1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 /// Minimum jump table density for normal functions. 90 static cl::opt<unsigned> 91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 92 cl::desc("Minimum density for building a jump table in " 93 "a normal function")); 94 95 /// Minimum jump table density for -Os or -Oz functions. 96 static cl::opt<unsigned> 97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 98 cl::desc("Minimum density for building a jump table in " 99 "an optsize function")); 100 101 102 // Limit the width of DAG chains. This is important in general to prevent 103 // DAG-based analysis from blowing up. For example, alias analysis and 104 // load clustering may not complete in reasonable time. It is difficult to 105 // recognize and avoid this situation within each individual analysis, and 106 // future analyses are likely to have the same behavior. Limiting DAG width is 107 // the safe approach and will be especially important with global DAGs. 108 // 109 // MaxParallelChains default is arbitrarily high to avoid affecting 110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 111 // sequence over this should have been converted to llvm.memcpy by the 112 // frontend. It easy to induce this behavior with .ll code such as: 113 // %buffer = alloca [4096 x i8] 114 // %data = load [4096 x i8]* %argPtr 115 // store [4096 x i8] %data, [4096 x i8]* %buffer 116 static const unsigned MaxParallelChains = 64; 117 118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 119 const SDValue *Parts, unsigned NumParts, 120 MVT PartVT, EVT ValueVT, const Value *V); 121 122 /// getCopyFromParts - Create a value that contains the specified legal parts 123 /// combined into the value they represent. If the parts combine to a type 124 /// larger then ValueVT then AssertOp can be used to specify whether the extra 125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 126 /// (ISD::AssertSext). 127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 128 const SDValue *Parts, 129 unsigned NumParts, MVT PartVT, EVT ValueVT, 130 const Value *V, 131 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 132 if (ValueVT.isVector()) 133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 134 PartVT, ValueVT, V); 135 136 assert(NumParts > 0 && "No parts to assemble!"); 137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 138 SDValue Val = Parts[0]; 139 140 if (NumParts > 1) { 141 // Assemble the value from multiple parts. 142 if (ValueVT.isInteger()) { 143 unsigned PartBits = PartVT.getSizeInBits(); 144 unsigned ValueBits = ValueVT.getSizeInBits(); 145 146 // Assemble the power of 2 part. 147 unsigned RoundParts = NumParts & (NumParts - 1) ? 148 1 << Log2_32(NumParts) : NumParts; 149 unsigned RoundBits = PartBits * RoundParts; 150 EVT RoundVT = RoundBits == ValueBits ? 151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 152 SDValue Lo, Hi; 153 154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 155 156 if (RoundParts > 2) { 157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 158 PartVT, HalfVT, V); 159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 160 RoundParts / 2, PartVT, HalfVT, V); 161 } else { 162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 164 } 165 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 170 171 if (RoundParts < NumParts) { 172 // Assemble the trailing non-power-of-2 part. 173 unsigned OddParts = NumParts - RoundParts; 174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 175 Hi = getCopyFromParts(DAG, DL, 176 Parts + RoundParts, OddParts, PartVT, OddVT, V); 177 178 // Combine the round and odd parts. 179 Lo = Val; 180 if (DAG.getDataLayout().isBigEndian()) 181 std::swap(Lo, Hi); 182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 184 Hi = 185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 187 TLI.getPointerTy(DAG.getDataLayout()))); 188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 190 } 191 } else if (PartVT.isFloatingPoint()) { 192 // FP split into multiple FP parts (for ppcf128) 193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 194 "Unexpected split"); 195 SDValue Lo, Hi; 196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 199 std::swap(Lo, Hi); 200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 201 } else { 202 // FP split into integer parts (soft fp) 203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 204 !PartVT.isVector() && "Unexpected split"); 205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 207 } 208 } 209 210 // There is now one part, held in Val. Correct it to match ValueVT. 211 // PartEVT is the type of the register class that holds the value. 212 // ValueVT is the type of the inline asm operation. 213 EVT PartEVT = Val.getValueType(); 214 215 if (PartEVT == ValueVT) 216 return Val; 217 218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 219 ValueVT.bitsLT(PartEVT)) { 220 // For an FP value in an integer part, we need to truncate to the right 221 // width first. 222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 224 } 225 226 // Handle types that have the same size. 227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 229 230 // Handle types with different sizes. 231 if (PartEVT.isInteger() && ValueVT.isInteger()) { 232 if (ValueVT.bitsLT(PartEVT)) { 233 // For a truncate, see if we have any information to 234 // indicate whether the truncated bits will always be 235 // zero or sign-extension. 236 if (AssertOp != ISD::DELETED_NODE) 237 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 238 DAG.getValueType(ValueVT)); 239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 240 } 241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 242 } 243 244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 245 // FP_ROUND's are always exact here. 246 if (ValueVT.bitsLT(Val.getValueType())) 247 return DAG.getNode( 248 ISD::FP_ROUND, DL, ValueVT, Val, 249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 250 251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 252 } 253 254 llvm_unreachable("Unknown mismatch!"); 255 } 256 257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 258 const Twine &ErrMsg) { 259 const Instruction *I = dyn_cast_or_null<Instruction>(V); 260 if (!V) 261 return Ctx.emitError(ErrMsg); 262 263 const char *AsmError = ", possible invalid constraint for vector type"; 264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 265 if (isa<InlineAsm>(CI->getCalledValue())) 266 return Ctx.emitError(I, ErrMsg + AsmError); 267 268 return Ctx.emitError(I, ErrMsg); 269 } 270 271 /// getCopyFromPartsVector - Create a value that contains the specified legal 272 /// parts combined into the value they represent. If the parts combine to a 273 /// type larger then ValueVT then AssertOp can be used to specify whether the 274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 275 /// ValueVT (ISD::AssertSext). 276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 277 const SDValue *Parts, unsigned NumParts, 278 MVT PartVT, EVT ValueVT, const Value *V) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs = 290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 291 NumIntermediates, RegisterVT); 292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 293 NumParts = NumRegs; // Silence a compiler warning. 294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 295 assert(RegisterVT.getSizeInBits() == 296 Parts[0].getSimpleValueType().getSizeInBits() && 297 "Part type sizes don't match!"); 298 299 // Assemble the parts into intermediate operands. 300 SmallVector<SDValue, 8> Ops(NumIntermediates); 301 if (NumIntermediates == NumParts) { 302 // If the register was not expanded, truncate or copy the value, 303 // as appropriate. 304 for (unsigned i = 0; i != NumParts; ++i) 305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 306 PartVT, IntermediateVT, V); 307 } else if (NumParts > 0) { 308 // If the intermediate type was expanded, build the intermediate 309 // operands from the parts. 310 assert(NumParts % NumIntermediates == 0 && 311 "Must expand into a divisible number of parts!"); 312 unsigned Factor = NumParts / NumIntermediates; 313 for (unsigned i = 0; i != NumIntermediates; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 315 PartVT, IntermediateVT, V); 316 } 317 318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 319 // intermediate operands. 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, ValueVT, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 // Handle cases such as i8 -> <1 x i1> 362 if (ValueVT.getVectorNumElements() != 1) { 363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 364 "non-trivial scalar-to-vector conversion"); 365 return DAG.getUNDEF(ValueVT); 366 } 367 368 if (ValueVT.getVectorNumElements() == 1 && 369 ValueVT.getVectorElementType() != PartEVT) 370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 371 372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 373 } 374 375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 376 SDValue Val, SDValue *Parts, unsigned NumParts, 377 MVT PartVT, const Value *V); 378 379 /// getCopyToParts - Create a series of nodes that contain the specified value 380 /// split into legal parts. If the parts contain more bits than Val, then, for 381 /// integers, ExtendKind can be used to specify how to generate the extra bits. 382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 383 SDValue Val, SDValue *Parts, unsigned NumParts, 384 MVT PartVT, const Value *V, 385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 386 EVT ValueVT = Val.getValueType(); 387 388 // Handle the vector case separately. 389 if (ValueVT.isVector()) 390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 391 392 unsigned PartBits = PartVT.getSizeInBits(); 393 unsigned OrigNumParts = NumParts; 394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 395 "Copying to an illegal type!"); 396 397 if (NumParts == 0) 398 return; 399 400 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 401 EVT PartEVT = PartVT; 402 if (PartEVT == ValueVT) { 403 assert(NumParts == 1 && "No-op copy with multiple parts!"); 404 Parts[0] = Val; 405 return; 406 } 407 408 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 409 // If the parts cover more bits than the value has, promote the value. 410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 411 assert(NumParts == 1 && "Do not know what to promote to!"); 412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 413 } else { 414 if (ValueVT.isFloatingPoint()) { 415 // FP values need to be bitcast, then extended if they are being put 416 // into a larger container. 417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 421 ValueVT.isInteger() && 422 "Unknown mismatch!"); 423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 425 if (PartVT == MVT::x86mmx) 426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 427 } 428 } else if (PartBits == ValueVT.getSizeInBits()) { 429 // Different types of the same size. 430 assert(NumParts == 1 && PartEVT != ValueVT); 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 433 // If the parts cover less bits than value has, truncate the value. 434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 435 ValueVT.isInteger() && 436 "Unknown mismatch!"); 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 if (PartVT == MVT::x86mmx) 440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 441 } 442 443 // The value may have changed - recompute ValueVT. 444 ValueVT = Val.getValueType(); 445 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 446 "Failed to tile the value with PartVT!"); 447 448 if (NumParts == 1) { 449 if (PartEVT != ValueVT) 450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 451 "scalar-to-vector conversion failed"); 452 453 Parts[0] = Val; 454 return; 455 } 456 457 // Expand the value into multiple parts. 458 if (NumParts & (NumParts - 1)) { 459 // The number of parts is not a power of 2. Split off and copy the tail. 460 assert(PartVT.isInteger() && ValueVT.isInteger() && 461 "Do not know what to expand to!"); 462 unsigned RoundParts = 1 << Log2_32(NumParts); 463 unsigned RoundBits = RoundParts * PartBits; 464 unsigned OddParts = NumParts - RoundParts; 465 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 466 DAG.getIntPtrConstant(RoundBits, DL)); 467 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 468 469 if (DAG.getDataLayout().isBigEndian()) 470 // The odd parts were reversed by getCopyToParts - unreverse them. 471 std::reverse(Parts + RoundParts, Parts + NumParts); 472 473 NumParts = RoundParts; 474 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 475 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 476 } 477 478 // The number of parts is a power of 2. Repeatedly bisect the value using 479 // EXTRACT_ELEMENT. 480 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 481 EVT::getIntegerVT(*DAG.getContext(), 482 ValueVT.getSizeInBits()), 483 Val); 484 485 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 486 for (unsigned i = 0; i < NumParts; i += StepSize) { 487 unsigned ThisBits = StepSize * PartBits / 2; 488 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 489 SDValue &Part0 = Parts[i]; 490 SDValue &Part1 = Parts[i+StepSize/2]; 491 492 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 493 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 494 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 495 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 496 497 if (ThisBits == PartBits && ThisVT != PartVT) { 498 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 499 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 500 } 501 } 502 } 503 504 if (DAG.getDataLayout().isBigEndian()) 505 std::reverse(Parts, Parts + OrigNumParts); 506 } 507 508 509 /// getCopyToPartsVector - Create a series of nodes that contain the specified 510 /// value split into legal parts. 511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 512 SDValue Val, SDValue *Parts, unsigned NumParts, 513 MVT PartVT, const Value *V) { 514 EVT ValueVT = Val.getValueType(); 515 assert(ValueVT.isVector() && "Not a vector"); 516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 517 518 if (NumParts == 1) { 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 // Nothing to do. 522 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 523 // Bitconvert vector->vector case. 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (PartVT.isVector() && 526 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 527 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 528 EVT ElementVT = PartVT.getVectorElementType(); 529 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 530 // undef elements. 531 SmallVector<SDValue, 16> Ops; 532 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 533 Ops.push_back(DAG.getNode( 534 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 535 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 536 537 for (unsigned i = ValueVT.getVectorNumElements(), 538 e = PartVT.getVectorNumElements(); i != e; ++i) 539 Ops.push_back(DAG.getUNDEF(ElementVT)); 540 541 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 542 543 // FIXME: Use CONCAT for 2x -> 4x. 544 545 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 546 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 547 } else if (PartVT.isVector() && 548 PartEVT.getVectorElementType().bitsGE( 549 ValueVT.getVectorElementType()) && 550 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 551 552 // Promoted vector extract 553 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 554 } else{ 555 // Vector -> scalar conversion. 556 assert(ValueVT.getVectorNumElements() == 1 && 557 "Only trivial vector-to-scalar conversions should get here!"); 558 Val = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 560 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 562 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 563 } 564 565 Parts[0] = Val; 566 return; 567 } 568 569 // Handle a multi-element vector. 570 EVT IntermediateVT; 571 MVT RegisterVT; 572 unsigned NumIntermediates; 573 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 574 IntermediateVT, 575 NumIntermediates, RegisterVT); 576 unsigned NumElements = ValueVT.getVectorNumElements(); 577 578 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 579 NumParts = NumRegs; // Silence a compiler warning. 580 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 581 582 // Split the vector into intermediate operands. 583 SmallVector<SDValue, 8> Ops(NumIntermediates); 584 for (unsigned i = 0; i != NumIntermediates; ++i) { 585 if (IntermediateVT.isVector()) 586 Ops[i] = 587 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 588 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 589 TLI.getVectorIdxTy(DAG.getDataLayout()))); 590 else 591 Ops[i] = DAG.getNode( 592 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 593 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 594 } 595 596 // Split the intermediate operands into legal parts. 597 if (NumParts == NumIntermediates) { 598 // If the register was not expanded, promote or copy the value, 599 // as appropriate. 600 for (unsigned i = 0; i != NumParts; ++i) 601 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 602 } else if (NumParts > 0) { 603 // If the intermediate type was expanded, split each the value into 604 // legal parts. 605 assert(NumIntermediates != 0 && "division by zero"); 606 assert(NumParts % NumIntermediates == 0 && 607 "Must expand into a divisible number of parts!"); 608 unsigned Factor = NumParts / NumIntermediates; 609 for (unsigned i = 0; i != NumIntermediates; ++i) 610 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 611 } 612 } 613 614 RegsForValue::RegsForValue() {} 615 616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 617 EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 621 const DataLayout &DL, unsigned Reg, Type *Ty) { 622 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 623 624 for (EVT ValueVT : ValueVTs) { 625 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVT value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 639 FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V) const { 643 // A Value with type {} or [0 x %t] needs no registers. 644 if (ValueVTs.empty()) 645 return SDValue(); 646 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 649 // Assemble the legal parts into the final values. 650 SmallVector<SDValue, 4> Values(ValueVTs.size()); 651 SmallVector<SDValue, 8> Parts; 652 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 653 // Copy the legal parts from the registers. 654 EVT ValueVT = ValueVTs[Value]; 655 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 656 MVT RegisterVT = RegVTs[Value]; 657 658 Parts.resize(NumRegs); 659 for (unsigned i = 0; i != NumRegs; ++i) { 660 SDValue P; 661 if (!Flag) { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 663 } else { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 665 *Flag = P.getValue(2); 666 } 667 668 Chain = P.getValue(1); 669 Parts[i] = P; 670 671 // If the source register was virtual and if we know something about it, 672 // add an assert node. 673 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 674 !RegisterVT.isInteger() || RegisterVT.isVector()) 675 continue; 676 677 const FunctionLoweringInfo::LiveOutInfo *LOI = 678 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 679 if (!LOI) 680 continue; 681 682 unsigned RegSize = RegisterVT.getSizeInBits(); 683 unsigned NumSignBits = LOI->NumSignBits; 684 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 685 686 if (NumZeroBits == RegSize) { 687 // The current value is a zero. 688 // Explicitly express that as it would be easier for 689 // optimizations to kick in. 690 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 691 continue; 692 } 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) { 699 isSExt = true; // ASSERT SEXT 1 700 FromVT = MVT::i1; 701 } else if (NumZeroBits >= RegSize - 1) { 702 isSExt = false; // ASSERT ZEXT 1 703 FromVT = MVT::i1; 704 } else if (NumSignBits > RegSize - 8) { 705 isSExt = true; // ASSERT SEXT 8 706 FromVT = MVT::i8; 707 } else if (NumZeroBits >= RegSize - 8) { 708 isSExt = false; // ASSERT ZEXT 8 709 FromVT = MVT::i8; 710 } else if (NumSignBits > RegSize - 16) { 711 isSExt = true; // ASSERT SEXT 16 712 FromVT = MVT::i16; 713 } else if (NumZeroBits >= RegSize - 16) { 714 isSExt = false; // ASSERT ZEXT 16 715 FromVT = MVT::i16; 716 } else if (NumSignBits > RegSize - 32) { 717 isSExt = true; // ASSERT SEXT 32 718 FromVT = MVT::i32; 719 } else if (NumZeroBits >= RegSize - 32) { 720 isSExt = false; // ASSERT ZEXT 32 721 FromVT = MVT::i32; 722 } else { 723 continue; 724 } 725 // Add an assertion node. 726 assert(FromVT != MVT::Other); 727 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 728 RegisterVT, P, DAG.getValueType(FromVT)); 729 } 730 731 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 732 NumRegs, RegisterVT, ValueVT, V); 733 Part += NumRegs; 734 Parts.clear(); 735 } 736 737 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 738 } 739 740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 741 /// specified value into the registers specified by this object. This uses 742 /// Chain/Flag as the input and updates them for the output Chain/Flag. 743 /// If the Flag pointer is NULL, no flag is used. 744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 745 SDValue &Chain, SDValue *Flag, const Value *V, 746 ISD::NodeType PreferredExtendType) const { 747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 748 ISD::NodeType ExtendKind = PreferredExtendType; 749 750 // Get the list of the values's legal parts. 751 unsigned NumRegs = Regs.size(); 752 SmallVector<SDValue, 8> Parts(NumRegs); 753 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 754 EVT ValueVT = ValueVTs[Value]; 755 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 756 MVT RegisterVT = RegVTs[Value]; 757 758 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 759 ExtendKind = ISD::ZERO_EXTEND; 760 761 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 762 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 763 Part += NumParts; 764 } 765 766 // Copy the parts into the registers. 767 SmallVector<SDValue, 8> Chains(NumRegs); 768 for (unsigned i = 0; i != NumRegs; ++i) { 769 SDValue Part; 770 if (!Flag) { 771 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 772 } else { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 774 *Flag = Part.getValue(1); 775 } 776 777 Chains[i] = Part.getValue(0); 778 } 779 780 if (NumRegs == 1 || Flag) 781 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 782 // flagged to it. That is the CopyToReg nodes and the user are considered 783 // a single scheduling unit. If we create a TokenFactor and return it as 784 // chain, then the TokenFactor is both a predecessor (operand) of the 785 // user as well as a successor (the TF operands are flagged to the user). 786 // c1, f1 = CopyToReg 787 // c2, f2 = CopyToReg 788 // c3 = TokenFactor c1, c2 789 // ... 790 // = op c3, ..., f2 791 Chain = Chains[NumRegs-1]; 792 else 793 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 794 } 795 796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 797 /// operand list. This adds the code marker and includes the number of 798 /// values added into it. 799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 800 unsigned MatchingIdx, SDLoc dl, 801 SelectionDAG &DAG, 802 std::vector<SDValue> &Ops) const { 803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 804 805 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 806 if (HasMatching) 807 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 808 else if (!Regs.empty() && 809 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 810 // Put the register class of the virtual registers in the flag word. That 811 // way, later passes can recompute register class constraints for inline 812 // assembly as well as normal instructions. 813 // Don't do this for tied operands that can use the regclass information 814 // from the def. 815 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 816 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 817 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 818 } 819 820 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 821 Ops.push_back(Res); 822 823 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 824 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 825 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 826 MVT RegisterVT = RegVTs[Value]; 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 829 unsigned TheReg = Regs[Reg++]; 830 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 831 832 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 833 // If we clobbered the stack pointer, MFI should know about it. 834 assert(DAG.getMachineFunction().getFrameInfo()-> 835 hasOpaqueSPAdjustment()); 836 } 837 } 838 } 839 } 840 841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 842 const TargetLibraryInfo *li) { 843 AA = &aa; 844 GFI = gfi; 845 LibInfo = li; 846 DL = &DAG.getDataLayout(); 847 Context = DAG.getContext(); 848 LPadToCallSiteMap.clear(); 849 } 850 851 /// clear - Clear out the current SelectionDAG and the associated 852 /// state and prepare this SelectionDAGBuilder object to be used 853 /// for a new block. This doesn't clear out information about 854 /// additional blocks that are needed to complete switch lowering 855 /// or PHI node updating; that information is cleared out as it is 856 /// consumed. 857 void SelectionDAGBuilder::clear() { 858 NodeMap.clear(); 859 UnusedArgNodeMap.clear(); 860 PendingLoads.clear(); 861 PendingExports.clear(); 862 CurInst = nullptr; 863 HasTailCall = false; 864 SDNodeOrder = LowestSDNodeOrder; 865 StatepointLowering.clear(); 866 } 867 868 /// clearDanglingDebugInfo - Clear the dangling debug information 869 /// map. This function is separated from the clear so that debug 870 /// information that is dangling in a basic block can be properly 871 /// resolved in a different basic block. This allows the 872 /// SelectionDAG to resolve dangling debug information attached 873 /// to PHI nodes. 874 void SelectionDAGBuilder::clearDanglingDebugInfo() { 875 DanglingDebugInfoMap.clear(); 876 } 877 878 /// getRoot - Return the current virtual root of the Selection DAG, 879 /// flushing any PendingLoad items. This must be done before emitting 880 /// a store or any other node that may need to be ordered after any 881 /// prior load instructions. 882 /// 883 SDValue SelectionDAGBuilder::getRoot() { 884 if (PendingLoads.empty()) 885 return DAG.getRoot(); 886 887 if (PendingLoads.size() == 1) { 888 SDValue Root = PendingLoads[0]; 889 DAG.setRoot(Root); 890 PendingLoads.clear(); 891 return Root; 892 } 893 894 // Otherwise, we have to make a token factor node. 895 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingLoads); 897 PendingLoads.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 /// getControlRoot - Similar to getRoot, but instead of flushing all the 903 /// PendingLoad items, flush all the PendingExports items. It is necessary 904 /// to do this before emitting a terminator instruction. 905 /// 906 SDValue SelectionDAGBuilder::getControlRoot() { 907 SDValue Root = DAG.getRoot(); 908 909 if (PendingExports.empty()) 910 return Root; 911 912 // Turn all of the CopyToReg chains into one factored node. 913 if (Root.getOpcode() != ISD::EntryToken) { 914 unsigned i = 0, e = PendingExports.size(); 915 for (; i != e; ++i) { 916 assert(PendingExports[i].getNode()->getNumOperands() > 1); 917 if (PendingExports[i].getNode()->getOperand(0) == Root) 918 break; // Don't add the root if we already indirectly depend on it. 919 } 920 921 if (i == e) 922 PendingExports.push_back(Root); 923 } 924 925 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 PendingExports); 927 PendingExports.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 /// Copy swift error to the final virtual register at end of a basic block, as 933 /// specified by SwiftErrorWorklist, if necessary. 934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) { 935 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo(); 936 if (!TLI.supportSwiftError()) 937 return; 938 939 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB)) 940 return; 941 942 // Go through entries in SwiftErrorWorklist, and create copy as necessary. 943 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry = 944 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB]; 945 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry = 946 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB]; 947 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) { 948 unsigned WorkReg = WorklistEntry[I]; 949 950 // Find the swifterror virtual register for the value in SwiftErrorMap. 951 unsigned MapReg = MapEntry[I]; 952 assert(TargetRegisterInfo::isVirtualRegister(MapReg) && 953 "Entries in SwiftErrorMap should be virtual registers"); 954 955 if (WorkReg == MapReg) 956 continue; 957 958 // Create copy from SwiftErrorMap to SwiftWorklist. 959 auto &DL = SDB.DAG.getDataLayout(); 960 SDValue CopyNode = SDB.DAG.getCopyToReg( 961 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg, 962 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL)))); 963 MapEntry[I] = WorkReg; 964 SDB.DAG.setRoot(CopyNode); 965 } 966 } 967 968 void SelectionDAGBuilder::visit(const Instruction &I) { 969 // Set up outgoing PHI node register values before emitting the terminator. 970 if (isa<TerminatorInst>(&I)) { 971 copySwiftErrorsToFinalVRegs(*this); 972 HandlePHINodesInSuccessorBlocks(I.getParent()); 973 } 974 975 ++SDNodeOrder; 976 977 CurInst = &I; 978 979 visit(I.getOpcode(), I); 980 981 if (!isa<TerminatorInst>(&I) && !HasTailCall && 982 !isStatepoint(&I)) // statepoints handle their exports internally 983 CopyToExportRegsIfNeeded(&I); 984 985 CurInst = nullptr; 986 } 987 988 void SelectionDAGBuilder::visitPHI(const PHINode &) { 989 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 990 } 991 992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 993 // Note: this doesn't use InstVisitor, because it has to work with 994 // ConstantExpr's in addition to instructions. 995 switch (Opcode) { 996 default: llvm_unreachable("Unknown instruction type encountered!"); 997 // Build the switch statement using the Instruction.def file. 998 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 999 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1000 #include "llvm/IR/Instruction.def" 1001 } 1002 } 1003 1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1005 // generate the debug data structures now that we've seen its definition. 1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1007 SDValue Val) { 1008 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1009 if (DDI.getDI()) { 1010 const DbgValueInst *DI = DDI.getDI(); 1011 DebugLoc dl = DDI.getdl(); 1012 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1013 DILocalVariable *Variable = DI->getVariable(); 1014 DIExpression *Expr = DI->getExpression(); 1015 assert(Variable->isValidLocationForIntrinsic(dl) && 1016 "Expected inlined-at fields to agree"); 1017 uint64_t Offset = DI->getOffset(); 1018 SDDbgValue *SDV; 1019 if (Val.getNode()) { 1020 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1021 Val)) { 1022 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1023 false, Offset, dl, DbgSDNodeOrder); 1024 DAG.AddDbgValue(SDV, Val.getNode(), false); 1025 } 1026 } else 1027 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1028 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1029 } 1030 } 1031 1032 /// getCopyFromRegs - If there was virtual register allocated for the value V 1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1035 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1036 SDValue Result; 1037 1038 if (It != FuncInfo.ValueMap.end()) { 1039 unsigned InReg = It->second; 1040 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1041 DAG.getDataLayout(), InReg, Ty); 1042 SDValue Chain = DAG.getEntryNode(); 1043 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1044 resolveDanglingDebugInfo(V, Result); 1045 } 1046 1047 return Result; 1048 } 1049 1050 /// getValue - Return an SDValue for the given Value. 1051 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1052 // If we already have an SDValue for this value, use it. It's important 1053 // to do this first, so that we don't create a CopyFromReg if we already 1054 // have a regular SDValue. 1055 SDValue &N = NodeMap[V]; 1056 if (N.getNode()) return N; 1057 1058 // If there's a virtual register allocated and initialized for this 1059 // value, use it. 1060 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1061 return copyFromReg; 1062 1063 // Otherwise create a new SDValue and remember it. 1064 SDValue Val = getValueImpl(V); 1065 NodeMap[V] = Val; 1066 resolveDanglingDebugInfo(V, Val); 1067 return Val; 1068 } 1069 1070 // Return true if SDValue exists for the given Value 1071 bool SelectionDAGBuilder::findValue(const Value *V) const { 1072 return (NodeMap.find(V) != NodeMap.end()) || 1073 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1074 } 1075 1076 /// getNonRegisterValue - Return an SDValue for the given Value, but 1077 /// don't look in FuncInfo.ValueMap for a virtual register. 1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1079 // If we already have an SDValue for this value, use it. 1080 SDValue &N = NodeMap[V]; 1081 if (N.getNode()) { 1082 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1083 // Remove the debug location from the node as the node is about to be used 1084 // in a location which may differ from the original debug location. This 1085 // is relevant to Constant and ConstantFP nodes because they can appear 1086 // as constant expressions inside PHI nodes. 1087 N->setDebugLoc(DebugLoc()); 1088 } 1089 return N; 1090 } 1091 1092 // Otherwise create a new SDValue and remember it. 1093 SDValue Val = getValueImpl(V); 1094 NodeMap[V] = Val; 1095 resolveDanglingDebugInfo(V, Val); 1096 return Val; 1097 } 1098 1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1100 /// Create an SDValue for the given value. 1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1103 1104 if (const Constant *C = dyn_cast<Constant>(V)) { 1105 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1106 1107 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1108 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1109 1110 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1111 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1112 1113 if (isa<ConstantPointerNull>(C)) { 1114 unsigned AS = V->getType()->getPointerAddressSpace(); 1115 return DAG.getConstant(0, getCurSDLoc(), 1116 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1117 } 1118 1119 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1120 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1121 1122 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1123 return DAG.getUNDEF(VT); 1124 1125 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1126 visit(CE->getOpcode(), *CE); 1127 SDValue N1 = NodeMap[V]; 1128 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1129 return N1; 1130 } 1131 1132 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1133 SmallVector<SDValue, 4> Constants; 1134 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1135 OI != OE; ++OI) { 1136 SDNode *Val = getValue(*OI).getNode(); 1137 // If the operand is an empty aggregate, there are no values. 1138 if (!Val) continue; 1139 // Add each leaf value from the operand to the Constants list 1140 // to form a flattened list of all the values. 1141 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1142 Constants.push_back(SDValue(Val, i)); 1143 } 1144 1145 return DAG.getMergeValues(Constants, getCurSDLoc()); 1146 } 1147 1148 if (const ConstantDataSequential *CDS = 1149 dyn_cast<ConstantDataSequential>(C)) { 1150 SmallVector<SDValue, 4> Ops; 1151 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1152 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1153 // Add each leaf value from the operand to the Constants list 1154 // to form a flattened list of all the values. 1155 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1156 Ops.push_back(SDValue(Val, i)); 1157 } 1158 1159 if (isa<ArrayType>(CDS->getType())) 1160 return DAG.getMergeValues(Ops, getCurSDLoc()); 1161 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1162 VT, Ops); 1163 } 1164 1165 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1166 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1167 "Unknown struct or array constant!"); 1168 1169 SmallVector<EVT, 4> ValueVTs; 1170 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1171 unsigned NumElts = ValueVTs.size(); 1172 if (NumElts == 0) 1173 return SDValue(); // empty struct 1174 SmallVector<SDValue, 4> Constants(NumElts); 1175 for (unsigned i = 0; i != NumElts; ++i) { 1176 EVT EltVT = ValueVTs[i]; 1177 if (isa<UndefValue>(C)) 1178 Constants[i] = DAG.getUNDEF(EltVT); 1179 else if (EltVT.isFloatingPoint()) 1180 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1181 else 1182 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1183 } 1184 1185 return DAG.getMergeValues(Constants, getCurSDLoc()); 1186 } 1187 1188 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1189 return DAG.getBlockAddress(BA, VT); 1190 1191 VectorType *VecTy = cast<VectorType>(V->getType()); 1192 unsigned NumElements = VecTy->getNumElements(); 1193 1194 // Now that we know the number and type of the elements, get that number of 1195 // elements into the Ops array based on what kind of constant it is. 1196 SmallVector<SDValue, 16> Ops; 1197 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1198 for (unsigned i = 0; i != NumElements; ++i) 1199 Ops.push_back(getValue(CV->getOperand(i))); 1200 } else { 1201 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1202 EVT EltVT = 1203 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1204 1205 SDValue Op; 1206 if (EltVT.isFloatingPoint()) 1207 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1208 else 1209 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1210 Ops.assign(NumElements, Op); 1211 } 1212 1213 // Create a BUILD_VECTOR node. 1214 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1215 } 1216 1217 // If this is a static alloca, generate it as the frameindex instead of 1218 // computation. 1219 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1220 DenseMap<const AllocaInst*, int>::iterator SI = 1221 FuncInfo.StaticAllocaMap.find(AI); 1222 if (SI != FuncInfo.StaticAllocaMap.end()) 1223 return DAG.getFrameIndex(SI->second, 1224 TLI.getPointerTy(DAG.getDataLayout())); 1225 } 1226 1227 // If this is an instruction which fast-isel has deferred, select it now. 1228 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1229 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1230 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1231 Inst->getType()); 1232 SDValue Chain = DAG.getEntryNode(); 1233 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1234 } 1235 1236 llvm_unreachable("Can't get register for value!"); 1237 } 1238 1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1240 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1241 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1242 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1243 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1244 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1245 if (IsMSVCCXX || IsCoreCLR) 1246 CatchPadMBB->setIsEHFuncletEntry(); 1247 1248 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1249 } 1250 1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1252 // Update machine-CFG edge. 1253 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1254 FuncInfo.MBB->addSuccessor(TargetMBB); 1255 1256 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1257 bool IsSEH = isAsynchronousEHPersonality(Pers); 1258 if (IsSEH) { 1259 // If this is not a fall-through branch or optimizations are switched off, 1260 // emit the branch. 1261 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1262 TM.getOptLevel() == CodeGenOpt::None) 1263 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1264 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1265 return; 1266 } 1267 1268 // Figure out the funclet membership for the catchret's successor. 1269 // This will be used by the FuncletLayout pass to determine how to order the 1270 // BB's. 1271 // A 'catchret' returns to the outer scope's color. 1272 Value *ParentPad = I.getCatchSwitchParentPad(); 1273 const BasicBlock *SuccessorColor; 1274 if (isa<ConstantTokenNone>(ParentPad)) 1275 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1276 else 1277 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1278 assert(SuccessorColor && "No parent funclet for catchret!"); 1279 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1280 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1281 1282 // Create the terminator node. 1283 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1284 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1285 DAG.getBasicBlock(SuccessorColorMBB)); 1286 DAG.setRoot(Ret); 1287 } 1288 1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1290 // Don't emit any special code for the cleanuppad instruction. It just marks 1291 // the start of a funclet. 1292 FuncInfo.MBB->setIsEHFuncletEntry(); 1293 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1294 } 1295 1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1297 /// many places it could ultimately go. In the IR, we have a single unwind 1298 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1299 /// This function skips over imaginary basic blocks that hold catchswitch 1300 /// instructions, and finds all the "real" machine 1301 /// basic block destinations. As those destinations may not be successors of 1302 /// EHPadBB, here we also calculate the edge probability to those destinations. 1303 /// The passed-in Prob is the edge probability to EHPadBB. 1304 static void findUnwindDestinations( 1305 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1306 BranchProbability Prob, 1307 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1308 &UnwindDests) { 1309 EHPersonality Personality = 1310 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1311 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1312 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1313 1314 while (EHPadBB) { 1315 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1316 BasicBlock *NewEHPadBB = nullptr; 1317 if (isa<LandingPadInst>(Pad)) { 1318 // Stop on landingpads. They are not funclets. 1319 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1320 break; 1321 } else if (isa<CleanupPadInst>(Pad)) { 1322 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1323 // personalities. 1324 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1325 UnwindDests.back().first->setIsEHFuncletEntry(); 1326 break; 1327 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1328 // Add the catchpad handlers to the possible destinations. 1329 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1330 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1331 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1332 if (IsMSVCCXX || IsCoreCLR) 1333 UnwindDests.back().first->setIsEHFuncletEntry(); 1334 } 1335 NewEHPadBB = CatchSwitch->getUnwindDest(); 1336 } else { 1337 continue; 1338 } 1339 1340 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1341 if (BPI && NewEHPadBB) 1342 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1343 EHPadBB = NewEHPadBB; 1344 } 1345 } 1346 1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1348 // Update successor info. 1349 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1350 auto UnwindDest = I.getUnwindDest(); 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 BranchProbability UnwindDestProb = 1353 (BPI && UnwindDest) 1354 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1355 : BranchProbability::getZero(); 1356 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1357 for (auto &UnwindDest : UnwindDests) { 1358 UnwindDest.first->setIsEHPad(); 1359 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1360 } 1361 FuncInfo.MBB->normalizeSuccProbs(); 1362 1363 // Create the terminator node. 1364 SDValue Ret = 1365 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1366 DAG.setRoot(Ret); 1367 } 1368 1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1370 report_fatal_error("visitCatchSwitch not yet implemented!"); 1371 } 1372 1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1375 auto &DL = DAG.getDataLayout(); 1376 SDValue Chain = getControlRoot(); 1377 SmallVector<ISD::OutputArg, 8> Outs; 1378 SmallVector<SDValue, 8> OutVals; 1379 1380 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1381 // lower 1382 // 1383 // %val = call <ty> @llvm.experimental.deoptimize() 1384 // ret <ty> %val 1385 // 1386 // differently. 1387 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1388 LowerDeoptimizingReturn(); 1389 return; 1390 } 1391 1392 if (!FuncInfo.CanLowerReturn) { 1393 unsigned DemoteReg = FuncInfo.DemoteRegister; 1394 const Function *F = I.getParent()->getParent(); 1395 1396 // Emit a store of the return value through the virtual register. 1397 // Leave Outs empty so that LowerReturn won't try to load return 1398 // registers the usual way. 1399 SmallVector<EVT, 1> PtrValueVTs; 1400 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1401 PtrValueVTs); 1402 1403 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1404 DemoteReg, PtrValueVTs[0]); 1405 SDValue RetOp = getValue(I.getOperand(0)); 1406 1407 SmallVector<EVT, 4> ValueVTs; 1408 SmallVector<uint64_t, 4> Offsets; 1409 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1410 unsigned NumValues = ValueVTs.size(); 1411 1412 // An aggregate return value cannot wrap around the address space, so 1413 // offsets to its parts don't wrap either. 1414 SDNodeFlags Flags; 1415 Flags.setNoUnsignedWrap(true); 1416 1417 SmallVector<SDValue, 4> Chains(NumValues); 1418 for (unsigned i = 0; i != NumValues; ++i) { 1419 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1420 RetPtr.getValueType(), RetPtr, 1421 DAG.getIntPtrConstant(Offsets[i], 1422 getCurSDLoc()), 1423 &Flags); 1424 Chains[i] = 1425 DAG.getStore(Chain, getCurSDLoc(), 1426 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1427 // FIXME: better loc info would be nice. 1428 Add, MachinePointerInfo(), false, false, 0); 1429 } 1430 1431 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1432 MVT::Other, Chains); 1433 } else if (I.getNumOperands() != 0) { 1434 SmallVector<EVT, 4> ValueVTs; 1435 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1436 unsigned NumValues = ValueVTs.size(); 1437 if (NumValues) { 1438 SDValue RetOp = getValue(I.getOperand(0)); 1439 1440 const Function *F = I.getParent()->getParent(); 1441 1442 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1443 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1444 Attribute::SExt)) 1445 ExtendKind = ISD::SIGN_EXTEND; 1446 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1447 Attribute::ZExt)) 1448 ExtendKind = ISD::ZERO_EXTEND; 1449 1450 LLVMContext &Context = F->getContext(); 1451 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1452 Attribute::InReg); 1453 1454 for (unsigned j = 0; j != NumValues; ++j) { 1455 EVT VT = ValueVTs[j]; 1456 1457 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1458 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1459 1460 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1461 MVT PartVT = TLI.getRegisterType(Context, VT); 1462 SmallVector<SDValue, 4> Parts(NumParts); 1463 getCopyToParts(DAG, getCurSDLoc(), 1464 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1465 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1466 1467 // 'inreg' on function refers to return value 1468 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1469 if (RetInReg) 1470 Flags.setInReg(); 1471 1472 // Propagate extension type if any 1473 if (ExtendKind == ISD::SIGN_EXTEND) 1474 Flags.setSExt(); 1475 else if (ExtendKind == ISD::ZERO_EXTEND) 1476 Flags.setZExt(); 1477 1478 for (unsigned i = 0; i < NumParts; ++i) { 1479 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1480 VT, /*isfixed=*/true, 0, 0)); 1481 OutVals.push_back(Parts[i]); 1482 } 1483 } 1484 } 1485 } 1486 1487 // Push in swifterror virtual register as the last element of Outs. This makes 1488 // sure swifterror virtual register will be returned in the swifterror 1489 // physical register. 1490 const Function *F = I.getParent()->getParent(); 1491 if (TLI.supportSwiftError() && 1492 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1493 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1494 Flags.setSwiftError(); 1495 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1496 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1497 true /*isfixed*/, 1 /*origidx*/, 1498 0 /*partOffs*/)); 1499 // Create SDNode for the swifterror virtual register. 1500 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0], 1501 EVT(TLI.getPointerTy(DL)))); 1502 } 1503 1504 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1505 CallingConv::ID CallConv = 1506 DAG.getMachineFunction().getFunction()->getCallingConv(); 1507 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1508 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1509 1510 // Verify that the target's LowerReturn behaved as expected. 1511 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1512 "LowerReturn didn't return a valid chain!"); 1513 1514 // Update the DAG with the new chain value resulting from return lowering. 1515 DAG.setRoot(Chain); 1516 } 1517 1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1519 /// created for it, emit nodes to copy the value into the virtual 1520 /// registers. 1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1522 // Skip empty types 1523 if (V->getType()->isEmptyTy()) 1524 return; 1525 1526 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1527 if (VMI != FuncInfo.ValueMap.end()) { 1528 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1529 CopyValueToVirtualRegister(V, VMI->second); 1530 } 1531 } 1532 1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1534 /// the current basic block, add it to ValueMap now so that we'll get a 1535 /// CopyTo/FromReg. 1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1537 // No need to export constants. 1538 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1539 1540 // Already exported? 1541 if (FuncInfo.isExportedInst(V)) return; 1542 1543 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1544 CopyValueToVirtualRegister(V, Reg); 1545 } 1546 1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1548 const BasicBlock *FromBB) { 1549 // The operands of the setcc have to be in this block. We don't know 1550 // how to export them from some other block. 1551 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1552 // Can export from current BB. 1553 if (VI->getParent() == FromBB) 1554 return true; 1555 1556 // Is already exported, noop. 1557 return FuncInfo.isExportedInst(V); 1558 } 1559 1560 // If this is an argument, we can export it if the BB is the entry block or 1561 // if it is already exported. 1562 if (isa<Argument>(V)) { 1563 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1564 return true; 1565 1566 // Otherwise, can only export this if it is already exported. 1567 return FuncInfo.isExportedInst(V); 1568 } 1569 1570 // Otherwise, constants can always be exported. 1571 return true; 1572 } 1573 1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1575 BranchProbability 1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1577 const MachineBasicBlock *Dst) const { 1578 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1579 const BasicBlock *SrcBB = Src->getBasicBlock(); 1580 const BasicBlock *DstBB = Dst->getBasicBlock(); 1581 if (!BPI) { 1582 // If BPI is not available, set the default probability as 1 / N, where N is 1583 // the number of successors. 1584 auto SuccSize = std::max<uint32_t>( 1585 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1586 return BranchProbability(1, SuccSize); 1587 } 1588 return BPI->getEdgeProbability(SrcBB, DstBB); 1589 } 1590 1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1592 MachineBasicBlock *Dst, 1593 BranchProbability Prob) { 1594 if (!FuncInfo.BPI) 1595 Src->addSuccessorWithoutProb(Dst); 1596 else { 1597 if (Prob.isUnknown()) 1598 Prob = getEdgeProbability(Src, Dst); 1599 Src->addSuccessor(Dst, Prob); 1600 } 1601 } 1602 1603 static bool InBlock(const Value *V, const BasicBlock *BB) { 1604 if (const Instruction *I = dyn_cast<Instruction>(V)) 1605 return I->getParent() == BB; 1606 return true; 1607 } 1608 1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1610 /// This function emits a branch and is used at the leaves of an OR or an 1611 /// AND operator tree. 1612 /// 1613 void 1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1615 MachineBasicBlock *TBB, 1616 MachineBasicBlock *FBB, 1617 MachineBasicBlock *CurBB, 1618 MachineBasicBlock *SwitchBB, 1619 BranchProbability TProb, 1620 BranchProbability FProb) { 1621 const BasicBlock *BB = CurBB->getBasicBlock(); 1622 1623 // If the leaf of the tree is a comparison, merge the condition into 1624 // the caseblock. 1625 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1626 // The operands of the cmp have to be in this block. We don't know 1627 // how to export them from some other block. If this is the first block 1628 // of the sequence, no exporting is needed. 1629 if (CurBB == SwitchBB || 1630 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1631 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1632 ISD::CondCode Condition; 1633 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1634 Condition = getICmpCondCode(IC->getPredicate()); 1635 } else { 1636 const FCmpInst *FC = cast<FCmpInst>(Cond); 1637 Condition = getFCmpCondCode(FC->getPredicate()); 1638 if (TM.Options.NoNaNsFPMath) 1639 Condition = getFCmpCodeWithoutNaN(Condition); 1640 } 1641 1642 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1643 TBB, FBB, CurBB, TProb, FProb); 1644 SwitchCases.push_back(CB); 1645 return; 1646 } 1647 } 1648 1649 // Create a CaseBlock record representing this branch. 1650 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1651 nullptr, TBB, FBB, CurBB, TProb, FProb); 1652 SwitchCases.push_back(CB); 1653 } 1654 1655 /// FindMergedConditions - If Cond is an expression like 1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1657 MachineBasicBlock *TBB, 1658 MachineBasicBlock *FBB, 1659 MachineBasicBlock *CurBB, 1660 MachineBasicBlock *SwitchBB, 1661 Instruction::BinaryOps Opc, 1662 BranchProbability TProb, 1663 BranchProbability FProb) { 1664 // If this node is not part of the or/and tree, emit it as a branch. 1665 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1666 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1667 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1668 BOp->getParent() != CurBB->getBasicBlock() || 1669 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1670 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1671 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1672 TProb, FProb); 1673 return; 1674 } 1675 1676 // Create TmpBB after CurBB. 1677 MachineFunction::iterator BBI(CurBB); 1678 MachineFunction &MF = DAG.getMachineFunction(); 1679 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1680 CurBB->getParent()->insert(++BBI, TmpBB); 1681 1682 if (Opc == Instruction::Or) { 1683 // Codegen X | Y as: 1684 // BB1: 1685 // jmp_if_X TBB 1686 // jmp TmpBB 1687 // TmpBB: 1688 // jmp_if_Y TBB 1689 // jmp FBB 1690 // 1691 1692 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1693 // The requirement is that 1694 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1695 // = TrueProb for original BB. 1696 // Assuming the original probabilities are A and B, one choice is to set 1697 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1698 // A/(1+B) and 2B/(1+B). This choice assumes that 1699 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1700 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1701 // TmpBB, but the math is more complicated. 1702 1703 auto NewTrueProb = TProb / 2; 1704 auto NewFalseProb = TProb / 2 + FProb; 1705 // Emit the LHS condition. 1706 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1707 NewTrueProb, NewFalseProb); 1708 1709 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1710 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1711 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1712 // Emit the RHS condition into TmpBB. 1713 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1714 Probs[0], Probs[1]); 1715 } else { 1716 assert(Opc == Instruction::And && "Unknown merge op!"); 1717 // Codegen X & Y as: 1718 // BB1: 1719 // jmp_if_X TmpBB 1720 // jmp FBB 1721 // TmpBB: 1722 // jmp_if_Y TBB 1723 // jmp FBB 1724 // 1725 // This requires creation of TmpBB after CurBB. 1726 1727 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1728 // The requirement is that 1729 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1730 // = FalseProb for original BB. 1731 // Assuming the original probabilities are A and B, one choice is to set 1732 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1733 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1734 // TrueProb for BB1 * FalseProb for TmpBB. 1735 1736 auto NewTrueProb = TProb + FProb / 2; 1737 auto NewFalseProb = FProb / 2; 1738 // Emit the LHS condition. 1739 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1740 NewTrueProb, NewFalseProb); 1741 1742 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1743 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1744 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1745 // Emit the RHS condition into TmpBB. 1746 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1747 Probs[0], Probs[1]); 1748 } 1749 } 1750 1751 /// If the set of cases should be emitted as a series of branches, return true. 1752 /// If we should emit this as a bunch of and/or'd together conditions, return 1753 /// false. 1754 bool 1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1756 if (Cases.size() != 2) return true; 1757 1758 // If this is two comparisons of the same values or'd or and'd together, they 1759 // will get folded into a single comparison, so don't emit two blocks. 1760 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1761 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1762 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1763 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1764 return false; 1765 } 1766 1767 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1768 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1769 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1770 Cases[0].CC == Cases[1].CC && 1771 isa<Constant>(Cases[0].CmpRHS) && 1772 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1773 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1774 return false; 1775 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1776 return false; 1777 } 1778 1779 return true; 1780 } 1781 1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1783 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1784 1785 // Update machine-CFG edges. 1786 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1787 1788 if (I.isUnconditional()) { 1789 // Update machine-CFG edges. 1790 BrMBB->addSuccessor(Succ0MBB); 1791 1792 // If this is not a fall-through branch or optimizations are switched off, 1793 // emit the branch. 1794 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1795 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1796 MVT::Other, getControlRoot(), 1797 DAG.getBasicBlock(Succ0MBB))); 1798 1799 return; 1800 } 1801 1802 // If this condition is one of the special cases we handle, do special stuff 1803 // now. 1804 const Value *CondVal = I.getCondition(); 1805 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1806 1807 // If this is a series of conditions that are or'd or and'd together, emit 1808 // this as a sequence of branches instead of setcc's with and/or operations. 1809 // As long as jumps are not expensive, this should improve performance. 1810 // For example, instead of something like: 1811 // cmp A, B 1812 // C = seteq 1813 // cmp D, E 1814 // F = setle 1815 // or C, F 1816 // jnz foo 1817 // Emit: 1818 // cmp A, B 1819 // je foo 1820 // cmp D, E 1821 // jle foo 1822 // 1823 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1824 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1825 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1826 !I.getMetadata(LLVMContext::MD_unpredictable) && 1827 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1828 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1829 Opcode, 1830 getEdgeProbability(BrMBB, Succ0MBB), 1831 getEdgeProbability(BrMBB, Succ1MBB)); 1832 // If the compares in later blocks need to use values not currently 1833 // exported from this block, export them now. This block should always 1834 // be the first entry. 1835 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1836 1837 // Allow some cases to be rejected. 1838 if (ShouldEmitAsBranches(SwitchCases)) { 1839 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1840 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1841 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1842 } 1843 1844 // Emit the branch for this block. 1845 visitSwitchCase(SwitchCases[0], BrMBB); 1846 SwitchCases.erase(SwitchCases.begin()); 1847 return; 1848 } 1849 1850 // Okay, we decided not to do this, remove any inserted MBB's and clear 1851 // SwitchCases. 1852 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1853 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1854 1855 SwitchCases.clear(); 1856 } 1857 } 1858 1859 // Create a CaseBlock record representing this branch. 1860 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1861 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1862 1863 // Use visitSwitchCase to actually insert the fast branch sequence for this 1864 // cond branch. 1865 visitSwitchCase(CB, BrMBB); 1866 } 1867 1868 /// visitSwitchCase - Emits the necessary code to represent a single node in 1869 /// the binary search tree resulting from lowering a switch instruction. 1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1871 MachineBasicBlock *SwitchBB) { 1872 SDValue Cond; 1873 SDValue CondLHS = getValue(CB.CmpLHS); 1874 SDLoc dl = getCurSDLoc(); 1875 1876 // Build the setcc now. 1877 if (!CB.CmpMHS) { 1878 // Fold "(X == true)" to X and "(X == false)" to !X to 1879 // handle common cases produced by branch lowering. 1880 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1881 CB.CC == ISD::SETEQ) 1882 Cond = CondLHS; 1883 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1884 CB.CC == ISD::SETEQ) { 1885 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1886 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1887 } else 1888 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1889 } else { 1890 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1891 1892 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1893 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1894 1895 SDValue CmpOp = getValue(CB.CmpMHS); 1896 EVT VT = CmpOp.getValueType(); 1897 1898 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1899 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1900 ISD::SETLE); 1901 } else { 1902 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1903 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1904 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1905 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1906 } 1907 } 1908 1909 // Update successor info 1910 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1911 // TrueBB and FalseBB are always different unless the incoming IR is 1912 // degenerate. This only happens when running llc on weird IR. 1913 if (CB.TrueBB != CB.FalseBB) 1914 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1915 SwitchBB->normalizeSuccProbs(); 1916 1917 // If the lhs block is the next block, invert the condition so that we can 1918 // fall through to the lhs instead of the rhs block. 1919 if (CB.TrueBB == NextBlock(SwitchBB)) { 1920 std::swap(CB.TrueBB, CB.FalseBB); 1921 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1922 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1923 } 1924 1925 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1926 MVT::Other, getControlRoot(), Cond, 1927 DAG.getBasicBlock(CB.TrueBB)); 1928 1929 // Insert the false branch. Do this even if it's a fall through branch, 1930 // this makes it easier to do DAG optimizations which require inverting 1931 // the branch condition. 1932 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1933 DAG.getBasicBlock(CB.FalseBB)); 1934 1935 DAG.setRoot(BrCond); 1936 } 1937 1938 /// visitJumpTable - Emit JumpTable node in the current MBB 1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1940 // Emit the code for the jump table 1941 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1942 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1943 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1944 JT.Reg, PTy); 1945 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1946 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1947 MVT::Other, Index.getValue(1), 1948 Table, Index); 1949 DAG.setRoot(BrJumpTable); 1950 } 1951 1952 /// visitJumpTableHeader - This function emits necessary code to produce index 1953 /// in the JumpTable from switch case. 1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1955 JumpTableHeader &JTH, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 1959 // Subtract the lowest switch case value from the value being switched on and 1960 // conditional branch to default mbb if the result is greater than the 1961 // difference between smallest and largest cases. 1962 SDValue SwitchOp = getValue(JTH.SValue); 1963 EVT VT = SwitchOp.getValueType(); 1964 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1965 DAG.getConstant(JTH.First, dl, VT)); 1966 1967 // The SDNode we just created, which holds the value being switched on minus 1968 // the smallest case value, needs to be copied to a virtual register so it 1969 // can be used as an index into the jump table in a subsequent basic block. 1970 // This value may be smaller or larger than the target's pointer type, and 1971 // therefore require extension or truncating. 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1974 1975 unsigned JumpTableReg = 1976 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1977 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1978 JumpTableReg, SwitchOp); 1979 JT.Reg = JumpTableReg; 1980 1981 // Emit the range check for the jump table, and branch to the default block 1982 // for the switch statement if the value being switched on exceeds the largest 1983 // case in the switch. 1984 SDValue CMP = DAG.getSetCC( 1985 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1986 Sub.getValueType()), 1987 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1988 1989 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1990 MVT::Other, CopyTo, CMP, 1991 DAG.getBasicBlock(JT.Default)); 1992 1993 // Avoid emitting unnecessary branches to the next block. 1994 if (JT.MBB != NextBlock(SwitchBB)) 1995 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1996 DAG.getBasicBlock(JT.MBB)); 1997 1998 DAG.setRoot(BrCond); 1999 } 2000 2001 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2002 /// tail spliced into a stack protector check success bb. 2003 /// 2004 /// For a high level explanation of how this fits into the stack protector 2005 /// generation see the comment on the declaration of class 2006 /// StackProtectorDescriptor. 2007 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2008 MachineBasicBlock *ParentBB) { 2009 2010 // First create the loads to the guard/stack slot for the comparison. 2011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2012 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2013 2014 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 2015 int FI = MFI->getStackProtectorIndex(); 2016 2017 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2018 const Value *IRGuard = TLI.getSDStackGuard(M); 2019 assert(IRGuard && "Currently there must be an IR guard in order to use " 2020 "SelectionDAG SSP"); 2021 SDValue GuardPtr = getValue(IRGuard); 2022 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2023 2024 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 2025 2026 SDValue Guard; 2027 SDLoc dl = getCurSDLoc(); 2028 2029 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 2030 // guard value from the virtual register holding the value. Otherwise, emit a 2031 // volatile load to retrieve the stack guard value. 2032 unsigned GuardReg = SPD.getGuardReg(); 2033 2034 if (GuardReg && TLI.useLoadStackGuardNode()) 2035 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 2036 PtrTy); 2037 else 2038 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 2039 GuardPtr, MachinePointerInfo(IRGuard, 0), 2040 true, false, false, Align); 2041 2042 SDValue StackSlot = DAG.getLoad( 2043 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2044 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 2045 false, false, Align); 2046 2047 // Perform the comparison via a subtract/getsetcc. 2048 EVT VT = Guard.getValueType(); 2049 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2050 2051 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2052 *DAG.getContext(), 2053 Sub.getValueType()), 2054 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2055 2056 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2057 // branch to failure MBB. 2058 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2059 MVT::Other, StackSlot.getOperand(0), 2060 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2061 // Otherwise branch to success MBB. 2062 SDValue Br = DAG.getNode(ISD::BR, dl, 2063 MVT::Other, BrCond, 2064 DAG.getBasicBlock(SPD.getSuccessMBB())); 2065 2066 DAG.setRoot(Br); 2067 } 2068 2069 /// Codegen the failure basic block for a stack protector check. 2070 /// 2071 /// A failure stack protector machine basic block consists simply of a call to 2072 /// __stack_chk_fail(). 2073 /// 2074 /// For a high level explanation of how this fits into the stack protector 2075 /// generation see the comment on the declaration of class 2076 /// StackProtectorDescriptor. 2077 void 2078 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2080 SDValue Chain = 2081 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2082 None, false, getCurSDLoc(), false, false).second; 2083 DAG.setRoot(Chain); 2084 } 2085 2086 /// visitBitTestHeader - This function emits necessary code to produce value 2087 /// suitable for "bit tests" 2088 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2089 MachineBasicBlock *SwitchBB) { 2090 SDLoc dl = getCurSDLoc(); 2091 2092 // Subtract the minimum value 2093 SDValue SwitchOp = getValue(B.SValue); 2094 EVT VT = SwitchOp.getValueType(); 2095 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2096 DAG.getConstant(B.First, dl, VT)); 2097 2098 // Check range 2099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2100 SDValue RangeCmp = DAG.getSetCC( 2101 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2102 Sub.getValueType()), 2103 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2104 2105 // Determine the type of the test operands. 2106 bool UsePtrType = false; 2107 if (!TLI.isTypeLegal(VT)) 2108 UsePtrType = true; 2109 else { 2110 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2111 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2112 // Switch table case range are encoded into series of masks. 2113 // Just use pointer type, it's guaranteed to fit. 2114 UsePtrType = true; 2115 break; 2116 } 2117 } 2118 if (UsePtrType) { 2119 VT = TLI.getPointerTy(DAG.getDataLayout()); 2120 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2121 } 2122 2123 B.RegVT = VT.getSimpleVT(); 2124 B.Reg = FuncInfo.CreateReg(B.RegVT); 2125 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2126 2127 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2128 2129 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2130 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2131 SwitchBB->normalizeSuccProbs(); 2132 2133 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2134 MVT::Other, CopyTo, RangeCmp, 2135 DAG.getBasicBlock(B.Default)); 2136 2137 // Avoid emitting unnecessary branches to the next block. 2138 if (MBB != NextBlock(SwitchBB)) 2139 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2140 DAG.getBasicBlock(MBB)); 2141 2142 DAG.setRoot(BrRange); 2143 } 2144 2145 /// visitBitTestCase - this function produces one "bit test" 2146 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2147 MachineBasicBlock* NextMBB, 2148 BranchProbability BranchProbToNext, 2149 unsigned Reg, 2150 BitTestCase &B, 2151 MachineBasicBlock *SwitchBB) { 2152 SDLoc dl = getCurSDLoc(); 2153 MVT VT = BB.RegVT; 2154 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2155 SDValue Cmp; 2156 unsigned PopCount = countPopulation(B.Mask); 2157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2158 if (PopCount == 1) { 2159 // Testing for a single bit; just compare the shift count with what it 2160 // would need to be to shift a 1 bit in that position. 2161 Cmp = DAG.getSetCC( 2162 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2163 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2164 ISD::SETEQ); 2165 } else if (PopCount == BB.Range) { 2166 // There is only one zero bit in the range, test for it directly. 2167 Cmp = DAG.getSetCC( 2168 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2169 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2170 ISD::SETNE); 2171 } else { 2172 // Make desired shift 2173 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2174 DAG.getConstant(1, dl, VT), ShiftOp); 2175 2176 // Emit bit tests and jumps 2177 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2178 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2179 Cmp = DAG.getSetCC( 2180 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2181 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2182 } 2183 2184 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2185 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2186 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2187 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2188 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2189 // one as they are relative probabilities (and thus work more like weights), 2190 // and hence we need to normalize them to let the sum of them become one. 2191 SwitchBB->normalizeSuccProbs(); 2192 2193 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2194 MVT::Other, getControlRoot(), 2195 Cmp, DAG.getBasicBlock(B.TargetBB)); 2196 2197 // Avoid emitting unnecessary branches to the next block. 2198 if (NextMBB != NextBlock(SwitchBB)) 2199 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2200 DAG.getBasicBlock(NextMBB)); 2201 2202 DAG.setRoot(BrAnd); 2203 } 2204 2205 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2206 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2207 2208 // Retrieve successors. Look through artificial IR level blocks like 2209 // catchswitch for successors. 2210 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2211 const BasicBlock *EHPadBB = I.getSuccessor(1); 2212 2213 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2214 // have to do anything here to lower funclet bundles. 2215 assert(!I.hasOperandBundlesOtherThan( 2216 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2217 "Cannot lower invokes with arbitrary operand bundles yet!"); 2218 2219 const Value *Callee(I.getCalledValue()); 2220 const Function *Fn = dyn_cast<Function>(Callee); 2221 if (isa<InlineAsm>(Callee)) 2222 visitInlineAsm(&I); 2223 else if (Fn && Fn->isIntrinsic()) { 2224 switch (Fn->getIntrinsicID()) { 2225 default: 2226 llvm_unreachable("Cannot invoke this intrinsic"); 2227 case Intrinsic::donothing: 2228 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2229 break; 2230 case Intrinsic::experimental_patchpoint_void: 2231 case Intrinsic::experimental_patchpoint_i64: 2232 visitPatchpoint(&I, EHPadBB); 2233 break; 2234 case Intrinsic::experimental_gc_statepoint: 2235 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2236 break; 2237 } 2238 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2239 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2240 // Eventually we will support lowering the @llvm.experimental.deoptimize 2241 // intrinsic, and right now there are no plans to support other intrinsics 2242 // with deopt state. 2243 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2244 } else { 2245 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2246 } 2247 2248 // If the value of the invoke is used outside of its defining block, make it 2249 // available as a virtual register. 2250 // We already took care of the exported value for the statepoint instruction 2251 // during call to the LowerStatepoint. 2252 if (!isStatepoint(I)) { 2253 CopyToExportRegsIfNeeded(&I); 2254 } 2255 2256 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2257 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2258 BranchProbability EHPadBBProb = 2259 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2260 : BranchProbability::getZero(); 2261 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2262 2263 // Update successor info. 2264 addSuccessorWithProb(InvokeMBB, Return); 2265 for (auto &UnwindDest : UnwindDests) { 2266 UnwindDest.first->setIsEHPad(); 2267 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2268 } 2269 InvokeMBB->normalizeSuccProbs(); 2270 2271 // Drop into normal successor. 2272 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2273 MVT::Other, getControlRoot(), 2274 DAG.getBasicBlock(Return))); 2275 } 2276 2277 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2278 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2279 } 2280 2281 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2282 assert(FuncInfo.MBB->isEHPad() && 2283 "Call to landingpad not in landing pad!"); 2284 2285 MachineBasicBlock *MBB = FuncInfo.MBB; 2286 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2287 AddLandingPadInfo(LP, MMI, MBB); 2288 2289 // If there aren't registers to copy the values into (e.g., during SjLj 2290 // exceptions), then don't bother to create these DAG nodes. 2291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2292 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2293 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2294 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2295 return; 2296 2297 // If landingpad's return type is token type, we don't create DAG nodes 2298 // for its exception pointer and selector value. The extraction of exception 2299 // pointer or selector value from token type landingpads is not currently 2300 // supported. 2301 if (LP.getType()->isTokenTy()) 2302 return; 2303 2304 SmallVector<EVT, 2> ValueVTs; 2305 SDLoc dl = getCurSDLoc(); 2306 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2307 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2308 2309 // Get the two live-in registers as SDValues. The physregs have already been 2310 // copied into virtual registers. 2311 SDValue Ops[2]; 2312 if (FuncInfo.ExceptionPointerVirtReg) { 2313 Ops[0] = DAG.getZExtOrTrunc( 2314 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2315 FuncInfo.ExceptionPointerVirtReg, 2316 TLI.getPointerTy(DAG.getDataLayout())), 2317 dl, ValueVTs[0]); 2318 } else { 2319 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2320 } 2321 Ops[1] = DAG.getZExtOrTrunc( 2322 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2323 FuncInfo.ExceptionSelectorVirtReg, 2324 TLI.getPointerTy(DAG.getDataLayout())), 2325 dl, ValueVTs[1]); 2326 2327 // Merge into one. 2328 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2329 DAG.getVTList(ValueVTs), Ops); 2330 setValue(&LP, Res); 2331 } 2332 2333 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2334 #ifndef NDEBUG 2335 for (const CaseCluster &CC : Clusters) 2336 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2337 #endif 2338 2339 std::sort(Clusters.begin(), Clusters.end(), 2340 [](const CaseCluster &a, const CaseCluster &b) { 2341 return a.Low->getValue().slt(b.Low->getValue()); 2342 }); 2343 2344 // Merge adjacent clusters with the same destination. 2345 const unsigned N = Clusters.size(); 2346 unsigned DstIndex = 0; 2347 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2348 CaseCluster &CC = Clusters[SrcIndex]; 2349 const ConstantInt *CaseVal = CC.Low; 2350 MachineBasicBlock *Succ = CC.MBB; 2351 2352 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2353 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2354 // If this case has the same successor and is a neighbour, merge it into 2355 // the previous cluster. 2356 Clusters[DstIndex - 1].High = CaseVal; 2357 Clusters[DstIndex - 1].Prob += CC.Prob; 2358 } else { 2359 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2360 sizeof(Clusters[SrcIndex])); 2361 } 2362 } 2363 Clusters.resize(DstIndex); 2364 } 2365 2366 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2367 MachineBasicBlock *Last) { 2368 // Update JTCases. 2369 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2370 if (JTCases[i].first.HeaderBB == First) 2371 JTCases[i].first.HeaderBB = Last; 2372 2373 // Update BitTestCases. 2374 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2375 if (BitTestCases[i].Parent == First) 2376 BitTestCases[i].Parent = Last; 2377 } 2378 2379 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2380 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2381 2382 // Update machine-CFG edges with unique successors. 2383 SmallSet<BasicBlock*, 32> Done; 2384 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2385 BasicBlock *BB = I.getSuccessor(i); 2386 bool Inserted = Done.insert(BB).second; 2387 if (!Inserted) 2388 continue; 2389 2390 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2391 addSuccessorWithProb(IndirectBrMBB, Succ); 2392 } 2393 IndirectBrMBB->normalizeSuccProbs(); 2394 2395 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2396 MVT::Other, getControlRoot(), 2397 getValue(I.getAddress()))); 2398 } 2399 2400 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2401 if (DAG.getTarget().Options.TrapUnreachable) 2402 DAG.setRoot( 2403 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2404 } 2405 2406 void SelectionDAGBuilder::visitFSub(const User &I) { 2407 // -0.0 - X --> fneg 2408 Type *Ty = I.getType(); 2409 if (isa<Constant>(I.getOperand(0)) && 2410 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2411 SDValue Op2 = getValue(I.getOperand(1)); 2412 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2413 Op2.getValueType(), Op2)); 2414 return; 2415 } 2416 2417 visitBinary(I, ISD::FSUB); 2418 } 2419 2420 /// Checks if the given instruction performs a vector reduction, in which case 2421 /// we have the freedom to alter the elements in the result as long as the 2422 /// reduction of them stays unchanged. 2423 static bool isVectorReductionOp(const User *I) { 2424 const Instruction *Inst = dyn_cast<Instruction>(I); 2425 if (!Inst || !Inst->getType()->isVectorTy()) 2426 return false; 2427 2428 auto OpCode = Inst->getOpcode(); 2429 switch (OpCode) { 2430 case Instruction::Add: 2431 case Instruction::Mul: 2432 case Instruction::And: 2433 case Instruction::Or: 2434 case Instruction::Xor: 2435 break; 2436 case Instruction::FAdd: 2437 case Instruction::FMul: 2438 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2439 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2440 break; 2441 // Fall through. 2442 default: 2443 return false; 2444 } 2445 2446 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2447 unsigned ElemNumToReduce = ElemNum; 2448 2449 // Do DFS search on the def-use chain from the given instruction. We only 2450 // allow four kinds of operations during the search until we reach the 2451 // instruction that extracts the first element from the vector: 2452 // 2453 // 1. The reduction operation of the same opcode as the given instruction. 2454 // 2455 // 2. PHI node. 2456 // 2457 // 3. ShuffleVector instruction together with a reduction operation that 2458 // does a partial reduction. 2459 // 2460 // 4. ExtractElement that extracts the first element from the vector, and we 2461 // stop searching the def-use chain here. 2462 // 2463 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2464 // from 1-3 to the stack to continue the DFS. The given instruction is not 2465 // a reduction operation if we meet any other instructions other than those 2466 // listed above. 2467 2468 SmallVector<const User *, 16> UsersToVisit{Inst}; 2469 SmallPtrSet<const User *, 16> Visited; 2470 bool ReduxExtracted = false; 2471 2472 while (!UsersToVisit.empty()) { 2473 auto User = UsersToVisit.back(); 2474 UsersToVisit.pop_back(); 2475 if (!Visited.insert(User).second) 2476 continue; 2477 2478 for (const auto &U : User->users()) { 2479 auto Inst = dyn_cast<Instruction>(U); 2480 if (!Inst) 2481 return false; 2482 2483 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2484 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2485 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2486 return false; 2487 UsersToVisit.push_back(U); 2488 } else if (const ShuffleVectorInst *ShufInst = 2489 dyn_cast<ShuffleVectorInst>(U)) { 2490 // Detect the following pattern: A ShuffleVector instruction together 2491 // with a reduction that do partial reduction on the first and second 2492 // ElemNumToReduce / 2 elements, and store the result in 2493 // ElemNumToReduce / 2 elements in another vector. 2494 2495 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2496 if (ResultElements < ElemNum) 2497 return false; 2498 2499 if (ElemNumToReduce == 1) 2500 return false; 2501 if (!isa<UndefValue>(U->getOperand(1))) 2502 return false; 2503 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2504 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2505 return false; 2506 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2507 if (ShufInst->getMaskValue(i) != -1) 2508 return false; 2509 2510 // There is only one user of this ShuffleVector instruction, which 2511 // must be a reduction operation. 2512 if (!U->hasOneUse()) 2513 return false; 2514 2515 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2516 if (!U2 || U2->getOpcode() != OpCode) 2517 return false; 2518 2519 // Check operands of the reduction operation. 2520 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2521 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2522 UsersToVisit.push_back(U2); 2523 ElemNumToReduce /= 2; 2524 } else 2525 return false; 2526 } else if (isa<ExtractElementInst>(U)) { 2527 // At this moment we should have reduced all elements in the vector. 2528 if (ElemNumToReduce != 1) 2529 return false; 2530 2531 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2532 if (!Val || Val->getZExtValue() != 0) 2533 return false; 2534 2535 ReduxExtracted = true; 2536 } else 2537 return false; 2538 } 2539 } 2540 return ReduxExtracted; 2541 } 2542 2543 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2544 SDValue Op1 = getValue(I.getOperand(0)); 2545 SDValue Op2 = getValue(I.getOperand(1)); 2546 2547 bool nuw = false; 2548 bool nsw = false; 2549 bool exact = false; 2550 bool vec_redux = false; 2551 FastMathFlags FMF; 2552 2553 if (const OverflowingBinaryOperator *OFBinOp = 2554 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2555 nuw = OFBinOp->hasNoUnsignedWrap(); 2556 nsw = OFBinOp->hasNoSignedWrap(); 2557 } 2558 if (const PossiblyExactOperator *ExactOp = 2559 dyn_cast<const PossiblyExactOperator>(&I)) 2560 exact = ExactOp->isExact(); 2561 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2562 FMF = FPOp->getFastMathFlags(); 2563 2564 if (isVectorReductionOp(&I)) { 2565 vec_redux = true; 2566 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2567 } 2568 2569 SDNodeFlags Flags; 2570 Flags.setExact(exact); 2571 Flags.setNoSignedWrap(nsw); 2572 Flags.setNoUnsignedWrap(nuw); 2573 Flags.setVectorReduction(vec_redux); 2574 if (EnableFMFInDAG) { 2575 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2576 Flags.setNoInfs(FMF.noInfs()); 2577 Flags.setNoNaNs(FMF.noNaNs()); 2578 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2579 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2580 } 2581 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2582 Op1, Op2, &Flags); 2583 setValue(&I, BinNodeValue); 2584 } 2585 2586 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2587 SDValue Op1 = getValue(I.getOperand(0)); 2588 SDValue Op2 = getValue(I.getOperand(1)); 2589 2590 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2591 Op2.getValueType(), DAG.getDataLayout()); 2592 2593 // Coerce the shift amount to the right type if we can. 2594 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2595 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2596 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2597 SDLoc DL = getCurSDLoc(); 2598 2599 // If the operand is smaller than the shift count type, promote it. 2600 if (ShiftSize > Op2Size) 2601 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2602 2603 // If the operand is larger than the shift count type but the shift 2604 // count type has enough bits to represent any shift value, truncate 2605 // it now. This is a common case and it exposes the truncate to 2606 // optimization early. 2607 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2608 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2609 // Otherwise we'll need to temporarily settle for some other convenient 2610 // type. Type legalization will make adjustments once the shiftee is split. 2611 else 2612 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2613 } 2614 2615 bool nuw = false; 2616 bool nsw = false; 2617 bool exact = false; 2618 2619 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2620 2621 if (const OverflowingBinaryOperator *OFBinOp = 2622 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2623 nuw = OFBinOp->hasNoUnsignedWrap(); 2624 nsw = OFBinOp->hasNoSignedWrap(); 2625 } 2626 if (const PossiblyExactOperator *ExactOp = 2627 dyn_cast<const PossiblyExactOperator>(&I)) 2628 exact = ExactOp->isExact(); 2629 } 2630 SDNodeFlags Flags; 2631 Flags.setExact(exact); 2632 Flags.setNoSignedWrap(nsw); 2633 Flags.setNoUnsignedWrap(nuw); 2634 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2635 &Flags); 2636 setValue(&I, Res); 2637 } 2638 2639 void SelectionDAGBuilder::visitSDiv(const User &I) { 2640 SDValue Op1 = getValue(I.getOperand(0)); 2641 SDValue Op2 = getValue(I.getOperand(1)); 2642 2643 SDNodeFlags Flags; 2644 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2645 cast<PossiblyExactOperator>(&I)->isExact()); 2646 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2647 Op2, &Flags)); 2648 } 2649 2650 void SelectionDAGBuilder::visitICmp(const User &I) { 2651 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2652 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2653 predicate = IC->getPredicate(); 2654 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2655 predicate = ICmpInst::Predicate(IC->getPredicate()); 2656 SDValue Op1 = getValue(I.getOperand(0)); 2657 SDValue Op2 = getValue(I.getOperand(1)); 2658 ISD::CondCode Opcode = getICmpCondCode(predicate); 2659 2660 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2661 I.getType()); 2662 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2663 } 2664 2665 void SelectionDAGBuilder::visitFCmp(const User &I) { 2666 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2667 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2668 predicate = FC->getPredicate(); 2669 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2670 predicate = FCmpInst::Predicate(FC->getPredicate()); 2671 SDValue Op1 = getValue(I.getOperand(0)); 2672 SDValue Op2 = getValue(I.getOperand(1)); 2673 ISD::CondCode Condition = getFCmpCondCode(predicate); 2674 2675 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2676 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2677 // further optimization, but currently FMF is only applicable to binary nodes. 2678 if (TM.Options.NoNaNsFPMath) 2679 Condition = getFCmpCodeWithoutNaN(Condition); 2680 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2681 I.getType()); 2682 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2683 } 2684 2685 void SelectionDAGBuilder::visitSelect(const User &I) { 2686 SmallVector<EVT, 4> ValueVTs; 2687 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2688 ValueVTs); 2689 unsigned NumValues = ValueVTs.size(); 2690 if (NumValues == 0) return; 2691 2692 SmallVector<SDValue, 4> Values(NumValues); 2693 SDValue Cond = getValue(I.getOperand(0)); 2694 SDValue LHSVal = getValue(I.getOperand(1)); 2695 SDValue RHSVal = getValue(I.getOperand(2)); 2696 auto BaseOps = {Cond}; 2697 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2698 ISD::VSELECT : ISD::SELECT; 2699 2700 // Min/max matching is only viable if all output VTs are the same. 2701 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2702 EVT VT = ValueVTs[0]; 2703 LLVMContext &Ctx = *DAG.getContext(); 2704 auto &TLI = DAG.getTargetLoweringInfo(); 2705 2706 // We care about the legality of the operation after it has been type 2707 // legalized. 2708 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2709 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2710 VT = TLI.getTypeToTransformTo(Ctx, VT); 2711 2712 // If the vselect is legal, assume we want to leave this as a vector setcc + 2713 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2714 // min/max is legal on the scalar type. 2715 bool UseScalarMinMax = VT.isVector() && 2716 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2717 2718 Value *LHS, *RHS; 2719 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2720 ISD::NodeType Opc = ISD::DELETED_NODE; 2721 switch (SPR.Flavor) { 2722 case SPF_UMAX: Opc = ISD::UMAX; break; 2723 case SPF_UMIN: Opc = ISD::UMIN; break; 2724 case SPF_SMAX: Opc = ISD::SMAX; break; 2725 case SPF_SMIN: Opc = ISD::SMIN; break; 2726 case SPF_FMINNUM: 2727 switch (SPR.NaNBehavior) { 2728 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2729 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2730 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2731 case SPNB_RETURNS_ANY: { 2732 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2733 Opc = ISD::FMINNUM; 2734 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2735 Opc = ISD::FMINNAN; 2736 else if (UseScalarMinMax) 2737 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2738 ISD::FMINNUM : ISD::FMINNAN; 2739 break; 2740 } 2741 } 2742 break; 2743 case SPF_FMAXNUM: 2744 switch (SPR.NaNBehavior) { 2745 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2746 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2747 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2748 case SPNB_RETURNS_ANY: 2749 2750 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2751 Opc = ISD::FMAXNUM; 2752 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2753 Opc = ISD::FMAXNAN; 2754 else if (UseScalarMinMax) 2755 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2756 ISD::FMAXNUM : ISD::FMAXNAN; 2757 break; 2758 } 2759 break; 2760 default: break; 2761 } 2762 2763 if (Opc != ISD::DELETED_NODE && 2764 (TLI.isOperationLegalOrCustom(Opc, VT) || 2765 (UseScalarMinMax && 2766 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2767 // If the underlying comparison instruction is used by any other 2768 // instruction, the consumed instructions won't be destroyed, so it is 2769 // not profitable to convert to a min/max. 2770 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2771 OpCode = Opc; 2772 LHSVal = getValue(LHS); 2773 RHSVal = getValue(RHS); 2774 BaseOps = {}; 2775 } 2776 } 2777 2778 for (unsigned i = 0; i != NumValues; ++i) { 2779 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2780 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2781 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2782 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2783 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2784 Ops); 2785 } 2786 2787 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2788 DAG.getVTList(ValueVTs), Values)); 2789 } 2790 2791 void SelectionDAGBuilder::visitTrunc(const User &I) { 2792 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2793 SDValue N = getValue(I.getOperand(0)); 2794 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2795 I.getType()); 2796 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2797 } 2798 2799 void SelectionDAGBuilder::visitZExt(const User &I) { 2800 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2801 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2802 SDValue N = getValue(I.getOperand(0)); 2803 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2804 I.getType()); 2805 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2806 } 2807 2808 void SelectionDAGBuilder::visitSExt(const User &I) { 2809 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2810 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2811 SDValue N = getValue(I.getOperand(0)); 2812 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2813 I.getType()); 2814 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2815 } 2816 2817 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2818 // FPTrunc is never a no-op cast, no need to check 2819 SDValue N = getValue(I.getOperand(0)); 2820 SDLoc dl = getCurSDLoc(); 2821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2822 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2823 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2824 DAG.getTargetConstant( 2825 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2826 } 2827 2828 void SelectionDAGBuilder::visitFPExt(const User &I) { 2829 // FPExt is never a no-op cast, no need to check 2830 SDValue N = getValue(I.getOperand(0)); 2831 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2832 I.getType()); 2833 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2834 } 2835 2836 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2837 // FPToUI is never a no-op cast, no need to check 2838 SDValue N = getValue(I.getOperand(0)); 2839 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2840 I.getType()); 2841 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2842 } 2843 2844 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2845 // FPToSI is never a no-op cast, no need to check 2846 SDValue N = getValue(I.getOperand(0)); 2847 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2848 I.getType()); 2849 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2850 } 2851 2852 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2853 // UIToFP is never a no-op cast, no need to check 2854 SDValue N = getValue(I.getOperand(0)); 2855 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2856 I.getType()); 2857 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2858 } 2859 2860 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2861 // SIToFP is never a no-op cast, no need to check 2862 SDValue N = getValue(I.getOperand(0)); 2863 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2864 I.getType()); 2865 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2866 } 2867 2868 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2869 // What to do depends on the size of the integer and the size of the pointer. 2870 // We can either truncate, zero extend, or no-op, accordingly. 2871 SDValue N = getValue(I.getOperand(0)); 2872 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2873 I.getType()); 2874 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2875 } 2876 2877 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2878 // What to do depends on the size of the integer and the size of the pointer. 2879 // We can either truncate, zero extend, or no-op, accordingly. 2880 SDValue N = getValue(I.getOperand(0)); 2881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2882 I.getType()); 2883 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2884 } 2885 2886 void SelectionDAGBuilder::visitBitCast(const User &I) { 2887 SDValue N = getValue(I.getOperand(0)); 2888 SDLoc dl = getCurSDLoc(); 2889 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2890 I.getType()); 2891 2892 // BitCast assures us that source and destination are the same size so this is 2893 // either a BITCAST or a no-op. 2894 if (DestVT != N.getValueType()) 2895 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2896 DestVT, N)); // convert types. 2897 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2898 // might fold any kind of constant expression to an integer constant and that 2899 // is not what we are looking for. Only regcognize a bitcast of a genuine 2900 // constant integer as an opaque constant. 2901 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2902 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2903 /*isOpaque*/true)); 2904 else 2905 setValue(&I, N); // noop cast. 2906 } 2907 2908 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2910 const Value *SV = I.getOperand(0); 2911 SDValue N = getValue(SV); 2912 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2913 2914 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2915 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2916 2917 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2918 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2919 2920 setValue(&I, N); 2921 } 2922 2923 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2925 SDValue InVec = getValue(I.getOperand(0)); 2926 SDValue InVal = getValue(I.getOperand(1)); 2927 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2928 TLI.getVectorIdxTy(DAG.getDataLayout())); 2929 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2930 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2931 InVec, InVal, InIdx)); 2932 } 2933 2934 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2936 SDValue InVec = getValue(I.getOperand(0)); 2937 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2938 TLI.getVectorIdxTy(DAG.getDataLayout())); 2939 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2940 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2941 InVec, InIdx)); 2942 } 2943 2944 // Utility for visitShuffleVector - Return true if every element in Mask, 2945 // beginning from position Pos and ending in Pos+Size, falls within the 2946 // specified sequential range [L, L+Pos). or is undef. 2947 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2948 unsigned Pos, unsigned Size, int Low) { 2949 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2950 if (Mask[i] >= 0 && Mask[i] != Low) 2951 return false; 2952 return true; 2953 } 2954 2955 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2956 SDValue Src1 = getValue(I.getOperand(0)); 2957 SDValue Src2 = getValue(I.getOperand(1)); 2958 2959 SmallVector<int, 8> Mask; 2960 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2961 unsigned MaskNumElts = Mask.size(); 2962 2963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2964 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2965 EVT SrcVT = Src1.getValueType(); 2966 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2967 2968 if (SrcNumElts == MaskNumElts) { 2969 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2970 &Mask[0])); 2971 return; 2972 } 2973 2974 // Normalize the shuffle vector since mask and vector length don't match. 2975 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2976 // Mask is longer than the source vectors and is a multiple of the source 2977 // vectors. We can use concatenate vector to make the mask and vectors 2978 // lengths match. 2979 if (SrcNumElts*2 == MaskNumElts) { 2980 // First check for Src1 in low and Src2 in high 2981 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2982 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2983 // The shuffle is concatenating two vectors together. 2984 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2985 VT, Src1, Src2)); 2986 return; 2987 } 2988 // Then check for Src2 in low and Src1 in high 2989 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2990 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2991 // The shuffle is concatenating two vectors together. 2992 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2993 VT, Src2, Src1)); 2994 return; 2995 } 2996 } 2997 2998 // Pad both vectors with undefs to make them the same length as the mask. 2999 unsigned NumConcat = MaskNumElts / SrcNumElts; 3000 bool Src1U = Src1.isUndef(); 3001 bool Src2U = Src2.isUndef(); 3002 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3003 3004 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3005 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3006 MOps1[0] = Src1; 3007 MOps2[0] = Src2; 3008 3009 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3010 getCurSDLoc(), VT, MOps1); 3011 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3012 getCurSDLoc(), VT, MOps2); 3013 3014 // Readjust mask for new input vector length. 3015 SmallVector<int, 8> MappedOps; 3016 for (unsigned i = 0; i != MaskNumElts; ++i) { 3017 int Idx = Mask[i]; 3018 if (Idx >= (int)SrcNumElts) 3019 Idx -= SrcNumElts - MaskNumElts; 3020 MappedOps.push_back(Idx); 3021 } 3022 3023 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3024 &MappedOps[0])); 3025 return; 3026 } 3027 3028 if (SrcNumElts > MaskNumElts) { 3029 // Analyze the access pattern of the vector to see if we can extract 3030 // two subvectors and do the shuffle. The analysis is done by calculating 3031 // the range of elements the mask access on both vectors. 3032 int MinRange[2] = { static_cast<int>(SrcNumElts), 3033 static_cast<int>(SrcNumElts)}; 3034 int MaxRange[2] = {-1, -1}; 3035 3036 for (unsigned i = 0; i != MaskNumElts; ++i) { 3037 int Idx = Mask[i]; 3038 unsigned Input = 0; 3039 if (Idx < 0) 3040 continue; 3041 3042 if (Idx >= (int)SrcNumElts) { 3043 Input = 1; 3044 Idx -= SrcNumElts; 3045 } 3046 if (Idx > MaxRange[Input]) 3047 MaxRange[Input] = Idx; 3048 if (Idx < MinRange[Input]) 3049 MinRange[Input] = Idx; 3050 } 3051 3052 // Check if the access is smaller than the vector size and can we find 3053 // a reasonable extract index. 3054 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3055 // Extract. 3056 int StartIdx[2]; // StartIdx to extract from 3057 for (unsigned Input = 0; Input < 2; ++Input) { 3058 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3059 RangeUse[Input] = 0; // Unused 3060 StartIdx[Input] = 0; 3061 continue; 3062 } 3063 3064 // Find a good start index that is a multiple of the mask length. Then 3065 // see if the rest of the elements are in range. 3066 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3067 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3068 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3069 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3070 } 3071 3072 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3073 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3074 return; 3075 } 3076 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3077 // Extract appropriate subvector and generate a vector shuffle 3078 for (unsigned Input = 0; Input < 2; ++Input) { 3079 SDValue &Src = Input == 0 ? Src1 : Src2; 3080 if (RangeUse[Input] == 0) 3081 Src = DAG.getUNDEF(VT); 3082 else { 3083 SDLoc dl = getCurSDLoc(); 3084 Src = DAG.getNode( 3085 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3086 DAG.getConstant(StartIdx[Input], dl, 3087 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3088 } 3089 } 3090 3091 // Calculate new mask. 3092 SmallVector<int, 8> MappedOps; 3093 for (unsigned i = 0; i != MaskNumElts; ++i) { 3094 int Idx = Mask[i]; 3095 if (Idx >= 0) { 3096 if (Idx < (int)SrcNumElts) 3097 Idx -= StartIdx[0]; 3098 else 3099 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3100 } 3101 MappedOps.push_back(Idx); 3102 } 3103 3104 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3105 &MappedOps[0])); 3106 return; 3107 } 3108 } 3109 3110 // We can't use either concat vectors or extract subvectors so fall back to 3111 // replacing the shuffle with extract and build vector. 3112 // to insert and build vector. 3113 EVT EltVT = VT.getVectorElementType(); 3114 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3115 SDLoc dl = getCurSDLoc(); 3116 SmallVector<SDValue,8> Ops; 3117 for (unsigned i = 0; i != MaskNumElts; ++i) { 3118 int Idx = Mask[i]; 3119 SDValue Res; 3120 3121 if (Idx < 0) { 3122 Res = DAG.getUNDEF(EltVT); 3123 } else { 3124 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3125 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3126 3127 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3128 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3129 } 3130 3131 Ops.push_back(Res); 3132 } 3133 3134 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3135 } 3136 3137 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3138 const Value *Op0 = I.getOperand(0); 3139 const Value *Op1 = I.getOperand(1); 3140 Type *AggTy = I.getType(); 3141 Type *ValTy = Op1->getType(); 3142 bool IntoUndef = isa<UndefValue>(Op0); 3143 bool FromUndef = isa<UndefValue>(Op1); 3144 3145 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3146 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 SmallVector<EVT, 4> AggValueVTs; 3149 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3150 SmallVector<EVT, 4> ValValueVTs; 3151 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3152 3153 unsigned NumAggValues = AggValueVTs.size(); 3154 unsigned NumValValues = ValValueVTs.size(); 3155 SmallVector<SDValue, 4> Values(NumAggValues); 3156 3157 // Ignore an insertvalue that produces an empty object 3158 if (!NumAggValues) { 3159 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3160 return; 3161 } 3162 3163 SDValue Agg = getValue(Op0); 3164 unsigned i = 0; 3165 // Copy the beginning value(s) from the original aggregate. 3166 for (; i != LinearIndex; ++i) 3167 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3168 SDValue(Agg.getNode(), Agg.getResNo() + i); 3169 // Copy values from the inserted value(s). 3170 if (NumValValues) { 3171 SDValue Val = getValue(Op1); 3172 for (; i != LinearIndex + NumValValues; ++i) 3173 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3174 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3175 } 3176 // Copy remaining value(s) from the original aggregate. 3177 for (; i != NumAggValues; ++i) 3178 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3179 SDValue(Agg.getNode(), Agg.getResNo() + i); 3180 3181 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3182 DAG.getVTList(AggValueVTs), Values)); 3183 } 3184 3185 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3186 const Value *Op0 = I.getOperand(0); 3187 Type *AggTy = Op0->getType(); 3188 Type *ValTy = I.getType(); 3189 bool OutOfUndef = isa<UndefValue>(Op0); 3190 3191 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3192 3193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3194 SmallVector<EVT, 4> ValValueVTs; 3195 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3196 3197 unsigned NumValValues = ValValueVTs.size(); 3198 3199 // Ignore a extractvalue that produces an empty object 3200 if (!NumValValues) { 3201 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3202 return; 3203 } 3204 3205 SmallVector<SDValue, 4> Values(NumValValues); 3206 3207 SDValue Agg = getValue(Op0); 3208 // Copy out the selected value(s). 3209 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3210 Values[i - LinearIndex] = 3211 OutOfUndef ? 3212 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3213 SDValue(Agg.getNode(), Agg.getResNo() + i); 3214 3215 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3216 DAG.getVTList(ValValueVTs), Values)); 3217 } 3218 3219 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3220 Value *Op0 = I.getOperand(0); 3221 // Note that the pointer operand may be a vector of pointers. Take the scalar 3222 // element which holds a pointer. 3223 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3224 SDValue N = getValue(Op0); 3225 SDLoc dl = getCurSDLoc(); 3226 3227 // Normalize Vector GEP - all scalar operands should be converted to the 3228 // splat vector. 3229 unsigned VectorWidth = I.getType()->isVectorTy() ? 3230 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3231 3232 if (VectorWidth && !N.getValueType().isVector()) { 3233 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3234 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3235 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3236 } 3237 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3238 GTI != E; ++GTI) { 3239 const Value *Idx = GTI.getOperand(); 3240 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3241 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3242 if (Field) { 3243 // N = N + Offset 3244 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3245 3246 // In an inbouds GEP with an offset that is nonnegative even when 3247 // interpreted as signed, assume there is no unsigned overflow. 3248 SDNodeFlags Flags; 3249 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3250 Flags.setNoUnsignedWrap(true); 3251 3252 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3253 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3254 } 3255 } else { 3256 MVT PtrTy = 3257 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3258 unsigned PtrSize = PtrTy.getSizeInBits(); 3259 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3260 3261 // If this is a scalar constant or a splat vector of constants, 3262 // handle it quickly. 3263 const auto *CI = dyn_cast<ConstantInt>(Idx); 3264 if (!CI && isa<ConstantDataVector>(Idx) && 3265 cast<ConstantDataVector>(Idx)->getSplatValue()) 3266 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3267 3268 if (CI) { 3269 if (CI->isZero()) 3270 continue; 3271 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3272 SDValue OffsVal = VectorWidth ? 3273 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3274 DAG.getConstant(Offs, dl, PtrTy); 3275 3276 // In an inbouds GEP with an offset that is nonnegative even when 3277 // interpreted as signed, assume there is no unsigned overflow. 3278 SDNodeFlags Flags; 3279 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3280 Flags.setNoUnsignedWrap(true); 3281 3282 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3283 continue; 3284 } 3285 3286 // N = N + Idx * ElementSize; 3287 SDValue IdxN = getValue(Idx); 3288 3289 if (!IdxN.getValueType().isVector() && VectorWidth) { 3290 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3291 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3292 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3293 } 3294 // If the index is smaller or larger than intptr_t, truncate or extend 3295 // it. 3296 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3297 3298 // If this is a multiply by a power of two, turn it into a shl 3299 // immediately. This is a very common case. 3300 if (ElementSize != 1) { 3301 if (ElementSize.isPowerOf2()) { 3302 unsigned Amt = ElementSize.logBase2(); 3303 IdxN = DAG.getNode(ISD::SHL, dl, 3304 N.getValueType(), IdxN, 3305 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3306 } else { 3307 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3308 IdxN = DAG.getNode(ISD::MUL, dl, 3309 N.getValueType(), IdxN, Scale); 3310 } 3311 } 3312 3313 N = DAG.getNode(ISD::ADD, dl, 3314 N.getValueType(), N, IdxN); 3315 } 3316 } 3317 3318 setValue(&I, N); 3319 } 3320 3321 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3322 // If this is a fixed sized alloca in the entry block of the function, 3323 // allocate it statically on the stack. 3324 if (FuncInfo.StaticAllocaMap.count(&I)) 3325 return; // getValue will auto-populate this. 3326 3327 SDLoc dl = getCurSDLoc(); 3328 Type *Ty = I.getAllocatedType(); 3329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3330 auto &DL = DAG.getDataLayout(); 3331 uint64_t TySize = DL.getTypeAllocSize(Ty); 3332 unsigned Align = 3333 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3334 3335 SDValue AllocSize = getValue(I.getArraySize()); 3336 3337 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3338 if (AllocSize.getValueType() != IntPtr) 3339 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3340 3341 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3342 AllocSize, 3343 DAG.getConstant(TySize, dl, IntPtr)); 3344 3345 // Handle alignment. If the requested alignment is less than or equal to 3346 // the stack alignment, ignore it. If the size is greater than or equal to 3347 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3348 unsigned StackAlign = 3349 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3350 if (Align <= StackAlign) 3351 Align = 0; 3352 3353 // Round the size of the allocation up to the stack alignment size 3354 // by add SA-1 to the size. This doesn't overflow because we're computing 3355 // an address inside an alloca. 3356 SDNodeFlags Flags; 3357 Flags.setNoUnsignedWrap(true); 3358 AllocSize = DAG.getNode(ISD::ADD, dl, 3359 AllocSize.getValueType(), AllocSize, 3360 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3361 3362 // Mask out the low bits for alignment purposes. 3363 AllocSize = DAG.getNode(ISD::AND, dl, 3364 AllocSize.getValueType(), AllocSize, 3365 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3366 dl)); 3367 3368 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3369 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3370 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3371 setValue(&I, DSA); 3372 DAG.setRoot(DSA.getValue(1)); 3373 3374 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3375 } 3376 3377 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3378 if (I.isAtomic()) 3379 return visitAtomicLoad(I); 3380 3381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3382 const Value *SV = I.getOperand(0); 3383 if (TLI.supportSwiftError()) { 3384 // Swifterror values can come from either a function parameter with 3385 // swifterror attribute or an alloca with swifterror attribute. 3386 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3387 if (Arg->hasSwiftErrorAttr()) 3388 return visitLoadFromSwiftError(I); 3389 } 3390 3391 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3392 if (Alloca->isSwiftError()) 3393 return visitLoadFromSwiftError(I); 3394 } 3395 } 3396 3397 SDValue Ptr = getValue(SV); 3398 3399 Type *Ty = I.getType(); 3400 3401 bool isVolatile = I.isVolatile(); 3402 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3403 3404 // The IR notion of invariant_load only guarantees that all *non-faulting* 3405 // invariant loads result in the same value. The MI notion of invariant load 3406 // guarantees that the load can be legally moved to any location within its 3407 // containing function. The MI notion of invariant_load is stronger than the 3408 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3409 // with a guarantee that the location being loaded from is dereferenceable 3410 // throughout the function's lifetime. 3411 3412 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3413 isDereferenceablePointer(SV, DAG.getDataLayout()); 3414 unsigned Alignment = I.getAlignment(); 3415 3416 AAMDNodes AAInfo; 3417 I.getAAMetadata(AAInfo); 3418 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3419 3420 SmallVector<EVT, 4> ValueVTs; 3421 SmallVector<uint64_t, 4> Offsets; 3422 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3423 unsigned NumValues = ValueVTs.size(); 3424 if (NumValues == 0) 3425 return; 3426 3427 SDValue Root; 3428 bool ConstantMemory = false; 3429 if (isVolatile || NumValues > MaxParallelChains) 3430 // Serialize volatile loads with other side effects. 3431 Root = getRoot(); 3432 else if (AA->pointsToConstantMemory(MemoryLocation( 3433 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3434 // Do not serialize (non-volatile) loads of constant memory with anything. 3435 Root = DAG.getEntryNode(); 3436 ConstantMemory = true; 3437 } else { 3438 // Do not serialize non-volatile loads against each other. 3439 Root = DAG.getRoot(); 3440 } 3441 3442 SDLoc dl = getCurSDLoc(); 3443 3444 if (isVolatile) 3445 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3446 3447 // An aggregate load cannot wrap around the address space, so offsets to its 3448 // parts don't wrap either. 3449 SDNodeFlags Flags; 3450 Flags.setNoUnsignedWrap(true); 3451 3452 SmallVector<SDValue, 4> Values(NumValues); 3453 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3454 EVT PtrVT = Ptr.getValueType(); 3455 unsigned ChainI = 0; 3456 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3457 // Serializing loads here may result in excessive register pressure, and 3458 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3459 // could recover a bit by hoisting nodes upward in the chain by recognizing 3460 // they are side-effect free or do not alias. The optimizer should really 3461 // avoid this case by converting large object/array copies to llvm.memcpy 3462 // (MaxParallelChains should always remain as failsafe). 3463 if (ChainI == MaxParallelChains) { 3464 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3465 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3466 makeArrayRef(Chains.data(), ChainI)); 3467 Root = Chain; 3468 ChainI = 0; 3469 } 3470 SDValue A = DAG.getNode(ISD::ADD, dl, 3471 PtrVT, Ptr, 3472 DAG.getConstant(Offsets[i], dl, PtrVT), 3473 &Flags); 3474 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3475 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3476 isNonTemporal, isInvariant, Alignment, AAInfo, 3477 Ranges); 3478 3479 Values[i] = L; 3480 Chains[ChainI] = L.getValue(1); 3481 } 3482 3483 if (!ConstantMemory) { 3484 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3485 makeArrayRef(Chains.data(), ChainI)); 3486 if (isVolatile) 3487 DAG.setRoot(Chain); 3488 else 3489 PendingLoads.push_back(Chain); 3490 } 3491 3492 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3493 DAG.getVTList(ValueVTs), Values)); 3494 } 3495 3496 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3498 assert(TLI.supportSwiftError() && 3499 "call visitStoreToSwiftError when backend supports swifterror"); 3500 3501 SmallVector<EVT, 4> ValueVTs; 3502 SmallVector<uint64_t, 4> Offsets; 3503 const Value *SrcV = I.getOperand(0); 3504 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3505 SrcV->getType(), ValueVTs, &Offsets); 3506 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3507 "expect a single EVT for swifterror"); 3508 3509 SDValue Src = getValue(SrcV); 3510 // Create a virtual register, then update the virtual register. 3511 auto &DL = DAG.getDataLayout(); 3512 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3513 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3514 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3515 // Chain can be getRoot or getControlRoot. 3516 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3517 SDValue(Src.getNode(), Src.getResNo())); 3518 DAG.setRoot(CopyNode); 3519 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3520 } 3521 3522 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3523 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3524 "call visitLoadFromSwiftError when backend supports swifterror"); 3525 3526 assert(!I.isVolatile() && 3527 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3528 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3529 "Support volatile, non temporal, invariant for load_from_swift_error"); 3530 3531 const Value *SV = I.getOperand(0); 3532 Type *Ty = I.getType(); 3533 AAMDNodes AAInfo; 3534 I.getAAMetadata(AAInfo); 3535 assert(!AA->pointsToConstantMemory(MemoryLocation( 3536 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3537 "load_from_swift_error should not be constant memory"); 3538 3539 SmallVector<EVT, 4> ValueVTs; 3540 SmallVector<uint64_t, 4> Offsets; 3541 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3542 ValueVTs, &Offsets); 3543 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3544 "expect a single EVT for swifterror"); 3545 3546 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3547 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(), 3548 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV), 3549 ValueVTs[0]); 3550 3551 setValue(&I, L); 3552 } 3553 3554 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3555 if (I.isAtomic()) 3556 return visitAtomicStore(I); 3557 3558 const Value *SrcV = I.getOperand(0); 3559 const Value *PtrV = I.getOperand(1); 3560 3561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3562 if (TLI.supportSwiftError()) { 3563 // Swifterror values can come from either a function parameter with 3564 // swifterror attribute or an alloca with swifterror attribute. 3565 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3566 if (Arg->hasSwiftErrorAttr()) 3567 return visitStoreToSwiftError(I); 3568 } 3569 3570 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3571 if (Alloca->isSwiftError()) 3572 return visitStoreToSwiftError(I); 3573 } 3574 } 3575 3576 SmallVector<EVT, 4> ValueVTs; 3577 SmallVector<uint64_t, 4> Offsets; 3578 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3579 SrcV->getType(), ValueVTs, &Offsets); 3580 unsigned NumValues = ValueVTs.size(); 3581 if (NumValues == 0) 3582 return; 3583 3584 // Get the lowered operands. Note that we do this after 3585 // checking if NumResults is zero, because with zero results 3586 // the operands won't have values in the map. 3587 SDValue Src = getValue(SrcV); 3588 SDValue Ptr = getValue(PtrV); 3589 3590 SDValue Root = getRoot(); 3591 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3592 EVT PtrVT = Ptr.getValueType(); 3593 bool isVolatile = I.isVolatile(); 3594 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3595 unsigned Alignment = I.getAlignment(); 3596 SDLoc dl = getCurSDLoc(); 3597 3598 AAMDNodes AAInfo; 3599 I.getAAMetadata(AAInfo); 3600 3601 // An aggregate load cannot wrap around the address space, so offsets to its 3602 // parts don't wrap either. 3603 SDNodeFlags Flags; 3604 Flags.setNoUnsignedWrap(true); 3605 3606 unsigned ChainI = 0; 3607 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3608 // See visitLoad comments. 3609 if (ChainI == MaxParallelChains) { 3610 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3611 makeArrayRef(Chains.data(), ChainI)); 3612 Root = Chain; 3613 ChainI = 0; 3614 } 3615 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3616 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3617 SDValue St = DAG.getStore(Root, dl, 3618 SDValue(Src.getNode(), Src.getResNo() + i), 3619 Add, MachinePointerInfo(PtrV, Offsets[i]), 3620 isVolatile, isNonTemporal, Alignment, AAInfo); 3621 Chains[ChainI] = St; 3622 } 3623 3624 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3625 makeArrayRef(Chains.data(), ChainI)); 3626 DAG.setRoot(StoreNode); 3627 } 3628 3629 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3630 SDLoc sdl = getCurSDLoc(); 3631 3632 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3633 Value *PtrOperand = I.getArgOperand(1); 3634 SDValue Ptr = getValue(PtrOperand); 3635 SDValue Src0 = getValue(I.getArgOperand(0)); 3636 SDValue Mask = getValue(I.getArgOperand(3)); 3637 EVT VT = Src0.getValueType(); 3638 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3639 if (!Alignment) 3640 Alignment = DAG.getEVTAlignment(VT); 3641 3642 AAMDNodes AAInfo; 3643 I.getAAMetadata(AAInfo); 3644 3645 MachineMemOperand *MMO = 3646 DAG.getMachineFunction(). 3647 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3648 MachineMemOperand::MOStore, VT.getStoreSize(), 3649 Alignment, AAInfo); 3650 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3651 MMO, false); 3652 DAG.setRoot(StoreNode); 3653 setValue(&I, StoreNode); 3654 } 3655 3656 // Get a uniform base for the Gather/Scatter intrinsic. 3657 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3658 // We try to represent it as a base pointer + vector of indices. 3659 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3660 // The first operand of the GEP may be a single pointer or a vector of pointers 3661 // Example: 3662 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3663 // or 3664 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3665 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3666 // 3667 // When the first GEP operand is a single pointer - it is the uniform base we 3668 // are looking for. If first operand of the GEP is a splat vector - we 3669 // extract the spalt value and use it as a uniform base. 3670 // In all other cases the function returns 'false'. 3671 // 3672 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3673 SelectionDAGBuilder* SDB) { 3674 3675 SelectionDAG& DAG = SDB->DAG; 3676 LLVMContext &Context = *DAG.getContext(); 3677 3678 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3679 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3680 if (!GEP || GEP->getNumOperands() > 2) 3681 return false; 3682 3683 const Value *GEPPtr = GEP->getPointerOperand(); 3684 if (!GEPPtr->getType()->isVectorTy()) 3685 Ptr = GEPPtr; 3686 else if (!(Ptr = getSplatValue(GEPPtr))) 3687 return false; 3688 3689 Value *IndexVal = GEP->getOperand(1); 3690 3691 // The operands of the GEP may be defined in another basic block. 3692 // In this case we'll not find nodes for the operands. 3693 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3694 return false; 3695 3696 Base = SDB->getValue(Ptr); 3697 Index = SDB->getValue(IndexVal); 3698 3699 // Suppress sign extension. 3700 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3701 if (SDB->findValue(Sext->getOperand(0))) { 3702 IndexVal = Sext->getOperand(0); 3703 Index = SDB->getValue(IndexVal); 3704 } 3705 } 3706 if (!Index.getValueType().isVector()) { 3707 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3708 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3709 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3710 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3711 } 3712 return true; 3713 } 3714 3715 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3716 SDLoc sdl = getCurSDLoc(); 3717 3718 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3719 const Value *Ptr = I.getArgOperand(1); 3720 SDValue Src0 = getValue(I.getArgOperand(0)); 3721 SDValue Mask = getValue(I.getArgOperand(3)); 3722 EVT VT = Src0.getValueType(); 3723 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3724 if (!Alignment) 3725 Alignment = DAG.getEVTAlignment(VT); 3726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3727 3728 AAMDNodes AAInfo; 3729 I.getAAMetadata(AAInfo); 3730 3731 SDValue Base; 3732 SDValue Index; 3733 const Value *BasePtr = Ptr; 3734 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3735 3736 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3737 MachineMemOperand *MMO = DAG.getMachineFunction(). 3738 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3739 MachineMemOperand::MOStore, VT.getStoreSize(), 3740 Alignment, AAInfo); 3741 if (!UniformBase) { 3742 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3743 Index = getValue(Ptr); 3744 } 3745 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3746 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3747 Ops, MMO); 3748 DAG.setRoot(Scatter); 3749 setValue(&I, Scatter); 3750 } 3751 3752 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3753 SDLoc sdl = getCurSDLoc(); 3754 3755 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3756 Value *PtrOperand = I.getArgOperand(0); 3757 SDValue Ptr = getValue(PtrOperand); 3758 SDValue Src0 = getValue(I.getArgOperand(3)); 3759 SDValue Mask = getValue(I.getArgOperand(2)); 3760 3761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3762 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3763 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3764 if (!Alignment) 3765 Alignment = DAG.getEVTAlignment(VT); 3766 3767 AAMDNodes AAInfo; 3768 I.getAAMetadata(AAInfo); 3769 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3770 3771 SDValue InChain = DAG.getRoot(); 3772 if (AA->pointsToConstantMemory(MemoryLocation( 3773 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3774 AAInfo))) { 3775 // Do not serialize (non-volatile) loads of constant memory with anything. 3776 InChain = DAG.getEntryNode(); 3777 } 3778 3779 MachineMemOperand *MMO = 3780 DAG.getMachineFunction(). 3781 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3782 MachineMemOperand::MOLoad, VT.getStoreSize(), 3783 Alignment, AAInfo, Ranges); 3784 3785 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3786 ISD::NON_EXTLOAD); 3787 SDValue OutChain = Load.getValue(1); 3788 DAG.setRoot(OutChain); 3789 setValue(&I, Load); 3790 } 3791 3792 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3793 SDLoc sdl = getCurSDLoc(); 3794 3795 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3796 const Value *Ptr = I.getArgOperand(0); 3797 SDValue Src0 = getValue(I.getArgOperand(3)); 3798 SDValue Mask = getValue(I.getArgOperand(2)); 3799 3800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3801 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3802 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3803 if (!Alignment) 3804 Alignment = DAG.getEVTAlignment(VT); 3805 3806 AAMDNodes AAInfo; 3807 I.getAAMetadata(AAInfo); 3808 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3809 3810 SDValue Root = DAG.getRoot(); 3811 SDValue Base; 3812 SDValue Index; 3813 const Value *BasePtr = Ptr; 3814 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3815 bool ConstantMemory = false; 3816 if (UniformBase && 3817 AA->pointsToConstantMemory(MemoryLocation( 3818 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3819 AAInfo))) { 3820 // Do not serialize (non-volatile) loads of constant memory with anything. 3821 Root = DAG.getEntryNode(); 3822 ConstantMemory = true; 3823 } 3824 3825 MachineMemOperand *MMO = 3826 DAG.getMachineFunction(). 3827 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3828 MachineMemOperand::MOLoad, VT.getStoreSize(), 3829 Alignment, AAInfo, Ranges); 3830 3831 if (!UniformBase) { 3832 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3833 Index = getValue(Ptr); 3834 } 3835 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3836 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3837 Ops, MMO); 3838 3839 SDValue OutChain = Gather.getValue(1); 3840 if (!ConstantMemory) 3841 PendingLoads.push_back(OutChain); 3842 setValue(&I, Gather); 3843 } 3844 3845 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3846 SDLoc dl = getCurSDLoc(); 3847 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3848 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3849 SynchronizationScope Scope = I.getSynchScope(); 3850 3851 SDValue InChain = getRoot(); 3852 3853 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3854 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3855 SDValue L = DAG.getAtomicCmpSwap( 3856 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3857 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3858 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3859 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3860 3861 SDValue OutChain = L.getValue(2); 3862 3863 setValue(&I, L); 3864 DAG.setRoot(OutChain); 3865 } 3866 3867 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3868 SDLoc dl = getCurSDLoc(); 3869 ISD::NodeType NT; 3870 switch (I.getOperation()) { 3871 default: llvm_unreachable("Unknown atomicrmw operation"); 3872 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3873 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3874 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3875 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3876 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3877 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3878 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3879 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3880 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3881 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3882 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3883 } 3884 AtomicOrdering Order = I.getOrdering(); 3885 SynchronizationScope Scope = I.getSynchScope(); 3886 3887 SDValue InChain = getRoot(); 3888 3889 SDValue L = 3890 DAG.getAtomic(NT, dl, 3891 getValue(I.getValOperand()).getSimpleValueType(), 3892 InChain, 3893 getValue(I.getPointerOperand()), 3894 getValue(I.getValOperand()), 3895 I.getPointerOperand(), 3896 /* Alignment=*/ 0, Order, Scope); 3897 3898 SDValue OutChain = L.getValue(1); 3899 3900 setValue(&I, L); 3901 DAG.setRoot(OutChain); 3902 } 3903 3904 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3905 SDLoc dl = getCurSDLoc(); 3906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3907 SDValue Ops[3]; 3908 Ops[0] = getRoot(); 3909 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3910 TLI.getPointerTy(DAG.getDataLayout())); 3911 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3912 TLI.getPointerTy(DAG.getDataLayout())); 3913 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3914 } 3915 3916 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3917 SDLoc dl = getCurSDLoc(); 3918 AtomicOrdering Order = I.getOrdering(); 3919 SynchronizationScope Scope = I.getSynchScope(); 3920 3921 SDValue InChain = getRoot(); 3922 3923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3924 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3925 3926 if (I.getAlignment() < VT.getSizeInBits() / 8) 3927 report_fatal_error("Cannot generate unaligned atomic load"); 3928 3929 MachineMemOperand *MMO = 3930 DAG.getMachineFunction(). 3931 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3932 MachineMemOperand::MOVolatile | 3933 MachineMemOperand::MOLoad, 3934 VT.getStoreSize(), 3935 I.getAlignment() ? I.getAlignment() : 3936 DAG.getEVTAlignment(VT)); 3937 3938 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3939 SDValue L = 3940 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3941 getValue(I.getPointerOperand()), MMO, 3942 Order, Scope); 3943 3944 SDValue OutChain = L.getValue(1); 3945 3946 setValue(&I, L); 3947 DAG.setRoot(OutChain); 3948 } 3949 3950 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3951 SDLoc dl = getCurSDLoc(); 3952 3953 AtomicOrdering Order = I.getOrdering(); 3954 SynchronizationScope Scope = I.getSynchScope(); 3955 3956 SDValue InChain = getRoot(); 3957 3958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3959 EVT VT = 3960 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3961 3962 if (I.getAlignment() < VT.getSizeInBits() / 8) 3963 report_fatal_error("Cannot generate unaligned atomic store"); 3964 3965 SDValue OutChain = 3966 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3967 InChain, 3968 getValue(I.getPointerOperand()), 3969 getValue(I.getValueOperand()), 3970 I.getPointerOperand(), I.getAlignment(), 3971 Order, Scope); 3972 3973 DAG.setRoot(OutChain); 3974 } 3975 3976 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3977 /// node. 3978 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3979 unsigned Intrinsic) { 3980 bool HasChain = !I.doesNotAccessMemory(); 3981 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3982 3983 // Build the operand list. 3984 SmallVector<SDValue, 8> Ops; 3985 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3986 if (OnlyLoad) { 3987 // We don't need to serialize loads against other loads. 3988 Ops.push_back(DAG.getRoot()); 3989 } else { 3990 Ops.push_back(getRoot()); 3991 } 3992 } 3993 3994 // Info is set by getTgtMemInstrinsic 3995 TargetLowering::IntrinsicInfo Info; 3996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3997 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3998 3999 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4000 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4001 Info.opc == ISD::INTRINSIC_W_CHAIN) 4002 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4003 TLI.getPointerTy(DAG.getDataLayout()))); 4004 4005 // Add all operands of the call to the operand list. 4006 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4007 SDValue Op = getValue(I.getArgOperand(i)); 4008 Ops.push_back(Op); 4009 } 4010 4011 SmallVector<EVT, 4> ValueVTs; 4012 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4013 4014 if (HasChain) 4015 ValueVTs.push_back(MVT::Other); 4016 4017 SDVTList VTs = DAG.getVTList(ValueVTs); 4018 4019 // Create the node. 4020 SDValue Result; 4021 if (IsTgtIntrinsic) { 4022 // This is target intrinsic that touches memory 4023 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4024 VTs, Ops, Info.memVT, 4025 MachinePointerInfo(Info.ptrVal, Info.offset), 4026 Info.align, Info.vol, 4027 Info.readMem, Info.writeMem, Info.size); 4028 } else if (!HasChain) { 4029 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4030 } else if (!I.getType()->isVoidTy()) { 4031 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4032 } else { 4033 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4034 } 4035 4036 if (HasChain) { 4037 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4038 if (OnlyLoad) 4039 PendingLoads.push_back(Chain); 4040 else 4041 DAG.setRoot(Chain); 4042 } 4043 4044 if (!I.getType()->isVoidTy()) { 4045 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4046 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4047 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4048 } else 4049 Result = lowerRangeToAssertZExt(DAG, I, Result); 4050 4051 setValue(&I, Result); 4052 } 4053 } 4054 4055 /// GetSignificand - Get the significand and build it into a floating-point 4056 /// number with exponent of 1: 4057 /// 4058 /// Op = (Op & 0x007fffff) | 0x3f800000; 4059 /// 4060 /// where Op is the hexadecimal representation of floating point value. 4061 static SDValue 4062 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 4063 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4064 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4065 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4066 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4067 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4068 } 4069 4070 /// GetExponent - Get the exponent: 4071 /// 4072 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4073 /// 4074 /// where Op is the hexadecimal representation of floating point value. 4075 static SDValue 4076 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 4077 SDLoc dl) { 4078 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4079 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4080 SDValue t1 = DAG.getNode( 4081 ISD::SRL, dl, MVT::i32, t0, 4082 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4083 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4084 DAG.getConstant(127, dl, MVT::i32)); 4085 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4086 } 4087 4088 /// getF32Constant - Get 32-bit floating point constant. 4089 static SDValue 4090 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 4091 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 4092 MVT::f32); 4093 } 4094 4095 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 4096 SelectionDAG &DAG) { 4097 // TODO: What fast-math-flags should be set on the floating-point nodes? 4098 4099 // IntegerPartOfX = ((int32_t)(t0); 4100 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4101 4102 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4103 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4104 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4105 4106 // IntegerPartOfX <<= 23; 4107 IntegerPartOfX = DAG.getNode( 4108 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4109 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4110 DAG.getDataLayout()))); 4111 4112 SDValue TwoToFractionalPartOfX; 4113 if (LimitFloatPrecision <= 6) { 4114 // For floating-point precision of 6: 4115 // 4116 // TwoToFractionalPartOfX = 4117 // 0.997535578f + 4118 // (0.735607626f + 0.252464424f * x) * x; 4119 // 4120 // error 0.0144103317, which is 6 bits 4121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4122 getF32Constant(DAG, 0x3e814304, dl)); 4123 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4124 getF32Constant(DAG, 0x3f3c50c8, dl)); 4125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4126 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4127 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4128 } else if (LimitFloatPrecision <= 12) { 4129 // For floating-point precision of 12: 4130 // 4131 // TwoToFractionalPartOfX = 4132 // 0.999892986f + 4133 // (0.696457318f + 4134 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4135 // 4136 // error 0.000107046256, which is 13 to 14 bits 4137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4138 getF32Constant(DAG, 0x3da235e3, dl)); 4139 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4140 getF32Constant(DAG, 0x3e65b8f3, dl)); 4141 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4142 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4143 getF32Constant(DAG, 0x3f324b07, dl)); 4144 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4145 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4146 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4147 } else { // LimitFloatPrecision <= 18 4148 // For floating-point precision of 18: 4149 // 4150 // TwoToFractionalPartOfX = 4151 // 0.999999982f + 4152 // (0.693148872f + 4153 // (0.240227044f + 4154 // (0.554906021e-1f + 4155 // (0.961591928e-2f + 4156 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4157 // error 2.47208000*10^(-7), which is better than 18 bits 4158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4159 getF32Constant(DAG, 0x3924b03e, dl)); 4160 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4161 getF32Constant(DAG, 0x3ab24b87, dl)); 4162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4164 getF32Constant(DAG, 0x3c1d8c17, dl)); 4165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4166 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4167 getF32Constant(DAG, 0x3d634a1d, dl)); 4168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4169 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4170 getF32Constant(DAG, 0x3e75fe14, dl)); 4171 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4172 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4173 getF32Constant(DAG, 0x3f317234, dl)); 4174 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4175 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4176 getF32Constant(DAG, 0x3f800000, dl)); 4177 } 4178 4179 // Add the exponent into the result in integer domain. 4180 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4181 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4182 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4183 } 4184 4185 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4186 /// limited-precision mode. 4187 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4188 const TargetLowering &TLI) { 4189 if (Op.getValueType() == MVT::f32 && 4190 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4191 4192 // Put the exponent in the right bit position for later addition to the 4193 // final result: 4194 // 4195 // #define LOG2OFe 1.4426950f 4196 // t0 = Op * LOG2OFe 4197 4198 // TODO: What fast-math-flags should be set here? 4199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4200 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4201 return getLimitedPrecisionExp2(t0, dl, DAG); 4202 } 4203 4204 // No special expansion. 4205 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4206 } 4207 4208 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4209 /// limited-precision mode. 4210 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4211 const TargetLowering &TLI) { 4212 4213 // TODO: What fast-math-flags should be set on the floating-point nodes? 4214 4215 if (Op.getValueType() == MVT::f32 && 4216 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4217 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4218 4219 // Scale the exponent by log(2) [0.69314718f]. 4220 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4221 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4222 getF32Constant(DAG, 0x3f317218, dl)); 4223 4224 // Get the significand and build it into a floating-point number with 4225 // exponent of 1. 4226 SDValue X = GetSignificand(DAG, Op1, dl); 4227 4228 SDValue LogOfMantissa; 4229 if (LimitFloatPrecision <= 6) { 4230 // For floating-point precision of 6: 4231 // 4232 // LogofMantissa = 4233 // -1.1609546f + 4234 // (1.4034025f - 0.23903021f * x) * x; 4235 // 4236 // error 0.0034276066, which is better than 8 bits 4237 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4238 getF32Constant(DAG, 0xbe74c456, dl)); 4239 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4240 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4242 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4243 getF32Constant(DAG, 0x3f949a29, dl)); 4244 } else if (LimitFloatPrecision <= 12) { 4245 // For floating-point precision of 12: 4246 // 4247 // LogOfMantissa = 4248 // -1.7417939f + 4249 // (2.8212026f + 4250 // (-1.4699568f + 4251 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4252 // 4253 // error 0.000061011436, which is 14 bits 4254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4255 getF32Constant(DAG, 0xbd67b6d6, dl)); 4256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4257 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4259 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4260 getF32Constant(DAG, 0x3fbc278b, dl)); 4261 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4262 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4263 getF32Constant(DAG, 0x40348e95, dl)); 4264 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4265 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4266 getF32Constant(DAG, 0x3fdef31a, dl)); 4267 } else { // LimitFloatPrecision <= 18 4268 // For floating-point precision of 18: 4269 // 4270 // LogOfMantissa = 4271 // -2.1072184f + 4272 // (4.2372794f + 4273 // (-3.7029485f + 4274 // (2.2781945f + 4275 // (-0.87823314f + 4276 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4277 // 4278 // error 0.0000023660568, which is better than 18 bits 4279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4280 getF32Constant(DAG, 0xbc91e5ac, dl)); 4281 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4282 getF32Constant(DAG, 0x3e4350aa, dl)); 4283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4284 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4285 getF32Constant(DAG, 0x3f60d3e3, dl)); 4286 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4287 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4288 getF32Constant(DAG, 0x4011cdf0, dl)); 4289 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4290 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4291 getF32Constant(DAG, 0x406cfd1c, dl)); 4292 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4293 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4294 getF32Constant(DAG, 0x408797cb, dl)); 4295 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4296 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4297 getF32Constant(DAG, 0x4006dcab, dl)); 4298 } 4299 4300 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4301 } 4302 4303 // No special expansion. 4304 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4305 } 4306 4307 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4308 /// limited-precision mode. 4309 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4310 const TargetLowering &TLI) { 4311 4312 // TODO: What fast-math-flags should be set on the floating-point nodes? 4313 4314 if (Op.getValueType() == MVT::f32 && 4315 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4316 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4317 4318 // Get the exponent. 4319 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4320 4321 // Get the significand and build it into a floating-point number with 4322 // exponent of 1. 4323 SDValue X = GetSignificand(DAG, Op1, dl); 4324 4325 // Different possible minimax approximations of significand in 4326 // floating-point for various degrees of accuracy over [1,2]. 4327 SDValue Log2ofMantissa; 4328 if (LimitFloatPrecision <= 6) { 4329 // For floating-point precision of 6: 4330 // 4331 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4332 // 4333 // error 0.0049451742, which is more than 7 bits 4334 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4335 getF32Constant(DAG, 0xbeb08fe0, dl)); 4336 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4337 getF32Constant(DAG, 0x40019463, dl)); 4338 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4339 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4340 getF32Constant(DAG, 0x3fd6633d, dl)); 4341 } else if (LimitFloatPrecision <= 12) { 4342 // For floating-point precision of 12: 4343 // 4344 // Log2ofMantissa = 4345 // -2.51285454f + 4346 // (4.07009056f + 4347 // (-2.12067489f + 4348 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4349 // 4350 // error 0.0000876136000, which is better than 13 bits 4351 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4352 getF32Constant(DAG, 0xbda7262e, dl)); 4353 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4354 getF32Constant(DAG, 0x3f25280b, dl)); 4355 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4356 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4357 getF32Constant(DAG, 0x4007b923, dl)); 4358 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4359 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4360 getF32Constant(DAG, 0x40823e2f, dl)); 4361 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4362 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4363 getF32Constant(DAG, 0x4020d29c, dl)); 4364 } else { // LimitFloatPrecision <= 18 4365 // For floating-point precision of 18: 4366 // 4367 // Log2ofMantissa = 4368 // -3.0400495f + 4369 // (6.1129976f + 4370 // (-5.3420409f + 4371 // (3.2865683f + 4372 // (-1.2669343f + 4373 // (0.27515199f - 4374 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4375 // 4376 // error 0.0000018516, which is better than 18 bits 4377 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4378 getF32Constant(DAG, 0xbcd2769e, dl)); 4379 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4380 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4381 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4382 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4383 getF32Constant(DAG, 0x3fa22ae7, dl)); 4384 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4385 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4386 getF32Constant(DAG, 0x40525723, dl)); 4387 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4388 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4389 getF32Constant(DAG, 0x40aaf200, dl)); 4390 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4391 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4392 getF32Constant(DAG, 0x40c39dad, dl)); 4393 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4394 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4395 getF32Constant(DAG, 0x4042902c, dl)); 4396 } 4397 4398 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4399 } 4400 4401 // No special expansion. 4402 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4403 } 4404 4405 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4406 /// limited-precision mode. 4407 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4408 const TargetLowering &TLI) { 4409 4410 // TODO: What fast-math-flags should be set on the floating-point nodes? 4411 4412 if (Op.getValueType() == MVT::f32 && 4413 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4414 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4415 4416 // Scale the exponent by log10(2) [0.30102999f]. 4417 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4418 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4419 getF32Constant(DAG, 0x3e9a209a, dl)); 4420 4421 // Get the significand and build it into a floating-point number with 4422 // exponent of 1. 4423 SDValue X = GetSignificand(DAG, Op1, dl); 4424 4425 SDValue Log10ofMantissa; 4426 if (LimitFloatPrecision <= 6) { 4427 // For floating-point precision of 6: 4428 // 4429 // Log10ofMantissa = 4430 // -0.50419619f + 4431 // (0.60948995f - 0.10380950f * x) * x; 4432 // 4433 // error 0.0014886165, which is 6 bits 4434 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4435 getF32Constant(DAG, 0xbdd49a13, dl)); 4436 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4437 getF32Constant(DAG, 0x3f1c0789, dl)); 4438 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4439 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4440 getF32Constant(DAG, 0x3f011300, dl)); 4441 } else if (LimitFloatPrecision <= 12) { 4442 // For floating-point precision of 12: 4443 // 4444 // Log10ofMantissa = 4445 // -0.64831180f + 4446 // (0.91751397f + 4447 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4448 // 4449 // error 0.00019228036, which is better than 12 bits 4450 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4451 getF32Constant(DAG, 0x3d431f31, dl)); 4452 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4453 getF32Constant(DAG, 0x3ea21fb2, dl)); 4454 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4455 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4456 getF32Constant(DAG, 0x3f6ae232, dl)); 4457 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4458 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4459 getF32Constant(DAG, 0x3f25f7c3, dl)); 4460 } else { // LimitFloatPrecision <= 18 4461 // For floating-point precision of 18: 4462 // 4463 // Log10ofMantissa = 4464 // -0.84299375f + 4465 // (1.5327582f + 4466 // (-1.0688956f + 4467 // (0.49102474f + 4468 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4469 // 4470 // error 0.0000037995730, which is better than 18 bits 4471 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4472 getF32Constant(DAG, 0x3c5d51ce, dl)); 4473 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4474 getF32Constant(DAG, 0x3e00685a, dl)); 4475 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4476 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4477 getF32Constant(DAG, 0x3efb6798, dl)); 4478 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4479 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4480 getF32Constant(DAG, 0x3f88d192, dl)); 4481 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4482 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4483 getF32Constant(DAG, 0x3fc4316c, dl)); 4484 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4485 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4486 getF32Constant(DAG, 0x3f57ce70, dl)); 4487 } 4488 4489 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4490 } 4491 4492 // No special expansion. 4493 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4494 } 4495 4496 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4497 /// limited-precision mode. 4498 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4499 const TargetLowering &TLI) { 4500 if (Op.getValueType() == MVT::f32 && 4501 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4502 return getLimitedPrecisionExp2(Op, dl, DAG); 4503 4504 // No special expansion. 4505 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4506 } 4507 4508 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4509 /// limited-precision mode with x == 10.0f. 4510 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4511 SelectionDAG &DAG, const TargetLowering &TLI) { 4512 bool IsExp10 = false; 4513 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4514 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4515 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4516 APFloat Ten(10.0f); 4517 IsExp10 = LHSC->isExactlyValue(Ten); 4518 } 4519 } 4520 4521 // TODO: What fast-math-flags should be set on the FMUL node? 4522 if (IsExp10) { 4523 // Put the exponent in the right bit position for later addition to the 4524 // final result: 4525 // 4526 // #define LOG2OF10 3.3219281f 4527 // t0 = Op * LOG2OF10; 4528 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4529 getF32Constant(DAG, 0x40549a78, dl)); 4530 return getLimitedPrecisionExp2(t0, dl, DAG); 4531 } 4532 4533 // No special expansion. 4534 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4535 } 4536 4537 4538 /// ExpandPowI - Expand a llvm.powi intrinsic. 4539 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4540 SelectionDAG &DAG) { 4541 // If RHS is a constant, we can expand this out to a multiplication tree, 4542 // otherwise we end up lowering to a call to __powidf2 (for example). When 4543 // optimizing for size, we only want to do this if the expansion would produce 4544 // a small number of multiplies, otherwise we do the full expansion. 4545 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4546 // Get the exponent as a positive value. 4547 unsigned Val = RHSC->getSExtValue(); 4548 if ((int)Val < 0) Val = -Val; 4549 4550 // powi(x, 0) -> 1.0 4551 if (Val == 0) 4552 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4553 4554 const Function *F = DAG.getMachineFunction().getFunction(); 4555 if (!F->optForSize() || 4556 // If optimizing for size, don't insert too many multiplies. 4557 // This inserts up to 5 multiplies. 4558 countPopulation(Val) + Log2_32(Val) < 7) { 4559 // We use the simple binary decomposition method to generate the multiply 4560 // sequence. There are more optimal ways to do this (for example, 4561 // powi(x,15) generates one more multiply than it should), but this has 4562 // the benefit of being both really simple and much better than a libcall. 4563 SDValue Res; // Logically starts equal to 1.0 4564 SDValue CurSquare = LHS; 4565 // TODO: Intrinsics should have fast-math-flags that propagate to these 4566 // nodes. 4567 while (Val) { 4568 if (Val & 1) { 4569 if (Res.getNode()) 4570 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4571 else 4572 Res = CurSquare; // 1.0*CurSquare. 4573 } 4574 4575 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4576 CurSquare, CurSquare); 4577 Val >>= 1; 4578 } 4579 4580 // If the original was negative, invert the result, producing 1/(x*x*x). 4581 if (RHSC->getSExtValue() < 0) 4582 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4583 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4584 return Res; 4585 } 4586 } 4587 4588 // Otherwise, expand to a libcall. 4589 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4590 } 4591 4592 // getUnderlyingArgReg - Find underlying register used for a truncated or 4593 // bitcasted argument. 4594 static unsigned getUnderlyingArgReg(const SDValue &N) { 4595 switch (N.getOpcode()) { 4596 case ISD::CopyFromReg: 4597 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4598 case ISD::BITCAST: 4599 case ISD::AssertZext: 4600 case ISD::AssertSext: 4601 case ISD::TRUNCATE: 4602 return getUnderlyingArgReg(N.getOperand(0)); 4603 default: 4604 return 0; 4605 } 4606 } 4607 4608 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4609 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4610 /// At the end of instruction selection, they will be inserted to the entry BB. 4611 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4612 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4613 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4614 const Argument *Arg = dyn_cast<Argument>(V); 4615 if (!Arg) 4616 return false; 4617 4618 MachineFunction &MF = DAG.getMachineFunction(); 4619 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4620 4621 // Ignore inlined function arguments here. 4622 // 4623 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4624 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4625 return false; 4626 4627 Optional<MachineOperand> Op; 4628 // Some arguments' frame index is recorded during argument lowering. 4629 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4630 Op = MachineOperand::CreateFI(FI); 4631 4632 if (!Op && N.getNode()) { 4633 unsigned Reg = getUnderlyingArgReg(N); 4634 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4635 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4636 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4637 if (PR) 4638 Reg = PR; 4639 } 4640 if (Reg) 4641 Op = MachineOperand::CreateReg(Reg, false); 4642 } 4643 4644 if (!Op) { 4645 // Check if ValueMap has reg number. 4646 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4647 if (VMI != FuncInfo.ValueMap.end()) 4648 Op = MachineOperand::CreateReg(VMI->second, false); 4649 } 4650 4651 if (!Op && N.getNode()) 4652 // Check if frame index is available. 4653 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4654 if (FrameIndexSDNode *FINode = 4655 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4656 Op = MachineOperand::CreateFI(FINode->getIndex()); 4657 4658 if (!Op) 4659 return false; 4660 4661 assert(Variable->isValidLocationForIntrinsic(DL) && 4662 "Expected inlined-at fields to agree"); 4663 if (Op->isReg()) 4664 FuncInfo.ArgDbgValues.push_back( 4665 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4666 Op->getReg(), Offset, Variable, Expr)); 4667 else 4668 FuncInfo.ArgDbgValues.push_back( 4669 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4670 .addOperand(*Op) 4671 .addImm(Offset) 4672 .addMetadata(Variable) 4673 .addMetadata(Expr)); 4674 4675 return true; 4676 } 4677 4678 // VisualStudio defines setjmp as _setjmp 4679 #if defined(_MSC_VER) && defined(setjmp) && \ 4680 !defined(setjmp_undefined_for_msvc) 4681 # pragma push_macro("setjmp") 4682 # undef setjmp 4683 # define setjmp_undefined_for_msvc 4684 #endif 4685 4686 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4687 /// we want to emit this as a call to a named external function, return the name 4688 /// otherwise lower it and return null. 4689 const char * 4690 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4692 SDLoc sdl = getCurSDLoc(); 4693 DebugLoc dl = getCurDebugLoc(); 4694 SDValue Res; 4695 4696 switch (Intrinsic) { 4697 default: 4698 // By default, turn this into a target intrinsic node. 4699 visitTargetIntrinsic(I, Intrinsic); 4700 return nullptr; 4701 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4702 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4703 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4704 case Intrinsic::returnaddress: 4705 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4706 TLI.getPointerTy(DAG.getDataLayout()), 4707 getValue(I.getArgOperand(0)))); 4708 return nullptr; 4709 case Intrinsic::frameaddress: 4710 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4711 TLI.getPointerTy(DAG.getDataLayout()), 4712 getValue(I.getArgOperand(0)))); 4713 return nullptr; 4714 case Intrinsic::read_register: { 4715 Value *Reg = I.getArgOperand(0); 4716 SDValue Chain = getRoot(); 4717 SDValue RegName = 4718 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4719 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4720 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4721 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4722 setValue(&I, Res); 4723 DAG.setRoot(Res.getValue(1)); 4724 return nullptr; 4725 } 4726 case Intrinsic::write_register: { 4727 Value *Reg = I.getArgOperand(0); 4728 Value *RegValue = I.getArgOperand(1); 4729 SDValue Chain = getRoot(); 4730 SDValue RegName = 4731 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4732 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4733 RegName, getValue(RegValue))); 4734 return nullptr; 4735 } 4736 case Intrinsic::setjmp: 4737 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4738 case Intrinsic::longjmp: 4739 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4740 case Intrinsic::memcpy: { 4741 SDValue Op1 = getValue(I.getArgOperand(0)); 4742 SDValue Op2 = getValue(I.getArgOperand(1)); 4743 SDValue Op3 = getValue(I.getArgOperand(2)); 4744 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4745 if (!Align) 4746 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4747 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4748 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4749 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4750 false, isTC, 4751 MachinePointerInfo(I.getArgOperand(0)), 4752 MachinePointerInfo(I.getArgOperand(1))); 4753 updateDAGForMaybeTailCall(MC); 4754 return nullptr; 4755 } 4756 case Intrinsic::memset: { 4757 SDValue Op1 = getValue(I.getArgOperand(0)); 4758 SDValue Op2 = getValue(I.getArgOperand(1)); 4759 SDValue Op3 = getValue(I.getArgOperand(2)); 4760 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4761 if (!Align) 4762 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4763 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4764 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4765 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4766 isTC, MachinePointerInfo(I.getArgOperand(0))); 4767 updateDAGForMaybeTailCall(MS); 4768 return nullptr; 4769 } 4770 case Intrinsic::memmove: { 4771 SDValue Op1 = getValue(I.getArgOperand(0)); 4772 SDValue Op2 = getValue(I.getArgOperand(1)); 4773 SDValue Op3 = getValue(I.getArgOperand(2)); 4774 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4775 if (!Align) 4776 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4777 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4778 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4779 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4780 isTC, MachinePointerInfo(I.getArgOperand(0)), 4781 MachinePointerInfo(I.getArgOperand(1))); 4782 updateDAGForMaybeTailCall(MM); 4783 return nullptr; 4784 } 4785 case Intrinsic::dbg_declare: { 4786 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4787 DILocalVariable *Variable = DI.getVariable(); 4788 DIExpression *Expression = DI.getExpression(); 4789 const Value *Address = DI.getAddress(); 4790 assert(Variable && "Missing variable"); 4791 if (!Address) { 4792 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4793 return nullptr; 4794 } 4795 4796 // Check if address has undef value. 4797 if (isa<UndefValue>(Address) || 4798 (Address->use_empty() && !isa<Argument>(Address))) { 4799 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4800 return nullptr; 4801 } 4802 4803 SDValue &N = NodeMap[Address]; 4804 if (!N.getNode() && isa<Argument>(Address)) 4805 // Check unused arguments map. 4806 N = UnusedArgNodeMap[Address]; 4807 SDDbgValue *SDV; 4808 if (N.getNode()) { 4809 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4810 Address = BCI->getOperand(0); 4811 // Parameters are handled specially. 4812 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4813 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4814 if (isParameter && FINode) { 4815 // Byval parameter. We have a frame index at this point. 4816 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4817 FINode->getIndex(), 0, dl, SDNodeOrder); 4818 } else if (isa<Argument>(Address)) { 4819 // Address is an argument, so try to emit its dbg value using 4820 // virtual register info from the FuncInfo.ValueMap. 4821 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4822 N); 4823 return nullptr; 4824 } else { 4825 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4826 true, 0, dl, SDNodeOrder); 4827 } 4828 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4829 } else { 4830 // If Address is an argument then try to emit its dbg value using 4831 // virtual register info from the FuncInfo.ValueMap. 4832 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4833 N)) { 4834 // If variable is pinned by a alloca in dominating bb then 4835 // use StaticAllocaMap. 4836 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4837 if (AI->getParent() != DI.getParent()) { 4838 DenseMap<const AllocaInst*, int>::iterator SI = 4839 FuncInfo.StaticAllocaMap.find(AI); 4840 if (SI != FuncInfo.StaticAllocaMap.end()) { 4841 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4842 0, dl, SDNodeOrder); 4843 DAG.AddDbgValue(SDV, nullptr, false); 4844 return nullptr; 4845 } 4846 } 4847 } 4848 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4849 } 4850 } 4851 return nullptr; 4852 } 4853 case Intrinsic::dbg_value: { 4854 const DbgValueInst &DI = cast<DbgValueInst>(I); 4855 assert(DI.getVariable() && "Missing variable"); 4856 4857 DILocalVariable *Variable = DI.getVariable(); 4858 DIExpression *Expression = DI.getExpression(); 4859 uint64_t Offset = DI.getOffset(); 4860 const Value *V = DI.getValue(); 4861 if (!V) 4862 return nullptr; 4863 4864 SDDbgValue *SDV; 4865 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4866 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4867 SDNodeOrder); 4868 DAG.AddDbgValue(SDV, nullptr, false); 4869 } else { 4870 // Do not use getValue() in here; we don't want to generate code at 4871 // this point if it hasn't been done yet. 4872 SDValue N = NodeMap[V]; 4873 if (!N.getNode() && isa<Argument>(V)) 4874 // Check unused arguments map. 4875 N = UnusedArgNodeMap[V]; 4876 if (N.getNode()) { 4877 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4878 false, N)) { 4879 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4880 false, Offset, dl, SDNodeOrder); 4881 DAG.AddDbgValue(SDV, N.getNode(), false); 4882 } 4883 } else if (!V->use_empty() ) { 4884 // Do not call getValue(V) yet, as we don't want to generate code. 4885 // Remember it for later. 4886 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4887 DanglingDebugInfoMap[V] = DDI; 4888 } else { 4889 // We may expand this to cover more cases. One case where we have no 4890 // data available is an unreferenced parameter. 4891 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4892 } 4893 } 4894 4895 // Build a debug info table entry. 4896 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4897 V = BCI->getOperand(0); 4898 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4899 // Don't handle byval struct arguments or VLAs, for example. 4900 if (!AI) { 4901 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4902 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4903 return nullptr; 4904 } 4905 DenseMap<const AllocaInst*, int>::iterator SI = 4906 FuncInfo.StaticAllocaMap.find(AI); 4907 if (SI == FuncInfo.StaticAllocaMap.end()) 4908 return nullptr; // VLAs. 4909 return nullptr; 4910 } 4911 4912 case Intrinsic::eh_typeid_for: { 4913 // Find the type id for the given typeinfo. 4914 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4915 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4916 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4917 setValue(&I, Res); 4918 return nullptr; 4919 } 4920 4921 case Intrinsic::eh_return_i32: 4922 case Intrinsic::eh_return_i64: 4923 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4924 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4925 MVT::Other, 4926 getControlRoot(), 4927 getValue(I.getArgOperand(0)), 4928 getValue(I.getArgOperand(1)))); 4929 return nullptr; 4930 case Intrinsic::eh_unwind_init: 4931 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4932 return nullptr; 4933 case Intrinsic::eh_dwarf_cfa: { 4934 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4935 TLI.getPointerTy(DAG.getDataLayout())); 4936 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4937 CfaArg.getValueType(), 4938 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4939 CfaArg.getValueType()), 4940 CfaArg); 4941 SDValue FA = DAG.getNode( 4942 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4943 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4944 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4945 FA, Offset)); 4946 return nullptr; 4947 } 4948 case Intrinsic::eh_sjlj_callsite: { 4949 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4950 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4951 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4952 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4953 4954 MMI.setCurrentCallSite(CI->getZExtValue()); 4955 return nullptr; 4956 } 4957 case Intrinsic::eh_sjlj_functioncontext: { 4958 // Get and store the index of the function context. 4959 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4960 AllocaInst *FnCtx = 4961 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4962 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4963 MFI->setFunctionContextIndex(FI); 4964 return nullptr; 4965 } 4966 case Intrinsic::eh_sjlj_setjmp: { 4967 SDValue Ops[2]; 4968 Ops[0] = getRoot(); 4969 Ops[1] = getValue(I.getArgOperand(0)); 4970 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4971 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4972 setValue(&I, Op.getValue(0)); 4973 DAG.setRoot(Op.getValue(1)); 4974 return nullptr; 4975 } 4976 case Intrinsic::eh_sjlj_longjmp: { 4977 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4978 getRoot(), getValue(I.getArgOperand(0)))); 4979 return nullptr; 4980 } 4981 case Intrinsic::eh_sjlj_setup_dispatch: { 4982 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4983 getRoot())); 4984 return nullptr; 4985 } 4986 4987 case Intrinsic::masked_gather: 4988 visitMaskedGather(I); 4989 return nullptr; 4990 case Intrinsic::masked_load: 4991 visitMaskedLoad(I); 4992 return nullptr; 4993 case Intrinsic::masked_scatter: 4994 visitMaskedScatter(I); 4995 return nullptr; 4996 case Intrinsic::masked_store: 4997 visitMaskedStore(I); 4998 return nullptr; 4999 case Intrinsic::x86_mmx_pslli_w: 5000 case Intrinsic::x86_mmx_pslli_d: 5001 case Intrinsic::x86_mmx_pslli_q: 5002 case Intrinsic::x86_mmx_psrli_w: 5003 case Intrinsic::x86_mmx_psrli_d: 5004 case Intrinsic::x86_mmx_psrli_q: 5005 case Intrinsic::x86_mmx_psrai_w: 5006 case Intrinsic::x86_mmx_psrai_d: { 5007 SDValue ShAmt = getValue(I.getArgOperand(1)); 5008 if (isa<ConstantSDNode>(ShAmt)) { 5009 visitTargetIntrinsic(I, Intrinsic); 5010 return nullptr; 5011 } 5012 unsigned NewIntrinsic = 0; 5013 EVT ShAmtVT = MVT::v2i32; 5014 switch (Intrinsic) { 5015 case Intrinsic::x86_mmx_pslli_w: 5016 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5017 break; 5018 case Intrinsic::x86_mmx_pslli_d: 5019 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5020 break; 5021 case Intrinsic::x86_mmx_pslli_q: 5022 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5023 break; 5024 case Intrinsic::x86_mmx_psrli_w: 5025 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5026 break; 5027 case Intrinsic::x86_mmx_psrli_d: 5028 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5029 break; 5030 case Intrinsic::x86_mmx_psrli_q: 5031 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5032 break; 5033 case Intrinsic::x86_mmx_psrai_w: 5034 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5035 break; 5036 case Intrinsic::x86_mmx_psrai_d: 5037 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5038 break; 5039 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5040 } 5041 5042 // The vector shift intrinsics with scalars uses 32b shift amounts but 5043 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5044 // to be zero. 5045 // We must do this early because v2i32 is not a legal type. 5046 SDValue ShOps[2]; 5047 ShOps[0] = ShAmt; 5048 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5049 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5050 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5051 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5052 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5053 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5054 getValue(I.getArgOperand(0)), ShAmt); 5055 setValue(&I, Res); 5056 return nullptr; 5057 } 5058 case Intrinsic::convertff: 5059 case Intrinsic::convertfsi: 5060 case Intrinsic::convertfui: 5061 case Intrinsic::convertsif: 5062 case Intrinsic::convertuif: 5063 case Intrinsic::convertss: 5064 case Intrinsic::convertsu: 5065 case Intrinsic::convertus: 5066 case Intrinsic::convertuu: { 5067 ISD::CvtCode Code = ISD::CVT_INVALID; 5068 switch (Intrinsic) { 5069 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5070 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5071 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5072 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5073 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5074 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5075 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5076 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5077 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5078 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5079 } 5080 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5081 const Value *Op1 = I.getArgOperand(0); 5082 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5083 DAG.getValueType(DestVT), 5084 DAG.getValueType(getValue(Op1).getValueType()), 5085 getValue(I.getArgOperand(1)), 5086 getValue(I.getArgOperand(2)), 5087 Code); 5088 setValue(&I, Res); 5089 return nullptr; 5090 } 5091 case Intrinsic::powi: 5092 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5093 getValue(I.getArgOperand(1)), DAG)); 5094 return nullptr; 5095 case Intrinsic::log: 5096 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5097 return nullptr; 5098 case Intrinsic::log2: 5099 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5100 return nullptr; 5101 case Intrinsic::log10: 5102 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5103 return nullptr; 5104 case Intrinsic::exp: 5105 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5106 return nullptr; 5107 case Intrinsic::exp2: 5108 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5109 return nullptr; 5110 case Intrinsic::pow: 5111 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5112 getValue(I.getArgOperand(1)), DAG, TLI)); 5113 return nullptr; 5114 case Intrinsic::sqrt: 5115 case Intrinsic::fabs: 5116 case Intrinsic::sin: 5117 case Intrinsic::cos: 5118 case Intrinsic::floor: 5119 case Intrinsic::ceil: 5120 case Intrinsic::trunc: 5121 case Intrinsic::rint: 5122 case Intrinsic::nearbyint: 5123 case Intrinsic::round: 5124 case Intrinsic::canonicalize: { 5125 unsigned Opcode; 5126 switch (Intrinsic) { 5127 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5128 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5129 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5130 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5131 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5132 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5133 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5134 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5135 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5136 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5137 case Intrinsic::round: Opcode = ISD::FROUND; break; 5138 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5139 } 5140 5141 setValue(&I, DAG.getNode(Opcode, sdl, 5142 getValue(I.getArgOperand(0)).getValueType(), 5143 getValue(I.getArgOperand(0)))); 5144 return nullptr; 5145 } 5146 case Intrinsic::minnum: 5147 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5148 getValue(I.getArgOperand(0)).getValueType(), 5149 getValue(I.getArgOperand(0)), 5150 getValue(I.getArgOperand(1)))); 5151 return nullptr; 5152 case Intrinsic::maxnum: 5153 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5154 getValue(I.getArgOperand(0)).getValueType(), 5155 getValue(I.getArgOperand(0)), 5156 getValue(I.getArgOperand(1)))); 5157 return nullptr; 5158 case Intrinsic::copysign: 5159 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5160 getValue(I.getArgOperand(0)).getValueType(), 5161 getValue(I.getArgOperand(0)), 5162 getValue(I.getArgOperand(1)))); 5163 return nullptr; 5164 case Intrinsic::fma: 5165 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5166 getValue(I.getArgOperand(0)).getValueType(), 5167 getValue(I.getArgOperand(0)), 5168 getValue(I.getArgOperand(1)), 5169 getValue(I.getArgOperand(2)))); 5170 return nullptr; 5171 case Intrinsic::fmuladd: { 5172 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5173 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5174 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5175 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5176 getValue(I.getArgOperand(0)).getValueType(), 5177 getValue(I.getArgOperand(0)), 5178 getValue(I.getArgOperand(1)), 5179 getValue(I.getArgOperand(2)))); 5180 } else { 5181 // TODO: Intrinsic calls should have fast-math-flags. 5182 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5183 getValue(I.getArgOperand(0)).getValueType(), 5184 getValue(I.getArgOperand(0)), 5185 getValue(I.getArgOperand(1))); 5186 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5187 getValue(I.getArgOperand(0)).getValueType(), 5188 Mul, 5189 getValue(I.getArgOperand(2))); 5190 setValue(&I, Add); 5191 } 5192 return nullptr; 5193 } 5194 case Intrinsic::convert_to_fp16: 5195 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5196 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5197 getValue(I.getArgOperand(0)), 5198 DAG.getTargetConstant(0, sdl, 5199 MVT::i32)))); 5200 return nullptr; 5201 case Intrinsic::convert_from_fp16: 5202 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5203 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5204 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5205 getValue(I.getArgOperand(0))))); 5206 return nullptr; 5207 case Intrinsic::pcmarker: { 5208 SDValue Tmp = getValue(I.getArgOperand(0)); 5209 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5210 return nullptr; 5211 } 5212 case Intrinsic::readcyclecounter: { 5213 SDValue Op = getRoot(); 5214 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5215 DAG.getVTList(MVT::i64, MVT::Other), Op); 5216 setValue(&I, Res); 5217 DAG.setRoot(Res.getValue(1)); 5218 return nullptr; 5219 } 5220 case Intrinsic::bitreverse: 5221 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5222 getValue(I.getArgOperand(0)).getValueType(), 5223 getValue(I.getArgOperand(0)))); 5224 return nullptr; 5225 case Intrinsic::bswap: 5226 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5227 getValue(I.getArgOperand(0)).getValueType(), 5228 getValue(I.getArgOperand(0)))); 5229 return nullptr; 5230 case Intrinsic::cttz: { 5231 SDValue Arg = getValue(I.getArgOperand(0)); 5232 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5233 EVT Ty = Arg.getValueType(); 5234 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5235 sdl, Ty, Arg)); 5236 return nullptr; 5237 } 5238 case Intrinsic::ctlz: { 5239 SDValue Arg = getValue(I.getArgOperand(0)); 5240 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5241 EVT Ty = Arg.getValueType(); 5242 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5243 sdl, Ty, Arg)); 5244 return nullptr; 5245 } 5246 case Intrinsic::ctpop: { 5247 SDValue Arg = getValue(I.getArgOperand(0)); 5248 EVT Ty = Arg.getValueType(); 5249 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5250 return nullptr; 5251 } 5252 case Intrinsic::stacksave: { 5253 SDValue Op = getRoot(); 5254 Res = DAG.getNode( 5255 ISD::STACKSAVE, sdl, 5256 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5257 setValue(&I, Res); 5258 DAG.setRoot(Res.getValue(1)); 5259 return nullptr; 5260 } 5261 case Intrinsic::stackrestore: { 5262 Res = getValue(I.getArgOperand(0)); 5263 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5264 return nullptr; 5265 } 5266 case Intrinsic::get_dynamic_area_offset: { 5267 SDValue Op = getRoot(); 5268 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5269 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5270 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5271 // target. 5272 if (PtrTy != ResTy) 5273 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5274 " intrinsic!"); 5275 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5276 Op); 5277 DAG.setRoot(Op); 5278 setValue(&I, Res); 5279 return nullptr; 5280 } 5281 case Intrinsic::stackprotector: { 5282 // Emit code into the DAG to store the stack guard onto the stack. 5283 MachineFunction &MF = DAG.getMachineFunction(); 5284 MachineFrameInfo *MFI = MF.getFrameInfo(); 5285 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5286 SDValue Src, Chain = getRoot(); 5287 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5288 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5289 5290 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5291 // global variable __stack_chk_guard. 5292 if (!GV) 5293 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5294 if (BC->getOpcode() == Instruction::BitCast) 5295 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5296 5297 if (GV && TLI.useLoadStackGuardNode()) { 5298 // Emit a LOAD_STACK_GUARD node. 5299 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5300 sdl, PtrTy, Chain); 5301 MachinePointerInfo MPInfo(GV); 5302 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5303 unsigned Flags = MachineMemOperand::MOLoad | 5304 MachineMemOperand::MOInvariant; 5305 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5306 PtrTy.getSizeInBits() / 8, 5307 DAG.getEVTAlignment(PtrTy)); 5308 Node->setMemRefs(MemRefs, MemRefs + 1); 5309 5310 // Copy the guard value to a virtual register so that it can be 5311 // retrieved in the epilogue. 5312 Src = SDValue(Node, 0); 5313 const TargetRegisterClass *RC = 5314 TLI.getRegClassFor(Src.getSimpleValueType()); 5315 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5316 5317 SPDescriptor.setGuardReg(Reg); 5318 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5319 } else { 5320 Src = getValue(I.getArgOperand(0)); // The guard's value. 5321 } 5322 5323 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5324 5325 int FI = FuncInfo.StaticAllocaMap[Slot]; 5326 MFI->setStackProtectorIndex(FI); 5327 5328 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5329 5330 // Store the stack protector onto the stack. 5331 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5332 DAG.getMachineFunction(), FI), 5333 true, false, 0); 5334 setValue(&I, Res); 5335 DAG.setRoot(Res); 5336 return nullptr; 5337 } 5338 case Intrinsic::objectsize: { 5339 // If we don't know by now, we're never going to know. 5340 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5341 5342 assert(CI && "Non-constant type in __builtin_object_size?"); 5343 5344 SDValue Arg = getValue(I.getCalledValue()); 5345 EVT Ty = Arg.getValueType(); 5346 5347 if (CI->isZero()) 5348 Res = DAG.getConstant(-1ULL, sdl, Ty); 5349 else 5350 Res = DAG.getConstant(0, sdl, Ty); 5351 5352 setValue(&I, Res); 5353 return nullptr; 5354 } 5355 case Intrinsic::annotation: 5356 case Intrinsic::ptr_annotation: 5357 // Drop the intrinsic, but forward the value 5358 setValue(&I, getValue(I.getOperand(0))); 5359 return nullptr; 5360 case Intrinsic::assume: 5361 case Intrinsic::var_annotation: 5362 // Discard annotate attributes and assumptions 5363 return nullptr; 5364 5365 case Intrinsic::init_trampoline: { 5366 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5367 5368 SDValue Ops[6]; 5369 Ops[0] = getRoot(); 5370 Ops[1] = getValue(I.getArgOperand(0)); 5371 Ops[2] = getValue(I.getArgOperand(1)); 5372 Ops[3] = getValue(I.getArgOperand(2)); 5373 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5374 Ops[5] = DAG.getSrcValue(F); 5375 5376 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5377 5378 DAG.setRoot(Res); 5379 return nullptr; 5380 } 5381 case Intrinsic::adjust_trampoline: { 5382 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5383 TLI.getPointerTy(DAG.getDataLayout()), 5384 getValue(I.getArgOperand(0)))); 5385 return nullptr; 5386 } 5387 case Intrinsic::gcroot: { 5388 MachineFunction &MF = DAG.getMachineFunction(); 5389 const Function *F = MF.getFunction(); 5390 (void)F; 5391 assert(F->hasGC() && 5392 "only valid in functions with gc specified, enforced by Verifier"); 5393 assert(GFI && "implied by previous"); 5394 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5395 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5396 5397 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5398 GFI->addStackRoot(FI->getIndex(), TypeMap); 5399 return nullptr; 5400 } 5401 case Intrinsic::gcread: 5402 case Intrinsic::gcwrite: 5403 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5404 case Intrinsic::flt_rounds: 5405 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5406 return nullptr; 5407 5408 case Intrinsic::expect: { 5409 // Just replace __builtin_expect(exp, c) with EXP. 5410 setValue(&I, getValue(I.getArgOperand(0))); 5411 return nullptr; 5412 } 5413 5414 case Intrinsic::debugtrap: 5415 case Intrinsic::trap: { 5416 StringRef TrapFuncName = 5417 I.getAttributes() 5418 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5419 .getValueAsString(); 5420 if (TrapFuncName.empty()) { 5421 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5422 ISD::TRAP : ISD::DEBUGTRAP; 5423 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5424 return nullptr; 5425 } 5426 TargetLowering::ArgListTy Args; 5427 5428 TargetLowering::CallLoweringInfo CLI(DAG); 5429 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5430 CallingConv::C, I.getType(), 5431 DAG.getExternalSymbol(TrapFuncName.data(), 5432 TLI.getPointerTy(DAG.getDataLayout())), 5433 std::move(Args), 0); 5434 5435 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5436 DAG.setRoot(Result.second); 5437 return nullptr; 5438 } 5439 5440 case Intrinsic::uadd_with_overflow: 5441 case Intrinsic::sadd_with_overflow: 5442 case Intrinsic::usub_with_overflow: 5443 case Intrinsic::ssub_with_overflow: 5444 case Intrinsic::umul_with_overflow: 5445 case Intrinsic::smul_with_overflow: { 5446 ISD::NodeType Op; 5447 switch (Intrinsic) { 5448 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5449 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5450 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5451 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5452 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5453 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5454 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5455 } 5456 SDValue Op1 = getValue(I.getArgOperand(0)); 5457 SDValue Op2 = getValue(I.getArgOperand(1)); 5458 5459 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5460 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5461 return nullptr; 5462 } 5463 case Intrinsic::prefetch: { 5464 SDValue Ops[5]; 5465 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5466 Ops[0] = getRoot(); 5467 Ops[1] = getValue(I.getArgOperand(0)); 5468 Ops[2] = getValue(I.getArgOperand(1)); 5469 Ops[3] = getValue(I.getArgOperand(2)); 5470 Ops[4] = getValue(I.getArgOperand(3)); 5471 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5472 DAG.getVTList(MVT::Other), Ops, 5473 EVT::getIntegerVT(*Context, 8), 5474 MachinePointerInfo(I.getArgOperand(0)), 5475 0, /* align */ 5476 false, /* volatile */ 5477 rw==0, /* read */ 5478 rw==1)); /* write */ 5479 return nullptr; 5480 } 5481 case Intrinsic::lifetime_start: 5482 case Intrinsic::lifetime_end: { 5483 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5484 // Stack coloring is not enabled in O0, discard region information. 5485 if (TM.getOptLevel() == CodeGenOpt::None) 5486 return nullptr; 5487 5488 SmallVector<Value *, 4> Allocas; 5489 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5490 5491 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5492 E = Allocas.end(); Object != E; ++Object) { 5493 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5494 5495 // Could not find an Alloca. 5496 if (!LifetimeObject) 5497 continue; 5498 5499 // First check that the Alloca is static, otherwise it won't have a 5500 // valid frame index. 5501 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5502 if (SI == FuncInfo.StaticAllocaMap.end()) 5503 return nullptr; 5504 5505 int FI = SI->second; 5506 5507 SDValue Ops[2]; 5508 Ops[0] = getRoot(); 5509 Ops[1] = 5510 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5511 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5512 5513 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5514 DAG.setRoot(Res); 5515 } 5516 return nullptr; 5517 } 5518 case Intrinsic::invariant_start: 5519 // Discard region information. 5520 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5521 return nullptr; 5522 case Intrinsic::invariant_end: 5523 // Discard region information. 5524 return nullptr; 5525 case Intrinsic::clear_cache: 5526 return TLI.getClearCacheBuiltinName(); 5527 case Intrinsic::donothing: 5528 // ignore 5529 return nullptr; 5530 case Intrinsic::experimental_stackmap: { 5531 visitStackmap(I); 5532 return nullptr; 5533 } 5534 case Intrinsic::experimental_patchpoint_void: 5535 case Intrinsic::experimental_patchpoint_i64: { 5536 visitPatchpoint(&I); 5537 return nullptr; 5538 } 5539 case Intrinsic::experimental_gc_statepoint: { 5540 LowerStatepoint(ImmutableStatepoint(&I)); 5541 return nullptr; 5542 } 5543 case Intrinsic::experimental_gc_result: { 5544 visitGCResult(cast<GCResultInst>(I)); 5545 return nullptr; 5546 } 5547 case Intrinsic::experimental_gc_relocate: { 5548 visitGCRelocate(cast<GCRelocateInst>(I)); 5549 return nullptr; 5550 } 5551 case Intrinsic::instrprof_increment: 5552 llvm_unreachable("instrprof failed to lower an increment"); 5553 case Intrinsic::instrprof_value_profile: 5554 llvm_unreachable("instrprof failed to lower a value profiling call"); 5555 case Intrinsic::localescape: { 5556 MachineFunction &MF = DAG.getMachineFunction(); 5557 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5558 5559 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5560 // is the same on all targets. 5561 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5562 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5563 if (isa<ConstantPointerNull>(Arg)) 5564 continue; // Skip null pointers. They represent a hole in index space. 5565 AllocaInst *Slot = cast<AllocaInst>(Arg); 5566 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5567 "can only escape static allocas"); 5568 int FI = FuncInfo.StaticAllocaMap[Slot]; 5569 MCSymbol *FrameAllocSym = 5570 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5571 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5572 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5573 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5574 .addSym(FrameAllocSym) 5575 .addFrameIndex(FI); 5576 } 5577 5578 return nullptr; 5579 } 5580 5581 case Intrinsic::localrecover: { 5582 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5583 MachineFunction &MF = DAG.getMachineFunction(); 5584 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5585 5586 // Get the symbol that defines the frame offset. 5587 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5588 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5589 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5590 MCSymbol *FrameAllocSym = 5591 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5592 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5593 5594 // Create a MCSymbol for the label to avoid any target lowering 5595 // that would make this PC relative. 5596 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5597 SDValue OffsetVal = 5598 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5599 5600 // Add the offset to the FP. 5601 Value *FP = I.getArgOperand(1); 5602 SDValue FPVal = getValue(FP); 5603 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5604 setValue(&I, Add); 5605 5606 return nullptr; 5607 } 5608 5609 case Intrinsic::eh_exceptionpointer: 5610 case Intrinsic::eh_exceptioncode: { 5611 // Get the exception pointer vreg, copy from it, and resize it to fit. 5612 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5613 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5614 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5615 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5616 SDValue N = 5617 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5618 if (Intrinsic == Intrinsic::eh_exceptioncode) 5619 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5620 setValue(&I, N); 5621 return nullptr; 5622 } 5623 5624 case Intrinsic::experimental_deoptimize: 5625 LowerDeoptimizeCall(&I); 5626 return nullptr; 5627 } 5628 } 5629 5630 std::pair<SDValue, SDValue> 5631 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5632 const BasicBlock *EHPadBB) { 5633 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5634 MCSymbol *BeginLabel = nullptr; 5635 5636 if (EHPadBB) { 5637 // Insert a label before the invoke call to mark the try range. This can be 5638 // used to detect deletion of the invoke via the MachineModuleInfo. 5639 BeginLabel = MMI.getContext().createTempSymbol(); 5640 5641 // For SjLj, keep track of which landing pads go with which invokes 5642 // so as to maintain the ordering of pads in the LSDA. 5643 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5644 if (CallSiteIndex) { 5645 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5646 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5647 5648 // Now that the call site is handled, stop tracking it. 5649 MMI.setCurrentCallSite(0); 5650 } 5651 5652 // Both PendingLoads and PendingExports must be flushed here; 5653 // this call might not return. 5654 (void)getRoot(); 5655 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5656 5657 CLI.setChain(getRoot()); 5658 } 5659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5660 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5661 5662 assert((CLI.IsTailCall || Result.second.getNode()) && 5663 "Non-null chain expected with non-tail call!"); 5664 assert((Result.second.getNode() || !Result.first.getNode()) && 5665 "Null value expected with tail call!"); 5666 5667 if (!Result.second.getNode()) { 5668 // As a special case, a null chain means that a tail call has been emitted 5669 // and the DAG root is already updated. 5670 HasTailCall = true; 5671 5672 // Since there's no actual continuation from this block, nothing can be 5673 // relying on us setting vregs for them. 5674 PendingExports.clear(); 5675 } else { 5676 DAG.setRoot(Result.second); 5677 } 5678 5679 if (EHPadBB) { 5680 // Insert a label at the end of the invoke call to mark the try range. This 5681 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5682 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5683 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5684 5685 // Inform MachineModuleInfo of range. 5686 if (MMI.hasEHFunclets()) { 5687 assert(CLI.CS); 5688 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5689 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5690 BeginLabel, EndLabel); 5691 } else { 5692 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5693 } 5694 } 5695 5696 return Result; 5697 } 5698 5699 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5700 bool isTailCall, 5701 const BasicBlock *EHPadBB) { 5702 auto &DL = DAG.getDataLayout(); 5703 FunctionType *FTy = CS.getFunctionType(); 5704 Type *RetTy = CS.getType(); 5705 5706 TargetLowering::ArgListTy Args; 5707 TargetLowering::ArgListEntry Entry; 5708 Args.reserve(CS.arg_size()); 5709 5710 const Value *SwiftErrorVal = nullptr; 5711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5712 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5713 i != e; ++i) { 5714 const Value *V = *i; 5715 5716 // Skip empty types 5717 if (V->getType()->isEmptyTy()) 5718 continue; 5719 5720 SDValue ArgNode = getValue(V); 5721 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5722 5723 // Skip the first return-type Attribute to get to params. 5724 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5725 5726 // Use swifterror virtual register as input to the call. 5727 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5728 SwiftErrorVal = V; 5729 // We find the virtual register for the actual swifterror argument. 5730 // Instead of using the Value, we use the virtual register instead. 5731 Entry.Node = DAG.getRegister( 5732 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V), 5733 EVT(TLI.getPointerTy(DL))); 5734 } 5735 5736 Args.push_back(Entry); 5737 5738 // If we have an explicit sret argument that is an Instruction, (i.e., it 5739 // might point to function-local memory), we can't meaningfully tail-call. 5740 if (Entry.isSRet && isa<Instruction>(V)) 5741 isTailCall = false; 5742 } 5743 5744 // Check if target-independent constraints permit a tail call here. 5745 // Target-dependent constraints are checked within TLI->LowerCallTo. 5746 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5747 isTailCall = false; 5748 5749 TargetLowering::CallLoweringInfo CLI(DAG); 5750 CLI.setDebugLoc(getCurSDLoc()) 5751 .setChain(getRoot()) 5752 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5753 .setTailCall(isTailCall) 5754 .setConvergent(CS.isConvergent()); 5755 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5756 5757 if (Result.first.getNode()) { 5758 const Instruction *Inst = CS.getInstruction(); 5759 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5760 setValue(Inst, Result.first); 5761 } 5762 5763 // The last element of CLI.InVals has the SDValue for swifterror return. 5764 // Here we copy it to a virtual register and update SwiftErrorMap for 5765 // book-keeping. 5766 if (SwiftErrorVal && TLI.supportSwiftError()) { 5767 // Get the last element of InVals. 5768 SDValue Src = CLI.InVals.back(); 5769 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5770 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5771 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5772 // We update the virtual register for the actual swifterror argument. 5773 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5774 DAG.setRoot(CopyNode); 5775 } 5776 } 5777 5778 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5779 /// value is equal or not-equal to zero. 5780 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5781 for (const User *U : V->users()) { 5782 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5783 if (IC->isEquality()) 5784 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5785 if (C->isNullValue()) 5786 continue; 5787 // Unknown instruction. 5788 return false; 5789 } 5790 return true; 5791 } 5792 5793 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5794 Type *LoadTy, 5795 SelectionDAGBuilder &Builder) { 5796 5797 // Check to see if this load can be trivially constant folded, e.g. if the 5798 // input is from a string literal. 5799 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5800 // Cast pointer to the type we really want to load. 5801 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5802 PointerType::getUnqual(LoadTy)); 5803 5804 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5805 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5806 return Builder.getValue(LoadCst); 5807 } 5808 5809 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5810 // still constant memory, the input chain can be the entry node. 5811 SDValue Root; 5812 bool ConstantMemory = false; 5813 5814 // Do not serialize (non-volatile) loads of constant memory with anything. 5815 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5816 Root = Builder.DAG.getEntryNode(); 5817 ConstantMemory = true; 5818 } else { 5819 // Do not serialize non-volatile loads against each other. 5820 Root = Builder.DAG.getRoot(); 5821 } 5822 5823 SDValue Ptr = Builder.getValue(PtrVal); 5824 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5825 Ptr, MachinePointerInfo(PtrVal), 5826 false /*volatile*/, 5827 false /*nontemporal*/, 5828 false /*isinvariant*/, 1 /* align=1 */); 5829 5830 if (!ConstantMemory) 5831 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5832 return LoadVal; 5833 } 5834 5835 /// processIntegerCallValue - Record the value for an instruction that 5836 /// produces an integer result, converting the type where necessary. 5837 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5838 SDValue Value, 5839 bool IsSigned) { 5840 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5841 I.getType(), true); 5842 if (IsSigned) 5843 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5844 else 5845 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5846 setValue(&I, Value); 5847 } 5848 5849 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5850 /// If so, return true and lower it, otherwise return false and it will be 5851 /// lowered like a normal call. 5852 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5853 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5854 if (I.getNumArgOperands() != 3) 5855 return false; 5856 5857 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5858 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5859 !I.getArgOperand(2)->getType()->isIntegerTy() || 5860 !I.getType()->isIntegerTy()) 5861 return false; 5862 5863 const Value *Size = I.getArgOperand(2); 5864 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5865 if (CSize && CSize->getZExtValue() == 0) { 5866 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5867 I.getType(), true); 5868 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5869 return true; 5870 } 5871 5872 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5873 std::pair<SDValue, SDValue> Res = 5874 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5875 getValue(LHS), getValue(RHS), getValue(Size), 5876 MachinePointerInfo(LHS), 5877 MachinePointerInfo(RHS)); 5878 if (Res.first.getNode()) { 5879 processIntegerCallValue(I, Res.first, true); 5880 PendingLoads.push_back(Res.second); 5881 return true; 5882 } 5883 5884 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5885 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5886 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5887 bool ActuallyDoIt = true; 5888 MVT LoadVT; 5889 Type *LoadTy; 5890 switch (CSize->getZExtValue()) { 5891 default: 5892 LoadVT = MVT::Other; 5893 LoadTy = nullptr; 5894 ActuallyDoIt = false; 5895 break; 5896 case 2: 5897 LoadVT = MVT::i16; 5898 LoadTy = Type::getInt16Ty(CSize->getContext()); 5899 break; 5900 case 4: 5901 LoadVT = MVT::i32; 5902 LoadTy = Type::getInt32Ty(CSize->getContext()); 5903 break; 5904 case 8: 5905 LoadVT = MVT::i64; 5906 LoadTy = Type::getInt64Ty(CSize->getContext()); 5907 break; 5908 /* 5909 case 16: 5910 LoadVT = MVT::v4i32; 5911 LoadTy = Type::getInt32Ty(CSize->getContext()); 5912 LoadTy = VectorType::get(LoadTy, 4); 5913 break; 5914 */ 5915 } 5916 5917 // This turns into unaligned loads. We only do this if the target natively 5918 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5919 // we'll only produce a small number of byte loads. 5920 5921 // Require that we can find a legal MVT, and only do this if the target 5922 // supports unaligned loads of that type. Expanding into byte loads would 5923 // bloat the code. 5924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5925 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5926 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5927 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5928 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5929 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5930 // TODO: Check alignment of src and dest ptrs. 5931 if (!TLI.isTypeLegal(LoadVT) || 5932 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5933 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5934 ActuallyDoIt = false; 5935 } 5936 5937 if (ActuallyDoIt) { 5938 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5939 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5940 5941 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5942 ISD::SETNE); 5943 processIntegerCallValue(I, Res, false); 5944 return true; 5945 } 5946 } 5947 5948 5949 return false; 5950 } 5951 5952 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5953 /// form. If so, return true and lower it, otherwise return false and it 5954 /// will be lowered like a normal call. 5955 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5956 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5957 if (I.getNumArgOperands() != 3) 5958 return false; 5959 5960 const Value *Src = I.getArgOperand(0); 5961 const Value *Char = I.getArgOperand(1); 5962 const Value *Length = I.getArgOperand(2); 5963 if (!Src->getType()->isPointerTy() || 5964 !Char->getType()->isIntegerTy() || 5965 !Length->getType()->isIntegerTy() || 5966 !I.getType()->isPointerTy()) 5967 return false; 5968 5969 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5970 std::pair<SDValue, SDValue> Res = 5971 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5972 getValue(Src), getValue(Char), getValue(Length), 5973 MachinePointerInfo(Src)); 5974 if (Res.first.getNode()) { 5975 setValue(&I, Res.first); 5976 PendingLoads.push_back(Res.second); 5977 return true; 5978 } 5979 5980 return false; 5981 } 5982 5983 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5984 /// optimized form. If so, return true and lower it, otherwise return false 5985 /// and it will be lowered like a normal call. 5986 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5987 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5988 if (I.getNumArgOperands() != 2) 5989 return false; 5990 5991 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5992 if (!Arg0->getType()->isPointerTy() || 5993 !Arg1->getType()->isPointerTy() || 5994 !I.getType()->isPointerTy()) 5995 return false; 5996 5997 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5998 std::pair<SDValue, SDValue> Res = 5999 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6000 getValue(Arg0), getValue(Arg1), 6001 MachinePointerInfo(Arg0), 6002 MachinePointerInfo(Arg1), isStpcpy); 6003 if (Res.first.getNode()) { 6004 setValue(&I, Res.first); 6005 DAG.setRoot(Res.second); 6006 return true; 6007 } 6008 6009 return false; 6010 } 6011 6012 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6013 /// If so, return true and lower it, otherwise return false and it will be 6014 /// lowered like a normal call. 6015 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6016 // Verify that the prototype makes sense. int strcmp(void*,void*) 6017 if (I.getNumArgOperands() != 2) 6018 return false; 6019 6020 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6021 if (!Arg0->getType()->isPointerTy() || 6022 !Arg1->getType()->isPointerTy() || 6023 !I.getType()->isIntegerTy()) 6024 return false; 6025 6026 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6027 std::pair<SDValue, SDValue> Res = 6028 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6029 getValue(Arg0), getValue(Arg1), 6030 MachinePointerInfo(Arg0), 6031 MachinePointerInfo(Arg1)); 6032 if (Res.first.getNode()) { 6033 processIntegerCallValue(I, Res.first, true); 6034 PendingLoads.push_back(Res.second); 6035 return true; 6036 } 6037 6038 return false; 6039 } 6040 6041 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6042 /// form. If so, return true and lower it, otherwise return false and it 6043 /// will be lowered like a normal call. 6044 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6045 // Verify that the prototype makes sense. size_t strlen(char *) 6046 if (I.getNumArgOperands() != 1) 6047 return false; 6048 6049 const Value *Arg0 = I.getArgOperand(0); 6050 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6051 return false; 6052 6053 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6054 std::pair<SDValue, SDValue> Res = 6055 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6056 getValue(Arg0), MachinePointerInfo(Arg0)); 6057 if (Res.first.getNode()) { 6058 processIntegerCallValue(I, Res.first, false); 6059 PendingLoads.push_back(Res.second); 6060 return true; 6061 } 6062 6063 return false; 6064 } 6065 6066 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6067 /// form. If so, return true and lower it, otherwise return false and it 6068 /// will be lowered like a normal call. 6069 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6070 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6071 if (I.getNumArgOperands() != 2) 6072 return false; 6073 6074 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6075 if (!Arg0->getType()->isPointerTy() || 6076 !Arg1->getType()->isIntegerTy() || 6077 !I.getType()->isIntegerTy()) 6078 return false; 6079 6080 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6081 std::pair<SDValue, SDValue> Res = 6082 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6083 getValue(Arg0), getValue(Arg1), 6084 MachinePointerInfo(Arg0)); 6085 if (Res.first.getNode()) { 6086 processIntegerCallValue(I, Res.first, false); 6087 PendingLoads.push_back(Res.second); 6088 return true; 6089 } 6090 6091 return false; 6092 } 6093 6094 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6095 /// operation (as expected), translate it to an SDNode with the specified opcode 6096 /// and return true. 6097 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6098 unsigned Opcode) { 6099 // Sanity check that it really is a unary floating-point call. 6100 if (I.getNumArgOperands() != 1 || 6101 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6102 I.getType() != I.getArgOperand(0)->getType() || 6103 !I.onlyReadsMemory()) 6104 return false; 6105 6106 SDValue Tmp = getValue(I.getArgOperand(0)); 6107 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6108 return true; 6109 } 6110 6111 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6112 /// operation (as expected), translate it to an SDNode with the specified opcode 6113 /// and return true. 6114 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6115 unsigned Opcode) { 6116 // Sanity check that it really is a binary floating-point call. 6117 if (I.getNumArgOperands() != 2 || 6118 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6119 I.getType() != I.getArgOperand(0)->getType() || 6120 I.getType() != I.getArgOperand(1)->getType() || 6121 !I.onlyReadsMemory()) 6122 return false; 6123 6124 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6125 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6126 EVT VT = Tmp0.getValueType(); 6127 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6128 return true; 6129 } 6130 6131 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6132 // Handle inline assembly differently. 6133 if (isa<InlineAsm>(I.getCalledValue())) { 6134 visitInlineAsm(&I); 6135 return; 6136 } 6137 6138 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6139 ComputeUsesVAFloatArgument(I, &MMI); 6140 6141 const char *RenameFn = nullptr; 6142 if (Function *F = I.getCalledFunction()) { 6143 if (F->isDeclaration()) { 6144 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6145 if (unsigned IID = II->getIntrinsicID(F)) { 6146 RenameFn = visitIntrinsicCall(I, IID); 6147 if (!RenameFn) 6148 return; 6149 } 6150 } 6151 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6152 RenameFn = visitIntrinsicCall(I, IID); 6153 if (!RenameFn) 6154 return; 6155 } 6156 } 6157 6158 // Check for well-known libc/libm calls. If the function is internal, it 6159 // can't be a library call. 6160 LibFunc::Func Func; 6161 if (!F->hasLocalLinkage() && F->hasName() && 6162 LibInfo->getLibFunc(F->getName(), Func) && 6163 LibInfo->hasOptimizedCodeGen(Func)) { 6164 switch (Func) { 6165 default: break; 6166 case LibFunc::copysign: 6167 case LibFunc::copysignf: 6168 case LibFunc::copysignl: 6169 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6170 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6171 I.getType() == I.getArgOperand(0)->getType() && 6172 I.getType() == I.getArgOperand(1)->getType() && 6173 I.onlyReadsMemory()) { 6174 SDValue LHS = getValue(I.getArgOperand(0)); 6175 SDValue RHS = getValue(I.getArgOperand(1)); 6176 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6177 LHS.getValueType(), LHS, RHS)); 6178 return; 6179 } 6180 break; 6181 case LibFunc::fabs: 6182 case LibFunc::fabsf: 6183 case LibFunc::fabsl: 6184 if (visitUnaryFloatCall(I, ISD::FABS)) 6185 return; 6186 break; 6187 case LibFunc::fmin: 6188 case LibFunc::fminf: 6189 case LibFunc::fminl: 6190 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6191 return; 6192 break; 6193 case LibFunc::fmax: 6194 case LibFunc::fmaxf: 6195 case LibFunc::fmaxl: 6196 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6197 return; 6198 break; 6199 case LibFunc::sin: 6200 case LibFunc::sinf: 6201 case LibFunc::sinl: 6202 if (visitUnaryFloatCall(I, ISD::FSIN)) 6203 return; 6204 break; 6205 case LibFunc::cos: 6206 case LibFunc::cosf: 6207 case LibFunc::cosl: 6208 if (visitUnaryFloatCall(I, ISD::FCOS)) 6209 return; 6210 break; 6211 case LibFunc::sqrt: 6212 case LibFunc::sqrtf: 6213 case LibFunc::sqrtl: 6214 case LibFunc::sqrt_finite: 6215 case LibFunc::sqrtf_finite: 6216 case LibFunc::sqrtl_finite: 6217 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6218 return; 6219 break; 6220 case LibFunc::floor: 6221 case LibFunc::floorf: 6222 case LibFunc::floorl: 6223 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6224 return; 6225 break; 6226 case LibFunc::nearbyint: 6227 case LibFunc::nearbyintf: 6228 case LibFunc::nearbyintl: 6229 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6230 return; 6231 break; 6232 case LibFunc::ceil: 6233 case LibFunc::ceilf: 6234 case LibFunc::ceill: 6235 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6236 return; 6237 break; 6238 case LibFunc::rint: 6239 case LibFunc::rintf: 6240 case LibFunc::rintl: 6241 if (visitUnaryFloatCall(I, ISD::FRINT)) 6242 return; 6243 break; 6244 case LibFunc::round: 6245 case LibFunc::roundf: 6246 case LibFunc::roundl: 6247 if (visitUnaryFloatCall(I, ISD::FROUND)) 6248 return; 6249 break; 6250 case LibFunc::trunc: 6251 case LibFunc::truncf: 6252 case LibFunc::truncl: 6253 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6254 return; 6255 break; 6256 case LibFunc::log2: 6257 case LibFunc::log2f: 6258 case LibFunc::log2l: 6259 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6260 return; 6261 break; 6262 case LibFunc::exp2: 6263 case LibFunc::exp2f: 6264 case LibFunc::exp2l: 6265 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6266 return; 6267 break; 6268 case LibFunc::memcmp: 6269 if (visitMemCmpCall(I)) 6270 return; 6271 break; 6272 case LibFunc::memchr: 6273 if (visitMemChrCall(I)) 6274 return; 6275 break; 6276 case LibFunc::strcpy: 6277 if (visitStrCpyCall(I, false)) 6278 return; 6279 break; 6280 case LibFunc::stpcpy: 6281 if (visitStrCpyCall(I, true)) 6282 return; 6283 break; 6284 case LibFunc::strcmp: 6285 if (visitStrCmpCall(I)) 6286 return; 6287 break; 6288 case LibFunc::strlen: 6289 if (visitStrLenCall(I)) 6290 return; 6291 break; 6292 case LibFunc::strnlen: 6293 if (visitStrNLenCall(I)) 6294 return; 6295 break; 6296 } 6297 } 6298 } 6299 6300 SDValue Callee; 6301 if (!RenameFn) 6302 Callee = getValue(I.getCalledValue()); 6303 else 6304 Callee = DAG.getExternalSymbol( 6305 RenameFn, 6306 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6307 6308 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6309 // have to do anything here to lower funclet bundles. 6310 assert(!I.hasOperandBundlesOtherThan( 6311 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6312 "Cannot lower calls with arbitrary operand bundles!"); 6313 6314 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6315 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6316 else 6317 // Check if we can potentially perform a tail call. More detailed checking 6318 // is be done within LowerCallTo, after more information about the call is 6319 // known. 6320 LowerCallTo(&I, Callee, I.isTailCall()); 6321 } 6322 6323 namespace { 6324 6325 /// AsmOperandInfo - This contains information for each constraint that we are 6326 /// lowering. 6327 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6328 public: 6329 /// CallOperand - If this is the result output operand or a clobber 6330 /// this is null, otherwise it is the incoming operand to the CallInst. 6331 /// This gets modified as the asm is processed. 6332 SDValue CallOperand; 6333 6334 /// AssignedRegs - If this is a register or register class operand, this 6335 /// contains the set of register corresponding to the operand. 6336 RegsForValue AssignedRegs; 6337 6338 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6339 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6340 } 6341 6342 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6343 /// corresponds to. If there is no Value* for this operand, it returns 6344 /// MVT::Other. 6345 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6346 const DataLayout &DL) const { 6347 if (!CallOperandVal) return MVT::Other; 6348 6349 if (isa<BasicBlock>(CallOperandVal)) 6350 return TLI.getPointerTy(DL); 6351 6352 llvm::Type *OpTy = CallOperandVal->getType(); 6353 6354 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6355 // If this is an indirect operand, the operand is a pointer to the 6356 // accessed type. 6357 if (isIndirect) { 6358 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6359 if (!PtrTy) 6360 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6361 OpTy = PtrTy->getElementType(); 6362 } 6363 6364 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6365 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6366 if (STy->getNumElements() == 1) 6367 OpTy = STy->getElementType(0); 6368 6369 // If OpTy is not a single value, it may be a struct/union that we 6370 // can tile with integers. 6371 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6372 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6373 switch (BitSize) { 6374 default: break; 6375 case 1: 6376 case 8: 6377 case 16: 6378 case 32: 6379 case 64: 6380 case 128: 6381 OpTy = IntegerType::get(Context, BitSize); 6382 break; 6383 } 6384 } 6385 6386 return TLI.getValueType(DL, OpTy, true); 6387 } 6388 }; 6389 6390 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6391 6392 } // end anonymous namespace 6393 6394 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6395 /// specified operand. We prefer to assign virtual registers, to allow the 6396 /// register allocator to handle the assignment process. However, if the asm 6397 /// uses features that we can't model on machineinstrs, we have SDISel do the 6398 /// allocation. This produces generally horrible, but correct, code. 6399 /// 6400 /// OpInfo describes the operand. 6401 /// 6402 static void GetRegistersForValue(SelectionDAG &DAG, 6403 const TargetLowering &TLI, 6404 SDLoc DL, 6405 SDISelAsmOperandInfo &OpInfo) { 6406 LLVMContext &Context = *DAG.getContext(); 6407 6408 MachineFunction &MF = DAG.getMachineFunction(); 6409 SmallVector<unsigned, 4> Regs; 6410 6411 // If this is a constraint for a single physreg, or a constraint for a 6412 // register class, find it. 6413 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6414 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6415 OpInfo.ConstraintCode, 6416 OpInfo.ConstraintVT); 6417 6418 unsigned NumRegs = 1; 6419 if (OpInfo.ConstraintVT != MVT::Other) { 6420 // If this is a FP input in an integer register (or visa versa) insert a bit 6421 // cast of the input value. More generally, handle any case where the input 6422 // value disagrees with the register class we plan to stick this in. 6423 if (OpInfo.Type == InlineAsm::isInput && 6424 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6425 // Try to convert to the first EVT that the reg class contains. If the 6426 // types are identical size, use a bitcast to convert (e.g. two differing 6427 // vector types). 6428 MVT RegVT = *PhysReg.second->vt_begin(); 6429 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6430 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6431 RegVT, OpInfo.CallOperand); 6432 OpInfo.ConstraintVT = RegVT; 6433 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6434 // If the input is a FP value and we want it in FP registers, do a 6435 // bitcast to the corresponding integer type. This turns an f64 value 6436 // into i64, which can be passed with two i32 values on a 32-bit 6437 // machine. 6438 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6439 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6440 RegVT, OpInfo.CallOperand); 6441 OpInfo.ConstraintVT = RegVT; 6442 } 6443 } 6444 6445 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6446 } 6447 6448 MVT RegVT; 6449 EVT ValueVT = OpInfo.ConstraintVT; 6450 6451 // If this is a constraint for a specific physical register, like {r17}, 6452 // assign it now. 6453 if (unsigned AssignedReg = PhysReg.first) { 6454 const TargetRegisterClass *RC = PhysReg.second; 6455 if (OpInfo.ConstraintVT == MVT::Other) 6456 ValueVT = *RC->vt_begin(); 6457 6458 // Get the actual register value type. This is important, because the user 6459 // may have asked for (e.g.) the AX register in i32 type. We need to 6460 // remember that AX is actually i16 to get the right extension. 6461 RegVT = *RC->vt_begin(); 6462 6463 // This is a explicit reference to a physical register. 6464 Regs.push_back(AssignedReg); 6465 6466 // If this is an expanded reference, add the rest of the regs to Regs. 6467 if (NumRegs != 1) { 6468 TargetRegisterClass::iterator I = RC->begin(); 6469 for (; *I != AssignedReg; ++I) 6470 assert(I != RC->end() && "Didn't find reg!"); 6471 6472 // Already added the first reg. 6473 --NumRegs; ++I; 6474 for (; NumRegs; --NumRegs, ++I) { 6475 assert(I != RC->end() && "Ran out of registers to allocate!"); 6476 Regs.push_back(*I); 6477 } 6478 } 6479 6480 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6481 return; 6482 } 6483 6484 // Otherwise, if this was a reference to an LLVM register class, create vregs 6485 // for this reference. 6486 if (const TargetRegisterClass *RC = PhysReg.second) { 6487 RegVT = *RC->vt_begin(); 6488 if (OpInfo.ConstraintVT == MVT::Other) 6489 ValueVT = RegVT; 6490 6491 // Create the appropriate number of virtual registers. 6492 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6493 for (; NumRegs; --NumRegs) 6494 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6495 6496 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6497 return; 6498 } 6499 6500 // Otherwise, we couldn't allocate enough registers for this. 6501 } 6502 6503 /// visitInlineAsm - Handle a call to an InlineAsm object. 6504 /// 6505 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6506 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6507 6508 /// ConstraintOperands - Information about all of the constraints. 6509 SDISelAsmOperandInfoVector ConstraintOperands; 6510 6511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6512 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6513 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6514 6515 bool hasMemory = false; 6516 6517 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6518 unsigned ResNo = 0; // ResNo - The result number of the next output. 6519 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6520 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6521 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6522 6523 MVT OpVT = MVT::Other; 6524 6525 // Compute the value type for each operand. 6526 switch (OpInfo.Type) { 6527 case InlineAsm::isOutput: 6528 // Indirect outputs just consume an argument. 6529 if (OpInfo.isIndirect) { 6530 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6531 break; 6532 } 6533 6534 // The return value of the call is this value. As such, there is no 6535 // corresponding argument. 6536 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6537 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6538 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6539 STy->getElementType(ResNo)); 6540 } else { 6541 assert(ResNo == 0 && "Asm only has one result!"); 6542 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6543 } 6544 ++ResNo; 6545 break; 6546 case InlineAsm::isInput: 6547 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6548 break; 6549 case InlineAsm::isClobber: 6550 // Nothing to do. 6551 break; 6552 } 6553 6554 // If this is an input or an indirect output, process the call argument. 6555 // BasicBlocks are labels, currently appearing only in asm's. 6556 if (OpInfo.CallOperandVal) { 6557 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6558 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6559 } else { 6560 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6561 } 6562 6563 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6564 DAG.getDataLayout()).getSimpleVT(); 6565 } 6566 6567 OpInfo.ConstraintVT = OpVT; 6568 6569 // Indirect operand accesses access memory. 6570 if (OpInfo.isIndirect) 6571 hasMemory = true; 6572 else { 6573 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6574 TargetLowering::ConstraintType 6575 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6576 if (CType == TargetLowering::C_Memory) { 6577 hasMemory = true; 6578 break; 6579 } 6580 } 6581 } 6582 } 6583 6584 SDValue Chain, Flag; 6585 6586 // We won't need to flush pending loads if this asm doesn't touch 6587 // memory and is nonvolatile. 6588 if (hasMemory || IA->hasSideEffects()) 6589 Chain = getRoot(); 6590 else 6591 Chain = DAG.getRoot(); 6592 6593 // Second pass over the constraints: compute which constraint option to use 6594 // and assign registers to constraints that want a specific physreg. 6595 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6596 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6597 6598 // If this is an output operand with a matching input operand, look up the 6599 // matching input. If their types mismatch, e.g. one is an integer, the 6600 // other is floating point, or their sizes are different, flag it as an 6601 // error. 6602 if (OpInfo.hasMatchingInput()) { 6603 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6604 6605 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6606 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6607 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6608 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6609 OpInfo.ConstraintVT); 6610 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6611 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6612 Input.ConstraintVT); 6613 if ((OpInfo.ConstraintVT.isInteger() != 6614 Input.ConstraintVT.isInteger()) || 6615 (MatchRC.second != InputRC.second)) { 6616 report_fatal_error("Unsupported asm: input constraint" 6617 " with a matching output constraint of" 6618 " incompatible type!"); 6619 } 6620 Input.ConstraintVT = OpInfo.ConstraintVT; 6621 } 6622 } 6623 6624 // Compute the constraint code and ConstraintType to use. 6625 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6626 6627 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6628 OpInfo.Type == InlineAsm::isClobber) 6629 continue; 6630 6631 // If this is a memory input, and if the operand is not indirect, do what we 6632 // need to to provide an address for the memory input. 6633 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6634 !OpInfo.isIndirect) { 6635 assert((OpInfo.isMultipleAlternative || 6636 (OpInfo.Type == InlineAsm::isInput)) && 6637 "Can only indirectify direct input operands!"); 6638 6639 // Memory operands really want the address of the value. If we don't have 6640 // an indirect input, put it in the constpool if we can, otherwise spill 6641 // it to a stack slot. 6642 // TODO: This isn't quite right. We need to handle these according to 6643 // the addressing mode that the constraint wants. Also, this may take 6644 // an additional register for the computation and we don't want that 6645 // either. 6646 6647 // If the operand is a float, integer, or vector constant, spill to a 6648 // constant pool entry to get its address. 6649 const Value *OpVal = OpInfo.CallOperandVal; 6650 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6651 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6652 OpInfo.CallOperand = DAG.getConstantPool( 6653 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6654 } else { 6655 // Otherwise, create a stack slot and emit a store to it before the 6656 // asm. 6657 Type *Ty = OpVal->getType(); 6658 auto &DL = DAG.getDataLayout(); 6659 uint64_t TySize = DL.getTypeAllocSize(Ty); 6660 unsigned Align = DL.getPrefTypeAlignment(Ty); 6661 MachineFunction &MF = DAG.getMachineFunction(); 6662 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6663 SDValue StackSlot = 6664 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6665 Chain = DAG.getStore( 6666 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6667 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6668 false, false, 0); 6669 OpInfo.CallOperand = StackSlot; 6670 } 6671 6672 // There is no longer a Value* corresponding to this operand. 6673 OpInfo.CallOperandVal = nullptr; 6674 6675 // It is now an indirect operand. 6676 OpInfo.isIndirect = true; 6677 } 6678 6679 // If this constraint is for a specific register, allocate it before 6680 // anything else. 6681 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6682 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6683 } 6684 6685 // Second pass - Loop over all of the operands, assigning virtual or physregs 6686 // to register class operands. 6687 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6688 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6689 6690 // C_Register operands have already been allocated, Other/Memory don't need 6691 // to be. 6692 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6693 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6694 } 6695 6696 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6697 std::vector<SDValue> AsmNodeOperands; 6698 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6699 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6700 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6701 6702 // If we have a !srcloc metadata node associated with it, we want to attach 6703 // this to the ultimately generated inline asm machineinstr. To do this, we 6704 // pass in the third operand as this (potentially null) inline asm MDNode. 6705 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6706 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6707 6708 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6709 // bits as operand 3. 6710 unsigned ExtraInfo = 0; 6711 if (IA->hasSideEffects()) 6712 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6713 if (IA->isAlignStack()) 6714 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6715 // Set the asm dialect. 6716 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6717 6718 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6719 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6720 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6721 6722 // Compute the constraint code and ConstraintType to use. 6723 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6724 6725 // Ideally, we would only check against memory constraints. However, the 6726 // meaning of an other constraint can be target-specific and we can't easily 6727 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6728 // for other constriants as well. 6729 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6730 OpInfo.ConstraintType == TargetLowering::C_Other) { 6731 if (OpInfo.Type == InlineAsm::isInput) 6732 ExtraInfo |= InlineAsm::Extra_MayLoad; 6733 else if (OpInfo.Type == InlineAsm::isOutput) 6734 ExtraInfo |= InlineAsm::Extra_MayStore; 6735 else if (OpInfo.Type == InlineAsm::isClobber) 6736 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6737 } 6738 } 6739 6740 AsmNodeOperands.push_back(DAG.getTargetConstant( 6741 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6742 6743 // Loop over all of the inputs, copying the operand values into the 6744 // appropriate registers and processing the output regs. 6745 RegsForValue RetValRegs; 6746 6747 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6748 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6749 6750 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6751 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6752 6753 switch (OpInfo.Type) { 6754 case InlineAsm::isOutput: { 6755 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6756 OpInfo.ConstraintType != TargetLowering::C_Register) { 6757 // Memory output, or 'other' output (e.g. 'X' constraint). 6758 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6759 6760 unsigned ConstraintID = 6761 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6762 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6763 "Failed to convert memory constraint code to constraint id."); 6764 6765 // Add information to the INLINEASM node to know about this output. 6766 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6767 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6768 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6769 MVT::i32)); 6770 AsmNodeOperands.push_back(OpInfo.CallOperand); 6771 break; 6772 } 6773 6774 // Otherwise, this is a register or register class output. 6775 6776 // Copy the output from the appropriate register. Find a register that 6777 // we can use. 6778 if (OpInfo.AssignedRegs.Regs.empty()) { 6779 LLVMContext &Ctx = *DAG.getContext(); 6780 Ctx.emitError(CS.getInstruction(), 6781 "couldn't allocate output register for constraint '" + 6782 Twine(OpInfo.ConstraintCode) + "'"); 6783 return; 6784 } 6785 6786 // If this is an indirect operand, store through the pointer after the 6787 // asm. 6788 if (OpInfo.isIndirect) { 6789 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6790 OpInfo.CallOperandVal)); 6791 } else { 6792 // This is the result value of the call. 6793 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6794 // Concatenate this output onto the outputs list. 6795 RetValRegs.append(OpInfo.AssignedRegs); 6796 } 6797 6798 // Add information to the INLINEASM node to know that this register is 6799 // set. 6800 OpInfo.AssignedRegs 6801 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6802 ? InlineAsm::Kind_RegDefEarlyClobber 6803 : InlineAsm::Kind_RegDef, 6804 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6805 break; 6806 } 6807 case InlineAsm::isInput: { 6808 SDValue InOperandVal = OpInfo.CallOperand; 6809 6810 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6811 // If this is required to match an output register we have already set, 6812 // just use its register. 6813 unsigned OperandNo = OpInfo.getMatchedOperand(); 6814 6815 // Scan until we find the definition we already emitted of this operand. 6816 // When we find it, create a RegsForValue operand. 6817 unsigned CurOp = InlineAsm::Op_FirstOperand; 6818 for (; OperandNo; --OperandNo) { 6819 // Advance to the next operand. 6820 unsigned OpFlag = 6821 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6822 assert((InlineAsm::isRegDefKind(OpFlag) || 6823 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6824 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6825 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6826 } 6827 6828 unsigned OpFlag = 6829 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6830 if (InlineAsm::isRegDefKind(OpFlag) || 6831 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6832 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6833 if (OpInfo.isIndirect) { 6834 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6835 LLVMContext &Ctx = *DAG.getContext(); 6836 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6837 " don't know how to handle tied " 6838 "indirect register inputs"); 6839 return; 6840 } 6841 6842 RegsForValue MatchedRegs; 6843 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6844 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6845 MatchedRegs.RegVTs.push_back(RegVT); 6846 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6847 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6848 i != e; ++i) { 6849 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6850 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6851 else { 6852 LLVMContext &Ctx = *DAG.getContext(); 6853 Ctx.emitError(CS.getInstruction(), 6854 "inline asm error: This value" 6855 " type register class is not natively supported!"); 6856 return; 6857 } 6858 } 6859 SDLoc dl = getCurSDLoc(); 6860 // Use the produced MatchedRegs object to 6861 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6862 Chain, &Flag, CS.getInstruction()); 6863 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6864 true, OpInfo.getMatchedOperand(), dl, 6865 DAG, AsmNodeOperands); 6866 break; 6867 } 6868 6869 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6870 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6871 "Unexpected number of operands"); 6872 // Add information to the INLINEASM node to know about this input. 6873 // See InlineAsm.h isUseOperandTiedToDef. 6874 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6875 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6876 OpInfo.getMatchedOperand()); 6877 AsmNodeOperands.push_back(DAG.getTargetConstant( 6878 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6879 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6880 break; 6881 } 6882 6883 // Treat indirect 'X' constraint as memory. 6884 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6885 OpInfo.isIndirect) 6886 OpInfo.ConstraintType = TargetLowering::C_Memory; 6887 6888 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6889 std::vector<SDValue> Ops; 6890 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6891 Ops, DAG); 6892 if (Ops.empty()) { 6893 LLVMContext &Ctx = *DAG.getContext(); 6894 Ctx.emitError(CS.getInstruction(), 6895 "invalid operand for inline asm constraint '" + 6896 Twine(OpInfo.ConstraintCode) + "'"); 6897 return; 6898 } 6899 6900 // Add information to the INLINEASM node to know about this input. 6901 unsigned ResOpType = 6902 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6903 AsmNodeOperands.push_back(DAG.getTargetConstant( 6904 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6905 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6906 break; 6907 } 6908 6909 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6910 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6911 assert(InOperandVal.getValueType() == 6912 TLI.getPointerTy(DAG.getDataLayout()) && 6913 "Memory operands expect pointer values"); 6914 6915 unsigned ConstraintID = 6916 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6917 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6918 "Failed to convert memory constraint code to constraint id."); 6919 6920 // Add information to the INLINEASM node to know about this input. 6921 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6922 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6923 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6924 getCurSDLoc(), 6925 MVT::i32)); 6926 AsmNodeOperands.push_back(InOperandVal); 6927 break; 6928 } 6929 6930 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6931 OpInfo.ConstraintType == TargetLowering::C_Register) && 6932 "Unknown constraint type!"); 6933 6934 // TODO: Support this. 6935 if (OpInfo.isIndirect) { 6936 LLVMContext &Ctx = *DAG.getContext(); 6937 Ctx.emitError(CS.getInstruction(), 6938 "Don't know how to handle indirect register inputs yet " 6939 "for constraint '" + 6940 Twine(OpInfo.ConstraintCode) + "'"); 6941 return; 6942 } 6943 6944 // Copy the input into the appropriate registers. 6945 if (OpInfo.AssignedRegs.Regs.empty()) { 6946 LLVMContext &Ctx = *DAG.getContext(); 6947 Ctx.emitError(CS.getInstruction(), 6948 "couldn't allocate input reg for constraint '" + 6949 Twine(OpInfo.ConstraintCode) + "'"); 6950 return; 6951 } 6952 6953 SDLoc dl = getCurSDLoc(); 6954 6955 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6956 Chain, &Flag, CS.getInstruction()); 6957 6958 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6959 dl, DAG, AsmNodeOperands); 6960 break; 6961 } 6962 case InlineAsm::isClobber: { 6963 // Add the clobbered value to the operand list, so that the register 6964 // allocator is aware that the physreg got clobbered. 6965 if (!OpInfo.AssignedRegs.Regs.empty()) 6966 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6967 false, 0, getCurSDLoc(), DAG, 6968 AsmNodeOperands); 6969 break; 6970 } 6971 } 6972 } 6973 6974 // Finish up input operands. Set the input chain and add the flag last. 6975 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6976 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6977 6978 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6979 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6980 Flag = Chain.getValue(1); 6981 6982 // If this asm returns a register value, copy the result from that register 6983 // and set it as the value of the call. 6984 if (!RetValRegs.Regs.empty()) { 6985 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6986 Chain, &Flag, CS.getInstruction()); 6987 6988 // FIXME: Why don't we do this for inline asms with MRVs? 6989 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6990 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6991 6992 // If any of the results of the inline asm is a vector, it may have the 6993 // wrong width/num elts. This can happen for register classes that can 6994 // contain multiple different value types. The preg or vreg allocated may 6995 // not have the same VT as was expected. Convert it to the right type 6996 // with bit_convert. 6997 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6998 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6999 ResultType, Val); 7000 7001 } else if (ResultType != Val.getValueType() && 7002 ResultType.isInteger() && Val.getValueType().isInteger()) { 7003 // If a result value was tied to an input value, the computed result may 7004 // have a wider width than the expected result. Extract the relevant 7005 // portion. 7006 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7007 } 7008 7009 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7010 } 7011 7012 setValue(CS.getInstruction(), Val); 7013 // Don't need to use this as a chain in this case. 7014 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7015 return; 7016 } 7017 7018 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7019 7020 // Process indirect outputs, first output all of the flagged copies out of 7021 // physregs. 7022 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7023 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7024 const Value *Ptr = IndirectStoresToEmit[i].second; 7025 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7026 Chain, &Flag, IA); 7027 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7028 } 7029 7030 // Emit the non-flagged stores from the physregs. 7031 SmallVector<SDValue, 8> OutChains; 7032 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7033 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 7034 StoresToEmit[i].first, 7035 getValue(StoresToEmit[i].second), 7036 MachinePointerInfo(StoresToEmit[i].second), 7037 false, false, 0); 7038 OutChains.push_back(Val); 7039 } 7040 7041 if (!OutChains.empty()) 7042 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7043 7044 DAG.setRoot(Chain); 7045 } 7046 7047 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7048 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7049 MVT::Other, getRoot(), 7050 getValue(I.getArgOperand(0)), 7051 DAG.getSrcValue(I.getArgOperand(0)))); 7052 } 7053 7054 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7056 const DataLayout &DL = DAG.getDataLayout(); 7057 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7058 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7059 DAG.getSrcValue(I.getOperand(0)), 7060 DL.getABITypeAlignment(I.getType())); 7061 setValue(&I, V); 7062 DAG.setRoot(V.getValue(1)); 7063 } 7064 7065 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7066 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7067 MVT::Other, getRoot(), 7068 getValue(I.getArgOperand(0)), 7069 DAG.getSrcValue(I.getArgOperand(0)))); 7070 } 7071 7072 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7073 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7074 MVT::Other, getRoot(), 7075 getValue(I.getArgOperand(0)), 7076 getValue(I.getArgOperand(1)), 7077 DAG.getSrcValue(I.getArgOperand(0)), 7078 DAG.getSrcValue(I.getArgOperand(1)))); 7079 } 7080 7081 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7082 const Instruction &I, 7083 SDValue Op) { 7084 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7085 if (!Range) 7086 return Op; 7087 7088 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 7089 if (!Lo->isNullValue()) 7090 return Op; 7091 7092 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 7093 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 7094 7095 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7096 7097 SDLoc SL = getCurSDLoc(); 7098 7099 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 7100 Op, DAG.getValueType(SmallVT)); 7101 unsigned NumVals = Op.getNode()->getNumValues(); 7102 if (NumVals == 1) 7103 return ZExt; 7104 7105 SmallVector<SDValue, 4> Ops; 7106 7107 Ops.push_back(ZExt); 7108 for (unsigned I = 1; I != NumVals; ++I) 7109 Ops.push_back(Op.getValue(I)); 7110 7111 return DAG.getMergeValues(Ops, SL); 7112 } 7113 7114 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7115 /// the call being lowered. 7116 /// 7117 /// This is a helper for lowering intrinsics that follow a target calling 7118 /// convention or require stack pointer adjustment. Only a subset of the 7119 /// intrinsic's operands need to participate in the calling convention. 7120 void SelectionDAGBuilder::populateCallLoweringInfo( 7121 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7122 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7123 bool IsPatchPoint) { 7124 TargetLowering::ArgListTy Args; 7125 Args.reserve(NumArgs); 7126 7127 // Populate the argument list. 7128 // Attributes for args start at offset 1, after the return attribute. 7129 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7130 ArgI != ArgE; ++ArgI) { 7131 const Value *V = CS->getOperand(ArgI); 7132 7133 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7134 7135 TargetLowering::ArgListEntry Entry; 7136 Entry.Node = getValue(V); 7137 Entry.Ty = V->getType(); 7138 Entry.setAttributes(&CS, AttrI); 7139 Args.push_back(Entry); 7140 } 7141 7142 CLI.setDebugLoc(getCurSDLoc()) 7143 .setChain(getRoot()) 7144 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 7145 NumArgs) 7146 .setDiscardResult(CS->use_empty()) 7147 .setIsPatchPoint(IsPatchPoint); 7148 } 7149 7150 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7151 /// or patchpoint target node's operand list. 7152 /// 7153 /// Constants are converted to TargetConstants purely as an optimization to 7154 /// avoid constant materialization and register allocation. 7155 /// 7156 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7157 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7158 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7159 /// address materialization and register allocation, but may also be required 7160 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7161 /// alloca in the entry block, then the runtime may assume that the alloca's 7162 /// StackMap location can be read immediately after compilation and that the 7163 /// location is valid at any point during execution (this is similar to the 7164 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7165 /// only available in a register, then the runtime would need to trap when 7166 /// execution reaches the StackMap in order to read the alloca's location. 7167 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7168 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 7169 SelectionDAGBuilder &Builder) { 7170 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7171 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7172 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7173 Ops.push_back( 7174 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7175 Ops.push_back( 7176 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7177 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7178 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7179 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7180 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7181 } else 7182 Ops.push_back(OpVal); 7183 } 7184 } 7185 7186 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7187 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7188 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7189 // [live variables...]) 7190 7191 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7192 7193 SDValue Chain, InFlag, Callee, NullPtr; 7194 SmallVector<SDValue, 32> Ops; 7195 7196 SDLoc DL = getCurSDLoc(); 7197 Callee = getValue(CI.getCalledValue()); 7198 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7199 7200 // The stackmap intrinsic only records the live variables (the arguemnts 7201 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7202 // intrinsic, this won't be lowered to a function call. This means we don't 7203 // have to worry about calling conventions and target specific lowering code. 7204 // Instead we perform the call lowering right here. 7205 // 7206 // chain, flag = CALLSEQ_START(chain, 0) 7207 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7208 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7209 // 7210 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7211 InFlag = Chain.getValue(1); 7212 7213 // Add the <id> and <numBytes> constants. 7214 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7215 Ops.push_back(DAG.getTargetConstant( 7216 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7217 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7218 Ops.push_back(DAG.getTargetConstant( 7219 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7220 MVT::i32)); 7221 7222 // Push live variables for the stack map. 7223 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7224 7225 // We are not pushing any register mask info here on the operands list, 7226 // because the stackmap doesn't clobber anything. 7227 7228 // Push the chain and the glue flag. 7229 Ops.push_back(Chain); 7230 Ops.push_back(InFlag); 7231 7232 // Create the STACKMAP node. 7233 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7234 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7235 Chain = SDValue(SM, 0); 7236 InFlag = Chain.getValue(1); 7237 7238 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7239 7240 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7241 7242 // Set the root to the target-lowered call chain. 7243 DAG.setRoot(Chain); 7244 7245 // Inform the Frame Information that we have a stackmap in this function. 7246 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7247 } 7248 7249 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7250 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7251 const BasicBlock *EHPadBB) { 7252 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7253 // i32 <numBytes>, 7254 // i8* <target>, 7255 // i32 <numArgs>, 7256 // [Args...], 7257 // [live variables...]) 7258 7259 CallingConv::ID CC = CS.getCallingConv(); 7260 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7261 bool HasDef = !CS->getType()->isVoidTy(); 7262 SDLoc dl = getCurSDLoc(); 7263 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7264 7265 // Handle immediate and symbolic callees. 7266 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7267 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7268 /*isTarget=*/true); 7269 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7270 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7271 SDLoc(SymbolicCallee), 7272 SymbolicCallee->getValueType(0)); 7273 7274 // Get the real number of arguments participating in the call <numArgs> 7275 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7276 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7277 7278 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7279 // Intrinsics include all meta-operands up to but not including CC. 7280 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7281 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7282 "Not enough arguments provided to the patchpoint intrinsic"); 7283 7284 // For AnyRegCC the arguments are lowered later on manually. 7285 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7286 Type *ReturnTy = 7287 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7288 7289 TargetLowering::CallLoweringInfo CLI(DAG); 7290 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7291 true); 7292 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7293 7294 SDNode *CallEnd = Result.second.getNode(); 7295 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7296 CallEnd = CallEnd->getOperand(0).getNode(); 7297 7298 /// Get a call instruction from the call sequence chain. 7299 /// Tail calls are not allowed. 7300 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7301 "Expected a callseq node."); 7302 SDNode *Call = CallEnd->getOperand(0).getNode(); 7303 bool HasGlue = Call->getGluedNode(); 7304 7305 // Replace the target specific call node with the patchable intrinsic. 7306 SmallVector<SDValue, 8> Ops; 7307 7308 // Add the <id> and <numBytes> constants. 7309 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7310 Ops.push_back(DAG.getTargetConstant( 7311 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7312 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7313 Ops.push_back(DAG.getTargetConstant( 7314 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7315 MVT::i32)); 7316 7317 // Add the callee. 7318 Ops.push_back(Callee); 7319 7320 // Adjust <numArgs> to account for any arguments that have been passed on the 7321 // stack instead. 7322 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7323 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7324 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7325 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7326 7327 // Add the calling convention 7328 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7329 7330 // Add the arguments we omitted previously. The register allocator should 7331 // place these in any free register. 7332 if (IsAnyRegCC) 7333 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7334 Ops.push_back(getValue(CS.getArgument(i))); 7335 7336 // Push the arguments from the call instruction up to the register mask. 7337 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7338 Ops.append(Call->op_begin() + 2, e); 7339 7340 // Push live variables for the stack map. 7341 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7342 7343 // Push the register mask info. 7344 if (HasGlue) 7345 Ops.push_back(*(Call->op_end()-2)); 7346 else 7347 Ops.push_back(*(Call->op_end()-1)); 7348 7349 // Push the chain (this is originally the first operand of the call, but 7350 // becomes now the last or second to last operand). 7351 Ops.push_back(*(Call->op_begin())); 7352 7353 // Push the glue flag (last operand). 7354 if (HasGlue) 7355 Ops.push_back(*(Call->op_end()-1)); 7356 7357 SDVTList NodeTys; 7358 if (IsAnyRegCC && HasDef) { 7359 // Create the return types based on the intrinsic definition 7360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7361 SmallVector<EVT, 3> ValueVTs; 7362 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7363 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7364 7365 // There is always a chain and a glue type at the end 7366 ValueVTs.push_back(MVT::Other); 7367 ValueVTs.push_back(MVT::Glue); 7368 NodeTys = DAG.getVTList(ValueVTs); 7369 } else 7370 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7371 7372 // Replace the target specific call node with a PATCHPOINT node. 7373 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7374 dl, NodeTys, Ops); 7375 7376 // Update the NodeMap. 7377 if (HasDef) { 7378 if (IsAnyRegCC) 7379 setValue(CS.getInstruction(), SDValue(MN, 0)); 7380 else 7381 setValue(CS.getInstruction(), Result.first); 7382 } 7383 7384 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7385 // call sequence. Furthermore the location of the chain and glue can change 7386 // when the AnyReg calling convention is used and the intrinsic returns a 7387 // value. 7388 if (IsAnyRegCC && HasDef) { 7389 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7390 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7391 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7392 } else 7393 DAG.ReplaceAllUsesWith(Call, MN); 7394 DAG.DeleteNode(Call); 7395 7396 // Inform the Frame Information that we have a patchpoint in this function. 7397 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7398 } 7399 7400 /// Returns an AttributeSet representing the attributes applied to the return 7401 /// value of the given call. 7402 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7403 SmallVector<Attribute::AttrKind, 2> Attrs; 7404 if (CLI.RetSExt) 7405 Attrs.push_back(Attribute::SExt); 7406 if (CLI.RetZExt) 7407 Attrs.push_back(Attribute::ZExt); 7408 if (CLI.IsInReg) 7409 Attrs.push_back(Attribute::InReg); 7410 7411 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7412 Attrs); 7413 } 7414 7415 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7416 /// implementation, which just calls LowerCall. 7417 /// FIXME: When all targets are 7418 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7419 std::pair<SDValue, SDValue> 7420 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7421 // Handle the incoming return values from the call. 7422 CLI.Ins.clear(); 7423 Type *OrigRetTy = CLI.RetTy; 7424 SmallVector<EVT, 4> RetTys; 7425 SmallVector<uint64_t, 4> Offsets; 7426 auto &DL = CLI.DAG.getDataLayout(); 7427 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7428 7429 SmallVector<ISD::OutputArg, 4> Outs; 7430 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7431 7432 bool CanLowerReturn = 7433 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7434 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7435 7436 SDValue DemoteStackSlot; 7437 int DemoteStackIdx = -100; 7438 if (!CanLowerReturn) { 7439 // FIXME: equivalent assert? 7440 // assert(!CS.hasInAllocaArgument() && 7441 // "sret demotion is incompatible with inalloca"); 7442 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7443 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7444 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7445 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7446 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7447 7448 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7449 ArgListEntry Entry; 7450 Entry.Node = DemoteStackSlot; 7451 Entry.Ty = StackSlotPtrType; 7452 Entry.isSExt = false; 7453 Entry.isZExt = false; 7454 Entry.isInReg = false; 7455 Entry.isSRet = true; 7456 Entry.isNest = false; 7457 Entry.isByVal = false; 7458 Entry.isReturned = false; 7459 Entry.isSwiftSelf = false; 7460 Entry.isSwiftError = false; 7461 Entry.Alignment = Align; 7462 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7463 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7464 7465 // sret demotion isn't compatible with tail-calls, since the sret argument 7466 // points into the callers stack frame. 7467 CLI.IsTailCall = false; 7468 } else { 7469 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7470 EVT VT = RetTys[I]; 7471 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7472 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7473 for (unsigned i = 0; i != NumRegs; ++i) { 7474 ISD::InputArg MyFlags; 7475 MyFlags.VT = RegisterVT; 7476 MyFlags.ArgVT = VT; 7477 MyFlags.Used = CLI.IsReturnValueUsed; 7478 if (CLI.RetSExt) 7479 MyFlags.Flags.setSExt(); 7480 if (CLI.RetZExt) 7481 MyFlags.Flags.setZExt(); 7482 if (CLI.IsInReg) 7483 MyFlags.Flags.setInReg(); 7484 CLI.Ins.push_back(MyFlags); 7485 } 7486 } 7487 } 7488 7489 // We push in swifterror return as the last element of CLI.Ins. 7490 ArgListTy &Args = CLI.getArgs(); 7491 if (supportSwiftError()) { 7492 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7493 if (Args[i].isSwiftError) { 7494 ISD::InputArg MyFlags; 7495 MyFlags.VT = getPointerTy(DL); 7496 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7497 MyFlags.Flags.setSwiftError(); 7498 CLI.Ins.push_back(MyFlags); 7499 } 7500 } 7501 } 7502 7503 // Handle all of the outgoing arguments. 7504 CLI.Outs.clear(); 7505 CLI.OutVals.clear(); 7506 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7507 SmallVector<EVT, 4> ValueVTs; 7508 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7509 Type *FinalType = Args[i].Ty; 7510 if (Args[i].isByVal) 7511 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7512 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7513 FinalType, CLI.CallConv, CLI.IsVarArg); 7514 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7515 ++Value) { 7516 EVT VT = ValueVTs[Value]; 7517 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7518 SDValue Op = SDValue(Args[i].Node.getNode(), 7519 Args[i].Node.getResNo() + Value); 7520 ISD::ArgFlagsTy Flags; 7521 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7522 7523 if (Args[i].isZExt) 7524 Flags.setZExt(); 7525 if (Args[i].isSExt) 7526 Flags.setSExt(); 7527 if (Args[i].isInReg) 7528 Flags.setInReg(); 7529 if (Args[i].isSRet) 7530 Flags.setSRet(); 7531 if (Args[i].isSwiftSelf) 7532 Flags.setSwiftSelf(); 7533 if (Args[i].isSwiftError) 7534 Flags.setSwiftError(); 7535 if (Args[i].isByVal) 7536 Flags.setByVal(); 7537 if (Args[i].isInAlloca) { 7538 Flags.setInAlloca(); 7539 // Set the byval flag for CCAssignFn callbacks that don't know about 7540 // inalloca. This way we can know how many bytes we should've allocated 7541 // and how many bytes a callee cleanup function will pop. If we port 7542 // inalloca to more targets, we'll have to add custom inalloca handling 7543 // in the various CC lowering callbacks. 7544 Flags.setByVal(); 7545 } 7546 if (Args[i].isByVal || Args[i].isInAlloca) { 7547 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7548 Type *ElementTy = Ty->getElementType(); 7549 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7550 // For ByVal, alignment should come from FE. BE will guess if this 7551 // info is not there but there are cases it cannot get right. 7552 unsigned FrameAlign; 7553 if (Args[i].Alignment) 7554 FrameAlign = Args[i].Alignment; 7555 else 7556 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7557 Flags.setByValAlign(FrameAlign); 7558 } 7559 if (Args[i].isNest) 7560 Flags.setNest(); 7561 if (NeedsRegBlock) 7562 Flags.setInConsecutiveRegs(); 7563 Flags.setOrigAlign(OriginalAlignment); 7564 7565 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7566 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7567 SmallVector<SDValue, 4> Parts(NumParts); 7568 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7569 7570 if (Args[i].isSExt) 7571 ExtendKind = ISD::SIGN_EXTEND; 7572 else if (Args[i].isZExt) 7573 ExtendKind = ISD::ZERO_EXTEND; 7574 7575 // Conservatively only handle 'returned' on non-vectors for now 7576 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7577 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7578 "unexpected use of 'returned'"); 7579 // Before passing 'returned' to the target lowering code, ensure that 7580 // either the register MVT and the actual EVT are the same size or that 7581 // the return value and argument are extended in the same way; in these 7582 // cases it's safe to pass the argument register value unchanged as the 7583 // return register value (although it's at the target's option whether 7584 // to do so) 7585 // TODO: allow code generation to take advantage of partially preserved 7586 // registers rather than clobbering the entire register when the 7587 // parameter extension method is not compatible with the return 7588 // extension method 7589 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7590 (ExtendKind != ISD::ANY_EXTEND && 7591 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7592 Flags.setReturned(); 7593 } 7594 7595 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7596 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7597 7598 for (unsigned j = 0; j != NumParts; ++j) { 7599 // if it isn't first piece, alignment must be 1 7600 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7601 i < CLI.NumFixedArgs, 7602 i, j*Parts[j].getValueType().getStoreSize()); 7603 if (NumParts > 1 && j == 0) 7604 MyFlags.Flags.setSplit(); 7605 else if (j != 0) { 7606 MyFlags.Flags.setOrigAlign(1); 7607 if (j == NumParts - 1) 7608 MyFlags.Flags.setSplitEnd(); 7609 } 7610 7611 CLI.Outs.push_back(MyFlags); 7612 CLI.OutVals.push_back(Parts[j]); 7613 } 7614 7615 if (NeedsRegBlock && Value == NumValues - 1) 7616 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7617 } 7618 } 7619 7620 SmallVector<SDValue, 4> InVals; 7621 CLI.Chain = LowerCall(CLI, InVals); 7622 7623 // Update CLI.InVals to use outside of this function. 7624 CLI.InVals = InVals; 7625 7626 // Verify that the target's LowerCall behaved as expected. 7627 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7628 "LowerCall didn't return a valid chain!"); 7629 assert((!CLI.IsTailCall || InVals.empty()) && 7630 "LowerCall emitted a return value for a tail call!"); 7631 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7632 "LowerCall didn't emit the correct number of values!"); 7633 7634 // For a tail call, the return value is merely live-out and there aren't 7635 // any nodes in the DAG representing it. Return a special value to 7636 // indicate that a tail call has been emitted and no more Instructions 7637 // should be processed in the current block. 7638 if (CLI.IsTailCall) { 7639 CLI.DAG.setRoot(CLI.Chain); 7640 return std::make_pair(SDValue(), SDValue()); 7641 } 7642 7643 #ifndef NDEBUG 7644 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7645 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7646 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7647 "LowerCall emitted a value with the wrong type!"); 7648 } 7649 #endif 7650 7651 SmallVector<SDValue, 4> ReturnValues; 7652 if (!CanLowerReturn) { 7653 // The instruction result is the result of loading from the 7654 // hidden sret parameter. 7655 SmallVector<EVT, 1> PVTs; 7656 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7657 7658 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7659 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7660 EVT PtrVT = PVTs[0]; 7661 7662 unsigned NumValues = RetTys.size(); 7663 ReturnValues.resize(NumValues); 7664 SmallVector<SDValue, 4> Chains(NumValues); 7665 7666 // An aggregate return value cannot wrap around the address space, so 7667 // offsets to its parts don't wrap either. 7668 SDNodeFlags Flags; 7669 Flags.setNoUnsignedWrap(true); 7670 7671 for (unsigned i = 0; i < NumValues; ++i) { 7672 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7673 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7674 PtrVT), &Flags); 7675 SDValue L = CLI.DAG.getLoad( 7676 RetTys[i], CLI.DL, CLI.Chain, Add, 7677 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7678 DemoteStackIdx, Offsets[i]), 7679 false, false, false, 1); 7680 ReturnValues[i] = L; 7681 Chains[i] = L.getValue(1); 7682 } 7683 7684 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7685 } else { 7686 // Collect the legal value parts into potentially illegal values 7687 // that correspond to the original function's return values. 7688 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7689 if (CLI.RetSExt) 7690 AssertOp = ISD::AssertSext; 7691 else if (CLI.RetZExt) 7692 AssertOp = ISD::AssertZext; 7693 unsigned CurReg = 0; 7694 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7695 EVT VT = RetTys[I]; 7696 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7697 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7698 7699 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7700 NumRegs, RegisterVT, VT, nullptr, 7701 AssertOp)); 7702 CurReg += NumRegs; 7703 } 7704 7705 // For a function returning void, there is no return value. We can't create 7706 // such a node, so we just return a null return value in that case. In 7707 // that case, nothing will actually look at the value. 7708 if (ReturnValues.empty()) 7709 return std::make_pair(SDValue(), CLI.Chain); 7710 } 7711 7712 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7713 CLI.DAG.getVTList(RetTys), ReturnValues); 7714 return std::make_pair(Res, CLI.Chain); 7715 } 7716 7717 void TargetLowering::LowerOperationWrapper(SDNode *N, 7718 SmallVectorImpl<SDValue> &Results, 7719 SelectionDAG &DAG) const { 7720 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7721 Results.push_back(Res); 7722 } 7723 7724 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7725 llvm_unreachable("LowerOperation not implemented for this target!"); 7726 } 7727 7728 void 7729 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7730 SDValue Op = getNonRegisterValue(V); 7731 assert((Op.getOpcode() != ISD::CopyFromReg || 7732 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7733 "Copy from a reg to the same reg!"); 7734 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7735 7736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7737 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7738 V->getType()); 7739 SDValue Chain = DAG.getEntryNode(); 7740 7741 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7742 FuncInfo.PreferredExtendType.end()) 7743 ? ISD::ANY_EXTEND 7744 : FuncInfo.PreferredExtendType[V]; 7745 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7746 PendingExports.push_back(Chain); 7747 } 7748 7749 #include "llvm/CodeGen/SelectionDAGISel.h" 7750 7751 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7752 /// entry block, return true. This includes arguments used by switches, since 7753 /// the switch may expand into multiple basic blocks. 7754 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7755 // With FastISel active, we may be splitting blocks, so force creation 7756 // of virtual registers for all non-dead arguments. 7757 if (FastISel) 7758 return A->use_empty(); 7759 7760 const BasicBlock &Entry = A->getParent()->front(); 7761 for (const User *U : A->users()) 7762 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7763 return false; // Use not in entry block. 7764 7765 return true; 7766 } 7767 7768 void SelectionDAGISel::LowerArguments(const Function &F) { 7769 SelectionDAG &DAG = SDB->DAG; 7770 SDLoc dl = SDB->getCurSDLoc(); 7771 const DataLayout &DL = DAG.getDataLayout(); 7772 SmallVector<ISD::InputArg, 16> Ins; 7773 7774 if (!FuncInfo->CanLowerReturn) { 7775 // Put in an sret pointer parameter before all the other parameters. 7776 SmallVector<EVT, 1> ValueVTs; 7777 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7778 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7779 7780 // NOTE: Assuming that a pointer will never break down to more than one VT 7781 // or one register. 7782 ISD::ArgFlagsTy Flags; 7783 Flags.setSRet(); 7784 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7785 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7786 ISD::InputArg::NoArgIndex, 0); 7787 Ins.push_back(RetArg); 7788 } 7789 7790 // Set up the incoming argument description vector. 7791 unsigned Idx = 1; 7792 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7793 I != E; ++I, ++Idx) { 7794 SmallVector<EVT, 4> ValueVTs; 7795 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7796 bool isArgValueUsed = !I->use_empty(); 7797 unsigned PartBase = 0; 7798 Type *FinalType = I->getType(); 7799 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7800 FinalType = cast<PointerType>(FinalType)->getElementType(); 7801 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7802 FinalType, F.getCallingConv(), F.isVarArg()); 7803 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7804 Value != NumValues; ++Value) { 7805 EVT VT = ValueVTs[Value]; 7806 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7807 ISD::ArgFlagsTy Flags; 7808 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7809 7810 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7811 Flags.setZExt(); 7812 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7813 Flags.setSExt(); 7814 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7815 Flags.setInReg(); 7816 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7817 Flags.setSRet(); 7818 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7819 Flags.setSwiftSelf(); 7820 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 7821 Flags.setSwiftError(); 7822 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7823 Flags.setByVal(); 7824 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7825 Flags.setInAlloca(); 7826 // Set the byval flag for CCAssignFn callbacks that don't know about 7827 // inalloca. This way we can know how many bytes we should've allocated 7828 // and how many bytes a callee cleanup function will pop. If we port 7829 // inalloca to more targets, we'll have to add custom inalloca handling 7830 // in the various CC lowering callbacks. 7831 Flags.setByVal(); 7832 } 7833 if (F.getCallingConv() == CallingConv::X86_INTR) { 7834 // IA Interrupt passes frame (1st parameter) by value in the stack. 7835 if (Idx == 1) 7836 Flags.setByVal(); 7837 } 7838 if (Flags.isByVal() || Flags.isInAlloca()) { 7839 PointerType *Ty = cast<PointerType>(I->getType()); 7840 Type *ElementTy = Ty->getElementType(); 7841 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7842 // For ByVal, alignment should be passed from FE. BE will guess if 7843 // this info is not there but there are cases it cannot get right. 7844 unsigned FrameAlign; 7845 if (F.getParamAlignment(Idx)) 7846 FrameAlign = F.getParamAlignment(Idx); 7847 else 7848 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7849 Flags.setByValAlign(FrameAlign); 7850 } 7851 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7852 Flags.setNest(); 7853 if (NeedsRegBlock) 7854 Flags.setInConsecutiveRegs(); 7855 Flags.setOrigAlign(OriginalAlignment); 7856 7857 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7858 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7859 for (unsigned i = 0; i != NumRegs; ++i) { 7860 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7861 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7862 if (NumRegs > 1 && i == 0) 7863 MyFlags.Flags.setSplit(); 7864 // if it isn't first piece, alignment must be 1 7865 else if (i > 0) { 7866 MyFlags.Flags.setOrigAlign(1); 7867 if (i == NumRegs - 1) 7868 MyFlags.Flags.setSplitEnd(); 7869 } 7870 Ins.push_back(MyFlags); 7871 } 7872 if (NeedsRegBlock && Value == NumValues - 1) 7873 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7874 PartBase += VT.getStoreSize(); 7875 } 7876 } 7877 7878 // Call the target to set up the argument values. 7879 SmallVector<SDValue, 8> InVals; 7880 SDValue NewRoot = TLI->LowerFormalArguments( 7881 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7882 7883 // Verify that the target's LowerFormalArguments behaved as expected. 7884 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7885 "LowerFormalArguments didn't return a valid chain!"); 7886 assert(InVals.size() == Ins.size() && 7887 "LowerFormalArguments didn't emit the correct number of values!"); 7888 DEBUG({ 7889 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7890 assert(InVals[i].getNode() && 7891 "LowerFormalArguments emitted a null value!"); 7892 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7893 "LowerFormalArguments emitted a value with the wrong type!"); 7894 } 7895 }); 7896 7897 // Update the DAG with the new chain value resulting from argument lowering. 7898 DAG.setRoot(NewRoot); 7899 7900 // Set up the argument values. 7901 unsigned i = 0; 7902 Idx = 1; 7903 if (!FuncInfo->CanLowerReturn) { 7904 // Create a virtual register for the sret pointer, and put in a copy 7905 // from the sret argument into it. 7906 SmallVector<EVT, 1> ValueVTs; 7907 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7908 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7909 MVT VT = ValueVTs[0].getSimpleVT(); 7910 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7911 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7912 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7913 RegVT, VT, nullptr, AssertOp); 7914 7915 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7916 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7917 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7918 FuncInfo->DemoteRegister = SRetReg; 7919 NewRoot = 7920 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7921 DAG.setRoot(NewRoot); 7922 7923 // i indexes lowered arguments. Bump it past the hidden sret argument. 7924 // Idx indexes LLVM arguments. Don't touch it. 7925 ++i; 7926 } 7927 7928 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7929 ++I, ++Idx) { 7930 SmallVector<SDValue, 4> ArgValues; 7931 SmallVector<EVT, 4> ValueVTs; 7932 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7933 unsigned NumValues = ValueVTs.size(); 7934 7935 // If this argument is unused then remember its value. It is used to generate 7936 // debugging information. 7937 if (I->use_empty() && NumValues) { 7938 SDB->setUnusedArgValue(&*I, InVals[i]); 7939 7940 // Also remember any frame index for use in FastISel. 7941 if (FrameIndexSDNode *FI = 7942 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7943 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7944 } 7945 7946 for (unsigned Val = 0; Val != NumValues; ++Val) { 7947 EVT VT = ValueVTs[Val]; 7948 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7949 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7950 7951 if (!I->use_empty()) { 7952 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7953 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7954 AssertOp = ISD::AssertSext; 7955 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7956 AssertOp = ISD::AssertZext; 7957 7958 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7959 NumParts, PartVT, VT, 7960 nullptr, AssertOp)); 7961 } 7962 7963 i += NumParts; 7964 } 7965 7966 // We don't need to do anything else for unused arguments. 7967 if (ArgValues.empty()) 7968 continue; 7969 7970 // Note down frame index. 7971 if (FrameIndexSDNode *FI = 7972 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7973 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7974 7975 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7976 SDB->getCurSDLoc()); 7977 7978 SDB->setValue(&*I, Res); 7979 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7980 if (LoadSDNode *LNode = 7981 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7982 if (FrameIndexSDNode *FI = 7983 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7984 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7985 } 7986 7987 // Update SwiftErrorMap. 7988 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() && 7989 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) { 7990 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7991 if (TargetRegisterInfo::isVirtualRegister(Reg)) 7992 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg; 7993 } 7994 7995 // If this argument is live outside of the entry block, insert a copy from 7996 // wherever we got it to the vreg that other BB's will reference it as. 7997 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7998 // If we can, though, try to skip creating an unnecessary vreg. 7999 // FIXME: This isn't very clean... it would be nice to make this more 8000 // general. It's also subtly incompatible with the hacks FastISel 8001 // uses with vregs. 8002 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8003 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8004 FuncInfo->ValueMap[&*I] = Reg; 8005 continue; 8006 } 8007 } 8008 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8009 FuncInfo->InitializeRegForValue(&*I); 8010 SDB->CopyToExportRegsIfNeeded(&*I); 8011 } 8012 } 8013 8014 assert(i == InVals.size() && "Argument register count mismatch!"); 8015 8016 // Finally, if the target has anything special to do, allow it to do so. 8017 EmitFunctionEntryCode(); 8018 } 8019 8020 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8021 /// ensure constants are generated when needed. Remember the virtual registers 8022 /// that need to be added to the Machine PHI nodes as input. We cannot just 8023 /// directly add them, because expansion might result in multiple MBB's for one 8024 /// BB. As such, the start of the BB might correspond to a different MBB than 8025 /// the end. 8026 /// 8027 void 8028 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8029 const TerminatorInst *TI = LLVMBB->getTerminator(); 8030 8031 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8032 8033 // Check PHI nodes in successors that expect a value to be available from this 8034 // block. 8035 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8036 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8037 if (!isa<PHINode>(SuccBB->begin())) continue; 8038 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8039 8040 // If this terminator has multiple identical successors (common for 8041 // switches), only handle each succ once. 8042 if (!SuccsHandled.insert(SuccMBB).second) 8043 continue; 8044 8045 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8046 8047 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8048 // nodes and Machine PHI nodes, but the incoming operands have not been 8049 // emitted yet. 8050 for (BasicBlock::const_iterator I = SuccBB->begin(); 8051 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8052 // Ignore dead phi's. 8053 if (PN->use_empty()) continue; 8054 8055 // Skip empty types 8056 if (PN->getType()->isEmptyTy()) 8057 continue; 8058 8059 unsigned Reg; 8060 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8061 8062 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8063 unsigned &RegOut = ConstantsOut[C]; 8064 if (RegOut == 0) { 8065 RegOut = FuncInfo.CreateRegs(C->getType()); 8066 CopyValueToVirtualRegister(C, RegOut); 8067 } 8068 Reg = RegOut; 8069 } else { 8070 DenseMap<const Value *, unsigned>::iterator I = 8071 FuncInfo.ValueMap.find(PHIOp); 8072 if (I != FuncInfo.ValueMap.end()) 8073 Reg = I->second; 8074 else { 8075 assert(isa<AllocaInst>(PHIOp) && 8076 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8077 "Didn't codegen value into a register!??"); 8078 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8079 CopyValueToVirtualRegister(PHIOp, Reg); 8080 } 8081 } 8082 8083 // Remember that this register needs to added to the machine PHI node as 8084 // the input for this MBB. 8085 SmallVector<EVT, 4> ValueVTs; 8086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8087 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8088 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8089 EVT VT = ValueVTs[vti]; 8090 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8091 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8092 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 8093 Reg += NumRegisters; 8094 } 8095 } 8096 } 8097 8098 ConstantsOut.clear(); 8099 } 8100 8101 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8102 /// is 0. 8103 MachineBasicBlock * 8104 SelectionDAGBuilder::StackProtectorDescriptor:: 8105 AddSuccessorMBB(const BasicBlock *BB, 8106 MachineBasicBlock *ParentMBB, 8107 bool IsLikely, 8108 MachineBasicBlock *SuccMBB) { 8109 // If SuccBB has not been created yet, create it. 8110 if (!SuccMBB) { 8111 MachineFunction *MF = ParentMBB->getParent(); 8112 MachineFunction::iterator BBI(ParentMBB); 8113 SuccMBB = MF->CreateMachineBasicBlock(BB); 8114 MF->insert(++BBI, SuccMBB); 8115 } 8116 // Add it as a successor of ParentMBB. 8117 ParentMBB->addSuccessor( 8118 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8119 return SuccMBB; 8120 } 8121 8122 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8123 MachineFunction::iterator I(MBB); 8124 if (++I == FuncInfo.MF->end()) 8125 return nullptr; 8126 return &*I; 8127 } 8128 8129 /// During lowering new call nodes can be created (such as memset, etc.). 8130 /// Those will become new roots of the current DAG, but complications arise 8131 /// when they are tail calls. In such cases, the call lowering will update 8132 /// the root, but the builder still needs to know that a tail call has been 8133 /// lowered in order to avoid generating an additional return. 8134 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8135 // If the node is null, we do have a tail call. 8136 if (MaybeTC.getNode() != nullptr) 8137 DAG.setRoot(MaybeTC); 8138 else 8139 HasTailCall = true; 8140 } 8141 8142 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8143 unsigned *TotalCases, unsigned First, 8144 unsigned Last, 8145 unsigned Density) { 8146 assert(Last >= First); 8147 assert(TotalCases[Last] >= TotalCases[First]); 8148 8149 APInt LowCase = Clusters[First].Low->getValue(); 8150 APInt HighCase = Clusters[Last].High->getValue(); 8151 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8152 8153 // FIXME: A range of consecutive cases has 100% density, but only requires one 8154 // comparison to lower. We should discriminate against such consecutive ranges 8155 // in jump tables. 8156 8157 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8158 uint64_t Range = Diff + 1; 8159 8160 uint64_t NumCases = 8161 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8162 8163 assert(NumCases < UINT64_MAX / 100); 8164 assert(Range >= NumCases); 8165 8166 return NumCases * 100 >= Range * Density; 8167 } 8168 8169 static inline bool areJTsAllowed(const TargetLowering &TLI, 8170 const SwitchInst *SI) { 8171 const Function *Fn = SI->getParent()->getParent(); 8172 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8173 return false; 8174 8175 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8176 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8177 } 8178 8179 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 8180 unsigned First, unsigned Last, 8181 const SwitchInst *SI, 8182 MachineBasicBlock *DefaultMBB, 8183 CaseCluster &JTCluster) { 8184 assert(First <= Last); 8185 8186 auto Prob = BranchProbability::getZero(); 8187 unsigned NumCmps = 0; 8188 std::vector<MachineBasicBlock*> Table; 8189 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8190 8191 // Initialize probabilities in JTProbs. 8192 for (unsigned I = First; I <= Last; ++I) 8193 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8194 8195 for (unsigned I = First; I <= Last; ++I) { 8196 assert(Clusters[I].Kind == CC_Range); 8197 Prob += Clusters[I].Prob; 8198 APInt Low = Clusters[I].Low->getValue(); 8199 APInt High = Clusters[I].High->getValue(); 8200 NumCmps += (Low == High) ? 1 : 2; 8201 if (I != First) { 8202 // Fill the gap between this and the previous cluster. 8203 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 8204 assert(PreviousHigh.slt(Low)); 8205 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8206 for (uint64_t J = 0; J < Gap; J++) 8207 Table.push_back(DefaultMBB); 8208 } 8209 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8210 for (uint64_t J = 0; J < ClusterSize; ++J) 8211 Table.push_back(Clusters[I].MBB); 8212 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8213 } 8214 8215 unsigned NumDests = JTProbs.size(); 8216 if (isSuitableForBitTests(NumDests, NumCmps, 8217 Clusters[First].Low->getValue(), 8218 Clusters[Last].High->getValue())) { 8219 // Clusters[First..Last] should be lowered as bit tests instead. 8220 return false; 8221 } 8222 8223 // Create the MBB that will load from and jump through the table. 8224 // Note: We create it here, but it's not inserted into the function yet. 8225 MachineFunction *CurMF = FuncInfo.MF; 8226 MachineBasicBlock *JumpTableMBB = 8227 CurMF->CreateMachineBasicBlock(SI->getParent()); 8228 8229 // Add successors. Note: use table order for determinism. 8230 SmallPtrSet<MachineBasicBlock *, 8> Done; 8231 for (MachineBasicBlock *Succ : Table) { 8232 if (Done.count(Succ)) 8233 continue; 8234 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8235 Done.insert(Succ); 8236 } 8237 JumpTableMBB->normalizeSuccProbs(); 8238 8239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8240 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8241 ->createJumpTableIndex(Table); 8242 8243 // Set up the jump table info. 8244 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8245 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8246 Clusters[Last].High->getValue(), SI->getCondition(), 8247 nullptr, false); 8248 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8249 8250 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8251 JTCases.size() - 1, Prob); 8252 return true; 8253 } 8254 8255 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8256 const SwitchInst *SI, 8257 MachineBasicBlock *DefaultMBB) { 8258 #ifndef NDEBUG 8259 // Clusters must be non-empty, sorted, and only contain Range clusters. 8260 assert(!Clusters.empty()); 8261 for (CaseCluster &C : Clusters) 8262 assert(C.Kind == CC_Range); 8263 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8264 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8265 #endif 8266 8267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8268 if (!areJTsAllowed(TLI, SI)) 8269 return; 8270 8271 const int64_t N = Clusters.size(); 8272 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8273 8274 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8275 SmallVector<unsigned, 8> TotalCases(N); 8276 8277 for (unsigned i = 0; i < N; ++i) { 8278 APInt Hi = Clusters[i].High->getValue(); 8279 APInt Lo = Clusters[i].Low->getValue(); 8280 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8281 if (i != 0) 8282 TotalCases[i] += TotalCases[i - 1]; 8283 } 8284 8285 unsigned MinDensity = JumpTableDensity; 8286 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8287 MinDensity = OptsizeJumpTableDensity; 8288 if (N >= MinJumpTableSize 8289 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8290 // Cheap case: the whole range might be suitable for jump table. 8291 CaseCluster JTCluster; 8292 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8293 Clusters[0] = JTCluster; 8294 Clusters.resize(1); 8295 return; 8296 } 8297 } 8298 8299 // The algorithm below is not suitable for -O0. 8300 if (TM.getOptLevel() == CodeGenOpt::None) 8301 return; 8302 8303 // Split Clusters into minimum number of dense partitions. The algorithm uses 8304 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8305 // for the Case Statement'" (1994), but builds the MinPartitions array in 8306 // reverse order to make it easier to reconstruct the partitions in ascending 8307 // order. In the choice between two optimal partitionings, it picks the one 8308 // which yields more jump tables. 8309 8310 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8311 SmallVector<unsigned, 8> MinPartitions(N); 8312 // LastElement[i] is the last element of the partition starting at i. 8313 SmallVector<unsigned, 8> LastElement(N); 8314 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8315 SmallVector<unsigned, 8> NumTables(N); 8316 8317 // Base case: There is only one way to partition Clusters[N-1]. 8318 MinPartitions[N - 1] = 1; 8319 LastElement[N - 1] = N - 1; 8320 assert(MinJumpTableSize > 1); 8321 NumTables[N - 1] = 0; 8322 8323 // Note: loop indexes are signed to avoid underflow. 8324 for (int64_t i = N - 2; i >= 0; i--) { 8325 // Find optimal partitioning of Clusters[i..N-1]. 8326 // Baseline: Put Clusters[i] into a partition on its own. 8327 MinPartitions[i] = MinPartitions[i + 1] + 1; 8328 LastElement[i] = i; 8329 NumTables[i] = NumTables[i + 1]; 8330 8331 // Search for a solution that results in fewer partitions. 8332 for (int64_t j = N - 1; j > i; j--) { 8333 // Try building a partition from Clusters[i..j]. 8334 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8335 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8336 bool IsTable = j - i + 1 >= MinJumpTableSize; 8337 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8338 8339 // If this j leads to fewer partitions, or same number of partitions 8340 // with more lookup tables, it is a better partitioning. 8341 if (NumPartitions < MinPartitions[i] || 8342 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8343 MinPartitions[i] = NumPartitions; 8344 LastElement[i] = j; 8345 NumTables[i] = Tables; 8346 } 8347 } 8348 } 8349 } 8350 8351 // Iterate over the partitions, replacing some with jump tables in-place. 8352 unsigned DstIndex = 0; 8353 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8354 Last = LastElement[First]; 8355 assert(Last >= First); 8356 assert(DstIndex <= First); 8357 unsigned NumClusters = Last - First + 1; 8358 8359 CaseCluster JTCluster; 8360 if (NumClusters >= MinJumpTableSize && 8361 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8362 Clusters[DstIndex++] = JTCluster; 8363 } else { 8364 for (unsigned I = First; I <= Last; ++I) 8365 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8366 } 8367 } 8368 Clusters.resize(DstIndex); 8369 } 8370 8371 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8372 // FIXME: Using the pointer type doesn't seem ideal. 8373 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8374 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8375 return Range <= BW; 8376 } 8377 8378 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8379 unsigned NumCmps, 8380 const APInt &Low, 8381 const APInt &High) { 8382 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8383 // range of cases both require only one branch to lower. Just looking at the 8384 // number of clusters and destinations should be enough to decide whether to 8385 // build bit tests. 8386 8387 // To lower a range with bit tests, the range must fit the bitwidth of a 8388 // machine word. 8389 if (!rangeFitsInWord(Low, High)) 8390 return false; 8391 8392 // Decide whether it's profitable to lower this range with bit tests. Each 8393 // destination requires a bit test and branch, and there is an overall range 8394 // check branch. For a small number of clusters, separate comparisons might be 8395 // cheaper, and for many destinations, splitting the range might be better. 8396 return (NumDests == 1 && NumCmps >= 3) || 8397 (NumDests == 2 && NumCmps >= 5) || 8398 (NumDests == 3 && NumCmps >= 6); 8399 } 8400 8401 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8402 unsigned First, unsigned Last, 8403 const SwitchInst *SI, 8404 CaseCluster &BTCluster) { 8405 assert(First <= Last); 8406 if (First == Last) 8407 return false; 8408 8409 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8410 unsigned NumCmps = 0; 8411 for (int64_t I = First; I <= Last; ++I) { 8412 assert(Clusters[I].Kind == CC_Range); 8413 Dests.set(Clusters[I].MBB->getNumber()); 8414 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8415 } 8416 unsigned NumDests = Dests.count(); 8417 8418 APInt Low = Clusters[First].Low->getValue(); 8419 APInt High = Clusters[Last].High->getValue(); 8420 assert(Low.slt(High)); 8421 8422 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8423 return false; 8424 8425 APInt LowBound; 8426 APInt CmpRange; 8427 8428 const int BitWidth = DAG.getTargetLoweringInfo() 8429 .getPointerTy(DAG.getDataLayout()) 8430 .getSizeInBits(); 8431 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8432 8433 // Check if the clusters cover a contiguous range such that no value in the 8434 // range will jump to the default statement. 8435 bool ContiguousRange = true; 8436 for (int64_t I = First + 1; I <= Last; ++I) { 8437 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8438 ContiguousRange = false; 8439 break; 8440 } 8441 } 8442 8443 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8444 // Optimize the case where all the case values fit in a word without having 8445 // to subtract minValue. In this case, we can optimize away the subtraction. 8446 LowBound = APInt::getNullValue(Low.getBitWidth()); 8447 CmpRange = High; 8448 ContiguousRange = false; 8449 } else { 8450 LowBound = Low; 8451 CmpRange = High - Low; 8452 } 8453 8454 CaseBitsVector CBV; 8455 auto TotalProb = BranchProbability::getZero(); 8456 for (unsigned i = First; i <= Last; ++i) { 8457 // Find the CaseBits for this destination. 8458 unsigned j; 8459 for (j = 0; j < CBV.size(); ++j) 8460 if (CBV[j].BB == Clusters[i].MBB) 8461 break; 8462 if (j == CBV.size()) 8463 CBV.push_back( 8464 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8465 CaseBits *CB = &CBV[j]; 8466 8467 // Update Mask, Bits and ExtraProb. 8468 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8469 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8470 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8471 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8472 CB->Bits += Hi - Lo + 1; 8473 CB->ExtraProb += Clusters[i].Prob; 8474 TotalProb += Clusters[i].Prob; 8475 } 8476 8477 BitTestInfo BTI; 8478 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8479 // Sort by probability first, number of bits second. 8480 if (a.ExtraProb != b.ExtraProb) 8481 return a.ExtraProb > b.ExtraProb; 8482 return a.Bits > b.Bits; 8483 }); 8484 8485 for (auto &CB : CBV) { 8486 MachineBasicBlock *BitTestBB = 8487 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8488 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8489 } 8490 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8491 SI->getCondition(), -1U, MVT::Other, false, 8492 ContiguousRange, nullptr, nullptr, std::move(BTI), 8493 TotalProb); 8494 8495 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8496 BitTestCases.size() - 1, TotalProb); 8497 return true; 8498 } 8499 8500 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8501 const SwitchInst *SI) { 8502 // Partition Clusters into as few subsets as possible, where each subset has a 8503 // range that fits in a machine word and has <= 3 unique destinations. 8504 8505 #ifndef NDEBUG 8506 // Clusters must be sorted and contain Range or JumpTable clusters. 8507 assert(!Clusters.empty()); 8508 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8509 for (const CaseCluster &C : Clusters) 8510 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8511 for (unsigned i = 1; i < Clusters.size(); ++i) 8512 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8513 #endif 8514 8515 // The algorithm below is not suitable for -O0. 8516 if (TM.getOptLevel() == CodeGenOpt::None) 8517 return; 8518 8519 // If target does not have legal shift left, do not emit bit tests at all. 8520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8521 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8522 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8523 return; 8524 8525 int BitWidth = PTy.getSizeInBits(); 8526 const int64_t N = Clusters.size(); 8527 8528 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8529 SmallVector<unsigned, 8> MinPartitions(N); 8530 // LastElement[i] is the last element of the partition starting at i. 8531 SmallVector<unsigned, 8> LastElement(N); 8532 8533 // FIXME: This might not be the best algorithm for finding bit test clusters. 8534 8535 // Base case: There is only one way to partition Clusters[N-1]. 8536 MinPartitions[N - 1] = 1; 8537 LastElement[N - 1] = N - 1; 8538 8539 // Note: loop indexes are signed to avoid underflow. 8540 for (int64_t i = N - 2; i >= 0; --i) { 8541 // Find optimal partitioning of Clusters[i..N-1]. 8542 // Baseline: Put Clusters[i] into a partition on its own. 8543 MinPartitions[i] = MinPartitions[i + 1] + 1; 8544 LastElement[i] = i; 8545 8546 // Search for a solution that results in fewer partitions. 8547 // Note: the search is limited by BitWidth, reducing time complexity. 8548 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8549 // Try building a partition from Clusters[i..j]. 8550 8551 // Check the range. 8552 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8553 Clusters[j].High->getValue())) 8554 continue; 8555 8556 // Check nbr of destinations and cluster types. 8557 // FIXME: This works, but doesn't seem very efficient. 8558 bool RangesOnly = true; 8559 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8560 for (int64_t k = i; k <= j; k++) { 8561 if (Clusters[k].Kind != CC_Range) { 8562 RangesOnly = false; 8563 break; 8564 } 8565 Dests.set(Clusters[k].MBB->getNumber()); 8566 } 8567 if (!RangesOnly || Dests.count() > 3) 8568 break; 8569 8570 // Check if it's a better partition. 8571 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8572 if (NumPartitions < MinPartitions[i]) { 8573 // Found a better partition. 8574 MinPartitions[i] = NumPartitions; 8575 LastElement[i] = j; 8576 } 8577 } 8578 } 8579 8580 // Iterate over the partitions, replacing with bit-test clusters in-place. 8581 unsigned DstIndex = 0; 8582 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8583 Last = LastElement[First]; 8584 assert(First <= Last); 8585 assert(DstIndex <= First); 8586 8587 CaseCluster BitTestCluster; 8588 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8589 Clusters[DstIndex++] = BitTestCluster; 8590 } else { 8591 size_t NumClusters = Last - First + 1; 8592 std::memmove(&Clusters[DstIndex], &Clusters[First], 8593 sizeof(Clusters[0]) * NumClusters); 8594 DstIndex += NumClusters; 8595 } 8596 } 8597 Clusters.resize(DstIndex); 8598 } 8599 8600 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8601 MachineBasicBlock *SwitchMBB, 8602 MachineBasicBlock *DefaultMBB) { 8603 MachineFunction *CurMF = FuncInfo.MF; 8604 MachineBasicBlock *NextMBB = nullptr; 8605 MachineFunction::iterator BBI(W.MBB); 8606 if (++BBI != FuncInfo.MF->end()) 8607 NextMBB = &*BBI; 8608 8609 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8610 8611 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8612 8613 if (Size == 2 && W.MBB == SwitchMBB) { 8614 // If any two of the cases has the same destination, and if one value 8615 // is the same as the other, but has one bit unset that the other has set, 8616 // use bit manipulation to do two compares at once. For example: 8617 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8618 // TODO: This could be extended to merge any 2 cases in switches with 3 8619 // cases. 8620 // TODO: Handle cases where W.CaseBB != SwitchBB. 8621 CaseCluster &Small = *W.FirstCluster; 8622 CaseCluster &Big = *W.LastCluster; 8623 8624 if (Small.Low == Small.High && Big.Low == Big.High && 8625 Small.MBB == Big.MBB) { 8626 const APInt &SmallValue = Small.Low->getValue(); 8627 const APInt &BigValue = Big.Low->getValue(); 8628 8629 // Check that there is only one bit different. 8630 APInt CommonBit = BigValue ^ SmallValue; 8631 if (CommonBit.isPowerOf2()) { 8632 SDValue CondLHS = getValue(Cond); 8633 EVT VT = CondLHS.getValueType(); 8634 SDLoc DL = getCurSDLoc(); 8635 8636 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8637 DAG.getConstant(CommonBit, DL, VT)); 8638 SDValue Cond = DAG.getSetCC( 8639 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8640 ISD::SETEQ); 8641 8642 // Update successor info. 8643 // Both Small and Big will jump to Small.BB, so we sum up the 8644 // probabilities. 8645 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8646 if (BPI) 8647 addSuccessorWithProb( 8648 SwitchMBB, DefaultMBB, 8649 // The default destination is the first successor in IR. 8650 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8651 else 8652 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8653 8654 // Insert the true branch. 8655 SDValue BrCond = 8656 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8657 DAG.getBasicBlock(Small.MBB)); 8658 // Insert the false branch. 8659 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8660 DAG.getBasicBlock(DefaultMBB)); 8661 8662 DAG.setRoot(BrCond); 8663 return; 8664 } 8665 } 8666 } 8667 8668 if (TM.getOptLevel() != CodeGenOpt::None) { 8669 // Order cases by probability so the most likely case will be checked first. 8670 std::sort(W.FirstCluster, W.LastCluster + 1, 8671 [](const CaseCluster &a, const CaseCluster &b) { 8672 return a.Prob > b.Prob; 8673 }); 8674 8675 // Rearrange the case blocks so that the last one falls through if possible 8676 // without without changing the order of probabilities. 8677 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8678 --I; 8679 if (I->Prob > W.LastCluster->Prob) 8680 break; 8681 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8682 std::swap(*I, *W.LastCluster); 8683 break; 8684 } 8685 } 8686 } 8687 8688 // Compute total probability. 8689 BranchProbability DefaultProb = W.DefaultProb; 8690 BranchProbability UnhandledProbs = DefaultProb; 8691 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8692 UnhandledProbs += I->Prob; 8693 8694 MachineBasicBlock *CurMBB = W.MBB; 8695 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8696 MachineBasicBlock *Fallthrough; 8697 if (I == W.LastCluster) { 8698 // For the last cluster, fall through to the default destination. 8699 Fallthrough = DefaultMBB; 8700 } else { 8701 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8702 CurMF->insert(BBI, Fallthrough); 8703 // Put Cond in a virtual register to make it available from the new blocks. 8704 ExportFromCurrentBlock(Cond); 8705 } 8706 UnhandledProbs -= I->Prob; 8707 8708 switch (I->Kind) { 8709 case CC_JumpTable: { 8710 // FIXME: Optimize away range check based on pivot comparisons. 8711 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8712 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8713 8714 // The jump block hasn't been inserted yet; insert it here. 8715 MachineBasicBlock *JumpMBB = JT->MBB; 8716 CurMF->insert(BBI, JumpMBB); 8717 8718 auto JumpProb = I->Prob; 8719 auto FallthroughProb = UnhandledProbs; 8720 8721 // If the default statement is a target of the jump table, we evenly 8722 // distribute the default probability to successors of CurMBB. Also 8723 // update the probability on the edge from JumpMBB to Fallthrough. 8724 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8725 SE = JumpMBB->succ_end(); 8726 SI != SE; ++SI) { 8727 if (*SI == DefaultMBB) { 8728 JumpProb += DefaultProb / 2; 8729 FallthroughProb -= DefaultProb / 2; 8730 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8731 JumpMBB->normalizeSuccProbs(); 8732 break; 8733 } 8734 } 8735 8736 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8737 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8738 CurMBB->normalizeSuccProbs(); 8739 8740 // The jump table header will be inserted in our current block, do the 8741 // range check, and fall through to our fallthrough block. 8742 JTH->HeaderBB = CurMBB; 8743 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8744 8745 // If we're in the right place, emit the jump table header right now. 8746 if (CurMBB == SwitchMBB) { 8747 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8748 JTH->Emitted = true; 8749 } 8750 break; 8751 } 8752 case CC_BitTests: { 8753 // FIXME: Optimize away range check based on pivot comparisons. 8754 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8755 8756 // The bit test blocks haven't been inserted yet; insert them here. 8757 for (BitTestCase &BTC : BTB->Cases) 8758 CurMF->insert(BBI, BTC.ThisBB); 8759 8760 // Fill in fields of the BitTestBlock. 8761 BTB->Parent = CurMBB; 8762 BTB->Default = Fallthrough; 8763 8764 BTB->DefaultProb = UnhandledProbs; 8765 // If the cases in bit test don't form a contiguous range, we evenly 8766 // distribute the probability on the edge to Fallthrough to two 8767 // successors of CurMBB. 8768 if (!BTB->ContiguousRange) { 8769 BTB->Prob += DefaultProb / 2; 8770 BTB->DefaultProb -= DefaultProb / 2; 8771 } 8772 8773 // If we're in the right place, emit the bit test header right now. 8774 if (CurMBB == SwitchMBB) { 8775 visitBitTestHeader(*BTB, SwitchMBB); 8776 BTB->Emitted = true; 8777 } 8778 break; 8779 } 8780 case CC_Range: { 8781 const Value *RHS, *LHS, *MHS; 8782 ISD::CondCode CC; 8783 if (I->Low == I->High) { 8784 // Check Cond == I->Low. 8785 CC = ISD::SETEQ; 8786 LHS = Cond; 8787 RHS=I->Low; 8788 MHS = nullptr; 8789 } else { 8790 // Check I->Low <= Cond <= I->High. 8791 CC = ISD::SETLE; 8792 LHS = I->Low; 8793 MHS = Cond; 8794 RHS = I->High; 8795 } 8796 8797 // The false probability is the sum of all unhandled cases. 8798 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8799 UnhandledProbs); 8800 8801 if (CurMBB == SwitchMBB) 8802 visitSwitchCase(CB, SwitchMBB); 8803 else 8804 SwitchCases.push_back(CB); 8805 8806 break; 8807 } 8808 } 8809 CurMBB = Fallthrough; 8810 } 8811 } 8812 8813 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8814 CaseClusterIt First, 8815 CaseClusterIt Last) { 8816 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8817 if (X.Prob != CC.Prob) 8818 return X.Prob > CC.Prob; 8819 8820 // Ties are broken by comparing the case value. 8821 return X.Low->getValue().slt(CC.Low->getValue()); 8822 }); 8823 } 8824 8825 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8826 const SwitchWorkListItem &W, 8827 Value *Cond, 8828 MachineBasicBlock *SwitchMBB) { 8829 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8830 "Clusters not sorted?"); 8831 8832 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8833 8834 // Balance the tree based on branch probabilities to create a near-optimal (in 8835 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8836 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8837 CaseClusterIt LastLeft = W.FirstCluster; 8838 CaseClusterIt FirstRight = W.LastCluster; 8839 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8840 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8841 8842 // Move LastLeft and FirstRight towards each other from opposite directions to 8843 // find a partitioning of the clusters which balances the probability on both 8844 // sides. If LeftProb and RightProb are equal, alternate which side is 8845 // taken to ensure 0-probability nodes are distributed evenly. 8846 unsigned I = 0; 8847 while (LastLeft + 1 < FirstRight) { 8848 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8849 LeftProb += (++LastLeft)->Prob; 8850 else 8851 RightProb += (--FirstRight)->Prob; 8852 I++; 8853 } 8854 8855 for (;;) { 8856 // Our binary search tree differs from a typical BST in that ours can have up 8857 // to three values in each leaf. The pivot selection above doesn't take that 8858 // into account, which means the tree might require more nodes and be less 8859 // efficient. We compensate for this here. 8860 8861 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8862 unsigned NumRight = W.LastCluster - FirstRight + 1; 8863 8864 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8865 // If one side has less than 3 clusters, and the other has more than 3, 8866 // consider taking a cluster from the other side. 8867 8868 if (NumLeft < NumRight) { 8869 // Consider moving the first cluster on the right to the left side. 8870 CaseCluster &CC = *FirstRight; 8871 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8872 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8873 if (LeftSideRank <= RightSideRank) { 8874 // Moving the cluster to the left does not demote it. 8875 ++LastLeft; 8876 ++FirstRight; 8877 continue; 8878 } 8879 } else { 8880 assert(NumRight < NumLeft); 8881 // Consider moving the last element on the left to the right side. 8882 CaseCluster &CC = *LastLeft; 8883 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8884 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8885 if (RightSideRank <= LeftSideRank) { 8886 // Moving the cluster to the right does not demot it. 8887 --LastLeft; 8888 --FirstRight; 8889 continue; 8890 } 8891 } 8892 } 8893 break; 8894 } 8895 8896 assert(LastLeft + 1 == FirstRight); 8897 assert(LastLeft >= W.FirstCluster); 8898 assert(FirstRight <= W.LastCluster); 8899 8900 // Use the first element on the right as pivot since we will make less-than 8901 // comparisons against it. 8902 CaseClusterIt PivotCluster = FirstRight; 8903 assert(PivotCluster > W.FirstCluster); 8904 assert(PivotCluster <= W.LastCluster); 8905 8906 CaseClusterIt FirstLeft = W.FirstCluster; 8907 CaseClusterIt LastRight = W.LastCluster; 8908 8909 const ConstantInt *Pivot = PivotCluster->Low; 8910 8911 // New blocks will be inserted immediately after the current one. 8912 MachineFunction::iterator BBI(W.MBB); 8913 ++BBI; 8914 8915 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8916 // we can branch to its destination directly if it's squeezed exactly in 8917 // between the known lower bound and Pivot - 1. 8918 MachineBasicBlock *LeftMBB; 8919 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8920 FirstLeft->Low == W.GE && 8921 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8922 LeftMBB = FirstLeft->MBB; 8923 } else { 8924 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8925 FuncInfo.MF->insert(BBI, LeftMBB); 8926 WorkList.push_back( 8927 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8928 // Put Cond in a virtual register to make it available from the new blocks. 8929 ExportFromCurrentBlock(Cond); 8930 } 8931 8932 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8933 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8934 // directly if RHS.High equals the current upper bound. 8935 MachineBasicBlock *RightMBB; 8936 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8937 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8938 RightMBB = FirstRight->MBB; 8939 } else { 8940 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8941 FuncInfo.MF->insert(BBI, RightMBB); 8942 WorkList.push_back( 8943 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8944 // Put Cond in a virtual register to make it available from the new blocks. 8945 ExportFromCurrentBlock(Cond); 8946 } 8947 8948 // Create the CaseBlock record that will be used to lower the branch. 8949 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8950 LeftProb, RightProb); 8951 8952 if (W.MBB == SwitchMBB) 8953 visitSwitchCase(CB, SwitchMBB); 8954 else 8955 SwitchCases.push_back(CB); 8956 } 8957 8958 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8959 // Extract cases from the switch. 8960 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8961 CaseClusterVector Clusters; 8962 Clusters.reserve(SI.getNumCases()); 8963 for (auto I : SI.cases()) { 8964 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8965 const ConstantInt *CaseVal = I.getCaseValue(); 8966 BranchProbability Prob = 8967 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8968 : BranchProbability(1, SI.getNumCases() + 1); 8969 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8970 } 8971 8972 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8973 8974 // Cluster adjacent cases with the same destination. We do this at all 8975 // optimization levels because it's cheap to do and will make codegen faster 8976 // if there are many clusters. 8977 sortAndRangeify(Clusters); 8978 8979 if (TM.getOptLevel() != CodeGenOpt::None) { 8980 // Replace an unreachable default with the most popular destination. 8981 // FIXME: Exploit unreachable default more aggressively. 8982 bool UnreachableDefault = 8983 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8984 if (UnreachableDefault && !Clusters.empty()) { 8985 DenseMap<const BasicBlock *, unsigned> Popularity; 8986 unsigned MaxPop = 0; 8987 const BasicBlock *MaxBB = nullptr; 8988 for (auto I : SI.cases()) { 8989 const BasicBlock *BB = I.getCaseSuccessor(); 8990 if (++Popularity[BB] > MaxPop) { 8991 MaxPop = Popularity[BB]; 8992 MaxBB = BB; 8993 } 8994 } 8995 // Set new default. 8996 assert(MaxPop > 0 && MaxBB); 8997 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8998 8999 // Remove cases that were pointing to the destination that is now the 9000 // default. 9001 CaseClusterVector New; 9002 New.reserve(Clusters.size()); 9003 for (CaseCluster &CC : Clusters) { 9004 if (CC.MBB != DefaultMBB) 9005 New.push_back(CC); 9006 } 9007 Clusters = std::move(New); 9008 } 9009 } 9010 9011 // If there is only the default destination, jump there directly. 9012 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9013 if (Clusters.empty()) { 9014 SwitchMBB->addSuccessor(DefaultMBB); 9015 if (DefaultMBB != NextBlock(SwitchMBB)) { 9016 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9017 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9018 } 9019 return; 9020 } 9021 9022 findJumpTables(Clusters, &SI, DefaultMBB); 9023 findBitTestClusters(Clusters, &SI); 9024 9025 DEBUG({ 9026 dbgs() << "Case clusters: "; 9027 for (const CaseCluster &C : Clusters) { 9028 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9029 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9030 9031 C.Low->getValue().print(dbgs(), true); 9032 if (C.Low != C.High) { 9033 dbgs() << '-'; 9034 C.High->getValue().print(dbgs(), true); 9035 } 9036 dbgs() << ' '; 9037 } 9038 dbgs() << '\n'; 9039 }); 9040 9041 assert(!Clusters.empty()); 9042 SwitchWorkList WorkList; 9043 CaseClusterIt First = Clusters.begin(); 9044 CaseClusterIt Last = Clusters.end() - 1; 9045 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9046 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9047 9048 while (!WorkList.empty()) { 9049 SwitchWorkListItem W = WorkList.back(); 9050 WorkList.pop_back(); 9051 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9052 9053 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 9054 // For optimized builds, lower large range as a balanced binary tree. 9055 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9056 continue; 9057 } 9058 9059 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9060 } 9061 } 9062