEQ) { 1625 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1626 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1627 } else 1628 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1629 } else { 1630 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1631 1632 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1633 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1634 1635 SDValue CmpOp = getValue(CB.CmpMHS); 1636 EVT VT = CmpOp.getValueType(); 1637 1638 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1639 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1640 ISD::SETLE); 1641 } else { 1642 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1643 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1644 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1645 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1646 } 1647 } 1648 1649 // Update successor info 1650 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1651 // TrueBB and FalseBB are always different unless the incoming IR is 1652 // degenerate. This only happens when running llc on weird IR. 1653 if (CB.TrueBB != CB.FalseBB) 1654 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1655 1656 // If the lhs block is the next block, invert the condition so that we can 1657 // fall through to the lhs instead of the rhs block. 1658 if (CB.TrueBB == NextBlock(SwitchBB)) { 1659 std::swap(CB.TrueBB, CB.FalseBB); 1660 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1662 } 1663 1664 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1665 MVT::Other, getControlRoot(), Cond, 1666 DAG.getBasicBlock(CB.TrueBB)); 1667 1668 // Insert the false branch. Do this even if it's a fall through branch, 1669 // this makes it easier to do DAG optimizations which require inverting 1670 // the branch condition. 1671 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1672 DAG.getBasicBlock(CB.FalseBB)); 1673 1674 DAG.setRoot(BrCond); 1675 } 1676 1677 /// visitJumpTable - Emit JumpTable node in the current MBB 1678 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1679 // Emit the code for the jump table 1680 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1681 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1682 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1683 JT.Reg, PTy); 1684 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1685 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1686 MVT::Other, Index.getValue(1), 1687 Table, Index); 1688 DAG.setRoot(BrJumpTable); 1689 } 1690 1691 /// visitJumpTableHeader - This function emits necessary code to produce index 1692 /// in the JumpTable from switch case. 1693 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1694 JumpTableHeader &JTH, 1695 MachineBasicBlock *SwitchBB) { 1696 SDLoc dl = getCurSDLoc(); 1697 1698 // Subtract the lowest switch case value from the value being switched on and 1699 // conditional branch to default mbb if the result is greater than the 1700 // difference between smallest and largest cases. 1701 SDValue SwitchOp = getValue(JTH.SValue); 1702 EVT VT = SwitchOp.getValueType(); 1703 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1704 DAG.getConstant(JTH.First, dl, VT)); 1705 1706 // The SDNode we just created, which holds the value being switched on minus 1707 // the smallest case value, needs to be copied to a virtual register so it 1708 // can be used as an index into the jump table in a subsequent basic block. 1709 // This value may be smaller or larger than the target's pointer type, and 1710 // therefore require extension or truncating. 1711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1712 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1713 1714 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1715 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1716 JumpTableReg, SwitchOp); 1717 JT.Reg = JumpTableReg; 1718 1719 // Emit the range check for the jump table, and branch to the default block 1720 // for the switch statement if the value being switched on exceeds the largest 1721 // case in the switch. 1722 SDValue CMP = 1723 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1724 Sub.getValueType()), 1725 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1726 ISD::SETUGT); 1727 1728 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1729 MVT::Other, CopyTo, CMP, 1730 DAG.getBasicBlock(JT.Default)); 1731 1732 // Avoid emitting unnecessary branches to the next block. 1733 if (JT.MBB != NextBlock(SwitchBB)) 1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1735 DAG.getBasicBlock(JT.MBB)); 1736 1737 DAG.setRoot(BrCond); 1738 } 1739 1740 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1741 /// tail spliced into a stack protector check success bb. 1742 /// 1743 /// For a high level explanation of how this fits into the stack protector 1744 /// generation see the comment on the declaration of class 1745 /// StackProtectorDescriptor. 1746 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1747 MachineBasicBlock *ParentBB) { 1748 1749 // First create the loads to the guard/stack slot for the comparison. 1750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1751 EVT PtrTy = TLI.getPointerTy(); 1752 1753 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1754 int FI = MFI->getStackProtectorIndex(); 1755 1756 const Value *IRGuard = SPD.getGuard(); 1757 SDValue GuardPtr = getValue(IRGuard); 1758 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1759 1760 unsigned Align = 1761 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1762 1763 SDValue Guard; 1764 SDLoc dl = getCurSDLoc(); 1765 1766 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1767 // guard value from the virtual register holding the value. Otherwise, emit a 1768 // volatile load to retrieve the stack guard value. 1769 unsigned GuardReg = SPD.getGuardReg(); 1770 1771 if (GuardReg && TLI.useLoadStackGuardNode()) 1772 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1773 PtrTy); 1774 else 1775 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1776 GuardPtr, MachinePointerInfo(IRGuard, 0), 1777 true, false, false, Align); 1778 1779 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1780 StackSlotPtr, 1781 MachinePointerInfo::getFixedStack(FI), 1782 true, false, false, Align); 1783 1784 // Perform the comparison via a subtract/getsetcc. 1785 EVT VT = Guard.getValueType(); 1786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1787 1788 SDValue Cmp = 1789 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1790 Sub.getValueType()), 1791 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1792 1793 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1794 // branch to failure MBB. 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1796 MVT::Other, StackSlot.getOperand(0), 1797 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1798 // Otherwise branch to success MBB. 1799 SDValue Br = DAG.getNode(ISD::BR, dl, 1800 MVT::Other, BrCond, 1801 DAG.getBasicBlock(SPD.getSuccessMBB())); 1802 1803 DAG.setRoot(Br); 1804 } 1805 1806 /// Codegen the failure basic block for a stack protector check. 1807 /// 1808 /// A failure stack protector machine basic block consists simply of a call to 1809 /// __stack_chk_fail(). 1810 /// 1811 /// For a high level explanation of how this fits into the stack protector 1812 /// generation see the comment on the declaration of class 1813 /// StackProtectorDescriptor. 1814 void 1815 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1817 SDValue Chain = 1818 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1819 nullptr, 0, false, getCurSDLoc(), false, false).second; 1820 DAG.setRoot(Chain); 1821 } 1822 1823 /// visitBitTestHeader - This function emits necessary code to produce value 1824 /// suitable for "bit tests" 1825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1826 MachineBasicBlock *SwitchBB) { 1827 SDLoc dl = getCurSDLoc(); 1828 1829 // Subtract the minimum value 1830 SDValue SwitchOp = getValue(B.SValue); 1831 EVT VT = SwitchOp.getValueType(); 1832 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1833 DAG.getConstant(B.First, dl, VT)); 1834 1835 // Check range 1836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1837 SDValue RangeCmp = 1838 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1841 1842 // Determine the type of the test operands. 1843 bool UsePtrType = false; 1844 if (!TLI.isTypeLegal(VT)) 1845 UsePtrType = true; 1846 else { 1847 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1848 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1849 // Switch table case range are encoded into series of masks. 1850 // Just use pointer type, it's guaranteed to fit. 1851 UsePtrType = true; 1852 break; 1853 } 1854 } 1855 if (UsePtrType) { 1856 VT = TLI.getPointerTy(); 1857 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1858 } 1859 1860 B.RegVT = VT.getSimpleVT(); 1861 B.Reg = FuncInfo.CreateReg(B.RegVT); 1862 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1863 1864 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1865 1866 addSuccessorWithWeight(SwitchBB, B.Default); 1867 addSuccessorWithWeight(SwitchBB, MBB); 1868 1869 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1870 MVT::Other, CopyTo, RangeCmp, 1871 DAG.getBasicBlock(B.Default)); 1872 1873 // Avoid emitting unnecessary branches to the next block. 1874 if (MBB != NextBlock(SwitchBB)) 1875 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1876 DAG.getBasicBlock(MBB)); 1877 1878 DAG.setRoot(BrRange); 1879 } 1880 1881 /// visitBitTestCase - this function produces one "bit test" 1882 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1883 MachineBasicBlock* NextMBB, 1884 uint32_t BranchWeightToNext, 1885 unsigned Reg, 1886 BitTestCase &B, 1887 MachineBasicBlock *SwitchBB) { 1888 SDLoc dl = getCurSDLoc(); 1889 MVT VT = BB.RegVT; 1890 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1891 SDValue Cmp; 1892 unsigned PopCount = countPopulation(B.Mask); 1893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1894 if (PopCount == 1) { 1895 // Testing for a single bit; just compare the shift count with what it 1896 // would need to be to shift a 1 bit in that position. 1897 Cmp = DAG.getSetCC( 1898 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1899 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1900 } else if (PopCount == BB.Range) { 1901 // There is only one zero bit in the range, test for it directly. 1902 Cmp = DAG.getSetCC( 1903 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1904 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1905 } else { 1906 // Make desired shift 1907 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1908 DAG.getConstant(1, dl, VT), ShiftOp); 1909 1910 // Emit bit tests and jumps 1911 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1912 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1913 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1914 DAG.getConstant(0, dl, VT), ISD::SETNE); 1915 } 1916 1917 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1918 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1919 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1920 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1921 1922 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1923 MVT::Other, getControlRoot(), 1924 Cmp, DAG.getBasicBlock(B.TargetBB)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (NextMBB != NextBlock(SwitchBB)) 1928 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1929 DAG.getBasicBlock(NextMBB)); 1930 1931 DAG.setRoot(BrAnd); 1932 } 1933 1934 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1935 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1936 1937 // Retrieve successors. 1938 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1939 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1940 1941 const Value *Callee(I.getCalledValue()); 1942 const Function *Fn = dyn_cast<Function>(Callee); 1943 if (isa<InlineAsm>(Callee)) 1944 visitInlineAsm(&I); 1945 else if (Fn && Fn->isIntrinsic()) { 1946 switch (Fn->getIntrinsicID()) { 1947 default: 1948 llvm_unreachable("Cannot invoke this intrinsic"); 1949 case Intrinsic::donothing: 1950 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1951 break; 1952 case Intrinsic::experimental_patchpoint_void: 1953 case Intrinsic::experimental_patchpoint_i64: 1954 visitPatchpoint(&I, LandingPad); 1955 break; 1956 case Intrinsic::experimental_gc_statepoint: 1957 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1958 break; 1959 } 1960 } else 1961 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1962 1963 // If the value of the invoke is used outside of its defining block, make it 1964 // available as a virtual register. 1965 // We already took care of the exported value for the statepoint instruction 1966 // during call to the LowerStatepoint. 1967 if (!isStatepoint(I)) { 1968 CopyToExportRegsIfNeeded(&I); 1969 } 1970 1971 // Update successor info 1972 addSuccessorWithWeight(InvokeMBB, Return); 1973 addSuccessorWithWeight(InvokeMBB, LandingPad); 1974 1975 // Drop into normal successor. 1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 DAG.getBasicBlock(Return))); 1979 } 1980 1981 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1982 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1983 } 1984 1985 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1986 assert(FuncInfo.MBB->isLandingPad() && 1987 "Call to landingpad not in landing pad!"); 1988 1989 MachineBasicBlock *MBB = FuncInfo.MBB; 1990 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1991 AddLandingPadInfo(LP, MMI, MBB); 1992 1993 // If there aren't registers to copy the values into (e.g., during SjLj 1994 // exceptions), then don't bother to create these DAG nodes. 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 if (TLI.getExceptionPointerRegister() == 0 && 1997 TLI.getExceptionSelectorRegister() == 0) 1998 return; 1999 2000 SmallVector<EVT, 2> ValueVTs; 2001 SDLoc dl = getCurSDLoc(); 2002 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2003 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2004 2005 // Get the two live-in registers as SDValues. The physregs have already been 2006 // copied into virtual registers. 2007 SDValue Ops[2]; 2008 if (FuncInfo.ExceptionPointerVirtReg) { 2009 Ops[0] = DAG.getZExtOrTrunc( 2010 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2011 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2012 dl, ValueVTs[0]); 2013 } else { 2014 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2015 } 2016 Ops[1] = DAG.getZExtOrTrunc( 2017 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2018 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2019 dl, ValueVTs[1]); 2020 2021 // Merge into one. 2022 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2023 DAG.getVTList(ValueVTs), Ops); 2024 setValue(&LP, Res); 2025 } 2026 2027 unsigned 2028 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2029 MachineBasicBlock *LPadBB) { 2030 SDValue Chain = getControlRoot(); 2031 SDLoc dl = getCurSDLoc(); 2032 2033 // Get the typeid that we will dispatch on later. 2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2035 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2036 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2037 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2038 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2039 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2040 2041 // Branch to the main landing pad block. 2042 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2043 ClauseMBB->addSuccessor(LPadBB); 2044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2045 DAG.getBasicBlock(LPadBB))); 2046 return VReg; 2047 } 2048 2049 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2050 #ifndef NDEBUG 2051 for (const CaseCluster &CC : Clusters) 2052 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2053 #endif 2054 2055 std::sort(Clusters.begin(), Clusters.end(), 2056 [](const CaseCluster &a, const CaseCluster &b) { 2057 return a.Low->getValue().slt(b.Low->getValue()); 2058 }); 2059 2060 // Merge adjacent clusters with the same destination. 2061 const unsigned N = Clusters.size(); 2062 unsigned DstIndex = 0; 2063 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2064 CaseCluster &CC = Clusters[SrcIndex]; 2065 const ConstantInt *CaseVal = CC.Low; 2066 MachineBasicBlock *Succ = CC.MBB; 2067 2068 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2069 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2070 // If this case has the same successor and is a neighbour, merge it into 2071 // the previous cluster. 2072 Clusters[DstIndex - 1].High = CaseVal; 2073 Clusters[DstIndex - 1].Weight += CC.Weight; 2074 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2075 } else { 2076 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2077 sizeof(Clusters[SrcIndex])); 2078 } 2079 } 2080 Clusters.resize(DstIndex); 2081 } 2082 2083 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2084 MachineBasicBlock *Last) { 2085 // Update JTCases. 2086 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2087 if (JTCases[i].first.HeaderBB == First) 2088 JTCases[i].first.HeaderBB = Last; 2089 2090 // Update BitTestCases. 2091 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2092 if (BitTestCases[i].Parent == First) 2093 BitTestCases[i].Parent = Last; 2094 } 2095 2096 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2097 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2098 2099 // Update machine-CFG edges with unique successors. 2100 SmallSet<BasicBlock*, 32> Done; 2101 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2102 BasicBlock *BB = I.getSuccessor(i); 2103 bool Inserted = Done.insert(BB).second; 2104 if (!Inserted) 2105 continue; 2106 2107 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2108 addSuccessorWithWeight(IndirectBrMBB, Succ); 2109 } 2110 2111 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2112 MVT::Other, getControlRoot(), 2113 getValue(I.getAddress()))); 2114 } 2115 2116 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2117 if (DAG.getTarget().Options.TrapUnreachable) 2118 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2119 } 2120 2121 void SelectionDAGBuilder::visitFSub(const User &I) { 2122 // -0.0 - X --> fneg 2123 Type *Ty = I.getType(); 2124 if (isa<Constant>(I.getOperand(0)) && 2125 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2126 SDValue Op2 = getValue(I.getOperand(1)); 2127 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2128 Op2.getValueType(), Op2)); 2129 return; 2130 } 2131 2132 visitBinary(I, ISD::FSUB); 2133 } 2134 2135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2136 SDValue Op1 = getValue(I.getOperand(0)); 2137 SDValue Op2 = getValue(I.getOperand(1)); 2138 2139 bool nuw = false; 2140 bool nsw = false; 2141 bool exact = false; 2142 if (const OverflowingBinaryOperator *OFBinOp = 2143 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2144 nuw = OFBinOp->hasNoUnsignedWrap(); 2145 nsw = OFBinOp->hasNoSignedWrap(); 2146 } 2147 if (const PossiblyExactOperator *ExactOp = 2148 dyn_cast<const PossiblyExactOperator>(&I)) 2149 exact = ExactOp->isExact(); 2150 2151 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2152 Op1, Op2, nuw, nsw, exact); 2153 setValue(&I, BinNodeValue); 2154 } 2155 2156 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2157 SDValue Op1 = getValue(I.getOperand(0)); 2158 SDValue Op2 = getValue(I.getOperand(1)); 2159 2160 EVT ShiftTy = 2161 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2162 2163 // Coerce the shift amount to the right type if we can. 2164 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2165 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2166 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2167 SDLoc DL = getCurSDLoc(); 2168 2169 // If the operand is smaller than the shift count type, promote it. 2170 if (ShiftSize > Op2Size) 2171 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2172 2173 // If the operand is larger than the shift count type but the shift 2174 // count type has enough bits to represent any shift value, truncate 2175 // it now. This is a common case and it exposes the truncate to 2176 // optimization early. 2177 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2178 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2179 // Otherwise we'll need to temporarily settle for some other convenient 2180 // type. Type legalization will make adjustments once the shiftee is split. 2181 else 2182 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2183 } 2184 2185 bool nuw = false; 2186 bool nsw = false; 2187 bool exact = false; 2188 2189 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2190 2191 if (const OverflowingBinaryOperator *OFBinOp = 2192 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2193 nuw = OFBinOp->hasNoUnsignedWrap(); 2194 nsw = OFBinOp->hasNoSignedWrap(); 2195 } 2196 if (const PossiblyExactOperator *ExactOp = 2197 dyn_cast<const PossiblyExactOperator>(&I)) 2198 exact = ExactOp->isExact(); 2199 } 2200 2201 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2202 nuw, nsw, exact); 2203 setValue(&I, Res); 2204 } 2205 2206 void SelectionDAGBuilder::visitSDiv(const User &I) { 2207 SDValue Op1 = getValue(I.getOperand(0)); 2208 SDValue Op2 = getValue(I.getOperand(1)); 2209 2210 // Turn exact SDivs into multiplications. 2211 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2212 // exact bit. 2213 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2214 !isa<ConstantSDNode>(Op1) && 2215 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2216 setValue(&I, DAG.getTargetLoweringInfo() 2217 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2218 else 2219 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2220 Op1, Op2)); 2221 } 2222 2223 void SelectionDAGBuilder::visitICmp(const User &I) { 2224 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2225 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2226 predicate = IC->getPredicate(); 2227 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2228 predicate = ICmpInst::Predicate(IC->getPredicate()); 2229 SDValue Op1 = getValue(I.getOperand(0)); 2230 SDValue Op2 = getValue(I.getOperand(1)); 2231 ISD::CondCode Opcode = getICmpCondCode(predicate); 2232 2233 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2235 } 2236 2237 void SelectionDAGBuilder::visitFCmp(const User &I) { 2238 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2239 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2240 predicate = FC->getPredicate(); 2241 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2242 predicate = FCmpInst::Predicate(FC->getPredicate()); 2243 SDValue Op1 = getValue(I.getOperand(0)); 2244 SDValue Op2 = getValue(I.getOperand(1)); 2245 ISD::CondCode Condition = getFCmpCondCode(predicate); 2246 if (TM.Options.NoNaNsFPMath) 2247 Condition = getFCmpCodeWithoutNaN(Condition); 2248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2249 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2250 } 2251 2252 void SelectionDAGBuilder::visitSelect(const User &I) { 2253 SmallVector<EVT, 4> ValueVTs; 2254 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2255 unsigned NumValues = ValueVTs.size(); 2256 if (NumValues == 0) return; 2257 2258 SmallVector<SDValue, 4> Values(NumValues); 2259 SDValue Cond = getValue(I.getOperand(0)); 2260 SDValue TrueVal = getValue(I.getOperand(1)); 2261 SDValue FalseVal = getValue(I.getOperand(2)); 2262 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2263 ISD::VSELECT : ISD::SELECT; 2264 2265 for (unsigned i = 0; i != NumValues; ++i) 2266 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2267 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2268 Cond, 2269 SDValue(TrueVal.getNode(), 2270 TrueVal.getResNo() + i), 2271 SDValue(FalseVal.getNode(), 2272 FalseVal.getResNo() + i)); 2273 2274 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2275 DAG.getVTList(ValueVTs), Values)); 2276 } 2277 2278 void SelectionDAGBuilder::visitTrunc(const User &I) { 2279 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2280 SDValue N = getValue(I.getOperand(0)); 2281 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2282 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2283 } 2284 2285 void SelectionDAGBuilder::visitZExt(const User &I) { 2286 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2287 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2288 SDValue N = getValue(I.getOperand(0)); 2289 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2290 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2291 } 2292 2293 void SelectionDAGBuilder::visitSExt(const User &I) { 2294 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2295 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2296 SDValue N = getValue(I.getOperand(0)); 2297 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2298 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2299 } 2300 2301 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2302 // FPTrunc is never a no-op cast, no need to check 2303 SDValue N = getValue(I.getOperand(0)); 2304 SDLoc dl = getCurSDLoc(); 2305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2306 EVT DestVT = TLI.getValueType(I.getType()); 2307 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2308 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2309 } 2310 2311 void SelectionDAGBuilder::visitFPExt(const User &I) { 2312 // FPExt is never a no-op cast, no need to check 2313 SDValue N = getValue(I.getOperand(0)); 2314 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2315 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2316 } 2317 2318 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2319 // FPToUI is never a no-op cast, no need to check 2320 SDValue N = getValue(I.getOperand(0)); 2321 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2322 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2323 } 2324 2325 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2326 // FPToSI is never a no-op cast, no need to check 2327 SDValue N = getValue(I.getOperand(0)); 2328 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2329 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2330 } 2331 2332 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2333 // UIToFP is never a no-op cast, no need to check 2334 SDValue N = getValue(I.getOperand(0)); 2335 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2336 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2337 } 2338 2339 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2340 // SIToFP is never a no-op cast, no need to check 2341 SDValue N = getValue(I.getOperand(0)); 2342 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2343 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2344 } 2345 2346 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2347 // What to do depends on the size of the integer and the size of the pointer. 2348 // We can either truncate, zero extend, or no-op, accordingly. 2349 SDValue N = getValue(I.getOperand(0)); 2350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2351 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2352 } 2353 2354 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2355 // What to do depends on the size of the integer and the size of the pointer. 2356 // We can either truncate, zero extend, or no-op, accordingly. 2357 SDValue N = getValue(I.getOperand(0)); 2358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2359 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2360 } 2361 2362 void SelectionDAGBuilder::visitBitCast(const User &I) { 2363 SDValue N = getValue(I.getOperand(0)); 2364 SDLoc dl = getCurSDLoc(); 2365 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2366 2367 // BitCast assures us that source and destination are the same size so this is 2368 // either a BITCAST or a no-op. 2369 if (DestVT != N.getValueType()) 2370 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2371 DestVT, N)); // convert types. 2372 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2373 // might fold any kind of constant expression to an integer constant and that 2374 // is not what we are looking for. Only regcognize a bitcast of a genuine 2375 // constant integer as an opaque constant. 2376 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2377 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2378 /*isOpaque*/true)); 2379 else 2380 setValue(&I, N); // noop cast. 2381 } 2382 2383 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2385 const Value *SV = I.getOperand(0); 2386 SDValue N = getValue(SV); 2387 EVT DestVT = TLI.getValueType(I.getType()); 2388 2389 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2390 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2391 2392 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2393 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2394 2395 setValue(&I, N); 2396 } 2397 2398 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2400 SDValue InVec = getValue(I.getOperand(0)); 2401 SDValue InVal = getValue(I.getOperand(1)); 2402 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2403 getCurSDLoc(), TLI.getVectorIdxTy()); 2404 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2405 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2406 } 2407 2408 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2409 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2410 SDValue InVec = getValue(I.getOperand(0)); 2411 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2412 getCurSDLoc(), TLI.getVectorIdxTy()); 2413 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2414 TLI.getValueType(I.getType()), InVec, InIdx)); 2415 } 2416 2417 // Utility for visitShuffleVector - Return true if every element in Mask, 2418 // beginning from position Pos and ending in Pos+Size, falls within the 2419 // specified sequential range [L, L+Pos). or is undef. 2420 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2421 unsigned Pos, unsigned Size, int Low) { 2422 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2423 if (Mask[i] >= 0 && Mask[i] != Low) 2424 return false; 2425 return true; 2426 } 2427 2428 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2429 SDValue Src1 = getValue(I.getOperand(0)); 2430 SDValue Src2 = getValue(I.getOperand(1)); 2431 2432 SmallVector<int, 8> Mask; 2433 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2434 unsigned MaskNumElts = Mask.size(); 2435 2436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2437 EVT VT = TLI.getValueType(I.getType()); 2438 EVT SrcVT = Src1.getValueType(); 2439 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2440 2441 if (SrcNumElts == MaskNumElts) { 2442 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2443 &Mask[0])); 2444 return; 2445 } 2446 2447 // Normalize the shuffle vector since mask and vector length don't match. 2448 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2449 // Mask is longer than the source vectors and is a multiple of the source 2450 // vectors. We can use concatenate vector to make the mask and vectors 2451 // lengths match. 2452 if (SrcNumElts*2 == MaskNumElts) { 2453 // First check for Src1 in low and Src2 in high 2454 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2455 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2456 // The shuffle is concatenating two vectors together. 2457 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2458 VT, Src1, Src2)); 2459 return; 2460 } 2461 // Then check for Src2 in low and Src1 in high 2462 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2463 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2464 // The shuffle is concatenating two vectors together. 2465 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2466 VT, Src2, Src1)); 2467 return; 2468 } 2469 } 2470 2471 // Pad both vectors with undefs to make them the same length as the mask. 2472 unsigned NumConcat = MaskNumElts / SrcNumElts; 2473 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2474 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2475 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2476 2477 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2478 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2479 MOps1[0] = Src1; 2480 MOps2[0] = Src2; 2481 2482 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2483 getCurSDLoc(), VT, MOps1); 2484 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2485 getCurSDLoc(), VT, MOps2); 2486 2487 // Readjust mask for new input vector length. 2488 SmallVector<int, 8> MappedOps; 2489 for (unsigned i = 0; i != MaskNumElts; ++i) { 2490 int Idx = Mask[i]; 2491 if (Idx >= (int)SrcNumElts) 2492 Idx -= SrcNumElts - MaskNumElts; 2493 MappedOps.push_back(Idx); 2494 } 2495 2496 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2497 &MappedOps[0])); 2498 return; 2499 } 2500 2501 if (SrcNumElts > MaskNumElts) { 2502 // Analyze the access pattern of the vector to see if we can extract 2503 // two subvectors and do the shuffle. The analysis is done by calculating 2504 // the range of elements the mask access on both vectors. 2505 int MinRange[2] = { static_cast<int>(SrcNumElts), 2506 static_cast<int>(SrcNumElts)}; 2507 int MaxRange[2] = {-1, -1}; 2508 2509 for (unsigned i = 0; i != MaskNumElts; ++i) { 2510 int Idx = Mask[i]; 2511 unsigned Input = 0; 2512 if (Idx < 0) 2513 continue; 2514 2515 if (Idx >= (int)SrcNumElts) { 2516 Input = 1; 2517 Idx -= SrcNumElts; 2518 } 2519 if (Idx > MaxRange[Input]) 2520 MaxRange[Input] = Idx; 2521 if (Idx < MinRange[Input]) 2522 MinRange[Input] = Idx; 2523 } 2524 2525 // Check if the access is smaller than the vector size and can we find 2526 // a reasonable extract index. 2527 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2528 // Extract. 2529 int StartIdx[2]; // StartIdx to extract from 2530 for (unsigned Input = 0; Input < 2; ++Input) { 2531 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2532 RangeUse[Input] = 0; // Unused 2533 StartIdx[Input] = 0; 2534 continue; 2535 } 2536 2537 // Find a good start index that is a multiple of the mask length. Then 2538 // see if the rest of the elements are in range. 2539 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2540 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2541 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2542 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2543 } 2544 2545 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2546 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2547 return; 2548 } 2549 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2550 // Extract appropriate subvector and generate a vector shuffle 2551 for (unsigned Input = 0; Input < 2; ++Input) { 2552 SDValue &Src = Input == 0 ? Src1 : Src2; 2553 if (RangeUse[Input] == 0) 2554 Src = DAG.getUNDEF(VT); 2555 else { 2556 SDLoc dl = getCurSDLoc(); 2557 Src = DAG.getNode( 2558 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2559 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2560 } 2561 } 2562 2563 // Calculate new mask. 2564 SmallVector<int, 8> MappedOps; 2565 for (unsigned i = 0; i != MaskNumElts; ++i) { 2566 int Idx = Mask[i]; 2567 if (Idx >= 0) { 2568 if (Idx < (int)SrcNumElts) 2569 Idx -= StartIdx[0]; 2570 else 2571 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2572 } 2573 MappedOps.push_back(Idx); 2574 } 2575 2576 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2577 &MappedOps[0])); 2578 return; 2579 } 2580 } 2581 2582 // We can't use either concat vectors or extract subvectors so fall back to 2583 // replacing the shuffle with extract and build vector. 2584 // to insert and build vector. 2585 EVT EltVT = VT.getVectorElementType(); 2586 EVT IdxVT = TLI.getVectorIdxTy(); 2587 SDLoc dl = getCurSDLoc(); 2588 SmallVector<SDValue,8> Ops; 2589 for (unsigned i = 0; i != MaskNumElts; ++i) { 2590 int Idx = Mask[i]; 2591 SDValue Res; 2592 2593 if (Idx < 0) { 2594 Res = DAG.getUNDEF(EltVT); 2595 } else { 2596 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2597 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2598 2599 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2600 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2601 } 2602 2603 Ops.push_back(Res); 2604 } 2605 2606 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2607 } 2608 2609 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2610 const Value *Op0 = I.getOperand(0); 2611 const Value *Op1 = I.getOperand(1); 2612 Type *AggTy = I.getType(); 2613 Type *ValTy = Op1->getType(); 2614 bool IntoUndef = isa<UndefValue>(Op0); 2615 bool FromUndef = isa<UndefValue>(Op1); 2616 2617 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2618 2619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2620 SmallVector<EVT, 4> AggValueVTs; 2621 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2622 SmallVector<EVT, 4> ValValueVTs; 2623 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2624 2625 unsigned NumAggValues = AggValueVTs.size(); 2626 unsigned NumValValues = ValValueVTs.size(); 2627 SmallVector<SDValue, 4> Values(NumAggValues); 2628 2629 // Ignore an insertvalue that produces an empty object 2630 if (!NumAggValues) { 2631 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2632 return; 2633 } 2634 2635 SDValue Agg = getValue(Op0); 2636 unsigned i = 0; 2637 // Copy the beginning value(s) from the original aggregate. 2638 for (; i != LinearIndex; ++i) 2639 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2640 SDValue(Agg.getNode(), Agg.getResNo() + i); 2641 // Copy values from the inserted value(s). 2642 if (NumValValues) { 2643 SDValue Val = getValue(Op1); 2644 for (; i != LinearIndex + NumValValues; ++i) 2645 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2646 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2647 } 2648 // Copy remaining value(s) from the original aggregate. 2649 for (; i != NumAggValues; ++i) 2650 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2651 SDValue(Agg.getNode(), Agg.getResNo() + i); 2652 2653 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2654 DAG.getVTList(AggValueVTs), Values)); 2655 } 2656 2657 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2658 const Value *Op0 = I.getOperand(0); 2659 Type *AggTy = Op0->getType(); 2660 Type *ValTy = I.getType(); 2661 bool OutOfUndef = isa<UndefValue>(Op0); 2662 2663 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2664 2665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2666 SmallVector<EVT, 4> ValValueVTs; 2667 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2668 2669 unsigned NumValValues = ValValueVTs.size(); 2670 2671 // Ignore a extractvalue that produces an empty object 2672 if (!NumValValues) { 2673 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2674 return; 2675 } 2676 2677 SmallVector<SDValue, 4> Values(NumValValues); 2678 2679 SDValue Agg = getValue(Op0); 2680 // Copy out the selected value(s). 2681 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2682 Values[i - LinearIndex] = 2683 OutOfUndef ? 2684 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2685 SDValue(Agg.getNode(), Agg.getResNo() + i); 2686 2687 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2688 DAG.getVTList(ValValueVTs), Values)); 2689 } 2690 2691 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2692 Value *Op0 = I.getOperand(0); 2693 // Note that the pointer operand may be a vector of pointers. Take the scalar 2694 // element which holds a pointer. 2695 Type *Ty = Op0->getType()->getScalarType(); 2696 unsigned AS = Ty->getPointerAddressSpace(); 2697 SDValue N = getValue(Op0); 2698 SDLoc dl = getCurSDLoc(); 2699 2700 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2701 OI != E; ++OI) { 2702 const Value *Idx = *OI; 2703 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2704 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2705 if (Field) { 2706 // N = N + Offset 2707 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2708 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2709 DAG.getConstant(Offset, dl, N.getValueType())); 2710 } 2711 2712 Ty = StTy->getElementType(Field); 2713 } else { 2714 Ty = cast<SequentialType>(Ty)->getElementType(); 2715 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2716 unsigned PtrSize = PtrTy.getSizeInBits(); 2717 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2718 2719 // If this is a constant subscript, handle it quickly. 2720 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2721 if (CI->isZero()) 2722 continue; 2723 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2724 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2725 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2726 continue; 2727 } 2728 2729 // N = N + Idx * ElementSize; 2730 SDValue IdxN = getValue(Idx); 2731 2732 // If the index is smaller or larger than intptr_t, truncate or extend 2733 // it. 2734 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2735 2736 // If this is a multiply by a power of two, turn it into a shl 2737 // immediately. This is a very common case. 2738 if (ElementSize != 1) { 2739 if (ElementSize.isPowerOf2()) { 2740 unsigned Amt = ElementSize.logBase2(); 2741 IdxN = DAG.getNode(ISD::SHL, dl, 2742 N.getValueType(), IdxN, 2743 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2744 } else { 2745 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2746 IdxN = DAG.getNode(ISD::MUL, dl, 2747 N.getValueType(), IdxN, Scale); 2748 } 2749 } 2750 2751 N = DAG.getNode(ISD::ADD, dl, 2752 N.getValueType(), N, IdxN); 2753 } 2754 } 2755 2756 setValue(&I, N); 2757 } 2758 2759 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2760 // If this is a fixed sized alloca in the entry block of the function, 2761 // allocate it statically on the stack. 2762 if (FuncInfo.StaticAllocaMap.count(&I)) 2763 return; // getValue will auto-populate this. 2764 2765 SDLoc dl = getCurSDLoc(); 2766 Type *Ty = I.getAllocatedType(); 2767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2768 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2769 unsigned Align = 2770 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2771 I.getAlignment()); 2772 2773 SDValue AllocSize = getValue(I.getArraySize()); 2774 2775 EVT IntPtr = TLI.getPointerTy(); 2776 if (AllocSize.getValueType() != IntPtr) 2777 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2778 2779 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2780 AllocSize, 2781 DAG.getConstant(TySize, dl, IntPtr)); 2782 2783 // Handle alignment. If the requested alignment is less than or equal to 2784 // the stack alignment, ignore it. If the size is greater than or equal to 2785 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2786 unsigned StackAlign = 2787 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2788 if (Align <= StackAlign) 2789 Align = 0; 2790 2791 // Round the size of the allocation up to the stack alignment size 2792 // by add SA-1 to the size. 2793 AllocSize = DAG.getNode(ISD::ADD, dl, 2794 AllocSize.getValueType(), AllocSize, 2795 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2796 2797 // Mask out the low bits for alignment purposes. 2798 AllocSize = DAG.getNode(ISD::AND, dl, 2799 AllocSize.getValueType(), AllocSize, 2800 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2801 dl)); 2802 2803 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2804 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2805 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2806 setValue(&I, DSA); 2807 DAG.setRoot(DSA.getValue(1)); 2808 2809 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2810 } 2811 2812 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2813 if (I.isAtomic()) 2814 return visitAtomicLoad(I); 2815 2816 const Value *SV = I.getOperand(0); 2817 SDValue Ptr = getValue(SV); 2818 2819 Type *Ty = I.getType(); 2820 2821 bool isVolatile = I.isVolatile(); 2822 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2823 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2824 unsigned Alignment = I.getAlignment(); 2825 2826 AAMDNodes AAInfo; 2827 I.getAAMetadata(AAInfo); 2828 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2829 2830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2831 SmallVector<EVT, 4> ValueVTs; 2832 SmallVector<uint64_t, 4> Offsets; 2833 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2834 unsigned NumValues = ValueVTs.size(); 2835 if (NumValues == 0) 2836 return; 2837 2838 SDValue Root; 2839 bool ConstantMemory = false; 2840 if (isVolatile || NumValues > MaxParallelChains) 2841 // Serialize volatile loads with other side effects. 2842 Root = getRoot(); 2843 else if (AA->pointsToConstantMemory( 2844 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2845 // Do not serialize (non-volatile) loads of constant memory with anything. 2846 Root = DAG.getEntryNode(); 2847 ConstantMemory = true; 2848 } else { 2849 // Do not serialize non-volatile loads against each other. 2850 Root = DAG.getRoot(); 2851 } 2852 2853 SDLoc dl = getCurSDLoc(); 2854 2855 if (isVolatile) 2856 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2857 2858 SmallVector<SDValue, 4> Values(NumValues); 2859 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2860 NumValues)); 2861 EVT PtrVT = Ptr.getValueType(); 2862 unsigned ChainI = 0; 2863 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2864 // Serializing loads here may result in excessive register pressure, and 2865 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2866 // could recover a bit by hoisting nodes upward in the chain by recognizing 2867 // they are side-effect free or do not alias. The optimizer should really 2868 // avoid this case by converting large object/array copies to llvm.memcpy 2869 // (MaxParallelChains should always remain as failsafe). 2870 if (ChainI == MaxParallelChains) { 2871 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2872 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2873 makeArrayRef(Chains.data(), ChainI)); 2874 Root = Chain; 2875 ChainI = 0; 2876 } 2877 SDValue A = DAG.getNode(ISD::ADD, dl, 2878 PtrVT, Ptr, 2879 DAG.getConstant(Offsets[i], dl, PtrVT)); 2880 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2881 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2882 isNonTemporal, isInvariant, Alignment, AAInfo, 2883 Ranges); 2884 2885 Values[i] = L; 2886 Chains[ChainI] = L.getValue(1); 2887 } 2888 2889 if (!ConstantMemory) { 2890 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2891 makeArrayRef(Chains.data(), ChainI)); 2892 if (isVolatile) 2893 DAG.setRoot(Chain); 2894 else 2895 PendingLoads.push_back(Chain); 2896 } 2897 2898 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2899 DAG.getVTList(ValueVTs), Values)); 2900 } 2901 2902 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2903 if (I.isAtomic()) 2904 return visitAtomicStore(I); 2905 2906 const Value *SrcV = I.getOperand(0); 2907 const Value *PtrV = I.getOperand(1); 2908 2909 SmallVector<EVT, 4> ValueVTs; 2910 SmallVector<uint64_t, 4> Offsets; 2911 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2912 ValueVTs, &Offsets); 2913 unsigned NumValues = ValueVTs.size(); 2914 if (NumValues == 0) 2915 return; 2916 2917 // Get the lowered operands. Note that we do this after 2918 // checking if NumResults is zero, because with zero results 2919 // the operands won't have values in the map. 2920 SDValue Src = getValue(SrcV); 2921 SDValue Ptr = getValue(PtrV); 2922 2923 SDValue Root = getRoot(); 2924 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2925 NumValues)); 2926 EVT PtrVT = Ptr.getValueType(); 2927 bool isVolatile = I.isVolatile(); 2928 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2929 unsigned Alignment = I.getAlignment(); 2930 SDLoc dl = getCurSDLoc(); 2931 2932 AAMDNodes AAInfo; 2933 I.getAAMetadata(AAInfo); 2934 2935 unsigned ChainI = 0; 2936 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2937 // See visitLoad comments. 2938 if (ChainI == MaxParallelChains) { 2939 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2940 makeArrayRef(Chains.data(), ChainI)); 2941 Root = Chain; 2942 ChainI = 0; 2943 } 2944 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 2945 DAG.getConstant(Offsets[i], dl, PtrVT)); 2946 SDValue St = DAG.getStore(Root, dl, 2947 SDValue(Src.getNode(), Src.getResNo() + i), 2948 Add, MachinePointerInfo(PtrV, Offsets[i]), 2949 isVolatile, isNonTemporal, Alignment, AAInfo); 2950 Chains[ChainI] = St; 2951 } 2952 2953 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2954 makeArrayRef(Chains.data(), ChainI)); 2955 DAG.setRoot(StoreNode); 2956 } 2957 2958 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 2959 SDLoc sdl = getCurSDLoc(); 2960 2961 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 2962 Value *PtrOperand = I.getArgOperand(1); 2963 SDValue Ptr = getValue(PtrOperand); 2964 SDValue Src0 = getValue(I.getArgOperand(0)); 2965 SDValue Mask = getValue(I.getArgOperand(3)); 2966 EVT VT = Src0.getValueType(); 2967 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 2968 if (!Alignment) 2969 Alignment = DAG.getEVTAlignment(VT); 2970 2971 AAMDNodes AAInfo; 2972 I.getAAMetadata(AAInfo); 2973 2974 MachineMemOperand *MMO = 2975 DAG.getMachineFunction(). 2976 getMachineMemOperand(MachinePointerInfo(PtrOperand), 2977 MachineMemOperand::MOStore, VT.getStoreSize(), 2978 Alignment, AAInfo); 2979 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 2980 MMO, false); 2981 DAG.setRoot(StoreNode); 2982 setValue(&I, StoreNode); 2983 } 2984 2985 // Gather/scatter receive a vector of pointers. 2986 // This vector of pointers may be represented as a base pointer + vector of 2987 // indices, it depends on GEP and instruction preceeding GEP 2988 // that calculates indices 2989 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 2990 SelectionDAGBuilder* SDB) { 2991 2992 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 2993 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 2994 if (!Gep || Gep->getNumOperands() > 2) 2995 return false; 2996 ShuffleVectorInst *ShuffleInst = 2997 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 2998 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 2999 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3000 Instruction::InsertElement) 3001 return false; 3002 3003 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3004 3005 SelectionDAG& DAG = SDB->DAG; 3006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3007 // Check is the Ptr is inside current basic block 3008 // If not, look for the shuffle instruction 3009 if (SDB->findValue(Ptr)) 3010 Base = SDB->getValue(Ptr); 3011 else if (SDB->findValue(ShuffleInst)) { 3012 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3013 SDLoc sdl = ShuffleNode; 3014 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3015 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3016 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3017 SDB->setValue(Ptr, Base); 3018 } 3019 else 3020 return false; 3021 3022 Value *IndexVal = Gep->getOperand(1); 3023 if (SDB->findValue(IndexVal)) { 3024 Index = SDB->getValue(IndexVal); 3025 3026 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3027 IndexVal = Sext->getOperand(0); 3028 if (SDB->findValue(IndexVal)) 3029 Index = SDB->getValue(IndexVal); 3030 } 3031 return true; 3032 } 3033 return false; 3034 } 3035 3036 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3037 SDLoc sdl = getCurSDLoc(); 3038 3039 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3040 Value *Ptr = I.getArgOperand(1); 3041 SDValue Src0 = getValue(I.getArgOperand(0)); 3042 SDValue Mask = getValue(I.getArgOperand(3)); 3043 EVT VT = Src0.getValueType(); 3044 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3045 if (!Alignment) 3046 Alignment = DAG.getEVTAlignment(VT); 3047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3048 3049 AAMDNodes AAInfo; 3050 I.getAAMetadata(AAInfo); 3051 3052 SDValue Base; 3053 SDValue Index; 3054 Value *BasePtr = Ptr; 3055 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3056 3057 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3058 MachineMemOperand *MMO = DAG.getMachineFunction(). 3059 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3060 MachineMemOperand::MOStore, VT.getStoreSize(), 3061 Alignment, AAInfo); 3062 if (!UniformBase) { 3063 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3064 Index = getValue(Ptr); 3065 } 3066 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3067 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3068 Ops, MMO); 3069 DAG.setRoot(Scatter); 3070 setValue(&I, Scatter); 3071 } 3072 3073 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3074 SDLoc sdl = getCurSDLoc(); 3075 3076 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3077 Value *PtrOperand = I.getArgOperand(0); 3078 SDValue Ptr = getValue(PtrOperand); 3079 SDValue Src0 = getValue(I.getArgOperand(3)); 3080 SDValue Mask = getValue(I.getArgOperand(2)); 3081 3082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3083 EVT VT = TLI.getValueType(I.getType()); 3084 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3085 if (!Alignment) 3086 Alignment = DAG.getEVTAlignment(VT); 3087 3088 AAMDNodes AAInfo; 3089 I.getAAMetadata(AAInfo); 3090 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3091 3092 SDValue InChain = DAG.getRoot(); 3093 if (AA->pointsToConstantMemory( 3094 AliasAnalysis::Location(PtrOperand, 3095 AA->getTypeStoreSize(I.getType()), 3096 AAInfo))) { 3097 // Do not serialize (non-volatile) loads of constant memory with anything. 3098 InChain = DAG.getEntryNode(); 3099 } 3100 3101 MachineMemOperand *MMO = 3102 DAG.getMachineFunction(). 3103 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3104 MachineMemOperand::MOLoad, VT.getStoreSize(), 3105 Alignment, AAInfo, Ranges); 3106 3107 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3108 ISD::NON_EXTLOAD); 3109 SDValue OutChain = Load.getValue(1); 3110 DAG.setRoot(OutChain); 3111 setValue(&I, Load); 3112 } 3113 3114 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3115 SDLoc sdl = getCurSDLoc(); 3116 3117 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3118 Value *Ptr = I.getArgOperand(0); 3119 SDValue Src0 = getValue(I.getArgOperand(3)); 3120 SDValue Mask = getValue(I.getArgOperand(2)); 3121 3122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3123 EVT VT = TLI.getValueType(I.getType()); 3124 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3125 if (!Alignment) 3126 Alignment = DAG.getEVTAlignment(VT); 3127 3128 AAMDNodes AAInfo; 3129 I.getAAMetadata(AAInfo); 3130 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3131 3132 SDValue Root = DAG.getRoot(); 3133 SDValue Base; 3134 SDValue Index; 3135 Value *BasePtr = Ptr; 3136 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3137 bool ConstantMemory = false; 3138 if (UniformBase && AA->pointsToConstantMemory( 3139 AliasAnalysis::Location(BasePtr, 3140 AA->getTypeStoreSize(I.getType()), 3141 AAInfo))) { 3142 // Do not serialize (non-volatile) loads of constant memory with anything. 3143 Root = DAG.getEntryNode(); 3144 ConstantMemory = true; 3145 } 3146 3147 MachineMemOperand *MMO = 3148 DAG.getMachineFunction(). 3149 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3150 MachineMemOperand::MOLoad, VT.getStoreSize(), 3151 Alignment, AAInfo, Ranges); 3152 3153 if (!UniformBase) { 3154 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3155 Index = getValue(Ptr); 3156 } 3157 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3158 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3159 Ops, MMO); 3160 3161 SDValue OutChain = Gather.getValue(1); 3162 if (!ConstantMemory) 3163 PendingLoads.push_back(OutChain); 3164 setValue(&I, Gather); 3165 } 3166 3167 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3168 SDLoc dl = getCurSDLoc(); 3169 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3170 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3171 SynchronizationScope Scope = I.getSynchScope(); 3172 3173 SDValue InChain = getRoot(); 3174 3175 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3176 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3177 SDValue L = DAG.getAtomicCmpSwap( 3178 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3179 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3180 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3181 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3182 3183 SDValue OutChain = L.getValue(2); 3184 3185 setValue(&I, L); 3186 DAG.setRoot(OutChain); 3187 } 3188 3189 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3190 SDLoc dl = getCurSDLoc(); 3191 ISD::NodeType NT; 3192 switch (I.getOperation()) { 3193 default: llvm_unreachable("Unknown atomicrmw operation"); 3194 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3195 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3196 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3197 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3198 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3199 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3200 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3201 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3202 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3203 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3204 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3205 } 3206 AtomicOrdering Order = I.getOrdering(); 3207 SynchronizationScope Scope = I.getSynchScope(); 3208 3209 SDValue InChain = getRoot(); 3210 3211 SDValue L = 3212 DAG.getAtomic(NT, dl, 3213 getValue(I.getValOperand()).getSimpleValueType(), 3214 InChain, 3215 getValue(I.getPointerOperand()), 3216 getValue(I.getValOperand()), 3217 I.getPointerOperand(), 3218 /* Alignment=*/ 0, Order, Scope); 3219 3220 SDValue OutChain = L.getValue(1); 3221 3222 setValue(&I, L); 3223 DAG.setRoot(OutChain); 3224 } 3225 3226 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3227 SDLoc dl = getCurSDLoc(); 3228 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3229 SDValue Ops[3]; 3230 Ops[0] = getRoot(); 3231 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3232 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3233 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3234 } 3235 3236 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3237 SDLoc dl = getCurSDLoc(); 3238 AtomicOrdering Order = I.getOrdering(); 3239 SynchronizationScope Scope = I.getSynchScope(); 3240 3241 SDValue InChain = getRoot(); 3242 3243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3244 EVT VT = TLI.getValueType(I.getType()); 3245 3246 if (I.getAlignment() < VT.getSizeInBits() / 8) 3247 report_fatal_error("Cannot generate unaligned atomic load"); 3248 3249 MachineMemOperand *MMO = 3250 DAG.getMachineFunction(). 3251 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3252 MachineMemOperand::MOVolatile | 3253 MachineMemOperand::MOLoad, 3254 VT.getStoreSize(), 3255 I.getAlignment() ? I.getAlignment() : 3256 DAG.getEVTAlignment(VT)); 3257 3258 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3259 SDValue L = 3260 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3261 getValue(I.getPointerOperand()), MMO, 3262 Order, Scope); 3263 3264 SDValue OutChain = L.getValue(1); 3265 3266 setValue(&I, L); 3267 DAG.setRoot(OutChain); 3268 } 3269 3270 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3271 SDLoc dl = getCurSDLoc(); 3272 3273 AtomicOrdering Order = I.getOrdering(); 3274 SynchronizationScope Scope = I.getSynchScope(); 3275 3276 SDValue InChain = getRoot(); 3277 3278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3279 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3280 3281 if (I.getAlignment() < VT.getSizeInBits() / 8) 3282 report_fatal_error("Cannot generate unaligned atomic store"); 3283 3284 SDValue OutChain = 3285 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3286 InChain, 3287 getValue(I.getPointerOperand()), 3288 getValue(I.getValueOperand()), 3289 I.getPointerOperand(), I.getAlignment(), 3290 Order, Scope); 3291 3292 DAG.setRoot(OutChain); 3293 } 3294 3295 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3296 /// node. 3297 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3298 unsigned Intrinsic) { 3299 bool HasChain = !I.doesNotAccessMemory(); 3300 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3301 3302 // Build the operand list. 3303 SmallVector<SDValue, 8> Ops; 3304 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3305 if (OnlyLoad) { 3306 // We don't need to serialize loads against other loads. 3307 Ops.push_back(DAG.getRoot()); 3308 } else { 3309 Ops.push_back(getRoot()); 3310 } 3311 } 3312 3313 // Info is set by getTgtMemInstrinsic 3314 TargetLowering::IntrinsicInfo Info; 3315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3316 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3317 3318 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3319 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3320 Info.opc == ISD::INTRINSIC_W_CHAIN) 3321 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3322 TLI.getPointerTy())); 3323 3324 // Add all operands of the call to the operand list. 3325 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3326 SDValue Op = getValue(I.getArgOperand(i)); 3327 Ops.push_back(Op); 3328 } 3329 3330 SmallVector<EVT, 4> ValueVTs; 3331 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3332 3333 if (HasChain) 3334 ValueVTs.push_back(MVT::Other); 3335 3336 SDVTList VTs = DAG.getVTList(ValueVTs); 3337 3338 // Create the node. 3339 SDValue Result; 3340 if (IsTgtIntrinsic) { 3341 // This is target intrinsic that touches memory 3342 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3343 VTs, Ops, Info.memVT, 3344 MachinePointerInfo(Info.ptrVal, Info.offset), 3345 Info.align, Info.vol, 3346 Info.readMem, Info.writeMem, Info.size); 3347 } else if (!HasChain) { 3348 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3349 } else if (!I.getType()->isVoidTy()) { 3350 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3351 } else { 3352 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3353 } 3354 3355 if (HasChain) { 3356 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3357 if (OnlyLoad) 3358 PendingLoads.push_back(Chain); 3359 else 3360 DAG.setRoot(Chain); 3361 } 3362 3363 if (!I.getType()->isVoidTy()) { 3364 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3365 EVT VT = TLI.getValueType(PTy); 3366 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3367 } 3368 3369 setValue(&I, Result); 3370 } 3371 } 3372 3373 /// GetSignificand - Get the significand and build it into a floating-point 3374 /// number with exponent of 1: 3375 /// 3376 /// Op = (Op & 0x007fffff) | 0x3f800000; 3377 /// 3378 /// where Op is the hexadecimal representation of floating point value. 3379 static SDValue 3380 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3381 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3382 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3383 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3384 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3385 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3386 } 3387 3388 /// GetExponent - Get the exponent: 3389 /// 3390 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3391 /// 3392 /// where Op is the hexadecimal representation of floating point value. 3393 static SDValue 3394 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3395 SDLoc dl) { 3396 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3397 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3398 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3399 DAG.getConstant(23, dl, TLI.getPointerTy())); 3400 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3401 DAG.getConstant(127, dl, MVT::i32)); 3402 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3403 } 3404 3405 /// getF32Constant - Get 32-bit floating point constant. 3406 static SDValue 3407 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3408 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3409 MVT::f32); 3410 } 3411 3412 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3413 SelectionDAG &DAG) { 3414 // IntegerPartOfX = ((int32_t)(t0); 3415 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3416 3417 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3418 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3419 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3420 3421 // IntegerPartOfX <<= 23; 3422 IntegerPartOfX = DAG.getNode( 3423 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3424 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3425 3426 SDValue TwoToFractionalPartOfX; 3427 if (LimitFloatPrecision <= 6) { 3428 // For floating-point precision of 6: 3429 // 3430 // TwoToFractionalPartOfX = 3431 // 0.997535578f + 3432 // (0.735607626f + 0.252464424f * x) * x; 3433 // 3434 // error 0.0144103317, which is 6 bits 3435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3436 getF32Constant(DAG, 0x3e814304, dl)); 3437 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3438 getF32Constant(DAG, 0x3f3c50c8, dl)); 3439 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3440 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3441 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3442 } else if (LimitFloatPrecision <= 12) { 3443 // For floating-point precision of 12: 3444 // 3445 // TwoToFractionalPartOfX = 3446 // 0.999892986f + 3447 // (0.696457318f + 3448 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3449 // 3450 // error 0.000107046256, which is 13 to 14 bits 3451 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3452 getF32Constant(DAG, 0x3da235e3, dl)); 3453 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3454 getF32Constant(DAG, 0x3e65b8f3, dl)); 3455 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3456 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3457 getF32Constant(DAG, 0x3f324b07, dl)); 3458 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3459 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3460 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3461 } else { // LimitFloatPrecision <= 18 3462 // For floating-point precision of 18: 3463 // 3464 // TwoToFractionalPartOfX = 3465 // 0.999999982f + 3466 // (0.693148872f + 3467 // (0.240227044f + 3468 // (0.554906021e-1f + 3469 // (0.961591928e-2f + 3470 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3471 // error 2.47208000*10^(-7), which is better than 18 bits 3472 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3473 getF32Constant(DAG, 0x3924b03e, dl)); 3474 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3475 getF32Constant(DAG, 0x3ab24b87, dl)); 3476 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3477 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3478 getF32Constant(DAG, 0x3c1d8c17, dl)); 3479 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3480 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3481 getF32Constant(DAG, 0x3d634a1d, dl)); 3482 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3483 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3484 getF32Constant(DAG, 0x3e75fe14, dl)); 3485 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3486 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3487 getF32Constant(DAG, 0x3f317234, dl)); 3488 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3489 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3490 getF32Constant(DAG, 0x3f800000, dl)); 3491 } 3492 3493 // Add the exponent into the result in integer domain. 3494 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3495 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3496 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3497 } 3498 3499 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3500 /// limited-precision mode. 3501 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3502 const TargetLowering &TLI) { 3503 if (Op.getValueType() == MVT::f32 && 3504 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3505 3506 // Put the exponent in the right bit position for later addition to the 3507 // final result: 3508 // 3509 // #define LOG2OFe 1.4426950f 3510 // t0 = Op * LOG2OFe 3511 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3512 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3513 return getLimitedPrecisionExp2(t0, dl, DAG); 3514 } 3515 3516 // No special expansion. 3517 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3518 } 3519 3520 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3521 /// limited-precision mode. 3522 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3523 const TargetLowering &TLI) { 3524 if (Op.getValueType() == MVT::f32 && 3525 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3526 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3527 3528 // Scale the exponent by log(2) [0.69314718f]. 3529 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3530 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3531 getF32Constant(DAG, 0x3f317218, dl)); 3532 3533 // Get the significand and build it into a floating-point number with 3534 // exponent of 1. 3535 SDValue X = GetSignificand(DAG, Op1, dl); 3536 3537 SDValue LogOfMantissa; 3538 if (LimitFloatPrecision <= 6) { 3539 // For floating-point precision of 6: 3540 // 3541 // LogofMantissa = 3542 // -1.1609546f + 3543 // (1.4034025f - 0.23903021f * x) * x; 3544 // 3545 // error 0.0034276066, which is better than 8 bits 3546 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3547 getF32Constant(DAG, 0xbe74c456, dl)); 3548 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3549 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3550 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3551 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3552 getF32Constant(DAG, 0x3f949a29, dl)); 3553 } else if (LimitFloatPrecision <= 12) { 3554 // For floating-point precision of 12: 3555 // 3556 // LogOfMantissa = 3557 // -1.7417939f + 3558 // (2.8212026f + 3559 // (-1.4699568f + 3560 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3561 // 3562 // error 0.000061011436, which is 14 bits 3563 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3564 getF32Constant(DAG, 0xbd67b6d6, dl)); 3565 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3566 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3567 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3568 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3569 getF32Constant(DAG, 0x3fbc278b, dl)); 3570 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3571 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3572 getF32Constant(DAG, 0x40348e95, dl)); 3573 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3574 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3575 getF32Constant(DAG, 0x3fdef31a, dl)); 3576 } else { // LimitFloatPrecision <= 18 3577 // For floating-point precision of 18: 3578 // 3579 // LogOfMantissa = 3580 // -2.1072184f + 3581 // (4.2372794f + 3582 // (-3.7029485f + 3583 // (2.2781945f + 3584 // (-0.87823314f + 3585 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3586 // 3587 // error 0.0000023660568, which is better than 18 bits 3588 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3589 getF32Constant(DAG, 0xbc91e5ac, dl)); 3590 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3591 getF32Constant(DAG, 0x3e4350aa, dl)); 3592 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3593 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3594 getF32Constant(DAG, 0x3f60d3e3, dl)); 3595 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3596 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3597 getF32Constant(DAG, 0x4011cdf0, dl)); 3598 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3599 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3600 getF32Constant(DAG, 0x406cfd1c, dl)); 3601 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3602 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3603 getF32Constant(DAG, 0x408797cb, dl)); 3604 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3605 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3606 getF32Constant(DAG, 0x4006dcab, dl)); 3607 } 3608 3609 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3610 } 3611 3612 // No special expansion. 3613 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3614 } 3615 3616 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3617 /// limited-precision mode. 3618 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3619 const TargetLowering &TLI) { 3620 if (Op.getValueType() == MVT::f32 && 3621 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3622 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3623 3624 // Get the exponent. 3625 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3626 3627 // Get the significand and build it into a floating-point number with 3628 // exponent of 1. 3629 SDValue X = GetSignificand(DAG, Op1, dl); 3630 3631 // Different possible minimax approximations of significand in 3632 // floating-point for various degrees of accuracy over [1,2]. 3633 SDValue Log2ofMantissa; 3634 if (LimitFloatPrecision <= 6) { 3635 // For floating-point precision of 6: 3636 // 3637 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3638 // 3639 // error 0.0049451742, which is more than 7 bits 3640 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3641 getF32Constant(DAG, 0xbeb08fe0, dl)); 3642 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3643 getF32Constant(DAG, 0x40019463, dl)); 3644 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3645 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3646 getF32Constant(DAG, 0x3fd6633d, dl)); 3647 } else if (LimitFloatPrecision <= 12) { 3648 // For floating-point precision of 12: 3649 // 3650 // Log2ofMantissa = 3651 // -2.51285454f + 3652 // (4.07009056f + 3653 // (-2.12067489f + 3654 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3655 // 3656 // error 0.0000876136000, which is better than 13 bits 3657 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3658 getF32Constant(DAG, 0xbda7262e, dl)); 3659 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3660 getF32Constant(DAG, 0x3f25280b, dl)); 3661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3662 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3663 getF32Constant(DAG, 0x4007b923, dl)); 3664 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3665 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3666 getF32Constant(DAG, 0x40823e2f, dl)); 3667 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3668 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3669 getF32Constant(DAG, 0x4020d29c, dl)); 3670 } else { // LimitFloatPrecision <= 18 3671 // For floating-point precision of 18: 3672 // 3673 // Log2ofMantissa = 3674 // -3.0400495f + 3675 // (6.1129976f + 3676 // (-5.3420409f + 3677 // (3.2865683f + 3678 // (-1.2669343f + 3679 // (0.27515199f - 3680 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3681 // 3682 // error 0.0000018516, which is better than 18 bits 3683 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3684 getF32Constant(DAG, 0xbcd2769e, dl)); 3685 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3686 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3687 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3688 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3689 getF32Constant(DAG, 0x3fa22ae7, dl)); 3690 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3691 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3692 getF32Constant(DAG, 0x40525723, dl)); 3693 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3694 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3695 getF32Constant(DAG, 0x40aaf200, dl)); 3696 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3697 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3698 getF32Constant(DAG, 0x40c39dad, dl)); 3699 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3700 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3701 getF32Constant(DAG, 0x4042902c, dl)); 3702 } 3703 3704 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3705 } 3706 3707 // No special expansion. 3708 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3709 } 3710 3711 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3712 /// limited-precision mode. 3713 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3714 const TargetLowering &TLI) { 3715 if (Op.getValueType() == MVT::f32 && 3716 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3717 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3718 3719 // Scale the exponent by log10(2) [0.30102999f]. 3720 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3721 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3722 getF32Constant(DAG, 0x3e9a209a, dl)); 3723 3724 // Get the significand and build it into a floating-point number with 3725 // exponent of 1. 3726 SDValue X = GetSignificand(DAG, Op1, dl); 3727 3728 SDValue Log10ofMantissa; 3729 if (LimitFloatPrecision <= 6) { 3730 // For floating-point precision of 6: 3731 // 3732 // Log10ofMantissa = 3733 // -0.50419619f + 3734 // (0.60948995f - 0.10380950f * x) * x; 3735 // 3736 // error 0.0014886165, which is 6 bits 3737 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3738 getF32Constant(DAG, 0xbdd49a13, dl)); 3739 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3740 getF32Constant(DAG, 0x3f1c0789, dl)); 3741 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3742 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3743 getF32Constant(DAG, 0x3f011300, dl)); 3744 } else if (LimitFloatPrecision <= 12) { 3745 // For floating-point precision of 12: 3746 // 3747 // Log10ofMantissa = 3748 // -0.64831180f + 3749 // (0.91751397f + 3750 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3751 // 3752 // error 0.00019228036, which is better than 12 bits 3753 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3754 getF32Constant(DAG, 0x3d431f31, dl)); 3755 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3756 getF32Constant(DAG, 0x3ea21fb2, dl)); 3757 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3758 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3759 getF32Constant(DAG, 0x3f6ae232, dl)); 3760 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3761 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3762 getF32Constant(DAG, 0x3f25f7c3, dl)); 3763 } else { // LimitFloatPrecision <= 18 3764 // For floating-point precision of 18: 3765 // 3766 // Log10ofMantissa = 3767 // -0.84299375f + 3768 // (1.5327582f + 3769 // (-1.0688956f + 3770 // (0.49102474f + 3771 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3772 // 3773 // error 0.0000037995730, which is better than 18 bits 3774 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3775 getF32Constant(DAG, 0x3c5d51ce, dl)); 3776 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3777 getF32Constant(DAG, 0x3e00685a, dl)); 3778 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3779 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3780 getF32Constant(DAG, 0x3efb6798, dl)); 3781 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3782 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3783 getF32Constant(DAG, 0x3f88d192, dl)); 3784 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3785 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3786 getF32Constant(DAG, 0x3fc4316c, dl)); 3787 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3788 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3789 getF32Constant(DAG, 0x3f57ce70, dl)); 3790 } 3791 3792 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3793 } 3794 3795 // No special expansion. 3796 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3797 } 3798 3799 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3800 /// limited-precision mode. 3801 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3802 const TargetLowering &TLI) { 3803 if (Op.getValueType() == MVT::f32 && 3804 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3805 return getLimitedPrecisionExp2(Op, dl, DAG); 3806 3807 // No special expansion. 3808 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3809 } 3810 3811 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3812 /// limited-precision mode with x == 10.0f. 3813 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3814 SelectionDAG &DAG, const TargetLowering &TLI) { 3815 bool IsExp10 = false; 3816 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3817 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3818 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3819 APFloat Ten(10.0f); 3820 IsExp10 = LHSC->isExactlyValue(Ten); 3821 } 3822 } 3823 3824 if (IsExp10) { 3825 // Put the exponent in the right bit position for later addition to the 3826 // final result: 3827 // 3828 // #define LOG2OF10 3.3219281f 3829 // t0 = Op * LOG2OF10; 3830 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3831 getF32Constant(DAG, 0x40549a78, dl)); 3832 return getLimitedPrecisionExp2(t0, dl, DAG); 3833 } 3834 3835 // No special expansion. 3836 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3837 } 3838 3839 3840 /// ExpandPowI - Expand a llvm.powi intrinsic. 3841 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3842 SelectionDAG &DAG) { 3843 // If RHS is a constant, we can expand this out to a multiplication tree, 3844 // otherwise we end up lowering to a call to __powidf2 (for example). When 3845 // optimizing for size, we only want to do this if the expansion would produce 3846 // a small number of multiplies, otherwise we do the full expansion. 3847 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3848 // Get the exponent as a positive value. 3849 unsigned Val = RHSC->getSExtValue(); 3850 if ((int)Val < 0) Val = -Val; 3851 3852 // powi(x, 0) -> 1.0 3853 if (Val == 0) 3854 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3855 3856 const Function *F = DAG.getMachineFunction().getFunction(); 3857 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3858 // If optimizing for size, don't insert too many multiplies. This 3859 // inserts up to 5 multiplies. 3860 countPopulation(Val) + Log2_32(Val) < 7) { 3861 // We use the simple binary decomposition method to generate the multiply 3862 // sequence. There are more optimal ways to do this (for example, 3863 // powi(x,15) generates one more multiply than it should), but this has 3864 // the benefit of being both really simple and much better than a libcall. 3865 SDValue Res; // Logically starts equal to 1.0 3866 SDValue CurSquare = LHS; 3867 while (Val) { 3868 if (Val & 1) { 3869 if (Res.getNode()) 3870 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3871 else 3872 Res = CurSquare; // 1.0*CurSquare. 3873 } 3874 3875 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3876 CurSquare, CurSquare); 3877 Val >>= 1; 3878 } 3879 3880 // If the original was negative, invert the result, producing 1/(x*x*x). 3881 if (RHSC->getSExtValue() < 0) 3882 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3883 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3884 return Res; 3885 } 3886 } 3887 3888 // Otherwise, expand to a libcall. 3889 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3890 } 3891 3892 // getTruncatedArgReg - Find underlying register used for an truncated 3893 // argument. 3894 static unsigned getTruncatedArgReg(const SDValue &N) { 3895 if (N.getOpcode() != ISD::TRUNCATE) 3896 return 0; 3897 3898 const SDValue &Ext = N.getOperand(0); 3899 if (Ext.getOpcode() == ISD::AssertZext || 3900 Ext.getOpcode() == ISD::AssertSext) { 3901 const SDValue &CFR = Ext.getOperand(0); 3902 if (CFR.getOpcode() == ISD::CopyFromReg) 3903 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3904 if (CFR.getOpcode() == ISD::TRUNCATE) 3905 return getTruncatedArgReg(CFR); 3906 } 3907 return 0; 3908 } 3909 3910 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3911 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3912 /// At the end of instruction selection, they will be inserted to the entry BB. 3913 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3914 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3915 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3916 const Argument *Arg = dyn_cast<Argument>(V); 3917 if (!Arg) 3918 return false; 3919 3920 MachineFunction &MF = DAG.getMachineFunction(); 3921 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3922 3923 // Ignore inlined function arguments here. 3924 // 3925 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3926 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3927 return false; 3928 3929 Optional<MachineOperand> Op; 3930 // Some arguments' frame index is recorded during argument lowering. 3931 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3932 Op = MachineOperand::CreateFI(FI); 3933 3934 if (!Op && N.getNode()) { 3935 unsigned Reg; 3936 if (N.getOpcode() == ISD::CopyFromReg) 3937 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3938 else 3939 Reg = getTruncatedArgReg(N); 3940 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3941 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3942 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3943 if (PR) 3944 Reg = PR; 3945 } 3946 if (Reg) 3947 Op = MachineOperand::CreateReg(Reg, false); 3948 } 3949 3950 if (!Op) { 3951 // Check if ValueMap has reg number. 3952 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3953 if (VMI != FuncInfo.ValueMap.end()) 3954 Op = MachineOperand::CreateReg(VMI->second, false); 3955 } 3956 3957 if (!Op && N.getNode()) 3958 // Check if frame index is available. 3959 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 3960 if (FrameIndexSDNode *FINode = 3961 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 3962 Op = MachineOperand::CreateFI(FINode->getIndex()); 3963 3964 if (!Op) 3965 return false; 3966 3967 assert(Variable->isValidLocationForIntrinsic(DL) && 3968 "Expected inlined-at fields to agree"); 3969 if (Op->isReg()) 3970 FuncInfo.ArgDbgValues.push_back( 3971 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 3972 Op->getReg(), Offset, Variable, Expr)); 3973 else 3974 FuncInfo.ArgDbgValues.push_back( 3975 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 3976 .addOperand(*Op) 3977 .addImm(Offset) 3978 .addMetadata(Variable) 3979 .addMetadata(Expr)); 3980 3981 return true; 3982 } 3983 3984 // VisualStudio defines setjmp as _setjmp 3985 #if defined(_MSC_VER) && defined(setjmp) && \ 3986 !defined(setjmp_undefined_for_msvc) 3987 # pragma push_macro("setjmp") 3988 # undef setjmp 3989 # define setjmp_undefined_for_msvc 3990 #endif 3991 3992 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3993 /// we want to emit this as a call to a named external function, return the name 3994 /// otherwise lower it and return null. 3995 const char * 3996 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3998 SDLoc sdl = getCurSDLoc(); 3999 DebugLoc dl = getCurDebugLoc(); 4000 SDValue Res; 4001 4002 switch (Intrinsic) { 4003 default: 4004 // By default, turn this into a target intrinsic node. 4005 visitTargetIntrinsic(I, Intrinsic); 4006 return nullptr; 4007 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4008 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4009 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4010 case Intrinsic::returnaddress: 4011 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4012 getValue(I.getArgOperand(0)))); 4013 return nullptr; 4014 case Intrinsic::frameaddress: 4015 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4016 getValue(I.getArgOperand(0)))); 4017 return nullptr; 4018 case Intrinsic::read_register: { 4019 Value *Reg = I.getArgOperand(0); 4020 SDValue RegName = 4021 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4022 EVT VT = TLI.getValueType(I.getType()); 4023 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4024 return nullptr; 4025 } 4026 case Intrinsic::write_register: { 4027 Value *Reg = I.getArgOperand(0); 4028 Value *RegValue = I.getArgOperand(1); 4029 SDValue Chain = getValue(RegValue).getOperand(0); 4030 SDValue RegName = 4031 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4032 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4033 RegName, getValue(RegValue))); 4034 return nullptr; 4035 } 4036 case Intrinsic::setjmp: 4037 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4038 case Intrinsic::longjmp: 4039 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4040 case Intrinsic::memcpy: { 4041 // FIXME: this definition of "user defined address space" is x86-specific 4042 // Assert for address < 256 since we support only user defined address 4043 // spaces. 4044 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4045 < 256 && 4046 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4047 < 256 && 4048 "Unknown address space"); 4049 SDValue Op1 = getValue(I.getArgOperand(0)); 4050 SDValue Op2 = getValue(I.getArgOperand(1)); 4051 SDValue Op3 = getValue(I.getArgOperand(2)); 4052 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4053 if (!Align) 4054 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4055 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4056 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4057 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4058 false, isTC, 4059 MachinePointerInfo(I.getArgOperand(0)), 4060 MachinePointerInfo(I.getArgOperand(1))); 4061 updateDAGForMaybeTailCall(MC); 4062 return nullptr; 4063 } 4064 case Intrinsic::memset: { 4065 // FIXME: this definition of "user defined address space" is x86-specific 4066 // Assert for address < 256 since we support only user defined address 4067 // spaces. 4068 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4069 < 256 && 4070 "Unknown address space"); 4071 SDValue Op1 = getValue(I.getArgOperand(0)); 4072 SDValue Op2 = getValue(I.getArgOperand(1)); 4073 SDValue Op3 = getValue(I.getArgOperand(2)); 4074 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4075 if (!Align) 4076 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4077 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4078 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4079 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4080 isTC, MachinePointerInfo(I.getArgOperand(0))); 4081 updateDAGForMaybeTailCall(MS); 4082 return nullptr; 4083 } 4084 case Intrinsic::memmove: { 4085 // FIXME: this definition of "user defined address space" is x86-specific 4086 // Assert for address < 256 since we support only user defined address 4087 // spaces. 4088 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4089 < 256 && 4090 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4091 < 256 && 4092 "Unknown address space"); 4093 SDValue Op1 = getValue(I.getArgOperand(0)); 4094 SDValue Op2 = getValue(I.getArgOperand(1)); 4095 SDValue Op3 = getValue(I.getArgOperand(2)); 4096 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4097 if (!Align) 4098 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4099 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4100 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4101 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4102 isTC, MachinePointerInfo(I.getArgOperand(0)), 4103 MachinePointerInfo(I.getArgOperand(1))); 4104 updateDAGForMaybeTailCall(MM); 4105 return nullptr; 4106 } 4107 case Intrinsic::dbg_declare: { 4108 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4109 DILocalVariable *Variable = DI.getVariable(); 4110 DIExpression *Expression = DI.getExpression(); 4111 const Value *Address = DI.getAddress(); 4112 assert(Variable && "Missing variable"); 4113 if (!Address) { 4114 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4115 return nullptr; 4116 } 4117 4118 // Check if address has undef value. 4119 if (isa<UndefValue>(Address) || 4120 (Address->use_empty() && !isa<Argument>(Address))) { 4121 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4122 return nullptr; 4123 } 4124 4125 SDValue &N = NodeMap[Address]; 4126 if (!N.getNode() && isa<Argument>(Address)) 4127 // Check unused arguments map. 4128 N = UnusedArgNodeMap[Address]; 4129 SDDbgValue *SDV; 4130 if (N.getNode()) { 4131 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4132 Address = BCI->getOperand(0); 4133 // Parameters are handled specially. 4134 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4135 isa<Argument>(Address); 4136 4137 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4138 4139 if (isParameter && !AI) { 4140 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4141 if (FINode) 4142 // Byval parameter. We have a frame index at this point. 4143 SDV = DAG.getFrameIndexDbgValue( 4144 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4145 else { 4146 // Address is an argument, so try to emit its dbg value using 4147 // virtual register info from the FuncInfo.ValueMap. 4148 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4149 N); 4150 return nullptr; 4151 } 4152 } else if (AI) 4153 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4154 true, 0, dl, SDNodeOrder); 4155 else { 4156 // Can't do anything with other non-AI cases yet. 4157 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4158 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4159 DEBUG(Address->dump()); 4160 return nullptr; 4161 } 4162 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4163 } else { 4164 // If Address is an argument then try to emit its dbg value using 4165 // virtual register info from the FuncInfo.ValueMap. 4166 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4167 N)) { 4168 // If variable is pinned by a alloca in dominating bb then 4169 // use StaticAllocaMap. 4170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4171 if (AI->getParent() != DI.getParent()) { 4172 DenseMap<const AllocaInst*, int>::iterator SI = 4173 FuncInfo.StaticAllocaMap.find(AI); 4174 if (SI != FuncInfo.StaticAllocaMap.end()) { 4175 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4176 0, dl, SDNodeOrder); 4177 DAG.AddDbgValue(SDV, nullptr, false); 4178 return nullptr; 4179 } 4180 } 4181 } 4182 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4183 } 4184 } 4185 return nullptr; 4186 } 4187 case Intrinsic::dbg_value: { 4188 const DbgValueInst &DI = cast<DbgValueInst>(I); 4189 assert(DI.getVariable() && "Missing variable"); 4190 4191 DILocalVariable *Variable = DI.getVariable(); 4192 DIExpression *Expression = DI.getExpression(); 4193 uint64_t Offset = DI.getOffset(); 4194 const Value *V = DI.getValue(); 4195 if (!V) 4196 return nullptr; 4197 4198 SDDbgValue *SDV; 4199 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4200 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4201 SDNodeOrder); 4202 DAG.AddDbgValue(SDV, nullptr, false); 4203 } else { 4204 // Do not use getValue() in here; we don't want to generate code at 4205 // this point if it hasn't been done yet. 4206 SDValue N = NodeMap[V]; 4207 if (!N.getNode() && isa<Argument>(V)) 4208 // Check unused arguments map. 4209 N = UnusedArgNodeMap[V]; 4210 if (N.getNode()) { 4211 // A dbg.value for an alloca is always indirect. 4212 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4213 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4214 IsIndirect, N)) { 4215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4216 IsIndirect, Offset, dl, SDNodeOrder); 4217 DAG.AddDbgValue(SDV, N.getNode(), false); 4218 } 4219 } else if (!V->use_empty() ) { 4220 // Do not call getValue(V) yet, as we don't want to generate code. 4221 // Remember it for later. 4222 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4223 DanglingDebugInfoMap[V] = DDI; 4224 } else { 4225 // We may expand this to cover more cases. One case where we have no 4226 // data available is an unreferenced parameter. 4227 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4228 } 4229 } 4230 4231 // Build a debug info table entry. 4232 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4233 V = BCI->getOperand(0); 4234 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4235 // Don't handle byval struct arguments or VLAs, for example. 4236 if (!AI) { 4237 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4238 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4239 return nullptr; 4240 } 4241 DenseMap<const AllocaInst*, int>::iterator SI = 4242 FuncInfo.StaticAllocaMap.find(AI); 4243 if (SI == FuncInfo.StaticAllocaMap.end()) 4244 return nullptr; // VLAs. 4245 return nullptr; 4246 } 4247 4248 case Intrinsic::eh_typeid_for: { 4249 // Find the type id for the given typeinfo. 4250 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4251 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4252 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4253 setValue(&I, Res); 4254 return nullptr; 4255 } 4256 4257 case Intrinsic::eh_return_i32: 4258 case Intrinsic::eh_return_i64: 4259 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4260 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4261 MVT::Other, 4262 getControlRoot(), 4263 getValue(I.getArgOperand(0)), 4264 getValue(I.getArgOperand(1)))); 4265 return nullptr; 4266 case Intrinsic::eh_unwind_init: 4267 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4268 return nullptr; 4269 case Intrinsic::eh_dwarf_cfa: { 4270 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4271 TLI.getPointerTy()); 4272 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4273 CfaArg.getValueType(), 4274 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4275 CfaArg.getValueType()), 4276 CfaArg); 4277 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4278 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4279 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4280 FA, Offset)); 4281 return nullptr; 4282 } 4283 case Intrinsic::eh_sjlj_callsite: { 4284 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4285 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4286 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4287 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4288 4289 MMI.setCurrentCallSite(CI->getZExtValue()); 4290 return nullptr; 4291 } 4292 case Intrinsic::eh_sjlj_functioncontext: { 4293 // Get and store the index of the function context. 4294 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4295 AllocaInst *FnCtx = 4296 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4297 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4298 MFI->setFunctionContextIndex(FI); 4299 return nullptr; 4300 } 4301 case Intrinsic::eh_sjlj_setjmp: { 4302 SDValue Ops[2]; 4303 Ops[0] = getRoot(); 4304 Ops[1] = getValue(I.getArgOperand(0)); 4305 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4306 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4307 setValue(&I, Op.getValue(0)); 4308 DAG.setRoot(Op.getValue(1)); 4309 return nullptr; 4310 } 4311 case Intrinsic::eh_sjlj_longjmp: { 4312 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4313 getRoot(), getValue(I.getArgOperand(0)))); 4314 return nullptr; 4315 } 4316 4317 case Intrinsic::masked_gather: 4318 visitMaskedGather(I); 4319 return nullptr; 4320 case Intrinsic::masked_load: 4321 visitMaskedLoad(I); 4322 return nullptr; 4323 case Intrinsic::masked_scatter: 4324 visitMaskedScatter(I); 4325 return nullptr; 4326 case Intrinsic::masked_store: 4327 visitMaskedStore(I); 4328 return nullptr; 4329 case Intrinsic::x86_mmx_pslli_w: 4330 case Intrinsic::x86_mmx_pslli_d: 4331 case Intrinsic::x86_mmx_pslli_q: 4332 case Intrinsic::x86_mmx_psrli_w: 4333 case Intrinsic::x86_mmx_psrli_d: 4334 case Intrinsic::x86_mmx_psrli_q: 4335 case Intrinsic::x86_mmx_psrai_w: 4336 case Intrinsic::x86_mmx_psrai_d: { 4337 SDValue ShAmt = getValue(I.getArgOperand(1)); 4338 if (isa<ConstantSDNode>(ShAmt)) { 4339 visitTargetIntrinsic(I, Intrinsic); 4340 return nullptr; 4341 } 4342 unsigned NewIntrinsic = 0; 4343 EVT ShAmtVT = MVT::v2i32; 4344 switch (Intrinsic) { 4345 case Intrinsic::x86_mmx_pslli_w: 4346 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4347 break; 4348 case Intrinsic::x86_mmx_pslli_d: 4349 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4350 break; 4351 case Intrinsic::x86_mmx_pslli_q: 4352 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4353 break; 4354 case Intrinsic::x86_mmx_psrli_w: 4355 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4356 break; 4357 case Intrinsic::x86_mmx_psrli_d: 4358 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4359 break; 4360 case Intrinsic::x86_mmx_psrli_q: 4361 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4362 break; 4363 case Intrinsic::x86_mmx_psrai_w: 4364 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4365 break; 4366 case Intrinsic::x86_mmx_psrai_d: 4367 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4368 break; 4369 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4370 } 4371 4372 // The vector shift intrinsics with scalars uses 32b shift amounts but 4373 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4374 // to be zero. 4375 // We must do this early because v2i32 is not a legal type. 4376 SDValue ShOps[2]; 4377 ShOps[0] = ShAmt; 4378 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4379 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4380 EVT DestVT = TLI.getValueType(I.getType()); 4381 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4382 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4383 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4384 getValue(I.getArgOperand(0)), ShAmt); 4385 setValue(&I, Res); 4386 return nullptr; 4387 } 4388 case Intrinsic::convertff: 4389 case Intrinsic::convertfsi: 4390 case Intrinsic::convertfui: 4391 case Intrinsic::convertsif: 4392 case Intrinsic::convertuif: 4393 case Intrinsic::convertss: 4394 case Intrinsic::convertsu: 4395 case Intrinsic::convertus: 4396 case Intrinsic::convertuu: { 4397 ISD::CvtCode Code = ISD::CVT_INVALID; 4398 switch (Intrinsic) { 4399 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4400 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4401 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4402 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4403 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4404 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4405 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4406 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4407 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4408 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4409 } 4410 EVT DestVT = TLI.getValueType(I.getType()); 4411 const Value *Op1 = I.getArgOperand(0); 4412 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4413 DAG.getValueType(DestVT), 4414 DAG.getValueType(getValue(Op1).getValueType()), 4415 getValue(I.getArgOperand(1)), 4416 getValue(I.getArgOperand(2)), 4417 Code); 4418 setValue(&I, Res); 4419 return nullptr; 4420 } 4421 case Intrinsic::powi: 4422 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4423 getValue(I.getArgOperand(1)), DAG)); 4424 return nullptr; 4425 case Intrinsic::log: 4426 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4427 return nullptr; 4428 case Intrinsic::log2: 4429 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4430 return nullptr; 4431 case Intrinsic::log10: 4432 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4433 return nullptr; 4434 case Intrinsic::exp: 4435 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4436 return nullptr; 4437 case Intrinsic::exp2: 4438 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4439 return nullptr; 4440 case Intrinsic::pow: 4441 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4442 getValue(I.getArgOperand(1)), DAG, TLI)); 4443 return nullptr; 4444 case Intrinsic::sqrt: 4445 case Intrinsic::fabs: 4446 case Intrinsic::sin: 4447 case Intrinsic::cos: 4448 case Intrinsic::floor: 4449 case Intrinsic::ceil: 4450 case Intrinsic::trunc: 4451 case Intrinsic::rint: 4452 case Intrinsic::nearbyint: 4453 case Intrinsic::round: { 4454 unsigned Opcode; 4455 switch (Intrinsic) { 4456 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4457 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4458 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4459 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4460 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4461 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4462 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4463 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4464 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4465 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4466 case Intrinsic::round: Opcode = ISD::FROUND; break; 4467 } 4468 4469 setValue(&I, DAG.getNode(Opcode, sdl, 4470 getValue(I.getArgOperand(0)).getValueType(), 4471 getValue(I.getArgOperand(0)))); 4472 return nullptr; 4473 } 4474 case Intrinsic::minnum: 4475 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4476 getValue(I.getArgOperand(0)).getValueType(), 4477 getValue(I.getArgOperand(0)), 4478 getValue(I.getArgOperand(1)))); 4479 return nullptr; 4480 case Intrinsic::maxnum: 4481 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4482 getValue(I.getArgOperand(0)).getValueType(), 4483 getValue(I.getArgOperand(0)), 4484 getValue(I.getArgOperand(1)))); 4485 return nullptr; 4486 case Intrinsic::copysign: 4487 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4488 getValue(I.getArgOperand(0)).getValueType(), 4489 getValue(I.getArgOperand(0)), 4490 getValue(I.getArgOperand(1)))); 4491 return nullptr; 4492 case Intrinsic::fma: 4493 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4494 getValue(I.getArgOperand(0)).getValueType(), 4495 getValue(I.getArgOperand(0)), 4496 getValue(I.getArgOperand(1)), 4497 getValue(I.getArgOperand(2)))); 4498 return nullptr; 4499 case Intrinsic::fmuladd: { 4500 EVT VT = TLI.getValueType(I.getType()); 4501 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4502 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4503 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4504 getValue(I.getArgOperand(0)).getValueType(), 4505 getValue(I.getArgOperand(0)), 4506 getValue(I.getArgOperand(1)), 4507 getValue(I.getArgOperand(2)))); 4508 } else { 4509 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4510 getValue(I.getArgOperand(0)).getValueType(), 4511 getValue(I.getArgOperand(0)), 4512 getValue(I.getArgOperand(1))); 4513 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4514 getValue(I.getArgOperand(0)).getValueType(), 4515 Mul, 4516 getValue(I.getArgOperand(2))); 4517 setValue(&I, Add); 4518 } 4519 return nullptr; 4520 } 4521 case Intrinsic::convert_to_fp16: 4522 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4523 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4524 getValue(I.getArgOperand(0)), 4525 DAG.getTargetConstant(0, sdl, 4526 MVT::i32)))); 4527 return nullptr; 4528 case Intrinsic::convert_from_fp16: 4529 setValue(&I, 4530 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4531 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4532 getValue(I.getArgOperand(0))))); 4533 return nullptr; 4534 case Intrinsic::pcmarker: { 4535 SDValue Tmp = getValue(I.getArgOperand(0)); 4536 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4537 return nullptr; 4538 } 4539 case Intrinsic::readcyclecounter: { 4540 SDValue Op = getRoot(); 4541 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4542 DAG.getVTList(MVT::i64, MVT::Other), Op); 4543 setValue(&I, Res); 4544 DAG.setRoot(Res.getValue(1)); 4545 return nullptr; 4546 } 4547 case Intrinsic::bswap: 4548 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4549 getValue(I.getArgOperand(0)).getValueType(), 4550 getValue(I.getArgOperand(0)))); 4551 return nullptr; 4552 case Intrinsic::cttz: { 4553 SDValue Arg = getValue(I.getArgOperand(0)); 4554 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4555 EVT Ty = Arg.getValueType(); 4556 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4557 sdl, Ty, Arg)); 4558 return nullptr; 4559 } 4560 case Intrinsic::ctlz: { 4561 SDValue Arg = getValue(I.getArgOperand(0)); 4562 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4563 EVT Ty = Arg.getValueType(); 4564 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4565 sdl, Ty, Arg)); 4566 return nullptr; 4567 } 4568 case Intrinsic::ctpop: { 4569 SDValue Arg = getValue(I.getArgOperand(0)); 4570 EVT Ty = Arg.getValueType(); 4571 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4572 return nullptr; 4573 } 4574 case Intrinsic::stacksave: { 4575 SDValue Op = getRoot(); 4576 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4577 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4578 setValue(&I, Res); 4579 DAG.setRoot(Res.getValue(1)); 4580 return nullptr; 4581 } 4582 case Intrinsic::stackrestore: { 4583 Res = getValue(I.getArgOperand(0)); 4584 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4585 return nullptr; 4586 } 4587 case Intrinsic::stackprotector: { 4588 // Emit code into the DAG to store the stack guard onto the stack. 4589 MachineFunction &MF = DAG.getMachineFunction(); 4590 MachineFrameInfo *MFI = MF.getFrameInfo(); 4591 EVT PtrTy = TLI.getPointerTy(); 4592 SDValue Src, Chain = getRoot(); 4593 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4594 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4595 4596 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4597 // global variable __stack_chk_guard. 4598 if (!GV) 4599 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4600 if (BC->getOpcode() == Instruction::BitCast) 4601 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4602 4603 if (GV && TLI.useLoadStackGuardNode()) { 4604 // Emit a LOAD_STACK_GUARD node. 4605 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4606 sdl, PtrTy, Chain); 4607 MachinePointerInfo MPInfo(GV); 4608 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4609 unsigned Flags = MachineMemOperand::MOLoad | 4610 MachineMemOperand::MOInvariant; 4611 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4612 PtrTy.getSizeInBits() / 8, 4613 DAG.getEVTAlignment(PtrTy)); 4614 Node->setMemRefs(MemRefs, MemRefs + 1); 4615 4616 // Copy the guard value to a virtual register so that it can be 4617 // retrieved in the epilogue. 4618 Src = SDValue(Node, 0); 4619 const TargetRegisterClass *RC = 4620 TLI.getRegClassFor(Src.getSimpleValueType()); 4621 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4622 4623 SPDescriptor.setGuardReg(Reg); 4624 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4625 } else { 4626 Src = getValue(I.getArgOperand(0)); // The guard's value. 4627 } 4628 4629 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4630 4631 int FI = FuncInfo.StaticAllocaMap[Slot]; 4632 MFI->setStackProtectorIndex(FI); 4633 4634 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4635 4636 // Store the stack protector onto the stack. 4637 Res = DAG.getStore(Chain, sdl, Src, FIN, 4638 MachinePointerInfo::getFixedStack(FI), 4639 true, false, 0); 4640 setValue(&I, Res); 4641 DAG.setRoot(Res); 4642 return nullptr; 4643 } 4644 case Intrinsic::objectsize: { 4645 // If we don't know by now, we're never going to know. 4646 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4647 4648 assert(CI && "Non-constant type in __builtin_object_size?"); 4649 4650 SDValue Arg = getValue(I.getCalledValue()); 4651 EVT Ty = Arg.getValueType(); 4652 4653 if (CI->isZero()) 4654 Res = DAG.getConstant(-1ULL, sdl, Ty); 4655 else 4656 Res = DAG.getConstant(0, sdl, Ty); 4657 4658 setValue(&I, Res); 4659 return nullptr; 4660 } 4661 case Intrinsic::annotation: 4662 case Intrinsic::ptr_annotation: 4663 // Drop the intrinsic, but forward the value 4664 setValue(&I, getValue(I.getOperand(0))); 4665 return nullptr; 4666 case Intrinsic::assume: 4667 case Intrinsic::var_annotation: 4668 // Discard annotate attributes and assumptions 4669 return nullptr; 4670 4671 case Intrinsic::init_trampoline: { 4672 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4673 4674 SDValue Ops[6]; 4675 Ops[0] = getRoot(); 4676 Ops[1] = getValue(I.getArgOperand(0)); 4677 Ops[2] = getValue(I.getArgOperand(1)); 4678 Ops[3] = getValue(I.getArgOperand(2)); 4679 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4680 Ops[5] = DAG.getSrcValue(F); 4681 4682 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4683 4684 DAG.setRoot(Res); 4685 return nullptr; 4686 } 4687 case Intrinsic::adjust_trampoline: { 4688 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4689 TLI.getPointerTy(), 4690 getValue(I.getArgOperand(0)))); 4691 return nullptr; 4692 } 4693 case Intrinsic::gcroot: 4694 if (GFI) { 4695 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4696 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4697 4698 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4699 GFI->addStackRoot(FI->getIndex(), TypeMap); 4700 } 4701 return nullptr; 4702 case Intrinsic::gcread: 4703 case Intrinsic::gcwrite: 4704 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4705 case Intrinsic::flt_rounds: 4706 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4707 return nullptr; 4708 4709 case Intrinsic::expect: { 4710 // Just replace __builtin_expect(exp, c) with EXP. 4711 setValue(&I, getValue(I.getArgOperand(0))); 4712 return nullptr; 4713 } 4714 4715 case Intrinsic::debugtrap: 4716 case Intrinsic::trap: { 4717 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4718 if (TrapFuncName.empty()) { 4719 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4720 ISD::TRAP : ISD::DEBUGTRAP; 4721 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4722 return nullptr; 4723 } 4724 TargetLowering::ArgListTy Args; 4725 4726 TargetLowering::CallLoweringInfo CLI(DAG); 4727 CLI.setDebugLoc(sdl).setChain(getRoot()) 4728 .setCallee(CallingConv::C, I.getType(), 4729 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4730 std::move(Args), 0); 4731 4732 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4733 DAG.setRoot(Result.second); 4734 return nullptr; 4735 } 4736 4737 case Intrinsic::uadd_with_overflow: 4738 case Intrinsic::sadd_with_overflow: 4739 case Intrinsic::usub_with_overflow: 4740 case Intrinsic::ssub_with_overflow: 4741 case Intrinsic::umul_with_overflow: 4742 case Intrinsic::smul_with_overflow: { 4743 ISD::NodeType Op; 4744 switch (Intrinsic) { 4745 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4746 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4747 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4748 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4749 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4750 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4751 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4752 } 4753 SDValue Op1 = getValue(I.getArgOperand(0)); 4754 SDValue Op2 = getValue(I.getArgOperand(1)); 4755 4756 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4757 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4758 return nullptr; 4759 } 4760 case Intrinsic::prefetch: { 4761 SDValue Ops[5]; 4762 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4763 Ops[0] = getRoot(); 4764 Ops[1] = getValue(I.getArgOperand(0)); 4765 Ops[2] = getValue(I.getArgOperand(1)); 4766 Ops[3] = getValue(I.getArgOperand(2)); 4767 Ops[4] = getValue(I.getArgOperand(3)); 4768 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4769 DAG.getVTList(MVT::Other), Ops, 4770 EVT::getIntegerVT(*Context, 8), 4771 MachinePointerInfo(I.getArgOperand(0)), 4772 0, /* align */ 4773 false, /* volatile */ 4774 rw==0, /* read */ 4775 rw==1)); /* write */ 4776 return nullptr; 4777 } 4778 case Intrinsic::lifetime_start: 4779 case Intrinsic::lifetime_end: { 4780 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4781 // Stack coloring is not enabled in O0, discard region information. 4782 if (TM.getOptLevel() == CodeGenOpt::None) 4783 return nullptr; 4784 4785 SmallVector<Value *, 4> Allocas; 4786 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4787 4788 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4789 E = Allocas.end(); Object != E; ++Object) { 4790 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4791 4792 // Could not find an Alloca. 4793 if (!LifetimeObject) 4794 continue; 4795 4796 // First check that the Alloca is static, otherwise it won't have a 4797 // valid frame index. 4798 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4799 if (SI == FuncInfo.StaticAllocaMap.end()) 4800 return nullptr; 4801 4802 int FI = SI->second; 4803 4804 SDValue Ops[2]; 4805 Ops[0] = getRoot(); 4806 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4807 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4808 4809 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4810 DAG.setRoot(Res); 4811 } 4812 return nullptr; 4813 } 4814 case Intrinsic::invariant_start: 4815 // Discard region information. 4816 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4817 return nullptr; 4818 case Intrinsic::invariant_end: 4819 // Discard region information. 4820 return nullptr; 4821 case Intrinsic::stackprotectorcheck: { 4822 // Do not actually emit anything for this basic block. Instead we initialize 4823 // the stack protector descriptor and export the guard variable so we can 4824 // access it in FinishBasicBlock. 4825 const BasicBlock *BB = I.getParent(); 4826 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4827 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4828 4829 // Flush our exports since we are going to process a terminator. 4830 (void)getControlRoot(); 4831 return nullptr; 4832 } 4833 case Intrinsic::clear_cache: 4834 return TLI.getClearCacheBuiltinName(); 4835 case Intrinsic::eh_actions: 4836 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4837 return nullptr; 4838 case Intrinsic::donothing: 4839 // ignore 4840 return nullptr; 4841 case Intrinsic::experimental_stackmap: { 4842 visitStackmap(I); 4843 return nullptr; 4844 } 4845 case Intrinsic::experimental_patchpoint_void: 4846 case Intrinsic::experimental_patchpoint_i64: { 4847 visitPatchpoint(&I); 4848 return nullptr; 4849 } 4850 case Intrinsic::experimental_gc_statepoint: { 4851 visitStatepoint(I); 4852 return nullptr; 4853 } 4854 case Intrinsic::experimental_gc_result_int: 4855 case Intrinsic::experimental_gc_result_float: 4856 case Intrinsic::experimental_gc_result_ptr: 4857 case Intrinsic::experimental_gc_result: { 4858 visitGCResult(I); 4859 return nullptr; 4860 } 4861 case Intrinsic::experimental_gc_relocate: { 4862 visitGCRelocate(I); 4863 return nullptr; 4864 } 4865 case Intrinsic::instrprof_increment: 4866 llvm_unreachable("instrprof failed to lower an increment"); 4867 4868 case Intrinsic::frameescape: { 4869 MachineFunction &MF = DAG.getMachineFunction(); 4870 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4871 4872 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4873 // is the same on all targets. 4874 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4875 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4876 if (isa<ConstantPointerNull>(Arg)) 4877 continue; // Skip null pointers. They represent a hole in index space. 4878 AllocaInst *Slot = cast<AllocaInst>(Arg); 4879 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4880 "can only escape static allocas"); 4881 int FI = FuncInfo.StaticAllocaMap[Slot]; 4882 MCSymbol *FrameAllocSym = 4883 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4884 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4886 TII->get(TargetOpcode::FRAME_ALLOC)) 4887 .addSym(FrameAllocSym) 4888 .addFrameIndex(FI); 4889 } 4890 4891 return nullptr; 4892 } 4893 4894 case Intrinsic::framerecover: { 4895 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4896 MachineFunction &MF = DAG.getMachineFunction(); 4897 MVT PtrVT = TLI.getPointerTy(0); 4898 4899 // Get the symbol that defines the frame offset. 4900 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4901 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4902 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4903 MCSymbol *FrameAllocSym = 4904 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4905 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4906 4907 // Create a TargetExternalSymbol for the label to avoid any target lowering 4908 // that would make this PC relative. 4909 StringRef Name = FrameAllocSym->getName(); 4910 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4911 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4912 SDValue OffsetVal = 4913 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4914 4915 // Add the offset to the FP. 4916 Value *FP = I.getArgOperand(1); 4917 SDValue FPVal = getValue(FP); 4918 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4919 setValue(&I, Add); 4920 4921 return nullptr; 4922 } 4923 case Intrinsic::eh_begincatch: 4924 case Intrinsic::eh_endcatch: 4925 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4926 case Intrinsic::eh_exceptioncode: { 4927 unsigned Reg = TLI.getExceptionPointerRegister(); 4928 assert(Reg && "cannot get exception code on this platform"); 4929 MVT PtrVT = TLI.getPointerTy(); 4930 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4931 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4932 SDValue N = 4933 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4934 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4935 setValue(&I, N); 4936 return nullptr; 4937 } 4938 } 4939 } 4940 4941 std::pair<SDValue, SDValue> 4942 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4943 MachineBasicBlock *LandingPad) { 4944 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4945 MCSymbol *BeginLabel = nullptr; 4946 4947 if (LandingPad) { 4948 // Insert a label before the invoke call to mark the try range. This can be 4949 // used to detect deletion of the invoke via the MachineModuleInfo. 4950 BeginLabel = MMI.getContext().CreateTempSymbol(); 4951 4952 // For SjLj, keep track of which landing pads go with which invokes 4953 // so as to maintain the ordering of pads in the LSDA. 4954 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4955 if (CallSiteIndex) { 4956 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4957 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 4958 4959 // Now that the call site is handled, stop tracking it. 4960 MMI.setCurrentCallSite(0); 4961 } 4962 4963 // Both PendingLoads and PendingExports must be flushed here; 4964 // this call might not return. 4965 (void)getRoot(); 4966 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 4967 4968 CLI.setChain(getRoot()); 4969 } 4970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4971 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4972 4973 assert((CLI.IsTailCall || Result.second.getNode()) && 4974 "Non-null chain expected with non-tail call!"); 4975 assert((Result.second.getNode() || !Result.first.getNode()) && 4976 "Null value expected with tail call!"); 4977 4978 if (!Result.second.getNode()) { 4979 // As a special case, a null chain means that a tail call has been emitted 4980 // and the DAG root is already updated. 4981 HasTailCall = true; 4982 4983 // Since there's no actual continuation from this block, nothing can be 4984 // relying on us setting vregs for them. 4985 PendingExports.clear(); 4986 } else { 4987 DAG.setRoot(Result.second); 4988 } 4989 4990 if (LandingPad) { 4991 // Insert a label at the end of the invoke call to mark the try range. This 4992 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4993 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4994 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 4995 4996 // Inform MachineModuleInfo of range. 4997 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4998 } 4999 5000 return Result; 5001 } 5002 5003 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5004 bool isTailCall, 5005 MachineBasicBlock *LandingPad) { 5006 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5007 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5008 Type *RetTy = FTy->getReturnType(); 5009 5010 TargetLowering::ArgListTy Args; 5011 TargetLowering::ArgListEntry Entry; 5012 Args.reserve(CS.arg_size()); 5013 5014 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5015 i != e; ++i) { 5016 const Value *V = *i; 5017 5018 // Skip empty types 5019 if (V->getType()->isEmptyTy()) 5020 continue; 5021 5022 SDValue ArgNode = getValue(V); 5023 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5024 5025 // Skip the first return-type Attribute to get to params. 5026 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5027 Args.push_back(Entry); 5028 5029 // If we have an explicit sret argument that is an Instruction, (i.e., it 5030 // might point to function-local memory), we can't meaningfully tail-call. 5031 if (Entry.isSRet && isa<Instruction>(V)) 5032 isTailCall = false; 5033 } 5034 5035 // Check if target-independent constraints permit a tail call here. 5036 // Target-dependent constraints are checked within TLI->LowerCallTo. 5037 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5038 isTailCall = false; 5039 5040 TargetLowering::CallLoweringInfo CLI(DAG); 5041 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5042 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5043 .setTailCall(isTailCall); 5044 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5045 5046 if (Result.first.getNode()) 5047 setValue(CS.getInstruction(), Result.first); 5048 } 5049 5050 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5051 /// value is equal or not-equal to zero. 5052 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5053 for (const User *U : V->users()) { 5054 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5055 if (IC->isEquality()) 5056 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5057 if (C->isNullValue()) 5058 continue; 5059 // Unknown instruction. 5060 return false; 5061 } 5062 return true; 5063 } 5064 5065 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5066 Type *LoadTy, 5067 SelectionDAGBuilder &Builder) { 5068 5069 // Check to see if this load can be trivially constant folded, e.g. if the 5070 // input is from a string literal. 5071 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5072 // Cast pointer to the type we really want to load. 5073 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5074 PointerType::getUnqual(LoadTy)); 5075 5076 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5077 const_cast<Constant *>(LoadInput), *Builder.DL)) 5078 return Builder.getValue(LoadCst); 5079 } 5080 5081 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5082 // still constant memory, the input chain can be the entry node. 5083 SDValue Root; 5084 bool ConstantMemory = false; 5085 5086 // Do not serialize (non-volatile) loads of constant memory with anything. 5087 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5088 Root = Builder.DAG.getEntryNode(); 5089 ConstantMemory = true; 5090 } else { 5091 // Do not serialize non-volatile loads against each other. 5092 Root = Builder.DAG.getRoot(); 5093 } 5094 5095 SDValue Ptr = Builder.getValue(PtrVal); 5096 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5097 Ptr, MachinePointerInfo(PtrVal), 5098 false /*volatile*/, 5099 false /*nontemporal*/, 5100 false /*isinvariant*/, 1 /* align=1 */); 5101 5102 if (!ConstantMemory) 5103 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5104 return LoadVal; 5105 } 5106 5107 /// processIntegerCallValue - Record the value for an instruction that 5108 /// produces an integer result, converting the type where necessary. 5109 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5110 SDValue Value, 5111 bool IsSigned) { 5112 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5113 if (IsSigned) 5114 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5115 else 5116 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5117 setValue(&I, Value); 5118 } 5119 5120 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5121 /// If so, return true and lower it, otherwise return false and it will be 5122 /// lowered like a normal call. 5123 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5124 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5125 if (I.getNumArgOperands() != 3) 5126 return false; 5127 5128 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5129 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5130 !I.getArgOperand(2)->getType()->isIntegerTy() || 5131 !I.getType()->isIntegerTy()) 5132 return false; 5133 5134 const Value *Size = I.getArgOperand(2); 5135 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5136 if (CSize && CSize->getZExtValue() == 0) { 5137 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5138 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5139 return true; 5140 } 5141 5142 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5143 std::pair<SDValue, SDValue> Res = 5144 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5145 getValue(LHS), getValue(RHS), getValue(Size), 5146 MachinePointerInfo(LHS), 5147 MachinePointerInfo(RHS)); 5148 if (Res.first.getNode()) { 5149 processIntegerCallValue(I, Res.first, true); 5150 PendingLoads.push_back(Res.second); 5151 return true; 5152 } 5153 5154 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5155 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5156 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5157 bool ActuallyDoIt = true; 5158 MVT LoadVT; 5159 Type *LoadTy; 5160 switch (CSize->getZExtValue()) { 5161 default: 5162 LoadVT = MVT::Other; 5163 LoadTy = nullptr; 5164 ActuallyDoIt = false; 5165 break; 5166 case 2: 5167 LoadVT = MVT::i16; 5168 LoadTy = Type::getInt16Ty(CSize->getContext()); 5169 break; 5170 case 4: 5171 LoadVT = MVT::i32; 5172 LoadTy = Type::getInt32Ty(CSize->getContext()); 5173 break; 5174 case 8: 5175 LoadVT = MVT::i64; 5176 LoadTy = Type::getInt64Ty(CSize->getContext()); 5177 break; 5178 /* 5179 case 16: 5180 LoadVT = MVT::v4i32; 5181 LoadTy = Type::getInt32Ty(CSize->getContext()); 5182 LoadTy = VectorType::get(LoadTy, 4); 5183 break; 5184 */ 5185 } 5186 5187 // This turns into unaligned loads. We only do this if the target natively 5188 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5189 // we'll only produce a small number of byte loads. 5190 5191 // Require that we can find a legal MVT, and only do this if the target 5192 // supports unaligned loads of that type. Expanding into byte loads would 5193 // bloat the code. 5194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5195 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5196 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5197 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5198 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5199 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5200 // TODO: Check alignment of src and dest ptrs. 5201 if (!TLI.isTypeLegal(LoadVT) || 5202 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5203 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5204 ActuallyDoIt = false; 5205 } 5206 5207 if (ActuallyDoIt) { 5208 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5209 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5210 5211 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5212 ISD::SETNE); 5213 processIntegerCallValue(I, Res, false); 5214 return true; 5215 } 5216 } 5217 5218 5219 return false; 5220 } 5221 5222 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5223 /// form. If so, return true and lower it, otherwise return false and it 5224 /// will be lowered like a normal call. 5225 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5226 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5227 if (I.getNumArgOperands() != 3) 5228 return false; 5229 5230 const Value *Src = I.getArgOperand(0); 5231 const Value *Char = I.getArgOperand(1); 5232 const Value *Length = I.getArgOperand(2); 5233 if (!Src->getType()->isPointerTy() || 5234 !Char->getType()->isIntegerTy() || 5235 !Length->getType()->isIntegerTy() || 5236 !I.getType()->isPointerTy()) 5237 return false; 5238 5239 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5240 std::pair<SDValue, SDValue> Res = 5241 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5242 getValue(Src), getValue(Char), getValue(Length), 5243 MachinePointerInfo(Src)); 5244 if (Res.first.getNode()) { 5245 setValue(&I, Res.first); 5246 PendingLoads.push_back(Res.second); 5247 return true; 5248 } 5249 5250 return false; 5251 } 5252 5253 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5254 /// optimized form. If so, return true and lower it, otherwise return false 5255 /// and it will be lowered like a normal call. 5256 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5257 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5258 if (I.getNumArgOperands() != 2) 5259 return false; 5260 5261 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5262 if (!Arg0->getType()->isPointerTy() || 5263 !Arg1->getType()->isPointerTy() || 5264 !I.getType()->isPointerTy()) 5265 return false; 5266 5267 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5268 std::pair<SDValue, SDValue> Res = 5269 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5270 getValue(Arg0), getValue(Arg1), 5271 MachinePointerInfo(Arg0), 5272 MachinePointerInfo(Arg1), isStpcpy); 5273 if (Res.first.getNode()) { 5274 setValue(&I, Res.first); 5275 DAG.setRoot(Res.second); 5276 return true; 5277 } 5278 5279 return false; 5280 } 5281 5282 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5283 /// If so, return true and lower it, otherwise return false and it will be 5284 /// lowered like a normal call. 5285 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5286 // Verify that the prototype makes sense. int strcmp(void*,void*) 5287 if (I.getNumArgOperands() != 2) 5288 return false; 5289 5290 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5291 if (!Arg0->getType()->isPointerTy() || 5292 !Arg1->getType()->isPointerTy() || 5293 !I.getType()->isIntegerTy()) 5294 return false; 5295 5296 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5297 std::pair<SDValue, SDValue> Res = 5298 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5299 getValue(Arg0), getValue(Arg1), 5300 MachinePointerInfo(Arg0), 5301 MachinePointerInfo(Arg1)); 5302 if (Res.first.getNode()) { 5303 processIntegerCallValue(I, Res.first, true); 5304 PendingLoads.push_back(Res.second); 5305 return true; 5306 } 5307 5308 return false; 5309 } 5310 5311 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5312 /// form. If so, return true and lower it, otherwise return false and it 5313 /// will be lowered like a normal call. 5314 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5315 // Verify that the prototype makes sense. size_t strlen(char *) 5316 if (I.getNumArgOperands() != 1) 5317 return false; 5318 5319 const Value *Arg0 = I.getArgOperand(0); 5320 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5321 return false; 5322 5323 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5324 std::pair<SDValue, SDValue> Res = 5325 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5326 getValue(Arg0), MachinePointerInfo(Arg0)); 5327 if (Res.first.getNode()) { 5328 processIntegerCallValue(I, Res.first, false); 5329 PendingLoads.push_back(Res.second); 5330 return true; 5331 } 5332 5333 return false; 5334 } 5335 5336 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5337 /// form. If so, return true and lower it, otherwise return false and it 5338 /// will be lowered like a normal call. 5339 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5340 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5341 if (I.getNumArgOperands() != 2) 5342 return false; 5343 5344 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5345 if (!Arg0->getType()->isPointerTy() || 5346 !Arg1->getType()->isIntegerTy() || 5347 !I.getType()->isIntegerTy()) 5348 return false; 5349 5350 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5351 std::pair<SDValue, SDValue> Res = 5352 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5353 getValue(Arg0), getValue(Arg1), 5354 MachinePointerInfo(Arg0)); 5355 if (Res.first.getNode()) { 5356 processIntegerCallValue(I, Res.first, false); 5357 PendingLoads.push_back(Res.second); 5358 return true; 5359 } 5360 5361 return false; 5362 } 5363 5364 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5365 /// operation (as expected), translate it to an SDNode with the specified opcode 5366 /// and return true. 5367 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5368 unsigned Opcode) { 5369 // Sanity check that it really is a unary floating-point call. 5370 if (I.getNumArgOperands() != 1 || 5371 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5372 I.getType() != I.getArgOperand(0)->getType() || 5373 !I.onlyReadsMemory()) 5374 return false; 5375 5376 SDValue Tmp = getValue(I.getArgOperand(0)); 5377 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5378 return true; 5379 } 5380 5381 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5382 /// operation (as expected), translate it to an SDNode with the specified opcode 5383 /// and return true. 5384 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5385 unsigned Opcode) { 5386 // Sanity check that it really is a binary floating-point call. 5387 if (I.getNumArgOperands() != 2 || 5388 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5389 I.getType() != I.getArgOperand(0)->getType() || 5390 I.getType() != I.getArgOperand(1)->getType() || 5391 !I.onlyReadsMemory()) 5392 return false; 5393 5394 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5395 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5396 EVT VT = Tmp0.getValueType(); 5397 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5398 return true; 5399 } 5400 5401 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5402 // Handle inline assembly differently. 5403 if (isa<InlineAsm>(I.getCalledValue())) { 5404 visitInlineAsm(&I); 5405 return; 5406 } 5407 5408 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5409 ComputeUsesVAFloatArgument(I, &MMI); 5410 5411 const char *RenameFn = nullptr; 5412 if (Function *F = I.getCalledFunction()) { 5413 if (F->isDeclaration()) { 5414 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5415 if (unsigned IID = II->getIntrinsicID(F)) { 5416 RenameFn = visitIntrinsicCall(I, IID); 5417 if (!RenameFn) 5418 return; 5419 } 5420 } 5421 if (unsigned IID = F->getIntrinsicID()) { 5422 RenameFn = visitIntrinsicCall(I, IID); 5423 if (!RenameFn) 5424 return; 5425 } 5426 } 5427 5428 // Check for well-known libc/libm calls. If the function is internal, it 5429 // can't be a library call. 5430 LibFunc::Func Func; 5431 if (!F->hasLocalLinkage() && F->hasName() && 5432 LibInfo->getLibFunc(F->getName(), Func) && 5433 LibInfo->hasOptimizedCodeGen(Func)) { 5434 switch (Func) { 5435 default: break; 5436 case LibFunc::copysign: 5437 case LibFunc::copysignf: 5438 case LibFunc::copysignl: 5439 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5440 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5441 I.getType() == I.getArgOperand(0)->getType() && 5442 I.getType() == I.getArgOperand(1)->getType() && 5443 I.onlyReadsMemory()) { 5444 SDValue LHS = getValue(I.getArgOperand(0)); 5445 SDValue RHS = getValue(I.getArgOperand(1)); 5446 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5447 LHS.getValueType(), LHS, RHS)); 5448 return; 5449 } 5450 break; 5451 case LibFunc::fabs: 5452 case LibFunc::fabsf: 5453 case LibFunc::fabsl: 5454 if (visitUnaryFloatCall(I, ISD::FABS)) 5455 return; 5456 break; 5457 case LibFunc::fmin: 5458 case LibFunc::fminf: 5459 case LibFunc::fminl: 5460 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5461 return; 5462 break; 5463 case LibFunc::fmax: 5464 case LibFunc::fmaxf: 5465 case LibFunc::fmaxl: 5466 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5467 return; 5468 break; 5469 case LibFunc::sin: 5470 case LibFunc::sinf: 5471 case LibFunc::sinl: 5472 if (visitUnaryFloatCall(I, ISD::FSIN)) 5473 return; 5474 break; 5475 case LibFunc::cos: 5476 case LibFunc::cosf: 5477 case LibFunc::cosl: 5478 if (visitUnaryFloatCall(I, ISD::FCOS)) 5479 return; 5480 break; 5481 case LibFunc::sqrt: 5482 case LibFunc::sqrtf: 5483 case LibFunc::sqrtl: 5484 case LibFunc::sqrt_finite: 5485 case LibFunc::sqrtf_finite: 5486 case LibFunc::sqrtl_finite: 5487 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5488 return; 5489 break; 5490 case LibFunc::floor: 5491 case LibFunc::floorf: 5492 case LibFunc::floorl: 5493 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5494 return; 5495 break; 5496 case LibFunc::nearbyint: 5497 case LibFunc::nearbyintf: 5498 case LibFunc::nearbyintl: 5499 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5500 return; 5501 break; 5502 case LibFunc::ceil: 5503 case LibFunc::ceilf: 5504 case LibFunc::ceill: 5505 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5506 return; 5507 break; 5508 case LibFunc::rint: 5509 case LibFunc::rintf: 5510 case LibFunc::rintl: 5511 if (visitUnaryFloatCall(I, ISD::FRINT)) 5512 return; 5513 break; 5514 case LibFunc::round: 5515 case LibFunc::roundf: 5516 case LibFunc::roundl: 5517 if (visitUnaryFloatCall(I, ISD::FROUND)) 5518 return; 5519 break; 5520 case LibFunc::trunc: 5521 case LibFunc::truncf: 5522 case LibFunc::truncl: 5523 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5524 return; 5525 break; 5526 case LibFunc::log2: 5527 case LibFunc::log2f: 5528 case LibFunc::log2l: 5529 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5530 return; 5531 break; 5532 case LibFunc::exp2: 5533 case LibFunc::exp2f: 5534 case LibFunc::exp2l: 5535 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5536 return; 5537 break; 5538 case LibFunc::memcmp: 5539 if (visitMemCmpCall(I)) 5540 return; 5541 break; 5542 case LibFunc::memchr: 5543 if (visitMemChrCall(I)) 5544 return; 5545 break; 5546 case LibFunc::strcpy: 5547 if (visitStrCpyCall(I, false)) 5548 return; 5549 break; 5550 case LibFunc::stpcpy: 5551 if (visitStrCpyCall(I, true)) 5552 return; 5553 break; 5554 case LibFunc::strcmp: 5555 if (visitStrCmpCall(I)) 5556 return; 5557 break; 5558 case LibFunc::strlen: 5559 if (visitStrLenCall(I)) 5560 return; 5561 break; 5562 case LibFunc::strnlen: 5563 if (visitStrNLenCall(I)) 5564 return; 5565 break; 5566 } 5567 } 5568 } 5569 5570 SDValue Callee; 5571 if (!RenameFn) 5572 Callee = getValue(I.getCalledValue()); 5573 else 5574 Callee = DAG.getExternalSymbol(RenameFn, 5575 DAG.getTargetLoweringInfo().getPointerTy()); 5576 5577 // Check if we can potentially perform a tail call. More detailed checking is 5578 // be done within LowerCallTo, after more information about the call is known. 5579 LowerCallTo(&I, Callee, I.isTailCall()); 5580 } 5581 5582 namespace { 5583 5584 /// AsmOperandInfo - This contains information for each constraint that we are 5585 /// lowering. 5586 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5587 public: 5588 /// CallOperand - If this is the result output operand or a clobber 5589 /// this is null, otherwise it is the incoming operand to the CallInst. 5590 /// This gets modified as the asm is processed. 5591 SDValue CallOperand; 5592 5593 /// AssignedRegs - If this is a register or register class operand, this 5594 /// contains the set of register corresponding to the operand. 5595 RegsForValue AssignedRegs; 5596 5597 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5598 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5599 } 5600 5601 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5602 /// corresponds to. If there is no Value* for this operand, it returns 5603 /// MVT::Other. 5604 EVT getCallOperandValEVT(LLVMContext &Context, 5605 const TargetLowering &TLI, 5606 const DataLayout *DL) const { 5607 if (!CallOperandVal) return MVT::Other; 5608 5609 if (isa<BasicBlock>(CallOperandVal)) 5610 return TLI.getPointerTy(); 5611 5612 llvm::Type *OpTy = CallOperandVal->getType(); 5613 5614 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5615 // If this is an indirect operand, the operand is a pointer to the 5616 // accessed type. 5617 if (isIndirect) { 5618 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5619 if (!PtrTy) 5620 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5621 OpTy = PtrTy->getElementType(); 5622 } 5623 5624 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5625 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5626 if (STy->getNumElements() == 1) 5627 OpTy = STy->getElementType(0); 5628 5629 // If OpTy is not a single value, it may be a struct/union that we 5630 // can tile with integers. 5631 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5632 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5633 switch (BitSize) { 5634 default: break; 5635 case 1: 5636 case 8: 5637 case 16: 5638 case 32: 5639 case 64: 5640 case 128: 5641 OpTy = IntegerType::get(Context, BitSize); 5642 break; 5643 } 5644 } 5645 5646 return TLI.getValueType(OpTy, true); 5647 } 5648 }; 5649 5650 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5651 5652 } // end anonymous namespace 5653 5654 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5655 /// specified operand. We prefer to assign virtual registers, to allow the 5656 /// register allocator to handle the assignment process. However, if the asm 5657 /// uses features that we can't model on machineinstrs, we have SDISel do the 5658 /// allocation. This produces generally horrible, but correct, code. 5659 /// 5660 /// OpInfo describes the operand. 5661 /// 5662 static void GetRegistersForValue(SelectionDAG &DAG, 5663 const TargetLowering &TLI, 5664 SDLoc DL, 5665 SDISelAsmOperandInfo &OpInfo) { 5666 LLVMContext &Context = *DAG.getContext(); 5667 5668 MachineFunction &MF = DAG.getMachineFunction(); 5669 SmallVector<unsigned, 4> Regs; 5670 5671 // If this is a constraint for a single physreg, or a constraint for a 5672 // register class, find it. 5673 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5674 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5675 OpInfo.ConstraintCode, 5676 OpInfo.ConstraintVT); 5677 5678 unsigned NumRegs = 1; 5679 if (OpInfo.ConstraintVT != MVT::Other) { 5680 // If this is a FP input in an integer register (or visa versa) insert a bit 5681 // cast of the input value. More generally, handle any case where the input 5682 // value disagrees with the register class we plan to stick this in. 5683 if (OpInfo.Type == InlineAsm::isInput && 5684 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5685 // Try to convert to the first EVT that the reg class contains. If the 5686 // types are identical size, use a bitcast to convert (e.g. two differing 5687 // vector types). 5688 MVT RegVT = *PhysReg.second->vt_begin(); 5689 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5690 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5691 RegVT, OpInfo.CallOperand); 5692 OpInfo.ConstraintVT = RegVT; 5693 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5694 // If the input is a FP value and we want it in FP registers, do a 5695 // bitcast to the corresponding integer type. This turns an f64 value 5696 // into i64, which can be passed with two i32 values on a 32-bit 5697 // machine. 5698 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5699 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5700 RegVT, OpInfo.CallOperand); 5701 OpInfo.ConstraintVT = RegVT; 5702 } 5703 } 5704 5705 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5706 } 5707 5708 MVT RegVT; 5709 EVT ValueVT = OpInfo.ConstraintVT; 5710 5711 // If this is a constraint for a specific physical register, like {r17}, 5712 // assign it now. 5713 if (unsigned AssignedReg = PhysReg.first) { 5714 const TargetRegisterClass *RC = PhysReg.second; 5715 if (OpInfo.ConstraintVT == MVT::Other) 5716 ValueVT = *RC->vt_begin(); 5717 5718 // Get the actual register value type. This is important, because the user 5719 // may have asked for (e.g.) the AX register in i32 type. We need to 5720 // remember that AX is actually i16 to get the right extension. 5721 RegVT = *RC->vt_begin(); 5722 5723 // This is a explicit reference to a physical register. 5724 Regs.push_back(AssignedReg); 5725 5726 // If this is an expanded reference, add the rest of the regs to Regs. 5727 if (NumRegs != 1) { 5728 TargetRegisterClass::iterator I = RC->begin(); 5729 for (; *I != AssignedReg; ++I) 5730 assert(I != RC->end() && "Didn't find reg!"); 5731 5732 // Already added the first reg. 5733 --NumRegs; ++I; 5734 for (; NumRegs; --NumRegs, ++I) { 5735 assert(I != RC->end() && "Ran out of registers to allocate!"); 5736 Regs.push_back(*I); 5737 } 5738 } 5739 5740 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5741 return; 5742 } 5743 5744 // Otherwise, if this was a reference to an LLVM register class, create vregs 5745 // for this reference. 5746 if (const TargetRegisterClass *RC = PhysReg.second) { 5747 RegVT = *RC->vt_begin(); 5748 if (OpInfo.ConstraintVT == MVT::Other) 5749 ValueVT = RegVT; 5750 5751 // Create the appropriate number of virtual registers. 5752 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5753 for (; NumRegs; --NumRegs) 5754 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5755 5756 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5757 return; 5758 } 5759 5760 // Otherwise, we couldn't allocate enough registers for this. 5761 } 5762 5763 /// visitInlineAsm - Handle a call to an InlineAsm object. 5764 /// 5765 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5766 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5767 5768 /// ConstraintOperands - Information about all of the constraints. 5769 SDISelAsmOperandInfoVector ConstraintOperands; 5770 5771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5772 TargetLowering::AsmOperandInfoVector TargetConstraints = 5773 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5774 5775 bool hasMemory = false; 5776 5777 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5778 unsigned ResNo = 0; // ResNo - The result number of the next output. 5779 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5780 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5781 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5782 5783 MVT OpVT = MVT::Other; 5784 5785 // Compute the value type for each operand. 5786 switch (OpInfo.Type) { 5787 case InlineAsm::isOutput: 5788 // Indirect outputs just consume an argument. 5789 if (OpInfo.isIndirect) { 5790 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5791 break; 5792 } 5793 5794 // The return value of the call is this value. As such, there is no 5795 // corresponding argument. 5796 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5797 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5798 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5799 } else { 5800 assert(ResNo == 0 && "Asm only has one result!"); 5801 OpVT = TLI.getSimpleValueType(CS.getType()); 5802 } 5803 ++ResNo; 5804 break; 5805 case InlineAsm::isInput: 5806 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5807 break; 5808 case InlineAsm::isClobber: 5809 // Nothing to do. 5810 break; 5811 } 5812 5813 // If this is an input or an indirect output, process the call argument. 5814 // BasicBlocks are labels, currently appearing only in asm's. 5815 if (OpInfo.CallOperandVal) { 5816 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5817 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5818 } else { 5819 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5820 } 5821 5822 OpVT = 5823 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5824 } 5825 5826 OpInfo.ConstraintVT = OpVT; 5827 5828 // Indirect operand accesses access memory. 5829 if (OpInfo.isIndirect) 5830 hasMemory = true; 5831 else { 5832 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5833 TargetLowering::ConstraintType 5834 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5835 if (CType == TargetLowering::C_Memory) { 5836 hasMemory = true; 5837 break; 5838 } 5839 } 5840 } 5841 } 5842 5843 SDValue Chain, Flag; 5844 5845 // We won't need to flush pending loads if this asm doesn't touch 5846 // memory and is nonvolatile. 5847 if (hasMemory || IA->hasSideEffects()) 5848 Chain = getRoot(); 5849 else 5850 Chain = DAG.getRoot(); 5851 5852 // Second pass over the constraints: compute which constraint option to use 5853 // and assign registers to constraints that want a specific physreg. 5854 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5855 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5856 5857 // If this is an output operand with a matching input operand, look up the 5858 // matching input. If their types mismatch, e.g. one is an integer, the 5859 // other is floating point, or their sizes are different, flag it as an 5860 // error. 5861 if (OpInfo.hasMatchingInput()) { 5862 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5863 5864 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5865 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5866 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5867 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5868 OpInfo.ConstraintVT); 5869 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5870 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5871 Input.ConstraintVT); 5872 if ((OpInfo.ConstraintVT.isInteger() != 5873 Input.ConstraintVT.isInteger()) || 5874 (MatchRC.second != InputRC.second)) { 5875 report_fatal_error("Unsupported asm: input constraint" 5876 " with a matching output constraint of" 5877 " incompatible type!"); 5878 } 5879 Input.ConstraintVT = OpInfo.ConstraintVT; 5880 } 5881 } 5882 5883 // Compute the constraint code and ConstraintType to use. 5884 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5885 5886 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5887 OpInfo.Type == InlineAsm::isClobber) 5888 continue; 5889 5890 // If this is a memory input, and if the operand is not indirect, do what we 5891 // need to to provide an address for the memory input. 5892 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5893 !OpInfo.isIndirect) { 5894 assert((OpInfo.isMultipleAlternative || 5895 (OpInfo.Type == InlineAsm::isInput)) && 5896 "Can only indirectify direct input operands!"); 5897 5898 // Memory operands really want the address of the value. If we don't have 5899 // an indirect input, put it in the constpool if we can, otherwise spill 5900 // it to a stack slot. 5901 // TODO: This isn't quite right. We need to handle these according to 5902 // the addressing mode that the constraint wants. Also, this may take 5903 // an additional register for the computation and we don't want that 5904 // either. 5905 5906 // If the operand is a float, integer, or vector constant, spill to a 5907 // constant pool entry to get its address. 5908 const Value *OpVal = OpInfo.CallOperandVal; 5909 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5910 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5911 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5912 TLI.getPointerTy()); 5913 } else { 5914 // Otherwise, create a stack slot and emit a store to it before the 5915 // asm. 5916 Type *Ty = OpVal->getType(); 5917 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5918 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5919 MachineFunction &MF = DAG.getMachineFunction(); 5920 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5921 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5922 Chain = DAG.getStore(Chain, getCurSDLoc(), 5923 OpInfo.CallOperand, StackSlot, 5924 MachinePointerInfo::getFixedStack(SSFI), 5925 false, false, 0); 5926 OpInfo.CallOperand = StackSlot; 5927 } 5928 5929 // There is no longer a Value* corresponding to this operand. 5930 OpInfo.CallOperandVal = nullptr; 5931 5932 // It is now an indirect operand. 5933 OpInfo.isIndirect = true; 5934 } 5935 5936 // If this constraint is for a specific register, allocate it before 5937 // anything else. 5938 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5939 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5940 } 5941 5942 // Second pass - Loop over all of the operands, assigning virtual or physregs 5943 // to register class operands. 5944 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5945 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5946 5947 // C_Register operands have already been allocated, Other/Memory don't need 5948 // to be. 5949 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5950 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5951 } 5952 5953 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5954 std::vector<SDValue> AsmNodeOperands; 5955 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5956 AsmNodeOperands.push_back( 5957 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5958 TLI.getPointerTy())); 5959 5960 // If we have a !srcloc metadata node associated with it, we want to attach 5961 // this to the ultimately generated inline asm machineinstr. To do this, we 5962 // pass in the third operand as this (potentially null) inline asm MDNode. 5963 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5964 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5965 5966 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 5967 // bits as operand 3. 5968 unsigned ExtraInfo = 0; 5969 if (IA->hasSideEffects()) 5970 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5971 if (IA->isAlignStack()) 5972 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5973 // Set the asm dialect. 5974 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 5975 5976 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 5977 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5978 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5979 5980 // Compute the constraint code and ConstraintType to use. 5981 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5982 5983 // Ideally, we would only check against memory constraints. However, the 5984 // meaning of an other constraint can be target-specific and we can't easily 5985 // reason about it. Therefore, be conservative and set MayLoad/MayStore 5986 // for other constriants as well. 5987 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 5988 OpInfo.ConstraintType == TargetLowering::C_Other) { 5989 if (OpInfo.Type == InlineAsm::isInput) 5990 ExtraInfo |= InlineAsm::Extra_MayLoad; 5991 else if (OpInfo.Type == InlineAsm::isOutput) 5992 ExtraInfo |= InlineAsm::Extra_MayStore; 5993 else if (OpInfo.Type == InlineAsm::isClobber) 5994 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 5995 } 5996 } 5997 5998 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 5999 TLI.getPointerTy())); 6000 6001 // Loop over all of the inputs, copying the operand values into the 6002 // appropriate registers and processing the output regs. 6003 RegsForValue RetValRegs; 6004 6005 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6006 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6007 6008 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6009 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6010 6011 switch (OpInfo.Type) { 6012 case InlineAsm::isOutput: { 6013 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6014 OpInfo.ConstraintType != TargetLowering::C_Register) { 6015 // Memory output, or 'other' output (e.g. 'X' constraint). 6016 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6017 6018 unsigned ConstraintID = 6019 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6020 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6021 "Failed to convert memory constraint code to constraint id."); 6022 6023 // Add information to the INLINEASM node to know about this output. 6024 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6025 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6026 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6027 MVT::i32)); 6028 AsmNodeOperands.push_back(OpInfo.CallOperand); 6029 break; 6030 } 6031 6032 // Otherwise, this is a register or register class output. 6033 6034 // Copy the output from the appropriate register. Find a register that 6035 // we can use. 6036 if (OpInfo.AssignedRegs.Regs.empty()) { 6037 LLVMContext &Ctx = *DAG.getContext(); 6038 Ctx.emitError(CS.getInstruction(), 6039 "couldn't allocate output register for constraint '" + 6040 Twine(OpInfo.ConstraintCode) + "'"); 6041 return; 6042 } 6043 6044 // If this is an indirect operand, store through the pointer after the 6045 // asm. 6046 if (OpInfo.isIndirect) { 6047 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6048 OpInfo.CallOperandVal)); 6049 } else { 6050 // This is the result value of the call. 6051 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6052 // Concatenate this output onto the outputs list. 6053 RetValRegs.append(OpInfo.AssignedRegs); 6054 } 6055 6056 // Add information to the INLINEASM node to know that this register is 6057 // set. 6058 OpInfo.AssignedRegs 6059 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6060 ? InlineAsm::Kind_RegDefEarlyClobber 6061 : InlineAsm::Kind_RegDef, 6062 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6063 break; 6064 } 6065 case InlineAsm::isInput: { 6066 SDValue InOperandVal = OpInfo.CallOperand; 6067 6068 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6069 // If this is required to match an output register we have already set, 6070 // just use its register. 6071 unsigned OperandNo = OpInfo.getMatchedOperand(); 6072 6073 // Scan until we find the definition we already emitted of this operand. 6074 // When we find it, create a RegsForValue operand. 6075 unsigned CurOp = InlineAsm::Op_FirstOperand; 6076 for (; OperandNo; --OperandNo) { 6077 // Advance to the next operand. 6078 unsigned OpFlag = 6079 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6080 assert((InlineAsm::isRegDefKind(OpFlag) || 6081 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6082 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6083 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6084 } 6085 6086 unsigned OpFlag = 6087 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6088 if (InlineAsm::isRegDefKind(OpFlag) || 6089 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6090 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6091 if (OpInfo.isIndirect) { 6092 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6093 LLVMContext &Ctx = *DAG.getContext(); 6094 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6095 " don't know how to handle tied " 6096 "indirect register inputs"); 6097 return; 6098 } 6099 6100 RegsForValue MatchedRegs; 6101 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6102 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6103 MatchedRegs.RegVTs.push_back(RegVT); 6104 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6105 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6106 i != e; ++i) { 6107 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6108 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6109 else { 6110 LLVMContext &Ctx = *DAG.getContext(); 6111 Ctx.emitError(CS.getInstruction(), 6112 "inline asm error: This value" 6113 " type register class is not natively supported!"); 6114 return; 6115 } 6116 } 6117 SDLoc dl = getCurSDLoc(); 6118 // Use the produced MatchedRegs object to 6119 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6120 Chain, &Flag, CS.getInstruction()); 6121 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6122 true, OpInfo.getMatchedOperand(), dl, 6123 DAG, AsmNodeOperands); 6124 break; 6125 } 6126 6127 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6128 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6129 "Unexpected number of operands"); 6130 // Add information to the INLINEASM node to know about this input. 6131 // See InlineAsm.h isUseOperandTiedToDef. 6132 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6133 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6134 OpInfo.getMatchedOperand()); 6135 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6136 TLI.getPointerTy())); 6137 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6138 break; 6139 } 6140 6141 // Treat indirect 'X' constraint as memory. 6142 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6143 OpInfo.isIndirect) 6144 OpInfo.ConstraintType = TargetLowering::C_Memory; 6145 6146 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6147 std::vector<SDValue> Ops; 6148 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6149 Ops, DAG); 6150 if (Ops.empty()) { 6151 LLVMContext &Ctx = *DAG.getContext(); 6152 Ctx.emitError(CS.getInstruction(), 6153 "invalid operand for inline asm constraint '" + 6154 Twine(OpInfo.ConstraintCode) + "'"); 6155 return; 6156 } 6157 6158 // Add information to the INLINEASM node to know about this input. 6159 unsigned ResOpType = 6160 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6161 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6162 getCurSDLoc(), 6163 TLI.getPointerTy())); 6164 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6165 break; 6166 } 6167 6168 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6169 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6170 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6171 "Memory operands expect pointer values"); 6172 6173 unsigned ConstraintID = 6174 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6175 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6176 "Failed to convert memory constraint code to constraint id."); 6177 6178 // Add information to the INLINEASM node to know about this input. 6179 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6180 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6181 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6182 getCurSDLoc(), 6183 MVT::i32)); 6184 AsmNodeOperands.push_back(InOperandVal); 6185 break; 6186 } 6187 6188 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6189 OpInfo.ConstraintType == TargetLowering::C_Register) && 6190 "Unknown constraint type!"); 6191 6192 // TODO: Support this. 6193 if (OpInfo.isIndirect) { 6194 LLVMContext &Ctx = *DAG.getContext(); 6195 Ctx.emitError(CS.getInstruction(), 6196 "Don't know how to handle indirect register inputs yet " 6197 "for constraint '" + 6198 Twine(OpInfo.ConstraintCode) + "'"); 6199 return; 6200 } 6201 6202 // Copy the input into the appropriate registers. 6203 if (OpInfo.AssignedRegs.Regs.empty()) { 6204 LLVMContext &Ctx = *DAG.getContext(); 6205 Ctx.emitError(CS.getInstruction(), 6206 "couldn't allocate input reg for constraint '" + 6207 Twine(OpInfo.ConstraintCode) + "'"); 6208 return; 6209 } 6210 6211 SDLoc dl = getCurSDLoc(); 6212 6213 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6214 Chain, &Flag, CS.getInstruction()); 6215 6216 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6217 dl, DAG, AsmNodeOperands); 6218 break; 6219 } 6220 case InlineAsm::isClobber: { 6221 // Add the clobbered value to the operand list, so that the register 6222 // allocator is aware that the physreg got clobbered. 6223 if (!OpInfo.AssignedRegs.Regs.empty()) 6224 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6225 false, 0, getCurSDLoc(), DAG, 6226 AsmNodeOperands); 6227 break; 6228 } 6229 } 6230 } 6231 6232 // Finish up input operands. Set the input chain and add the flag last. 6233 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6234 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6235 6236 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6237 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6238 Flag = Chain.getValue(1); 6239 6240 // If this asm returns a register value, copy the result from that register 6241 // and set it as the value of the call. 6242 if (!RetValRegs.Regs.empty()) { 6243 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6244 Chain, &Flag, CS.getInstruction()); 6245 6246 // FIXME: Why don't we do this for inline asms with MRVs? 6247 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6248 EVT ResultType = TLI.getValueType(CS.getType()); 6249 6250 // If any of the results of the inline asm is a vector, it may have the 6251 // wrong width/num elts. This can happen for register classes that can 6252 // contain multiple different value types. The preg or vreg allocated may 6253 // not have the same VT as was expected. Convert it to the right type 6254 // with bit_convert. 6255 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6256 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6257 ResultType, Val); 6258 6259 } else if (ResultType != Val.getValueType() && 6260 ResultType.isInteger() && Val.getValueType().isInteger()) { 6261 // If a result value was tied to an input value, the computed result may 6262 // have a wider width than the expected result. Extract the relevant 6263 // portion. 6264 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6265 } 6266 6267 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6268 } 6269 6270 setValue(CS.getInstruction(), Val); 6271 // Don't need to use this as a chain in this case. 6272 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6273 return; 6274 } 6275 6276 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6277 6278 // Process indirect outputs, first output all of the flagged copies out of 6279 // physregs. 6280 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6281 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6282 const Value *Ptr = IndirectStoresToEmit[i].second; 6283 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6284 Chain, &Flag, IA); 6285 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6286 } 6287 6288 // Emit the non-flagged stores from the physregs. 6289 SmallVector<SDValue, 8> OutChains; 6290 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6291 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6292 StoresToEmit[i].first, 6293 getValue(StoresToEmit[i].second), 6294 MachinePointerInfo(StoresToEmit[i].second), 6295 false, false, 0); 6296 OutChains.push_back(Val); 6297 } 6298 6299 if (!OutChains.empty()) 6300 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6301 6302 DAG.setRoot(Chain); 6303 } 6304 6305 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6306 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6307 MVT::Other, getRoot(), 6308 getValue(I.getArgOperand(0)), 6309 DAG.getSrcValue(I.getArgOperand(0)))); 6310 } 6311 6312 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6314 const DataLayout &DL = *TLI.getDataLayout(); 6315 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6316 getRoot(), getValue(I.getOperand(0)), 6317 DAG.getSrcValue(I.getOperand(0)), 6318 DL.getABITypeAlignment(I.getType())); 6319 setValue(&I, V); 6320 DAG.setRoot(V.getValue(1)); 6321 } 6322 6323 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6324 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6325 MVT::Other, getRoot(), 6326 getValue(I.getArgOperand(0)), 6327 DAG.getSrcValue(I.getArgOperand(0)))); 6328 } 6329 6330 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6331 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6332 MVT::Other, getRoot(), 6333 getValue(I.getArgOperand(0)), 6334 getValue(I.getArgOperand(1)), 6335 DAG.getSrcValue(I.getArgOperand(0)), 6336 DAG.getSrcValue(I.getArgOperand(1)))); 6337 } 6338 6339 /// \brief Lower an argument list according to the target calling convention. 6340 /// 6341 /// \return A tuple of <return-value, token-chain> 6342 /// 6343 /// This is a helper for lowering intrinsics that follow a target calling 6344 /// convention or require stack pointer adjustment. Only a subset of the 6345 /// intrinsic's operands need to participate in the calling convention. 6346 std::pair<SDValue, SDValue> 6347 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6348 unsigned NumArgs, SDValue Callee, 6349 Type *ReturnTy, 6350 MachineBasicBlock *LandingPad, 6351 bool IsPatchPoint) { 6352 TargetLowering::ArgListTy Args; 6353 Args.reserve(NumArgs); 6354 6355 // Populate the argument list. 6356 // Attributes for args start at offset 1, after the return attribute. 6357 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6358 ArgI != ArgE; ++ArgI) { 6359 const Value *V = CS->getOperand(ArgI); 6360 6361 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6362 6363 TargetLowering::ArgListEntry Entry; 6364 Entry.Node = getValue(V); 6365 Entry.Ty = V->getType(); 6366 Entry.setAttributes(&CS, AttrI); 6367 Args.push_back(Entry); 6368 } 6369 6370 TargetLowering::CallLoweringInfo CLI(DAG); 6371 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6372 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6373 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6374 6375 return lowerInvokable(CLI, LandingPad); 6376 } 6377 6378 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6379 /// or patchpoint target node's operand list. 6380 /// 6381 /// Constants are converted to TargetConstants purely as an optimization to 6382 /// avoid constant materialization and register allocation. 6383 /// 6384 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6385 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6386 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6387 /// address materialization and register allocation, but may also be required 6388 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6389 /// alloca in the entry block, then the runtime may assume that the alloca's 6390 /// StackMap location can be read immediately after compilation and that the 6391 /// location is valid at any point during execution (this is similar to the 6392 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6393 /// only available in a register, then the runtime would need to trap when 6394 /// execution reaches the StackMap in order to read the alloca's location. 6395 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6396 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6397 SelectionDAGBuilder &Builder) { 6398 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6399 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6400 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6401 Ops.push_back( 6402 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6403 Ops.push_back( 6404 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6405 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6406 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6407 Ops.push_back( 6408 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6409 } else 6410 Ops.push_back(OpVal); 6411 } 6412 } 6413 6414 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6415 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6416 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6417 // [live variables...]) 6418 6419 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6420 6421 SDValue Chain, InFlag, Callee, NullPtr; 6422 SmallVector<SDValue, 32> Ops; 6423 6424 SDLoc DL = getCurSDLoc(); 6425 Callee = getValue(CI.getCalledValue()); 6426 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6427 6428 // The stackmap intrinsic only records the live variables (the arguemnts 6429 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6430 // intrinsic, this won't be lowered to a function call. This means we don't 6431 // have to worry about calling conventions and target specific lowering code. 6432 // Instead we perform the call lowering right here. 6433 // 6434 // chain, flag = CALLSEQ_START(chain, 0) 6435 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6436 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6437 // 6438 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6439 InFlag = Chain.getValue(1); 6440 6441 // Add the <id> and <numBytes> constants. 6442 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6443 Ops.push_back(DAG.getTargetConstant( 6444 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6445 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6446 Ops.push_back(DAG.getTargetConstant( 6447 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6448 MVT::i32)); 6449 6450 // Push live variables for the stack map. 6451 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6452 6453 // We are not pushing any register mask info here on the operands list, 6454 // because the stackmap doesn't clobber anything. 6455 6456 // Push the chain and the glue flag. 6457 Ops.push_back(Chain); 6458 Ops.push_back(InFlag); 6459 6460 // Create the STACKMAP node. 6461 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6462 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6463 Chain = SDValue(SM, 0); 6464 InFlag = Chain.getValue(1); 6465 6466 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6467 6468 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6469 6470 // Set the root to the target-lowered call chain. 6471 DAG.setRoot(Chain); 6472 6473 // Inform the Frame Information that we have a stackmap in this function. 6474 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6475 } 6476 6477 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6478 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6479 MachineBasicBlock *LandingPad) { 6480 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6481 // i32 <numBytes>, 6482 // i8* <target>, 6483 // i32 <numArgs>, 6484 // [Args...], 6485 // [live variables...]) 6486 6487 CallingConv::ID CC = CS.getCallingConv(); 6488 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6489 bool HasDef = !CS->getType()->isVoidTy(); 6490 SDLoc dl = getCurSDLoc(); 6491 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6492 6493 // Handle immediate and symbolic callees. 6494 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6495 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6496 /*isTarget=*/true); 6497 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6498 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6499 SDLoc(SymbolicCallee), 6500 SymbolicCallee->getValueType(0)); 6501 6502 // Get the real number of arguments participating in the call <numArgs> 6503 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6504 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6505 6506 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6507 // Intrinsics include all meta-operands up to but not including CC. 6508 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6509 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6510 "Not enough arguments provided to the patchpoint intrinsic"); 6511 6512 // For AnyRegCC the arguments are lowered later on manually. 6513 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6514 Type *ReturnTy = 6515 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6516 std::pair<SDValue, SDValue> Result = 6517 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6518 LandingPad, true); 6519 6520 SDNode *CallEnd = Result.second.getNode(); 6521 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6522 CallEnd = CallEnd->getOperand(0).getNode(); 6523 6524 /// Get a call instruction from the call sequence chain. 6525 /// Tail calls are not allowed. 6526 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6527 "Expected a callseq node."); 6528 SDNode *Call = CallEnd->getOperand(0).getNode(); 6529 bool HasGlue = Call->getGluedNode(); 6530 6531 // Replace the target specific call node with the patchable intrinsic. 6532 SmallVector<SDValue, 8> Ops; 6533 6534 // Add the <id> and <numBytes> constants. 6535 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6536 Ops.push_back(DAG.getTargetConstant( 6537 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6538 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6539 Ops.push_back(DAG.getTargetConstant( 6540 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6541 MVT::i32)); 6542 6543 // Add the callee. 6544 Ops.push_back(Callee); 6545 6546 // Adjust <numArgs> to account for any arguments that have been passed on the 6547 // stack instead. 6548 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6549 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6550 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6551 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6552 6553 // Add the calling convention 6554 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6555 6556 // Add the arguments we omitted previously. The register allocator should 6557 // place these in any free register. 6558 if (IsAnyRegCC) 6559 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6560 Ops.push_back(getValue(CS.getArgument(i))); 6561 6562 // Push the arguments from the call instruction up to the register mask. 6563 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6564 Ops.append(Call->op_begin() + 2, e); 6565 6566 // Push live variables for the stack map. 6567 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6568 6569 // Push the register mask info. 6570 if (HasGlue) 6571 Ops.push_back(*(Call->op_end()-2)); 6572 else 6573 Ops.push_back(*(Call->op_end()-1)); 6574 6575 // Push the chain (this is originally the first operand of the call, but 6576 // becomes now the last or second to last operand). 6577 Ops.push_back(*(Call->op_begin())); 6578 6579 // Push the glue flag (last operand). 6580 if (HasGlue) 6581 Ops.push_back(*(Call->op_end()-1)); 6582 6583 SDVTList NodeTys; 6584 if (IsAnyRegCC && HasDef) { 6585 // Create the return types based on the intrinsic definition 6586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6587 SmallVector<EVT, 3> ValueVTs; 6588 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6589 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6590 6591 // There is always a chain and a glue type at the end 6592 ValueVTs.push_back(MVT::Other); 6593 ValueVTs.push_back(MVT::Glue); 6594 NodeTys = DAG.getVTList(ValueVTs); 6595 } else 6596 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6597 6598 // Replace the target specific call node with a PATCHPOINT node. 6599 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6600 dl, NodeTys, Ops); 6601 6602 // Update the NodeMap. 6603 if (HasDef) { 6604 if (IsAnyRegCC) 6605 setValue(CS.getInstruction(), SDValue(MN, 0)); 6606 else 6607 setValue(CS.getInstruction(), Result.first); 6608 } 6609 6610 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6611 // call sequence. Furthermore the location of the chain and glue can change 6612 // when the AnyReg calling convention is used and the intrinsic returns a 6613 // value. 6614 if (IsAnyRegCC && HasDef) { 6615 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6616 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6617 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6618 } else 6619 DAG.ReplaceAllUsesWith(Call, MN); 6620 DAG.DeleteNode(Call); 6621 6622 // Inform the Frame Information that we have a patchpoint in this function. 6623 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6624 } 6625 6626 /// Returns an AttributeSet representing the attributes applied to the return 6627 /// value of the given call. 6628 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6629 SmallVector<Attribute::AttrKind, 2> Attrs; 6630 if (CLI.RetSExt) 6631 Attrs.push_back(Attribute::SExt); 6632 if (CLI.RetZExt) 6633 Attrs.push_back(Attribute::ZExt); 6634 if (CLI.IsInReg) 6635 Attrs.push_back(Attribute::InReg); 6636 6637 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6638 Attrs); 6639 } 6640 6641 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6642 /// implementation, which just calls LowerCall. 6643 /// FIXME: When all targets are 6644 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6645 std::pair<SDValue, SDValue> 6646 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6647 // Handle the incoming return values from the call. 6648 CLI.Ins.clear(); 6649 Type *OrigRetTy = CLI.RetTy; 6650 SmallVector<EVT, 4> RetTys; 6651 SmallVector<uint64_t, 4> Offsets; 6652 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6653 6654 SmallVector<ISD::OutputArg, 4> Outs; 6655 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6656 6657 bool CanLowerReturn = 6658 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6659 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6660 6661 SDValue DemoteStackSlot; 6662 int DemoteStackIdx = -100; 6663 if (!CanLowerReturn) { 6664 // FIXME: equivalent assert? 6665 // assert(!CS.hasInAllocaArgument() && 6666 // "sret demotion is incompatible with inalloca"); 6667 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6668 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6669 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6670 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6671 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6672 6673 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6674 ArgListEntry Entry; 6675 Entry.Node = DemoteStackSlot; 6676 Entry.Ty = StackSlotPtrType; 6677 Entry.isSExt = false; 6678 Entry.isZExt = false; 6679 Entry.isInReg = false; 6680 Entry.isSRet = true; 6681 Entry.isNest = false; 6682 Entry.isByVal = false; 6683 Entry.isReturned = false; 6684 Entry.Alignment = Align; 6685 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6686 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6687 6688 // sret demotion isn't compatible with tail-calls, since the sret argument 6689 // points into the callers stack frame. 6690 CLI.IsTailCall = false; 6691 } else { 6692 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6693 EVT VT = RetTys[I]; 6694 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6695 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6696 for (unsigned i = 0; i != NumRegs; ++i) { 6697 ISD::InputArg MyFlags; 6698 MyFlags.VT = RegisterVT; 6699 MyFlags.ArgVT = VT; 6700 MyFlags.Used = CLI.IsReturnValueUsed; 6701 if (CLI.RetSExt) 6702 MyFlags.Flags.setSExt(); 6703 if (CLI.RetZExt) 6704 MyFlags.Flags.setZExt(); 6705 if (CLI.IsInReg) 6706 MyFlags.Flags.setInReg(); 6707 CLI.Ins.push_back(MyFlags); 6708 } 6709 } 6710 } 6711 6712 // Handle all of the outgoing arguments. 6713 CLI.Outs.clear(); 6714 CLI.OutVals.clear(); 6715 ArgListTy &Args = CLI.getArgs(); 6716 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6717 SmallVector<EVT, 4> ValueVTs; 6718 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6719 Type *FinalType = Args[i].Ty; 6720 if (Args[i].isByVal) 6721 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6722 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6723 FinalType, CLI.CallConv, CLI.IsVarArg); 6724 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6725 ++Value) { 6726 EVT VT = ValueVTs[Value]; 6727 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6728 SDValue Op = SDValue(Args[i].Node.getNode(), 6729 Args[i].Node.getResNo() + Value); 6730 ISD::ArgFlagsTy Flags; 6731 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6732 6733 if (Args[i].isZExt) 6734 Flags.setZExt(); 6735 if (Args[i].isSExt) 6736 Flags.setSExt(); 6737 if (Args[i].isInReg) 6738 Flags.setInReg(); 6739 if (Args[i].isSRet) 6740 Flags.setSRet(); 6741 if (Args[i].isByVal) 6742 Flags.setByVal(); 6743 if (Args[i].isInAlloca) { 6744 Flags.setInAlloca(); 6745 // Set the byval flag for CCAssignFn callbacks that don't know about 6746 // inalloca. This way we can know how many bytes we should've allocated 6747 // and how many bytes a callee cleanup function will pop. If we port 6748 // inalloca to more targets, we'll have to add custom inalloca handling 6749 // in the various CC lowering callbacks. 6750 Flags.setByVal(); 6751 } 6752 if (Args[i].isByVal || Args[i].isInAlloca) { 6753 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6754 Type *ElementTy = Ty->getElementType(); 6755 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6756 // For ByVal, alignment should come from FE. BE will guess if this 6757 // info is not there but there are cases it cannot get right. 6758 unsigned FrameAlign; 6759 if (Args[i].Alignment) 6760 FrameAlign = Args[i].Alignment; 6761 else 6762 FrameAlign = getByValTypeAlignment(ElementTy); 6763 Flags.setByValAlign(FrameAlign); 6764 } 6765 if (Args[i].isNest) 6766 Flags.setNest(); 6767 if (NeedsRegBlock) 6768 Flags.setInConsecutiveRegs(); 6769 Flags.setOrigAlign(OriginalAlignment); 6770 6771 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6772 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6773 SmallVector<SDValue, 4> Parts(NumParts); 6774 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6775 6776 if (Args[i].isSExt) 6777 ExtendKind = ISD::SIGN_EXTEND; 6778 else if (Args[i].isZExt) 6779 ExtendKind = ISD::ZERO_EXTEND; 6780 6781 // Conservatively only handle 'returned' on non-vectors for now 6782 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6783 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6784 "unexpected use of 'returned'"); 6785 // Before passing 'returned' to the target lowering code, ensure that 6786 // either the register MVT and the actual EVT are the same size or that 6787 // the return value and argument are extended in the same way; in these 6788 // cases it's safe to pass the argument register value unchanged as the 6789 // return register value (although it's at the target's option whether 6790 // to do so) 6791 // TODO: allow code generation to take advantage of partially preserved 6792 // registers rather than clobbering the entire register when the 6793 // parameter extension method is not compatible with the return 6794 // extension method 6795 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6796 (ExtendKind != ISD::ANY_EXTEND && 6797 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6798 Flags.setReturned(); 6799 } 6800 6801 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6802 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6803 6804 for (unsigned j = 0; j != NumParts; ++j) { 6805 // if it isn't first piece, alignment must be 1 6806 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6807 i < CLI.NumFixedArgs, 6808 i, j*Parts[j].getValueType().getStoreSize()); 6809 if (NumParts > 1 && j == 0) 6810 MyFlags.Flags.setSplit(); 6811 else if (j != 0) 6812 MyFlags.Flags.setOrigAlign(1); 6813 6814 CLI.Outs.push_back(MyFlags); 6815 CLI.OutVals.push_back(Parts[j]); 6816 } 6817 6818 if (NeedsRegBlock && Value == NumValues - 1) 6819 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6820 } 6821 } 6822 6823 SmallVector<SDValue, 4> InVals; 6824 CLI.Chain = LowerCall(CLI, InVals); 6825 6826 // Verify that the target's LowerCall behaved as expected. 6827 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6828 "LowerCall didn't return a valid chain!"); 6829 assert((!CLI.IsTailCall || InVals.empty()) && 6830 "LowerCall emitted a return value for a tail call!"); 6831 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6832 "LowerCall didn't emit the correct number of values!"); 6833 6834 // For a tail call, the return value is merely live-out and there aren't 6835 // any nodes in the DAG representing it. Return a special value to 6836 // indicate that a tail call has been emitted and no more Instructions 6837 // should be processed in the current block. 6838 if (CLI.IsTailCall) { 6839 CLI.DAG.setRoot(CLI.Chain); 6840 return std::make_pair(SDValue(), SDValue()); 6841 } 6842 6843 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6844 assert(InVals[i].getNode() && 6845 "LowerCall emitted a null value!"); 6846 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6847 "LowerCall emitted a value with the wrong type!"); 6848 }); 6849 6850 SmallVector<SDValue, 4> ReturnValues; 6851 if (!CanLowerReturn) { 6852 // The instruction result is the result of loading from the 6853 // hidden sret parameter. 6854 SmallVector<EVT, 1> PVTs; 6855 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6856 6857 ComputeValueVTs(*this, PtrRetTy, PVTs); 6858 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6859 EVT PtrVT = PVTs[0]; 6860 6861 unsigned NumValues = RetTys.size(); 6862 ReturnValues.resize(NumValues); 6863 SmallVector<SDValue, 4> Chains(NumValues); 6864 6865 for (unsigned i = 0; i < NumValues; ++i) { 6866 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6867 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6868 PtrVT)); 6869 SDValue L = CLI.DAG.getLoad( 6870 RetTys[i], CLI.DL, CLI.Chain, Add, 6871 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6872 false, false, 1); 6873 ReturnValues[i] = L; 6874 Chains[i] = L.getValue(1); 6875 } 6876 6877 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6878 } else { 6879 // Collect the legal value parts into potentially illegal values 6880 // that correspond to the original function's return values. 6881 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6882 if (CLI.RetSExt) 6883 AssertOp = ISD::AssertSext; 6884 else if (CLI.RetZExt) 6885 AssertOp = ISD::AssertZext; 6886 unsigned CurReg = 0; 6887 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6888 EVT VT = RetTys[I]; 6889 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6890 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6891 6892 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6893 NumRegs, RegisterVT, VT, nullptr, 6894 AssertOp)); 6895 CurReg += NumRegs; 6896 } 6897 6898 // For a function returning void, there is no return value. We can't create 6899 // such a node, so we just return a null return value in that case. In 6900 // that case, nothing will actually look at the value. 6901 if (ReturnValues.empty()) 6902 return std::make_pair(SDValue(), CLI.Chain); 6903 } 6904 6905 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6906 CLI.DAG.getVTList(RetTys), ReturnValues); 6907 return std::make_pair(Res, CLI.Chain); 6908 } 6909 6910 void TargetLowering::LowerOperationWrapper(SDNode *N, 6911 SmallVectorImpl<SDValue> &Results, 6912 SelectionDAG &DAG) const { 6913 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6914 if (Res.getNode()) 6915 Results.push_back(Res); 6916 } 6917 6918 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6919 llvm_unreachable("LowerOperation not implemented for this target!"); 6920 } 6921 6922 void 6923 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6924 SDValue Op = getNonRegisterValue(V); 6925 assert((Op.getOpcode() != ISD::CopyFromReg || 6926 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6927 "Copy from a reg to the same reg!"); 6928 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6929 6930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6931 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6932 SDValue Chain = DAG.getEntryNode(); 6933 6934 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6935 FuncInfo.PreferredExtendType.end()) 6936 ? ISD::ANY_EXTEND 6937 : FuncInfo.PreferredExtendType[V]; 6938 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6939 PendingExports.push_back(Chain); 6940 } 6941 6942 #include "llvm/CodeGen/SelectionDAGISel.h" 6943 6944 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6945 /// entry block, return true. This includes arguments used by switches, since 6946 /// the switch may expand into multiple basic blocks. 6947 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6948 // With FastISel active, we may be splitting blocks, so force creation 6949 // of virtual registers for all non-dead arguments. 6950 if (FastISel) 6951 return A->use_empty(); 6952 6953 const BasicBlock *Entry = A->getParent()->begin(); 6954 for (const User *U : A->users()) 6955 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6956 return false; // Use not in entry block. 6957 6958 return true; 6959 } 6960 6961 void SelectionDAGISel::LowerArguments(const Function &F) { 6962 SelectionDAG &DAG = SDB->DAG; 6963 SDLoc dl = SDB->getCurSDLoc(); 6964 const DataLayout *DL = TLI->getDataLayout(); 6965 SmallVector<ISD::InputArg, 16> Ins; 6966 6967 if (!FuncInfo->CanLowerReturn) { 6968 // Put in an sret pointer parameter before all the other parameters. 6969 SmallVector<EVT, 1> ValueVTs; 6970 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6971 6972 // NOTE: Assuming that a pointer will never break down to more than one VT 6973 // or one register. 6974 ISD::ArgFlagsTy Flags; 6975 Flags.setSRet(); 6976 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6977 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 6978 ISD::InputArg::NoArgIndex, 0); 6979 Ins.push_back(RetArg); 6980 } 6981 6982 // Set up the incoming argument description vector. 6983 unsigned Idx = 1; 6984 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6985 I != E; ++I, ++Idx) { 6986 SmallVector<EVT, 4> ValueVTs; 6987 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6988 bool isArgValueUsed = !I->use_empty(); 6989 unsigned PartBase = 0; 6990 Type *FinalType = I->getType(); 6991 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 6992 FinalType = cast<PointerType>(FinalType)->getElementType(); 6993 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 6994 FinalType, F.getCallingConv(), F.isVarArg()); 6995 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6996 Value != NumValues; ++Value) { 6997 EVT VT = ValueVTs[Value]; 6998 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6999 ISD::ArgFlagsTy Flags; 7000 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7001 7002 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7003 Flags.setZExt(); 7004 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7005 Flags.setSExt(); 7006 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7007 Flags.setInReg(); 7008 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7009 Flags.setSRet(); 7010 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7011 Flags.setByVal(); 7012 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7013 Flags.setInAlloca(); 7014 // Set the byval flag for CCAssignFn callbacks that don't know about 7015 // inalloca. This way we can know how many bytes we should've allocated 7016 // and how many bytes a callee cleanup function will pop. If we port 7017 // inalloca to more targets, we'll have to add custom inalloca handling 7018 // in the various CC lowering callbacks. 7019 Flags.setByVal(); 7020 } 7021 if (Flags.isByVal() || Flags.isInAlloca()) { 7022 PointerType *Ty = cast<PointerType>(I->getType()); 7023 Type *ElementTy = Ty->getElementType(); 7024 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7025 // For ByVal, alignment should be passed from FE. BE will guess if 7026 // this info is not there but there are cases it cannot get right. 7027 unsigned FrameAlign; 7028 if (F.getParamAlignment(Idx)) 7029 FrameAlign = F.getParamAlignment(Idx); 7030 else 7031 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7032 Flags.setByValAlign(FrameAlign); 7033 } 7034 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7035 Flags.setNest(); 7036 if (NeedsRegBlock) 7037 Flags.setInConsecutiveRegs(); 7038 Flags.setOrigAlign(OriginalAlignment); 7039 7040 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7041 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7042 for (unsigned i = 0; i != NumRegs; ++i) { 7043 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7044 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7045 if (NumRegs > 1 && i == 0) 7046 MyFlags.Flags.setSplit(); 7047 // if it isn't first piece, alignment must be 1 7048 else if (i > 0) 7049 MyFlags.Flags.setOrigAlign(1); 7050 Ins.push_back(MyFlags); 7051 } 7052 if (NeedsRegBlock && Value == NumValues - 1) 7053 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7054 PartBase += VT.getStoreSize(); 7055 } 7056 } 7057 7058 // Call the target to set up the argument values. 7059 SmallVector<SDValue, 8> InVals; 7060 SDValue NewRoot = TLI->LowerFormalArguments( 7061 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7062 7063 // Verify that the target's LowerFormalArguments behaved as expected. 7064 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7065 "LowerFormalArguments didn't return a valid chain!"); 7066 assert(InVals.size() == Ins.size() && 7067 "LowerFormalArguments didn't emit the correct number of values!"); 7068 DEBUG({ 7069 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7070 assert(InVals[i].getNode() && 7071 "LowerFormalArguments emitted a null value!"); 7072 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7073 "LowerFormalArguments emitted a value with the wrong type!"); 7074 } 7075 }); 7076 7077 // Update the DAG with the new chain value resulting from argument lowering. 7078 DAG.setRoot(NewRoot); 7079 7080 // Set up the argument values. 7081 unsigned i = 0; 7082 Idx = 1; 7083 if (!FuncInfo->CanLowerReturn) { 7084 // Create a virtual register for the sret pointer, and put in a copy 7085 // from the sret argument into it. 7086 SmallVector<EVT, 1> ValueVTs; 7087 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7088 MVT VT = ValueVTs[0].getSimpleVT(); 7089 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7090 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7091 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7092 RegVT, VT, nullptr, AssertOp); 7093 7094 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7095 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7096 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7097 FuncInfo->DemoteRegister = SRetReg; 7098 NewRoot = 7099 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7100 DAG.setRoot(NewRoot); 7101 7102 // i indexes lowered arguments. Bump it past the hidden sret argument. 7103 // Idx indexes LLVM arguments. Don't touch it. 7104 ++i; 7105 } 7106 7107 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7108 ++I, ++Idx) { 7109 SmallVector<SDValue, 4> ArgValues; 7110 SmallVector<EVT, 4> ValueVTs; 7111 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7112 unsigned NumValues = ValueVTs.size(); 7113 7114 // If this argument is unused then remember its value. It is used to generate 7115 // debugging information. 7116 if (I->use_empty() && NumValues) { 7117 SDB->setUnusedArgValue(I, InVals[i]); 7118 7119 // Also remember any frame index for use in FastISel. 7120 if (FrameIndexSDNode *FI = 7121 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7122 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7123 } 7124 7125 for (unsigned Val = 0; Val != NumValues; ++Val) { 7126 EVT VT = ValueVTs[Val]; 7127 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7128 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7129 7130 if (!I->use_empty()) { 7131 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7132 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7133 AssertOp = ISD::AssertSext; 7134 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7135 AssertOp = ISD::AssertZext; 7136 7137 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7138 NumParts, PartVT, VT, 7139 nullptr, AssertOp)); 7140 } 7141 7142 i += NumParts; 7143 } 7144 7145 // We don't need to do anything else for unused arguments. 7146 if (ArgValues.empty()) 7147 continue; 7148 7149 // Note down frame index. 7150 if (FrameIndexSDNode *FI = 7151 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7152 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7153 7154 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7155 SDB->getCurSDLoc()); 7156 7157 SDB->setValue(I, Res); 7158 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7159 if (LoadSDNode *LNode = 7160 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7161 if (FrameIndexSDNode *FI = 7162 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7163 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7164 } 7165 7166 // If this argument is live outside of the entry block, insert a copy from 7167 // wherever we got it to the vreg that other BB's will reference it as. 7168 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7169 // If we can, though, try to skip creating an unnecessary vreg. 7170 // FIXME: This isn't very clean... it would be nice to make this more 7171 // general. It's also subtly incompatible with the hacks FastISel 7172 // uses with vregs. 7173 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7174 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7175 FuncInfo->ValueMap[I] = Reg; 7176 continue; 7177 } 7178 } 7179 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7180 FuncInfo->InitializeRegForValue(I); 7181 SDB->CopyToExportRegsIfNeeded(I); 7182 } 7183 } 7184 7185 assert(i == InVals.size() && "Argument register count mismatch!"); 7186 7187 // Finally, if the target has anything special to do, allow it to do so. 7188 EmitFunctionEntryCode(); 7189 } 7190 7191 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7192 /// ensure constants are generated when needed. Remember the virtual registers 7193 /// that need to be added to the Machine PHI nodes as input. We cannot just 7194 /// directly add them, because expansion might result in multiple MBB's for one 7195 /// BB. As such, the start of the BB might correspond to a different MBB than 7196 /// the end. 7197 /// 7198 void 7199 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7200 const TerminatorInst *TI = LLVMBB->getTerminator(); 7201 7202 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7203 7204 // Check PHI nodes in successors that expect a value to be available from this 7205 // block. 7206 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7207 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7208 if (!isa<PHINode>(SuccBB->begin())) continue; 7209 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7210 7211 // If this terminator has multiple identical successors (common for 7212 // switches), only handle each succ once. 7213 if (!SuccsHandled.insert(SuccMBB).second) 7214 continue; 7215 7216 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7217 7218 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7219 // nodes and Machine PHI nodes, but the incoming operands have not been 7220 // emitted yet. 7221 for (BasicBlock::const_iterator I = SuccBB->begin(); 7222 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7223 // Ignore dead phi's. 7224 if (PN->use_empty()) continue; 7225 7226 // Skip empty types 7227 if (PN->getType()->isEmptyTy()) 7228 continue; 7229 7230 unsigned Reg; 7231 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7232 7233 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7234 unsigned &RegOut = ConstantsOut[C]; 7235 if (RegOut == 0) { 7236 RegOut = FuncInfo.CreateRegs(C->getType()); 7237 CopyValueToVirtualRegister(C, RegOut); 7238 } 7239 Reg = RegOut; 7240 } else { 7241 DenseMap<const Value *, unsigned>::iterator I = 7242 FuncInfo.ValueMap.find(PHIOp); 7243 if (I != FuncInfo.ValueMap.end()) 7244 Reg = I->second; 7245 else { 7246 assert(isa<AllocaInst>(PHIOp) && 7247 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7248 "Didn't codegen value into a register!??"); 7249 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7250 CopyValueToVirtualRegister(PHIOp, Reg); 7251 } 7252 } 7253 7254 // Remember that this register needs to added to the machine PHI node as 7255 // the input for this MBB. 7256 SmallVector<EVT, 4> ValueVTs; 7257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7258 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7259 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7260 EVT VT = ValueVTs[vti]; 7261 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7262 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7263 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7264 Reg += NumRegisters; 7265 } 7266 } 7267 } 7268 7269 ConstantsOut.clear(); 7270 } 7271 7272 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7273 /// is 0. 7274 MachineBasicBlock * 7275 SelectionDAGBuilder::StackProtectorDescriptor:: 7276 AddSuccessorMBB(const BasicBlock *BB, 7277 MachineBasicBlock *ParentMBB, 7278 bool IsLikely, 7279 MachineBasicBlock *SuccMBB) { 7280 // If SuccBB has not been created yet, create it. 7281 if (!SuccMBB) { 7282 MachineFunction *MF = ParentMBB->getParent(); 7283 MachineFunction::iterator BBI = ParentMBB; 7284 SuccMBB = MF->CreateMachineBasicBlock(BB); 7285 MF->insert(++BBI, SuccMBB); 7286 } 7287 // Add it as a successor of ParentMBB. 7288 ParentMBB->addSuccessor( 7289 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7290 return SuccMBB; 7291 } 7292 7293 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7294 MachineFunction::iterator I = MBB; 7295 if (++I == FuncInfo.MF->end()) 7296 return nullptr; 7297 return I; 7298 } 7299 7300 /// During lowering new call nodes can be created (such as memset, etc.). 7301 /// Those will become new roots of the current DAG, but complications arise 7302 /// when they are tail calls. In such cases, the call lowering will update 7303 /// the root, but the builder still needs to know that a tail call has been 7304 /// lowered in order to avoid generating an additional return. 7305 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7306 // If the node is null, we do have a tail call. 7307 if (MaybeTC.getNode() != nullptr) 7308 DAG.setRoot(MaybeTC); 7309 else 7310 HasTailCall = true; 7311 } 7312 7313 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7314 unsigned *TotalCases, unsigned First, 7315 unsigned Last) { 7316 assert(Last >= First); 7317 assert(TotalCases[Last] >= TotalCases[First]); 7318 7319 APInt LowCase = Clusters[First].Low->getValue(); 7320 APInt HighCase = Clusters[Last].High->getValue(); 7321 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7322 7323 // FIXME: A range of consecutive cases has 100% density, but only requires one 7324 // comparison to lower. We should discriminate against such consecutive ranges 7325 // in jump tables. 7326 7327 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7328 uint64_t Range = Diff + 1; 7329 7330 uint64_t NumCases = 7331 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7332 7333 assert(NumCases < UINT64_MAX / 100); 7334 assert(Range >= NumCases); 7335 7336 return NumCases * 100 >= Range * MinJumpTableDensity; 7337 } 7338 7339 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7340 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7341 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7342 } 7343 7344 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7345 unsigned First, unsigned Last, 7346 const SwitchInst *SI, 7347 MachineBasicBlock *DefaultMBB, 7348 CaseCluster &JTCluster) { 7349 assert(First <= Last); 7350 7351 uint32_t Weight = 0; 7352 unsigned NumCmps = 0; 7353 std::vector<MachineBasicBlock*> Table; 7354 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7355 for (unsigned I = First; I <= Last; ++I) { 7356 assert(Clusters[I].Kind == CC_Range); 7357 Weight += Clusters[I].Weight; 7358 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7359 APInt Low = Clusters[I].Low->getValue(); 7360 APInt High = Clusters[I].High->getValue(); 7361 NumCmps += (Low == High) ? 1 : 2; 7362 if (I != First) { 7363 // Fill the gap between this and the previous cluster. 7364 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7365 assert(PreviousHigh.slt(Low)); 7366 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7367 for (uint64_t J = 0; J < Gap; J++) 7368 Table.push_back(DefaultMBB); 7369 } 7370 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7371 for (uint64_t J = 0; J < ClusterSize; ++J) 7372 Table.push_back(Clusters[I].MBB); 7373 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7374 } 7375 7376 unsigned NumDests = JTWeights.size(); 7377 if (isSuitableForBitTests(NumDests, NumCmps, 7378 Clusters[First].Low->getValue(), 7379 Clusters[Last].High->getValue())) { 7380 // Clusters[First..Last] should be lowered as bit tests instead. 7381 return false; 7382 } 7383 7384 // Create the MBB that will load from and jump through the table. 7385 // Note: We create it here, but it's not inserted into the function yet. 7386 MachineFunction *CurMF = FuncInfo.MF; 7387 MachineBasicBlock *JumpTableMBB = 7388 CurMF->CreateMachineBasicBlock(SI->getParent()); 7389 7390 // Add successors. Note: use table order for determinism. 7391 SmallPtrSet<MachineBasicBlock *, 8> Done; 7392 for (MachineBasicBlock *Succ : Table) { 7393 if (Done.count(Succ)) 7394 continue; 7395 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7396 Done.insert(Succ); 7397 } 7398 7399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7400 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7401 ->createJumpTableIndex(Table); 7402 7403 // Set up the jump table info. 7404 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7405 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7406 Clusters[Last].High->getValue(), SI->getCondition(), 7407 nullptr, false); 7408 JTCases.push_back(JumpTableBlock(JTH, JT)); 7409 7410 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7411 JTCases.size() - 1, Weight); 7412 return true; 7413 } 7414 7415 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7416 const SwitchInst *SI, 7417 MachineBasicBlock *DefaultMBB) { 7418 #ifndef NDEBUG 7419 // Clusters must be non-empty, sorted, and only contain Range clusters. 7420 assert(!Clusters.empty()); 7421 for (CaseCluster &C : Clusters) 7422 assert(C.Kind == CC_Range); 7423 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7424 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7425 #endif 7426 7427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7428 if (!areJTsAllowed(TLI)) 7429 return; 7430 7431 const int64_t N = Clusters.size(); 7432 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7433 7434 // Split Clusters into minimum number of dense partitions. The algorithm uses 7435 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7436 // for the Case Statement'" (1994), but builds the MinPartitions array in 7437 // reverse order to make it easier to reconstruct the partitions in ascending 7438 // order. In the choice between two optimal partitionings, it picks the one 7439 // which yields more jump tables. 7440 7441 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7442 SmallVector<unsigned, 8> MinPartitions(N); 7443 // LastElement[i] is the last element of the partition starting at i. 7444 SmallVector<unsigned, 8> LastElement(N); 7445 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7446 SmallVector<unsigned, 8> NumTables(N); 7447 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7448 SmallVector<unsigned, 8> TotalCases(N); 7449 7450 for (unsigned i = 0; i < N; ++i) { 7451 APInt Hi = Clusters[i].High->getValue(); 7452 APInt Lo = Clusters[i].Low->getValue(); 7453 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7454 if (i != 0) 7455 TotalCases[i] += TotalCases[i - 1]; 7456 } 7457 7458 // Base case: There is only one way to partition Clusters[N-1]. 7459 MinPartitions[N - 1] = 1; 7460 LastElement[N - 1] = N - 1; 7461 assert(MinJumpTableSize > 1); 7462 NumTables[N - 1] = 0; 7463 7464 // Note: loop indexes are signed to avoid underflow. 7465 for (int64_t i = N - 2; i >= 0; i--) { 7466 // Find optimal partitioning of Clusters[i..N-1]. 7467 // Baseline: Put Clusters[i] into a partition on its own. 7468 MinPartitions[i] = MinPartitions[i + 1] + 1; 7469 LastElement[i] = i; 7470 NumTables[i] = NumTables[i + 1]; 7471 7472 // Search for a solution that results in fewer partitions. 7473 for (int64_t j = N - 1; j > i; j--) { 7474 // Try building a partition from Clusters[i..j]. 7475 if (isDense(Clusters, &TotalCases[0], i, j)) { 7476 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7477 bool IsTable = j - i + 1 >= MinJumpTableSize; 7478 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7479 7480 // If this j leads to fewer partitions, or same number of partitions 7481 // with more lookup tables, it is a better partitioning. 7482 if (NumPartitions < MinPartitions[i] || 7483 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7484 MinPartitions[i] = NumPartitions; 7485 LastElement[i] = j; 7486 NumTables[i] = Tables; 7487 } 7488 } 7489 } 7490 } 7491 7492 // Iterate over the partitions, replacing some with jump tables in-place. 7493 unsigned DstIndex = 0; 7494 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7495 Last = LastElement[First]; 7496 assert(Last >= First); 7497 assert(DstIndex <= First); 7498 unsigned NumClusters = Last - First + 1; 7499 7500 CaseCluster JTCluster; 7501 if (NumClusters >= MinJumpTableSize && 7502 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7503 Clusters[DstIndex++] = JTCluster; 7504 } else { 7505 for (unsigned I = First; I <= Last; ++I) 7506 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7507 } 7508 } 7509 Clusters.resize(DstIndex); 7510 } 7511 7512 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7513 // FIXME: Using the pointer type doesn't seem ideal. 7514 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7515 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7516 return Range <= BW; 7517 } 7518 7519 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7520 unsigned NumCmps, 7521 const APInt &Low, 7522 const APInt &High) { 7523 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7524 // range of cases both require only one branch to lower. Just looking at the 7525 // number of clusters and destinations should be enough to decide whether to 7526 // build bit tests. 7527 7528 // To lower a range with bit tests, the range must fit the bitwidth of a 7529 // machine word. 7530 if (!rangeFitsInWord(Low, High)) 7531 return false; 7532 7533 // Decide whether it's profitable to lower this range with bit tests. Each 7534 // destination requires a bit test and branch, and there is an overall range 7535 // check branch. For a small number of clusters, separate comparisons might be 7536 // cheaper, and for many destinations, splitting the range might be better. 7537 return (NumDests == 1 && NumCmps >= 3) || 7538 (NumDests == 2 && NumCmps >= 5) || 7539 (NumDests == 3 && NumCmps >= 6); 7540 } 7541 7542 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7543 unsigned First, unsigned Last, 7544 const SwitchInst *SI, 7545 CaseCluster &BTCluster) { 7546 assert(First <= Last); 7547 if (First == Last) 7548 return false; 7549 7550 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7551 unsigned NumCmps = 0; 7552 for (int64_t I = First; I <= Last; ++I) { 7553 assert(Clusters[I].Kind == CC_Range); 7554 Dests.set(Clusters[I].MBB->getNumber()); 7555 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7556 } 7557 unsigned NumDests = Dests.count(); 7558 7559 APInt Low = Clusters[First].Low->getValue(); 7560 APInt High = Clusters[Last].High->getValue(); 7561 assert(Low.slt(High)); 7562 7563 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7564 return false; 7565 7566 APInt LowBound; 7567 APInt CmpRange; 7568 7569 const int BitWidth = 7570 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7571 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7572 7573 if (Low.isNonNegative() && High.slt(BitWidth)) { 7574 // Optimize the case where all the case values fit in a 7575 // word without having to subtract minValue. In this case, 7576 // we can optimize away the subtraction. 7577 LowBound = APInt::getNullValue(Low.getBitWidth()); 7578 CmpRange = High; 7579 } else { 7580 LowBound = Low; 7581 CmpRange = High - Low; 7582 } 7583 7584 CaseBitsVector CBV; 7585 uint32_t TotalWeight = 0; 7586 for (unsigned i = First; i <= Last; ++i) { 7587 // Find the CaseBits for this destination. 7588 unsigned j; 7589 for (j = 0; j < CBV.size(); ++j) 7590 if (CBV[j].BB == Clusters[i].MBB) 7591 break; 7592 if (j == CBV.size()) 7593 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7594 CaseBits *CB = &CBV[j]; 7595 7596 // Update Mask, Bits and ExtraWeight. 7597 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7598 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7599 for (uint64_t j = Lo; j <= Hi; ++j) { 7600 CB->Mask |= 1ULL << j; 7601 CB->Bits++; 7602 } 7603 CB->ExtraWeight += Clusters[i].Weight; 7604 TotalWeight += Clusters[i].Weight; 7605 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7606 } 7607 7608 BitTestInfo BTI; 7609 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7610 // Sort by weight first, number of bits second. 7611 if (a.ExtraWeight != b.ExtraWeight) 7612 return a.ExtraWeight > b.ExtraWeight; 7613 return a.Bits > b.Bits; 7614 }); 7615 7616 for (auto &CB : CBV) { 7617 MachineBasicBlock *BitTestBB = 7618 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7619 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7620 } 7621 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7622 -1U, MVT::Other, false, nullptr, 7623 nullptr, std::move(BTI))); 7624 7625 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7626 BitTestCases.size() - 1, TotalWeight); 7627 return true; 7628 } 7629 7630 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7631 const SwitchInst *SI) { 7632 // Partition Clusters into as few subsets as possible, where each subset has a 7633 // range that fits in a machine word and has <= 3 unique destinations. 7634 7635 #ifndef NDEBUG 7636 // Clusters must be sorted and contain Range or JumpTable clusters. 7637 assert(!Clusters.empty()); 7638 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7639 for (const CaseCluster &C : Clusters) 7640 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7641 for (unsigned i = 1; i < Clusters.size(); ++i) 7642 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7643 #endif 7644 7645 // If target does not have legal shift left, do not emit bit tests at all. 7646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7647 EVT PTy = TLI.getPointerTy(); 7648 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7649 return; 7650 7651 int BitWidth = PTy.getSizeInBits(); 7652 const int64_t N = Clusters.size(); 7653 7654 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7655 SmallVector<unsigned, 8> MinPartitions(N); 7656 // LastElement[i] is the last element of the partition starting at i. 7657 SmallVector<unsigned, 8> LastElement(N); 7658 7659 // FIXME: This might not be the best algorithm for finding bit test clusters. 7660 7661 // Base case: There is only one way to partition Clusters[N-1]. 7662 MinPartitions[N - 1] = 1; 7663 LastElement[N - 1] = N - 1; 7664 7665 // Note: loop indexes are signed to avoid underflow. 7666 for (int64_t i = N - 2; i >= 0; --i) { 7667 // Find optimal partitioning of Clusters[i..N-1]. 7668 // Baseline: Put Clusters[i] into a partition on its own. 7669 MinPartitions[i] = MinPartitions[i + 1] + 1; 7670 LastElement[i] = i; 7671 7672 // Search for a solution that results in fewer partitions. 7673 // Note: the search is limited by BitWidth, reducing time complexity. 7674 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7675 // Try building a partition from Clusters[i..j]. 7676 7677 // Check the range. 7678 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7679 Clusters[j].High->getValue())) 7680 continue; 7681 7682 // Check nbr of destinations and cluster types. 7683 // FIXME: This works, but doesn't seem very efficient. 7684 bool RangesOnly = true; 7685 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7686 for (int64_t k = i; k <= j; k++) { 7687 if (Clusters[k].Kind != CC_Range) { 7688 RangesOnly = false; 7689 break; 7690 } 7691 Dests.set(Clusters[k].MBB->getNumber()); 7692 } 7693 if (!RangesOnly || Dests.count() > 3) 7694 break; 7695 7696 // Check if it's a better partition. 7697 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7698 if (NumPartitions < MinPartitions[i]) { 7699 // Found a better partition. 7700 MinPartitions[i] = NumPartitions; 7701 LastElement[i] = j; 7702 } 7703 } 7704 } 7705 7706 // Iterate over the partitions, replacing with bit-test clusters in-place. 7707 unsigned DstIndex = 0; 7708 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7709 Last = LastElement[First]; 7710 assert(First <= Last); 7711 assert(DstIndex <= First); 7712 7713 CaseCluster BitTestCluster; 7714 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7715 Clusters[DstIndex++] = BitTestCluster; 7716 } else { 7717 for (unsigned I = First; I <= Last; ++I) 7718 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7719 } 7720 } 7721 Clusters.resize(DstIndex); 7722 } 7723 7724 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7725 MachineBasicBlock *SwitchMBB, 7726 MachineBasicBlock *DefaultMBB) { 7727 MachineFunction *CurMF = FuncInfo.MF; 7728 MachineBasicBlock *NextMBB = nullptr; 7729 MachineFunction::iterator BBI = W.MBB; 7730 if (++BBI != FuncInfo.MF->end()) 7731 NextMBB = BBI; 7732 7733 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7734 7735 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7736 7737 if (Size == 2 && W.MBB == SwitchMBB) { 7738 // If any two of the cases has the same destination, and if one value 7739 // is the same as the other, but has one bit unset that the other has set, 7740 // use bit manipulation to do two compares at once. For example: 7741 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7742 // TODO: This could be extended to merge any 2 cases in switches with 3 7743 // cases. 7744 // TODO: Handle cases where W.CaseBB != SwitchBB. 7745 CaseCluster &Small = *W.FirstCluster; 7746 CaseCluster &Big = *W.LastCluster; 7747 7748 if (Small.Low == Small.High && Big.Low == Big.High && 7749 Small.MBB == Big.MBB) { 7750 const APInt &SmallValue = Small.Low->getValue(); 7751 const APInt &BigValue = Big.Low->getValue(); 7752 7753 // Check that there is only one bit different. 7754 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7755 (SmallValue | BigValue) == BigValue) { 7756 // Isolate the common bit. 7757 APInt CommonBit = BigValue & ~SmallValue; 7758 assert((SmallValue | CommonBit) == BigValue && 7759 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7760 7761 SDValue CondLHS = getValue(Cond); 7762 EVT VT = CondLHS.getValueType(); 7763 SDLoc DL = getCurSDLoc(); 7764 7765 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7766 DAG.getConstant(CommonBit, DL, VT)); 7767 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7768 DAG.getConstant(BigValue, DL, VT), 7769 ISD::SETEQ); 7770 7771 // Update successor info. 7772 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7773 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7774 addSuccessorWithWeight( 7775 SwitchMBB, DefaultMBB, 7776 // The default destination is the first successor in IR. 7777 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7778 : 0); 7779 7780 // Insert the true branch. 7781 SDValue BrCond = 7782 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7783 DAG.getBasicBlock(Small.MBB)); 7784 // Insert the false branch. 7785 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7786 DAG.getBasicBlock(DefaultMBB)); 7787 7788 DAG.setRoot(BrCond); 7789 return; 7790 } 7791 } 7792 } 7793 7794 if (TM.getOptLevel() != CodeGenOpt::None) { 7795 // Order cases by weight so the most likely case will be checked first. 7796 std::sort(W.FirstCluster, W.LastCluster + 1, 7797 [](const CaseCluster &a, const CaseCluster &b) { 7798 return a.Weight > b.Weight; 7799 }); 7800 7801 // Rearrange the case blocks so that the last one falls through if possible 7802 // without without changing the order of weights. 7803 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7804 --I; 7805 if (I->Weight > W.LastCluster->Weight) 7806 break; 7807 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7808 std::swap(*I, *W.LastCluster); 7809 break; 7810 } 7811 } 7812 } 7813 7814 // Compute total weight. 7815 uint32_t UnhandledWeights = 0; 7816 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7817 UnhandledWeights += I->Weight; 7818 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7819 } 7820 7821 MachineBasicBlock *CurMBB = W.MBB; 7822 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7823 MachineBasicBlock *Fallthrough; 7824 if (I == W.LastCluster) { 7825 // For the last cluster, fall through to the default destination. 7826 Fallthrough = DefaultMBB; 7827 } else { 7828 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7829 CurMF->insert(BBI, Fallthrough); 7830 // Put Cond in a virtual register to make it available from the new blocks. 7831 ExportFromCurrentBlock(Cond); 7832 } 7833 7834 switch (I->Kind) { 7835 case CC_JumpTable: { 7836 // FIXME: Optimize away range check based on pivot comparisons. 7837 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7838 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7839 7840 // The jump block hasn't been inserted yet; insert it here. 7841 MachineBasicBlock *JumpMBB = JT->MBB; 7842 CurMF->insert(BBI, JumpMBB); 7843 addSuccessorWithWeight(CurMBB, Fallthrough); 7844 addSuccessorWithWeight(CurMBB, JumpMBB); 7845 7846 // The jump table header will be inserted in our current block, do the 7847 // range check, and fall through to our fallthrough block. 7848 JTH->HeaderBB = CurMBB; 7849 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7850 7851 // If we're in the right place, emit the jump table header right now. 7852 if (CurMBB == SwitchMBB) { 7853 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7854 JTH->Emitted = true; 7855 } 7856 break; 7857 } 7858 case CC_BitTests: { 7859 // FIXME: Optimize away range check based on pivot comparisons. 7860 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7861 7862 // The bit test blocks haven't been inserted yet; insert them here. 7863 for (BitTestCase &BTC : BTB->Cases) 7864 CurMF->insert(BBI, BTC.ThisBB); 7865 7866 // Fill in fields of the BitTestBlock. 7867 BTB->Parent = CurMBB; 7868 BTB->Default = Fallthrough; 7869 7870 // If we're in the right place, emit the bit test header header right now. 7871 if (CurMBB ==SwitchMBB) { 7872 visitBitTestHeader(*BTB, SwitchMBB); 7873 BTB->Emitted = true; 7874 } 7875 break; 7876 } 7877 case CC_Range: { 7878 const Value *RHS, *LHS, *MHS; 7879 ISD::CondCode CC; 7880 if (I->Low == I->High) { 7881 // Check Cond == I->Low. 7882 CC = ISD::SETEQ; 7883 LHS = Cond; 7884 RHS=I->Low; 7885 MHS = nullptr; 7886 } else { 7887 // Check I->Low <= Cond <= I->High. 7888 CC = ISD::SETLE; 7889 LHS = I->Low; 7890 MHS = Cond; 7891 RHS = I->High; 7892 } 7893 7894 // The false weight is the sum of all unhandled cases. 7895 UnhandledWeights -= I->Weight; 7896 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7897 UnhandledWeights); 7898 7899 if (CurMBB == SwitchMBB) 7900 visitSwitchCase(CB, SwitchMBB); 7901 else 7902 SwitchCases.push_back(CB); 7903 7904 break; 7905 } 7906 } 7907 CurMBB = Fallthrough; 7908 } 7909 } 7910 7911 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7912 const SwitchWorkListItem &W, 7913 Value *Cond, 7914 MachineBasicBlock *SwitchMBB) { 7915 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7916 "Clusters not sorted?"); 7917 7918 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 7919 7920 // Balance the tree based on branch weights to create a near-optimal (in terms 7921 // of search time given key frequency) binary search tree. See e.g. Kurt 7922 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 7923 CaseClusterIt LastLeft = W.FirstCluster; 7924 CaseClusterIt FirstRight = W.LastCluster; 7925 uint32_t LeftWeight = LastLeft->Weight; 7926 uint32_t RightWeight = FirstRight->Weight; 7927 7928 // Move LastLeft and FirstRight towards each other from opposite directions to 7929 // find a partitioning of the clusters which balances the weight on both 7930 // sides. If LeftWeight and RightWeight are equal, alternate which side is 7931 // taken to ensure 0-weight nodes are distributed evenly. 7932 unsigned I = 0; 7933 while (LastLeft + 1 < FirstRight) { 7934 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 7935 LeftWeight += (++LastLeft)->Weight; 7936 else 7937 RightWeight += (--FirstRight)->Weight; 7938 I++; 7939 } 7940 assert(LastLeft + 1 == FirstRight); 7941 assert(LastLeft >= W.FirstCluster); 7942 assert(FirstRight <= W.LastCluster); 7943 7944 // Use the first element on the right as pivot since we will make less-than 7945 // comparisons against it. 7946 CaseClusterIt PivotCluster = FirstRight; 7947 assert(PivotCluster > W.FirstCluster); 7948 assert(PivotCluster <= W.LastCluster); 7949 7950 CaseClusterIt FirstLeft = W.FirstCluster; 7951 CaseClusterIt LastRight = W.LastCluster; 7952 7953 const ConstantInt *Pivot = PivotCluster->Low; 7954 7955 // New blocks will be inserted immediately after the current one. 7956 MachineFunction::iterator BBI = W.MBB; 7957 ++BBI; 7958 7959 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 7960 // we can branch to its destination directly if it's squeezed exactly in 7961 // between the known lower bound and Pivot - 1. 7962 MachineBasicBlock *LeftMBB; 7963 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 7964 FirstLeft->Low == W.GE && 7965 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 7966 LeftMBB = FirstLeft->MBB; 7967 } else { 7968 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7969 FuncInfo.MF->insert(BBI, LeftMBB); 7970 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 7971 // Put Cond in a virtual register to make it available from the new blocks. 7972 ExportFromCurrentBlock(Cond); 7973 } 7974 7975 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 7976 // single cluster, RHS.Low == Pivot, and we can branch to its destination 7977 // directly if RHS.High equals the current upper bound. 7978 MachineBasicBlock *RightMBB; 7979 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 7980 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 7981 RightMBB = FirstRight->MBB; 7982 } else { 7983 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7984 FuncInfo.MF->insert(BBI, RightMBB); 7985 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 7986 // Put Cond in a virtual register to make it available from the new blocks. 7987 ExportFromCurrentBlock(Cond); 7988 } 7989 7990 // Create the CaseBlock record that will be used to lower the branch. 7991 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 7992 LeftWeight, RightWeight); 7993 7994 if (W.MBB == SwitchMBB) 7995 visitSwitchCase(CB, SwitchMBB); 7996 else 7997 SwitchCases.push_back(CB); 7998 } 7999 8000 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8001 // Extract cases from the switch. 8002 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8003 CaseClusterVector Clusters; 8004 Clusters.reserve(SI.getNumCases()); 8005 for (auto I : SI.cases()) { 8006 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8007 const ConstantInt *CaseVal = I.getCaseValue(); 8008 uint32_t Weight = 8009 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8010 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8011 } 8012 8013 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8014 8015 if (TM.getOptLevel() != CodeGenOpt::None) { 8016 // Cluster adjacent cases with the same destination. 8017 sortAndRangeify(Clusters); 8018 8019 // Replace an unreachable default with the most popular destination. 8020 // FIXME: Exploit unreachable default more aggressively. 8021 bool UnreachableDefault = 8022 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8023 if (UnreachableDefault && !Clusters.empty()) { 8024 DenseMap<const BasicBlock *, unsigned> Popularity; 8025 unsigned MaxPop = 0; 8026 const BasicBlock *MaxBB = nullptr; 8027 for (auto I : SI.cases()) { 8028 const BasicBlock *BB = I.getCaseSuccessor(); 8029 if (++Popularity[BB] > MaxPop) { 8030 MaxPop = Popularity[BB]; 8031 MaxBB = BB; 8032 } 8033 } 8034 // Set new default. 8035 assert(MaxPop > 0 && MaxBB); 8036 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8037 8038 // Remove cases that were pointing to the destination that is now the 8039 // default. 8040 CaseClusterVector New; 8041 New.reserve(Clusters.size()); 8042 for (CaseCluster &CC : Clusters) { 8043 if (CC.MBB != DefaultMBB) 8044 New.push_back(CC); 8045 } 8046 Clusters = std::move(New); 8047 } 8048 } 8049 8050 // If there is only the default destination, jump there directly. 8051 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8052 if (Clusters.empty()) { 8053 SwitchMBB->addSuccessor(DefaultMBB); 8054 if (DefaultMBB != NextBlock(SwitchMBB)) { 8055 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8056 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8057 } 8058 return; 8059 } 8060 8061 if (TM.getOptLevel() != CodeGenOpt::None) { 8062 findJumpTables(Clusters, &SI, DefaultMBB); 8063 findBitTestClusters(Clusters, &SI); 8064 } 8065 8066 8067 DEBUG({ 8068 dbgs() << "Case clusters: "; 8069 for (const CaseCluster &C : Clusters) { 8070 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8071 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8072 8073 C.Low->getValue().print(dbgs(), true); 8074 if (C.Low != C.High) { 8075 dbgs() << '-'; 8076 C.High->getValue().print(dbgs(), true); 8077 } 8078 dbgs() << ' '; 8079 } 8080 dbgs() << '\n'; 8081 }); 8082 8083 assert(!Clusters.empty()); 8084 SwitchWorkList WorkList; 8085 CaseClusterIt First = Clusters.begin(); 8086 CaseClusterIt Last = Clusters.end() - 1; 8087 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8088 8089 while (!WorkList.empty()) { 8090 SwitchWorkListItem W = WorkList.back(); 8091 WorkList.pop_back(); 8092 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8093 8094 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8095 // For optimized builds, lower large range as a balanced binary tree. 8096 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8097 continue; 8098 } 8099 8100 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8101 } 8102 } 8103