xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 9cd90712f0f47f13173e0c4aaec8081d97aef81c)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/GCMetadata.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/StackMaps.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Statepoint.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MathExtras.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetFrameLowering.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetLowering.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include "llvm/Target/TargetSubtargetInfo.h"
68 #include <algorithm>
69 #include <utility>
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "isel"
73 
74 /// LimitFloatPrecision - Generate low-precision inline sequences for
75 /// some float libcalls (6, 8 or 12 bits).
76 static unsigned LimitFloatPrecision;
77 
78 static cl::opt<unsigned, true>
79 LimitFPPrecision("limit-float-precision",
80                  cl::desc("Generate low-precision inline sequences "
81                           "for some float libcalls"),
82                  cl::location(LimitFloatPrecision),
83                  cl::init(0));
84 
85 static cl::opt<bool>
86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
87                 cl::desc("Enable fast-math-flags for DAG nodes"));
88 
89 /// Minimum jump table density for normal functions.
90 static cl::opt<unsigned>
91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
92                  cl::desc("Minimum density for building a jump table in "
93                           "a normal function"));
94 
95 /// Minimum jump table density for -Os or -Oz functions.
96 static cl::opt<unsigned>
97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
98                         cl::desc("Minimum density for building a jump table in "
99                                  "an optsize function"));
100 
101 
102 // Limit the width of DAG chains. This is important in general to prevent
103 // DAG-based analysis from blowing up. For example, alias analysis and
104 // load clustering may not complete in reasonable time. It is difficult to
105 // recognize and avoid this situation within each individual analysis, and
106 // future analyses are likely to have the same behavior. Limiting DAG width is
107 // the safe approach and will be especially important with global DAGs.
108 //
109 // MaxParallelChains default is arbitrarily high to avoid affecting
110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
111 // sequence over this should have been converted to llvm.memcpy by the
112 // frontend. It easy to induce this behavior with .ll code such as:
113 // %buffer = alloca [4096 x i8]
114 // %data = load [4096 x i8]* %argPtr
115 // store [4096 x i8] %data, [4096 x i8]* %buffer
116 static const unsigned MaxParallelChains = 64;
117 
118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
119                                       const SDValue *Parts, unsigned NumParts,
120                                       MVT PartVT, EVT ValueVT, const Value *V);
121 
122 /// getCopyFromParts - Create a value that contains the specified legal parts
123 /// combined into the value they represent.  If the parts combine to a type
124 /// larger then ValueVT then AssertOp can be used to specify whether the extra
125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
126 /// (ISD::AssertSext).
127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
128                                 const SDValue *Parts,
129                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
130                                 const Value *V,
131                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp != ISD::DELETED_NODE)
237         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger then ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
383                            SDValue Val, SDValue *Parts, unsigned NumParts,
384                            MVT PartVT, const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT)
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452 
453     Parts[0] = Val;
454     return;
455   }
456 
457   // Expand the value into multiple parts.
458   if (NumParts & (NumParts - 1)) {
459     // The number of parts is not a power of 2.  Split off and copy the tail.
460     assert(PartVT.isInteger() && ValueVT.isInteger() &&
461            "Do not know what to expand to!");
462     unsigned RoundParts = 1 << Log2_32(NumParts);
463     unsigned RoundBits = RoundParts * PartBits;
464     unsigned OddParts = NumParts - RoundParts;
465     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
466                                  DAG.getIntPtrConstant(RoundBits, DL));
467     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
468 
469     if (DAG.getDataLayout().isBigEndian())
470       // The odd parts were reversed by getCopyToParts - unreverse them.
471       std::reverse(Parts + RoundParts, Parts + NumParts);
472 
473     NumParts = RoundParts;
474     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
475     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
476   }
477 
478   // The number of parts is a power of 2.  Repeatedly bisect the value using
479   // EXTRACT_ELEMENT.
480   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
481                          EVT::getIntegerVT(*DAG.getContext(),
482                                            ValueVT.getSizeInBits()),
483                          Val);
484 
485   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
486     for (unsigned i = 0; i < NumParts; i += StepSize) {
487       unsigned ThisBits = StepSize * PartBits / 2;
488       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
489       SDValue &Part0 = Parts[i];
490       SDValue &Part1 = Parts[i+StepSize/2];
491 
492       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
493                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
494       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
496 
497       if (ThisBits == PartBits && ThisVT != PartVT) {
498         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
499         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
500       }
501     }
502   }
503 
504   if (DAG.getDataLayout().isBigEndian())
505     std::reverse(Parts, Parts + OrigNumParts);
506 }
507 
508 
509 /// getCopyToPartsVector - Create a series of nodes that contain the specified
510 /// value split into legal parts.
511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
512                                  SDValue Val, SDValue *Parts, unsigned NumParts,
513                                  MVT PartVT, const Value *V) {
514   EVT ValueVT = Val.getValueType();
515   assert(ValueVT.isVector() && "Not a vector");
516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
517 
518   if (NumParts == 1) {
519     EVT PartEVT = PartVT;
520     if (PartEVT == ValueVT) {
521       // Nothing to do.
522     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
523       // Bitconvert vector->vector case.
524       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     } else if (PartVT.isVector() &&
526                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
527                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
528       EVT ElementVT = PartVT.getVectorElementType();
529       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
530       // undef elements.
531       SmallVector<SDValue, 16> Ops;
532       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
533         Ops.push_back(DAG.getNode(
534             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
535             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
536 
537       for (unsigned i = ValueVT.getVectorNumElements(),
538            e = PartVT.getVectorNumElements(); i != e; ++i)
539         Ops.push_back(DAG.getUNDEF(ElementVT));
540 
541       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
542 
543       // FIXME: Use CONCAT for 2x -> 4x.
544 
545       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
546       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
547     } else if (PartVT.isVector() &&
548                PartEVT.getVectorElementType().bitsGE(
549                  ValueVT.getVectorElementType()) &&
550                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
551 
552       // Promoted vector extract
553       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
554     } else{
555       // Vector -> scalar conversion.
556       assert(ValueVT.getVectorNumElements() == 1 &&
557              "Only trivial vector-to-scalar conversions should get here!");
558       Val = DAG.getNode(
559           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
560           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
561 
562       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
563     }
564 
565     Parts[0] = Val;
566     return;
567   }
568 
569   // Handle a multi-element vector.
570   EVT IntermediateVT;
571   MVT RegisterVT;
572   unsigned NumIntermediates;
573   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
574                                                 IntermediateVT,
575                                                 NumIntermediates, RegisterVT);
576   unsigned NumElements = ValueVT.getVectorNumElements();
577 
578   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
579   NumParts = NumRegs; // Silence a compiler warning.
580   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
581 
582   // Split the vector into intermediate operands.
583   SmallVector<SDValue, 8> Ops(NumIntermediates);
584   for (unsigned i = 0; i != NumIntermediates; ++i) {
585     if (IntermediateVT.isVector())
586       Ops[i] =
587           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
588                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
589                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
590     else
591       Ops[i] = DAG.getNode(
592           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
593           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
594   }
595 
596   // Split the intermediate operands into legal parts.
597   if (NumParts == NumIntermediates) {
598     // If the register was not expanded, promote or copy the value,
599     // as appropriate.
600     for (unsigned i = 0; i != NumParts; ++i)
601       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
602   } else if (NumParts > 0) {
603     // If the intermediate type was expanded, split each the value into
604     // legal parts.
605     assert(NumIntermediates != 0 && "division by zero");
606     assert(NumParts % NumIntermediates == 0 &&
607            "Must expand into a divisible number of parts!");
608     unsigned Factor = NumParts / NumIntermediates;
609     for (unsigned i = 0; i != NumIntermediates; ++i)
610       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
611   }
612 }
613 
614 RegsForValue::RegsForValue() {}
615 
616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
617                            EVT valuevt)
618     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
619 
620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
621                            const DataLayout &DL, unsigned Reg, Type *Ty) {
622   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
623 
624   for (EVT ValueVT : ValueVTs) {
625     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
626     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
627     for (unsigned i = 0; i != NumRegs; ++i)
628       Regs.push_back(Reg + i);
629     RegVTs.push_back(RegisterVT);
630     Reg += NumRegs;
631   }
632 }
633 
634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
635 /// this value and returns the result as a ValueVT value.  This uses
636 /// Chain/Flag as the input and updates them for the output Chain/Flag.
637 /// If the Flag pointer is NULL, no flag is used.
638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
639                                       FunctionLoweringInfo &FuncInfo,
640                                       SDLoc dl,
641                                       SDValue &Chain, SDValue *Flag,
642                                       const Value *V) const {
643   // A Value with type {} or [0 x %t] needs no registers.
644   if (ValueVTs.empty())
645     return SDValue();
646 
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648 
649   // Assemble the legal parts into the final values.
650   SmallVector<SDValue, 4> Values(ValueVTs.size());
651   SmallVector<SDValue, 8> Parts;
652   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
653     // Copy the legal parts from the registers.
654     EVT ValueVT = ValueVTs[Value];
655     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
656     MVT RegisterVT = RegVTs[Value];
657 
658     Parts.resize(NumRegs);
659     for (unsigned i = 0; i != NumRegs; ++i) {
660       SDValue P;
661       if (!Flag) {
662         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
663       } else {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
665         *Flag = P.getValue(2);
666       }
667 
668       Chain = P.getValue(1);
669       Parts[i] = P;
670 
671       // If the source register was virtual and if we know something about it,
672       // add an assert node.
673       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
674           !RegisterVT.isInteger() || RegisterVT.isVector())
675         continue;
676 
677       const FunctionLoweringInfo::LiveOutInfo *LOI =
678         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
679       if (!LOI)
680         continue;
681 
682       unsigned RegSize = RegisterVT.getSizeInBits();
683       unsigned NumSignBits = LOI->NumSignBits;
684       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
685 
686       if (NumZeroBits == RegSize) {
687         // The current value is a zero.
688         // Explicitly express that as it would be easier for
689         // optimizations to kick in.
690         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
691         continue;
692       }
693 
694       // FIXME: We capture more information than the dag can represent.  For
695       // now, just use the tightest assertzext/assertsext possible.
696       bool isSExt = true;
697       EVT FromVT(MVT::Other);
698       if (NumSignBits == RegSize) {
699         isSExt = true;   // ASSERT SEXT 1
700         FromVT = MVT::i1;
701       } else if (NumZeroBits >= RegSize - 1) {
702         isSExt = false;  // ASSERT ZEXT 1
703         FromVT = MVT::i1;
704       } else if (NumSignBits > RegSize - 8) {
705         isSExt = true;   // ASSERT SEXT 8
706         FromVT = MVT::i8;
707       } else if (NumZeroBits >= RegSize - 8) {
708         isSExt = false;  // ASSERT ZEXT 8
709         FromVT = MVT::i8;
710       } else if (NumSignBits > RegSize - 16) {
711         isSExt = true;   // ASSERT SEXT 16
712         FromVT = MVT::i16;
713       } else if (NumZeroBits >= RegSize - 16) {
714         isSExt = false;  // ASSERT ZEXT 16
715         FromVT = MVT::i16;
716       } else if (NumSignBits > RegSize - 32) {
717         isSExt = true;   // ASSERT SEXT 32
718         FromVT = MVT::i32;
719       } else if (NumZeroBits >= RegSize - 32) {
720         isSExt = false;  // ASSERT ZEXT 32
721         FromVT = MVT::i32;
722       } else {
723         continue;
724       }
725       // Add an assertion node.
726       assert(FromVT != MVT::Other);
727       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
728                              RegisterVT, P, DAG.getValueType(FromVT));
729     }
730 
731     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
732                                      NumRegs, RegisterVT, ValueVT, V);
733     Part += NumRegs;
734     Parts.clear();
735   }
736 
737   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
738 }
739 
740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
741 /// specified value into the registers specified by this object.  This uses
742 /// Chain/Flag as the input and updates them for the output Chain/Flag.
743 /// If the Flag pointer is NULL, no flag is used.
744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
745                                  SDValue &Chain, SDValue *Flag, const Value *V,
746                                  ISD::NodeType PreferredExtendType) const {
747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
748   ISD::NodeType ExtendKind = PreferredExtendType;
749 
750   // Get the list of the values's legal parts.
751   unsigned NumRegs = Regs.size();
752   SmallVector<SDValue, 8> Parts(NumRegs);
753   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
754     EVT ValueVT = ValueVTs[Value];
755     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
756     MVT RegisterVT = RegVTs[Value];
757 
758     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
759       ExtendKind = ISD::ZERO_EXTEND;
760 
761     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
762                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
763     Part += NumParts;
764   }
765 
766   // Copy the parts into the registers.
767   SmallVector<SDValue, 8> Chains(NumRegs);
768   for (unsigned i = 0; i != NumRegs; ++i) {
769     SDValue Part;
770     if (!Flag) {
771       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
772     } else {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
774       *Flag = Part.getValue(1);
775     }
776 
777     Chains[i] = Part.getValue(0);
778   }
779 
780   if (NumRegs == 1 || Flag)
781     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
782     // flagged to it. That is the CopyToReg nodes and the user are considered
783     // a single scheduling unit. If we create a TokenFactor and return it as
784     // chain, then the TokenFactor is both a predecessor (operand) of the
785     // user as well as a successor (the TF operands are flagged to the user).
786     // c1, f1 = CopyToReg
787     // c2, f2 = CopyToReg
788     // c3     = TokenFactor c1, c2
789     // ...
790     //        = op c3, ..., f2
791     Chain = Chains[NumRegs-1];
792   else
793     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
794 }
795 
796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
797 /// operand list.  This adds the code marker and includes the number of
798 /// values added into it.
799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
800                                         unsigned MatchingIdx, SDLoc dl,
801                                         SelectionDAG &DAG,
802                                         std::vector<SDValue> &Ops) const {
803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
804 
805   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
806   if (HasMatching)
807     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
808   else if (!Regs.empty() &&
809            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
810     // Put the register class of the virtual registers in the flag word.  That
811     // way, later passes can recompute register class constraints for inline
812     // assembly as well as normal instructions.
813     // Don't do this for tied operands that can use the regclass information
814     // from the def.
815     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
816     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
817     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
818   }
819 
820   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
821   Ops.push_back(Res);
822 
823   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
824   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
825     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
826     MVT RegisterVT = RegVTs[Value];
827     for (unsigned i = 0; i != NumRegs; ++i) {
828       assert(Reg < Regs.size() && "Mismatch in # registers expected");
829       unsigned TheReg = Regs[Reg++];
830       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
831 
832       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
833         // If we clobbered the stack pointer, MFI should know about it.
834         assert(DAG.getMachineFunction().getFrameInfo()->
835             hasOpaqueSPAdjustment());
836       }
837     }
838   }
839 }
840 
841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
842                                const TargetLibraryInfo *li) {
843   AA = &aa;
844   GFI = gfi;
845   LibInfo = li;
846   DL = &DAG.getDataLayout();
847   Context = DAG.getContext();
848   LPadToCallSiteMap.clear();
849 }
850 
851 /// clear - Clear out the current SelectionDAG and the associated
852 /// state and prepare this SelectionDAGBuilder object to be used
853 /// for a new block. This doesn't clear out information about
854 /// additional blocks that are needed to complete switch lowering
855 /// or PHI node updating; that information is cleared out as it is
856 /// consumed.
857 void SelectionDAGBuilder::clear() {
858   NodeMap.clear();
859   UnusedArgNodeMap.clear();
860   PendingLoads.clear();
861   PendingExports.clear();
862   CurInst = nullptr;
863   HasTailCall = false;
864   SDNodeOrder = LowestSDNodeOrder;
865   StatepointLowering.clear();
866 }
867 
868 /// clearDanglingDebugInfo - Clear the dangling debug information
869 /// map. This function is separated from the clear so that debug
870 /// information that is dangling in a basic block can be properly
871 /// resolved in a different basic block. This allows the
872 /// SelectionDAG to resolve dangling debug information attached
873 /// to PHI nodes.
874 void SelectionDAGBuilder::clearDanglingDebugInfo() {
875   DanglingDebugInfoMap.clear();
876 }
877 
878 /// getRoot - Return the current virtual root of the Selection DAG,
879 /// flushing any PendingLoad items. This must be done before emitting
880 /// a store or any other node that may need to be ordered after any
881 /// prior load instructions.
882 ///
883 SDValue SelectionDAGBuilder::getRoot() {
884   if (PendingLoads.empty())
885     return DAG.getRoot();
886 
887   if (PendingLoads.size() == 1) {
888     SDValue Root = PendingLoads[0];
889     DAG.setRoot(Root);
890     PendingLoads.clear();
891     return Root;
892   }
893 
894   // Otherwise, we have to make a token factor node.
895   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
896                              PendingLoads);
897   PendingLoads.clear();
898   DAG.setRoot(Root);
899   return Root;
900 }
901 
902 /// getControlRoot - Similar to getRoot, but instead of flushing all the
903 /// PendingLoad items, flush all the PendingExports items. It is necessary
904 /// to do this before emitting a terminator instruction.
905 ///
906 SDValue SelectionDAGBuilder::getControlRoot() {
907   SDValue Root = DAG.getRoot();
908 
909   if (PendingExports.empty())
910     return Root;
911 
912   // Turn all of the CopyToReg chains into one factored node.
913   if (Root.getOpcode() != ISD::EntryToken) {
914     unsigned i = 0, e = PendingExports.size();
915     for (; i != e; ++i) {
916       assert(PendingExports[i].getNode()->getNumOperands() > 1);
917       if (PendingExports[i].getNode()->getOperand(0) == Root)
918         break;  // Don't add the root if we already indirectly depend on it.
919     }
920 
921     if (i == e)
922       PendingExports.push_back(Root);
923   }
924 
925   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
926                      PendingExports);
927   PendingExports.clear();
928   DAG.setRoot(Root);
929   return Root;
930 }
931 
932 /// Copy swift error to the final virtual register at end of a basic block, as
933 /// specified by SwiftErrorWorklist, if necessary.
934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
935   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
936   if (!TLI.supportSwiftError())
937     return;
938 
939   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
940     return;
941 
942   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
943   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
944       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
945   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
946       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
947   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
948     unsigned WorkReg = WorklistEntry[I];
949 
950     // Find the swifterror virtual register for the value in SwiftErrorMap.
951     unsigned MapReg = MapEntry[I];
952     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
953            "Entries in SwiftErrorMap should be virtual registers");
954 
955     if (WorkReg == MapReg)
956       continue;
957 
958     // Create copy from SwiftErrorMap to SwiftWorklist.
959     auto &DL = SDB.DAG.getDataLayout();
960     SDValue CopyNode = SDB.DAG.getCopyToReg(
961         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
962         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
963     MapEntry[I] = WorkReg;
964     SDB.DAG.setRoot(CopyNode);
965   }
966 }
967 
968 void SelectionDAGBuilder::visit(const Instruction &I) {
969   // Set up outgoing PHI node register values before emitting the terminator.
970   if (isa<TerminatorInst>(&I)) {
971     copySwiftErrorsToFinalVRegs(*this);
972     HandlePHINodesInSuccessorBlocks(I.getParent());
973   }
974 
975   ++SDNodeOrder;
976 
977   CurInst = &I;
978 
979   visit(I.getOpcode(), I);
980 
981   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
982       !isStatepoint(&I)) // statepoints handle their exports internally
983     CopyToExportRegsIfNeeded(&I);
984 
985   CurInst = nullptr;
986 }
987 
988 void SelectionDAGBuilder::visitPHI(const PHINode &) {
989   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
990 }
991 
992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
993   // Note: this doesn't use InstVisitor, because it has to work with
994   // ConstantExpr's in addition to instructions.
995   switch (Opcode) {
996   default: llvm_unreachable("Unknown instruction type encountered!");
997     // Build the switch statement using the Instruction.def file.
998 #define HANDLE_INST(NUM, OPCODE, CLASS) \
999     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1000 #include "llvm/IR/Instruction.def"
1001   }
1002 }
1003 
1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1005 // generate the debug data structures now that we've seen its definition.
1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1007                                                    SDValue Val) {
1008   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1009   if (DDI.getDI()) {
1010     const DbgValueInst *DI = DDI.getDI();
1011     DebugLoc dl = DDI.getdl();
1012     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1013     DILocalVariable *Variable = DI->getVariable();
1014     DIExpression *Expr = DI->getExpression();
1015     assert(Variable->isValidLocationForIntrinsic(dl) &&
1016            "Expected inlined-at fields to agree");
1017     uint64_t Offset = DI->getOffset();
1018     SDDbgValue *SDV;
1019     if (Val.getNode()) {
1020       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1021                                     Val)) {
1022         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1023                               false, Offset, dl, DbgSDNodeOrder);
1024         DAG.AddDbgValue(SDV, Val.getNode(), false);
1025       }
1026     } else
1027       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1028     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1029   }
1030 }
1031 
1032 /// getCopyFromRegs - If there was virtual register allocated for the value V
1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1035   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1036   SDValue Result;
1037 
1038   if (It != FuncInfo.ValueMap.end()) {
1039     unsigned InReg = It->second;
1040     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1041                      DAG.getDataLayout(), InReg, Ty);
1042     SDValue Chain = DAG.getEntryNode();
1043     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1044     resolveDanglingDebugInfo(V, Result);
1045   }
1046 
1047   return Result;
1048 }
1049 
1050 /// getValue - Return an SDValue for the given Value.
1051 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1052   // If we already have an SDValue for this value, use it. It's important
1053   // to do this first, so that we don't create a CopyFromReg if we already
1054   // have a regular SDValue.
1055   SDValue &N = NodeMap[V];
1056   if (N.getNode()) return N;
1057 
1058   // If there's a virtual register allocated and initialized for this
1059   // value, use it.
1060   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1061     return copyFromReg;
1062 
1063   // Otherwise create a new SDValue and remember it.
1064   SDValue Val = getValueImpl(V);
1065   NodeMap[V] = Val;
1066   resolveDanglingDebugInfo(V, Val);
1067   return Val;
1068 }
1069 
1070 // Return true if SDValue exists for the given Value
1071 bool SelectionDAGBuilder::findValue(const Value *V) const {
1072   return (NodeMap.find(V) != NodeMap.end()) ||
1073     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1074 }
1075 
1076 /// getNonRegisterValue - Return an SDValue for the given Value, but
1077 /// don't look in FuncInfo.ValueMap for a virtual register.
1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1079   // If we already have an SDValue for this value, use it.
1080   SDValue &N = NodeMap[V];
1081   if (N.getNode()) {
1082     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1083       // Remove the debug location from the node as the node is about to be used
1084       // in a location which may differ from the original debug location.  This
1085       // is relevant to Constant and ConstantFP nodes because they can appear
1086       // as constant expressions inside PHI nodes.
1087       N->setDebugLoc(DebugLoc());
1088     }
1089     return N;
1090   }
1091 
1092   // Otherwise create a new SDValue and remember it.
1093   SDValue Val = getValueImpl(V);
1094   NodeMap[V] = Val;
1095   resolveDanglingDebugInfo(V, Val);
1096   return Val;
1097 }
1098 
1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1100 /// Create an SDValue for the given value.
1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103 
1104   if (const Constant *C = dyn_cast<Constant>(V)) {
1105     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1106 
1107     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1108       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1109 
1110     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1111       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1112 
1113     if (isa<ConstantPointerNull>(C)) {
1114       unsigned AS = V->getType()->getPointerAddressSpace();
1115       return DAG.getConstant(0, getCurSDLoc(),
1116                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1117     }
1118 
1119     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1120       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1121 
1122     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1123       return DAG.getUNDEF(VT);
1124 
1125     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1126       visit(CE->getOpcode(), *CE);
1127       SDValue N1 = NodeMap[V];
1128       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1129       return N1;
1130     }
1131 
1132     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1133       SmallVector<SDValue, 4> Constants;
1134       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1135            OI != OE; ++OI) {
1136         SDNode *Val = getValue(*OI).getNode();
1137         // If the operand is an empty aggregate, there are no values.
1138         if (!Val) continue;
1139         // Add each leaf value from the operand to the Constants list
1140         // to form a flattened list of all the values.
1141         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1142           Constants.push_back(SDValue(Val, i));
1143       }
1144 
1145       return DAG.getMergeValues(Constants, getCurSDLoc());
1146     }
1147 
1148     if (const ConstantDataSequential *CDS =
1149           dyn_cast<ConstantDataSequential>(C)) {
1150       SmallVector<SDValue, 4> Ops;
1151       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1152         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1153         // Add each leaf value from the operand to the Constants list
1154         // to form a flattened list of all the values.
1155         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1156           Ops.push_back(SDValue(Val, i));
1157       }
1158 
1159       if (isa<ArrayType>(CDS->getType()))
1160         return DAG.getMergeValues(Ops, getCurSDLoc());
1161       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1162                                       VT, Ops);
1163     }
1164 
1165     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1166       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1167              "Unknown struct or array constant!");
1168 
1169       SmallVector<EVT, 4> ValueVTs;
1170       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1171       unsigned NumElts = ValueVTs.size();
1172       if (NumElts == 0)
1173         return SDValue(); // empty struct
1174       SmallVector<SDValue, 4> Constants(NumElts);
1175       for (unsigned i = 0; i != NumElts; ++i) {
1176         EVT EltVT = ValueVTs[i];
1177         if (isa<UndefValue>(C))
1178           Constants[i] = DAG.getUNDEF(EltVT);
1179         else if (EltVT.isFloatingPoint())
1180           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1181         else
1182           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1183       }
1184 
1185       return DAG.getMergeValues(Constants, getCurSDLoc());
1186     }
1187 
1188     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1189       return DAG.getBlockAddress(BA, VT);
1190 
1191     VectorType *VecTy = cast<VectorType>(V->getType());
1192     unsigned NumElements = VecTy->getNumElements();
1193 
1194     // Now that we know the number and type of the elements, get that number of
1195     // elements into the Ops array based on what kind of constant it is.
1196     SmallVector<SDValue, 16> Ops;
1197     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1198       for (unsigned i = 0; i != NumElements; ++i)
1199         Ops.push_back(getValue(CV->getOperand(i)));
1200     } else {
1201       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1202       EVT EltVT =
1203           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1204 
1205       SDValue Op;
1206       if (EltVT.isFloatingPoint())
1207         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1208       else
1209         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1210       Ops.assign(NumElements, Op);
1211     }
1212 
1213     // Create a BUILD_VECTOR node.
1214     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1215   }
1216 
1217   // If this is a static alloca, generate it as the frameindex instead of
1218   // computation.
1219   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1220     DenseMap<const AllocaInst*, int>::iterator SI =
1221       FuncInfo.StaticAllocaMap.find(AI);
1222     if (SI != FuncInfo.StaticAllocaMap.end())
1223       return DAG.getFrameIndex(SI->second,
1224                                TLI.getPointerTy(DAG.getDataLayout()));
1225   }
1226 
1227   // If this is an instruction which fast-isel has deferred, select it now.
1228   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1229     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1230     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1231                      Inst->getType());
1232     SDValue Chain = DAG.getEntryNode();
1233     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1234   }
1235 
1236   llvm_unreachable("Can't get register for value!");
1237 }
1238 
1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1240   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1241   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1242   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1243   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1244   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1245   if (IsMSVCCXX || IsCoreCLR)
1246     CatchPadMBB->setIsEHFuncletEntry();
1247 
1248   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1249 }
1250 
1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1252   // Update machine-CFG edge.
1253   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1254   FuncInfo.MBB->addSuccessor(TargetMBB);
1255 
1256   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1257   bool IsSEH = isAsynchronousEHPersonality(Pers);
1258   if (IsSEH) {
1259     // If this is not a fall-through branch or optimizations are switched off,
1260     // emit the branch.
1261     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1262         TM.getOptLevel() == CodeGenOpt::None)
1263       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1264                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1265     return;
1266   }
1267 
1268   // Figure out the funclet membership for the catchret's successor.
1269   // This will be used by the FuncletLayout pass to determine how to order the
1270   // BB's.
1271   // A 'catchret' returns to the outer scope's color.
1272   Value *ParentPad = I.getCatchSwitchParentPad();
1273   const BasicBlock *SuccessorColor;
1274   if (isa<ConstantTokenNone>(ParentPad))
1275     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1276   else
1277     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1278   assert(SuccessorColor && "No parent funclet for catchret!");
1279   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1280   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1281 
1282   // Create the terminator node.
1283   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1284                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1285                             DAG.getBasicBlock(SuccessorColorMBB));
1286   DAG.setRoot(Ret);
1287 }
1288 
1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1290   // Don't emit any special code for the cleanuppad instruction. It just marks
1291   // the start of a funclet.
1292   FuncInfo.MBB->setIsEHFuncletEntry();
1293   FuncInfo.MBB->setIsCleanupFuncletEntry();
1294 }
1295 
1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1297 /// many places it could ultimately go. In the IR, we have a single unwind
1298 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1299 /// This function skips over imaginary basic blocks that hold catchswitch
1300 /// instructions, and finds all the "real" machine
1301 /// basic block destinations. As those destinations may not be successors of
1302 /// EHPadBB, here we also calculate the edge probability to those destinations.
1303 /// The passed-in Prob is the edge probability to EHPadBB.
1304 static void findUnwindDestinations(
1305     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1306     BranchProbability Prob,
1307     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1308         &UnwindDests) {
1309   EHPersonality Personality =
1310     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1311   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1312   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1313 
1314   while (EHPadBB) {
1315     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1316     BasicBlock *NewEHPadBB = nullptr;
1317     if (isa<LandingPadInst>(Pad)) {
1318       // Stop on landingpads. They are not funclets.
1319       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1320       break;
1321     } else if (isa<CleanupPadInst>(Pad)) {
1322       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1323       // personalities.
1324       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1325       UnwindDests.back().first->setIsEHFuncletEntry();
1326       break;
1327     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1328       // Add the catchpad handlers to the possible destinations.
1329       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1330         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1331         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1332         if (IsMSVCCXX || IsCoreCLR)
1333           UnwindDests.back().first->setIsEHFuncletEntry();
1334       }
1335       NewEHPadBB = CatchSwitch->getUnwindDest();
1336     } else {
1337       continue;
1338     }
1339 
1340     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1341     if (BPI && NewEHPadBB)
1342       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1343     EHPadBB = NewEHPadBB;
1344   }
1345 }
1346 
1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1348   // Update successor info.
1349   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1350   auto UnwindDest = I.getUnwindDest();
1351   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1352   BranchProbability UnwindDestProb =
1353       (BPI && UnwindDest)
1354           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1355           : BranchProbability::getZero();
1356   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1357   for (auto &UnwindDest : UnwindDests) {
1358     UnwindDest.first->setIsEHPad();
1359     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1360   }
1361   FuncInfo.MBB->normalizeSuccProbs();
1362 
1363   // Create the terminator node.
1364   SDValue Ret =
1365       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1366   DAG.setRoot(Ret);
1367 }
1368 
1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1370   report_fatal_error("visitCatchSwitch not yet implemented!");
1371 }
1372 
1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1375   auto &DL = DAG.getDataLayout();
1376   SDValue Chain = getControlRoot();
1377   SmallVector<ISD::OutputArg, 8> Outs;
1378   SmallVector<SDValue, 8> OutVals;
1379 
1380   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1381   // lower
1382   //
1383   //   %val = call <ty> @llvm.experimental.deoptimize()
1384   //   ret <ty> %val
1385   //
1386   // differently.
1387   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1388     LowerDeoptimizingReturn();
1389     return;
1390   }
1391 
1392   if (!FuncInfo.CanLowerReturn) {
1393     unsigned DemoteReg = FuncInfo.DemoteRegister;
1394     const Function *F = I.getParent()->getParent();
1395 
1396     // Emit a store of the return value through the virtual register.
1397     // Leave Outs empty so that LowerReturn won't try to load return
1398     // registers the usual way.
1399     SmallVector<EVT, 1> PtrValueVTs;
1400     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1401                     PtrValueVTs);
1402 
1403     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1404                                         DemoteReg, PtrValueVTs[0]);
1405     SDValue RetOp = getValue(I.getOperand(0));
1406 
1407     SmallVector<EVT, 4> ValueVTs;
1408     SmallVector<uint64_t, 4> Offsets;
1409     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1410     unsigned NumValues = ValueVTs.size();
1411 
1412     // An aggregate return value cannot wrap around the address space, so
1413     // offsets to its parts don't wrap either.
1414     SDNodeFlags Flags;
1415     Flags.setNoUnsignedWrap(true);
1416 
1417     SmallVector<SDValue, 4> Chains(NumValues);
1418     for (unsigned i = 0; i != NumValues; ++i) {
1419       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1420                                 RetPtr.getValueType(), RetPtr,
1421                                 DAG.getIntPtrConstant(Offsets[i],
1422                                                       getCurSDLoc()),
1423                                 &Flags);
1424       Chains[i] =
1425         DAG.getStore(Chain, getCurSDLoc(),
1426                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1427                      // FIXME: better loc info would be nice.
1428                      Add, MachinePointerInfo(), false, false, 0);
1429     }
1430 
1431     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1432                         MVT::Other, Chains);
1433   } else if (I.getNumOperands() != 0) {
1434     SmallVector<EVT, 4> ValueVTs;
1435     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1436     unsigned NumValues = ValueVTs.size();
1437     if (NumValues) {
1438       SDValue RetOp = getValue(I.getOperand(0));
1439 
1440       const Function *F = I.getParent()->getParent();
1441 
1442       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1443       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1444                                           Attribute::SExt))
1445         ExtendKind = ISD::SIGN_EXTEND;
1446       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1447                                                Attribute::ZExt))
1448         ExtendKind = ISD::ZERO_EXTEND;
1449 
1450       LLVMContext &Context = F->getContext();
1451       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1452                                                       Attribute::InReg);
1453 
1454       for (unsigned j = 0; j != NumValues; ++j) {
1455         EVT VT = ValueVTs[j];
1456 
1457         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1458           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1459 
1460         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1461         MVT PartVT = TLI.getRegisterType(Context, VT);
1462         SmallVector<SDValue, 4> Parts(NumParts);
1463         getCopyToParts(DAG, getCurSDLoc(),
1464                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1465                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1466 
1467         // 'inreg' on function refers to return value
1468         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1469         if (RetInReg)
1470           Flags.setInReg();
1471 
1472         // Propagate extension type if any
1473         if (ExtendKind == ISD::SIGN_EXTEND)
1474           Flags.setSExt();
1475         else if (ExtendKind == ISD::ZERO_EXTEND)
1476           Flags.setZExt();
1477 
1478         for (unsigned i = 0; i < NumParts; ++i) {
1479           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1480                                         VT, /*isfixed=*/true, 0, 0));
1481           OutVals.push_back(Parts[i]);
1482         }
1483       }
1484     }
1485   }
1486 
1487   // Push in swifterror virtual register as the last element of Outs. This makes
1488   // sure swifterror virtual register will be returned in the swifterror
1489   // physical register.
1490   const Function *F = I.getParent()->getParent();
1491   if (TLI.supportSwiftError() &&
1492       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1493     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1494     Flags.setSwiftError();
1495     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1496                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1497                                   true /*isfixed*/, 1 /*origidx*/,
1498                                   0 /*partOffs*/));
1499     // Create SDNode for the swifterror virtual register.
1500     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1501                                       EVT(TLI.getPointerTy(DL))));
1502   }
1503 
1504   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1505   CallingConv::ID CallConv =
1506     DAG.getMachineFunction().getFunction()->getCallingConv();
1507   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1508       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1509 
1510   // Verify that the target's LowerReturn behaved as expected.
1511   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1512          "LowerReturn didn't return a valid chain!");
1513 
1514   // Update the DAG with the new chain value resulting from return lowering.
1515   DAG.setRoot(Chain);
1516 }
1517 
1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1519 /// created for it, emit nodes to copy the value into the virtual
1520 /// registers.
1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1522   // Skip empty types
1523   if (V->getType()->isEmptyTy())
1524     return;
1525 
1526   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1527   if (VMI != FuncInfo.ValueMap.end()) {
1528     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1529     CopyValueToVirtualRegister(V, VMI->second);
1530   }
1531 }
1532 
1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1534 /// the current basic block, add it to ValueMap now so that we'll get a
1535 /// CopyTo/FromReg.
1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1537   // No need to export constants.
1538   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1539 
1540   // Already exported?
1541   if (FuncInfo.isExportedInst(V)) return;
1542 
1543   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1544   CopyValueToVirtualRegister(V, Reg);
1545 }
1546 
1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1548                                                      const BasicBlock *FromBB) {
1549   // The operands of the setcc have to be in this block.  We don't know
1550   // how to export them from some other block.
1551   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1552     // Can export from current BB.
1553     if (VI->getParent() == FromBB)
1554       return true;
1555 
1556     // Is already exported, noop.
1557     return FuncInfo.isExportedInst(V);
1558   }
1559 
1560   // If this is an argument, we can export it if the BB is the entry block or
1561   // if it is already exported.
1562   if (isa<Argument>(V)) {
1563     if (FromBB == &FromBB->getParent()->getEntryBlock())
1564       return true;
1565 
1566     // Otherwise, can only export this if it is already exported.
1567     return FuncInfo.isExportedInst(V);
1568   }
1569 
1570   // Otherwise, constants can always be exported.
1571   return true;
1572 }
1573 
1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1575 BranchProbability
1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1577                                         const MachineBasicBlock *Dst) const {
1578   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1579   const BasicBlock *SrcBB = Src->getBasicBlock();
1580   const BasicBlock *DstBB = Dst->getBasicBlock();
1581   if (!BPI) {
1582     // If BPI is not available, set the default probability as 1 / N, where N is
1583     // the number of successors.
1584     auto SuccSize = std::max<uint32_t>(
1585         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1586     return BranchProbability(1, SuccSize);
1587   }
1588   return BPI->getEdgeProbability(SrcBB, DstBB);
1589 }
1590 
1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1592                                                MachineBasicBlock *Dst,
1593                                                BranchProbability Prob) {
1594   if (!FuncInfo.BPI)
1595     Src->addSuccessorWithoutProb(Dst);
1596   else {
1597     if (Prob.isUnknown())
1598       Prob = getEdgeProbability(Src, Dst);
1599     Src->addSuccessor(Dst, Prob);
1600   }
1601 }
1602 
1603 static bool InBlock(const Value *V, const BasicBlock *BB) {
1604   if (const Instruction *I = dyn_cast<Instruction>(V))
1605     return I->getParent() == BB;
1606   return true;
1607 }
1608 
1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1610 /// This function emits a branch and is used at the leaves of an OR or an
1611 /// AND operator tree.
1612 ///
1613 void
1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1615                                                   MachineBasicBlock *TBB,
1616                                                   MachineBasicBlock *FBB,
1617                                                   MachineBasicBlock *CurBB,
1618                                                   MachineBasicBlock *SwitchBB,
1619                                                   BranchProbability TProb,
1620                                                   BranchProbability FProb) {
1621   const BasicBlock *BB = CurBB->getBasicBlock();
1622 
1623   // If the leaf of the tree is a comparison, merge the condition into
1624   // the caseblock.
1625   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1626     // The operands of the cmp have to be in this block.  We don't know
1627     // how to export them from some other block.  If this is the first block
1628     // of the sequence, no exporting is needed.
1629     if (CurBB == SwitchBB ||
1630         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1631          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1632       ISD::CondCode Condition;
1633       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1634         Condition = getICmpCondCode(IC->getPredicate());
1635       } else {
1636         const FCmpInst *FC = cast<FCmpInst>(Cond);
1637         Condition = getFCmpCondCode(FC->getPredicate());
1638         if (TM.Options.NoNaNsFPMath)
1639           Condition = getFCmpCodeWithoutNaN(Condition);
1640       }
1641 
1642       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1643                    TBB, FBB, CurBB, TProb, FProb);
1644       SwitchCases.push_back(CB);
1645       return;
1646     }
1647   }
1648 
1649   // Create a CaseBlock record representing this branch.
1650   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1651                nullptr, TBB, FBB, CurBB, TProb, FProb);
1652   SwitchCases.push_back(CB);
1653 }
1654 
1655 /// FindMergedConditions - If Cond is an expression like
1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1657                                                MachineBasicBlock *TBB,
1658                                                MachineBasicBlock *FBB,
1659                                                MachineBasicBlock *CurBB,
1660                                                MachineBasicBlock *SwitchBB,
1661                                                Instruction::BinaryOps Opc,
1662                                                BranchProbability TProb,
1663                                                BranchProbability FProb) {
1664   // If this node is not part of the or/and tree, emit it as a branch.
1665   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1666   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1667       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1668       BOp->getParent() != CurBB->getBasicBlock() ||
1669       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1670       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1671     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1672                                  TProb, FProb);
1673     return;
1674   }
1675 
1676   //  Create TmpBB after CurBB.
1677   MachineFunction::iterator BBI(CurBB);
1678   MachineFunction &MF = DAG.getMachineFunction();
1679   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1680   CurBB->getParent()->insert(++BBI, TmpBB);
1681 
1682   if (Opc == Instruction::Or) {
1683     // Codegen X | Y as:
1684     // BB1:
1685     //   jmp_if_X TBB
1686     //   jmp TmpBB
1687     // TmpBB:
1688     //   jmp_if_Y TBB
1689     //   jmp FBB
1690     //
1691 
1692     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1693     // The requirement is that
1694     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1695     //     = TrueProb for original BB.
1696     // Assuming the original probabilities are A and B, one choice is to set
1697     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1698     // A/(1+B) and 2B/(1+B). This choice assumes that
1699     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1700     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1701     // TmpBB, but the math is more complicated.
1702 
1703     auto NewTrueProb = TProb / 2;
1704     auto NewFalseProb = TProb / 2 + FProb;
1705     // Emit the LHS condition.
1706     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1707                          NewTrueProb, NewFalseProb);
1708 
1709     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1710     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1711     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1712     // Emit the RHS condition into TmpBB.
1713     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1714                          Probs[0], Probs[1]);
1715   } else {
1716     assert(Opc == Instruction::And && "Unknown merge op!");
1717     // Codegen X & Y as:
1718     // BB1:
1719     //   jmp_if_X TmpBB
1720     //   jmp FBB
1721     // TmpBB:
1722     //   jmp_if_Y TBB
1723     //   jmp FBB
1724     //
1725     //  This requires creation of TmpBB after CurBB.
1726 
1727     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1728     // The requirement is that
1729     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1730     //     = FalseProb for original BB.
1731     // Assuming the original probabilities are A and B, one choice is to set
1732     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1733     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1734     // TrueProb for BB1 * FalseProb for TmpBB.
1735 
1736     auto NewTrueProb = TProb + FProb / 2;
1737     auto NewFalseProb = FProb / 2;
1738     // Emit the LHS condition.
1739     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1740                          NewTrueProb, NewFalseProb);
1741 
1742     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1743     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1744     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1745     // Emit the RHS condition into TmpBB.
1746     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1747                          Probs[0], Probs[1]);
1748   }
1749 }
1750 
1751 /// If the set of cases should be emitted as a series of branches, return true.
1752 /// If we should emit this as a bunch of and/or'd together conditions, return
1753 /// false.
1754 bool
1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1756   if (Cases.size() != 2) return true;
1757 
1758   // If this is two comparisons of the same values or'd or and'd together, they
1759   // will get folded into a single comparison, so don't emit two blocks.
1760   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1761        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1762       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1763        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1764     return false;
1765   }
1766 
1767   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1768   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1769   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1770       Cases[0].CC == Cases[1].CC &&
1771       isa<Constant>(Cases[0].CmpRHS) &&
1772       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1773     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1774       return false;
1775     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1776       return false;
1777   }
1778 
1779   return true;
1780 }
1781 
1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1783   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1784 
1785   // Update machine-CFG edges.
1786   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1787 
1788   if (I.isUnconditional()) {
1789     // Update machine-CFG edges.
1790     BrMBB->addSuccessor(Succ0MBB);
1791 
1792     // If this is not a fall-through branch or optimizations are switched off,
1793     // emit the branch.
1794     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1795       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1796                               MVT::Other, getControlRoot(),
1797                               DAG.getBasicBlock(Succ0MBB)));
1798 
1799     return;
1800   }
1801 
1802   // If this condition is one of the special cases we handle, do special stuff
1803   // now.
1804   const Value *CondVal = I.getCondition();
1805   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1806 
1807   // If this is a series of conditions that are or'd or and'd together, emit
1808   // this as a sequence of branches instead of setcc's with and/or operations.
1809   // As long as jumps are not expensive, this should improve performance.
1810   // For example, instead of something like:
1811   //     cmp A, B
1812   //     C = seteq
1813   //     cmp D, E
1814   //     F = setle
1815   //     or C, F
1816   //     jnz foo
1817   // Emit:
1818   //     cmp A, B
1819   //     je foo
1820   //     cmp D, E
1821   //     jle foo
1822   //
1823   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1824     Instruction::BinaryOps Opcode = BOp->getOpcode();
1825     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1826         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1827         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1828       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1829                            Opcode,
1830                            getEdgeProbability(BrMBB, Succ0MBB),
1831                            getEdgeProbability(BrMBB, Succ1MBB));
1832       // If the compares in later blocks need to use values not currently
1833       // exported from this block, export them now.  This block should always
1834       // be the first entry.
1835       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1836 
1837       // Allow some cases to be rejected.
1838       if (ShouldEmitAsBranches(SwitchCases)) {
1839         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1840           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1841           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1842         }
1843 
1844         // Emit the branch for this block.
1845         visitSwitchCase(SwitchCases[0], BrMBB);
1846         SwitchCases.erase(SwitchCases.begin());
1847         return;
1848       }
1849 
1850       // Okay, we decided not to do this, remove any inserted MBB's and clear
1851       // SwitchCases.
1852       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1853         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1854 
1855       SwitchCases.clear();
1856     }
1857   }
1858 
1859   // Create a CaseBlock record representing this branch.
1860   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1861                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1862 
1863   // Use visitSwitchCase to actually insert the fast branch sequence for this
1864   // cond branch.
1865   visitSwitchCase(CB, BrMBB);
1866 }
1867 
1868 /// visitSwitchCase - Emits the necessary code to represent a single node in
1869 /// the binary search tree resulting from lowering a switch instruction.
1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1871                                           MachineBasicBlock *SwitchBB) {
1872   SDValue Cond;
1873   SDValue CondLHS = getValue(CB.CmpLHS);
1874   SDLoc dl = getCurSDLoc();
1875 
1876   // Build the setcc now.
1877   if (!CB.CmpMHS) {
1878     // Fold "(X == true)" to X and "(X == false)" to !X to
1879     // handle common cases produced by branch lowering.
1880     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1881         CB.CC == ISD::SETEQ)
1882       Cond = CondLHS;
1883     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1884              CB.CC == ISD::SETEQ) {
1885       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1886       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1887     } else
1888       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1889   } else {
1890     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1891 
1892     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1893     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1894 
1895     SDValue CmpOp = getValue(CB.CmpMHS);
1896     EVT VT = CmpOp.getValueType();
1897 
1898     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1899       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1900                           ISD::SETLE);
1901     } else {
1902       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1903                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1904       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1905                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1906     }
1907   }
1908 
1909   // Update successor info
1910   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1911   // TrueBB and FalseBB are always different unless the incoming IR is
1912   // degenerate. This only happens when running llc on weird IR.
1913   if (CB.TrueBB != CB.FalseBB)
1914     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1915   SwitchBB->normalizeSuccProbs();
1916 
1917   // If the lhs block is the next block, invert the condition so that we can
1918   // fall through to the lhs instead of the rhs block.
1919   if (CB.TrueBB == NextBlock(SwitchBB)) {
1920     std::swap(CB.TrueBB, CB.FalseBB);
1921     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1922     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1923   }
1924 
1925   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1926                                MVT::Other, getControlRoot(), Cond,
1927                                DAG.getBasicBlock(CB.TrueBB));
1928 
1929   // Insert the false branch. Do this even if it's a fall through branch,
1930   // this makes it easier to do DAG optimizations which require inverting
1931   // the branch condition.
1932   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1933                        DAG.getBasicBlock(CB.FalseBB));
1934 
1935   DAG.setRoot(BrCond);
1936 }
1937 
1938 /// visitJumpTable - Emit JumpTable node in the current MBB
1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1940   // Emit the code for the jump table
1941   assert(JT.Reg != -1U && "Should lower JT Header first!");
1942   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1943   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1944                                      JT.Reg, PTy);
1945   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1946   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1947                                     MVT::Other, Index.getValue(1),
1948                                     Table, Index);
1949   DAG.setRoot(BrJumpTable);
1950 }
1951 
1952 /// visitJumpTableHeader - This function emits necessary code to produce index
1953 /// in the JumpTable from switch case.
1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1955                                                JumpTableHeader &JTH,
1956                                                MachineBasicBlock *SwitchBB) {
1957   SDLoc dl = getCurSDLoc();
1958 
1959   // Subtract the lowest switch case value from the value being switched on and
1960   // conditional branch to default mbb if the result is greater than the
1961   // difference between smallest and largest cases.
1962   SDValue SwitchOp = getValue(JTH.SValue);
1963   EVT VT = SwitchOp.getValueType();
1964   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1965                             DAG.getConstant(JTH.First, dl, VT));
1966 
1967   // The SDNode we just created, which holds the value being switched on minus
1968   // the smallest case value, needs to be copied to a virtual register so it
1969   // can be used as an index into the jump table in a subsequent basic block.
1970   // This value may be smaller or larger than the target's pointer type, and
1971   // therefore require extension or truncating.
1972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1973   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1974 
1975   unsigned JumpTableReg =
1976       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1977   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1978                                     JumpTableReg, SwitchOp);
1979   JT.Reg = JumpTableReg;
1980 
1981   // Emit the range check for the jump table, and branch to the default block
1982   // for the switch statement if the value being switched on exceeds the largest
1983   // case in the switch.
1984   SDValue CMP = DAG.getSetCC(
1985       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1986                                  Sub.getValueType()),
1987       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1988 
1989   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1990                                MVT::Other, CopyTo, CMP,
1991                                DAG.getBasicBlock(JT.Default));
1992 
1993   // Avoid emitting unnecessary branches to the next block.
1994   if (JT.MBB != NextBlock(SwitchBB))
1995     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1996                          DAG.getBasicBlock(JT.MBB));
1997 
1998   DAG.setRoot(BrCond);
1999 }
2000 
2001 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2002 /// tail spliced into a stack protector check success bb.
2003 ///
2004 /// For a high level explanation of how this fits into the stack protector
2005 /// generation see the comment on the declaration of class
2006 /// StackProtectorDescriptor.
2007 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2008                                                   MachineBasicBlock *ParentBB) {
2009 
2010   // First create the loads to the guard/stack slot for the comparison.
2011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2012   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2013 
2014   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2015   int FI = MFI->getStackProtectorIndex();
2016 
2017   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2018   const Value *IRGuard = TLI.getSDStackGuard(M);
2019   assert(IRGuard && "Currently there must be an IR guard in order to use "
2020                     "SelectionDAG SSP");
2021   SDValue GuardPtr = getValue(IRGuard);
2022   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2023 
2024   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
2025 
2026   SDValue Guard;
2027   SDLoc dl = getCurSDLoc();
2028 
2029   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
2030   // guard value from the virtual register holding the value. Otherwise, emit a
2031   // volatile load to retrieve the stack guard value.
2032   unsigned GuardReg = SPD.getGuardReg();
2033 
2034   if (GuardReg && TLI.useLoadStackGuardNode())
2035     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
2036                                PtrTy);
2037   else
2038     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
2039                         GuardPtr, MachinePointerInfo(IRGuard, 0),
2040                         true, false, false, Align);
2041 
2042   SDValue StackSlot = DAG.getLoad(
2043       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2044       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2045       false, false, Align);
2046 
2047   // Perform the comparison via a subtract/getsetcc.
2048   EVT VT = Guard.getValueType();
2049   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2050 
2051   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2052                                                         *DAG.getContext(),
2053                                                         Sub.getValueType()),
2054                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2055 
2056   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2057   // branch to failure MBB.
2058   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2059                                MVT::Other, StackSlot.getOperand(0),
2060                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2061   // Otherwise branch to success MBB.
2062   SDValue Br = DAG.getNode(ISD::BR, dl,
2063                            MVT::Other, BrCond,
2064                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2065 
2066   DAG.setRoot(Br);
2067 }
2068 
2069 /// Codegen the failure basic block for a stack protector check.
2070 ///
2071 /// A failure stack protector machine basic block consists simply of a call to
2072 /// __stack_chk_fail().
2073 ///
2074 /// For a high level explanation of how this fits into the stack protector
2075 /// generation see the comment on the declaration of class
2076 /// StackProtectorDescriptor.
2077 void
2078 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2079   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2080   SDValue Chain =
2081       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2082                       None, false, getCurSDLoc(), false, false).second;
2083   DAG.setRoot(Chain);
2084 }
2085 
2086 /// visitBitTestHeader - This function emits necessary code to produce value
2087 /// suitable for "bit tests"
2088 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2089                                              MachineBasicBlock *SwitchBB) {
2090   SDLoc dl = getCurSDLoc();
2091 
2092   // Subtract the minimum value
2093   SDValue SwitchOp = getValue(B.SValue);
2094   EVT VT = SwitchOp.getValueType();
2095   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2096                             DAG.getConstant(B.First, dl, VT));
2097 
2098   // Check range
2099   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2100   SDValue RangeCmp = DAG.getSetCC(
2101       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2102                                  Sub.getValueType()),
2103       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2104 
2105   // Determine the type of the test operands.
2106   bool UsePtrType = false;
2107   if (!TLI.isTypeLegal(VT))
2108     UsePtrType = true;
2109   else {
2110     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2111       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2112         // Switch table case range are encoded into series of masks.
2113         // Just use pointer type, it's guaranteed to fit.
2114         UsePtrType = true;
2115         break;
2116       }
2117   }
2118   if (UsePtrType) {
2119     VT = TLI.getPointerTy(DAG.getDataLayout());
2120     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2121   }
2122 
2123   B.RegVT = VT.getSimpleVT();
2124   B.Reg = FuncInfo.CreateReg(B.RegVT);
2125   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2126 
2127   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2128 
2129   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2130   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2131   SwitchBB->normalizeSuccProbs();
2132 
2133   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2134                                 MVT::Other, CopyTo, RangeCmp,
2135                                 DAG.getBasicBlock(B.Default));
2136 
2137   // Avoid emitting unnecessary branches to the next block.
2138   if (MBB != NextBlock(SwitchBB))
2139     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2140                           DAG.getBasicBlock(MBB));
2141 
2142   DAG.setRoot(BrRange);
2143 }
2144 
2145 /// visitBitTestCase - this function produces one "bit test"
2146 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2147                                            MachineBasicBlock* NextMBB,
2148                                            BranchProbability BranchProbToNext,
2149                                            unsigned Reg,
2150                                            BitTestCase &B,
2151                                            MachineBasicBlock *SwitchBB) {
2152   SDLoc dl = getCurSDLoc();
2153   MVT VT = BB.RegVT;
2154   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2155   SDValue Cmp;
2156   unsigned PopCount = countPopulation(B.Mask);
2157   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2158   if (PopCount == 1) {
2159     // Testing for a single bit; just compare the shift count with what it
2160     // would need to be to shift a 1 bit in that position.
2161     Cmp = DAG.getSetCC(
2162         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2163         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2164         ISD::SETEQ);
2165   } else if (PopCount == BB.Range) {
2166     // There is only one zero bit in the range, test for it directly.
2167     Cmp = DAG.getSetCC(
2168         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2169         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2170         ISD::SETNE);
2171   } else {
2172     // Make desired shift
2173     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2174                                     DAG.getConstant(1, dl, VT), ShiftOp);
2175 
2176     // Emit bit tests and jumps
2177     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2178                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2179     Cmp = DAG.getSetCC(
2180         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2181         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2182   }
2183 
2184   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2185   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2186   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2187   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2188   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2189   // one as they are relative probabilities (and thus work more like weights),
2190   // and hence we need to normalize them to let the sum of them become one.
2191   SwitchBB->normalizeSuccProbs();
2192 
2193   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2194                               MVT::Other, getControlRoot(),
2195                               Cmp, DAG.getBasicBlock(B.TargetBB));
2196 
2197   // Avoid emitting unnecessary branches to the next block.
2198   if (NextMBB != NextBlock(SwitchBB))
2199     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2200                         DAG.getBasicBlock(NextMBB));
2201 
2202   DAG.setRoot(BrAnd);
2203 }
2204 
2205 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2206   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2207 
2208   // Retrieve successors. Look through artificial IR level blocks like
2209   // catchswitch for successors.
2210   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2211   const BasicBlock *EHPadBB = I.getSuccessor(1);
2212 
2213   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2214   // have to do anything here to lower funclet bundles.
2215   assert(!I.hasOperandBundlesOtherThan(
2216              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2217          "Cannot lower invokes with arbitrary operand bundles yet!");
2218 
2219   const Value *Callee(I.getCalledValue());
2220   const Function *Fn = dyn_cast<Function>(Callee);
2221   if (isa<InlineAsm>(Callee))
2222     visitInlineAsm(&I);
2223   else if (Fn && Fn->isIntrinsic()) {
2224     switch (Fn->getIntrinsicID()) {
2225     default:
2226       llvm_unreachable("Cannot invoke this intrinsic");
2227     case Intrinsic::donothing:
2228       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2229       break;
2230     case Intrinsic::experimental_patchpoint_void:
2231     case Intrinsic::experimental_patchpoint_i64:
2232       visitPatchpoint(&I, EHPadBB);
2233       break;
2234     case Intrinsic::experimental_gc_statepoint:
2235       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2236       break;
2237     }
2238   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2239     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2240     // Eventually we will support lowering the @llvm.experimental.deoptimize
2241     // intrinsic, and right now there are no plans to support other intrinsics
2242     // with deopt state.
2243     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2244   } else {
2245     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2246   }
2247 
2248   // If the value of the invoke is used outside of its defining block, make it
2249   // available as a virtual register.
2250   // We already took care of the exported value for the statepoint instruction
2251   // during call to the LowerStatepoint.
2252   if (!isStatepoint(I)) {
2253     CopyToExportRegsIfNeeded(&I);
2254   }
2255 
2256   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2257   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2258   BranchProbability EHPadBBProb =
2259       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2260           : BranchProbability::getZero();
2261   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2262 
2263   // Update successor info.
2264   addSuccessorWithProb(InvokeMBB, Return);
2265   for (auto &UnwindDest : UnwindDests) {
2266     UnwindDest.first->setIsEHPad();
2267     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2268   }
2269   InvokeMBB->normalizeSuccProbs();
2270 
2271   // Drop into normal successor.
2272   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2273                           MVT::Other, getControlRoot(),
2274                           DAG.getBasicBlock(Return)));
2275 }
2276 
2277 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2278   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2279 }
2280 
2281 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2282   assert(FuncInfo.MBB->isEHPad() &&
2283          "Call to landingpad not in landing pad!");
2284 
2285   MachineBasicBlock *MBB = FuncInfo.MBB;
2286   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2287   AddLandingPadInfo(LP, MMI, MBB);
2288 
2289   // If there aren't registers to copy the values into (e.g., during SjLj
2290   // exceptions), then don't bother to create these DAG nodes.
2291   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2292   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2293   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2294       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2295     return;
2296 
2297   // If landingpad's return type is token type, we don't create DAG nodes
2298   // for its exception pointer and selector value. The extraction of exception
2299   // pointer or selector value from token type landingpads is not currently
2300   // supported.
2301   if (LP.getType()->isTokenTy())
2302     return;
2303 
2304   SmallVector<EVT, 2> ValueVTs;
2305   SDLoc dl = getCurSDLoc();
2306   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2307   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2308 
2309   // Get the two live-in registers as SDValues. The physregs have already been
2310   // copied into virtual registers.
2311   SDValue Ops[2];
2312   if (FuncInfo.ExceptionPointerVirtReg) {
2313     Ops[0] = DAG.getZExtOrTrunc(
2314         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2315                            FuncInfo.ExceptionPointerVirtReg,
2316                            TLI.getPointerTy(DAG.getDataLayout())),
2317         dl, ValueVTs[0]);
2318   } else {
2319     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2320   }
2321   Ops[1] = DAG.getZExtOrTrunc(
2322       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2323                          FuncInfo.ExceptionSelectorVirtReg,
2324                          TLI.getPointerTy(DAG.getDataLayout())),
2325       dl, ValueVTs[1]);
2326 
2327   // Merge into one.
2328   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2329                             DAG.getVTList(ValueVTs), Ops);
2330   setValue(&LP, Res);
2331 }
2332 
2333 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2334 #ifndef NDEBUG
2335   for (const CaseCluster &CC : Clusters)
2336     assert(CC.Low == CC.High && "Input clusters must be single-case");
2337 #endif
2338 
2339   std::sort(Clusters.begin(), Clusters.end(),
2340             [](const CaseCluster &a, const CaseCluster &b) {
2341     return a.Low->getValue().slt(b.Low->getValue());
2342   });
2343 
2344   // Merge adjacent clusters with the same destination.
2345   const unsigned N = Clusters.size();
2346   unsigned DstIndex = 0;
2347   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2348     CaseCluster &CC = Clusters[SrcIndex];
2349     const ConstantInt *CaseVal = CC.Low;
2350     MachineBasicBlock *Succ = CC.MBB;
2351 
2352     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2353         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2354       // If this case has the same successor and is a neighbour, merge it into
2355       // the previous cluster.
2356       Clusters[DstIndex - 1].High = CaseVal;
2357       Clusters[DstIndex - 1].Prob += CC.Prob;
2358     } else {
2359       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2360                    sizeof(Clusters[SrcIndex]));
2361     }
2362   }
2363   Clusters.resize(DstIndex);
2364 }
2365 
2366 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2367                                            MachineBasicBlock *Last) {
2368   // Update JTCases.
2369   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2370     if (JTCases[i].first.HeaderBB == First)
2371       JTCases[i].first.HeaderBB = Last;
2372 
2373   // Update BitTestCases.
2374   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2375     if (BitTestCases[i].Parent == First)
2376       BitTestCases[i].Parent = Last;
2377 }
2378 
2379 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2380   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2381 
2382   // Update machine-CFG edges with unique successors.
2383   SmallSet<BasicBlock*, 32> Done;
2384   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2385     BasicBlock *BB = I.getSuccessor(i);
2386     bool Inserted = Done.insert(BB).second;
2387     if (!Inserted)
2388         continue;
2389 
2390     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2391     addSuccessorWithProb(IndirectBrMBB, Succ);
2392   }
2393   IndirectBrMBB->normalizeSuccProbs();
2394 
2395   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2396                           MVT::Other, getControlRoot(),
2397                           getValue(I.getAddress())));
2398 }
2399 
2400 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2401   if (DAG.getTarget().Options.TrapUnreachable)
2402     DAG.setRoot(
2403         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2404 }
2405 
2406 void SelectionDAGBuilder::visitFSub(const User &I) {
2407   // -0.0 - X --> fneg
2408   Type *Ty = I.getType();
2409   if (isa<Constant>(I.getOperand(0)) &&
2410       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2411     SDValue Op2 = getValue(I.getOperand(1));
2412     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2413                              Op2.getValueType(), Op2));
2414     return;
2415   }
2416 
2417   visitBinary(I, ISD::FSUB);
2418 }
2419 
2420 /// Checks if the given instruction performs a vector reduction, in which case
2421 /// we have the freedom to alter the elements in the result as long as the
2422 /// reduction of them stays unchanged.
2423 static bool isVectorReductionOp(const User *I) {
2424   const Instruction *Inst = dyn_cast<Instruction>(I);
2425   if (!Inst || !Inst->getType()->isVectorTy())
2426     return false;
2427 
2428   auto OpCode = Inst->getOpcode();
2429   switch (OpCode) {
2430   case Instruction::Add:
2431   case Instruction::Mul:
2432   case Instruction::And:
2433   case Instruction::Or:
2434   case Instruction::Xor:
2435     break;
2436   case Instruction::FAdd:
2437   case Instruction::FMul:
2438     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2439       if (FPOp->getFastMathFlags().unsafeAlgebra())
2440         break;
2441     // Fall through.
2442   default:
2443     return false;
2444   }
2445 
2446   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2447   unsigned ElemNumToReduce = ElemNum;
2448 
2449   // Do DFS search on the def-use chain from the given instruction. We only
2450   // allow four kinds of operations during the search until we reach the
2451   // instruction that extracts the first element from the vector:
2452   //
2453   //   1. The reduction operation of the same opcode as the given instruction.
2454   //
2455   //   2. PHI node.
2456   //
2457   //   3. ShuffleVector instruction together with a reduction operation that
2458   //      does a partial reduction.
2459   //
2460   //   4. ExtractElement that extracts the first element from the vector, and we
2461   //      stop searching the def-use chain here.
2462   //
2463   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2464   // from 1-3 to the stack to continue the DFS. The given instruction is not
2465   // a reduction operation if we meet any other instructions other than those
2466   // listed above.
2467 
2468   SmallVector<const User *, 16> UsersToVisit{Inst};
2469   SmallPtrSet<const User *, 16> Visited;
2470   bool ReduxExtracted = false;
2471 
2472   while (!UsersToVisit.empty()) {
2473     auto User = UsersToVisit.back();
2474     UsersToVisit.pop_back();
2475     if (!Visited.insert(User).second)
2476       continue;
2477 
2478     for (const auto &U : User->users()) {
2479       auto Inst = dyn_cast<Instruction>(U);
2480       if (!Inst)
2481         return false;
2482 
2483       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2484         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2485           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2486             return false;
2487         UsersToVisit.push_back(U);
2488       } else if (const ShuffleVectorInst *ShufInst =
2489                      dyn_cast<ShuffleVectorInst>(U)) {
2490         // Detect the following pattern: A ShuffleVector instruction together
2491         // with a reduction that do partial reduction on the first and second
2492         // ElemNumToReduce / 2 elements, and store the result in
2493         // ElemNumToReduce / 2 elements in another vector.
2494 
2495         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2496         if (ResultElements < ElemNum)
2497           return false;
2498 
2499         if (ElemNumToReduce == 1)
2500           return false;
2501         if (!isa<UndefValue>(U->getOperand(1)))
2502           return false;
2503         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2504           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2505             return false;
2506         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2507           if (ShufInst->getMaskValue(i) != -1)
2508             return false;
2509 
2510         // There is only one user of this ShuffleVector instruction, which
2511         // must be a reduction operation.
2512         if (!U->hasOneUse())
2513           return false;
2514 
2515         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2516         if (!U2 || U2->getOpcode() != OpCode)
2517           return false;
2518 
2519         // Check operands of the reduction operation.
2520         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2521             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2522           UsersToVisit.push_back(U2);
2523           ElemNumToReduce /= 2;
2524         } else
2525           return false;
2526       } else if (isa<ExtractElementInst>(U)) {
2527         // At this moment we should have reduced all elements in the vector.
2528         if (ElemNumToReduce != 1)
2529           return false;
2530 
2531         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2532         if (!Val || Val->getZExtValue() != 0)
2533           return false;
2534 
2535         ReduxExtracted = true;
2536       } else
2537         return false;
2538     }
2539   }
2540   return ReduxExtracted;
2541 }
2542 
2543 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2544   SDValue Op1 = getValue(I.getOperand(0));
2545   SDValue Op2 = getValue(I.getOperand(1));
2546 
2547   bool nuw = false;
2548   bool nsw = false;
2549   bool exact = false;
2550   bool vec_redux = false;
2551   FastMathFlags FMF;
2552 
2553   if (const OverflowingBinaryOperator *OFBinOp =
2554           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2555     nuw = OFBinOp->hasNoUnsignedWrap();
2556     nsw = OFBinOp->hasNoSignedWrap();
2557   }
2558   if (const PossiblyExactOperator *ExactOp =
2559           dyn_cast<const PossiblyExactOperator>(&I))
2560     exact = ExactOp->isExact();
2561   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2562     FMF = FPOp->getFastMathFlags();
2563 
2564   if (isVectorReductionOp(&I)) {
2565     vec_redux = true;
2566     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2567   }
2568 
2569   SDNodeFlags Flags;
2570   Flags.setExact(exact);
2571   Flags.setNoSignedWrap(nsw);
2572   Flags.setNoUnsignedWrap(nuw);
2573   Flags.setVectorReduction(vec_redux);
2574   if (EnableFMFInDAG) {
2575     Flags.setAllowReciprocal(FMF.allowReciprocal());
2576     Flags.setNoInfs(FMF.noInfs());
2577     Flags.setNoNaNs(FMF.noNaNs());
2578     Flags.setNoSignedZeros(FMF.noSignedZeros());
2579     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2580   }
2581   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2582                                      Op1, Op2, &Flags);
2583   setValue(&I, BinNodeValue);
2584 }
2585 
2586 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2587   SDValue Op1 = getValue(I.getOperand(0));
2588   SDValue Op2 = getValue(I.getOperand(1));
2589 
2590   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2591       Op2.getValueType(), DAG.getDataLayout());
2592 
2593   // Coerce the shift amount to the right type if we can.
2594   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2595     unsigned ShiftSize = ShiftTy.getSizeInBits();
2596     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2597     SDLoc DL = getCurSDLoc();
2598 
2599     // If the operand is smaller than the shift count type, promote it.
2600     if (ShiftSize > Op2Size)
2601       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2602 
2603     // If the operand is larger than the shift count type but the shift
2604     // count type has enough bits to represent any shift value, truncate
2605     // it now. This is a common case and it exposes the truncate to
2606     // optimization early.
2607     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2608       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2609     // Otherwise we'll need to temporarily settle for some other convenient
2610     // type.  Type legalization will make adjustments once the shiftee is split.
2611     else
2612       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2613   }
2614 
2615   bool nuw = false;
2616   bool nsw = false;
2617   bool exact = false;
2618 
2619   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2620 
2621     if (const OverflowingBinaryOperator *OFBinOp =
2622             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2623       nuw = OFBinOp->hasNoUnsignedWrap();
2624       nsw = OFBinOp->hasNoSignedWrap();
2625     }
2626     if (const PossiblyExactOperator *ExactOp =
2627             dyn_cast<const PossiblyExactOperator>(&I))
2628       exact = ExactOp->isExact();
2629   }
2630   SDNodeFlags Flags;
2631   Flags.setExact(exact);
2632   Flags.setNoSignedWrap(nsw);
2633   Flags.setNoUnsignedWrap(nuw);
2634   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2635                             &Flags);
2636   setValue(&I, Res);
2637 }
2638 
2639 void SelectionDAGBuilder::visitSDiv(const User &I) {
2640   SDValue Op1 = getValue(I.getOperand(0));
2641   SDValue Op2 = getValue(I.getOperand(1));
2642 
2643   SDNodeFlags Flags;
2644   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2645                  cast<PossiblyExactOperator>(&I)->isExact());
2646   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2647                            Op2, &Flags));
2648 }
2649 
2650 void SelectionDAGBuilder::visitICmp(const User &I) {
2651   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2652   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2653     predicate = IC->getPredicate();
2654   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2655     predicate = ICmpInst::Predicate(IC->getPredicate());
2656   SDValue Op1 = getValue(I.getOperand(0));
2657   SDValue Op2 = getValue(I.getOperand(1));
2658   ISD::CondCode Opcode = getICmpCondCode(predicate);
2659 
2660   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2661                                                         I.getType());
2662   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2663 }
2664 
2665 void SelectionDAGBuilder::visitFCmp(const User &I) {
2666   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2667   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2668     predicate = FC->getPredicate();
2669   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2670     predicate = FCmpInst::Predicate(FC->getPredicate());
2671   SDValue Op1 = getValue(I.getOperand(0));
2672   SDValue Op2 = getValue(I.getOperand(1));
2673   ISD::CondCode Condition = getFCmpCondCode(predicate);
2674 
2675   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2676   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2677   // further optimization, but currently FMF is only applicable to binary nodes.
2678   if (TM.Options.NoNaNsFPMath)
2679     Condition = getFCmpCodeWithoutNaN(Condition);
2680   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2681                                                         I.getType());
2682   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2683 }
2684 
2685 void SelectionDAGBuilder::visitSelect(const User &I) {
2686   SmallVector<EVT, 4> ValueVTs;
2687   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2688                   ValueVTs);
2689   unsigned NumValues = ValueVTs.size();
2690   if (NumValues == 0) return;
2691 
2692   SmallVector<SDValue, 4> Values(NumValues);
2693   SDValue Cond     = getValue(I.getOperand(0));
2694   SDValue LHSVal   = getValue(I.getOperand(1));
2695   SDValue RHSVal   = getValue(I.getOperand(2));
2696   auto BaseOps = {Cond};
2697   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2698     ISD::VSELECT : ISD::SELECT;
2699 
2700   // Min/max matching is only viable if all output VTs are the same.
2701   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2702     EVT VT = ValueVTs[0];
2703     LLVMContext &Ctx = *DAG.getContext();
2704     auto &TLI = DAG.getTargetLoweringInfo();
2705 
2706     // We care about the legality of the operation after it has been type
2707     // legalized.
2708     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2709            VT != TLI.getTypeToTransformTo(Ctx, VT))
2710       VT = TLI.getTypeToTransformTo(Ctx, VT);
2711 
2712     // If the vselect is legal, assume we want to leave this as a vector setcc +
2713     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2714     // min/max is legal on the scalar type.
2715     bool UseScalarMinMax = VT.isVector() &&
2716       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2717 
2718     Value *LHS, *RHS;
2719     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2720     ISD::NodeType Opc = ISD::DELETED_NODE;
2721     switch (SPR.Flavor) {
2722     case SPF_UMAX:    Opc = ISD::UMAX; break;
2723     case SPF_UMIN:    Opc = ISD::UMIN; break;
2724     case SPF_SMAX:    Opc = ISD::SMAX; break;
2725     case SPF_SMIN:    Opc = ISD::SMIN; break;
2726     case SPF_FMINNUM:
2727       switch (SPR.NaNBehavior) {
2728       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2729       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2730       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2731       case SPNB_RETURNS_ANY: {
2732         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2733           Opc = ISD::FMINNUM;
2734         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2735           Opc = ISD::FMINNAN;
2736         else if (UseScalarMinMax)
2737           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2738             ISD::FMINNUM : ISD::FMINNAN;
2739         break;
2740       }
2741       }
2742       break;
2743     case SPF_FMAXNUM:
2744       switch (SPR.NaNBehavior) {
2745       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2746       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2747       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2748       case SPNB_RETURNS_ANY:
2749 
2750         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2751           Opc = ISD::FMAXNUM;
2752         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2753           Opc = ISD::FMAXNAN;
2754         else if (UseScalarMinMax)
2755           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2756             ISD::FMAXNUM : ISD::FMAXNAN;
2757         break;
2758       }
2759       break;
2760     default: break;
2761     }
2762 
2763     if (Opc != ISD::DELETED_NODE &&
2764         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2765          (UseScalarMinMax &&
2766           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2767         // If the underlying comparison instruction is used by any other
2768         // instruction, the consumed instructions won't be destroyed, so it is
2769         // not profitable to convert to a min/max.
2770         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2771       OpCode = Opc;
2772       LHSVal = getValue(LHS);
2773       RHSVal = getValue(RHS);
2774       BaseOps = {};
2775     }
2776   }
2777 
2778   for (unsigned i = 0; i != NumValues; ++i) {
2779     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2780     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2781     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2782     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2783                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2784                             Ops);
2785   }
2786 
2787   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2788                            DAG.getVTList(ValueVTs), Values));
2789 }
2790 
2791 void SelectionDAGBuilder::visitTrunc(const User &I) {
2792   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2793   SDValue N = getValue(I.getOperand(0));
2794   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2795                                                         I.getType());
2796   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2797 }
2798 
2799 void SelectionDAGBuilder::visitZExt(const User &I) {
2800   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2801   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2802   SDValue N = getValue(I.getOperand(0));
2803   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2804                                                         I.getType());
2805   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2806 }
2807 
2808 void SelectionDAGBuilder::visitSExt(const User &I) {
2809   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2810   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2811   SDValue N = getValue(I.getOperand(0));
2812   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2813                                                         I.getType());
2814   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2815 }
2816 
2817 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2818   // FPTrunc is never a no-op cast, no need to check
2819   SDValue N = getValue(I.getOperand(0));
2820   SDLoc dl = getCurSDLoc();
2821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2822   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2823   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2824                            DAG.getTargetConstant(
2825                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2826 }
2827 
2828 void SelectionDAGBuilder::visitFPExt(const User &I) {
2829   // FPExt is never a no-op cast, no need to check
2830   SDValue N = getValue(I.getOperand(0));
2831   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2832                                                         I.getType());
2833   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2834 }
2835 
2836 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2837   // FPToUI is never a no-op cast, no need to check
2838   SDValue N = getValue(I.getOperand(0));
2839   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2840                                                         I.getType());
2841   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2842 }
2843 
2844 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2845   // FPToSI is never a no-op cast, no need to check
2846   SDValue N = getValue(I.getOperand(0));
2847   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2848                                                         I.getType());
2849   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2850 }
2851 
2852 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2853   // UIToFP is never a no-op cast, no need to check
2854   SDValue N = getValue(I.getOperand(0));
2855   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2856                                                         I.getType());
2857   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2858 }
2859 
2860 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2861   // SIToFP is never a no-op cast, no need to check
2862   SDValue N = getValue(I.getOperand(0));
2863   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2864                                                         I.getType());
2865   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2866 }
2867 
2868 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2869   // What to do depends on the size of the integer and the size of the pointer.
2870   // We can either truncate, zero extend, or no-op, accordingly.
2871   SDValue N = getValue(I.getOperand(0));
2872   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2873                                                         I.getType());
2874   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2875 }
2876 
2877 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2878   // What to do depends on the size of the integer and the size of the pointer.
2879   // We can either truncate, zero extend, or no-op, accordingly.
2880   SDValue N = getValue(I.getOperand(0));
2881   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2882                                                         I.getType());
2883   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2884 }
2885 
2886 void SelectionDAGBuilder::visitBitCast(const User &I) {
2887   SDValue N = getValue(I.getOperand(0));
2888   SDLoc dl = getCurSDLoc();
2889   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2890                                                         I.getType());
2891 
2892   // BitCast assures us that source and destination are the same size so this is
2893   // either a BITCAST or a no-op.
2894   if (DestVT != N.getValueType())
2895     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2896                              DestVT, N)); // convert types.
2897   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2898   // might fold any kind of constant expression to an integer constant and that
2899   // is not what we are looking for. Only regcognize a bitcast of a genuine
2900   // constant integer as an opaque constant.
2901   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2902     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2903                                  /*isOpaque*/true));
2904   else
2905     setValue(&I, N);            // noop cast.
2906 }
2907 
2908 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2910   const Value *SV = I.getOperand(0);
2911   SDValue N = getValue(SV);
2912   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2913 
2914   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2915   unsigned DestAS = I.getType()->getPointerAddressSpace();
2916 
2917   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2918     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2919 
2920   setValue(&I, N);
2921 }
2922 
2923 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2925   SDValue InVec = getValue(I.getOperand(0));
2926   SDValue InVal = getValue(I.getOperand(1));
2927   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2928                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2929   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2930                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2931                            InVec, InVal, InIdx));
2932 }
2933 
2934 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2936   SDValue InVec = getValue(I.getOperand(0));
2937   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2938                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2939   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2940                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2941                            InVec, InIdx));
2942 }
2943 
2944 // Utility for visitShuffleVector - Return true if every element in Mask,
2945 // beginning from position Pos and ending in Pos+Size, falls within the
2946 // specified sequential range [L, L+Pos). or is undef.
2947 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2948                                 unsigned Pos, unsigned Size, int Low) {
2949   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2950     if (Mask[i] >= 0 && Mask[i] != Low)
2951       return false;
2952   return true;
2953 }
2954 
2955 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2956   SDValue Src1 = getValue(I.getOperand(0));
2957   SDValue Src2 = getValue(I.getOperand(1));
2958 
2959   SmallVector<int, 8> Mask;
2960   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2961   unsigned MaskNumElts = Mask.size();
2962 
2963   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2964   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2965   EVT SrcVT = Src1.getValueType();
2966   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2967 
2968   if (SrcNumElts == MaskNumElts) {
2969     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2970                                       &Mask[0]));
2971     return;
2972   }
2973 
2974   // Normalize the shuffle vector since mask and vector length don't match.
2975   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2976     // Mask is longer than the source vectors and is a multiple of the source
2977     // vectors.  We can use concatenate vector to make the mask and vectors
2978     // lengths match.
2979     if (SrcNumElts*2 == MaskNumElts) {
2980       // First check for Src1 in low and Src2 in high
2981       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2982           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2983         // The shuffle is concatenating two vectors together.
2984         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2985                                  VT, Src1, Src2));
2986         return;
2987       }
2988       // Then check for Src2 in low and Src1 in high
2989       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2990           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2991         // The shuffle is concatenating two vectors together.
2992         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2993                                  VT, Src2, Src1));
2994         return;
2995       }
2996     }
2997 
2998     // Pad both vectors with undefs to make them the same length as the mask.
2999     unsigned NumConcat = MaskNumElts / SrcNumElts;
3000     bool Src1U = Src1.isUndef();
3001     bool Src2U = Src2.isUndef();
3002     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3003 
3004     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3005     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3006     MOps1[0] = Src1;
3007     MOps2[0] = Src2;
3008 
3009     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3010                                                   getCurSDLoc(), VT, MOps1);
3011     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3012                                                   getCurSDLoc(), VT, MOps2);
3013 
3014     // Readjust mask for new input vector length.
3015     SmallVector<int, 8> MappedOps;
3016     for (unsigned i = 0; i != MaskNumElts; ++i) {
3017       int Idx = Mask[i];
3018       if (Idx >= (int)SrcNumElts)
3019         Idx -= SrcNumElts - MaskNumElts;
3020       MappedOps.push_back(Idx);
3021     }
3022 
3023     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3024                                       &MappedOps[0]));
3025     return;
3026   }
3027 
3028   if (SrcNumElts > MaskNumElts) {
3029     // Analyze the access pattern of the vector to see if we can extract
3030     // two subvectors and do the shuffle. The analysis is done by calculating
3031     // the range of elements the mask access on both vectors.
3032     int MinRange[2] = { static_cast<int>(SrcNumElts),
3033                         static_cast<int>(SrcNumElts)};
3034     int MaxRange[2] = {-1, -1};
3035 
3036     for (unsigned i = 0; i != MaskNumElts; ++i) {
3037       int Idx = Mask[i];
3038       unsigned Input = 0;
3039       if (Idx < 0)
3040         continue;
3041 
3042       if (Idx >= (int)SrcNumElts) {
3043         Input = 1;
3044         Idx -= SrcNumElts;
3045       }
3046       if (Idx > MaxRange[Input])
3047         MaxRange[Input] = Idx;
3048       if (Idx < MinRange[Input])
3049         MinRange[Input] = Idx;
3050     }
3051 
3052     // Check if the access is smaller than the vector size and can we find
3053     // a reasonable extract index.
3054     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3055                                    // Extract.
3056     int StartIdx[2];  // StartIdx to extract from
3057     for (unsigned Input = 0; Input < 2; ++Input) {
3058       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3059         RangeUse[Input] = 0; // Unused
3060         StartIdx[Input] = 0;
3061         continue;
3062       }
3063 
3064       // Find a good start index that is a multiple of the mask length. Then
3065       // see if the rest of the elements are in range.
3066       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3067       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3068           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3069         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3070     }
3071 
3072     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3073       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3074       return;
3075     }
3076     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3077       // Extract appropriate subvector and generate a vector shuffle
3078       for (unsigned Input = 0; Input < 2; ++Input) {
3079         SDValue &Src = Input == 0 ? Src1 : Src2;
3080         if (RangeUse[Input] == 0)
3081           Src = DAG.getUNDEF(VT);
3082         else {
3083           SDLoc dl = getCurSDLoc();
3084           Src = DAG.getNode(
3085               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3086               DAG.getConstant(StartIdx[Input], dl,
3087                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3088         }
3089       }
3090 
3091       // Calculate new mask.
3092       SmallVector<int, 8> MappedOps;
3093       for (unsigned i = 0; i != MaskNumElts; ++i) {
3094         int Idx = Mask[i];
3095         if (Idx >= 0) {
3096           if (Idx < (int)SrcNumElts)
3097             Idx -= StartIdx[0];
3098           else
3099             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3100         }
3101         MappedOps.push_back(Idx);
3102       }
3103 
3104       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3105                                         &MappedOps[0]));
3106       return;
3107     }
3108   }
3109 
3110   // We can't use either concat vectors or extract subvectors so fall back to
3111   // replacing the shuffle with extract and build vector.
3112   // to insert and build vector.
3113   EVT EltVT = VT.getVectorElementType();
3114   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3115   SDLoc dl = getCurSDLoc();
3116   SmallVector<SDValue,8> Ops;
3117   for (unsigned i = 0; i != MaskNumElts; ++i) {
3118     int Idx = Mask[i];
3119     SDValue Res;
3120 
3121     if (Idx < 0) {
3122       Res = DAG.getUNDEF(EltVT);
3123     } else {
3124       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3125       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3126 
3127       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3128                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3129     }
3130 
3131     Ops.push_back(Res);
3132   }
3133 
3134   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3135 }
3136 
3137 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3138   const Value *Op0 = I.getOperand(0);
3139   const Value *Op1 = I.getOperand(1);
3140   Type *AggTy = I.getType();
3141   Type *ValTy = Op1->getType();
3142   bool IntoUndef = isa<UndefValue>(Op0);
3143   bool FromUndef = isa<UndefValue>(Op1);
3144 
3145   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3146 
3147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3148   SmallVector<EVT, 4> AggValueVTs;
3149   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3150   SmallVector<EVT, 4> ValValueVTs;
3151   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3152 
3153   unsigned NumAggValues = AggValueVTs.size();
3154   unsigned NumValValues = ValValueVTs.size();
3155   SmallVector<SDValue, 4> Values(NumAggValues);
3156 
3157   // Ignore an insertvalue that produces an empty object
3158   if (!NumAggValues) {
3159     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3160     return;
3161   }
3162 
3163   SDValue Agg = getValue(Op0);
3164   unsigned i = 0;
3165   // Copy the beginning value(s) from the original aggregate.
3166   for (; i != LinearIndex; ++i)
3167     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3168                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3169   // Copy values from the inserted value(s).
3170   if (NumValValues) {
3171     SDValue Val = getValue(Op1);
3172     for (; i != LinearIndex + NumValValues; ++i)
3173       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3174                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3175   }
3176   // Copy remaining value(s) from the original aggregate.
3177   for (; i != NumAggValues; ++i)
3178     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3179                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3180 
3181   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3182                            DAG.getVTList(AggValueVTs), Values));
3183 }
3184 
3185 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3186   const Value *Op0 = I.getOperand(0);
3187   Type *AggTy = Op0->getType();
3188   Type *ValTy = I.getType();
3189   bool OutOfUndef = isa<UndefValue>(Op0);
3190 
3191   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3192 
3193   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3194   SmallVector<EVT, 4> ValValueVTs;
3195   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3196 
3197   unsigned NumValValues = ValValueVTs.size();
3198 
3199   // Ignore a extractvalue that produces an empty object
3200   if (!NumValValues) {
3201     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3202     return;
3203   }
3204 
3205   SmallVector<SDValue, 4> Values(NumValValues);
3206 
3207   SDValue Agg = getValue(Op0);
3208   // Copy out the selected value(s).
3209   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3210     Values[i - LinearIndex] =
3211       OutOfUndef ?
3212         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3213         SDValue(Agg.getNode(), Agg.getResNo() + i);
3214 
3215   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3216                            DAG.getVTList(ValValueVTs), Values));
3217 }
3218 
3219 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3220   Value *Op0 = I.getOperand(0);
3221   // Note that the pointer operand may be a vector of pointers. Take the scalar
3222   // element which holds a pointer.
3223   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3224   SDValue N = getValue(Op0);
3225   SDLoc dl = getCurSDLoc();
3226 
3227   // Normalize Vector GEP - all scalar operands should be converted to the
3228   // splat vector.
3229   unsigned VectorWidth = I.getType()->isVectorTy() ?
3230     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3231 
3232   if (VectorWidth && !N.getValueType().isVector()) {
3233     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
3234     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3235     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3236   }
3237   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3238        GTI != E; ++GTI) {
3239     const Value *Idx = GTI.getOperand();
3240     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3241       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3242       if (Field) {
3243         // N = N + Offset
3244         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3245 
3246         // In an inbouds GEP with an offset that is nonnegative even when
3247         // interpreted as signed, assume there is no unsigned overflow.
3248         SDNodeFlags Flags;
3249         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3250           Flags.setNoUnsignedWrap(true);
3251 
3252         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3253                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3254       }
3255     } else {
3256       MVT PtrTy =
3257           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3258       unsigned PtrSize = PtrTy.getSizeInBits();
3259       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3260 
3261       // If this is a scalar constant or a splat vector of constants,
3262       // handle it quickly.
3263       const auto *CI = dyn_cast<ConstantInt>(Idx);
3264       if (!CI && isa<ConstantDataVector>(Idx) &&
3265           cast<ConstantDataVector>(Idx)->getSplatValue())
3266         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3267 
3268       if (CI) {
3269         if (CI->isZero())
3270           continue;
3271         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3272         SDValue OffsVal = VectorWidth ?
3273           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3274           DAG.getConstant(Offs, dl, PtrTy);
3275 
3276         // In an inbouds GEP with an offset that is nonnegative even when
3277         // interpreted as signed, assume there is no unsigned overflow.
3278         SDNodeFlags Flags;
3279         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3280           Flags.setNoUnsignedWrap(true);
3281 
3282         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3283         continue;
3284       }
3285 
3286       // N = N + Idx * ElementSize;
3287       SDValue IdxN = getValue(Idx);
3288 
3289       if (!IdxN.getValueType().isVector() && VectorWidth) {
3290         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3291         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3292         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3293       }
3294       // If the index is smaller or larger than intptr_t, truncate or extend
3295       // it.
3296       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3297 
3298       // If this is a multiply by a power of two, turn it into a shl
3299       // immediately.  This is a very common case.
3300       if (ElementSize != 1) {
3301         if (ElementSize.isPowerOf2()) {
3302           unsigned Amt = ElementSize.logBase2();
3303           IdxN = DAG.getNode(ISD::SHL, dl,
3304                              N.getValueType(), IdxN,
3305                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3306         } else {
3307           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3308           IdxN = DAG.getNode(ISD::MUL, dl,
3309                              N.getValueType(), IdxN, Scale);
3310         }
3311       }
3312 
3313       N = DAG.getNode(ISD::ADD, dl,
3314                       N.getValueType(), N, IdxN);
3315     }
3316   }
3317 
3318   setValue(&I, N);
3319 }
3320 
3321 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3322   // If this is a fixed sized alloca in the entry block of the function,
3323   // allocate it statically on the stack.
3324   if (FuncInfo.StaticAllocaMap.count(&I))
3325     return;   // getValue will auto-populate this.
3326 
3327   SDLoc dl = getCurSDLoc();
3328   Type *Ty = I.getAllocatedType();
3329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3330   auto &DL = DAG.getDataLayout();
3331   uint64_t TySize = DL.getTypeAllocSize(Ty);
3332   unsigned Align =
3333       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3334 
3335   SDValue AllocSize = getValue(I.getArraySize());
3336 
3337   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3338   if (AllocSize.getValueType() != IntPtr)
3339     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3340 
3341   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3342                           AllocSize,
3343                           DAG.getConstant(TySize, dl, IntPtr));
3344 
3345   // Handle alignment.  If the requested alignment is less than or equal to
3346   // the stack alignment, ignore it.  If the size is greater than or equal to
3347   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3348   unsigned StackAlign =
3349       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3350   if (Align <= StackAlign)
3351     Align = 0;
3352 
3353   // Round the size of the allocation up to the stack alignment size
3354   // by add SA-1 to the size. This doesn't overflow because we're computing
3355   // an address inside an alloca.
3356   SDNodeFlags Flags;
3357   Flags.setNoUnsignedWrap(true);
3358   AllocSize = DAG.getNode(ISD::ADD, dl,
3359                           AllocSize.getValueType(), AllocSize,
3360                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3361 
3362   // Mask out the low bits for alignment purposes.
3363   AllocSize = DAG.getNode(ISD::AND, dl,
3364                           AllocSize.getValueType(), AllocSize,
3365                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3366                                                 dl));
3367 
3368   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3369   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3370   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3371   setValue(&I, DSA);
3372   DAG.setRoot(DSA.getValue(1));
3373 
3374   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3375 }
3376 
3377 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3378   if (I.isAtomic())
3379     return visitAtomicLoad(I);
3380 
3381   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3382   const Value *SV = I.getOperand(0);
3383   if (TLI.supportSwiftError()) {
3384     // Swifterror values can come from either a function parameter with
3385     // swifterror attribute or an alloca with swifterror attribute.
3386     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3387       if (Arg->hasSwiftErrorAttr())
3388         return visitLoadFromSwiftError(I);
3389     }
3390 
3391     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3392       if (Alloca->isSwiftError())
3393         return visitLoadFromSwiftError(I);
3394     }
3395   }
3396 
3397   SDValue Ptr = getValue(SV);
3398 
3399   Type *Ty = I.getType();
3400 
3401   bool isVolatile = I.isVolatile();
3402   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3403 
3404   // The IR notion of invariant_load only guarantees that all *non-faulting*
3405   // invariant loads result in the same value.  The MI notion of invariant load
3406   // guarantees that the load can be legally moved to any location within its
3407   // containing function.  The MI notion of invariant_load is stronger than the
3408   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3409   // with a guarantee that the location being loaded from is dereferenceable
3410   // throughout the function's lifetime.
3411 
3412   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3413                      isDereferenceablePointer(SV, DAG.getDataLayout());
3414   unsigned Alignment = I.getAlignment();
3415 
3416   AAMDNodes AAInfo;
3417   I.getAAMetadata(AAInfo);
3418   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3419 
3420   SmallVector<EVT, 4> ValueVTs;
3421   SmallVector<uint64_t, 4> Offsets;
3422   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3423   unsigned NumValues = ValueVTs.size();
3424   if (NumValues == 0)
3425     return;
3426 
3427   SDValue Root;
3428   bool ConstantMemory = false;
3429   if (isVolatile || NumValues > MaxParallelChains)
3430     // Serialize volatile loads with other side effects.
3431     Root = getRoot();
3432   else if (AA->pointsToConstantMemory(MemoryLocation(
3433                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3434     // Do not serialize (non-volatile) loads of constant memory with anything.
3435     Root = DAG.getEntryNode();
3436     ConstantMemory = true;
3437   } else {
3438     // Do not serialize non-volatile loads against each other.
3439     Root = DAG.getRoot();
3440   }
3441 
3442   SDLoc dl = getCurSDLoc();
3443 
3444   if (isVolatile)
3445     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3446 
3447   // An aggregate load cannot wrap around the address space, so offsets to its
3448   // parts don't wrap either.
3449   SDNodeFlags Flags;
3450   Flags.setNoUnsignedWrap(true);
3451 
3452   SmallVector<SDValue, 4> Values(NumValues);
3453   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3454   EVT PtrVT = Ptr.getValueType();
3455   unsigned ChainI = 0;
3456   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3457     // Serializing loads here may result in excessive register pressure, and
3458     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3459     // could recover a bit by hoisting nodes upward in the chain by recognizing
3460     // they are side-effect free or do not alias. The optimizer should really
3461     // avoid this case by converting large object/array copies to llvm.memcpy
3462     // (MaxParallelChains should always remain as failsafe).
3463     if (ChainI == MaxParallelChains) {
3464       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3465       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3466                                   makeArrayRef(Chains.data(), ChainI));
3467       Root = Chain;
3468       ChainI = 0;
3469     }
3470     SDValue A = DAG.getNode(ISD::ADD, dl,
3471                             PtrVT, Ptr,
3472                             DAG.getConstant(Offsets[i], dl, PtrVT),
3473                             &Flags);
3474     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3475                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3476                             isNonTemporal, isInvariant, Alignment, AAInfo,
3477                             Ranges);
3478 
3479     Values[i] = L;
3480     Chains[ChainI] = L.getValue(1);
3481   }
3482 
3483   if (!ConstantMemory) {
3484     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3485                                 makeArrayRef(Chains.data(), ChainI));
3486     if (isVolatile)
3487       DAG.setRoot(Chain);
3488     else
3489       PendingLoads.push_back(Chain);
3490   }
3491 
3492   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3493                            DAG.getVTList(ValueVTs), Values));
3494 }
3495 
3496 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3498   assert(TLI.supportSwiftError() &&
3499          "call visitStoreToSwiftError when backend supports swifterror");
3500 
3501   SmallVector<EVT, 4> ValueVTs;
3502   SmallVector<uint64_t, 4> Offsets;
3503   const Value *SrcV = I.getOperand(0);
3504   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3505                   SrcV->getType(), ValueVTs, &Offsets);
3506   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3507          "expect a single EVT for swifterror");
3508 
3509   SDValue Src = getValue(SrcV);
3510   // Create a virtual register, then update the virtual register.
3511   auto &DL = DAG.getDataLayout();
3512   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3513   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3514   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3515   // Chain can be getRoot or getControlRoot.
3516   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3517                                       SDValue(Src.getNode(), Src.getResNo()));
3518   DAG.setRoot(CopyNode);
3519   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3520 }
3521 
3522 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3523   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3524          "call visitLoadFromSwiftError when backend supports swifterror");
3525 
3526   assert(!I.isVolatile() &&
3527          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3528          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3529          "Support volatile, non temporal, invariant for load_from_swift_error");
3530 
3531   const Value *SV = I.getOperand(0);
3532   Type *Ty = I.getType();
3533   AAMDNodes AAInfo;
3534   I.getAAMetadata(AAInfo);
3535   assert(!AA->pointsToConstantMemory(MemoryLocation(
3536              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3537          "load_from_swift_error should not be constant memory");
3538 
3539   SmallVector<EVT, 4> ValueVTs;
3540   SmallVector<uint64_t, 4> Offsets;
3541   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3542                   ValueVTs, &Offsets);
3543   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3544          "expect a single EVT for swifterror");
3545 
3546   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3547   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3548                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3549                                  ValueVTs[0]);
3550 
3551   setValue(&I, L);
3552 }
3553 
3554 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3555   if (I.isAtomic())
3556     return visitAtomicStore(I);
3557 
3558   const Value *SrcV = I.getOperand(0);
3559   const Value *PtrV = I.getOperand(1);
3560 
3561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3562   if (TLI.supportSwiftError()) {
3563     // Swifterror values can come from either a function parameter with
3564     // swifterror attribute or an alloca with swifterror attribute.
3565     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3566       if (Arg->hasSwiftErrorAttr())
3567         return visitStoreToSwiftError(I);
3568     }
3569 
3570     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3571       if (Alloca->isSwiftError())
3572         return visitStoreToSwiftError(I);
3573     }
3574   }
3575 
3576   SmallVector<EVT, 4> ValueVTs;
3577   SmallVector<uint64_t, 4> Offsets;
3578   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3579                   SrcV->getType(), ValueVTs, &Offsets);
3580   unsigned NumValues = ValueVTs.size();
3581   if (NumValues == 0)
3582     return;
3583 
3584   // Get the lowered operands. Note that we do this after
3585   // checking if NumResults is zero, because with zero results
3586   // the operands won't have values in the map.
3587   SDValue Src = getValue(SrcV);
3588   SDValue Ptr = getValue(PtrV);
3589 
3590   SDValue Root = getRoot();
3591   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3592   EVT PtrVT = Ptr.getValueType();
3593   bool isVolatile = I.isVolatile();
3594   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3595   unsigned Alignment = I.getAlignment();
3596   SDLoc dl = getCurSDLoc();
3597 
3598   AAMDNodes AAInfo;
3599   I.getAAMetadata(AAInfo);
3600 
3601   // An aggregate load cannot wrap around the address space, so offsets to its
3602   // parts don't wrap either.
3603   SDNodeFlags Flags;
3604   Flags.setNoUnsignedWrap(true);
3605 
3606   unsigned ChainI = 0;
3607   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3608     // See visitLoad comments.
3609     if (ChainI == MaxParallelChains) {
3610       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3611                                   makeArrayRef(Chains.data(), ChainI));
3612       Root = Chain;
3613       ChainI = 0;
3614     }
3615     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3616                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3617     SDValue St = DAG.getStore(Root, dl,
3618                               SDValue(Src.getNode(), Src.getResNo() + i),
3619                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3620                               isVolatile, isNonTemporal, Alignment, AAInfo);
3621     Chains[ChainI] = St;
3622   }
3623 
3624   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3625                                   makeArrayRef(Chains.data(), ChainI));
3626   DAG.setRoot(StoreNode);
3627 }
3628 
3629 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3630   SDLoc sdl = getCurSDLoc();
3631 
3632   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3633   Value  *PtrOperand = I.getArgOperand(1);
3634   SDValue Ptr = getValue(PtrOperand);
3635   SDValue Src0 = getValue(I.getArgOperand(0));
3636   SDValue Mask = getValue(I.getArgOperand(3));
3637   EVT VT = Src0.getValueType();
3638   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3639   if (!Alignment)
3640     Alignment = DAG.getEVTAlignment(VT);
3641 
3642   AAMDNodes AAInfo;
3643   I.getAAMetadata(AAInfo);
3644 
3645   MachineMemOperand *MMO =
3646     DAG.getMachineFunction().
3647     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3648                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3649                           Alignment, AAInfo);
3650   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3651                                          MMO, false);
3652   DAG.setRoot(StoreNode);
3653   setValue(&I, StoreNode);
3654 }
3655 
3656 // Get a uniform base for the Gather/Scatter intrinsic.
3657 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3658 // We try to represent it as a base pointer + vector of indices.
3659 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3660 // The first operand of the GEP may be a single pointer or a vector of pointers
3661 // Example:
3662 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3663 //  or
3664 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3665 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3666 //
3667 // When the first GEP operand is a single pointer - it is the uniform base we
3668 // are looking for. If first operand of the GEP is a splat vector - we
3669 // extract the spalt value and use it as a uniform base.
3670 // In all other cases the function returns 'false'.
3671 //
3672 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3673                            SelectionDAGBuilder* SDB) {
3674 
3675   SelectionDAG& DAG = SDB->DAG;
3676   LLVMContext &Context = *DAG.getContext();
3677 
3678   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3679   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3680   if (!GEP || GEP->getNumOperands() > 2)
3681     return false;
3682 
3683   const Value *GEPPtr = GEP->getPointerOperand();
3684   if (!GEPPtr->getType()->isVectorTy())
3685     Ptr = GEPPtr;
3686   else if (!(Ptr = getSplatValue(GEPPtr)))
3687     return false;
3688 
3689   Value *IndexVal = GEP->getOperand(1);
3690 
3691   // The operands of the GEP may be defined in another basic block.
3692   // In this case we'll not find nodes for the operands.
3693   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3694     return false;
3695 
3696   Base = SDB->getValue(Ptr);
3697   Index = SDB->getValue(IndexVal);
3698 
3699   // Suppress sign extension.
3700   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3701     if (SDB->findValue(Sext->getOperand(0))) {
3702       IndexVal = Sext->getOperand(0);
3703       Index = SDB->getValue(IndexVal);
3704     }
3705   }
3706   if (!Index.getValueType().isVector()) {
3707     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3708     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3709     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3710     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3711   }
3712   return true;
3713 }
3714 
3715 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3716   SDLoc sdl = getCurSDLoc();
3717 
3718   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3719   const Value *Ptr = I.getArgOperand(1);
3720   SDValue Src0 = getValue(I.getArgOperand(0));
3721   SDValue Mask = getValue(I.getArgOperand(3));
3722   EVT VT = Src0.getValueType();
3723   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3724   if (!Alignment)
3725     Alignment = DAG.getEVTAlignment(VT);
3726   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3727 
3728   AAMDNodes AAInfo;
3729   I.getAAMetadata(AAInfo);
3730 
3731   SDValue Base;
3732   SDValue Index;
3733   const Value *BasePtr = Ptr;
3734   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3735 
3736   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3737   MachineMemOperand *MMO = DAG.getMachineFunction().
3738     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3739                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3740                          Alignment, AAInfo);
3741   if (!UniformBase) {
3742     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3743     Index = getValue(Ptr);
3744   }
3745   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3746   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3747                                          Ops, MMO);
3748   DAG.setRoot(Scatter);
3749   setValue(&I, Scatter);
3750 }
3751 
3752 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3753   SDLoc sdl = getCurSDLoc();
3754 
3755   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3756   Value  *PtrOperand = I.getArgOperand(0);
3757   SDValue Ptr = getValue(PtrOperand);
3758   SDValue Src0 = getValue(I.getArgOperand(3));
3759   SDValue Mask = getValue(I.getArgOperand(2));
3760 
3761   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3762   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3763   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3764   if (!Alignment)
3765     Alignment = DAG.getEVTAlignment(VT);
3766 
3767   AAMDNodes AAInfo;
3768   I.getAAMetadata(AAInfo);
3769   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3770 
3771   SDValue InChain = DAG.getRoot();
3772   if (AA->pointsToConstantMemory(MemoryLocation(
3773           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3774           AAInfo))) {
3775     // Do not serialize (non-volatile) loads of constant memory with anything.
3776     InChain = DAG.getEntryNode();
3777   }
3778 
3779   MachineMemOperand *MMO =
3780     DAG.getMachineFunction().
3781     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3782                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3783                           Alignment, AAInfo, Ranges);
3784 
3785   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3786                                    ISD::NON_EXTLOAD);
3787   SDValue OutChain = Load.getValue(1);
3788   DAG.setRoot(OutChain);
3789   setValue(&I, Load);
3790 }
3791 
3792 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3793   SDLoc sdl = getCurSDLoc();
3794 
3795   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3796   const Value *Ptr = I.getArgOperand(0);
3797   SDValue Src0 = getValue(I.getArgOperand(3));
3798   SDValue Mask = getValue(I.getArgOperand(2));
3799 
3800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3801   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3802   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3803   if (!Alignment)
3804     Alignment = DAG.getEVTAlignment(VT);
3805 
3806   AAMDNodes AAInfo;
3807   I.getAAMetadata(AAInfo);
3808   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3809 
3810   SDValue Root = DAG.getRoot();
3811   SDValue Base;
3812   SDValue Index;
3813   const Value *BasePtr = Ptr;
3814   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3815   bool ConstantMemory = false;
3816   if (UniformBase &&
3817       AA->pointsToConstantMemory(MemoryLocation(
3818           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3819           AAInfo))) {
3820     // Do not serialize (non-volatile) loads of constant memory with anything.
3821     Root = DAG.getEntryNode();
3822     ConstantMemory = true;
3823   }
3824 
3825   MachineMemOperand *MMO =
3826     DAG.getMachineFunction().
3827     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3828                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3829                          Alignment, AAInfo, Ranges);
3830 
3831   if (!UniformBase) {
3832     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3833     Index = getValue(Ptr);
3834   }
3835   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3836   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3837                                        Ops, MMO);
3838 
3839   SDValue OutChain = Gather.getValue(1);
3840   if (!ConstantMemory)
3841     PendingLoads.push_back(OutChain);
3842   setValue(&I, Gather);
3843 }
3844 
3845 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3846   SDLoc dl = getCurSDLoc();
3847   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3848   AtomicOrdering FailureOrder = I.getFailureOrdering();
3849   SynchronizationScope Scope = I.getSynchScope();
3850 
3851   SDValue InChain = getRoot();
3852 
3853   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3854   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3855   SDValue L = DAG.getAtomicCmpSwap(
3856       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3857       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3858       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3859       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3860 
3861   SDValue OutChain = L.getValue(2);
3862 
3863   setValue(&I, L);
3864   DAG.setRoot(OutChain);
3865 }
3866 
3867 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3868   SDLoc dl = getCurSDLoc();
3869   ISD::NodeType NT;
3870   switch (I.getOperation()) {
3871   default: llvm_unreachable("Unknown atomicrmw operation");
3872   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3873   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3874   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3875   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3876   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3877   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3878   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3879   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3880   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3881   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3882   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3883   }
3884   AtomicOrdering Order = I.getOrdering();
3885   SynchronizationScope Scope = I.getSynchScope();
3886 
3887   SDValue InChain = getRoot();
3888 
3889   SDValue L =
3890     DAG.getAtomic(NT, dl,
3891                   getValue(I.getValOperand()).getSimpleValueType(),
3892                   InChain,
3893                   getValue(I.getPointerOperand()),
3894                   getValue(I.getValOperand()),
3895                   I.getPointerOperand(),
3896                   /* Alignment=*/ 0, Order, Scope);
3897 
3898   SDValue OutChain = L.getValue(1);
3899 
3900   setValue(&I, L);
3901   DAG.setRoot(OutChain);
3902 }
3903 
3904 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3905   SDLoc dl = getCurSDLoc();
3906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3907   SDValue Ops[3];
3908   Ops[0] = getRoot();
3909   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3910                            TLI.getPointerTy(DAG.getDataLayout()));
3911   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3912                            TLI.getPointerTy(DAG.getDataLayout()));
3913   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3914 }
3915 
3916 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3917   SDLoc dl = getCurSDLoc();
3918   AtomicOrdering Order = I.getOrdering();
3919   SynchronizationScope Scope = I.getSynchScope();
3920 
3921   SDValue InChain = getRoot();
3922 
3923   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3924   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3925 
3926   if (I.getAlignment() < VT.getSizeInBits() / 8)
3927     report_fatal_error("Cannot generate unaligned atomic load");
3928 
3929   MachineMemOperand *MMO =
3930       DAG.getMachineFunction().
3931       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3932                            MachineMemOperand::MOVolatile |
3933                            MachineMemOperand::MOLoad,
3934                            VT.getStoreSize(),
3935                            I.getAlignment() ? I.getAlignment() :
3936                                               DAG.getEVTAlignment(VT));
3937 
3938   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3939   SDValue L =
3940       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3941                     getValue(I.getPointerOperand()), MMO,
3942                     Order, Scope);
3943 
3944   SDValue OutChain = L.getValue(1);
3945 
3946   setValue(&I, L);
3947   DAG.setRoot(OutChain);
3948 }
3949 
3950 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3951   SDLoc dl = getCurSDLoc();
3952 
3953   AtomicOrdering Order = I.getOrdering();
3954   SynchronizationScope Scope = I.getSynchScope();
3955 
3956   SDValue InChain = getRoot();
3957 
3958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3959   EVT VT =
3960       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3961 
3962   if (I.getAlignment() < VT.getSizeInBits() / 8)
3963     report_fatal_error("Cannot generate unaligned atomic store");
3964 
3965   SDValue OutChain =
3966     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3967                   InChain,
3968                   getValue(I.getPointerOperand()),
3969                   getValue(I.getValueOperand()),
3970                   I.getPointerOperand(), I.getAlignment(),
3971                   Order, Scope);
3972 
3973   DAG.setRoot(OutChain);
3974 }
3975 
3976 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3977 /// node.
3978 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3979                                                unsigned Intrinsic) {
3980   bool HasChain = !I.doesNotAccessMemory();
3981   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3982 
3983   // Build the operand list.
3984   SmallVector<SDValue, 8> Ops;
3985   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3986     if (OnlyLoad) {
3987       // We don't need to serialize loads against other loads.
3988       Ops.push_back(DAG.getRoot());
3989     } else {
3990       Ops.push_back(getRoot());
3991     }
3992   }
3993 
3994   // Info is set by getTgtMemInstrinsic
3995   TargetLowering::IntrinsicInfo Info;
3996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3997   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3998 
3999   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4000   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4001       Info.opc == ISD::INTRINSIC_W_CHAIN)
4002     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4003                                         TLI.getPointerTy(DAG.getDataLayout())));
4004 
4005   // Add all operands of the call to the operand list.
4006   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4007     SDValue Op = getValue(I.getArgOperand(i));
4008     Ops.push_back(Op);
4009   }
4010 
4011   SmallVector<EVT, 4> ValueVTs;
4012   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4013 
4014   if (HasChain)
4015     ValueVTs.push_back(MVT::Other);
4016 
4017   SDVTList VTs = DAG.getVTList(ValueVTs);
4018 
4019   // Create the node.
4020   SDValue Result;
4021   if (IsTgtIntrinsic) {
4022     // This is target intrinsic that touches memory
4023     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4024                                      VTs, Ops, Info.memVT,
4025                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4026                                      Info.align, Info.vol,
4027                                      Info.readMem, Info.writeMem, Info.size);
4028   } else if (!HasChain) {
4029     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4030   } else if (!I.getType()->isVoidTy()) {
4031     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4032   } else {
4033     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4034   }
4035 
4036   if (HasChain) {
4037     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4038     if (OnlyLoad)
4039       PendingLoads.push_back(Chain);
4040     else
4041       DAG.setRoot(Chain);
4042   }
4043 
4044   if (!I.getType()->isVoidTy()) {
4045     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4046       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4047       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4048     } else
4049       Result = lowerRangeToAssertZExt(DAG, I, Result);
4050 
4051     setValue(&I, Result);
4052   }
4053 }
4054 
4055 /// GetSignificand - Get the significand and build it into a floating-point
4056 /// number with exponent of 1:
4057 ///
4058 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4059 ///
4060 /// where Op is the hexadecimal representation of floating point value.
4061 static SDValue
4062 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
4063   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4064                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4065   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4066                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4067   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4068 }
4069 
4070 /// GetExponent - Get the exponent:
4071 ///
4072 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4073 ///
4074 /// where Op is the hexadecimal representation of floating point value.
4075 static SDValue
4076 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
4077             SDLoc dl) {
4078   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4079                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4080   SDValue t1 = DAG.getNode(
4081       ISD::SRL, dl, MVT::i32, t0,
4082       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4083   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4084                            DAG.getConstant(127, dl, MVT::i32));
4085   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4086 }
4087 
4088 /// getF32Constant - Get 32-bit floating point constant.
4089 static SDValue
4090 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
4091   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4092                            MVT::f32);
4093 }
4094 
4095 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
4096                                        SelectionDAG &DAG) {
4097   // TODO: What fast-math-flags should be set on the floating-point nodes?
4098 
4099   //   IntegerPartOfX = ((int32_t)(t0);
4100   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4101 
4102   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4103   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4104   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4105 
4106   //   IntegerPartOfX <<= 23;
4107   IntegerPartOfX = DAG.getNode(
4108       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4109       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4110                                   DAG.getDataLayout())));
4111 
4112   SDValue TwoToFractionalPartOfX;
4113   if (LimitFloatPrecision <= 6) {
4114     // For floating-point precision of 6:
4115     //
4116     //   TwoToFractionalPartOfX =
4117     //     0.997535578f +
4118     //       (0.735607626f + 0.252464424f * x) * x;
4119     //
4120     // error 0.0144103317, which is 6 bits
4121     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4122                              getF32Constant(DAG, 0x3e814304, dl));
4123     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4124                              getF32Constant(DAG, 0x3f3c50c8, dl));
4125     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4126     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4127                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4128   } else if (LimitFloatPrecision <= 12) {
4129     // For floating-point precision of 12:
4130     //
4131     //   TwoToFractionalPartOfX =
4132     //     0.999892986f +
4133     //       (0.696457318f +
4134     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4135     //
4136     // error 0.000107046256, which is 13 to 14 bits
4137     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4138                              getF32Constant(DAG, 0x3da235e3, dl));
4139     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4140                              getF32Constant(DAG, 0x3e65b8f3, dl));
4141     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4142     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4143                              getF32Constant(DAG, 0x3f324b07, dl));
4144     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4145     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4146                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4147   } else { // LimitFloatPrecision <= 18
4148     // For floating-point precision of 18:
4149     //
4150     //   TwoToFractionalPartOfX =
4151     //     0.999999982f +
4152     //       (0.693148872f +
4153     //         (0.240227044f +
4154     //           (0.554906021e-1f +
4155     //             (0.961591928e-2f +
4156     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4157     // error 2.47208000*10^(-7), which is better than 18 bits
4158     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4159                              getF32Constant(DAG, 0x3924b03e, dl));
4160     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4161                              getF32Constant(DAG, 0x3ab24b87, dl));
4162     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4163     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4164                              getF32Constant(DAG, 0x3c1d8c17, dl));
4165     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4166     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4167                              getF32Constant(DAG, 0x3d634a1d, dl));
4168     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4169     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4170                              getF32Constant(DAG, 0x3e75fe14, dl));
4171     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4172     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4173                               getF32Constant(DAG, 0x3f317234, dl));
4174     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4175     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4176                                          getF32Constant(DAG, 0x3f800000, dl));
4177   }
4178 
4179   // Add the exponent into the result in integer domain.
4180   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4181   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4182                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4183 }
4184 
4185 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4186 /// limited-precision mode.
4187 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4188                          const TargetLowering &TLI) {
4189   if (Op.getValueType() == MVT::f32 &&
4190       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4191 
4192     // Put the exponent in the right bit position for later addition to the
4193     // final result:
4194     //
4195     //   #define LOG2OFe 1.4426950f
4196     //   t0 = Op * LOG2OFe
4197 
4198     // TODO: What fast-math-flags should be set here?
4199     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4200                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4201     return getLimitedPrecisionExp2(t0, dl, DAG);
4202   }
4203 
4204   // No special expansion.
4205   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4206 }
4207 
4208 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4209 /// limited-precision mode.
4210 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4211                          const TargetLowering &TLI) {
4212 
4213   // TODO: What fast-math-flags should be set on the floating-point nodes?
4214 
4215   if (Op.getValueType() == MVT::f32 &&
4216       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4217     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4218 
4219     // Scale the exponent by log(2) [0.69314718f].
4220     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4221     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4222                                         getF32Constant(DAG, 0x3f317218, dl));
4223 
4224     // Get the significand and build it into a floating-point number with
4225     // exponent of 1.
4226     SDValue X = GetSignificand(DAG, Op1, dl);
4227 
4228     SDValue LogOfMantissa;
4229     if (LimitFloatPrecision <= 6) {
4230       // For floating-point precision of 6:
4231       //
4232       //   LogofMantissa =
4233       //     -1.1609546f +
4234       //       (1.4034025f - 0.23903021f * x) * x;
4235       //
4236       // error 0.0034276066, which is better than 8 bits
4237       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4238                                getF32Constant(DAG, 0xbe74c456, dl));
4239       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4240                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4241       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4242       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4243                                   getF32Constant(DAG, 0x3f949a29, dl));
4244     } else if (LimitFloatPrecision <= 12) {
4245       // For floating-point precision of 12:
4246       //
4247       //   LogOfMantissa =
4248       //     -1.7417939f +
4249       //       (2.8212026f +
4250       //         (-1.4699568f +
4251       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4252       //
4253       // error 0.000061011436, which is 14 bits
4254       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4255                                getF32Constant(DAG, 0xbd67b6d6, dl));
4256       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4257                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4258       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4259       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4260                                getF32Constant(DAG, 0x3fbc278b, dl));
4261       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4262       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4263                                getF32Constant(DAG, 0x40348e95, dl));
4264       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4265       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4266                                   getF32Constant(DAG, 0x3fdef31a, dl));
4267     } else { // LimitFloatPrecision <= 18
4268       // For floating-point precision of 18:
4269       //
4270       //   LogOfMantissa =
4271       //     -2.1072184f +
4272       //       (4.2372794f +
4273       //         (-3.7029485f +
4274       //           (2.2781945f +
4275       //             (-0.87823314f +
4276       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4277       //
4278       // error 0.0000023660568, which is better than 18 bits
4279       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4280                                getF32Constant(DAG, 0xbc91e5ac, dl));
4281       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4282                                getF32Constant(DAG, 0x3e4350aa, dl));
4283       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4284       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4285                                getF32Constant(DAG, 0x3f60d3e3, dl));
4286       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4287       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4288                                getF32Constant(DAG, 0x4011cdf0, dl));
4289       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4290       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4291                                getF32Constant(DAG, 0x406cfd1c, dl));
4292       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4293       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4294                                getF32Constant(DAG, 0x408797cb, dl));
4295       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4296       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4297                                   getF32Constant(DAG, 0x4006dcab, dl));
4298     }
4299 
4300     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4301   }
4302 
4303   // No special expansion.
4304   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4305 }
4306 
4307 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4308 /// limited-precision mode.
4309 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4310                           const TargetLowering &TLI) {
4311 
4312   // TODO: What fast-math-flags should be set on the floating-point nodes?
4313 
4314   if (Op.getValueType() == MVT::f32 &&
4315       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4316     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4317 
4318     // Get the exponent.
4319     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4320 
4321     // Get the significand and build it into a floating-point number with
4322     // exponent of 1.
4323     SDValue X = GetSignificand(DAG, Op1, dl);
4324 
4325     // Different possible minimax approximations of significand in
4326     // floating-point for various degrees of accuracy over [1,2].
4327     SDValue Log2ofMantissa;
4328     if (LimitFloatPrecision <= 6) {
4329       // For floating-point precision of 6:
4330       //
4331       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4332       //
4333       // error 0.0049451742, which is more than 7 bits
4334       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4335                                getF32Constant(DAG, 0xbeb08fe0, dl));
4336       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4337                                getF32Constant(DAG, 0x40019463, dl));
4338       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4339       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4340                                    getF32Constant(DAG, 0x3fd6633d, dl));
4341     } else if (LimitFloatPrecision <= 12) {
4342       // For floating-point precision of 12:
4343       //
4344       //   Log2ofMantissa =
4345       //     -2.51285454f +
4346       //       (4.07009056f +
4347       //         (-2.12067489f +
4348       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4349       //
4350       // error 0.0000876136000, which is better than 13 bits
4351       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4352                                getF32Constant(DAG, 0xbda7262e, dl));
4353       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4354                                getF32Constant(DAG, 0x3f25280b, dl));
4355       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4356       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4357                                getF32Constant(DAG, 0x4007b923, dl));
4358       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4359       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4360                                getF32Constant(DAG, 0x40823e2f, dl));
4361       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4362       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4363                                    getF32Constant(DAG, 0x4020d29c, dl));
4364     } else { // LimitFloatPrecision <= 18
4365       // For floating-point precision of 18:
4366       //
4367       //   Log2ofMantissa =
4368       //     -3.0400495f +
4369       //       (6.1129976f +
4370       //         (-5.3420409f +
4371       //           (3.2865683f +
4372       //             (-1.2669343f +
4373       //               (0.27515199f -
4374       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4375       //
4376       // error 0.0000018516, which is better than 18 bits
4377       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4378                                getF32Constant(DAG, 0xbcd2769e, dl));
4379       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4380                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4381       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4382       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4383                                getF32Constant(DAG, 0x3fa22ae7, dl));
4384       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4385       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4386                                getF32Constant(DAG, 0x40525723, dl));
4387       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4388       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4389                                getF32Constant(DAG, 0x40aaf200, dl));
4390       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4391       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4392                                getF32Constant(DAG, 0x40c39dad, dl));
4393       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4394       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4395                                    getF32Constant(DAG, 0x4042902c, dl));
4396     }
4397 
4398     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4399   }
4400 
4401   // No special expansion.
4402   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4403 }
4404 
4405 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4406 /// limited-precision mode.
4407 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4408                            const TargetLowering &TLI) {
4409 
4410   // TODO: What fast-math-flags should be set on the floating-point nodes?
4411 
4412   if (Op.getValueType() == MVT::f32 &&
4413       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4414     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4415 
4416     // Scale the exponent by log10(2) [0.30102999f].
4417     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4418     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4419                                         getF32Constant(DAG, 0x3e9a209a, dl));
4420 
4421     // Get the significand and build it into a floating-point number with
4422     // exponent of 1.
4423     SDValue X = GetSignificand(DAG, Op1, dl);
4424 
4425     SDValue Log10ofMantissa;
4426     if (LimitFloatPrecision <= 6) {
4427       // For floating-point precision of 6:
4428       //
4429       //   Log10ofMantissa =
4430       //     -0.50419619f +
4431       //       (0.60948995f - 0.10380950f * x) * x;
4432       //
4433       // error 0.0014886165, which is 6 bits
4434       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4435                                getF32Constant(DAG, 0xbdd49a13, dl));
4436       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4437                                getF32Constant(DAG, 0x3f1c0789, dl));
4438       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4439       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4440                                     getF32Constant(DAG, 0x3f011300, dl));
4441     } else if (LimitFloatPrecision <= 12) {
4442       // For floating-point precision of 12:
4443       //
4444       //   Log10ofMantissa =
4445       //     -0.64831180f +
4446       //       (0.91751397f +
4447       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4448       //
4449       // error 0.00019228036, which is better than 12 bits
4450       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4451                                getF32Constant(DAG, 0x3d431f31, dl));
4452       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4453                                getF32Constant(DAG, 0x3ea21fb2, dl));
4454       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4455       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4456                                getF32Constant(DAG, 0x3f6ae232, dl));
4457       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4458       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4459                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4460     } else { // LimitFloatPrecision <= 18
4461       // For floating-point precision of 18:
4462       //
4463       //   Log10ofMantissa =
4464       //     -0.84299375f +
4465       //       (1.5327582f +
4466       //         (-1.0688956f +
4467       //           (0.49102474f +
4468       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4469       //
4470       // error 0.0000037995730, which is better than 18 bits
4471       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4472                                getF32Constant(DAG, 0x3c5d51ce, dl));
4473       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4474                                getF32Constant(DAG, 0x3e00685a, dl));
4475       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4476       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4477                                getF32Constant(DAG, 0x3efb6798, dl));
4478       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4479       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4480                                getF32Constant(DAG, 0x3f88d192, dl));
4481       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4482       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4483                                getF32Constant(DAG, 0x3fc4316c, dl));
4484       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4485       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4486                                     getF32Constant(DAG, 0x3f57ce70, dl));
4487     }
4488 
4489     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4490   }
4491 
4492   // No special expansion.
4493   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4494 }
4495 
4496 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4497 /// limited-precision mode.
4498 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4499                           const TargetLowering &TLI) {
4500   if (Op.getValueType() == MVT::f32 &&
4501       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4502     return getLimitedPrecisionExp2(Op, dl, DAG);
4503 
4504   // No special expansion.
4505   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4506 }
4507 
4508 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4509 /// limited-precision mode with x == 10.0f.
4510 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4511                          SelectionDAG &DAG, const TargetLowering &TLI) {
4512   bool IsExp10 = false;
4513   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4514       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4515     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4516       APFloat Ten(10.0f);
4517       IsExp10 = LHSC->isExactlyValue(Ten);
4518     }
4519   }
4520 
4521   // TODO: What fast-math-flags should be set on the FMUL node?
4522   if (IsExp10) {
4523     // Put the exponent in the right bit position for later addition to the
4524     // final result:
4525     //
4526     //   #define LOG2OF10 3.3219281f
4527     //   t0 = Op * LOG2OF10;
4528     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4529                              getF32Constant(DAG, 0x40549a78, dl));
4530     return getLimitedPrecisionExp2(t0, dl, DAG);
4531   }
4532 
4533   // No special expansion.
4534   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4535 }
4536 
4537 
4538 /// ExpandPowI - Expand a llvm.powi intrinsic.
4539 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4540                           SelectionDAG &DAG) {
4541   // If RHS is a constant, we can expand this out to a multiplication tree,
4542   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4543   // optimizing for size, we only want to do this if the expansion would produce
4544   // a small number of multiplies, otherwise we do the full expansion.
4545   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4546     // Get the exponent as a positive value.
4547     unsigned Val = RHSC->getSExtValue();
4548     if ((int)Val < 0) Val = -Val;
4549 
4550     // powi(x, 0) -> 1.0
4551     if (Val == 0)
4552       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4553 
4554     const Function *F = DAG.getMachineFunction().getFunction();
4555     if (!F->optForSize() ||
4556         // If optimizing for size, don't insert too many multiplies.
4557         // This inserts up to 5 multiplies.
4558         countPopulation(Val) + Log2_32(Val) < 7) {
4559       // We use the simple binary decomposition method to generate the multiply
4560       // sequence.  There are more optimal ways to do this (for example,
4561       // powi(x,15) generates one more multiply than it should), but this has
4562       // the benefit of being both really simple and much better than a libcall.
4563       SDValue Res;  // Logically starts equal to 1.0
4564       SDValue CurSquare = LHS;
4565       // TODO: Intrinsics should have fast-math-flags that propagate to these
4566       // nodes.
4567       while (Val) {
4568         if (Val & 1) {
4569           if (Res.getNode())
4570             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4571           else
4572             Res = CurSquare;  // 1.0*CurSquare.
4573         }
4574 
4575         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4576                                 CurSquare, CurSquare);
4577         Val >>= 1;
4578       }
4579 
4580       // If the original was negative, invert the result, producing 1/(x*x*x).
4581       if (RHSC->getSExtValue() < 0)
4582         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4583                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4584       return Res;
4585     }
4586   }
4587 
4588   // Otherwise, expand to a libcall.
4589   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4590 }
4591 
4592 // getUnderlyingArgReg - Find underlying register used for a truncated or
4593 // bitcasted argument.
4594 static unsigned getUnderlyingArgReg(const SDValue &N) {
4595   switch (N.getOpcode()) {
4596   case ISD::CopyFromReg:
4597     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4598   case ISD::BITCAST:
4599   case ISD::AssertZext:
4600   case ISD::AssertSext:
4601   case ISD::TRUNCATE:
4602     return getUnderlyingArgReg(N.getOperand(0));
4603   default:
4604     return 0;
4605   }
4606 }
4607 
4608 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4609 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4610 /// At the end of instruction selection, they will be inserted to the entry BB.
4611 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4612     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4613     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4614   const Argument *Arg = dyn_cast<Argument>(V);
4615   if (!Arg)
4616     return false;
4617 
4618   MachineFunction &MF = DAG.getMachineFunction();
4619   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4620 
4621   // Ignore inlined function arguments here.
4622   //
4623   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4624   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4625     return false;
4626 
4627   Optional<MachineOperand> Op;
4628   // Some arguments' frame index is recorded during argument lowering.
4629   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4630     Op = MachineOperand::CreateFI(FI);
4631 
4632   if (!Op && N.getNode()) {
4633     unsigned Reg = getUnderlyingArgReg(N);
4634     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4635       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4636       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4637       if (PR)
4638         Reg = PR;
4639     }
4640     if (Reg)
4641       Op = MachineOperand::CreateReg(Reg, false);
4642   }
4643 
4644   if (!Op) {
4645     // Check if ValueMap has reg number.
4646     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4647     if (VMI != FuncInfo.ValueMap.end())
4648       Op = MachineOperand::CreateReg(VMI->second, false);
4649   }
4650 
4651   if (!Op && N.getNode())
4652     // Check if frame index is available.
4653     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4654       if (FrameIndexSDNode *FINode =
4655           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4656         Op = MachineOperand::CreateFI(FINode->getIndex());
4657 
4658   if (!Op)
4659     return false;
4660 
4661   assert(Variable->isValidLocationForIntrinsic(DL) &&
4662          "Expected inlined-at fields to agree");
4663   if (Op->isReg())
4664     FuncInfo.ArgDbgValues.push_back(
4665         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4666                 Op->getReg(), Offset, Variable, Expr));
4667   else
4668     FuncInfo.ArgDbgValues.push_back(
4669         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4670             .addOperand(*Op)
4671             .addImm(Offset)
4672             .addMetadata(Variable)
4673             .addMetadata(Expr));
4674 
4675   return true;
4676 }
4677 
4678 // VisualStudio defines setjmp as _setjmp
4679 #if defined(_MSC_VER) && defined(setjmp) && \
4680                          !defined(setjmp_undefined_for_msvc)
4681 #  pragma push_macro("setjmp")
4682 #  undef setjmp
4683 #  define setjmp_undefined_for_msvc
4684 #endif
4685 
4686 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4687 /// we want to emit this as a call to a named external function, return the name
4688 /// otherwise lower it and return null.
4689 const char *
4690 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4692   SDLoc sdl = getCurSDLoc();
4693   DebugLoc dl = getCurDebugLoc();
4694   SDValue Res;
4695 
4696   switch (Intrinsic) {
4697   default:
4698     // By default, turn this into a target intrinsic node.
4699     visitTargetIntrinsic(I, Intrinsic);
4700     return nullptr;
4701   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4702   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4703   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4704   case Intrinsic::returnaddress:
4705     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4706                              TLI.getPointerTy(DAG.getDataLayout()),
4707                              getValue(I.getArgOperand(0))));
4708     return nullptr;
4709   case Intrinsic::frameaddress:
4710     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4711                              TLI.getPointerTy(DAG.getDataLayout()),
4712                              getValue(I.getArgOperand(0))));
4713     return nullptr;
4714   case Intrinsic::read_register: {
4715     Value *Reg = I.getArgOperand(0);
4716     SDValue Chain = getRoot();
4717     SDValue RegName =
4718         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4719     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4720     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4721       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4722     setValue(&I, Res);
4723     DAG.setRoot(Res.getValue(1));
4724     return nullptr;
4725   }
4726   case Intrinsic::write_register: {
4727     Value *Reg = I.getArgOperand(0);
4728     Value *RegValue = I.getArgOperand(1);
4729     SDValue Chain = getRoot();
4730     SDValue RegName =
4731         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4732     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4733                             RegName, getValue(RegValue)));
4734     return nullptr;
4735   }
4736   case Intrinsic::setjmp:
4737     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4738   case Intrinsic::longjmp:
4739     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4740   case Intrinsic::memcpy: {
4741     SDValue Op1 = getValue(I.getArgOperand(0));
4742     SDValue Op2 = getValue(I.getArgOperand(1));
4743     SDValue Op3 = getValue(I.getArgOperand(2));
4744     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4745     if (!Align)
4746       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4747     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4748     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4749     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4750                                false, isTC,
4751                                MachinePointerInfo(I.getArgOperand(0)),
4752                                MachinePointerInfo(I.getArgOperand(1)));
4753     updateDAGForMaybeTailCall(MC);
4754     return nullptr;
4755   }
4756   case Intrinsic::memset: {
4757     SDValue Op1 = getValue(I.getArgOperand(0));
4758     SDValue Op2 = getValue(I.getArgOperand(1));
4759     SDValue Op3 = getValue(I.getArgOperand(2));
4760     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4761     if (!Align)
4762       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4763     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4764     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4765     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4766                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4767     updateDAGForMaybeTailCall(MS);
4768     return nullptr;
4769   }
4770   case Intrinsic::memmove: {
4771     SDValue Op1 = getValue(I.getArgOperand(0));
4772     SDValue Op2 = getValue(I.getArgOperand(1));
4773     SDValue Op3 = getValue(I.getArgOperand(2));
4774     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4775     if (!Align)
4776       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4777     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4778     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4779     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4780                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4781                                 MachinePointerInfo(I.getArgOperand(1)));
4782     updateDAGForMaybeTailCall(MM);
4783     return nullptr;
4784   }
4785   case Intrinsic::dbg_declare: {
4786     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4787     DILocalVariable *Variable = DI.getVariable();
4788     DIExpression *Expression = DI.getExpression();
4789     const Value *Address = DI.getAddress();
4790     assert(Variable && "Missing variable");
4791     if (!Address) {
4792       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4793       return nullptr;
4794     }
4795 
4796     // Check if address has undef value.
4797     if (isa<UndefValue>(Address) ||
4798         (Address->use_empty() && !isa<Argument>(Address))) {
4799       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4800       return nullptr;
4801     }
4802 
4803     SDValue &N = NodeMap[Address];
4804     if (!N.getNode() && isa<Argument>(Address))
4805       // Check unused arguments map.
4806       N = UnusedArgNodeMap[Address];
4807     SDDbgValue *SDV;
4808     if (N.getNode()) {
4809       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4810         Address = BCI->getOperand(0);
4811       // Parameters are handled specially.
4812       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4813       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4814       if (isParameter && FINode) {
4815         // Byval parameter. We have a frame index at this point.
4816         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4817                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4818       } else if (isa<Argument>(Address)) {
4819         // Address is an argument, so try to emit its dbg value using
4820         // virtual register info from the FuncInfo.ValueMap.
4821         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4822                                  N);
4823         return nullptr;
4824       } else {
4825         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4826                               true, 0, dl, SDNodeOrder);
4827       }
4828       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4829     } else {
4830       // If Address is an argument then try to emit its dbg value using
4831       // virtual register info from the FuncInfo.ValueMap.
4832       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4833                                     N)) {
4834         // If variable is pinned by a alloca in dominating bb then
4835         // use StaticAllocaMap.
4836         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4837           if (AI->getParent() != DI.getParent()) {
4838             DenseMap<const AllocaInst*, int>::iterator SI =
4839               FuncInfo.StaticAllocaMap.find(AI);
4840             if (SI != FuncInfo.StaticAllocaMap.end()) {
4841               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4842                                               0, dl, SDNodeOrder);
4843               DAG.AddDbgValue(SDV, nullptr, false);
4844               return nullptr;
4845             }
4846           }
4847         }
4848         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4849       }
4850     }
4851     return nullptr;
4852   }
4853   case Intrinsic::dbg_value: {
4854     const DbgValueInst &DI = cast<DbgValueInst>(I);
4855     assert(DI.getVariable() && "Missing variable");
4856 
4857     DILocalVariable *Variable = DI.getVariable();
4858     DIExpression *Expression = DI.getExpression();
4859     uint64_t Offset = DI.getOffset();
4860     const Value *V = DI.getValue();
4861     if (!V)
4862       return nullptr;
4863 
4864     SDDbgValue *SDV;
4865     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4866       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4867                                     SDNodeOrder);
4868       DAG.AddDbgValue(SDV, nullptr, false);
4869     } else {
4870       // Do not use getValue() in here; we don't want to generate code at
4871       // this point if it hasn't been done yet.
4872       SDValue N = NodeMap[V];
4873       if (!N.getNode() && isa<Argument>(V))
4874         // Check unused arguments map.
4875         N = UnusedArgNodeMap[V];
4876       if (N.getNode()) {
4877         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4878                                       false, N)) {
4879           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4880                                 false, Offset, dl, SDNodeOrder);
4881           DAG.AddDbgValue(SDV, N.getNode(), false);
4882         }
4883       } else if (!V->use_empty() ) {
4884         // Do not call getValue(V) yet, as we don't want to generate code.
4885         // Remember it for later.
4886         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4887         DanglingDebugInfoMap[V] = DDI;
4888       } else {
4889         // We may expand this to cover more cases.  One case where we have no
4890         // data available is an unreferenced parameter.
4891         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4892       }
4893     }
4894 
4895     // Build a debug info table entry.
4896     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4897       V = BCI->getOperand(0);
4898     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4899     // Don't handle byval struct arguments or VLAs, for example.
4900     if (!AI) {
4901       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4902       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4903       return nullptr;
4904     }
4905     DenseMap<const AllocaInst*, int>::iterator SI =
4906       FuncInfo.StaticAllocaMap.find(AI);
4907     if (SI == FuncInfo.StaticAllocaMap.end())
4908       return nullptr; // VLAs.
4909     return nullptr;
4910   }
4911 
4912   case Intrinsic::eh_typeid_for: {
4913     // Find the type id for the given typeinfo.
4914     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4915     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4916     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4917     setValue(&I, Res);
4918     return nullptr;
4919   }
4920 
4921   case Intrinsic::eh_return_i32:
4922   case Intrinsic::eh_return_i64:
4923     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4924     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4925                             MVT::Other,
4926                             getControlRoot(),
4927                             getValue(I.getArgOperand(0)),
4928                             getValue(I.getArgOperand(1))));
4929     return nullptr;
4930   case Intrinsic::eh_unwind_init:
4931     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4932     return nullptr;
4933   case Intrinsic::eh_dwarf_cfa: {
4934     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4935                                         TLI.getPointerTy(DAG.getDataLayout()));
4936     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4937                                  CfaArg.getValueType(),
4938                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4939                                              CfaArg.getValueType()),
4940                                  CfaArg);
4941     SDValue FA = DAG.getNode(
4942         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4943         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4944     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4945                              FA, Offset));
4946     return nullptr;
4947   }
4948   case Intrinsic::eh_sjlj_callsite: {
4949     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4950     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4951     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4952     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4953 
4954     MMI.setCurrentCallSite(CI->getZExtValue());
4955     return nullptr;
4956   }
4957   case Intrinsic::eh_sjlj_functioncontext: {
4958     // Get and store the index of the function context.
4959     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4960     AllocaInst *FnCtx =
4961       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4962     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4963     MFI->setFunctionContextIndex(FI);
4964     return nullptr;
4965   }
4966   case Intrinsic::eh_sjlj_setjmp: {
4967     SDValue Ops[2];
4968     Ops[0] = getRoot();
4969     Ops[1] = getValue(I.getArgOperand(0));
4970     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4971                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4972     setValue(&I, Op.getValue(0));
4973     DAG.setRoot(Op.getValue(1));
4974     return nullptr;
4975   }
4976   case Intrinsic::eh_sjlj_longjmp: {
4977     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4978                             getRoot(), getValue(I.getArgOperand(0))));
4979     return nullptr;
4980   }
4981   case Intrinsic::eh_sjlj_setup_dispatch: {
4982     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4983                             getRoot()));
4984     return nullptr;
4985   }
4986 
4987   case Intrinsic::masked_gather:
4988     visitMaskedGather(I);
4989     return nullptr;
4990   case Intrinsic::masked_load:
4991     visitMaskedLoad(I);
4992     return nullptr;
4993   case Intrinsic::masked_scatter:
4994     visitMaskedScatter(I);
4995     return nullptr;
4996   case Intrinsic::masked_store:
4997     visitMaskedStore(I);
4998     return nullptr;
4999   case Intrinsic::x86_mmx_pslli_w:
5000   case Intrinsic::x86_mmx_pslli_d:
5001   case Intrinsic::x86_mmx_pslli_q:
5002   case Intrinsic::x86_mmx_psrli_w:
5003   case Intrinsic::x86_mmx_psrli_d:
5004   case Intrinsic::x86_mmx_psrli_q:
5005   case Intrinsic::x86_mmx_psrai_w:
5006   case Intrinsic::x86_mmx_psrai_d: {
5007     SDValue ShAmt = getValue(I.getArgOperand(1));
5008     if (isa<ConstantSDNode>(ShAmt)) {
5009       visitTargetIntrinsic(I, Intrinsic);
5010       return nullptr;
5011     }
5012     unsigned NewIntrinsic = 0;
5013     EVT ShAmtVT = MVT::v2i32;
5014     switch (Intrinsic) {
5015     case Intrinsic::x86_mmx_pslli_w:
5016       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5017       break;
5018     case Intrinsic::x86_mmx_pslli_d:
5019       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5020       break;
5021     case Intrinsic::x86_mmx_pslli_q:
5022       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5023       break;
5024     case Intrinsic::x86_mmx_psrli_w:
5025       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5026       break;
5027     case Intrinsic::x86_mmx_psrli_d:
5028       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5029       break;
5030     case Intrinsic::x86_mmx_psrli_q:
5031       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5032       break;
5033     case Intrinsic::x86_mmx_psrai_w:
5034       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5035       break;
5036     case Intrinsic::x86_mmx_psrai_d:
5037       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5038       break;
5039     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5040     }
5041 
5042     // The vector shift intrinsics with scalars uses 32b shift amounts but
5043     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5044     // to be zero.
5045     // We must do this early because v2i32 is not a legal type.
5046     SDValue ShOps[2];
5047     ShOps[0] = ShAmt;
5048     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5049     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5050     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5051     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5052     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5053                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5054                        getValue(I.getArgOperand(0)), ShAmt);
5055     setValue(&I, Res);
5056     return nullptr;
5057   }
5058   case Intrinsic::convertff:
5059   case Intrinsic::convertfsi:
5060   case Intrinsic::convertfui:
5061   case Intrinsic::convertsif:
5062   case Intrinsic::convertuif:
5063   case Intrinsic::convertss:
5064   case Intrinsic::convertsu:
5065   case Intrinsic::convertus:
5066   case Intrinsic::convertuu: {
5067     ISD::CvtCode Code = ISD::CVT_INVALID;
5068     switch (Intrinsic) {
5069     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5070     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5071     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5072     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5073     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5074     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5075     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5076     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5077     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5078     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5079     }
5080     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5081     const Value *Op1 = I.getArgOperand(0);
5082     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5083                                DAG.getValueType(DestVT),
5084                                DAG.getValueType(getValue(Op1).getValueType()),
5085                                getValue(I.getArgOperand(1)),
5086                                getValue(I.getArgOperand(2)),
5087                                Code);
5088     setValue(&I, Res);
5089     return nullptr;
5090   }
5091   case Intrinsic::powi:
5092     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5093                             getValue(I.getArgOperand(1)), DAG));
5094     return nullptr;
5095   case Intrinsic::log:
5096     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5097     return nullptr;
5098   case Intrinsic::log2:
5099     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5100     return nullptr;
5101   case Intrinsic::log10:
5102     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5103     return nullptr;
5104   case Intrinsic::exp:
5105     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5106     return nullptr;
5107   case Intrinsic::exp2:
5108     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5109     return nullptr;
5110   case Intrinsic::pow:
5111     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5112                            getValue(I.getArgOperand(1)), DAG, TLI));
5113     return nullptr;
5114   case Intrinsic::sqrt:
5115   case Intrinsic::fabs:
5116   case Intrinsic::sin:
5117   case Intrinsic::cos:
5118   case Intrinsic::floor:
5119   case Intrinsic::ceil:
5120   case Intrinsic::trunc:
5121   case Intrinsic::rint:
5122   case Intrinsic::nearbyint:
5123   case Intrinsic::round:
5124   case Intrinsic::canonicalize: {
5125     unsigned Opcode;
5126     switch (Intrinsic) {
5127     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5128     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5129     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5130     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5131     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5132     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5133     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5134     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5135     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5136     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5137     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5138     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5139     }
5140 
5141     setValue(&I, DAG.getNode(Opcode, sdl,
5142                              getValue(I.getArgOperand(0)).getValueType(),
5143                              getValue(I.getArgOperand(0))));
5144     return nullptr;
5145   }
5146   case Intrinsic::minnum:
5147     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
5148                              getValue(I.getArgOperand(0)).getValueType(),
5149                              getValue(I.getArgOperand(0)),
5150                              getValue(I.getArgOperand(1))));
5151     return nullptr;
5152   case Intrinsic::maxnum:
5153     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
5154                              getValue(I.getArgOperand(0)).getValueType(),
5155                              getValue(I.getArgOperand(0)),
5156                              getValue(I.getArgOperand(1))));
5157     return nullptr;
5158   case Intrinsic::copysign:
5159     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5160                              getValue(I.getArgOperand(0)).getValueType(),
5161                              getValue(I.getArgOperand(0)),
5162                              getValue(I.getArgOperand(1))));
5163     return nullptr;
5164   case Intrinsic::fma:
5165     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5166                              getValue(I.getArgOperand(0)).getValueType(),
5167                              getValue(I.getArgOperand(0)),
5168                              getValue(I.getArgOperand(1)),
5169                              getValue(I.getArgOperand(2))));
5170     return nullptr;
5171   case Intrinsic::fmuladd: {
5172     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5173     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5174         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5175       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5176                                getValue(I.getArgOperand(0)).getValueType(),
5177                                getValue(I.getArgOperand(0)),
5178                                getValue(I.getArgOperand(1)),
5179                                getValue(I.getArgOperand(2))));
5180     } else {
5181       // TODO: Intrinsic calls should have fast-math-flags.
5182       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5183                                 getValue(I.getArgOperand(0)).getValueType(),
5184                                 getValue(I.getArgOperand(0)),
5185                                 getValue(I.getArgOperand(1)));
5186       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5187                                 getValue(I.getArgOperand(0)).getValueType(),
5188                                 Mul,
5189                                 getValue(I.getArgOperand(2)));
5190       setValue(&I, Add);
5191     }
5192     return nullptr;
5193   }
5194   case Intrinsic::convert_to_fp16:
5195     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5196                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5197                                          getValue(I.getArgOperand(0)),
5198                                          DAG.getTargetConstant(0, sdl,
5199                                                                MVT::i32))));
5200     return nullptr;
5201   case Intrinsic::convert_from_fp16:
5202     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5203                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5204                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5205                                          getValue(I.getArgOperand(0)))));
5206     return nullptr;
5207   case Intrinsic::pcmarker: {
5208     SDValue Tmp = getValue(I.getArgOperand(0));
5209     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5210     return nullptr;
5211   }
5212   case Intrinsic::readcyclecounter: {
5213     SDValue Op = getRoot();
5214     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5215                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5216     setValue(&I, Res);
5217     DAG.setRoot(Res.getValue(1));
5218     return nullptr;
5219   }
5220   case Intrinsic::bitreverse:
5221     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5222                              getValue(I.getArgOperand(0)).getValueType(),
5223                              getValue(I.getArgOperand(0))));
5224     return nullptr;
5225   case Intrinsic::bswap:
5226     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5227                              getValue(I.getArgOperand(0)).getValueType(),
5228                              getValue(I.getArgOperand(0))));
5229     return nullptr;
5230   case Intrinsic::cttz: {
5231     SDValue Arg = getValue(I.getArgOperand(0));
5232     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5233     EVT Ty = Arg.getValueType();
5234     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5235                              sdl, Ty, Arg));
5236     return nullptr;
5237   }
5238   case Intrinsic::ctlz: {
5239     SDValue Arg = getValue(I.getArgOperand(0));
5240     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5241     EVT Ty = Arg.getValueType();
5242     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5243                              sdl, Ty, Arg));
5244     return nullptr;
5245   }
5246   case Intrinsic::ctpop: {
5247     SDValue Arg = getValue(I.getArgOperand(0));
5248     EVT Ty = Arg.getValueType();
5249     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5250     return nullptr;
5251   }
5252   case Intrinsic::stacksave: {
5253     SDValue Op = getRoot();
5254     Res = DAG.getNode(
5255         ISD::STACKSAVE, sdl,
5256         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5257     setValue(&I, Res);
5258     DAG.setRoot(Res.getValue(1));
5259     return nullptr;
5260   }
5261   case Intrinsic::stackrestore: {
5262     Res = getValue(I.getArgOperand(0));
5263     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5264     return nullptr;
5265   }
5266   case Intrinsic::get_dynamic_area_offset: {
5267     SDValue Op = getRoot();
5268     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5269     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5270     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5271     // target.
5272     if (PtrTy != ResTy)
5273       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5274                          " intrinsic!");
5275     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5276                       Op);
5277     DAG.setRoot(Op);
5278     setValue(&I, Res);
5279     return nullptr;
5280   }
5281   case Intrinsic::stackprotector: {
5282     // Emit code into the DAG to store the stack guard onto the stack.
5283     MachineFunction &MF = DAG.getMachineFunction();
5284     MachineFrameInfo *MFI = MF.getFrameInfo();
5285     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5286     SDValue Src, Chain = getRoot();
5287     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5288     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5289 
5290     // See if Ptr is a bitcast. If it is, look through it and see if we can get
5291     // global variable __stack_chk_guard.
5292     if (!GV)
5293       if (const Operator *BC = dyn_cast<Operator>(Ptr))
5294         if (BC->getOpcode() == Instruction::BitCast)
5295           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5296 
5297     if (GV && TLI.useLoadStackGuardNode()) {
5298       // Emit a LOAD_STACK_GUARD node.
5299       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5300                                                sdl, PtrTy, Chain);
5301       MachinePointerInfo MPInfo(GV);
5302       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5303       unsigned Flags = MachineMemOperand::MOLoad |
5304                        MachineMemOperand::MOInvariant;
5305       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5306                                          PtrTy.getSizeInBits() / 8,
5307                                          DAG.getEVTAlignment(PtrTy));
5308       Node->setMemRefs(MemRefs, MemRefs + 1);
5309 
5310       // Copy the guard value to a virtual register so that it can be
5311       // retrieved in the epilogue.
5312       Src = SDValue(Node, 0);
5313       const TargetRegisterClass *RC =
5314           TLI.getRegClassFor(Src.getSimpleValueType());
5315       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5316 
5317       SPDescriptor.setGuardReg(Reg);
5318       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5319     } else {
5320       Src = getValue(I.getArgOperand(0));   // The guard's value.
5321     }
5322 
5323     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5324 
5325     int FI = FuncInfo.StaticAllocaMap[Slot];
5326     MFI->setStackProtectorIndex(FI);
5327 
5328     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5329 
5330     // Store the stack protector onto the stack.
5331     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5332                                                  DAG.getMachineFunction(), FI),
5333                        true, false, 0);
5334     setValue(&I, Res);
5335     DAG.setRoot(Res);
5336     return nullptr;
5337   }
5338   case Intrinsic::objectsize: {
5339     // If we don't know by now, we're never going to know.
5340     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5341 
5342     assert(CI && "Non-constant type in __builtin_object_size?");
5343 
5344     SDValue Arg = getValue(I.getCalledValue());
5345     EVT Ty = Arg.getValueType();
5346 
5347     if (CI->isZero())
5348       Res = DAG.getConstant(-1ULL, sdl, Ty);
5349     else
5350       Res = DAG.getConstant(0, sdl, Ty);
5351 
5352     setValue(&I, Res);
5353     return nullptr;
5354   }
5355   case Intrinsic::annotation:
5356   case Intrinsic::ptr_annotation:
5357     // Drop the intrinsic, but forward the value
5358     setValue(&I, getValue(I.getOperand(0)));
5359     return nullptr;
5360   case Intrinsic::assume:
5361   case Intrinsic::var_annotation:
5362     // Discard annotate attributes and assumptions
5363     return nullptr;
5364 
5365   case Intrinsic::init_trampoline: {
5366     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5367 
5368     SDValue Ops[6];
5369     Ops[0] = getRoot();
5370     Ops[1] = getValue(I.getArgOperand(0));
5371     Ops[2] = getValue(I.getArgOperand(1));
5372     Ops[3] = getValue(I.getArgOperand(2));
5373     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5374     Ops[5] = DAG.getSrcValue(F);
5375 
5376     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5377 
5378     DAG.setRoot(Res);
5379     return nullptr;
5380   }
5381   case Intrinsic::adjust_trampoline: {
5382     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5383                              TLI.getPointerTy(DAG.getDataLayout()),
5384                              getValue(I.getArgOperand(0))));
5385     return nullptr;
5386   }
5387   case Intrinsic::gcroot: {
5388     MachineFunction &MF = DAG.getMachineFunction();
5389     const Function *F = MF.getFunction();
5390     (void)F;
5391     assert(F->hasGC() &&
5392            "only valid in functions with gc specified, enforced by Verifier");
5393     assert(GFI && "implied by previous");
5394     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5395     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5396 
5397     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5398     GFI->addStackRoot(FI->getIndex(), TypeMap);
5399     return nullptr;
5400   }
5401   case Intrinsic::gcread:
5402   case Intrinsic::gcwrite:
5403     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5404   case Intrinsic::flt_rounds:
5405     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5406     return nullptr;
5407 
5408   case Intrinsic::expect: {
5409     // Just replace __builtin_expect(exp, c) with EXP.
5410     setValue(&I, getValue(I.getArgOperand(0)));
5411     return nullptr;
5412   }
5413 
5414   case Intrinsic::debugtrap:
5415   case Intrinsic::trap: {
5416     StringRef TrapFuncName =
5417         I.getAttributes()
5418             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5419             .getValueAsString();
5420     if (TrapFuncName.empty()) {
5421       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5422         ISD::TRAP : ISD::DEBUGTRAP;
5423       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5424       return nullptr;
5425     }
5426     TargetLowering::ArgListTy Args;
5427 
5428     TargetLowering::CallLoweringInfo CLI(DAG);
5429     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5430         CallingConv::C, I.getType(),
5431         DAG.getExternalSymbol(TrapFuncName.data(),
5432                               TLI.getPointerTy(DAG.getDataLayout())),
5433         std::move(Args), 0);
5434 
5435     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5436     DAG.setRoot(Result.second);
5437     return nullptr;
5438   }
5439 
5440   case Intrinsic::uadd_with_overflow:
5441   case Intrinsic::sadd_with_overflow:
5442   case Intrinsic::usub_with_overflow:
5443   case Intrinsic::ssub_with_overflow:
5444   case Intrinsic::umul_with_overflow:
5445   case Intrinsic::smul_with_overflow: {
5446     ISD::NodeType Op;
5447     switch (Intrinsic) {
5448     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5449     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5450     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5451     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5452     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5453     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5454     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5455     }
5456     SDValue Op1 = getValue(I.getArgOperand(0));
5457     SDValue Op2 = getValue(I.getArgOperand(1));
5458 
5459     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5460     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5461     return nullptr;
5462   }
5463   case Intrinsic::prefetch: {
5464     SDValue Ops[5];
5465     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5466     Ops[0] = getRoot();
5467     Ops[1] = getValue(I.getArgOperand(0));
5468     Ops[2] = getValue(I.getArgOperand(1));
5469     Ops[3] = getValue(I.getArgOperand(2));
5470     Ops[4] = getValue(I.getArgOperand(3));
5471     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5472                                         DAG.getVTList(MVT::Other), Ops,
5473                                         EVT::getIntegerVT(*Context, 8),
5474                                         MachinePointerInfo(I.getArgOperand(0)),
5475                                         0, /* align */
5476                                         false, /* volatile */
5477                                         rw==0, /* read */
5478                                         rw==1)); /* write */
5479     return nullptr;
5480   }
5481   case Intrinsic::lifetime_start:
5482   case Intrinsic::lifetime_end: {
5483     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5484     // Stack coloring is not enabled in O0, discard region information.
5485     if (TM.getOptLevel() == CodeGenOpt::None)
5486       return nullptr;
5487 
5488     SmallVector<Value *, 4> Allocas;
5489     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5490 
5491     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5492            E = Allocas.end(); Object != E; ++Object) {
5493       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5494 
5495       // Could not find an Alloca.
5496       if (!LifetimeObject)
5497         continue;
5498 
5499       // First check that the Alloca is static, otherwise it won't have a
5500       // valid frame index.
5501       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5502       if (SI == FuncInfo.StaticAllocaMap.end())
5503         return nullptr;
5504 
5505       int FI = SI->second;
5506 
5507       SDValue Ops[2];
5508       Ops[0] = getRoot();
5509       Ops[1] =
5510           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5511       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5512 
5513       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5514       DAG.setRoot(Res);
5515     }
5516     return nullptr;
5517   }
5518   case Intrinsic::invariant_start:
5519     // Discard region information.
5520     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5521     return nullptr;
5522   case Intrinsic::invariant_end:
5523     // Discard region information.
5524     return nullptr;
5525   case Intrinsic::clear_cache:
5526     return TLI.getClearCacheBuiltinName();
5527   case Intrinsic::donothing:
5528     // ignore
5529     return nullptr;
5530   case Intrinsic::experimental_stackmap: {
5531     visitStackmap(I);
5532     return nullptr;
5533   }
5534   case Intrinsic::experimental_patchpoint_void:
5535   case Intrinsic::experimental_patchpoint_i64: {
5536     visitPatchpoint(&I);
5537     return nullptr;
5538   }
5539   case Intrinsic::experimental_gc_statepoint: {
5540     LowerStatepoint(ImmutableStatepoint(&I));
5541     return nullptr;
5542   }
5543   case Intrinsic::experimental_gc_result: {
5544     visitGCResult(cast<GCResultInst>(I));
5545     return nullptr;
5546   }
5547   case Intrinsic::experimental_gc_relocate: {
5548     visitGCRelocate(cast<GCRelocateInst>(I));
5549     return nullptr;
5550   }
5551   case Intrinsic::instrprof_increment:
5552     llvm_unreachable("instrprof failed to lower an increment");
5553   case Intrinsic::instrprof_value_profile:
5554     llvm_unreachable("instrprof failed to lower a value profiling call");
5555   case Intrinsic::localescape: {
5556     MachineFunction &MF = DAG.getMachineFunction();
5557     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5558 
5559     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5560     // is the same on all targets.
5561     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5562       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5563       if (isa<ConstantPointerNull>(Arg))
5564         continue; // Skip null pointers. They represent a hole in index space.
5565       AllocaInst *Slot = cast<AllocaInst>(Arg);
5566       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5567              "can only escape static allocas");
5568       int FI = FuncInfo.StaticAllocaMap[Slot];
5569       MCSymbol *FrameAllocSym =
5570           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5571               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5572       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5573               TII->get(TargetOpcode::LOCAL_ESCAPE))
5574           .addSym(FrameAllocSym)
5575           .addFrameIndex(FI);
5576     }
5577 
5578     return nullptr;
5579   }
5580 
5581   case Intrinsic::localrecover: {
5582     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5583     MachineFunction &MF = DAG.getMachineFunction();
5584     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5585 
5586     // Get the symbol that defines the frame offset.
5587     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5588     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5589     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5590     MCSymbol *FrameAllocSym =
5591         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5592             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5593 
5594     // Create a MCSymbol for the label to avoid any target lowering
5595     // that would make this PC relative.
5596     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5597     SDValue OffsetVal =
5598         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5599 
5600     // Add the offset to the FP.
5601     Value *FP = I.getArgOperand(1);
5602     SDValue FPVal = getValue(FP);
5603     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5604     setValue(&I, Add);
5605 
5606     return nullptr;
5607   }
5608 
5609   case Intrinsic::eh_exceptionpointer:
5610   case Intrinsic::eh_exceptioncode: {
5611     // Get the exception pointer vreg, copy from it, and resize it to fit.
5612     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5613     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5614     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5615     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5616     SDValue N =
5617         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5618     if (Intrinsic == Intrinsic::eh_exceptioncode)
5619       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5620     setValue(&I, N);
5621     return nullptr;
5622   }
5623 
5624   case Intrinsic::experimental_deoptimize:
5625     LowerDeoptimizeCall(&I);
5626     return nullptr;
5627   }
5628 }
5629 
5630 std::pair<SDValue, SDValue>
5631 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5632                                     const BasicBlock *EHPadBB) {
5633   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5634   MCSymbol *BeginLabel = nullptr;
5635 
5636   if (EHPadBB) {
5637     // Insert a label before the invoke call to mark the try range.  This can be
5638     // used to detect deletion of the invoke via the MachineModuleInfo.
5639     BeginLabel = MMI.getContext().createTempSymbol();
5640 
5641     // For SjLj, keep track of which landing pads go with which invokes
5642     // so as to maintain the ordering of pads in the LSDA.
5643     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5644     if (CallSiteIndex) {
5645       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5646       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5647 
5648       // Now that the call site is handled, stop tracking it.
5649       MMI.setCurrentCallSite(0);
5650     }
5651 
5652     // Both PendingLoads and PendingExports must be flushed here;
5653     // this call might not return.
5654     (void)getRoot();
5655     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5656 
5657     CLI.setChain(getRoot());
5658   }
5659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5660   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5661 
5662   assert((CLI.IsTailCall || Result.second.getNode()) &&
5663          "Non-null chain expected with non-tail call!");
5664   assert((Result.second.getNode() || !Result.first.getNode()) &&
5665          "Null value expected with tail call!");
5666 
5667   if (!Result.second.getNode()) {
5668     // As a special case, a null chain means that a tail call has been emitted
5669     // and the DAG root is already updated.
5670     HasTailCall = true;
5671 
5672     // Since there's no actual continuation from this block, nothing can be
5673     // relying on us setting vregs for them.
5674     PendingExports.clear();
5675   } else {
5676     DAG.setRoot(Result.second);
5677   }
5678 
5679   if (EHPadBB) {
5680     // Insert a label at the end of the invoke call to mark the try range.  This
5681     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5682     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5683     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5684 
5685     // Inform MachineModuleInfo of range.
5686     if (MMI.hasEHFunclets()) {
5687       assert(CLI.CS);
5688       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5689       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5690                                 BeginLabel, EndLabel);
5691     } else {
5692       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5693     }
5694   }
5695 
5696   return Result;
5697 }
5698 
5699 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5700                                       bool isTailCall,
5701                                       const BasicBlock *EHPadBB) {
5702   auto &DL = DAG.getDataLayout();
5703   FunctionType *FTy = CS.getFunctionType();
5704   Type *RetTy = CS.getType();
5705 
5706   TargetLowering::ArgListTy Args;
5707   TargetLowering::ArgListEntry Entry;
5708   Args.reserve(CS.arg_size());
5709 
5710   const Value *SwiftErrorVal = nullptr;
5711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5712   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5713        i != e; ++i) {
5714     const Value *V = *i;
5715 
5716     // Skip empty types
5717     if (V->getType()->isEmptyTy())
5718       continue;
5719 
5720     SDValue ArgNode = getValue(V);
5721     Entry.Node = ArgNode; Entry.Ty = V->getType();
5722 
5723     // Skip the first return-type Attribute to get to params.
5724     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5725 
5726     // Use swifterror virtual register as input to the call.
5727     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5728       SwiftErrorVal = V;
5729       // We find the virtual register for the actual swifterror argument.
5730       // Instead of using the Value, we use the virtual register instead.
5731       Entry.Node = DAG.getRegister(
5732           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5733           EVT(TLI.getPointerTy(DL)));
5734     }
5735 
5736     Args.push_back(Entry);
5737 
5738     // If we have an explicit sret argument that is an Instruction, (i.e., it
5739     // might point to function-local memory), we can't meaningfully tail-call.
5740     if (Entry.isSRet && isa<Instruction>(V))
5741       isTailCall = false;
5742   }
5743 
5744   // Check if target-independent constraints permit a tail call here.
5745   // Target-dependent constraints are checked within TLI->LowerCallTo.
5746   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5747     isTailCall = false;
5748 
5749   TargetLowering::CallLoweringInfo CLI(DAG);
5750   CLI.setDebugLoc(getCurSDLoc())
5751       .setChain(getRoot())
5752       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5753       .setTailCall(isTailCall)
5754       .setConvergent(CS.isConvergent());
5755   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5756 
5757   if (Result.first.getNode()) {
5758     const Instruction *Inst = CS.getInstruction();
5759     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5760     setValue(Inst, Result.first);
5761   }
5762 
5763   // The last element of CLI.InVals has the SDValue for swifterror return.
5764   // Here we copy it to a virtual register and update SwiftErrorMap for
5765   // book-keeping.
5766   if (SwiftErrorVal && TLI.supportSwiftError()) {
5767     // Get the last element of InVals.
5768     SDValue Src = CLI.InVals.back();
5769     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5770     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5771     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5772     // We update the virtual register for the actual swifterror argument.
5773     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5774     DAG.setRoot(CopyNode);
5775   }
5776 }
5777 
5778 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5779 /// value is equal or not-equal to zero.
5780 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5781   for (const User *U : V->users()) {
5782     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5783       if (IC->isEquality())
5784         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5785           if (C->isNullValue())
5786             continue;
5787     // Unknown instruction.
5788     return false;
5789   }
5790   return true;
5791 }
5792 
5793 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5794                              Type *LoadTy,
5795                              SelectionDAGBuilder &Builder) {
5796 
5797   // Check to see if this load can be trivially constant folded, e.g. if the
5798   // input is from a string literal.
5799   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5800     // Cast pointer to the type we really want to load.
5801     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5802                                          PointerType::getUnqual(LoadTy));
5803 
5804     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5805             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5806       return Builder.getValue(LoadCst);
5807   }
5808 
5809   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5810   // still constant memory, the input chain can be the entry node.
5811   SDValue Root;
5812   bool ConstantMemory = false;
5813 
5814   // Do not serialize (non-volatile) loads of constant memory with anything.
5815   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5816     Root = Builder.DAG.getEntryNode();
5817     ConstantMemory = true;
5818   } else {
5819     // Do not serialize non-volatile loads against each other.
5820     Root = Builder.DAG.getRoot();
5821   }
5822 
5823   SDValue Ptr = Builder.getValue(PtrVal);
5824   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5825                                         Ptr, MachinePointerInfo(PtrVal),
5826                                         false /*volatile*/,
5827                                         false /*nontemporal*/,
5828                                         false /*isinvariant*/, 1 /* align=1 */);
5829 
5830   if (!ConstantMemory)
5831     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5832   return LoadVal;
5833 }
5834 
5835 /// processIntegerCallValue - Record the value for an instruction that
5836 /// produces an integer result, converting the type where necessary.
5837 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5838                                                   SDValue Value,
5839                                                   bool IsSigned) {
5840   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5841                                                     I.getType(), true);
5842   if (IsSigned)
5843     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5844   else
5845     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5846   setValue(&I, Value);
5847 }
5848 
5849 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5850 /// If so, return true and lower it, otherwise return false and it will be
5851 /// lowered like a normal call.
5852 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5853   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5854   if (I.getNumArgOperands() != 3)
5855     return false;
5856 
5857   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5858   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5859       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5860       !I.getType()->isIntegerTy())
5861     return false;
5862 
5863   const Value *Size = I.getArgOperand(2);
5864   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5865   if (CSize && CSize->getZExtValue() == 0) {
5866     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5867                                                           I.getType(), true);
5868     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5869     return true;
5870   }
5871 
5872   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5873   std::pair<SDValue, SDValue> Res =
5874     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5875                                 getValue(LHS), getValue(RHS), getValue(Size),
5876                                 MachinePointerInfo(LHS),
5877                                 MachinePointerInfo(RHS));
5878   if (Res.first.getNode()) {
5879     processIntegerCallValue(I, Res.first, true);
5880     PendingLoads.push_back(Res.second);
5881     return true;
5882   }
5883 
5884   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5885   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5886   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5887     bool ActuallyDoIt = true;
5888     MVT LoadVT;
5889     Type *LoadTy;
5890     switch (CSize->getZExtValue()) {
5891     default:
5892       LoadVT = MVT::Other;
5893       LoadTy = nullptr;
5894       ActuallyDoIt = false;
5895       break;
5896     case 2:
5897       LoadVT = MVT::i16;
5898       LoadTy = Type::getInt16Ty(CSize->getContext());
5899       break;
5900     case 4:
5901       LoadVT = MVT::i32;
5902       LoadTy = Type::getInt32Ty(CSize->getContext());
5903       break;
5904     case 8:
5905       LoadVT = MVT::i64;
5906       LoadTy = Type::getInt64Ty(CSize->getContext());
5907       break;
5908         /*
5909     case 16:
5910       LoadVT = MVT::v4i32;
5911       LoadTy = Type::getInt32Ty(CSize->getContext());
5912       LoadTy = VectorType::get(LoadTy, 4);
5913       break;
5914          */
5915     }
5916 
5917     // This turns into unaligned loads.  We only do this if the target natively
5918     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5919     // we'll only produce a small number of byte loads.
5920 
5921     // Require that we can find a legal MVT, and only do this if the target
5922     // supports unaligned loads of that type.  Expanding into byte loads would
5923     // bloat the code.
5924     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5925     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5926       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5927       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5928       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5929       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5930       // TODO: Check alignment of src and dest ptrs.
5931       if (!TLI.isTypeLegal(LoadVT) ||
5932           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5933           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5934         ActuallyDoIt = false;
5935     }
5936 
5937     if (ActuallyDoIt) {
5938       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5939       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5940 
5941       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5942                                  ISD::SETNE);
5943       processIntegerCallValue(I, Res, false);
5944       return true;
5945     }
5946   }
5947 
5948 
5949   return false;
5950 }
5951 
5952 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5953 /// form.  If so, return true and lower it, otherwise return false and it
5954 /// will be lowered like a normal call.
5955 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5956   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5957   if (I.getNumArgOperands() != 3)
5958     return false;
5959 
5960   const Value *Src = I.getArgOperand(0);
5961   const Value *Char = I.getArgOperand(1);
5962   const Value *Length = I.getArgOperand(2);
5963   if (!Src->getType()->isPointerTy() ||
5964       !Char->getType()->isIntegerTy() ||
5965       !Length->getType()->isIntegerTy() ||
5966       !I.getType()->isPointerTy())
5967     return false;
5968 
5969   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5970   std::pair<SDValue, SDValue> Res =
5971     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5972                                 getValue(Src), getValue(Char), getValue(Length),
5973                                 MachinePointerInfo(Src));
5974   if (Res.first.getNode()) {
5975     setValue(&I, Res.first);
5976     PendingLoads.push_back(Res.second);
5977     return true;
5978   }
5979 
5980   return false;
5981 }
5982 
5983 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5984 /// optimized form.  If so, return true and lower it, otherwise return false
5985 /// and it will be lowered like a normal call.
5986 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5987   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5988   if (I.getNumArgOperands() != 2)
5989     return false;
5990 
5991   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5992   if (!Arg0->getType()->isPointerTy() ||
5993       !Arg1->getType()->isPointerTy() ||
5994       !I.getType()->isPointerTy())
5995     return false;
5996 
5997   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5998   std::pair<SDValue, SDValue> Res =
5999     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6000                                 getValue(Arg0), getValue(Arg1),
6001                                 MachinePointerInfo(Arg0),
6002                                 MachinePointerInfo(Arg1), isStpcpy);
6003   if (Res.first.getNode()) {
6004     setValue(&I, Res.first);
6005     DAG.setRoot(Res.second);
6006     return true;
6007   }
6008 
6009   return false;
6010 }
6011 
6012 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6013 /// If so, return true and lower it, otherwise return false and it will be
6014 /// lowered like a normal call.
6015 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6016   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6017   if (I.getNumArgOperands() != 2)
6018     return false;
6019 
6020   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6021   if (!Arg0->getType()->isPointerTy() ||
6022       !Arg1->getType()->isPointerTy() ||
6023       !I.getType()->isIntegerTy())
6024     return false;
6025 
6026   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6027   std::pair<SDValue, SDValue> Res =
6028     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6029                                 getValue(Arg0), getValue(Arg1),
6030                                 MachinePointerInfo(Arg0),
6031                                 MachinePointerInfo(Arg1));
6032   if (Res.first.getNode()) {
6033     processIntegerCallValue(I, Res.first, true);
6034     PendingLoads.push_back(Res.second);
6035     return true;
6036   }
6037 
6038   return false;
6039 }
6040 
6041 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6042 /// form.  If so, return true and lower it, otherwise return false and it
6043 /// will be lowered like a normal call.
6044 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6045   // Verify that the prototype makes sense.  size_t strlen(char *)
6046   if (I.getNumArgOperands() != 1)
6047     return false;
6048 
6049   const Value *Arg0 = I.getArgOperand(0);
6050   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6051     return false;
6052 
6053   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6054   std::pair<SDValue, SDValue> Res =
6055     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6056                                 getValue(Arg0), MachinePointerInfo(Arg0));
6057   if (Res.first.getNode()) {
6058     processIntegerCallValue(I, Res.first, false);
6059     PendingLoads.push_back(Res.second);
6060     return true;
6061   }
6062 
6063   return false;
6064 }
6065 
6066 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6067 /// form.  If so, return true and lower it, otherwise return false and it
6068 /// will be lowered like a normal call.
6069 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6070   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6071   if (I.getNumArgOperands() != 2)
6072     return false;
6073 
6074   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6075   if (!Arg0->getType()->isPointerTy() ||
6076       !Arg1->getType()->isIntegerTy() ||
6077       !I.getType()->isIntegerTy())
6078     return false;
6079 
6080   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6081   std::pair<SDValue, SDValue> Res =
6082     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6083                                  getValue(Arg0), getValue(Arg1),
6084                                  MachinePointerInfo(Arg0));
6085   if (Res.first.getNode()) {
6086     processIntegerCallValue(I, Res.first, false);
6087     PendingLoads.push_back(Res.second);
6088     return true;
6089   }
6090 
6091   return false;
6092 }
6093 
6094 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6095 /// operation (as expected), translate it to an SDNode with the specified opcode
6096 /// and return true.
6097 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6098                                               unsigned Opcode) {
6099   // Sanity check that it really is a unary floating-point call.
6100   if (I.getNumArgOperands() != 1 ||
6101       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6102       I.getType() != I.getArgOperand(0)->getType() ||
6103       !I.onlyReadsMemory())
6104     return false;
6105 
6106   SDValue Tmp = getValue(I.getArgOperand(0));
6107   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6108   return true;
6109 }
6110 
6111 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6112 /// operation (as expected), translate it to an SDNode with the specified opcode
6113 /// and return true.
6114 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6115                                                unsigned Opcode) {
6116   // Sanity check that it really is a binary floating-point call.
6117   if (I.getNumArgOperands() != 2 ||
6118       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6119       I.getType() != I.getArgOperand(0)->getType() ||
6120       I.getType() != I.getArgOperand(1)->getType() ||
6121       !I.onlyReadsMemory())
6122     return false;
6123 
6124   SDValue Tmp0 = getValue(I.getArgOperand(0));
6125   SDValue Tmp1 = getValue(I.getArgOperand(1));
6126   EVT VT = Tmp0.getValueType();
6127   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6128   return true;
6129 }
6130 
6131 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6132   // Handle inline assembly differently.
6133   if (isa<InlineAsm>(I.getCalledValue())) {
6134     visitInlineAsm(&I);
6135     return;
6136   }
6137 
6138   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6139   ComputeUsesVAFloatArgument(I, &MMI);
6140 
6141   const char *RenameFn = nullptr;
6142   if (Function *F = I.getCalledFunction()) {
6143     if (F->isDeclaration()) {
6144       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6145         if (unsigned IID = II->getIntrinsicID(F)) {
6146           RenameFn = visitIntrinsicCall(I, IID);
6147           if (!RenameFn)
6148             return;
6149         }
6150       }
6151       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6152         RenameFn = visitIntrinsicCall(I, IID);
6153         if (!RenameFn)
6154           return;
6155       }
6156     }
6157 
6158     // Check for well-known libc/libm calls.  If the function is internal, it
6159     // can't be a library call.
6160     LibFunc::Func Func;
6161     if (!F->hasLocalLinkage() && F->hasName() &&
6162         LibInfo->getLibFunc(F->getName(), Func) &&
6163         LibInfo->hasOptimizedCodeGen(Func)) {
6164       switch (Func) {
6165       default: break;
6166       case LibFunc::copysign:
6167       case LibFunc::copysignf:
6168       case LibFunc::copysignl:
6169         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6170             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6171             I.getType() == I.getArgOperand(0)->getType() &&
6172             I.getType() == I.getArgOperand(1)->getType() &&
6173             I.onlyReadsMemory()) {
6174           SDValue LHS = getValue(I.getArgOperand(0));
6175           SDValue RHS = getValue(I.getArgOperand(1));
6176           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6177                                    LHS.getValueType(), LHS, RHS));
6178           return;
6179         }
6180         break;
6181       case LibFunc::fabs:
6182       case LibFunc::fabsf:
6183       case LibFunc::fabsl:
6184         if (visitUnaryFloatCall(I, ISD::FABS))
6185           return;
6186         break;
6187       case LibFunc::fmin:
6188       case LibFunc::fminf:
6189       case LibFunc::fminl:
6190         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6191           return;
6192         break;
6193       case LibFunc::fmax:
6194       case LibFunc::fmaxf:
6195       case LibFunc::fmaxl:
6196         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6197           return;
6198         break;
6199       case LibFunc::sin:
6200       case LibFunc::sinf:
6201       case LibFunc::sinl:
6202         if (visitUnaryFloatCall(I, ISD::FSIN))
6203           return;
6204         break;
6205       case LibFunc::cos:
6206       case LibFunc::cosf:
6207       case LibFunc::cosl:
6208         if (visitUnaryFloatCall(I, ISD::FCOS))
6209           return;
6210         break;
6211       case LibFunc::sqrt:
6212       case LibFunc::sqrtf:
6213       case LibFunc::sqrtl:
6214       case LibFunc::sqrt_finite:
6215       case LibFunc::sqrtf_finite:
6216       case LibFunc::sqrtl_finite:
6217         if (visitUnaryFloatCall(I, ISD::FSQRT))
6218           return;
6219         break;
6220       case LibFunc::floor:
6221       case LibFunc::floorf:
6222       case LibFunc::floorl:
6223         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6224           return;
6225         break;
6226       case LibFunc::nearbyint:
6227       case LibFunc::nearbyintf:
6228       case LibFunc::nearbyintl:
6229         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6230           return;
6231         break;
6232       case LibFunc::ceil:
6233       case LibFunc::ceilf:
6234       case LibFunc::ceill:
6235         if (visitUnaryFloatCall(I, ISD::FCEIL))
6236           return;
6237         break;
6238       case LibFunc::rint:
6239       case LibFunc::rintf:
6240       case LibFunc::rintl:
6241         if (visitUnaryFloatCall(I, ISD::FRINT))
6242           return;
6243         break;
6244       case LibFunc::round:
6245       case LibFunc::roundf:
6246       case LibFunc::roundl:
6247         if (visitUnaryFloatCall(I, ISD::FROUND))
6248           return;
6249         break;
6250       case LibFunc::trunc:
6251       case LibFunc::truncf:
6252       case LibFunc::truncl:
6253         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6254           return;
6255         break;
6256       case LibFunc::log2:
6257       case LibFunc::log2f:
6258       case LibFunc::log2l:
6259         if (visitUnaryFloatCall(I, ISD::FLOG2))
6260           return;
6261         break;
6262       case LibFunc::exp2:
6263       case LibFunc::exp2f:
6264       case LibFunc::exp2l:
6265         if (visitUnaryFloatCall(I, ISD::FEXP2))
6266           return;
6267         break;
6268       case LibFunc::memcmp:
6269         if (visitMemCmpCall(I))
6270           return;
6271         break;
6272       case LibFunc::memchr:
6273         if (visitMemChrCall(I))
6274           return;
6275         break;
6276       case LibFunc::strcpy:
6277         if (visitStrCpyCall(I, false))
6278           return;
6279         break;
6280       case LibFunc::stpcpy:
6281         if (visitStrCpyCall(I, true))
6282           return;
6283         break;
6284       case LibFunc::strcmp:
6285         if (visitStrCmpCall(I))
6286           return;
6287         break;
6288       case LibFunc::strlen:
6289         if (visitStrLenCall(I))
6290           return;
6291         break;
6292       case LibFunc::strnlen:
6293         if (visitStrNLenCall(I))
6294           return;
6295         break;
6296       }
6297     }
6298   }
6299 
6300   SDValue Callee;
6301   if (!RenameFn)
6302     Callee = getValue(I.getCalledValue());
6303   else
6304     Callee = DAG.getExternalSymbol(
6305         RenameFn,
6306         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6307 
6308   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6309   // have to do anything here to lower funclet bundles.
6310   assert(!I.hasOperandBundlesOtherThan(
6311              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6312          "Cannot lower calls with arbitrary operand bundles!");
6313 
6314   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6315     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6316   else
6317     // Check if we can potentially perform a tail call. More detailed checking
6318     // is be done within LowerCallTo, after more information about the call is
6319     // known.
6320     LowerCallTo(&I, Callee, I.isTailCall());
6321 }
6322 
6323 namespace {
6324 
6325 /// AsmOperandInfo - This contains information for each constraint that we are
6326 /// lowering.
6327 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6328 public:
6329   /// CallOperand - If this is the result output operand or a clobber
6330   /// this is null, otherwise it is the incoming operand to the CallInst.
6331   /// This gets modified as the asm is processed.
6332   SDValue CallOperand;
6333 
6334   /// AssignedRegs - If this is a register or register class operand, this
6335   /// contains the set of register corresponding to the operand.
6336   RegsForValue AssignedRegs;
6337 
6338   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6339     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6340   }
6341 
6342   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6343   /// corresponds to.  If there is no Value* for this operand, it returns
6344   /// MVT::Other.
6345   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6346                            const DataLayout &DL) const {
6347     if (!CallOperandVal) return MVT::Other;
6348 
6349     if (isa<BasicBlock>(CallOperandVal))
6350       return TLI.getPointerTy(DL);
6351 
6352     llvm::Type *OpTy = CallOperandVal->getType();
6353 
6354     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6355     // If this is an indirect operand, the operand is a pointer to the
6356     // accessed type.
6357     if (isIndirect) {
6358       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6359       if (!PtrTy)
6360         report_fatal_error("Indirect operand for inline asm not a pointer!");
6361       OpTy = PtrTy->getElementType();
6362     }
6363 
6364     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6365     if (StructType *STy = dyn_cast<StructType>(OpTy))
6366       if (STy->getNumElements() == 1)
6367         OpTy = STy->getElementType(0);
6368 
6369     // If OpTy is not a single value, it may be a struct/union that we
6370     // can tile with integers.
6371     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6372       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6373       switch (BitSize) {
6374       default: break;
6375       case 1:
6376       case 8:
6377       case 16:
6378       case 32:
6379       case 64:
6380       case 128:
6381         OpTy = IntegerType::get(Context, BitSize);
6382         break;
6383       }
6384     }
6385 
6386     return TLI.getValueType(DL, OpTy, true);
6387   }
6388 };
6389 
6390 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6391 
6392 } // end anonymous namespace
6393 
6394 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6395 /// specified operand.  We prefer to assign virtual registers, to allow the
6396 /// register allocator to handle the assignment process.  However, if the asm
6397 /// uses features that we can't model on machineinstrs, we have SDISel do the
6398 /// allocation.  This produces generally horrible, but correct, code.
6399 ///
6400 ///   OpInfo describes the operand.
6401 ///
6402 static void GetRegistersForValue(SelectionDAG &DAG,
6403                                  const TargetLowering &TLI,
6404                                  SDLoc DL,
6405                                  SDISelAsmOperandInfo &OpInfo) {
6406   LLVMContext &Context = *DAG.getContext();
6407 
6408   MachineFunction &MF = DAG.getMachineFunction();
6409   SmallVector<unsigned, 4> Regs;
6410 
6411   // If this is a constraint for a single physreg, or a constraint for a
6412   // register class, find it.
6413   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6414       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6415                                        OpInfo.ConstraintCode,
6416                                        OpInfo.ConstraintVT);
6417 
6418   unsigned NumRegs = 1;
6419   if (OpInfo.ConstraintVT != MVT::Other) {
6420     // If this is a FP input in an integer register (or visa versa) insert a bit
6421     // cast of the input value.  More generally, handle any case where the input
6422     // value disagrees with the register class we plan to stick this in.
6423     if (OpInfo.Type == InlineAsm::isInput &&
6424         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6425       // Try to convert to the first EVT that the reg class contains.  If the
6426       // types are identical size, use a bitcast to convert (e.g. two differing
6427       // vector types).
6428       MVT RegVT = *PhysReg.second->vt_begin();
6429       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6430         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6431                                          RegVT, OpInfo.CallOperand);
6432         OpInfo.ConstraintVT = RegVT;
6433       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6434         // If the input is a FP value and we want it in FP registers, do a
6435         // bitcast to the corresponding integer type.  This turns an f64 value
6436         // into i64, which can be passed with two i32 values on a 32-bit
6437         // machine.
6438         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6439         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6440                                          RegVT, OpInfo.CallOperand);
6441         OpInfo.ConstraintVT = RegVT;
6442       }
6443     }
6444 
6445     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6446   }
6447 
6448   MVT RegVT;
6449   EVT ValueVT = OpInfo.ConstraintVT;
6450 
6451   // If this is a constraint for a specific physical register, like {r17},
6452   // assign it now.
6453   if (unsigned AssignedReg = PhysReg.first) {
6454     const TargetRegisterClass *RC = PhysReg.second;
6455     if (OpInfo.ConstraintVT == MVT::Other)
6456       ValueVT = *RC->vt_begin();
6457 
6458     // Get the actual register value type.  This is important, because the user
6459     // may have asked for (e.g.) the AX register in i32 type.  We need to
6460     // remember that AX is actually i16 to get the right extension.
6461     RegVT = *RC->vt_begin();
6462 
6463     // This is a explicit reference to a physical register.
6464     Regs.push_back(AssignedReg);
6465 
6466     // If this is an expanded reference, add the rest of the regs to Regs.
6467     if (NumRegs != 1) {
6468       TargetRegisterClass::iterator I = RC->begin();
6469       for (; *I != AssignedReg; ++I)
6470         assert(I != RC->end() && "Didn't find reg!");
6471 
6472       // Already added the first reg.
6473       --NumRegs; ++I;
6474       for (; NumRegs; --NumRegs, ++I) {
6475         assert(I != RC->end() && "Ran out of registers to allocate!");
6476         Regs.push_back(*I);
6477       }
6478     }
6479 
6480     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6481     return;
6482   }
6483 
6484   // Otherwise, if this was a reference to an LLVM register class, create vregs
6485   // for this reference.
6486   if (const TargetRegisterClass *RC = PhysReg.second) {
6487     RegVT = *RC->vt_begin();
6488     if (OpInfo.ConstraintVT == MVT::Other)
6489       ValueVT = RegVT;
6490 
6491     // Create the appropriate number of virtual registers.
6492     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6493     for (; NumRegs; --NumRegs)
6494       Regs.push_back(RegInfo.createVirtualRegister(RC));
6495 
6496     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6497     return;
6498   }
6499 
6500   // Otherwise, we couldn't allocate enough registers for this.
6501 }
6502 
6503 /// visitInlineAsm - Handle a call to an InlineAsm object.
6504 ///
6505 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6506   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6507 
6508   /// ConstraintOperands - Information about all of the constraints.
6509   SDISelAsmOperandInfoVector ConstraintOperands;
6510 
6511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6512   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6513       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6514 
6515   bool hasMemory = false;
6516 
6517   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6518   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6519   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6520     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6521     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6522 
6523     MVT OpVT = MVT::Other;
6524 
6525     // Compute the value type for each operand.
6526     switch (OpInfo.Type) {
6527     case InlineAsm::isOutput:
6528       // Indirect outputs just consume an argument.
6529       if (OpInfo.isIndirect) {
6530         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6531         break;
6532       }
6533 
6534       // The return value of the call is this value.  As such, there is no
6535       // corresponding argument.
6536       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6537       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6538         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6539                                       STy->getElementType(ResNo));
6540       } else {
6541         assert(ResNo == 0 && "Asm only has one result!");
6542         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6543       }
6544       ++ResNo;
6545       break;
6546     case InlineAsm::isInput:
6547       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6548       break;
6549     case InlineAsm::isClobber:
6550       // Nothing to do.
6551       break;
6552     }
6553 
6554     // If this is an input or an indirect output, process the call argument.
6555     // BasicBlocks are labels, currently appearing only in asm's.
6556     if (OpInfo.CallOperandVal) {
6557       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6558         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6559       } else {
6560         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6561       }
6562 
6563       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6564                                          DAG.getDataLayout()).getSimpleVT();
6565     }
6566 
6567     OpInfo.ConstraintVT = OpVT;
6568 
6569     // Indirect operand accesses access memory.
6570     if (OpInfo.isIndirect)
6571       hasMemory = true;
6572     else {
6573       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6574         TargetLowering::ConstraintType
6575           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6576         if (CType == TargetLowering::C_Memory) {
6577           hasMemory = true;
6578           break;
6579         }
6580       }
6581     }
6582   }
6583 
6584   SDValue Chain, Flag;
6585 
6586   // We won't need to flush pending loads if this asm doesn't touch
6587   // memory and is nonvolatile.
6588   if (hasMemory || IA->hasSideEffects())
6589     Chain = getRoot();
6590   else
6591     Chain = DAG.getRoot();
6592 
6593   // Second pass over the constraints: compute which constraint option to use
6594   // and assign registers to constraints that want a specific physreg.
6595   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6596     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6597 
6598     // If this is an output operand with a matching input operand, look up the
6599     // matching input. If their types mismatch, e.g. one is an integer, the
6600     // other is floating point, or their sizes are different, flag it as an
6601     // error.
6602     if (OpInfo.hasMatchingInput()) {
6603       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6604 
6605       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6606         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6607         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6608             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6609                                              OpInfo.ConstraintVT);
6610         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6611             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6612                                              Input.ConstraintVT);
6613         if ((OpInfo.ConstraintVT.isInteger() !=
6614              Input.ConstraintVT.isInteger()) ||
6615             (MatchRC.second != InputRC.second)) {
6616           report_fatal_error("Unsupported asm: input constraint"
6617                              " with a matching output constraint of"
6618                              " incompatible type!");
6619         }
6620         Input.ConstraintVT = OpInfo.ConstraintVT;
6621       }
6622     }
6623 
6624     // Compute the constraint code and ConstraintType to use.
6625     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6626 
6627     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6628         OpInfo.Type == InlineAsm::isClobber)
6629       continue;
6630 
6631     // If this is a memory input, and if the operand is not indirect, do what we
6632     // need to to provide an address for the memory input.
6633     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6634         !OpInfo.isIndirect) {
6635       assert((OpInfo.isMultipleAlternative ||
6636               (OpInfo.Type == InlineAsm::isInput)) &&
6637              "Can only indirectify direct input operands!");
6638 
6639       // Memory operands really want the address of the value.  If we don't have
6640       // an indirect input, put it in the constpool if we can, otherwise spill
6641       // it to a stack slot.
6642       // TODO: This isn't quite right. We need to handle these according to
6643       // the addressing mode that the constraint wants. Also, this may take
6644       // an additional register for the computation and we don't want that
6645       // either.
6646 
6647       // If the operand is a float, integer, or vector constant, spill to a
6648       // constant pool entry to get its address.
6649       const Value *OpVal = OpInfo.CallOperandVal;
6650       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6651           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6652         OpInfo.CallOperand = DAG.getConstantPool(
6653             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6654       } else {
6655         // Otherwise, create a stack slot and emit a store to it before the
6656         // asm.
6657         Type *Ty = OpVal->getType();
6658         auto &DL = DAG.getDataLayout();
6659         uint64_t TySize = DL.getTypeAllocSize(Ty);
6660         unsigned Align = DL.getPrefTypeAlignment(Ty);
6661         MachineFunction &MF = DAG.getMachineFunction();
6662         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6663         SDValue StackSlot =
6664             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6665         Chain = DAG.getStore(
6666             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6667             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6668             false, false, 0);
6669         OpInfo.CallOperand = StackSlot;
6670       }
6671 
6672       // There is no longer a Value* corresponding to this operand.
6673       OpInfo.CallOperandVal = nullptr;
6674 
6675       // It is now an indirect operand.
6676       OpInfo.isIndirect = true;
6677     }
6678 
6679     // If this constraint is for a specific register, allocate it before
6680     // anything else.
6681     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6682       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6683   }
6684 
6685   // Second pass - Loop over all of the operands, assigning virtual or physregs
6686   // to register class operands.
6687   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6688     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6689 
6690     // C_Register operands have already been allocated, Other/Memory don't need
6691     // to be.
6692     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6693       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6694   }
6695 
6696   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6697   std::vector<SDValue> AsmNodeOperands;
6698   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6699   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6700       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6701 
6702   // If we have a !srcloc metadata node associated with it, we want to attach
6703   // this to the ultimately generated inline asm machineinstr.  To do this, we
6704   // pass in the third operand as this (potentially null) inline asm MDNode.
6705   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6706   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6707 
6708   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6709   // bits as operand 3.
6710   unsigned ExtraInfo = 0;
6711   if (IA->hasSideEffects())
6712     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6713   if (IA->isAlignStack())
6714     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6715   // Set the asm dialect.
6716   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6717 
6718   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6719   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6720     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6721 
6722     // Compute the constraint code and ConstraintType to use.
6723     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6724 
6725     // Ideally, we would only check against memory constraints.  However, the
6726     // meaning of an other constraint can be target-specific and we can't easily
6727     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6728     // for other constriants as well.
6729     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6730         OpInfo.ConstraintType == TargetLowering::C_Other) {
6731       if (OpInfo.Type == InlineAsm::isInput)
6732         ExtraInfo |= InlineAsm::Extra_MayLoad;
6733       else if (OpInfo.Type == InlineAsm::isOutput)
6734         ExtraInfo |= InlineAsm::Extra_MayStore;
6735       else if (OpInfo.Type == InlineAsm::isClobber)
6736         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6737     }
6738   }
6739 
6740   AsmNodeOperands.push_back(DAG.getTargetConstant(
6741       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6742 
6743   // Loop over all of the inputs, copying the operand values into the
6744   // appropriate registers and processing the output regs.
6745   RegsForValue RetValRegs;
6746 
6747   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6748   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6749 
6750   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6751     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6752 
6753     switch (OpInfo.Type) {
6754     case InlineAsm::isOutput: {
6755       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6756           OpInfo.ConstraintType != TargetLowering::C_Register) {
6757         // Memory output, or 'other' output (e.g. 'X' constraint).
6758         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6759 
6760         unsigned ConstraintID =
6761             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6762         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6763                "Failed to convert memory constraint code to constraint id.");
6764 
6765         // Add information to the INLINEASM node to know about this output.
6766         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6767         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6768         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6769                                                         MVT::i32));
6770         AsmNodeOperands.push_back(OpInfo.CallOperand);
6771         break;
6772       }
6773 
6774       // Otherwise, this is a register or register class output.
6775 
6776       // Copy the output from the appropriate register.  Find a register that
6777       // we can use.
6778       if (OpInfo.AssignedRegs.Regs.empty()) {
6779         LLVMContext &Ctx = *DAG.getContext();
6780         Ctx.emitError(CS.getInstruction(),
6781                       "couldn't allocate output register for constraint '" +
6782                           Twine(OpInfo.ConstraintCode) + "'");
6783         return;
6784       }
6785 
6786       // If this is an indirect operand, store through the pointer after the
6787       // asm.
6788       if (OpInfo.isIndirect) {
6789         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6790                                                       OpInfo.CallOperandVal));
6791       } else {
6792         // This is the result value of the call.
6793         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6794         // Concatenate this output onto the outputs list.
6795         RetValRegs.append(OpInfo.AssignedRegs);
6796       }
6797 
6798       // Add information to the INLINEASM node to know that this register is
6799       // set.
6800       OpInfo.AssignedRegs
6801           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6802                                     ? InlineAsm::Kind_RegDefEarlyClobber
6803                                     : InlineAsm::Kind_RegDef,
6804                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6805       break;
6806     }
6807     case InlineAsm::isInput: {
6808       SDValue InOperandVal = OpInfo.CallOperand;
6809 
6810       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6811         // If this is required to match an output register we have already set,
6812         // just use its register.
6813         unsigned OperandNo = OpInfo.getMatchedOperand();
6814 
6815         // Scan until we find the definition we already emitted of this operand.
6816         // When we find it, create a RegsForValue operand.
6817         unsigned CurOp = InlineAsm::Op_FirstOperand;
6818         for (; OperandNo; --OperandNo) {
6819           // Advance to the next operand.
6820           unsigned OpFlag =
6821             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6822           assert((InlineAsm::isRegDefKind(OpFlag) ||
6823                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6824                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6825           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6826         }
6827 
6828         unsigned OpFlag =
6829           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6830         if (InlineAsm::isRegDefKind(OpFlag) ||
6831             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6832           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6833           if (OpInfo.isIndirect) {
6834             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6835             LLVMContext &Ctx = *DAG.getContext();
6836             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6837                                                " don't know how to handle tied "
6838                                                "indirect register inputs");
6839             return;
6840           }
6841 
6842           RegsForValue MatchedRegs;
6843           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6844           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6845           MatchedRegs.RegVTs.push_back(RegVT);
6846           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6847           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6848                i != e; ++i) {
6849             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6850               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6851             else {
6852               LLVMContext &Ctx = *DAG.getContext();
6853               Ctx.emitError(CS.getInstruction(),
6854                             "inline asm error: This value"
6855                             " type register class is not natively supported!");
6856               return;
6857             }
6858           }
6859           SDLoc dl = getCurSDLoc();
6860           // Use the produced MatchedRegs object to
6861           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6862                                     Chain, &Flag, CS.getInstruction());
6863           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6864                                            true, OpInfo.getMatchedOperand(), dl,
6865                                            DAG, AsmNodeOperands);
6866           break;
6867         }
6868 
6869         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6870         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6871                "Unexpected number of operands");
6872         // Add information to the INLINEASM node to know about this input.
6873         // See InlineAsm.h isUseOperandTiedToDef.
6874         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6875         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6876                                                     OpInfo.getMatchedOperand());
6877         AsmNodeOperands.push_back(DAG.getTargetConstant(
6878             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6879         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6880         break;
6881       }
6882 
6883       // Treat indirect 'X' constraint as memory.
6884       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6885           OpInfo.isIndirect)
6886         OpInfo.ConstraintType = TargetLowering::C_Memory;
6887 
6888       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6889         std::vector<SDValue> Ops;
6890         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6891                                           Ops, DAG);
6892         if (Ops.empty()) {
6893           LLVMContext &Ctx = *DAG.getContext();
6894           Ctx.emitError(CS.getInstruction(),
6895                         "invalid operand for inline asm constraint '" +
6896                             Twine(OpInfo.ConstraintCode) + "'");
6897           return;
6898         }
6899 
6900         // Add information to the INLINEASM node to know about this input.
6901         unsigned ResOpType =
6902           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6903         AsmNodeOperands.push_back(DAG.getTargetConstant(
6904             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6905         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6906         break;
6907       }
6908 
6909       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6910         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6911         assert(InOperandVal.getValueType() ==
6912                    TLI.getPointerTy(DAG.getDataLayout()) &&
6913                "Memory operands expect pointer values");
6914 
6915         unsigned ConstraintID =
6916             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6917         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6918                "Failed to convert memory constraint code to constraint id.");
6919 
6920         // Add information to the INLINEASM node to know about this input.
6921         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6922         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6923         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6924                                                         getCurSDLoc(),
6925                                                         MVT::i32));
6926         AsmNodeOperands.push_back(InOperandVal);
6927         break;
6928       }
6929 
6930       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6931               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6932              "Unknown constraint type!");
6933 
6934       // TODO: Support this.
6935       if (OpInfo.isIndirect) {
6936         LLVMContext &Ctx = *DAG.getContext();
6937         Ctx.emitError(CS.getInstruction(),
6938                       "Don't know how to handle indirect register inputs yet "
6939                       "for constraint '" +
6940                           Twine(OpInfo.ConstraintCode) + "'");
6941         return;
6942       }
6943 
6944       // Copy the input into the appropriate registers.
6945       if (OpInfo.AssignedRegs.Regs.empty()) {
6946         LLVMContext &Ctx = *DAG.getContext();
6947         Ctx.emitError(CS.getInstruction(),
6948                       "couldn't allocate input reg for constraint '" +
6949                           Twine(OpInfo.ConstraintCode) + "'");
6950         return;
6951       }
6952 
6953       SDLoc dl = getCurSDLoc();
6954 
6955       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6956                                         Chain, &Flag, CS.getInstruction());
6957 
6958       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6959                                                dl, DAG, AsmNodeOperands);
6960       break;
6961     }
6962     case InlineAsm::isClobber: {
6963       // Add the clobbered value to the operand list, so that the register
6964       // allocator is aware that the physreg got clobbered.
6965       if (!OpInfo.AssignedRegs.Regs.empty())
6966         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6967                                                  false, 0, getCurSDLoc(), DAG,
6968                                                  AsmNodeOperands);
6969       break;
6970     }
6971     }
6972   }
6973 
6974   // Finish up input operands.  Set the input chain and add the flag last.
6975   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6976   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6977 
6978   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6979                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6980   Flag = Chain.getValue(1);
6981 
6982   // If this asm returns a register value, copy the result from that register
6983   // and set it as the value of the call.
6984   if (!RetValRegs.Regs.empty()) {
6985     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6986                                              Chain, &Flag, CS.getInstruction());
6987 
6988     // FIXME: Why don't we do this for inline asms with MRVs?
6989     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6990       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6991 
6992       // If any of the results of the inline asm is a vector, it may have the
6993       // wrong width/num elts.  This can happen for register classes that can
6994       // contain multiple different value types.  The preg or vreg allocated may
6995       // not have the same VT as was expected.  Convert it to the right type
6996       // with bit_convert.
6997       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6998         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6999                           ResultType, Val);
7000 
7001       } else if (ResultType != Val.getValueType() &&
7002                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7003         // If a result value was tied to an input value, the computed result may
7004         // have a wider width than the expected result.  Extract the relevant
7005         // portion.
7006         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7007       }
7008 
7009       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7010     }
7011 
7012     setValue(CS.getInstruction(), Val);
7013     // Don't need to use this as a chain in this case.
7014     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7015       return;
7016   }
7017 
7018   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7019 
7020   // Process indirect outputs, first output all of the flagged copies out of
7021   // physregs.
7022   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7023     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7024     const Value *Ptr = IndirectStoresToEmit[i].second;
7025     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7026                                              Chain, &Flag, IA);
7027     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7028   }
7029 
7030   // Emit the non-flagged stores from the physregs.
7031   SmallVector<SDValue, 8> OutChains;
7032   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7033     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7034                                StoresToEmit[i].first,
7035                                getValue(StoresToEmit[i].second),
7036                                MachinePointerInfo(StoresToEmit[i].second),
7037                                false, false, 0);
7038     OutChains.push_back(Val);
7039   }
7040 
7041   if (!OutChains.empty())
7042     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7043 
7044   DAG.setRoot(Chain);
7045 }
7046 
7047 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7048   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7049                           MVT::Other, getRoot(),
7050                           getValue(I.getArgOperand(0)),
7051                           DAG.getSrcValue(I.getArgOperand(0))));
7052 }
7053 
7054 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7056   const DataLayout &DL = DAG.getDataLayout();
7057   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7058                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7059                            DAG.getSrcValue(I.getOperand(0)),
7060                            DL.getABITypeAlignment(I.getType()));
7061   setValue(&I, V);
7062   DAG.setRoot(V.getValue(1));
7063 }
7064 
7065 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7066   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7067                           MVT::Other, getRoot(),
7068                           getValue(I.getArgOperand(0)),
7069                           DAG.getSrcValue(I.getArgOperand(0))));
7070 }
7071 
7072 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7073   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7074                           MVT::Other, getRoot(),
7075                           getValue(I.getArgOperand(0)),
7076                           getValue(I.getArgOperand(1)),
7077                           DAG.getSrcValue(I.getArgOperand(0)),
7078                           DAG.getSrcValue(I.getArgOperand(1))));
7079 }
7080 
7081 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7082                                                     const Instruction &I,
7083                                                     SDValue Op) {
7084   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7085   if (!Range)
7086     return Op;
7087 
7088   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7089   if (!Lo->isNullValue())
7090     return Op;
7091 
7092   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7093   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7094 
7095   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7096 
7097   SDLoc SL = getCurSDLoc();
7098 
7099   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7100                              Op, DAG.getValueType(SmallVT));
7101   unsigned NumVals = Op.getNode()->getNumValues();
7102   if (NumVals == 1)
7103     return ZExt;
7104 
7105   SmallVector<SDValue, 4> Ops;
7106 
7107   Ops.push_back(ZExt);
7108   for (unsigned I = 1; I != NumVals; ++I)
7109     Ops.push_back(Op.getValue(I));
7110 
7111   return DAG.getMergeValues(Ops, SL);
7112 }
7113 
7114 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7115 /// the call being lowered.
7116 ///
7117 /// This is a helper for lowering intrinsics that follow a target calling
7118 /// convention or require stack pointer adjustment. Only a subset of the
7119 /// intrinsic's operands need to participate in the calling convention.
7120 void SelectionDAGBuilder::populateCallLoweringInfo(
7121     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7122     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7123     bool IsPatchPoint) {
7124   TargetLowering::ArgListTy Args;
7125   Args.reserve(NumArgs);
7126 
7127   // Populate the argument list.
7128   // Attributes for args start at offset 1, after the return attribute.
7129   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7130        ArgI != ArgE; ++ArgI) {
7131     const Value *V = CS->getOperand(ArgI);
7132 
7133     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7134 
7135     TargetLowering::ArgListEntry Entry;
7136     Entry.Node = getValue(V);
7137     Entry.Ty = V->getType();
7138     Entry.setAttributes(&CS, AttrI);
7139     Args.push_back(Entry);
7140   }
7141 
7142   CLI.setDebugLoc(getCurSDLoc())
7143       .setChain(getRoot())
7144       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args),
7145                  NumArgs)
7146       .setDiscardResult(CS->use_empty())
7147       .setIsPatchPoint(IsPatchPoint);
7148 }
7149 
7150 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7151 /// or patchpoint target node's operand list.
7152 ///
7153 /// Constants are converted to TargetConstants purely as an optimization to
7154 /// avoid constant materialization and register allocation.
7155 ///
7156 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7157 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7158 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7159 /// address materialization and register allocation, but may also be required
7160 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7161 /// alloca in the entry block, then the runtime may assume that the alloca's
7162 /// StackMap location can be read immediately after compilation and that the
7163 /// location is valid at any point during execution (this is similar to the
7164 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7165 /// only available in a register, then the runtime would need to trap when
7166 /// execution reaches the StackMap in order to read the alloca's location.
7167 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7168                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
7169                                 SelectionDAGBuilder &Builder) {
7170   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7171     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7172     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7173       Ops.push_back(
7174         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7175       Ops.push_back(
7176         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7177     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7178       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7179       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7180           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7181     } else
7182       Ops.push_back(OpVal);
7183   }
7184 }
7185 
7186 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7187 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7188   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7189   //                                  [live variables...])
7190 
7191   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7192 
7193   SDValue Chain, InFlag, Callee, NullPtr;
7194   SmallVector<SDValue, 32> Ops;
7195 
7196   SDLoc DL = getCurSDLoc();
7197   Callee = getValue(CI.getCalledValue());
7198   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7199 
7200   // The stackmap intrinsic only records the live variables (the arguemnts
7201   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7202   // intrinsic, this won't be lowered to a function call. This means we don't
7203   // have to worry about calling conventions and target specific lowering code.
7204   // Instead we perform the call lowering right here.
7205   //
7206   // chain, flag = CALLSEQ_START(chain, 0)
7207   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7208   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7209   //
7210   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7211   InFlag = Chain.getValue(1);
7212 
7213   // Add the <id> and <numBytes> constants.
7214   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7215   Ops.push_back(DAG.getTargetConstant(
7216                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7217   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7218   Ops.push_back(DAG.getTargetConstant(
7219                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7220                   MVT::i32));
7221 
7222   // Push live variables for the stack map.
7223   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7224 
7225   // We are not pushing any register mask info here on the operands list,
7226   // because the stackmap doesn't clobber anything.
7227 
7228   // Push the chain and the glue flag.
7229   Ops.push_back(Chain);
7230   Ops.push_back(InFlag);
7231 
7232   // Create the STACKMAP node.
7233   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7234   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7235   Chain = SDValue(SM, 0);
7236   InFlag = Chain.getValue(1);
7237 
7238   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7239 
7240   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7241 
7242   // Set the root to the target-lowered call chain.
7243   DAG.setRoot(Chain);
7244 
7245   // Inform the Frame Information that we have a stackmap in this function.
7246   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7247 }
7248 
7249 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7250 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7251                                           const BasicBlock *EHPadBB) {
7252   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7253   //                                                 i32 <numBytes>,
7254   //                                                 i8* <target>,
7255   //                                                 i32 <numArgs>,
7256   //                                                 [Args...],
7257   //                                                 [live variables...])
7258 
7259   CallingConv::ID CC = CS.getCallingConv();
7260   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7261   bool HasDef = !CS->getType()->isVoidTy();
7262   SDLoc dl = getCurSDLoc();
7263   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7264 
7265   // Handle immediate and symbolic callees.
7266   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7267     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7268                                    /*isTarget=*/true);
7269   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7270     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7271                                          SDLoc(SymbolicCallee),
7272                                          SymbolicCallee->getValueType(0));
7273 
7274   // Get the real number of arguments participating in the call <numArgs>
7275   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7276   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7277 
7278   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7279   // Intrinsics include all meta-operands up to but not including CC.
7280   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7281   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7282          "Not enough arguments provided to the patchpoint intrinsic");
7283 
7284   // For AnyRegCC the arguments are lowered later on manually.
7285   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7286   Type *ReturnTy =
7287     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7288 
7289   TargetLowering::CallLoweringInfo CLI(DAG);
7290   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7291                            true);
7292   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7293 
7294   SDNode *CallEnd = Result.second.getNode();
7295   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7296     CallEnd = CallEnd->getOperand(0).getNode();
7297 
7298   /// Get a call instruction from the call sequence chain.
7299   /// Tail calls are not allowed.
7300   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7301          "Expected a callseq node.");
7302   SDNode *Call = CallEnd->getOperand(0).getNode();
7303   bool HasGlue = Call->getGluedNode();
7304 
7305   // Replace the target specific call node with the patchable intrinsic.
7306   SmallVector<SDValue, 8> Ops;
7307 
7308   // Add the <id> and <numBytes> constants.
7309   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7310   Ops.push_back(DAG.getTargetConstant(
7311                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7312   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7313   Ops.push_back(DAG.getTargetConstant(
7314                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7315                   MVT::i32));
7316 
7317   // Add the callee.
7318   Ops.push_back(Callee);
7319 
7320   // Adjust <numArgs> to account for any arguments that have been passed on the
7321   // stack instead.
7322   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7323   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7324   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7325   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7326 
7327   // Add the calling convention
7328   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7329 
7330   // Add the arguments we omitted previously. The register allocator should
7331   // place these in any free register.
7332   if (IsAnyRegCC)
7333     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7334       Ops.push_back(getValue(CS.getArgument(i)));
7335 
7336   // Push the arguments from the call instruction up to the register mask.
7337   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7338   Ops.append(Call->op_begin() + 2, e);
7339 
7340   // Push live variables for the stack map.
7341   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7342 
7343   // Push the register mask info.
7344   if (HasGlue)
7345     Ops.push_back(*(Call->op_end()-2));
7346   else
7347     Ops.push_back(*(Call->op_end()-1));
7348 
7349   // Push the chain (this is originally the first operand of the call, but
7350   // becomes now the last or second to last operand).
7351   Ops.push_back(*(Call->op_begin()));
7352 
7353   // Push the glue flag (last operand).
7354   if (HasGlue)
7355     Ops.push_back(*(Call->op_end()-1));
7356 
7357   SDVTList NodeTys;
7358   if (IsAnyRegCC && HasDef) {
7359     // Create the return types based on the intrinsic definition
7360     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7361     SmallVector<EVT, 3> ValueVTs;
7362     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7363     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7364 
7365     // There is always a chain and a glue type at the end
7366     ValueVTs.push_back(MVT::Other);
7367     ValueVTs.push_back(MVT::Glue);
7368     NodeTys = DAG.getVTList(ValueVTs);
7369   } else
7370     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7371 
7372   // Replace the target specific call node with a PATCHPOINT node.
7373   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7374                                          dl, NodeTys, Ops);
7375 
7376   // Update the NodeMap.
7377   if (HasDef) {
7378     if (IsAnyRegCC)
7379       setValue(CS.getInstruction(), SDValue(MN, 0));
7380     else
7381       setValue(CS.getInstruction(), Result.first);
7382   }
7383 
7384   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7385   // call sequence. Furthermore the location of the chain and glue can change
7386   // when the AnyReg calling convention is used and the intrinsic returns a
7387   // value.
7388   if (IsAnyRegCC && HasDef) {
7389     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7390     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7391     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7392   } else
7393     DAG.ReplaceAllUsesWith(Call, MN);
7394   DAG.DeleteNode(Call);
7395 
7396   // Inform the Frame Information that we have a patchpoint in this function.
7397   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7398 }
7399 
7400 /// Returns an AttributeSet representing the attributes applied to the return
7401 /// value of the given call.
7402 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7403   SmallVector<Attribute::AttrKind, 2> Attrs;
7404   if (CLI.RetSExt)
7405     Attrs.push_back(Attribute::SExt);
7406   if (CLI.RetZExt)
7407     Attrs.push_back(Attribute::ZExt);
7408   if (CLI.IsInReg)
7409     Attrs.push_back(Attribute::InReg);
7410 
7411   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7412                            Attrs);
7413 }
7414 
7415 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7416 /// implementation, which just calls LowerCall.
7417 /// FIXME: When all targets are
7418 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7419 std::pair<SDValue, SDValue>
7420 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7421   // Handle the incoming return values from the call.
7422   CLI.Ins.clear();
7423   Type *OrigRetTy = CLI.RetTy;
7424   SmallVector<EVT, 4> RetTys;
7425   SmallVector<uint64_t, 4> Offsets;
7426   auto &DL = CLI.DAG.getDataLayout();
7427   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7428 
7429   SmallVector<ISD::OutputArg, 4> Outs;
7430   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7431 
7432   bool CanLowerReturn =
7433       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7434                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7435 
7436   SDValue DemoteStackSlot;
7437   int DemoteStackIdx = -100;
7438   if (!CanLowerReturn) {
7439     // FIXME: equivalent assert?
7440     // assert(!CS.hasInAllocaArgument() &&
7441     //        "sret demotion is incompatible with inalloca");
7442     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7443     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7444     MachineFunction &MF = CLI.DAG.getMachineFunction();
7445     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7446     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7447 
7448     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7449     ArgListEntry Entry;
7450     Entry.Node = DemoteStackSlot;
7451     Entry.Ty = StackSlotPtrType;
7452     Entry.isSExt = false;
7453     Entry.isZExt = false;
7454     Entry.isInReg = false;
7455     Entry.isSRet = true;
7456     Entry.isNest = false;
7457     Entry.isByVal = false;
7458     Entry.isReturned = false;
7459     Entry.isSwiftSelf = false;
7460     Entry.isSwiftError = false;
7461     Entry.Alignment = Align;
7462     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7463     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7464 
7465     // sret demotion isn't compatible with tail-calls, since the sret argument
7466     // points into the callers stack frame.
7467     CLI.IsTailCall = false;
7468   } else {
7469     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7470       EVT VT = RetTys[I];
7471       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7472       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7473       for (unsigned i = 0; i != NumRegs; ++i) {
7474         ISD::InputArg MyFlags;
7475         MyFlags.VT = RegisterVT;
7476         MyFlags.ArgVT = VT;
7477         MyFlags.Used = CLI.IsReturnValueUsed;
7478         if (CLI.RetSExt)
7479           MyFlags.Flags.setSExt();
7480         if (CLI.RetZExt)
7481           MyFlags.Flags.setZExt();
7482         if (CLI.IsInReg)
7483           MyFlags.Flags.setInReg();
7484         CLI.Ins.push_back(MyFlags);
7485       }
7486     }
7487   }
7488 
7489   // We push in swifterror return as the last element of CLI.Ins.
7490   ArgListTy &Args = CLI.getArgs();
7491   if (supportSwiftError()) {
7492     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7493       if (Args[i].isSwiftError) {
7494         ISD::InputArg MyFlags;
7495         MyFlags.VT = getPointerTy(DL);
7496         MyFlags.ArgVT = EVT(getPointerTy(DL));
7497         MyFlags.Flags.setSwiftError();
7498         CLI.Ins.push_back(MyFlags);
7499       }
7500     }
7501   }
7502 
7503   // Handle all of the outgoing arguments.
7504   CLI.Outs.clear();
7505   CLI.OutVals.clear();
7506   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7507     SmallVector<EVT, 4> ValueVTs;
7508     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7509     Type *FinalType = Args[i].Ty;
7510     if (Args[i].isByVal)
7511       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7512     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7513         FinalType, CLI.CallConv, CLI.IsVarArg);
7514     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7515          ++Value) {
7516       EVT VT = ValueVTs[Value];
7517       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7518       SDValue Op = SDValue(Args[i].Node.getNode(),
7519                            Args[i].Node.getResNo() + Value);
7520       ISD::ArgFlagsTy Flags;
7521       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7522 
7523       if (Args[i].isZExt)
7524         Flags.setZExt();
7525       if (Args[i].isSExt)
7526         Flags.setSExt();
7527       if (Args[i].isInReg)
7528         Flags.setInReg();
7529       if (Args[i].isSRet)
7530         Flags.setSRet();
7531       if (Args[i].isSwiftSelf)
7532         Flags.setSwiftSelf();
7533       if (Args[i].isSwiftError)
7534         Flags.setSwiftError();
7535       if (Args[i].isByVal)
7536         Flags.setByVal();
7537       if (Args[i].isInAlloca) {
7538         Flags.setInAlloca();
7539         // Set the byval flag for CCAssignFn callbacks that don't know about
7540         // inalloca.  This way we can know how many bytes we should've allocated
7541         // and how many bytes a callee cleanup function will pop.  If we port
7542         // inalloca to more targets, we'll have to add custom inalloca handling
7543         // in the various CC lowering callbacks.
7544         Flags.setByVal();
7545       }
7546       if (Args[i].isByVal || Args[i].isInAlloca) {
7547         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7548         Type *ElementTy = Ty->getElementType();
7549         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7550         // For ByVal, alignment should come from FE.  BE will guess if this
7551         // info is not there but there are cases it cannot get right.
7552         unsigned FrameAlign;
7553         if (Args[i].Alignment)
7554           FrameAlign = Args[i].Alignment;
7555         else
7556           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7557         Flags.setByValAlign(FrameAlign);
7558       }
7559       if (Args[i].isNest)
7560         Flags.setNest();
7561       if (NeedsRegBlock)
7562         Flags.setInConsecutiveRegs();
7563       Flags.setOrigAlign(OriginalAlignment);
7564 
7565       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7566       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7567       SmallVector<SDValue, 4> Parts(NumParts);
7568       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7569 
7570       if (Args[i].isSExt)
7571         ExtendKind = ISD::SIGN_EXTEND;
7572       else if (Args[i].isZExt)
7573         ExtendKind = ISD::ZERO_EXTEND;
7574 
7575       // Conservatively only handle 'returned' on non-vectors for now
7576       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7577         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7578                "unexpected use of 'returned'");
7579         // Before passing 'returned' to the target lowering code, ensure that
7580         // either the register MVT and the actual EVT are the same size or that
7581         // the return value and argument are extended in the same way; in these
7582         // cases it's safe to pass the argument register value unchanged as the
7583         // return register value (although it's at the target's option whether
7584         // to do so)
7585         // TODO: allow code generation to take advantage of partially preserved
7586         // registers rather than clobbering the entire register when the
7587         // parameter extension method is not compatible with the return
7588         // extension method
7589         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7590             (ExtendKind != ISD::ANY_EXTEND &&
7591              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7592         Flags.setReturned();
7593       }
7594 
7595       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7596                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7597 
7598       for (unsigned j = 0; j != NumParts; ++j) {
7599         // if it isn't first piece, alignment must be 1
7600         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7601                                i < CLI.NumFixedArgs,
7602                                i, j*Parts[j].getValueType().getStoreSize());
7603         if (NumParts > 1 && j == 0)
7604           MyFlags.Flags.setSplit();
7605         else if (j != 0) {
7606           MyFlags.Flags.setOrigAlign(1);
7607           if (j == NumParts - 1)
7608             MyFlags.Flags.setSplitEnd();
7609         }
7610 
7611         CLI.Outs.push_back(MyFlags);
7612         CLI.OutVals.push_back(Parts[j]);
7613       }
7614 
7615       if (NeedsRegBlock && Value == NumValues - 1)
7616         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7617     }
7618   }
7619 
7620   SmallVector<SDValue, 4> InVals;
7621   CLI.Chain = LowerCall(CLI, InVals);
7622 
7623   // Update CLI.InVals to use outside of this function.
7624   CLI.InVals = InVals;
7625 
7626   // Verify that the target's LowerCall behaved as expected.
7627   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7628          "LowerCall didn't return a valid chain!");
7629   assert((!CLI.IsTailCall || InVals.empty()) &&
7630          "LowerCall emitted a return value for a tail call!");
7631   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7632          "LowerCall didn't emit the correct number of values!");
7633 
7634   // For a tail call, the return value is merely live-out and there aren't
7635   // any nodes in the DAG representing it. Return a special value to
7636   // indicate that a tail call has been emitted and no more Instructions
7637   // should be processed in the current block.
7638   if (CLI.IsTailCall) {
7639     CLI.DAG.setRoot(CLI.Chain);
7640     return std::make_pair(SDValue(), SDValue());
7641   }
7642 
7643 #ifndef NDEBUG
7644   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7645     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7646     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7647            "LowerCall emitted a value with the wrong type!");
7648   }
7649 #endif
7650 
7651   SmallVector<SDValue, 4> ReturnValues;
7652   if (!CanLowerReturn) {
7653     // The instruction result is the result of loading from the
7654     // hidden sret parameter.
7655     SmallVector<EVT, 1> PVTs;
7656     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7657 
7658     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7659     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7660     EVT PtrVT = PVTs[0];
7661 
7662     unsigned NumValues = RetTys.size();
7663     ReturnValues.resize(NumValues);
7664     SmallVector<SDValue, 4> Chains(NumValues);
7665 
7666     // An aggregate return value cannot wrap around the address space, so
7667     // offsets to its parts don't wrap either.
7668     SDNodeFlags Flags;
7669     Flags.setNoUnsignedWrap(true);
7670 
7671     for (unsigned i = 0; i < NumValues; ++i) {
7672       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7673                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7674                                                         PtrVT), &Flags);
7675       SDValue L = CLI.DAG.getLoad(
7676           RetTys[i], CLI.DL, CLI.Chain, Add,
7677           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7678                                             DemoteStackIdx, Offsets[i]),
7679           false, false, false, 1);
7680       ReturnValues[i] = L;
7681       Chains[i] = L.getValue(1);
7682     }
7683 
7684     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7685   } else {
7686     // Collect the legal value parts into potentially illegal values
7687     // that correspond to the original function's return values.
7688     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7689     if (CLI.RetSExt)
7690       AssertOp = ISD::AssertSext;
7691     else if (CLI.RetZExt)
7692       AssertOp = ISD::AssertZext;
7693     unsigned CurReg = 0;
7694     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7695       EVT VT = RetTys[I];
7696       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7697       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7698 
7699       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7700                                               NumRegs, RegisterVT, VT, nullptr,
7701                                               AssertOp));
7702       CurReg += NumRegs;
7703     }
7704 
7705     // For a function returning void, there is no return value. We can't create
7706     // such a node, so we just return a null return value in that case. In
7707     // that case, nothing will actually look at the value.
7708     if (ReturnValues.empty())
7709       return std::make_pair(SDValue(), CLI.Chain);
7710   }
7711 
7712   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7713                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7714   return std::make_pair(Res, CLI.Chain);
7715 }
7716 
7717 void TargetLowering::LowerOperationWrapper(SDNode *N,
7718                                            SmallVectorImpl<SDValue> &Results,
7719                                            SelectionDAG &DAG) const {
7720   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7721     Results.push_back(Res);
7722 }
7723 
7724 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7725   llvm_unreachable("LowerOperation not implemented for this target!");
7726 }
7727 
7728 void
7729 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7730   SDValue Op = getNonRegisterValue(V);
7731   assert((Op.getOpcode() != ISD::CopyFromReg ||
7732           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7733          "Copy from a reg to the same reg!");
7734   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7735 
7736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7737   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7738                    V->getType());
7739   SDValue Chain = DAG.getEntryNode();
7740 
7741   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7742                               FuncInfo.PreferredExtendType.end())
7743                                  ? ISD::ANY_EXTEND
7744                                  : FuncInfo.PreferredExtendType[V];
7745   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7746   PendingExports.push_back(Chain);
7747 }
7748 
7749 #include "llvm/CodeGen/SelectionDAGISel.h"
7750 
7751 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7752 /// entry block, return true.  This includes arguments used by switches, since
7753 /// the switch may expand into multiple basic blocks.
7754 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7755   // With FastISel active, we may be splitting blocks, so force creation
7756   // of virtual registers for all non-dead arguments.
7757   if (FastISel)
7758     return A->use_empty();
7759 
7760   const BasicBlock &Entry = A->getParent()->front();
7761   for (const User *U : A->users())
7762     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7763       return false;  // Use not in entry block.
7764 
7765   return true;
7766 }
7767 
7768 void SelectionDAGISel::LowerArguments(const Function &F) {
7769   SelectionDAG &DAG = SDB->DAG;
7770   SDLoc dl = SDB->getCurSDLoc();
7771   const DataLayout &DL = DAG.getDataLayout();
7772   SmallVector<ISD::InputArg, 16> Ins;
7773 
7774   if (!FuncInfo->CanLowerReturn) {
7775     // Put in an sret pointer parameter before all the other parameters.
7776     SmallVector<EVT, 1> ValueVTs;
7777     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7778                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7779 
7780     // NOTE: Assuming that a pointer will never break down to more than one VT
7781     // or one register.
7782     ISD::ArgFlagsTy Flags;
7783     Flags.setSRet();
7784     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7785     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7786                          ISD::InputArg::NoArgIndex, 0);
7787     Ins.push_back(RetArg);
7788   }
7789 
7790   // Set up the incoming argument description vector.
7791   unsigned Idx = 1;
7792   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7793        I != E; ++I, ++Idx) {
7794     SmallVector<EVT, 4> ValueVTs;
7795     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7796     bool isArgValueUsed = !I->use_empty();
7797     unsigned PartBase = 0;
7798     Type *FinalType = I->getType();
7799     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7800       FinalType = cast<PointerType>(FinalType)->getElementType();
7801     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7802         FinalType, F.getCallingConv(), F.isVarArg());
7803     for (unsigned Value = 0, NumValues = ValueVTs.size();
7804          Value != NumValues; ++Value) {
7805       EVT VT = ValueVTs[Value];
7806       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7807       ISD::ArgFlagsTy Flags;
7808       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7809 
7810       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7811         Flags.setZExt();
7812       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7813         Flags.setSExt();
7814       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7815         Flags.setInReg();
7816       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7817         Flags.setSRet();
7818       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7819         Flags.setSwiftSelf();
7820       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7821         Flags.setSwiftError();
7822       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7823         Flags.setByVal();
7824       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7825         Flags.setInAlloca();
7826         // Set the byval flag for CCAssignFn callbacks that don't know about
7827         // inalloca.  This way we can know how many bytes we should've allocated
7828         // and how many bytes a callee cleanup function will pop.  If we port
7829         // inalloca to more targets, we'll have to add custom inalloca handling
7830         // in the various CC lowering callbacks.
7831         Flags.setByVal();
7832       }
7833       if (F.getCallingConv() == CallingConv::X86_INTR) {
7834         // IA Interrupt passes frame (1st parameter) by value in the stack.
7835         if (Idx == 1)
7836           Flags.setByVal();
7837       }
7838       if (Flags.isByVal() || Flags.isInAlloca()) {
7839         PointerType *Ty = cast<PointerType>(I->getType());
7840         Type *ElementTy = Ty->getElementType();
7841         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7842         // For ByVal, alignment should be passed from FE.  BE will guess if
7843         // this info is not there but there are cases it cannot get right.
7844         unsigned FrameAlign;
7845         if (F.getParamAlignment(Idx))
7846           FrameAlign = F.getParamAlignment(Idx);
7847         else
7848           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7849         Flags.setByValAlign(FrameAlign);
7850       }
7851       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7852         Flags.setNest();
7853       if (NeedsRegBlock)
7854         Flags.setInConsecutiveRegs();
7855       Flags.setOrigAlign(OriginalAlignment);
7856 
7857       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7858       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7859       for (unsigned i = 0; i != NumRegs; ++i) {
7860         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7861                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7862         if (NumRegs > 1 && i == 0)
7863           MyFlags.Flags.setSplit();
7864         // if it isn't first piece, alignment must be 1
7865         else if (i > 0) {
7866           MyFlags.Flags.setOrigAlign(1);
7867           if (i == NumRegs - 1)
7868             MyFlags.Flags.setSplitEnd();
7869         }
7870         Ins.push_back(MyFlags);
7871       }
7872       if (NeedsRegBlock && Value == NumValues - 1)
7873         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7874       PartBase += VT.getStoreSize();
7875     }
7876   }
7877 
7878   // Call the target to set up the argument values.
7879   SmallVector<SDValue, 8> InVals;
7880   SDValue NewRoot = TLI->LowerFormalArguments(
7881       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7882 
7883   // Verify that the target's LowerFormalArguments behaved as expected.
7884   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7885          "LowerFormalArguments didn't return a valid chain!");
7886   assert(InVals.size() == Ins.size() &&
7887          "LowerFormalArguments didn't emit the correct number of values!");
7888   DEBUG({
7889       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7890         assert(InVals[i].getNode() &&
7891                "LowerFormalArguments emitted a null value!");
7892         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7893                "LowerFormalArguments emitted a value with the wrong type!");
7894       }
7895     });
7896 
7897   // Update the DAG with the new chain value resulting from argument lowering.
7898   DAG.setRoot(NewRoot);
7899 
7900   // Set up the argument values.
7901   unsigned i = 0;
7902   Idx = 1;
7903   if (!FuncInfo->CanLowerReturn) {
7904     // Create a virtual register for the sret pointer, and put in a copy
7905     // from the sret argument into it.
7906     SmallVector<EVT, 1> ValueVTs;
7907     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7908                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7909     MVT VT = ValueVTs[0].getSimpleVT();
7910     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7911     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7912     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7913                                         RegVT, VT, nullptr, AssertOp);
7914 
7915     MachineFunction& MF = SDB->DAG.getMachineFunction();
7916     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7917     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7918     FuncInfo->DemoteRegister = SRetReg;
7919     NewRoot =
7920         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7921     DAG.setRoot(NewRoot);
7922 
7923     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7924     // Idx indexes LLVM arguments.  Don't touch it.
7925     ++i;
7926   }
7927 
7928   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7929       ++I, ++Idx) {
7930     SmallVector<SDValue, 4> ArgValues;
7931     SmallVector<EVT, 4> ValueVTs;
7932     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7933     unsigned NumValues = ValueVTs.size();
7934 
7935     // If this argument is unused then remember its value. It is used to generate
7936     // debugging information.
7937     if (I->use_empty() && NumValues) {
7938       SDB->setUnusedArgValue(&*I, InVals[i]);
7939 
7940       // Also remember any frame index for use in FastISel.
7941       if (FrameIndexSDNode *FI =
7942           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7943         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7944     }
7945 
7946     for (unsigned Val = 0; Val != NumValues; ++Val) {
7947       EVT VT = ValueVTs[Val];
7948       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7949       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7950 
7951       if (!I->use_empty()) {
7952         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7953         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7954           AssertOp = ISD::AssertSext;
7955         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7956           AssertOp = ISD::AssertZext;
7957 
7958         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7959                                              NumParts, PartVT, VT,
7960                                              nullptr, AssertOp));
7961       }
7962 
7963       i += NumParts;
7964     }
7965 
7966     // We don't need to do anything else for unused arguments.
7967     if (ArgValues.empty())
7968       continue;
7969 
7970     // Note down frame index.
7971     if (FrameIndexSDNode *FI =
7972         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7973       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7974 
7975     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7976                                      SDB->getCurSDLoc());
7977 
7978     SDB->setValue(&*I, Res);
7979     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7980       if (LoadSDNode *LNode =
7981           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7982         if (FrameIndexSDNode *FI =
7983             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7984         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7985     }
7986 
7987     // Update SwiftErrorMap.
7988     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
7989         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
7990       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7991       if (TargetRegisterInfo::isVirtualRegister(Reg))
7992         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
7993     }
7994 
7995     // If this argument is live outside of the entry block, insert a copy from
7996     // wherever we got it to the vreg that other BB's will reference it as.
7997     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7998       // If we can, though, try to skip creating an unnecessary vreg.
7999       // FIXME: This isn't very clean... it would be nice to make this more
8000       // general.  It's also subtly incompatible with the hacks FastISel
8001       // uses with vregs.
8002       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8003       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8004         FuncInfo->ValueMap[&*I] = Reg;
8005         continue;
8006       }
8007     }
8008     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8009       FuncInfo->InitializeRegForValue(&*I);
8010       SDB->CopyToExportRegsIfNeeded(&*I);
8011     }
8012   }
8013 
8014   assert(i == InVals.size() && "Argument register count mismatch!");
8015 
8016   // Finally, if the target has anything special to do, allow it to do so.
8017   EmitFunctionEntryCode();
8018 }
8019 
8020 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8021 /// ensure constants are generated when needed.  Remember the virtual registers
8022 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8023 /// directly add them, because expansion might result in multiple MBB's for one
8024 /// BB.  As such, the start of the BB might correspond to a different MBB than
8025 /// the end.
8026 ///
8027 void
8028 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8029   const TerminatorInst *TI = LLVMBB->getTerminator();
8030 
8031   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8032 
8033   // Check PHI nodes in successors that expect a value to be available from this
8034   // block.
8035   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8036     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8037     if (!isa<PHINode>(SuccBB->begin())) continue;
8038     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8039 
8040     // If this terminator has multiple identical successors (common for
8041     // switches), only handle each succ once.
8042     if (!SuccsHandled.insert(SuccMBB).second)
8043       continue;
8044 
8045     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8046 
8047     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8048     // nodes and Machine PHI nodes, but the incoming operands have not been
8049     // emitted yet.
8050     for (BasicBlock::const_iterator I = SuccBB->begin();
8051          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8052       // Ignore dead phi's.
8053       if (PN->use_empty()) continue;
8054 
8055       // Skip empty types
8056       if (PN->getType()->isEmptyTy())
8057         continue;
8058 
8059       unsigned Reg;
8060       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8061 
8062       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8063         unsigned &RegOut = ConstantsOut[C];
8064         if (RegOut == 0) {
8065           RegOut = FuncInfo.CreateRegs(C->getType());
8066           CopyValueToVirtualRegister(C, RegOut);
8067         }
8068         Reg = RegOut;
8069       } else {
8070         DenseMap<const Value *, unsigned>::iterator I =
8071           FuncInfo.ValueMap.find(PHIOp);
8072         if (I != FuncInfo.ValueMap.end())
8073           Reg = I->second;
8074         else {
8075           assert(isa<AllocaInst>(PHIOp) &&
8076                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8077                  "Didn't codegen value into a register!??");
8078           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8079           CopyValueToVirtualRegister(PHIOp, Reg);
8080         }
8081       }
8082 
8083       // Remember that this register needs to added to the machine PHI node as
8084       // the input for this MBB.
8085       SmallVector<EVT, 4> ValueVTs;
8086       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8087       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8088       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8089         EVT VT = ValueVTs[vti];
8090         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8091         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8092           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
8093         Reg += NumRegisters;
8094       }
8095     }
8096   }
8097 
8098   ConstantsOut.clear();
8099 }
8100 
8101 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8102 /// is 0.
8103 MachineBasicBlock *
8104 SelectionDAGBuilder::StackProtectorDescriptor::
8105 AddSuccessorMBB(const BasicBlock *BB,
8106                 MachineBasicBlock *ParentMBB,
8107                 bool IsLikely,
8108                 MachineBasicBlock *SuccMBB) {
8109   // If SuccBB has not been created yet, create it.
8110   if (!SuccMBB) {
8111     MachineFunction *MF = ParentMBB->getParent();
8112     MachineFunction::iterator BBI(ParentMBB);
8113     SuccMBB = MF->CreateMachineBasicBlock(BB);
8114     MF->insert(++BBI, SuccMBB);
8115   }
8116   // Add it as a successor of ParentMBB.
8117   ParentMBB->addSuccessor(
8118       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8119   return SuccMBB;
8120 }
8121 
8122 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8123   MachineFunction::iterator I(MBB);
8124   if (++I == FuncInfo.MF->end())
8125     return nullptr;
8126   return &*I;
8127 }
8128 
8129 /// During lowering new call nodes can be created (such as memset, etc.).
8130 /// Those will become new roots of the current DAG, but complications arise
8131 /// when they are tail calls. In such cases, the call lowering will update
8132 /// the root, but the builder still needs to know that a tail call has been
8133 /// lowered in order to avoid generating an additional return.
8134 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8135   // If the node is null, we do have a tail call.
8136   if (MaybeTC.getNode() != nullptr)
8137     DAG.setRoot(MaybeTC);
8138   else
8139     HasTailCall = true;
8140 }
8141 
8142 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8143                                   unsigned *TotalCases, unsigned First,
8144                                   unsigned Last,
8145                                   unsigned Density) {
8146   assert(Last >= First);
8147   assert(TotalCases[Last] >= TotalCases[First]);
8148 
8149   APInt LowCase = Clusters[First].Low->getValue();
8150   APInt HighCase = Clusters[Last].High->getValue();
8151   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8152 
8153   // FIXME: A range of consecutive cases has 100% density, but only requires one
8154   // comparison to lower. We should discriminate against such consecutive ranges
8155   // in jump tables.
8156 
8157   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8158   uint64_t Range = Diff + 1;
8159 
8160   uint64_t NumCases =
8161       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8162 
8163   assert(NumCases < UINT64_MAX / 100);
8164   assert(Range >= NumCases);
8165 
8166   return NumCases * 100 >= Range * Density;
8167 }
8168 
8169 static inline bool areJTsAllowed(const TargetLowering &TLI,
8170                                  const SwitchInst *SI) {
8171   const Function *Fn = SI->getParent()->getParent();
8172   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8173     return false;
8174 
8175   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8176          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8177 }
8178 
8179 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8180                                          unsigned First, unsigned Last,
8181                                          const SwitchInst *SI,
8182                                          MachineBasicBlock *DefaultMBB,
8183                                          CaseCluster &JTCluster) {
8184   assert(First <= Last);
8185 
8186   auto Prob = BranchProbability::getZero();
8187   unsigned NumCmps = 0;
8188   std::vector<MachineBasicBlock*> Table;
8189   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8190 
8191   // Initialize probabilities in JTProbs.
8192   for (unsigned I = First; I <= Last; ++I)
8193     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8194 
8195   for (unsigned I = First; I <= Last; ++I) {
8196     assert(Clusters[I].Kind == CC_Range);
8197     Prob += Clusters[I].Prob;
8198     APInt Low = Clusters[I].Low->getValue();
8199     APInt High = Clusters[I].High->getValue();
8200     NumCmps += (Low == High) ? 1 : 2;
8201     if (I != First) {
8202       // Fill the gap between this and the previous cluster.
8203       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8204       assert(PreviousHigh.slt(Low));
8205       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8206       for (uint64_t J = 0; J < Gap; J++)
8207         Table.push_back(DefaultMBB);
8208     }
8209     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8210     for (uint64_t J = 0; J < ClusterSize; ++J)
8211       Table.push_back(Clusters[I].MBB);
8212     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8213   }
8214 
8215   unsigned NumDests = JTProbs.size();
8216   if (isSuitableForBitTests(NumDests, NumCmps,
8217                             Clusters[First].Low->getValue(),
8218                             Clusters[Last].High->getValue())) {
8219     // Clusters[First..Last] should be lowered as bit tests instead.
8220     return false;
8221   }
8222 
8223   // Create the MBB that will load from and jump through the table.
8224   // Note: We create it here, but it's not inserted into the function yet.
8225   MachineFunction *CurMF = FuncInfo.MF;
8226   MachineBasicBlock *JumpTableMBB =
8227       CurMF->CreateMachineBasicBlock(SI->getParent());
8228 
8229   // Add successors. Note: use table order for determinism.
8230   SmallPtrSet<MachineBasicBlock *, 8> Done;
8231   for (MachineBasicBlock *Succ : Table) {
8232     if (Done.count(Succ))
8233       continue;
8234     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8235     Done.insert(Succ);
8236   }
8237   JumpTableMBB->normalizeSuccProbs();
8238 
8239   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8240   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8241                      ->createJumpTableIndex(Table);
8242 
8243   // Set up the jump table info.
8244   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8245   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8246                       Clusters[Last].High->getValue(), SI->getCondition(),
8247                       nullptr, false);
8248   JTCases.emplace_back(std::move(JTH), std::move(JT));
8249 
8250   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8251                                      JTCases.size() - 1, Prob);
8252   return true;
8253 }
8254 
8255 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8256                                          const SwitchInst *SI,
8257                                          MachineBasicBlock *DefaultMBB) {
8258 #ifndef NDEBUG
8259   // Clusters must be non-empty, sorted, and only contain Range clusters.
8260   assert(!Clusters.empty());
8261   for (CaseCluster &C : Clusters)
8262     assert(C.Kind == CC_Range);
8263   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8264     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8265 #endif
8266 
8267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8268   if (!areJTsAllowed(TLI, SI))
8269     return;
8270 
8271   const int64_t N = Clusters.size();
8272   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8273 
8274   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8275   SmallVector<unsigned, 8> TotalCases(N);
8276 
8277   for (unsigned i = 0; i < N; ++i) {
8278     APInt Hi = Clusters[i].High->getValue();
8279     APInt Lo = Clusters[i].Low->getValue();
8280     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8281     if (i != 0)
8282       TotalCases[i] += TotalCases[i - 1];
8283   }
8284 
8285   unsigned MinDensity = JumpTableDensity;
8286   if (DefaultMBB->getParent()->getFunction()->optForSize())
8287     MinDensity = OptsizeJumpTableDensity;
8288   if (N >= MinJumpTableSize
8289       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8290     // Cheap case: the whole range might be suitable for jump table.
8291     CaseCluster JTCluster;
8292     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8293       Clusters[0] = JTCluster;
8294       Clusters.resize(1);
8295       return;
8296     }
8297   }
8298 
8299   // The algorithm below is not suitable for -O0.
8300   if (TM.getOptLevel() == CodeGenOpt::None)
8301     return;
8302 
8303   // Split Clusters into minimum number of dense partitions. The algorithm uses
8304   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8305   // for the Case Statement'" (1994), but builds the MinPartitions array in
8306   // reverse order to make it easier to reconstruct the partitions in ascending
8307   // order. In the choice between two optimal partitionings, it picks the one
8308   // which yields more jump tables.
8309 
8310   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8311   SmallVector<unsigned, 8> MinPartitions(N);
8312   // LastElement[i] is the last element of the partition starting at i.
8313   SmallVector<unsigned, 8> LastElement(N);
8314   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8315   SmallVector<unsigned, 8> NumTables(N);
8316 
8317   // Base case: There is only one way to partition Clusters[N-1].
8318   MinPartitions[N - 1] = 1;
8319   LastElement[N - 1] = N - 1;
8320   assert(MinJumpTableSize > 1);
8321   NumTables[N - 1] = 0;
8322 
8323   // Note: loop indexes are signed to avoid underflow.
8324   for (int64_t i = N - 2; i >= 0; i--) {
8325     // Find optimal partitioning of Clusters[i..N-1].
8326     // Baseline: Put Clusters[i] into a partition on its own.
8327     MinPartitions[i] = MinPartitions[i + 1] + 1;
8328     LastElement[i] = i;
8329     NumTables[i] = NumTables[i + 1];
8330 
8331     // Search for a solution that results in fewer partitions.
8332     for (int64_t j = N - 1; j > i; j--) {
8333       // Try building a partition from Clusters[i..j].
8334       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8335         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8336         bool IsTable = j - i + 1 >= MinJumpTableSize;
8337         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8338 
8339         // If this j leads to fewer partitions, or same number of partitions
8340         // with more lookup tables, it is a better partitioning.
8341         if (NumPartitions < MinPartitions[i] ||
8342             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8343           MinPartitions[i] = NumPartitions;
8344           LastElement[i] = j;
8345           NumTables[i] = Tables;
8346         }
8347       }
8348     }
8349   }
8350 
8351   // Iterate over the partitions, replacing some with jump tables in-place.
8352   unsigned DstIndex = 0;
8353   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8354     Last = LastElement[First];
8355     assert(Last >= First);
8356     assert(DstIndex <= First);
8357     unsigned NumClusters = Last - First + 1;
8358 
8359     CaseCluster JTCluster;
8360     if (NumClusters >= MinJumpTableSize &&
8361         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8362       Clusters[DstIndex++] = JTCluster;
8363     } else {
8364       for (unsigned I = First; I <= Last; ++I)
8365         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8366     }
8367   }
8368   Clusters.resize(DstIndex);
8369 }
8370 
8371 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8372   // FIXME: Using the pointer type doesn't seem ideal.
8373   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8374   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8375   return Range <= BW;
8376 }
8377 
8378 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8379                                                 unsigned NumCmps,
8380                                                 const APInt &Low,
8381                                                 const APInt &High) {
8382   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8383   // range of cases both require only one branch to lower. Just looking at the
8384   // number of clusters and destinations should be enough to decide whether to
8385   // build bit tests.
8386 
8387   // To lower a range with bit tests, the range must fit the bitwidth of a
8388   // machine word.
8389   if (!rangeFitsInWord(Low, High))
8390     return false;
8391 
8392   // Decide whether it's profitable to lower this range with bit tests. Each
8393   // destination requires a bit test and branch, and there is an overall range
8394   // check branch. For a small number of clusters, separate comparisons might be
8395   // cheaper, and for many destinations, splitting the range might be better.
8396   return (NumDests == 1 && NumCmps >= 3) ||
8397          (NumDests == 2 && NumCmps >= 5) ||
8398          (NumDests == 3 && NumCmps >= 6);
8399 }
8400 
8401 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8402                                         unsigned First, unsigned Last,
8403                                         const SwitchInst *SI,
8404                                         CaseCluster &BTCluster) {
8405   assert(First <= Last);
8406   if (First == Last)
8407     return false;
8408 
8409   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8410   unsigned NumCmps = 0;
8411   for (int64_t I = First; I <= Last; ++I) {
8412     assert(Clusters[I].Kind == CC_Range);
8413     Dests.set(Clusters[I].MBB->getNumber());
8414     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8415   }
8416   unsigned NumDests = Dests.count();
8417 
8418   APInt Low = Clusters[First].Low->getValue();
8419   APInt High = Clusters[Last].High->getValue();
8420   assert(Low.slt(High));
8421 
8422   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8423     return false;
8424 
8425   APInt LowBound;
8426   APInt CmpRange;
8427 
8428   const int BitWidth = DAG.getTargetLoweringInfo()
8429                            .getPointerTy(DAG.getDataLayout())
8430                            .getSizeInBits();
8431   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8432 
8433   // Check if the clusters cover a contiguous range such that no value in the
8434   // range will jump to the default statement.
8435   bool ContiguousRange = true;
8436   for (int64_t I = First + 1; I <= Last; ++I) {
8437     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8438       ContiguousRange = false;
8439       break;
8440     }
8441   }
8442 
8443   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8444     // Optimize the case where all the case values fit in a word without having
8445     // to subtract minValue. In this case, we can optimize away the subtraction.
8446     LowBound = APInt::getNullValue(Low.getBitWidth());
8447     CmpRange = High;
8448     ContiguousRange = false;
8449   } else {
8450     LowBound = Low;
8451     CmpRange = High - Low;
8452   }
8453 
8454   CaseBitsVector CBV;
8455   auto TotalProb = BranchProbability::getZero();
8456   for (unsigned i = First; i <= Last; ++i) {
8457     // Find the CaseBits for this destination.
8458     unsigned j;
8459     for (j = 0; j < CBV.size(); ++j)
8460       if (CBV[j].BB == Clusters[i].MBB)
8461         break;
8462     if (j == CBV.size())
8463       CBV.push_back(
8464           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8465     CaseBits *CB = &CBV[j];
8466 
8467     // Update Mask, Bits and ExtraProb.
8468     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8469     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8470     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8471     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8472     CB->Bits += Hi - Lo + 1;
8473     CB->ExtraProb += Clusters[i].Prob;
8474     TotalProb += Clusters[i].Prob;
8475   }
8476 
8477   BitTestInfo BTI;
8478   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8479     // Sort by probability first, number of bits second.
8480     if (a.ExtraProb != b.ExtraProb)
8481       return a.ExtraProb > b.ExtraProb;
8482     return a.Bits > b.Bits;
8483   });
8484 
8485   for (auto &CB : CBV) {
8486     MachineBasicBlock *BitTestBB =
8487         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8488     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8489   }
8490   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8491                             SI->getCondition(), -1U, MVT::Other, false,
8492                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8493                             TotalProb);
8494 
8495   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8496                                     BitTestCases.size() - 1, TotalProb);
8497   return true;
8498 }
8499 
8500 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8501                                               const SwitchInst *SI) {
8502 // Partition Clusters into as few subsets as possible, where each subset has a
8503 // range that fits in a machine word and has <= 3 unique destinations.
8504 
8505 #ifndef NDEBUG
8506   // Clusters must be sorted and contain Range or JumpTable clusters.
8507   assert(!Clusters.empty());
8508   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8509   for (const CaseCluster &C : Clusters)
8510     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8511   for (unsigned i = 1; i < Clusters.size(); ++i)
8512     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8513 #endif
8514 
8515   // The algorithm below is not suitable for -O0.
8516   if (TM.getOptLevel() == CodeGenOpt::None)
8517     return;
8518 
8519   // If target does not have legal shift left, do not emit bit tests at all.
8520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8521   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8522   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8523     return;
8524 
8525   int BitWidth = PTy.getSizeInBits();
8526   const int64_t N = Clusters.size();
8527 
8528   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8529   SmallVector<unsigned, 8> MinPartitions(N);
8530   // LastElement[i] is the last element of the partition starting at i.
8531   SmallVector<unsigned, 8> LastElement(N);
8532 
8533   // FIXME: This might not be the best algorithm for finding bit test clusters.
8534 
8535   // Base case: There is only one way to partition Clusters[N-1].
8536   MinPartitions[N - 1] = 1;
8537   LastElement[N - 1] = N - 1;
8538 
8539   // Note: loop indexes are signed to avoid underflow.
8540   for (int64_t i = N - 2; i >= 0; --i) {
8541     // Find optimal partitioning of Clusters[i..N-1].
8542     // Baseline: Put Clusters[i] into a partition on its own.
8543     MinPartitions[i] = MinPartitions[i + 1] + 1;
8544     LastElement[i] = i;
8545 
8546     // Search for a solution that results in fewer partitions.
8547     // Note: the search is limited by BitWidth, reducing time complexity.
8548     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8549       // Try building a partition from Clusters[i..j].
8550 
8551       // Check the range.
8552       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8553                            Clusters[j].High->getValue()))
8554         continue;
8555 
8556       // Check nbr of destinations and cluster types.
8557       // FIXME: This works, but doesn't seem very efficient.
8558       bool RangesOnly = true;
8559       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8560       for (int64_t k = i; k <= j; k++) {
8561         if (Clusters[k].Kind != CC_Range) {
8562           RangesOnly = false;
8563           break;
8564         }
8565         Dests.set(Clusters[k].MBB->getNumber());
8566       }
8567       if (!RangesOnly || Dests.count() > 3)
8568         break;
8569 
8570       // Check if it's a better partition.
8571       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8572       if (NumPartitions < MinPartitions[i]) {
8573         // Found a better partition.
8574         MinPartitions[i] = NumPartitions;
8575         LastElement[i] = j;
8576       }
8577     }
8578   }
8579 
8580   // Iterate over the partitions, replacing with bit-test clusters in-place.
8581   unsigned DstIndex = 0;
8582   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8583     Last = LastElement[First];
8584     assert(First <= Last);
8585     assert(DstIndex <= First);
8586 
8587     CaseCluster BitTestCluster;
8588     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8589       Clusters[DstIndex++] = BitTestCluster;
8590     } else {
8591       size_t NumClusters = Last - First + 1;
8592       std::memmove(&Clusters[DstIndex], &Clusters[First],
8593                    sizeof(Clusters[0]) * NumClusters);
8594       DstIndex += NumClusters;
8595     }
8596   }
8597   Clusters.resize(DstIndex);
8598 }
8599 
8600 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8601                                         MachineBasicBlock *SwitchMBB,
8602                                         MachineBasicBlock *DefaultMBB) {
8603   MachineFunction *CurMF = FuncInfo.MF;
8604   MachineBasicBlock *NextMBB = nullptr;
8605   MachineFunction::iterator BBI(W.MBB);
8606   if (++BBI != FuncInfo.MF->end())
8607     NextMBB = &*BBI;
8608 
8609   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8610 
8611   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8612 
8613   if (Size == 2 && W.MBB == SwitchMBB) {
8614     // If any two of the cases has the same destination, and if one value
8615     // is the same as the other, but has one bit unset that the other has set,
8616     // use bit manipulation to do two compares at once.  For example:
8617     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8618     // TODO: This could be extended to merge any 2 cases in switches with 3
8619     // cases.
8620     // TODO: Handle cases where W.CaseBB != SwitchBB.
8621     CaseCluster &Small = *W.FirstCluster;
8622     CaseCluster &Big = *W.LastCluster;
8623 
8624     if (Small.Low == Small.High && Big.Low == Big.High &&
8625         Small.MBB == Big.MBB) {
8626       const APInt &SmallValue = Small.Low->getValue();
8627       const APInt &BigValue = Big.Low->getValue();
8628 
8629       // Check that there is only one bit different.
8630       APInt CommonBit = BigValue ^ SmallValue;
8631       if (CommonBit.isPowerOf2()) {
8632         SDValue CondLHS = getValue(Cond);
8633         EVT VT = CondLHS.getValueType();
8634         SDLoc DL = getCurSDLoc();
8635 
8636         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8637                                  DAG.getConstant(CommonBit, DL, VT));
8638         SDValue Cond = DAG.getSetCC(
8639             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8640             ISD::SETEQ);
8641 
8642         // Update successor info.
8643         // Both Small and Big will jump to Small.BB, so we sum up the
8644         // probabilities.
8645         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8646         if (BPI)
8647           addSuccessorWithProb(
8648               SwitchMBB, DefaultMBB,
8649               // The default destination is the first successor in IR.
8650               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8651         else
8652           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8653 
8654         // Insert the true branch.
8655         SDValue BrCond =
8656             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8657                         DAG.getBasicBlock(Small.MBB));
8658         // Insert the false branch.
8659         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8660                              DAG.getBasicBlock(DefaultMBB));
8661 
8662         DAG.setRoot(BrCond);
8663         return;
8664       }
8665     }
8666   }
8667 
8668   if (TM.getOptLevel() != CodeGenOpt::None) {
8669     // Order cases by probability so the most likely case will be checked first.
8670     std::sort(W.FirstCluster, W.LastCluster + 1,
8671               [](const CaseCluster &a, const CaseCluster &b) {
8672       return a.Prob > b.Prob;
8673     });
8674 
8675     // Rearrange the case blocks so that the last one falls through if possible
8676     // without without changing the order of probabilities.
8677     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8678       --I;
8679       if (I->Prob > W.LastCluster->Prob)
8680         break;
8681       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8682         std::swap(*I, *W.LastCluster);
8683         break;
8684       }
8685     }
8686   }
8687 
8688   // Compute total probability.
8689   BranchProbability DefaultProb = W.DefaultProb;
8690   BranchProbability UnhandledProbs = DefaultProb;
8691   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8692     UnhandledProbs += I->Prob;
8693 
8694   MachineBasicBlock *CurMBB = W.MBB;
8695   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8696     MachineBasicBlock *Fallthrough;
8697     if (I == W.LastCluster) {
8698       // For the last cluster, fall through to the default destination.
8699       Fallthrough = DefaultMBB;
8700     } else {
8701       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8702       CurMF->insert(BBI, Fallthrough);
8703       // Put Cond in a virtual register to make it available from the new blocks.
8704       ExportFromCurrentBlock(Cond);
8705     }
8706     UnhandledProbs -= I->Prob;
8707 
8708     switch (I->Kind) {
8709       case CC_JumpTable: {
8710         // FIXME: Optimize away range check based on pivot comparisons.
8711         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8712         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8713 
8714         // The jump block hasn't been inserted yet; insert it here.
8715         MachineBasicBlock *JumpMBB = JT->MBB;
8716         CurMF->insert(BBI, JumpMBB);
8717 
8718         auto JumpProb = I->Prob;
8719         auto FallthroughProb = UnhandledProbs;
8720 
8721         // If the default statement is a target of the jump table, we evenly
8722         // distribute the default probability to successors of CurMBB. Also
8723         // update the probability on the edge from JumpMBB to Fallthrough.
8724         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8725                                               SE = JumpMBB->succ_end();
8726              SI != SE; ++SI) {
8727           if (*SI == DefaultMBB) {
8728             JumpProb += DefaultProb / 2;
8729             FallthroughProb -= DefaultProb / 2;
8730             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8731             JumpMBB->normalizeSuccProbs();
8732             break;
8733           }
8734         }
8735 
8736         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8737         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8738         CurMBB->normalizeSuccProbs();
8739 
8740         // The jump table header will be inserted in our current block, do the
8741         // range check, and fall through to our fallthrough block.
8742         JTH->HeaderBB = CurMBB;
8743         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8744 
8745         // If we're in the right place, emit the jump table header right now.
8746         if (CurMBB == SwitchMBB) {
8747           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8748           JTH->Emitted = true;
8749         }
8750         break;
8751       }
8752       case CC_BitTests: {
8753         // FIXME: Optimize away range check based on pivot comparisons.
8754         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8755 
8756         // The bit test blocks haven't been inserted yet; insert them here.
8757         for (BitTestCase &BTC : BTB->Cases)
8758           CurMF->insert(BBI, BTC.ThisBB);
8759 
8760         // Fill in fields of the BitTestBlock.
8761         BTB->Parent = CurMBB;
8762         BTB->Default = Fallthrough;
8763 
8764         BTB->DefaultProb = UnhandledProbs;
8765         // If the cases in bit test don't form a contiguous range, we evenly
8766         // distribute the probability on the edge to Fallthrough to two
8767         // successors of CurMBB.
8768         if (!BTB->ContiguousRange) {
8769           BTB->Prob += DefaultProb / 2;
8770           BTB->DefaultProb -= DefaultProb / 2;
8771         }
8772 
8773         // If we're in the right place, emit the bit test header right now.
8774         if (CurMBB == SwitchMBB) {
8775           visitBitTestHeader(*BTB, SwitchMBB);
8776           BTB->Emitted = true;
8777         }
8778         break;
8779       }
8780       case CC_Range: {
8781         const Value *RHS, *LHS, *MHS;
8782         ISD::CondCode CC;
8783         if (I->Low == I->High) {
8784           // Check Cond == I->Low.
8785           CC = ISD::SETEQ;
8786           LHS = Cond;
8787           RHS=I->Low;
8788           MHS = nullptr;
8789         } else {
8790           // Check I->Low <= Cond <= I->High.
8791           CC = ISD::SETLE;
8792           LHS = I->Low;
8793           MHS = Cond;
8794           RHS = I->High;
8795         }
8796 
8797         // The false probability is the sum of all unhandled cases.
8798         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8799                      UnhandledProbs);
8800 
8801         if (CurMBB == SwitchMBB)
8802           visitSwitchCase(CB, SwitchMBB);
8803         else
8804           SwitchCases.push_back(CB);
8805 
8806         break;
8807       }
8808     }
8809     CurMBB = Fallthrough;
8810   }
8811 }
8812 
8813 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8814                                               CaseClusterIt First,
8815                                               CaseClusterIt Last) {
8816   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8817     if (X.Prob != CC.Prob)
8818       return X.Prob > CC.Prob;
8819 
8820     // Ties are broken by comparing the case value.
8821     return X.Low->getValue().slt(CC.Low->getValue());
8822   });
8823 }
8824 
8825 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8826                                         const SwitchWorkListItem &W,
8827                                         Value *Cond,
8828                                         MachineBasicBlock *SwitchMBB) {
8829   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8830          "Clusters not sorted?");
8831 
8832   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8833 
8834   // Balance the tree based on branch probabilities to create a near-optimal (in
8835   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8836   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8837   CaseClusterIt LastLeft = W.FirstCluster;
8838   CaseClusterIt FirstRight = W.LastCluster;
8839   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8840   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8841 
8842   // Move LastLeft and FirstRight towards each other from opposite directions to
8843   // find a partitioning of the clusters which balances the probability on both
8844   // sides. If LeftProb and RightProb are equal, alternate which side is
8845   // taken to ensure 0-probability nodes are distributed evenly.
8846   unsigned I = 0;
8847   while (LastLeft + 1 < FirstRight) {
8848     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8849       LeftProb += (++LastLeft)->Prob;
8850     else
8851       RightProb += (--FirstRight)->Prob;
8852     I++;
8853   }
8854 
8855   for (;;) {
8856     // Our binary search tree differs from a typical BST in that ours can have up
8857     // to three values in each leaf. The pivot selection above doesn't take that
8858     // into account, which means the tree might require more nodes and be less
8859     // efficient. We compensate for this here.
8860 
8861     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8862     unsigned NumRight = W.LastCluster - FirstRight + 1;
8863 
8864     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8865       // If one side has less than 3 clusters, and the other has more than 3,
8866       // consider taking a cluster from the other side.
8867 
8868       if (NumLeft < NumRight) {
8869         // Consider moving the first cluster on the right to the left side.
8870         CaseCluster &CC = *FirstRight;
8871         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8872         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8873         if (LeftSideRank <= RightSideRank) {
8874           // Moving the cluster to the left does not demote it.
8875           ++LastLeft;
8876           ++FirstRight;
8877           continue;
8878         }
8879       } else {
8880         assert(NumRight < NumLeft);
8881         // Consider moving the last element on the left to the right side.
8882         CaseCluster &CC = *LastLeft;
8883         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8884         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8885         if (RightSideRank <= LeftSideRank) {
8886           // Moving the cluster to the right does not demot it.
8887           --LastLeft;
8888           --FirstRight;
8889           continue;
8890         }
8891       }
8892     }
8893     break;
8894   }
8895 
8896   assert(LastLeft + 1 == FirstRight);
8897   assert(LastLeft >= W.FirstCluster);
8898   assert(FirstRight <= W.LastCluster);
8899 
8900   // Use the first element on the right as pivot since we will make less-than
8901   // comparisons against it.
8902   CaseClusterIt PivotCluster = FirstRight;
8903   assert(PivotCluster > W.FirstCluster);
8904   assert(PivotCluster <= W.LastCluster);
8905 
8906   CaseClusterIt FirstLeft = W.FirstCluster;
8907   CaseClusterIt LastRight = W.LastCluster;
8908 
8909   const ConstantInt *Pivot = PivotCluster->Low;
8910 
8911   // New blocks will be inserted immediately after the current one.
8912   MachineFunction::iterator BBI(W.MBB);
8913   ++BBI;
8914 
8915   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8916   // we can branch to its destination directly if it's squeezed exactly in
8917   // between the known lower bound and Pivot - 1.
8918   MachineBasicBlock *LeftMBB;
8919   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8920       FirstLeft->Low == W.GE &&
8921       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8922     LeftMBB = FirstLeft->MBB;
8923   } else {
8924     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8925     FuncInfo.MF->insert(BBI, LeftMBB);
8926     WorkList.push_back(
8927         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8928     // Put Cond in a virtual register to make it available from the new blocks.
8929     ExportFromCurrentBlock(Cond);
8930   }
8931 
8932   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8933   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8934   // directly if RHS.High equals the current upper bound.
8935   MachineBasicBlock *RightMBB;
8936   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8937       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8938     RightMBB = FirstRight->MBB;
8939   } else {
8940     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8941     FuncInfo.MF->insert(BBI, RightMBB);
8942     WorkList.push_back(
8943         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8944     // Put Cond in a virtual register to make it available from the new blocks.
8945     ExportFromCurrentBlock(Cond);
8946   }
8947 
8948   // Create the CaseBlock record that will be used to lower the branch.
8949   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8950                LeftProb, RightProb);
8951 
8952   if (W.MBB == SwitchMBB)
8953     visitSwitchCase(CB, SwitchMBB);
8954   else
8955     SwitchCases.push_back(CB);
8956 }
8957 
8958 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8959   // Extract cases from the switch.
8960   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8961   CaseClusterVector Clusters;
8962   Clusters.reserve(SI.getNumCases());
8963   for (auto I : SI.cases()) {
8964     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8965     const ConstantInt *CaseVal = I.getCaseValue();
8966     BranchProbability Prob =
8967         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8968             : BranchProbability(1, SI.getNumCases() + 1);
8969     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8970   }
8971 
8972   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8973 
8974   // Cluster adjacent cases with the same destination. We do this at all
8975   // optimization levels because it's cheap to do and will make codegen faster
8976   // if there are many clusters.
8977   sortAndRangeify(Clusters);
8978 
8979   if (TM.getOptLevel() != CodeGenOpt::None) {
8980     // Replace an unreachable default with the most popular destination.
8981     // FIXME: Exploit unreachable default more aggressively.
8982     bool UnreachableDefault =
8983         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8984     if (UnreachableDefault && !Clusters.empty()) {
8985       DenseMap<const BasicBlock *, unsigned> Popularity;
8986       unsigned MaxPop = 0;
8987       const BasicBlock *MaxBB = nullptr;
8988       for (auto I : SI.cases()) {
8989         const BasicBlock *BB = I.getCaseSuccessor();
8990         if (++Popularity[BB] > MaxPop) {
8991           MaxPop = Popularity[BB];
8992           MaxBB = BB;
8993         }
8994       }
8995       // Set new default.
8996       assert(MaxPop > 0 && MaxBB);
8997       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8998 
8999       // Remove cases that were pointing to the destination that is now the
9000       // default.
9001       CaseClusterVector New;
9002       New.reserve(Clusters.size());
9003       for (CaseCluster &CC : Clusters) {
9004         if (CC.MBB != DefaultMBB)
9005           New.push_back(CC);
9006       }
9007       Clusters = std::move(New);
9008     }
9009   }
9010 
9011   // If there is only the default destination, jump there directly.
9012   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9013   if (Clusters.empty()) {
9014     SwitchMBB->addSuccessor(DefaultMBB);
9015     if (DefaultMBB != NextBlock(SwitchMBB)) {
9016       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9017                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9018     }
9019     return;
9020   }
9021 
9022   findJumpTables(Clusters, &SI, DefaultMBB);
9023   findBitTestClusters(Clusters, &SI);
9024 
9025   DEBUG({
9026     dbgs() << "Case clusters: ";
9027     for (const CaseCluster &C : Clusters) {
9028       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9029       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9030 
9031       C.Low->getValue().print(dbgs(), true);
9032       if (C.Low != C.High) {
9033         dbgs() << '-';
9034         C.High->getValue().print(dbgs(), true);
9035       }
9036       dbgs() << ' ';
9037     }
9038     dbgs() << '\n';
9039   });
9040 
9041   assert(!Clusters.empty());
9042   SwitchWorkList WorkList;
9043   CaseClusterIt First = Clusters.begin();
9044   CaseClusterIt Last = Clusters.end() - 1;
9045   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9046   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9047 
9048   while (!WorkList.empty()) {
9049     SwitchWorkListItem W = WorkList.back();
9050     WorkList.pop_back();
9051     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9052 
9053     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9054       // For optimized builds, lower large range as a balanced binary tree.
9055       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9056       continue;
9057     }
9058 
9059     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9060   }
9061 }
9062