1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // Return the calling convention if the Value passed requires ABI mangling as it 161 // is a parameter to a function or a return value from a function which is not 162 // an intrinsic. 163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 164 if (auto *R = dyn_cast<ReturnInst>(V)) 165 return R->getParent()->getParent()->getCallingConv(); 166 167 if (auto *CI = dyn_cast<CallInst>(V)) { 168 const bool IsInlineAsm = CI->isInlineAsm(); 169 const bool IsIndirectFunctionCall = 170 !IsInlineAsm && !CI->getCalledFunction(); 171 172 // It is possible that the call instruction is an inline asm statement or an 173 // indirect function call in which case the return value of 174 // getCalledFunction() would be nullptr. 175 const bool IsInstrinsicCall = 176 !IsInlineAsm && !IsIndirectFunctionCall && 177 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 178 179 if (!IsInlineAsm && !IsInstrinsicCall) 180 return CI->getCallingConv(); 181 } 182 183 return None; 184 } 185 186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 187 const SDValue *Parts, unsigned NumParts, 188 MVT PartVT, EVT ValueVT, const Value *V, 189 Optional<CallingConv::ID> CC); 190 191 /// getCopyFromParts - Create a value that contains the specified legal parts 192 /// combined into the value they represent. If the parts combine to a type 193 /// larger than ValueVT then AssertOp can be used to specify whether the extra 194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 195 /// (ISD::AssertSext). 196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 197 const SDValue *Parts, unsigned NumParts, 198 MVT PartVT, EVT ValueVT, const Value *V, 199 Optional<CallingConv::ID> CC = None, 200 Optional<ISD::NodeType> AssertOp = None) { 201 if (ValueVT.isVector()) 202 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 203 CC); 204 205 assert(NumParts > 0 && "No parts to assemble!"); 206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 207 SDValue Val = Parts[0]; 208 209 if (NumParts > 1) { 210 // Assemble the value from multiple parts. 211 if (ValueVT.isInteger()) { 212 unsigned PartBits = PartVT.getSizeInBits(); 213 unsigned ValueBits = ValueVT.getSizeInBits(); 214 215 // Assemble the power of 2 part. 216 unsigned RoundParts = NumParts & (NumParts - 1) ? 217 1 << Log2_32(NumParts) : NumParts; 218 unsigned RoundBits = PartBits * RoundParts; 219 EVT RoundVT = RoundBits == ValueBits ? 220 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 221 SDValue Lo, Hi; 222 223 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 224 225 if (RoundParts > 2) { 226 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 227 PartVT, HalfVT, V); 228 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 229 RoundParts / 2, PartVT, HalfVT, V); 230 } else { 231 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 232 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 233 } 234 235 if (DAG.getDataLayout().isBigEndian()) 236 std::swap(Lo, Hi); 237 238 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 239 240 if (RoundParts < NumParts) { 241 // Assemble the trailing non-power-of-2 part. 242 unsigned OddParts = NumParts - RoundParts; 243 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 244 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 245 OddVT, V, CC); 246 247 // Combine the round and odd parts. 248 Lo = Val; 249 if (DAG.getDataLayout().isBigEndian()) 250 std::swap(Lo, Hi); 251 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 252 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 253 Hi = 254 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 255 DAG.getConstant(Lo.getValueSizeInBits(), DL, 256 TLI.getPointerTy(DAG.getDataLayout()))); 257 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 258 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 259 } 260 } else if (PartVT.isFloatingPoint()) { 261 // FP split into multiple FP parts (for ppcf128) 262 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 263 "Unexpected split"); 264 SDValue Lo, Hi; 265 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 266 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 267 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 268 std::swap(Lo, Hi); 269 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 270 } else { 271 // FP split into integer parts (soft fp) 272 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 273 !PartVT.isVector() && "Unexpected split"); 274 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 275 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 276 } 277 } 278 279 // There is now one part, held in Val. Correct it to match ValueVT. 280 // PartEVT is the type of the register class that holds the value. 281 // ValueVT is the type of the inline asm operation. 282 EVT PartEVT = Val.getValueType(); 283 284 if (PartEVT == ValueVT) 285 return Val; 286 287 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 288 ValueVT.bitsLT(PartEVT)) { 289 // For an FP value in an integer part, we need to truncate to the right 290 // width first. 291 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 292 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 293 } 294 295 // Handle types that have the same size. 296 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 297 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 298 299 // Handle types with different sizes. 300 if (PartEVT.isInteger() && ValueVT.isInteger()) { 301 if (ValueVT.bitsLT(PartEVT)) { 302 // For a truncate, see if we have any information to 303 // indicate whether the truncated bits will always be 304 // zero or sign-extension. 305 if (AssertOp.hasValue()) 306 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 307 DAG.getValueType(ValueVT)); 308 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 309 } 310 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 311 } 312 313 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 314 // FP_ROUND's are always exact here. 315 if (ValueVT.bitsLT(Val.getValueType())) 316 return DAG.getNode( 317 ISD::FP_ROUND, DL, ValueVT, Val, 318 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 319 320 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 321 } 322 323 llvm_unreachable("Unknown mismatch!"); 324 } 325 326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 327 const Twine &ErrMsg) { 328 const Instruction *I = dyn_cast_or_null<Instruction>(V); 329 if (!V) 330 return Ctx.emitError(ErrMsg); 331 332 const char *AsmError = ", possible invalid constraint for vector type"; 333 if (const CallInst *CI = dyn_cast<CallInst>(I)) 334 if (isa<InlineAsm>(CI->getCalledValue())) 335 return Ctx.emitError(I, ErrMsg + AsmError); 336 337 return Ctx.emitError(I, ErrMsg); 338 } 339 340 /// getCopyFromPartsVector - Create a value that contains the specified legal 341 /// parts combined into the value they represent. If the parts combine to a 342 /// type larger than ValueVT then AssertOp can be used to specify whether the 343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 344 /// ValueVT (ISD::AssertSext). 345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 346 const SDValue *Parts, unsigned NumParts, 347 MVT PartVT, EVT ValueVT, const Value *V, 348 Optional<CallingConv::ID> CallConv) { 349 assert(ValueVT.isVector() && "Not a vector value"); 350 assert(NumParts > 0 && "No parts to assemble!"); 351 const bool IsABIRegCopy = CallConv.hasValue(); 352 353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 354 SDValue Val = Parts[0]; 355 356 // Handle a multi-element vector. 357 if (NumParts > 1) { 358 EVT IntermediateVT; 359 MVT RegisterVT; 360 unsigned NumIntermediates; 361 unsigned NumRegs; 362 363 if (IsABIRegCopy) { 364 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 365 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } else { 368 NumRegs = 369 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 370 NumIntermediates, RegisterVT); 371 } 372 373 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 374 NumParts = NumRegs; // Silence a compiler warning. 375 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 376 assert(RegisterVT.getSizeInBits() == 377 Parts[0].getSimpleValueType().getSizeInBits() && 378 "Part type sizes don't match!"); 379 380 // Assemble the parts into intermediate operands. 381 SmallVector<SDValue, 8> Ops(NumIntermediates); 382 if (NumIntermediates == NumParts) { 383 // If the register was not expanded, truncate or copy the value, 384 // as appropriate. 385 for (unsigned i = 0; i != NumParts; ++i) 386 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 387 PartVT, IntermediateVT, V); 388 } else if (NumParts > 0) { 389 // If the intermediate type was expanded, build the intermediate 390 // operands from the parts. 391 assert(NumParts % NumIntermediates == 0 && 392 "Must expand into a divisible number of parts!"); 393 unsigned Factor = NumParts / NumIntermediates; 394 for (unsigned i = 0; i != NumIntermediates; ++i) 395 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 396 PartVT, IntermediateVT, V); 397 } 398 399 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 400 // intermediate operands. 401 EVT BuiltVectorTy = 402 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 403 (IntermediateVT.isVector() 404 ? IntermediateVT.getVectorNumElements() * NumParts 405 : NumIntermediates)); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // If the element type of the source/dest vectors are the same, but the 419 // parts vector has more elements than the value vector, then we have a 420 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 421 // elements we want. 422 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 423 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 424 "Cannot narrow, it would be a lossy transformation"); 425 return DAG.getNode( 426 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 427 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 428 } 429 430 // Vector/Vector bitcast. 431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 433 434 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 435 "Cannot handle this kind of promotion"); 436 // Promoted vector extract 437 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 438 439 } 440 441 // Trivial bitcast if the types are the same size and the destination 442 // vector type is legal. 443 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 444 TLI.isTypeLegal(ValueVT)) 445 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 446 447 if (ValueVT.getVectorNumElements() != 1) { 448 // Certain ABIs require that vectors are passed as integers. For vectors 449 // are the same size, this is an obvious bitcast. 450 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 452 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 453 // Bitcast Val back the original type and extract the corresponding 454 // vector we want. 455 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 456 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 457 ValueVT.getVectorElementType(), Elts); 458 Val = DAG.getBitcast(WiderVecType, Val); 459 return DAG.getNode( 460 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 461 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 462 } 463 464 diagnosePossiblyInvalidConstraint( 465 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 466 return DAG.getUNDEF(ValueVT); 467 } 468 469 // Handle cases such as i8 -> <1 x i1> 470 EVT ValueSVT = ValueVT.getVectorElementType(); 471 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 472 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 473 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 474 475 return DAG.getBuildVector(ValueVT, DL, Val); 476 } 477 478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V, 481 Optional<CallingConv::ID> CallConv); 482 483 /// getCopyToParts - Create a series of nodes that contain the specified value 484 /// split into legal parts. If the parts contain more bits than Val, then, for 485 /// integers, ExtendKind can be used to specify how to generate the extra bits. 486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 487 SDValue *Parts, unsigned NumParts, MVT PartVT, 488 const Value *V, 489 Optional<CallingConv::ID> CallConv = None, 490 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getIntPtrConstant(RoundBits, DL)); 575 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 576 CallConv); 577 578 if (DAG.getDataLayout().isBigEndian()) 579 // The odd parts were reversed by getCopyToParts - unreverse them. 580 std::reverse(Parts + RoundParts, Parts + NumParts); 581 582 NumParts = RoundParts; 583 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 584 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 585 } 586 587 // The number of parts is a power of 2. Repeatedly bisect the value using 588 // EXTRACT_ELEMENT. 589 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 590 EVT::getIntegerVT(*DAG.getContext(), 591 ValueVT.getSizeInBits()), 592 Val); 593 594 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 595 for (unsigned i = 0; i < NumParts; i += StepSize) { 596 unsigned ThisBits = StepSize * PartBits / 2; 597 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 598 SDValue &Part0 = Parts[i]; 599 SDValue &Part1 = Parts[i+StepSize/2]; 600 601 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 602 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 603 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 605 606 if (ThisBits == PartBits && ThisVT != PartVT) { 607 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 608 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 609 } 610 } 611 } 612 613 if (DAG.getDataLayout().isBigEndian()) 614 std::reverse(Parts, Parts + OrigNumParts); 615 } 616 617 /// getCopyToPartsVector - Create a series of nodes that contain the specified 618 /// value split into legal parts. 619 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 620 SDValue Val, SDValue *Parts, unsigned NumParts, 621 MVT PartVT, const Value *V, 622 Optional<CallingConv::ID> CallConv) { 623 EVT ValueVT = Val.getValueType(); 624 assert(ValueVT.isVector() && "Not a vector"); 625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 626 const bool IsABIRegCopy = CallConv.hasValue(); 627 628 if (NumParts == 1) { 629 EVT PartEVT = PartVT; 630 if (PartEVT == ValueVT) { 631 // Nothing to do. 632 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 633 // Bitconvert vector->vector case. 634 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 635 } else if (PartVT.isVector() && 636 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 637 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 638 EVT ElementVT = PartVT.getVectorElementType(); 639 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 640 // undef elements. 641 SmallVector<SDValue, 16> Ops; 642 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 643 Ops.push_back(DAG.getNode( 644 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 645 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 646 647 for (unsigned i = ValueVT.getVectorNumElements(), 648 e = PartVT.getVectorNumElements(); i != e; ++i) 649 Ops.push_back(DAG.getUNDEF(ElementVT)); 650 651 Val = DAG.getBuildVector(PartVT, DL, Ops); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 655 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 656 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 657 } else if (PartVT.isVector() && 658 PartEVT.getVectorElementType().bitsGE( 659 ValueVT.getVectorElementType()) && 660 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 661 662 // Promoted vector extract 663 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 664 } else { 665 if (ValueVT.getVectorNumElements() == 1) { 666 Val = DAG.getNode( 667 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 668 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 669 } else { 670 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 671 "lossy conversion of vector to scalar type"); 672 EVT IntermediateType = 673 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 674 Val = DAG.getBitcast(IntermediateType, Val); 675 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 676 } 677 } 678 679 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 680 Parts[0] = Val; 681 return; 682 } 683 684 // Handle a multi-element vector. 685 EVT IntermediateVT; 686 MVT RegisterVT; 687 unsigned NumIntermediates; 688 unsigned NumRegs; 689 if (IsABIRegCopy) { 690 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 691 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 692 NumIntermediates, RegisterVT); 693 } else { 694 NumRegs = 695 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 696 NumIntermediates, RegisterVT); 697 } 698 unsigned NumElements = ValueVT.getVectorNumElements(); 699 700 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 701 NumParts = NumRegs; // Silence a compiler warning. 702 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 703 704 // Convert the vector to the appropiate type if necessary. 705 unsigned DestVectorNoElts = 706 NumIntermediates * 707 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 708 EVT BuiltVectorTy = EVT::getVectorVT( 709 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 710 if (Val.getValueType() != BuiltVectorTy) 711 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 712 713 // Split the vector into intermediate operands. 714 SmallVector<SDValue, 8> Ops(NumIntermediates); 715 for (unsigned i = 0; i != NumIntermediates; ++i) { 716 if (IntermediateVT.isVector()) 717 Ops[i] = 718 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 719 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 720 TLI.getVectorIdxTy(DAG.getDataLayout()))); 721 else 722 Ops[i] = DAG.getNode( 723 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 724 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 725 } 726 727 // Split the intermediate operands into legal parts. 728 if (NumParts == NumIntermediates) { 729 // If the register was not expanded, promote or copy the value, 730 // as appropriate. 731 for (unsigned i = 0; i != NumParts; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 733 } else if (NumParts > 0) { 734 // If the intermediate type was expanded, split each the value into 735 // legal parts. 736 assert(NumIntermediates != 0 && "division by zero"); 737 assert(NumParts % NumIntermediates == 0 && 738 "Must expand into a divisible number of parts!"); 739 unsigned Factor = NumParts / NumIntermediates; 740 for (unsigned i = 0; i != NumIntermediates; ++i) 741 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 742 CallConv); 743 } 744 } 745 746 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 747 EVT valuevt, Optional<CallingConv::ID> CC) 748 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 749 RegCount(1, regs.size()), CallConv(CC) {} 750 751 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 752 const DataLayout &DL, unsigned Reg, Type *Ty, 753 Optional<CallingConv::ID> CC) { 754 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 755 756 CallConv = CC; 757 758 for (EVT ValueVT : ValueVTs) { 759 unsigned NumRegs = 760 isABIMangled() 761 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 762 : TLI.getNumRegisters(Context, ValueVT); 763 MVT RegisterVT = 764 isABIMangled() 765 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 766 : TLI.getRegisterType(Context, ValueVT); 767 for (unsigned i = 0; i != NumRegs; ++i) 768 Regs.push_back(Reg + i); 769 RegVTs.push_back(RegisterVT); 770 RegCount.push_back(NumRegs); 771 Reg += NumRegs; 772 } 773 } 774 775 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 776 FunctionLoweringInfo &FuncInfo, 777 const SDLoc &dl, SDValue &Chain, 778 SDValue *Flag, const Value *V) const { 779 // A Value with type {} or [0 x %t] needs no registers. 780 if (ValueVTs.empty()) 781 return SDValue(); 782 783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 784 785 // Assemble the legal parts into the final values. 786 SmallVector<SDValue, 4> Values(ValueVTs.size()); 787 SmallVector<SDValue, 8> Parts; 788 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 789 // Copy the legal parts from the registers. 790 EVT ValueVT = ValueVTs[Value]; 791 unsigned NumRegs = RegCount[Value]; 792 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 793 *DAG.getContext(), 794 CallConv.getValue(), RegVTs[Value]) 795 : RegVTs[Value]; 796 797 Parts.resize(NumRegs); 798 for (unsigned i = 0; i != NumRegs; ++i) { 799 SDValue P; 800 if (!Flag) { 801 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 802 } else { 803 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 804 *Flag = P.getValue(2); 805 } 806 807 Chain = P.getValue(1); 808 Parts[i] = P; 809 810 // If the source register was virtual and if we know something about it, 811 // add an assert node. 812 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 813 !RegisterVT.isInteger() || RegisterVT.isVector()) 814 continue; 815 816 const FunctionLoweringInfo::LiveOutInfo *LOI = 817 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 818 if (!LOI) 819 continue; 820 821 unsigned RegSize = RegisterVT.getSizeInBits(); 822 unsigned NumSignBits = LOI->NumSignBits; 823 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 824 825 if (NumZeroBits == RegSize) { 826 // The current value is a zero. 827 // Explicitly express that as it would be easier for 828 // optimizations to kick in. 829 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 830 continue; 831 } 832 833 // FIXME: We capture more information than the dag can represent. For 834 // now, just use the tightest assertzext/assertsext possible. 835 bool isSExt; 836 EVT FromVT(MVT::Other); 837 if (NumZeroBits) { 838 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 839 isSExt = false; 840 } else if (NumSignBits > 1) { 841 FromVT = 842 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 843 isSExt = true; 844 } else { 845 continue; 846 } 847 // Add an assertion node. 848 assert(FromVT != MVT::Other); 849 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 850 RegisterVT, P, DAG.getValueType(FromVT)); 851 } 852 853 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 854 RegisterVT, ValueVT, V, CallConv); 855 Part += NumRegs; 856 Parts.clear(); 857 } 858 859 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 860 } 861 862 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 863 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 864 const Value *V, 865 ISD::NodeType PreferredExtendType) const { 866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 867 ISD::NodeType ExtendKind = PreferredExtendType; 868 869 // Get the list of the values's legal parts. 870 unsigned NumRegs = Regs.size(); 871 SmallVector<SDValue, 8> Parts(NumRegs); 872 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 873 unsigned NumParts = RegCount[Value]; 874 875 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 876 *DAG.getContext(), 877 CallConv.getValue(), RegVTs[Value]) 878 : RegVTs[Value]; 879 880 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 881 ExtendKind = ISD::ZERO_EXTEND; 882 883 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 884 NumParts, RegisterVT, V, CallConv, ExtendKind); 885 Part += NumParts; 886 } 887 888 // Copy the parts into the registers. 889 SmallVector<SDValue, 8> Chains(NumRegs); 890 for (unsigned i = 0; i != NumRegs; ++i) { 891 SDValue Part; 892 if (!Flag) { 893 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 894 } else { 895 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 896 *Flag = Part.getValue(1); 897 } 898 899 Chains[i] = Part.getValue(0); 900 } 901 902 if (NumRegs == 1 || Flag) 903 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 904 // flagged to it. That is the CopyToReg nodes and the user are considered 905 // a single scheduling unit. If we create a TokenFactor and return it as 906 // chain, then the TokenFactor is both a predecessor (operand) of the 907 // user as well as a successor (the TF operands are flagged to the user). 908 // c1, f1 = CopyToReg 909 // c2, f2 = CopyToReg 910 // c3 = TokenFactor c1, c2 911 // ... 912 // = op c3, ..., f2 913 Chain = Chains[NumRegs-1]; 914 else 915 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 916 } 917 918 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 919 unsigned MatchingIdx, const SDLoc &dl, 920 SelectionDAG &DAG, 921 std::vector<SDValue> &Ops) const { 922 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 923 924 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 925 if (HasMatching) 926 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 927 else if (!Regs.empty() && 928 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 929 // Put the register class of the virtual registers in the flag word. That 930 // way, later passes can recompute register class constraints for inline 931 // assembly as well as normal instructions. 932 // Don't do this for tied operands that can use the regclass information 933 // from the def. 934 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 935 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 936 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 937 } 938 939 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 940 Ops.push_back(Res); 941 942 if (Code == InlineAsm::Kind_Clobber) { 943 // Clobbers should always have a 1:1 mapping with registers, and may 944 // reference registers that have illegal (e.g. vector) types. Hence, we 945 // shouldn't try to apply any sort of splitting logic to them. 946 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 947 "No 1:1 mapping from clobbers to regs?"); 948 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 949 (void)SP; 950 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 951 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 952 assert( 953 (Regs[I] != SP || 954 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 955 "If we clobbered the stack pointer, MFI should know about it."); 956 } 957 return; 958 } 959 960 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 961 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 962 MVT RegisterVT = RegVTs[Value]; 963 for (unsigned i = 0; i != NumRegs; ++i) { 964 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 965 unsigned TheReg = Regs[Reg++]; 966 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 967 } 968 } 969 } 970 971 SmallVector<std::pair<unsigned, unsigned>, 4> 972 RegsForValue::getRegsAndSizes() const { 973 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 974 unsigned I = 0; 975 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 976 unsigned RegCount = std::get<0>(CountAndVT); 977 MVT RegisterVT = std::get<1>(CountAndVT); 978 unsigned RegisterSize = RegisterVT.getSizeInBits(); 979 for (unsigned E = I + RegCount; I != E; ++I) 980 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 981 } 982 return OutVec; 983 } 984 985 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 986 const TargetLibraryInfo *li) { 987 AA = aa; 988 GFI = gfi; 989 LibInfo = li; 990 DL = &DAG.getDataLayout(); 991 Context = DAG.getContext(); 992 LPadToCallSiteMap.clear(); 993 } 994 995 void SelectionDAGBuilder::clear() { 996 NodeMap.clear(); 997 UnusedArgNodeMap.clear(); 998 PendingLoads.clear(); 999 PendingExports.clear(); 1000 CurInst = nullptr; 1001 HasTailCall = false; 1002 SDNodeOrder = LowestSDNodeOrder; 1003 StatepointLowering.clear(); 1004 } 1005 1006 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1007 DanglingDebugInfoMap.clear(); 1008 } 1009 1010 SDValue SelectionDAGBuilder::getRoot() { 1011 if (PendingLoads.empty()) 1012 return DAG.getRoot(); 1013 1014 if (PendingLoads.size() == 1) { 1015 SDValue Root = PendingLoads[0]; 1016 DAG.setRoot(Root); 1017 PendingLoads.clear(); 1018 return Root; 1019 } 1020 1021 // Otherwise, we have to make a token factor node. 1022 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1023 PendingLoads); 1024 PendingLoads.clear(); 1025 DAG.setRoot(Root); 1026 return Root; 1027 } 1028 1029 SDValue SelectionDAGBuilder::getControlRoot() { 1030 SDValue Root = DAG.getRoot(); 1031 1032 if (PendingExports.empty()) 1033 return Root; 1034 1035 // Turn all of the CopyToReg chains into one factored node. 1036 if (Root.getOpcode() != ISD::EntryToken) { 1037 unsigned i = 0, e = PendingExports.size(); 1038 for (; i != e; ++i) { 1039 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1040 if (PendingExports[i].getNode()->getOperand(0) == Root) 1041 break; // Don't add the root if we already indirectly depend on it. 1042 } 1043 1044 if (i == e) 1045 PendingExports.push_back(Root); 1046 } 1047 1048 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1049 PendingExports); 1050 PendingExports.clear(); 1051 DAG.setRoot(Root); 1052 return Root; 1053 } 1054 1055 void SelectionDAGBuilder::visit(const Instruction &I) { 1056 // Set up outgoing PHI node register values before emitting the terminator. 1057 if (isa<TerminatorInst>(&I)) { 1058 HandlePHINodesInSuccessorBlocks(I.getParent()); 1059 } 1060 1061 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1062 if (!isa<DbgInfoIntrinsic>(I)) 1063 ++SDNodeOrder; 1064 1065 CurInst = &I; 1066 1067 visit(I.getOpcode(), I); 1068 1069 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1070 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1071 // maps to this instruction. 1072 // TODO: We could handle all flags (nsw, etc) here. 1073 // TODO: If an IR instruction maps to >1 node, only the final node will have 1074 // flags set. 1075 if (SDNode *Node = getNodeForIRValue(&I)) { 1076 SDNodeFlags IncomingFlags; 1077 IncomingFlags.copyFMF(*FPMO); 1078 if (!Node->getFlags().isDefined()) 1079 Node->setFlags(IncomingFlags); 1080 else 1081 Node->intersectFlagsWith(IncomingFlags); 1082 } 1083 } 1084 1085 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1086 !isStatepoint(&I)) // statepoints handle their exports internally 1087 CopyToExportRegsIfNeeded(&I); 1088 1089 CurInst = nullptr; 1090 } 1091 1092 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1093 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1094 } 1095 1096 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1097 // Note: this doesn't use InstVisitor, because it has to work with 1098 // ConstantExpr's in addition to instructions. 1099 switch (Opcode) { 1100 default: llvm_unreachable("Unknown instruction type encountered!"); 1101 // Build the switch statement using the Instruction.def file. 1102 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1103 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1104 #include "llvm/IR/Instruction.def" 1105 } 1106 } 1107 1108 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1109 const DIExpression *Expr) { 1110 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1111 const DbgValueInst *DI = DDI.getDI(); 1112 DIVariable *DanglingVariable = DI->getVariable(); 1113 DIExpression *DanglingExpr = DI->getExpression(); 1114 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1115 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1116 return true; 1117 } 1118 return false; 1119 }; 1120 1121 for (auto &DDIMI : DanglingDebugInfoMap) { 1122 DanglingDebugInfoVector &DDIV = DDIMI.second; 1123 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1124 } 1125 } 1126 1127 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1128 // generate the debug data structures now that we've seen its definition. 1129 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1130 SDValue Val) { 1131 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1132 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1133 return; 1134 1135 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1136 for (auto &DDI : DDIV) { 1137 const DbgValueInst *DI = DDI.getDI(); 1138 assert(DI && "Ill-formed DanglingDebugInfo"); 1139 DebugLoc dl = DDI.getdl(); 1140 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1141 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1142 DILocalVariable *Variable = DI->getVariable(); 1143 DIExpression *Expr = DI->getExpression(); 1144 assert(Variable->isValidLocationForIntrinsic(dl) && 1145 "Expected inlined-at fields to agree"); 1146 SDDbgValue *SDV; 1147 if (Val.getNode()) { 1148 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1149 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1150 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1151 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1152 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1153 // inserted after the definition of Val when emitting the instructions 1154 // after ISel. An alternative could be to teach 1155 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1156 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1157 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1158 << ValSDNodeOrder << "\n"); 1159 SDV = getDbgValue(Val, Variable, Expr, dl, 1160 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1161 DAG.AddDbgValue(SDV, Val.getNode(), false); 1162 } else 1163 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1164 << "in EmitFuncArgumentDbgValue\n"); 1165 } else 1166 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1167 } 1168 DDIV.clear(); 1169 } 1170 1171 /// getCopyFromRegs - If there was virtual register allocated for the value V 1172 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1173 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1174 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1175 SDValue Result; 1176 1177 if (It != FuncInfo.ValueMap.end()) { 1178 unsigned InReg = It->second; 1179 1180 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1181 DAG.getDataLayout(), InReg, Ty, getABIRegCopyCC(V)); 1182 SDValue Chain = DAG.getEntryNode(); 1183 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1184 V); 1185 resolveDanglingDebugInfo(V, Result); 1186 } 1187 1188 return Result; 1189 } 1190 1191 /// getValue - Return an SDValue for the given Value. 1192 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1193 // If we already have an SDValue for this value, use it. It's important 1194 // to do this first, so that we don't create a CopyFromReg if we already 1195 // have a regular SDValue. 1196 SDValue &N = NodeMap[V]; 1197 if (N.getNode()) return N; 1198 1199 // If there's a virtual register allocated and initialized for this 1200 // value, use it. 1201 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1202 return copyFromReg; 1203 1204 // Otherwise create a new SDValue and remember it. 1205 SDValue Val = getValueImpl(V); 1206 NodeMap[V] = Val; 1207 resolveDanglingDebugInfo(V, Val); 1208 return Val; 1209 } 1210 1211 // Return true if SDValue exists for the given Value 1212 bool SelectionDAGBuilder::findValue(const Value *V) const { 1213 return (NodeMap.find(V) != NodeMap.end()) || 1214 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1215 } 1216 1217 /// getNonRegisterValue - Return an SDValue for the given Value, but 1218 /// don't look in FuncInfo.ValueMap for a virtual register. 1219 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1220 // If we already have an SDValue for this value, use it. 1221 SDValue &N = NodeMap[V]; 1222 if (N.getNode()) { 1223 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1224 // Remove the debug location from the node as the node is about to be used 1225 // in a location which may differ from the original debug location. This 1226 // is relevant to Constant and ConstantFP nodes because they can appear 1227 // as constant expressions inside PHI nodes. 1228 N->setDebugLoc(DebugLoc()); 1229 } 1230 return N; 1231 } 1232 1233 // Otherwise create a new SDValue and remember it. 1234 SDValue Val = getValueImpl(V); 1235 NodeMap[V] = Val; 1236 resolveDanglingDebugInfo(V, Val); 1237 return Val; 1238 } 1239 1240 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1241 /// Create an SDValue for the given value. 1242 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1244 1245 if (const Constant *C = dyn_cast<Constant>(V)) { 1246 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1247 1248 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1249 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1250 1251 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1252 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1253 1254 if (isa<ConstantPointerNull>(C)) { 1255 unsigned AS = V->getType()->getPointerAddressSpace(); 1256 return DAG.getConstant(0, getCurSDLoc(), 1257 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1258 } 1259 1260 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1261 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1262 1263 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1264 return DAG.getUNDEF(VT); 1265 1266 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1267 visit(CE->getOpcode(), *CE); 1268 SDValue N1 = NodeMap[V]; 1269 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1270 return N1; 1271 } 1272 1273 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1274 SmallVector<SDValue, 4> Constants; 1275 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1276 OI != OE; ++OI) { 1277 SDNode *Val = getValue(*OI).getNode(); 1278 // If the operand is an empty aggregate, there are no values. 1279 if (!Val) continue; 1280 // Add each leaf value from the operand to the Constants list 1281 // to form a flattened list of all the values. 1282 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1283 Constants.push_back(SDValue(Val, i)); 1284 } 1285 1286 return DAG.getMergeValues(Constants, getCurSDLoc()); 1287 } 1288 1289 if (const ConstantDataSequential *CDS = 1290 dyn_cast<ConstantDataSequential>(C)) { 1291 SmallVector<SDValue, 4> Ops; 1292 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1293 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1294 // Add each leaf value from the operand to the Constants list 1295 // to form a flattened list of all the values. 1296 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1297 Ops.push_back(SDValue(Val, i)); 1298 } 1299 1300 if (isa<ArrayType>(CDS->getType())) 1301 return DAG.getMergeValues(Ops, getCurSDLoc()); 1302 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1303 } 1304 1305 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1306 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1307 "Unknown struct or array constant!"); 1308 1309 SmallVector<EVT, 4> ValueVTs; 1310 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1311 unsigned NumElts = ValueVTs.size(); 1312 if (NumElts == 0) 1313 return SDValue(); // empty struct 1314 SmallVector<SDValue, 4> Constants(NumElts); 1315 for (unsigned i = 0; i != NumElts; ++i) { 1316 EVT EltVT = ValueVTs[i]; 1317 if (isa<UndefValue>(C)) 1318 Constants[i] = DAG.getUNDEF(EltVT); 1319 else if (EltVT.isFloatingPoint()) 1320 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1321 else 1322 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1323 } 1324 1325 return DAG.getMergeValues(Constants, getCurSDLoc()); 1326 } 1327 1328 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1329 return DAG.getBlockAddress(BA, VT); 1330 1331 VectorType *VecTy = cast<VectorType>(V->getType()); 1332 unsigned NumElements = VecTy->getNumElements(); 1333 1334 // Now that we know the number and type of the elements, get that number of 1335 // elements into the Ops array based on what kind of constant it is. 1336 SmallVector<SDValue, 16> Ops; 1337 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1338 for (unsigned i = 0; i != NumElements; ++i) 1339 Ops.push_back(getValue(CV->getOperand(i))); 1340 } else { 1341 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1342 EVT EltVT = 1343 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1344 1345 SDValue Op; 1346 if (EltVT.isFloatingPoint()) 1347 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1348 else 1349 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1350 Ops.assign(NumElements, Op); 1351 } 1352 1353 // Create a BUILD_VECTOR node. 1354 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1355 } 1356 1357 // If this is a static alloca, generate it as the frameindex instead of 1358 // computation. 1359 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1360 DenseMap<const AllocaInst*, int>::iterator SI = 1361 FuncInfo.StaticAllocaMap.find(AI); 1362 if (SI != FuncInfo.StaticAllocaMap.end()) 1363 return DAG.getFrameIndex(SI->second, 1364 TLI.getFrameIndexTy(DAG.getDataLayout())); 1365 } 1366 1367 // If this is an instruction which fast-isel has deferred, select it now. 1368 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1369 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1370 1371 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1372 Inst->getType(), getABIRegCopyCC(V)); 1373 SDValue Chain = DAG.getEntryNode(); 1374 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1375 } 1376 1377 llvm_unreachable("Can't get register for value!"); 1378 } 1379 1380 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1381 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1382 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1383 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1384 bool IsSEH = isAsynchronousEHPersonality(Pers); 1385 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1386 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1387 if (!IsSEH) 1388 CatchPadMBB->setIsEHScopeEntry(); 1389 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1390 if (IsMSVCCXX || IsCoreCLR) 1391 CatchPadMBB->setIsEHFuncletEntry(); 1392 // Wasm does not need catchpads anymore 1393 if (!IsWasmCXX) 1394 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1395 getControlRoot())); 1396 } 1397 1398 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1399 // Update machine-CFG edge. 1400 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1401 FuncInfo.MBB->addSuccessor(TargetMBB); 1402 1403 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1404 bool IsSEH = isAsynchronousEHPersonality(Pers); 1405 if (IsSEH) { 1406 // If this is not a fall-through branch or optimizations are switched off, 1407 // emit the branch. 1408 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1409 TM.getOptLevel() == CodeGenOpt::None) 1410 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1411 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1412 return; 1413 } 1414 1415 // Figure out the funclet membership for the catchret's successor. 1416 // This will be used by the FuncletLayout pass to determine how to order the 1417 // BB's. 1418 // A 'catchret' returns to the outer scope's color. 1419 Value *ParentPad = I.getCatchSwitchParentPad(); 1420 const BasicBlock *SuccessorColor; 1421 if (isa<ConstantTokenNone>(ParentPad)) 1422 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1423 else 1424 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1425 assert(SuccessorColor && "No parent funclet for catchret!"); 1426 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1427 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1428 1429 // Create the terminator node. 1430 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1431 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1432 DAG.getBasicBlock(SuccessorColorMBB)); 1433 DAG.setRoot(Ret); 1434 } 1435 1436 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1437 // Don't emit any special code for the cleanuppad instruction. It just marks 1438 // the start of an EH scope/funclet. 1439 FuncInfo.MBB->setIsEHScopeEntry(); 1440 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1441 if (Pers != EHPersonality::Wasm_CXX) { 1442 FuncInfo.MBB->setIsEHFuncletEntry(); 1443 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1444 } 1445 } 1446 1447 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1448 /// many places it could ultimately go. In the IR, we have a single unwind 1449 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1450 /// This function skips over imaginary basic blocks that hold catchswitch 1451 /// instructions, and finds all the "real" machine 1452 /// basic block destinations. As those destinations may not be successors of 1453 /// EHPadBB, here we also calculate the edge probability to those destinations. 1454 /// The passed-in Prob is the edge probability to EHPadBB. 1455 static void findUnwindDestinations( 1456 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1457 BranchProbability Prob, 1458 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1459 &UnwindDests) { 1460 EHPersonality Personality = 1461 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1462 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1463 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1464 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1465 bool IsSEH = isAsynchronousEHPersonality(Personality); 1466 1467 while (EHPadBB) { 1468 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1469 BasicBlock *NewEHPadBB = nullptr; 1470 if (isa<LandingPadInst>(Pad)) { 1471 // Stop on landingpads. They are not funclets. 1472 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1473 break; 1474 } else if (isa<CleanupPadInst>(Pad)) { 1475 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1476 // personalities. 1477 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1478 UnwindDests.back().first->setIsEHScopeEntry(); 1479 if (!IsWasmCXX) 1480 UnwindDests.back().first->setIsEHFuncletEntry(); 1481 break; 1482 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1483 // Add the catchpad handlers to the possible destinations. 1484 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1485 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1486 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1487 if (IsMSVCCXX || IsCoreCLR) 1488 UnwindDests.back().first->setIsEHFuncletEntry(); 1489 if (!IsSEH) 1490 UnwindDests.back().first->setIsEHScopeEntry(); 1491 } 1492 NewEHPadBB = CatchSwitch->getUnwindDest(); 1493 } else { 1494 continue; 1495 } 1496 1497 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1498 if (BPI && NewEHPadBB) 1499 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1500 EHPadBB = NewEHPadBB; 1501 } 1502 } 1503 1504 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1505 // Update successor info. 1506 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1507 auto UnwindDest = I.getUnwindDest(); 1508 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1509 BranchProbability UnwindDestProb = 1510 (BPI && UnwindDest) 1511 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1512 : BranchProbability::getZero(); 1513 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1514 for (auto &UnwindDest : UnwindDests) { 1515 UnwindDest.first->setIsEHPad(); 1516 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1517 } 1518 FuncInfo.MBB->normalizeSuccProbs(); 1519 1520 // Create the terminator node. 1521 SDValue Ret = 1522 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1523 DAG.setRoot(Ret); 1524 } 1525 1526 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1527 report_fatal_error("visitCatchSwitch not yet implemented!"); 1528 } 1529 1530 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1532 auto &DL = DAG.getDataLayout(); 1533 SDValue Chain = getControlRoot(); 1534 SmallVector<ISD::OutputArg, 8> Outs; 1535 SmallVector<SDValue, 8> OutVals; 1536 1537 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1538 // lower 1539 // 1540 // %val = call <ty> @llvm.experimental.deoptimize() 1541 // ret <ty> %val 1542 // 1543 // differently. 1544 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1545 LowerDeoptimizingReturn(); 1546 return; 1547 } 1548 1549 if (!FuncInfo.CanLowerReturn) { 1550 unsigned DemoteReg = FuncInfo.DemoteRegister; 1551 const Function *F = I.getParent()->getParent(); 1552 1553 // Emit a store of the return value through the virtual register. 1554 // Leave Outs empty so that LowerReturn won't try to load return 1555 // registers the usual way. 1556 SmallVector<EVT, 1> PtrValueVTs; 1557 ComputeValueVTs(TLI, DL, 1558 F->getReturnType()->getPointerTo( 1559 DAG.getDataLayout().getAllocaAddrSpace()), 1560 PtrValueVTs); 1561 1562 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1563 DemoteReg, PtrValueVTs[0]); 1564 SDValue RetOp = getValue(I.getOperand(0)); 1565 1566 SmallVector<EVT, 4> ValueVTs; 1567 SmallVector<uint64_t, 4> Offsets; 1568 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1569 unsigned NumValues = ValueVTs.size(); 1570 1571 SmallVector<SDValue, 4> Chains(NumValues); 1572 for (unsigned i = 0; i != NumValues; ++i) { 1573 // An aggregate return value cannot wrap around the address space, so 1574 // offsets to its parts don't wrap either. 1575 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1576 Chains[i] = DAG.getStore( 1577 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1578 // FIXME: better loc info would be nice. 1579 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1580 } 1581 1582 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1583 MVT::Other, Chains); 1584 } else if (I.getNumOperands() != 0) { 1585 SmallVector<EVT, 4> ValueVTs; 1586 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1587 unsigned NumValues = ValueVTs.size(); 1588 if (NumValues) { 1589 SDValue RetOp = getValue(I.getOperand(0)); 1590 1591 const Function *F = I.getParent()->getParent(); 1592 1593 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1594 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1595 Attribute::SExt)) 1596 ExtendKind = ISD::SIGN_EXTEND; 1597 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1598 Attribute::ZExt)) 1599 ExtendKind = ISD::ZERO_EXTEND; 1600 1601 LLVMContext &Context = F->getContext(); 1602 bool RetInReg = F->getAttributes().hasAttribute( 1603 AttributeList::ReturnIndex, Attribute::InReg); 1604 1605 for (unsigned j = 0; j != NumValues; ++j) { 1606 EVT VT = ValueVTs[j]; 1607 1608 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1609 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1610 1611 CallingConv::ID CC = F->getCallingConv(); 1612 1613 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1614 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1615 SmallVector<SDValue, 4> Parts(NumParts); 1616 getCopyToParts(DAG, getCurSDLoc(), 1617 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1618 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1619 1620 // 'inreg' on function refers to return value 1621 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1622 if (RetInReg) 1623 Flags.setInReg(); 1624 1625 // Propagate extension type if any 1626 if (ExtendKind == ISD::SIGN_EXTEND) 1627 Flags.setSExt(); 1628 else if (ExtendKind == ISD::ZERO_EXTEND) 1629 Flags.setZExt(); 1630 1631 for (unsigned i = 0; i < NumParts; ++i) { 1632 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1633 VT, /*isfixed=*/true, 0, 0)); 1634 OutVals.push_back(Parts[i]); 1635 } 1636 } 1637 } 1638 } 1639 1640 // Push in swifterror virtual register as the last element of Outs. This makes 1641 // sure swifterror virtual register will be returned in the swifterror 1642 // physical register. 1643 const Function *F = I.getParent()->getParent(); 1644 if (TLI.supportSwiftError() && 1645 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1646 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1647 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1648 Flags.setSwiftError(); 1649 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1650 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1651 true /*isfixed*/, 1 /*origidx*/, 1652 0 /*partOffs*/)); 1653 // Create SDNode for the swifterror virtual register. 1654 OutVals.push_back( 1655 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1656 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1657 EVT(TLI.getPointerTy(DL)))); 1658 } 1659 1660 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1661 CallingConv::ID CallConv = 1662 DAG.getMachineFunction().getFunction().getCallingConv(); 1663 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1664 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1665 1666 // Verify that the target's LowerReturn behaved as expected. 1667 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1668 "LowerReturn didn't return a valid chain!"); 1669 1670 // Update the DAG with the new chain value resulting from return lowering. 1671 DAG.setRoot(Chain); 1672 } 1673 1674 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1675 /// created for it, emit nodes to copy the value into the virtual 1676 /// registers. 1677 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1678 // Skip empty types 1679 if (V->getType()->isEmptyTy()) 1680 return; 1681 1682 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1683 if (VMI != FuncInfo.ValueMap.end()) { 1684 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1685 CopyValueToVirtualRegister(V, VMI->second); 1686 } 1687 } 1688 1689 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1690 /// the current basic block, add it to ValueMap now so that we'll get a 1691 /// CopyTo/FromReg. 1692 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1693 // No need to export constants. 1694 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1695 1696 // Already exported? 1697 if (FuncInfo.isExportedInst(V)) return; 1698 1699 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1700 CopyValueToVirtualRegister(V, Reg); 1701 } 1702 1703 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1704 const BasicBlock *FromBB) { 1705 // The operands of the setcc have to be in this block. We don't know 1706 // how to export them from some other block. 1707 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1708 // Can export from current BB. 1709 if (VI->getParent() == FromBB) 1710 return true; 1711 1712 // Is already exported, noop. 1713 return FuncInfo.isExportedInst(V); 1714 } 1715 1716 // If this is an argument, we can export it if the BB is the entry block or 1717 // if it is already exported. 1718 if (isa<Argument>(V)) { 1719 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1720 return true; 1721 1722 // Otherwise, can only export this if it is already exported. 1723 return FuncInfo.isExportedInst(V); 1724 } 1725 1726 // Otherwise, constants can always be exported. 1727 return true; 1728 } 1729 1730 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1731 BranchProbability 1732 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1733 const MachineBasicBlock *Dst) const { 1734 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1735 const BasicBlock *SrcBB = Src->getBasicBlock(); 1736 const BasicBlock *DstBB = Dst->getBasicBlock(); 1737 if (!BPI) { 1738 // If BPI is not available, set the default probability as 1 / N, where N is 1739 // the number of successors. 1740 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1741 return BranchProbability(1, SuccSize); 1742 } 1743 return BPI->getEdgeProbability(SrcBB, DstBB); 1744 } 1745 1746 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1747 MachineBasicBlock *Dst, 1748 BranchProbability Prob) { 1749 if (!FuncInfo.BPI) 1750 Src->addSuccessorWithoutProb(Dst); 1751 else { 1752 if (Prob.isUnknown()) 1753 Prob = getEdgeProbability(Src, Dst); 1754 Src->addSuccessor(Dst, Prob); 1755 } 1756 } 1757 1758 static bool InBlock(const Value *V, const BasicBlock *BB) { 1759 if (const Instruction *I = dyn_cast<Instruction>(V)) 1760 return I->getParent() == BB; 1761 return true; 1762 } 1763 1764 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1765 /// This function emits a branch and is used at the leaves of an OR or an 1766 /// AND operator tree. 1767 void 1768 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1769 MachineBasicBlock *TBB, 1770 MachineBasicBlock *FBB, 1771 MachineBasicBlock *CurBB, 1772 MachineBasicBlock *SwitchBB, 1773 BranchProbability TProb, 1774 BranchProbability FProb, 1775 bool InvertCond) { 1776 const BasicBlock *BB = CurBB->getBasicBlock(); 1777 1778 // If the leaf of the tree is a comparison, merge the condition into 1779 // the caseblock. 1780 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1781 // The operands of the cmp have to be in this block. We don't know 1782 // how to export them from some other block. If this is the first block 1783 // of the sequence, no exporting is needed. 1784 if (CurBB == SwitchBB || 1785 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1786 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1787 ISD::CondCode Condition; 1788 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1789 ICmpInst::Predicate Pred = 1790 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1791 Condition = getICmpCondCode(Pred); 1792 } else { 1793 const FCmpInst *FC = cast<FCmpInst>(Cond); 1794 FCmpInst::Predicate Pred = 1795 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1796 Condition = getFCmpCondCode(Pred); 1797 if (TM.Options.NoNaNsFPMath) 1798 Condition = getFCmpCodeWithoutNaN(Condition); 1799 } 1800 1801 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1802 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1803 SwitchCases.push_back(CB); 1804 return; 1805 } 1806 } 1807 1808 // Create a CaseBlock record representing this branch. 1809 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1810 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1811 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1812 SwitchCases.push_back(CB); 1813 } 1814 1815 /// FindMergedConditions - If Cond is an expression like 1816 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1817 MachineBasicBlock *TBB, 1818 MachineBasicBlock *FBB, 1819 MachineBasicBlock *CurBB, 1820 MachineBasicBlock *SwitchBB, 1821 Instruction::BinaryOps Opc, 1822 BranchProbability TProb, 1823 BranchProbability FProb, 1824 bool InvertCond) { 1825 // Skip over not part of the tree and remember to invert op and operands at 1826 // next level. 1827 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1828 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1829 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1830 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1831 !InvertCond); 1832 return; 1833 } 1834 } 1835 1836 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1837 // Compute the effective opcode for Cond, taking into account whether it needs 1838 // to be inverted, e.g. 1839 // and (not (or A, B)), C 1840 // gets lowered as 1841 // and (and (not A, not B), C) 1842 unsigned BOpc = 0; 1843 if (BOp) { 1844 BOpc = BOp->getOpcode(); 1845 if (InvertCond) { 1846 if (BOpc == Instruction::And) 1847 BOpc = Instruction::Or; 1848 else if (BOpc == Instruction::Or) 1849 BOpc = Instruction::And; 1850 } 1851 } 1852 1853 // If this node is not part of the or/and tree, emit it as a branch. 1854 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1855 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1856 BOp->getParent() != CurBB->getBasicBlock() || 1857 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1858 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1859 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1860 TProb, FProb, InvertCond); 1861 return; 1862 } 1863 1864 // Create TmpBB after CurBB. 1865 MachineFunction::iterator BBI(CurBB); 1866 MachineFunction &MF = DAG.getMachineFunction(); 1867 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1868 CurBB->getParent()->insert(++BBI, TmpBB); 1869 1870 if (Opc == Instruction::Or) { 1871 // Codegen X | Y as: 1872 // BB1: 1873 // jmp_if_X TBB 1874 // jmp TmpBB 1875 // TmpBB: 1876 // jmp_if_Y TBB 1877 // jmp FBB 1878 // 1879 1880 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1881 // The requirement is that 1882 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1883 // = TrueProb for original BB. 1884 // Assuming the original probabilities are A and B, one choice is to set 1885 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1886 // A/(1+B) and 2B/(1+B). This choice assumes that 1887 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1888 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1889 // TmpBB, but the math is more complicated. 1890 1891 auto NewTrueProb = TProb / 2; 1892 auto NewFalseProb = TProb / 2 + FProb; 1893 // Emit the LHS condition. 1894 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1895 NewTrueProb, NewFalseProb, InvertCond); 1896 1897 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1898 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1899 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1900 // Emit the RHS condition into TmpBB. 1901 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1902 Probs[0], Probs[1], InvertCond); 1903 } else { 1904 assert(Opc == Instruction::And && "Unknown merge op!"); 1905 // Codegen X & Y as: 1906 // BB1: 1907 // jmp_if_X TmpBB 1908 // jmp FBB 1909 // TmpBB: 1910 // jmp_if_Y TBB 1911 // jmp FBB 1912 // 1913 // This requires creation of TmpBB after CurBB. 1914 1915 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1916 // The requirement is that 1917 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1918 // = FalseProb for original BB. 1919 // Assuming the original probabilities are A and B, one choice is to set 1920 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1921 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1922 // TrueProb for BB1 * FalseProb for TmpBB. 1923 1924 auto NewTrueProb = TProb + FProb / 2; 1925 auto NewFalseProb = FProb / 2; 1926 // Emit the LHS condition. 1927 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1928 NewTrueProb, NewFalseProb, InvertCond); 1929 1930 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1931 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1932 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1933 // Emit the RHS condition into TmpBB. 1934 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1935 Probs[0], Probs[1], InvertCond); 1936 } 1937 } 1938 1939 /// If the set of cases should be emitted as a series of branches, return true. 1940 /// If we should emit this as a bunch of and/or'd together conditions, return 1941 /// false. 1942 bool 1943 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1944 if (Cases.size() != 2) return true; 1945 1946 // If this is two comparisons of the same values or'd or and'd together, they 1947 // will get folded into a single comparison, so don't emit two blocks. 1948 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1949 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1950 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1951 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1952 return false; 1953 } 1954 1955 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1956 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1957 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1958 Cases[0].CC == Cases[1].CC && 1959 isa<Constant>(Cases[0].CmpRHS) && 1960 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1961 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1962 return false; 1963 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1964 return false; 1965 } 1966 1967 return true; 1968 } 1969 1970 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1971 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1972 1973 // Update machine-CFG edges. 1974 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1975 1976 if (I.isUnconditional()) { 1977 // Update machine-CFG edges. 1978 BrMBB->addSuccessor(Succ0MBB); 1979 1980 // If this is not a fall-through branch or optimizations are switched off, 1981 // emit the branch. 1982 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1983 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1984 MVT::Other, getControlRoot(), 1985 DAG.getBasicBlock(Succ0MBB))); 1986 1987 return; 1988 } 1989 1990 // If this condition is one of the special cases we handle, do special stuff 1991 // now. 1992 const Value *CondVal = I.getCondition(); 1993 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1994 1995 // If this is a series of conditions that are or'd or and'd together, emit 1996 // this as a sequence of branches instead of setcc's with and/or operations. 1997 // As long as jumps are not expensive, this should improve performance. 1998 // For example, instead of something like: 1999 // cmp A, B 2000 // C = seteq 2001 // cmp D, E 2002 // F = setle 2003 // or C, F 2004 // jnz foo 2005 // Emit: 2006 // cmp A, B 2007 // je foo 2008 // cmp D, E 2009 // jle foo 2010 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2011 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2012 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2013 !I.getMetadata(LLVMContext::MD_unpredictable) && 2014 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2015 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2016 Opcode, 2017 getEdgeProbability(BrMBB, Succ0MBB), 2018 getEdgeProbability(BrMBB, Succ1MBB), 2019 /*InvertCond=*/false); 2020 // If the compares in later blocks need to use values not currently 2021 // exported from this block, export them now. This block should always 2022 // be the first entry. 2023 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2024 2025 // Allow some cases to be rejected. 2026 if (ShouldEmitAsBranches(SwitchCases)) { 2027 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2028 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2029 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2030 } 2031 2032 // Emit the branch for this block. 2033 visitSwitchCase(SwitchCases[0], BrMBB); 2034 SwitchCases.erase(SwitchCases.begin()); 2035 return; 2036 } 2037 2038 // Okay, we decided not to do this, remove any inserted MBB's and clear 2039 // SwitchCases. 2040 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2041 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2042 2043 SwitchCases.clear(); 2044 } 2045 } 2046 2047 // Create a CaseBlock record representing this branch. 2048 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2049 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2050 2051 // Use visitSwitchCase to actually insert the fast branch sequence for this 2052 // cond branch. 2053 visitSwitchCase(CB, BrMBB); 2054 } 2055 2056 /// visitSwitchCase - Emits the necessary code to represent a single node in 2057 /// the binary search tree resulting from lowering a switch instruction. 2058 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2059 MachineBasicBlock *SwitchBB) { 2060 SDValue Cond; 2061 SDValue CondLHS = getValue(CB.CmpLHS); 2062 SDLoc dl = CB.DL; 2063 2064 // Build the setcc now. 2065 if (!CB.CmpMHS) { 2066 // Fold "(X == true)" to X and "(X == false)" to !X to 2067 // handle common cases produced by branch lowering. 2068 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2069 CB.CC == ISD::SETEQ) 2070 Cond = CondLHS; 2071 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2072 CB.CC == ISD::SETEQ) { 2073 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2074 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2075 } else 2076 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2077 } else { 2078 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2079 2080 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2081 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2082 2083 SDValue CmpOp = getValue(CB.CmpMHS); 2084 EVT VT = CmpOp.getValueType(); 2085 2086 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2087 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2088 ISD::SETLE); 2089 } else { 2090 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2091 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2092 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2093 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2094 } 2095 } 2096 2097 // Update successor info 2098 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2099 // TrueBB and FalseBB are always different unless the incoming IR is 2100 // degenerate. This only happens when running llc on weird IR. 2101 if (CB.TrueBB != CB.FalseBB) 2102 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2103 SwitchBB->normalizeSuccProbs(); 2104 2105 // If the lhs block is the next block, invert the condition so that we can 2106 // fall through to the lhs instead of the rhs block. 2107 if (CB.TrueBB == NextBlock(SwitchBB)) { 2108 std::swap(CB.TrueBB, CB.FalseBB); 2109 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2110 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2111 } 2112 2113 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2114 MVT::Other, getControlRoot(), Cond, 2115 DAG.getBasicBlock(CB.TrueBB)); 2116 2117 // Insert the false branch. Do this even if it's a fall through branch, 2118 // this makes it easier to do DAG optimizations which require inverting 2119 // the branch condition. 2120 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2121 DAG.getBasicBlock(CB.FalseBB)); 2122 2123 DAG.setRoot(BrCond); 2124 } 2125 2126 /// visitJumpTable - Emit JumpTable node in the current MBB 2127 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2128 // Emit the code for the jump table 2129 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2130 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2131 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2132 JT.Reg, PTy); 2133 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2134 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2135 MVT::Other, Index.getValue(1), 2136 Table, Index); 2137 DAG.setRoot(BrJumpTable); 2138 } 2139 2140 /// visitJumpTableHeader - This function emits necessary code to produce index 2141 /// in the JumpTable from switch case. 2142 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2143 JumpTableHeader &JTH, 2144 MachineBasicBlock *SwitchBB) { 2145 SDLoc dl = getCurSDLoc(); 2146 2147 // Subtract the lowest switch case value from the value being switched on and 2148 // conditional branch to default mbb if the result is greater than the 2149 // difference between smallest and largest cases. 2150 SDValue SwitchOp = getValue(JTH.SValue); 2151 EVT VT = SwitchOp.getValueType(); 2152 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2153 DAG.getConstant(JTH.First, dl, VT)); 2154 2155 // The SDNode we just created, which holds the value being switched on minus 2156 // the smallest case value, needs to be copied to a virtual register so it 2157 // can be used as an index into the jump table in a subsequent basic block. 2158 // This value may be smaller or larger than the target's pointer type, and 2159 // therefore require extension or truncating. 2160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2161 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2162 2163 unsigned JumpTableReg = 2164 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2165 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2166 JumpTableReg, SwitchOp); 2167 JT.Reg = JumpTableReg; 2168 2169 // Emit the range check for the jump table, and branch to the default block 2170 // for the switch statement if the value being switched on exceeds the largest 2171 // case in the switch. 2172 SDValue CMP = DAG.getSetCC( 2173 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2174 Sub.getValueType()), 2175 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2176 2177 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2178 MVT::Other, CopyTo, CMP, 2179 DAG.getBasicBlock(JT.Default)); 2180 2181 // Avoid emitting unnecessary branches to the next block. 2182 if (JT.MBB != NextBlock(SwitchBB)) 2183 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2184 DAG.getBasicBlock(JT.MBB)); 2185 2186 DAG.setRoot(BrCond); 2187 } 2188 2189 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2190 /// variable if there exists one. 2191 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2192 SDValue &Chain) { 2193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2194 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2195 MachineFunction &MF = DAG.getMachineFunction(); 2196 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2197 MachineSDNode *Node = 2198 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2199 if (Global) { 2200 MachinePointerInfo MPInfo(Global); 2201 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2202 MachineMemOperand::MODereferenceable; 2203 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2204 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2205 DAG.setNodeMemRefs(Node, {MemRef}); 2206 } 2207 return SDValue(Node, 0); 2208 } 2209 2210 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2211 /// tail spliced into a stack protector check success bb. 2212 /// 2213 /// For a high level explanation of how this fits into the stack protector 2214 /// generation see the comment on the declaration of class 2215 /// StackProtectorDescriptor. 2216 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2217 MachineBasicBlock *ParentBB) { 2218 2219 // First create the loads to the guard/stack slot for the comparison. 2220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2221 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2222 2223 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2224 int FI = MFI.getStackProtectorIndex(); 2225 2226 SDValue Guard; 2227 SDLoc dl = getCurSDLoc(); 2228 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2229 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2230 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2231 2232 // Generate code to load the content of the guard slot. 2233 SDValue GuardVal = DAG.getLoad( 2234 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2235 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2236 MachineMemOperand::MOVolatile); 2237 2238 if (TLI.useStackGuardXorFP()) 2239 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2240 2241 // Retrieve guard check function, nullptr if instrumentation is inlined. 2242 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2243 // The target provides a guard check function to validate the guard value. 2244 // Generate a call to that function with the content of the guard slot as 2245 // argument. 2246 auto *Fn = cast<Function>(GuardCheck); 2247 FunctionType *FnTy = Fn->getFunctionType(); 2248 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2249 2250 TargetLowering::ArgListTy Args; 2251 TargetLowering::ArgListEntry Entry; 2252 Entry.Node = GuardVal; 2253 Entry.Ty = FnTy->getParamType(0); 2254 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2255 Entry.IsInReg = true; 2256 Args.push_back(Entry); 2257 2258 TargetLowering::CallLoweringInfo CLI(DAG); 2259 CLI.setDebugLoc(getCurSDLoc()) 2260 .setChain(DAG.getEntryNode()) 2261 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2262 getValue(GuardCheck), std::move(Args)); 2263 2264 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2265 DAG.setRoot(Result.second); 2266 return; 2267 } 2268 2269 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2270 // Otherwise, emit a volatile load to retrieve the stack guard value. 2271 SDValue Chain = DAG.getEntryNode(); 2272 if (TLI.useLoadStackGuardNode()) { 2273 Guard = getLoadStackGuard(DAG, dl, Chain); 2274 } else { 2275 const Value *IRGuard = TLI.getSDagStackGuard(M); 2276 SDValue GuardPtr = getValue(IRGuard); 2277 2278 Guard = 2279 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2280 Align, MachineMemOperand::MOVolatile); 2281 } 2282 2283 // Perform the comparison via a subtract/getsetcc. 2284 EVT VT = Guard.getValueType(); 2285 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2286 2287 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2288 *DAG.getContext(), 2289 Sub.getValueType()), 2290 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2291 2292 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2293 // branch to failure MBB. 2294 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2295 MVT::Other, GuardVal.getOperand(0), 2296 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2297 // Otherwise branch to success MBB. 2298 SDValue Br = DAG.getNode(ISD::BR, dl, 2299 MVT::Other, BrCond, 2300 DAG.getBasicBlock(SPD.getSuccessMBB())); 2301 2302 DAG.setRoot(Br); 2303 } 2304 2305 /// Codegen the failure basic block for a stack protector check. 2306 /// 2307 /// A failure stack protector machine basic block consists simply of a call to 2308 /// __stack_chk_fail(). 2309 /// 2310 /// For a high level explanation of how this fits into the stack protector 2311 /// generation see the comment on the declaration of class 2312 /// StackProtectorDescriptor. 2313 void 2314 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2316 SDValue Chain = 2317 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2318 None, false, getCurSDLoc(), false, false).second; 2319 DAG.setRoot(Chain); 2320 } 2321 2322 /// visitBitTestHeader - This function emits necessary code to produce value 2323 /// suitable for "bit tests" 2324 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2325 MachineBasicBlock *SwitchBB) { 2326 SDLoc dl = getCurSDLoc(); 2327 2328 // Subtract the minimum value 2329 SDValue SwitchOp = getValue(B.SValue); 2330 EVT VT = SwitchOp.getValueType(); 2331 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2332 DAG.getConstant(B.First, dl, VT)); 2333 2334 // Check range 2335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2336 SDValue RangeCmp = DAG.getSetCC( 2337 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2338 Sub.getValueType()), 2339 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2340 2341 // Determine the type of the test operands. 2342 bool UsePtrType = false; 2343 if (!TLI.isTypeLegal(VT)) 2344 UsePtrType = true; 2345 else { 2346 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2347 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2348 // Switch table case range are encoded into series of masks. 2349 // Just use pointer type, it's guaranteed to fit. 2350 UsePtrType = true; 2351 break; 2352 } 2353 } 2354 if (UsePtrType) { 2355 VT = TLI.getPointerTy(DAG.getDataLayout()); 2356 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2357 } 2358 2359 B.RegVT = VT.getSimpleVT(); 2360 B.Reg = FuncInfo.CreateReg(B.RegVT); 2361 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2362 2363 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2364 2365 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2366 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2367 SwitchBB->normalizeSuccProbs(); 2368 2369 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2370 MVT::Other, CopyTo, RangeCmp, 2371 DAG.getBasicBlock(B.Default)); 2372 2373 // Avoid emitting unnecessary branches to the next block. 2374 if (MBB != NextBlock(SwitchBB)) 2375 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2376 DAG.getBasicBlock(MBB)); 2377 2378 DAG.setRoot(BrRange); 2379 } 2380 2381 /// visitBitTestCase - this function produces one "bit test" 2382 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2383 MachineBasicBlock* NextMBB, 2384 BranchProbability BranchProbToNext, 2385 unsigned Reg, 2386 BitTestCase &B, 2387 MachineBasicBlock *SwitchBB) { 2388 SDLoc dl = getCurSDLoc(); 2389 MVT VT = BB.RegVT; 2390 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2391 SDValue Cmp; 2392 unsigned PopCount = countPopulation(B.Mask); 2393 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2394 if (PopCount == 1) { 2395 // Testing for a single bit; just compare the shift count with what it 2396 // would need to be to shift a 1 bit in that position. 2397 Cmp = DAG.getSetCC( 2398 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2399 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2400 ISD::SETEQ); 2401 } else if (PopCount == BB.Range) { 2402 // There is only one zero bit in the range, test for it directly. 2403 Cmp = DAG.getSetCC( 2404 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2405 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2406 ISD::SETNE); 2407 } else { 2408 // Make desired shift 2409 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2410 DAG.getConstant(1, dl, VT), ShiftOp); 2411 2412 // Emit bit tests and jumps 2413 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2414 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2415 Cmp = DAG.getSetCC( 2416 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2417 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2418 } 2419 2420 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2421 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2422 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2423 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2424 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2425 // one as they are relative probabilities (and thus work more like weights), 2426 // and hence we need to normalize them to let the sum of them become one. 2427 SwitchBB->normalizeSuccProbs(); 2428 2429 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2430 MVT::Other, getControlRoot(), 2431 Cmp, DAG.getBasicBlock(B.TargetBB)); 2432 2433 // Avoid emitting unnecessary branches to the next block. 2434 if (NextMBB != NextBlock(SwitchBB)) 2435 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2436 DAG.getBasicBlock(NextMBB)); 2437 2438 DAG.setRoot(BrAnd); 2439 } 2440 2441 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2442 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2443 2444 // Retrieve successors. Look through artificial IR level blocks like 2445 // catchswitch for successors. 2446 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2447 const BasicBlock *EHPadBB = I.getSuccessor(1); 2448 2449 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2450 // have to do anything here to lower funclet bundles. 2451 assert(!I.hasOperandBundlesOtherThan( 2452 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2453 "Cannot lower invokes with arbitrary operand bundles yet!"); 2454 2455 const Value *Callee(I.getCalledValue()); 2456 const Function *Fn = dyn_cast<Function>(Callee); 2457 if (isa<InlineAsm>(Callee)) 2458 visitInlineAsm(&I); 2459 else if (Fn && Fn->isIntrinsic()) { 2460 switch (Fn->getIntrinsicID()) { 2461 default: 2462 llvm_unreachable("Cannot invoke this intrinsic"); 2463 case Intrinsic::donothing: 2464 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2465 break; 2466 case Intrinsic::experimental_patchpoint_void: 2467 case Intrinsic::experimental_patchpoint_i64: 2468 visitPatchpoint(&I, EHPadBB); 2469 break; 2470 case Intrinsic::experimental_gc_statepoint: 2471 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2472 break; 2473 } 2474 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2475 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2476 // Eventually we will support lowering the @llvm.experimental.deoptimize 2477 // intrinsic, and right now there are no plans to support other intrinsics 2478 // with deopt state. 2479 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2480 } else { 2481 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2482 } 2483 2484 // If the value of the invoke is used outside of its defining block, make it 2485 // available as a virtual register. 2486 // We already took care of the exported value for the statepoint instruction 2487 // during call to the LowerStatepoint. 2488 if (!isStatepoint(I)) { 2489 CopyToExportRegsIfNeeded(&I); 2490 } 2491 2492 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2493 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2494 BranchProbability EHPadBBProb = 2495 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2496 : BranchProbability::getZero(); 2497 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2498 2499 // Update successor info. 2500 addSuccessorWithProb(InvokeMBB, Return); 2501 for (auto &UnwindDest : UnwindDests) { 2502 UnwindDest.first->setIsEHPad(); 2503 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2504 } 2505 InvokeMBB->normalizeSuccProbs(); 2506 2507 // Drop into normal successor. 2508 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2509 MVT::Other, getControlRoot(), 2510 DAG.getBasicBlock(Return))); 2511 } 2512 2513 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2514 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2515 } 2516 2517 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2518 assert(FuncInfo.MBB->isEHPad() && 2519 "Call to landingpad not in landing pad!"); 2520 2521 MachineBasicBlock *MBB = FuncInfo.MBB; 2522 addLandingPadInfo(LP, *MBB); 2523 2524 // If there aren't registers to copy the values into (e.g., during SjLj 2525 // exceptions), then don't bother to create these DAG nodes. 2526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2527 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2528 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2529 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2530 return; 2531 2532 // If landingpad's return type is token type, we don't create DAG nodes 2533 // for its exception pointer and selector value. The extraction of exception 2534 // pointer or selector value from token type landingpads is not currently 2535 // supported. 2536 if (LP.getType()->isTokenTy()) 2537 return; 2538 2539 SmallVector<EVT, 2> ValueVTs; 2540 SDLoc dl = getCurSDLoc(); 2541 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2542 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2543 2544 // Get the two live-in registers as SDValues. The physregs have already been 2545 // copied into virtual registers. 2546 SDValue Ops[2]; 2547 if (FuncInfo.ExceptionPointerVirtReg) { 2548 Ops[0] = DAG.getZExtOrTrunc( 2549 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2550 FuncInfo.ExceptionPointerVirtReg, 2551 TLI.getPointerTy(DAG.getDataLayout())), 2552 dl, ValueVTs[0]); 2553 } else { 2554 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2555 } 2556 Ops[1] = DAG.getZExtOrTrunc( 2557 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2558 FuncInfo.ExceptionSelectorVirtReg, 2559 TLI.getPointerTy(DAG.getDataLayout())), 2560 dl, ValueVTs[1]); 2561 2562 // Merge into one. 2563 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2564 DAG.getVTList(ValueVTs), Ops); 2565 setValue(&LP, Res); 2566 } 2567 2568 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2569 #ifndef NDEBUG 2570 for (const CaseCluster &CC : Clusters) 2571 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2572 #endif 2573 2574 llvm::sort(Clusters.begin(), Clusters.end(), 2575 [](const CaseCluster &a, const CaseCluster &b) { 2576 return a.Low->getValue().slt(b.Low->getValue()); 2577 }); 2578 2579 // Merge adjacent clusters with the same destination. 2580 const unsigned N = Clusters.size(); 2581 unsigned DstIndex = 0; 2582 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2583 CaseCluster &CC = Clusters[SrcIndex]; 2584 const ConstantInt *CaseVal = CC.Low; 2585 MachineBasicBlock *Succ = CC.MBB; 2586 2587 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2588 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2589 // If this case has the same successor and is a neighbour, merge it into 2590 // the previous cluster. 2591 Clusters[DstIndex - 1].High = CaseVal; 2592 Clusters[DstIndex - 1].Prob += CC.Prob; 2593 } else { 2594 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2595 sizeof(Clusters[SrcIndex])); 2596 } 2597 } 2598 Clusters.resize(DstIndex); 2599 } 2600 2601 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2602 MachineBasicBlock *Last) { 2603 // Update JTCases. 2604 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2605 if (JTCases[i].first.HeaderBB == First) 2606 JTCases[i].first.HeaderBB = Last; 2607 2608 // Update BitTestCases. 2609 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2610 if (BitTestCases[i].Parent == First) 2611 BitTestCases[i].Parent = Last; 2612 } 2613 2614 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2615 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2616 2617 // Update machine-CFG edges with unique successors. 2618 SmallSet<BasicBlock*, 32> Done; 2619 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2620 BasicBlock *BB = I.getSuccessor(i); 2621 bool Inserted = Done.insert(BB).second; 2622 if (!Inserted) 2623 continue; 2624 2625 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2626 addSuccessorWithProb(IndirectBrMBB, Succ); 2627 } 2628 IndirectBrMBB->normalizeSuccProbs(); 2629 2630 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2631 MVT::Other, getControlRoot(), 2632 getValue(I.getAddress()))); 2633 } 2634 2635 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2636 if (!DAG.getTarget().Options.TrapUnreachable) 2637 return; 2638 2639 // We may be able to ignore unreachable behind a noreturn call. 2640 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2641 const BasicBlock &BB = *I.getParent(); 2642 if (&I != &BB.front()) { 2643 BasicBlock::const_iterator PredI = 2644 std::prev(BasicBlock::const_iterator(&I)); 2645 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2646 if (Call->doesNotReturn()) 2647 return; 2648 } 2649 } 2650 } 2651 2652 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2653 } 2654 2655 void SelectionDAGBuilder::visitFSub(const User &I) { 2656 // -0.0 - X --> fneg 2657 Type *Ty = I.getType(); 2658 if (isa<Constant>(I.getOperand(0)) && 2659 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2660 SDValue Op2 = getValue(I.getOperand(1)); 2661 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2662 Op2.getValueType(), Op2)); 2663 return; 2664 } 2665 2666 visitBinary(I, ISD::FSUB); 2667 } 2668 2669 /// Checks if the given instruction performs a vector reduction, in which case 2670 /// we have the freedom to alter the elements in the result as long as the 2671 /// reduction of them stays unchanged. 2672 static bool isVectorReductionOp(const User *I) { 2673 const Instruction *Inst = dyn_cast<Instruction>(I); 2674 if (!Inst || !Inst->getType()->isVectorTy()) 2675 return false; 2676 2677 auto OpCode = Inst->getOpcode(); 2678 switch (OpCode) { 2679 case Instruction::Add: 2680 case Instruction::Mul: 2681 case Instruction::And: 2682 case Instruction::Or: 2683 case Instruction::Xor: 2684 break; 2685 case Instruction::FAdd: 2686 case Instruction::FMul: 2687 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2688 if (FPOp->getFastMathFlags().isFast()) 2689 break; 2690 LLVM_FALLTHROUGH; 2691 default: 2692 return false; 2693 } 2694 2695 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2696 // Ensure the reduction size is a power of 2. 2697 if (!isPowerOf2_32(ElemNum)) 2698 return false; 2699 2700 unsigned ElemNumToReduce = ElemNum; 2701 2702 // Do DFS search on the def-use chain from the given instruction. We only 2703 // allow four kinds of operations during the search until we reach the 2704 // instruction that extracts the first element from the vector: 2705 // 2706 // 1. The reduction operation of the same opcode as the given instruction. 2707 // 2708 // 2. PHI node. 2709 // 2710 // 3. ShuffleVector instruction together with a reduction operation that 2711 // does a partial reduction. 2712 // 2713 // 4. ExtractElement that extracts the first element from the vector, and we 2714 // stop searching the def-use chain here. 2715 // 2716 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2717 // from 1-3 to the stack to continue the DFS. The given instruction is not 2718 // a reduction operation if we meet any other instructions other than those 2719 // listed above. 2720 2721 SmallVector<const User *, 16> UsersToVisit{Inst}; 2722 SmallPtrSet<const User *, 16> Visited; 2723 bool ReduxExtracted = false; 2724 2725 while (!UsersToVisit.empty()) { 2726 auto User = UsersToVisit.back(); 2727 UsersToVisit.pop_back(); 2728 if (!Visited.insert(User).second) 2729 continue; 2730 2731 for (const auto &U : User->users()) { 2732 auto Inst = dyn_cast<Instruction>(U); 2733 if (!Inst) 2734 return false; 2735 2736 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2737 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2738 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2739 return false; 2740 UsersToVisit.push_back(U); 2741 } else if (const ShuffleVectorInst *ShufInst = 2742 dyn_cast<ShuffleVectorInst>(U)) { 2743 // Detect the following pattern: A ShuffleVector instruction together 2744 // with a reduction that do partial reduction on the first and second 2745 // ElemNumToReduce / 2 elements, and store the result in 2746 // ElemNumToReduce / 2 elements in another vector. 2747 2748 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2749 if (ResultElements < ElemNum) 2750 return false; 2751 2752 if (ElemNumToReduce == 1) 2753 return false; 2754 if (!isa<UndefValue>(U->getOperand(1))) 2755 return false; 2756 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2757 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2758 return false; 2759 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2760 if (ShufInst->getMaskValue(i) != -1) 2761 return false; 2762 2763 // There is only one user of this ShuffleVector instruction, which 2764 // must be a reduction operation. 2765 if (!U->hasOneUse()) 2766 return false; 2767 2768 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2769 if (!U2 || U2->getOpcode() != OpCode) 2770 return false; 2771 2772 // Check operands of the reduction operation. 2773 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2774 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2775 UsersToVisit.push_back(U2); 2776 ElemNumToReduce /= 2; 2777 } else 2778 return false; 2779 } else if (isa<ExtractElementInst>(U)) { 2780 // At this moment we should have reduced all elements in the vector. 2781 if (ElemNumToReduce != 1) 2782 return false; 2783 2784 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2785 if (!Val || !Val->isZero()) 2786 return false; 2787 2788 ReduxExtracted = true; 2789 } else 2790 return false; 2791 } 2792 } 2793 return ReduxExtracted; 2794 } 2795 2796 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2797 SDNodeFlags Flags; 2798 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2799 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2800 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2801 } 2802 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2803 Flags.setExact(ExactOp->isExact()); 2804 } 2805 if (isVectorReductionOp(&I)) { 2806 Flags.setVectorReduction(true); 2807 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2808 } 2809 2810 SDValue Op1 = getValue(I.getOperand(0)); 2811 SDValue Op2 = getValue(I.getOperand(1)); 2812 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2813 Op1, Op2, Flags); 2814 setValue(&I, BinNodeValue); 2815 } 2816 2817 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2818 SDValue Op1 = getValue(I.getOperand(0)); 2819 SDValue Op2 = getValue(I.getOperand(1)); 2820 2821 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2822 Op2.getValueType(), DAG.getDataLayout()); 2823 2824 // Coerce the shift amount to the right type if we can. 2825 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2826 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2827 unsigned Op2Size = Op2.getValueSizeInBits(); 2828 SDLoc DL = getCurSDLoc(); 2829 2830 // If the operand is smaller than the shift count type, promote it. 2831 if (ShiftSize > Op2Size) 2832 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2833 2834 // If the operand is larger than the shift count type but the shift 2835 // count type has enough bits to represent any shift value, truncate 2836 // it now. This is a common case and it exposes the truncate to 2837 // optimization early. 2838 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2839 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2840 // Otherwise we'll need to temporarily settle for some other convenient 2841 // type. Type legalization will make adjustments once the shiftee is split. 2842 else 2843 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2844 } 2845 2846 bool nuw = false; 2847 bool nsw = false; 2848 bool exact = false; 2849 2850 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2851 2852 if (const OverflowingBinaryOperator *OFBinOp = 2853 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2854 nuw = OFBinOp->hasNoUnsignedWrap(); 2855 nsw = OFBinOp->hasNoSignedWrap(); 2856 } 2857 if (const PossiblyExactOperator *ExactOp = 2858 dyn_cast<const PossiblyExactOperator>(&I)) 2859 exact = ExactOp->isExact(); 2860 } 2861 SDNodeFlags Flags; 2862 Flags.setExact(exact); 2863 Flags.setNoSignedWrap(nsw); 2864 Flags.setNoUnsignedWrap(nuw); 2865 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2866 Flags); 2867 setValue(&I, Res); 2868 } 2869 2870 void SelectionDAGBuilder::visitSDiv(const User &I) { 2871 SDValue Op1 = getValue(I.getOperand(0)); 2872 SDValue Op2 = getValue(I.getOperand(1)); 2873 2874 SDNodeFlags Flags; 2875 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2876 cast<PossiblyExactOperator>(&I)->isExact()); 2877 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2878 Op2, Flags)); 2879 } 2880 2881 void SelectionDAGBuilder::visitICmp(const User &I) { 2882 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2883 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2884 predicate = IC->getPredicate(); 2885 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2886 predicate = ICmpInst::Predicate(IC->getPredicate()); 2887 SDValue Op1 = getValue(I.getOperand(0)); 2888 SDValue Op2 = getValue(I.getOperand(1)); 2889 ISD::CondCode Opcode = getICmpCondCode(predicate); 2890 2891 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2892 I.getType()); 2893 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2894 } 2895 2896 void SelectionDAGBuilder::visitFCmp(const User &I) { 2897 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2898 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2899 predicate = FC->getPredicate(); 2900 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2901 predicate = FCmpInst::Predicate(FC->getPredicate()); 2902 SDValue Op1 = getValue(I.getOperand(0)); 2903 SDValue Op2 = getValue(I.getOperand(1)); 2904 2905 ISD::CondCode Condition = getFCmpCondCode(predicate); 2906 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2907 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2908 Condition = getFCmpCodeWithoutNaN(Condition); 2909 2910 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2911 I.getType()); 2912 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2913 } 2914 2915 // Check if the condition of the select has one use or two users that are both 2916 // selects with the same condition. 2917 static bool hasOnlySelectUsers(const Value *Cond) { 2918 return llvm::all_of(Cond->users(), [](const Value *V) { 2919 return isa<SelectInst>(V); 2920 }); 2921 } 2922 2923 void SelectionDAGBuilder::visitSelect(const User &I) { 2924 SmallVector<EVT, 4> ValueVTs; 2925 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2926 ValueVTs); 2927 unsigned NumValues = ValueVTs.size(); 2928 if (NumValues == 0) return; 2929 2930 SmallVector<SDValue, 4> Values(NumValues); 2931 SDValue Cond = getValue(I.getOperand(0)); 2932 SDValue LHSVal = getValue(I.getOperand(1)); 2933 SDValue RHSVal = getValue(I.getOperand(2)); 2934 auto BaseOps = {Cond}; 2935 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2936 ISD::VSELECT : ISD::SELECT; 2937 2938 // Min/max matching is only viable if all output VTs are the same. 2939 if (is_splat(ValueVTs)) { 2940 EVT VT = ValueVTs[0]; 2941 LLVMContext &Ctx = *DAG.getContext(); 2942 auto &TLI = DAG.getTargetLoweringInfo(); 2943 2944 // We care about the legality of the operation after it has been type 2945 // legalized. 2946 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2947 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2948 VT = TLI.getTypeToTransformTo(Ctx, VT); 2949 2950 // If the vselect is legal, assume we want to leave this as a vector setcc + 2951 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2952 // min/max is legal on the scalar type. 2953 bool UseScalarMinMax = VT.isVector() && 2954 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2955 2956 Value *LHS, *RHS; 2957 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2958 ISD::NodeType Opc = ISD::DELETED_NODE; 2959 switch (SPR.Flavor) { 2960 case SPF_UMAX: Opc = ISD::UMAX; break; 2961 case SPF_UMIN: Opc = ISD::UMIN; break; 2962 case SPF_SMAX: Opc = ISD::SMAX; break; 2963 case SPF_SMIN: Opc = ISD::SMIN; break; 2964 case SPF_FMINNUM: 2965 switch (SPR.NaNBehavior) { 2966 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2967 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2968 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2969 case SPNB_RETURNS_ANY: { 2970 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2971 Opc = ISD::FMINNUM; 2972 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2973 Opc = ISD::FMINNAN; 2974 else if (UseScalarMinMax) 2975 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2976 ISD::FMINNUM : ISD::FMINNAN; 2977 break; 2978 } 2979 } 2980 break; 2981 case SPF_FMAXNUM: 2982 switch (SPR.NaNBehavior) { 2983 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2984 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2985 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2986 case SPNB_RETURNS_ANY: 2987 2988 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2989 Opc = ISD::FMAXNUM; 2990 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2991 Opc = ISD::FMAXNAN; 2992 else if (UseScalarMinMax) 2993 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2994 ISD::FMAXNUM : ISD::FMAXNAN; 2995 break; 2996 } 2997 break; 2998 default: break; 2999 } 3000 3001 if (Opc != ISD::DELETED_NODE && 3002 (TLI.isOperationLegalOrCustom(Opc, VT) || 3003 (UseScalarMinMax && 3004 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3005 // If the underlying comparison instruction is used by any other 3006 // instruction, the consumed instructions won't be destroyed, so it is 3007 // not profitable to convert to a min/max. 3008 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3009 OpCode = Opc; 3010 LHSVal = getValue(LHS); 3011 RHSVal = getValue(RHS); 3012 BaseOps = {}; 3013 } 3014 } 3015 3016 for (unsigned i = 0; i != NumValues; ++i) { 3017 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3018 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3019 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3020 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3021 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3022 Ops); 3023 } 3024 3025 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3026 DAG.getVTList(ValueVTs), Values)); 3027 } 3028 3029 void SelectionDAGBuilder::visitTrunc(const User &I) { 3030 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3031 SDValue N = getValue(I.getOperand(0)); 3032 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3033 I.getType()); 3034 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3035 } 3036 3037 void SelectionDAGBuilder::visitZExt(const User &I) { 3038 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3039 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3040 SDValue N = getValue(I.getOperand(0)); 3041 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3042 I.getType()); 3043 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3044 } 3045 3046 void SelectionDAGBuilder::visitSExt(const User &I) { 3047 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3048 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3049 SDValue N = getValue(I.getOperand(0)); 3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3051 I.getType()); 3052 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3053 } 3054 3055 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3056 // FPTrunc is never a no-op cast, no need to check 3057 SDValue N = getValue(I.getOperand(0)); 3058 SDLoc dl = getCurSDLoc(); 3059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3060 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3061 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3062 DAG.getTargetConstant( 3063 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3064 } 3065 3066 void SelectionDAGBuilder::visitFPExt(const User &I) { 3067 // FPExt is never a no-op cast, no need to check 3068 SDValue N = getValue(I.getOperand(0)); 3069 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3070 I.getType()); 3071 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3072 } 3073 3074 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3075 // FPToUI is never a no-op cast, no need to check 3076 SDValue N = getValue(I.getOperand(0)); 3077 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3078 I.getType()); 3079 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3080 } 3081 3082 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3083 // FPToSI is never a no-op cast, no need to check 3084 SDValue N = getValue(I.getOperand(0)); 3085 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3086 I.getType()); 3087 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3088 } 3089 3090 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3091 // UIToFP is never a no-op cast, no need to check 3092 SDValue N = getValue(I.getOperand(0)); 3093 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3094 I.getType()); 3095 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3096 } 3097 3098 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3099 // SIToFP is never a no-op cast, no need to check 3100 SDValue N = getValue(I.getOperand(0)); 3101 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3102 I.getType()); 3103 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3104 } 3105 3106 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3107 // What to do depends on the size of the integer and the size of the pointer. 3108 // We can either truncate, zero extend, or no-op, accordingly. 3109 SDValue N = getValue(I.getOperand(0)); 3110 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3111 I.getType()); 3112 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3113 } 3114 3115 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3116 // What to do depends on the size of the integer and the size of the pointer. 3117 // We can either truncate, zero extend, or no-op, accordingly. 3118 SDValue N = getValue(I.getOperand(0)); 3119 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3120 I.getType()); 3121 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3122 } 3123 3124 void SelectionDAGBuilder::visitBitCast(const User &I) { 3125 SDValue N = getValue(I.getOperand(0)); 3126 SDLoc dl = getCurSDLoc(); 3127 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3128 I.getType()); 3129 3130 // BitCast assures us that source and destination are the same size so this is 3131 // either a BITCAST or a no-op. 3132 if (DestVT != N.getValueType()) 3133 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3134 DestVT, N)); // convert types. 3135 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3136 // might fold any kind of constant expression to an integer constant and that 3137 // is not what we are looking for. Only recognize a bitcast of a genuine 3138 // constant integer as an opaque constant. 3139 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3140 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3141 /*isOpaque*/true)); 3142 else 3143 setValue(&I, N); // noop cast. 3144 } 3145 3146 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 const Value *SV = I.getOperand(0); 3149 SDValue N = getValue(SV); 3150 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3151 3152 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3153 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3154 3155 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3156 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3157 3158 setValue(&I, N); 3159 } 3160 3161 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3163 SDValue InVec = getValue(I.getOperand(0)); 3164 SDValue InVal = getValue(I.getOperand(1)); 3165 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3166 TLI.getVectorIdxTy(DAG.getDataLayout())); 3167 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3168 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3169 InVec, InVal, InIdx)); 3170 } 3171 3172 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3174 SDValue InVec = getValue(I.getOperand(0)); 3175 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3176 TLI.getVectorIdxTy(DAG.getDataLayout())); 3177 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3178 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3179 InVec, InIdx)); 3180 } 3181 3182 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3183 SDValue Src1 = getValue(I.getOperand(0)); 3184 SDValue Src2 = getValue(I.getOperand(1)); 3185 SDLoc DL = getCurSDLoc(); 3186 3187 SmallVector<int, 8> Mask; 3188 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3189 unsigned MaskNumElts = Mask.size(); 3190 3191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3192 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3193 EVT SrcVT = Src1.getValueType(); 3194 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3195 3196 if (SrcNumElts == MaskNumElts) { 3197 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3198 return; 3199 } 3200 3201 // Normalize the shuffle vector since mask and vector length don't match. 3202 if (SrcNumElts < MaskNumElts) { 3203 // Mask is longer than the source vectors. We can use concatenate vector to 3204 // make the mask and vectors lengths match. 3205 3206 if (MaskNumElts % SrcNumElts == 0) { 3207 // Mask length is a multiple of the source vector length. 3208 // Check if the shuffle is some kind of concatenation of the input 3209 // vectors. 3210 unsigned NumConcat = MaskNumElts / SrcNumElts; 3211 bool IsConcat = true; 3212 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3213 for (unsigned i = 0; i != MaskNumElts; ++i) { 3214 int Idx = Mask[i]; 3215 if (Idx < 0) 3216 continue; 3217 // Ensure the indices in each SrcVT sized piece are sequential and that 3218 // the same source is used for the whole piece. 3219 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3220 (ConcatSrcs[i / SrcNumElts] >= 0 && 3221 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3222 IsConcat = false; 3223 break; 3224 } 3225 // Remember which source this index came from. 3226 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3227 } 3228 3229 // The shuffle is concatenating multiple vectors together. Just emit 3230 // a CONCAT_VECTORS operation. 3231 if (IsConcat) { 3232 SmallVector<SDValue, 8> ConcatOps; 3233 for (auto Src : ConcatSrcs) { 3234 if (Src < 0) 3235 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3236 else if (Src == 0) 3237 ConcatOps.push_back(Src1); 3238 else 3239 ConcatOps.push_back(Src2); 3240 } 3241 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3242 return; 3243 } 3244 } 3245 3246 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3247 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3248 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3249 PaddedMaskNumElts); 3250 3251 // Pad both vectors with undefs to make them the same length as the mask. 3252 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3253 3254 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3255 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3256 MOps1[0] = Src1; 3257 MOps2[0] = Src2; 3258 3259 Src1 = Src1.isUndef() 3260 ? DAG.getUNDEF(PaddedVT) 3261 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3262 Src2 = Src2.isUndef() 3263 ? DAG.getUNDEF(PaddedVT) 3264 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3265 3266 // Readjust mask for new input vector length. 3267 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3268 for (unsigned i = 0; i != MaskNumElts; ++i) { 3269 int Idx = Mask[i]; 3270 if (Idx >= (int)SrcNumElts) 3271 Idx -= SrcNumElts - PaddedMaskNumElts; 3272 MappedOps[i] = Idx; 3273 } 3274 3275 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3276 3277 // If the concatenated vector was padded, extract a subvector with the 3278 // correct number of elements. 3279 if (MaskNumElts != PaddedMaskNumElts) 3280 Result = DAG.getNode( 3281 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3282 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3283 3284 setValue(&I, Result); 3285 return; 3286 } 3287 3288 if (SrcNumElts > MaskNumElts) { 3289 // Analyze the access pattern of the vector to see if we can extract 3290 // two subvectors and do the shuffle. 3291 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3292 bool CanExtract = true; 3293 for (int Idx : Mask) { 3294 unsigned Input = 0; 3295 if (Idx < 0) 3296 continue; 3297 3298 if (Idx >= (int)SrcNumElts) { 3299 Input = 1; 3300 Idx -= SrcNumElts; 3301 } 3302 3303 // If all the indices come from the same MaskNumElts sized portion of 3304 // the sources we can use extract. Also make sure the extract wouldn't 3305 // extract past the end of the source. 3306 int NewStartIdx = alignDown(Idx, MaskNumElts); 3307 if (NewStartIdx + MaskNumElts > SrcNumElts || 3308 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3309 CanExtract = false; 3310 // Make sure we always update StartIdx as we use it to track if all 3311 // elements are undef. 3312 StartIdx[Input] = NewStartIdx; 3313 } 3314 3315 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3316 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3317 return; 3318 } 3319 if (CanExtract) { 3320 // Extract appropriate subvector and generate a vector shuffle 3321 for (unsigned Input = 0; Input < 2; ++Input) { 3322 SDValue &Src = Input == 0 ? Src1 : Src2; 3323 if (StartIdx[Input] < 0) 3324 Src = DAG.getUNDEF(VT); 3325 else { 3326 Src = DAG.getNode( 3327 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3328 DAG.getConstant(StartIdx[Input], DL, 3329 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3330 } 3331 } 3332 3333 // Calculate new mask. 3334 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3335 for (int &Idx : MappedOps) { 3336 if (Idx >= (int)SrcNumElts) 3337 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3338 else if (Idx >= 0) 3339 Idx -= StartIdx[0]; 3340 } 3341 3342 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3343 return; 3344 } 3345 } 3346 3347 // We can't use either concat vectors or extract subvectors so fall back to 3348 // replacing the shuffle with extract and build vector. 3349 // to insert and build vector. 3350 EVT EltVT = VT.getVectorElementType(); 3351 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3352 SmallVector<SDValue,8> Ops; 3353 for (int Idx : Mask) { 3354 SDValue Res; 3355 3356 if (Idx < 0) { 3357 Res = DAG.getUNDEF(EltVT); 3358 } else { 3359 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3360 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3361 3362 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3363 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3364 } 3365 3366 Ops.push_back(Res); 3367 } 3368 3369 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3370 } 3371 3372 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3373 ArrayRef<unsigned> Indices; 3374 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3375 Indices = IV->getIndices(); 3376 else 3377 Indices = cast<ConstantExpr>(&I)->getIndices(); 3378 3379 const Value *Op0 = I.getOperand(0); 3380 const Value *Op1 = I.getOperand(1); 3381 Type *AggTy = I.getType(); 3382 Type *ValTy = Op1->getType(); 3383 bool IntoUndef = isa<UndefValue>(Op0); 3384 bool FromUndef = isa<UndefValue>(Op1); 3385 3386 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3387 3388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3389 SmallVector<EVT, 4> AggValueVTs; 3390 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3391 SmallVector<EVT, 4> ValValueVTs; 3392 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3393 3394 unsigned NumAggValues = AggValueVTs.size(); 3395 unsigned NumValValues = ValValueVTs.size(); 3396 SmallVector<SDValue, 4> Values(NumAggValues); 3397 3398 // Ignore an insertvalue that produces an empty object 3399 if (!NumAggValues) { 3400 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3401 return; 3402 } 3403 3404 SDValue Agg = getValue(Op0); 3405 unsigned i = 0; 3406 // Copy the beginning value(s) from the original aggregate. 3407 for (; i != LinearIndex; ++i) 3408 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3409 SDValue(Agg.getNode(), Agg.getResNo() + i); 3410 // Copy values from the inserted value(s). 3411 if (NumValValues) { 3412 SDValue Val = getValue(Op1); 3413 for (; i != LinearIndex + NumValValues; ++i) 3414 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3415 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3416 } 3417 // Copy remaining value(s) from the original aggregate. 3418 for (; i != NumAggValues; ++i) 3419 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3420 SDValue(Agg.getNode(), Agg.getResNo() + i); 3421 3422 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3423 DAG.getVTList(AggValueVTs), Values)); 3424 } 3425 3426 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3427 ArrayRef<unsigned> Indices; 3428 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3429 Indices = EV->getIndices(); 3430 else 3431 Indices = cast<ConstantExpr>(&I)->getIndices(); 3432 3433 const Value *Op0 = I.getOperand(0); 3434 Type *AggTy = Op0->getType(); 3435 Type *ValTy = I.getType(); 3436 bool OutOfUndef = isa<UndefValue>(Op0); 3437 3438 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3439 3440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3441 SmallVector<EVT, 4> ValValueVTs; 3442 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3443 3444 unsigned NumValValues = ValValueVTs.size(); 3445 3446 // Ignore a extractvalue that produces an empty object 3447 if (!NumValValues) { 3448 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3449 return; 3450 } 3451 3452 SmallVector<SDValue, 4> Values(NumValValues); 3453 3454 SDValue Agg = getValue(Op0); 3455 // Copy out the selected value(s). 3456 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3457 Values[i - LinearIndex] = 3458 OutOfUndef ? 3459 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3460 SDValue(Agg.getNode(), Agg.getResNo() + i); 3461 3462 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3463 DAG.getVTList(ValValueVTs), Values)); 3464 } 3465 3466 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3467 Value *Op0 = I.getOperand(0); 3468 // Note that the pointer operand may be a vector of pointers. Take the scalar 3469 // element which holds a pointer. 3470 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3471 SDValue N = getValue(Op0); 3472 SDLoc dl = getCurSDLoc(); 3473 3474 // Normalize Vector GEP - all scalar operands should be converted to the 3475 // splat vector. 3476 unsigned VectorWidth = I.getType()->isVectorTy() ? 3477 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3478 3479 if (VectorWidth && !N.getValueType().isVector()) { 3480 LLVMContext &Context = *DAG.getContext(); 3481 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3482 N = DAG.getSplatBuildVector(VT, dl, N); 3483 } 3484 3485 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3486 GTI != E; ++GTI) { 3487 const Value *Idx = GTI.getOperand(); 3488 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3489 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3490 if (Field) { 3491 // N = N + Offset 3492 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3493 3494 // In an inbounds GEP with an offset that is nonnegative even when 3495 // interpreted as signed, assume there is no unsigned overflow. 3496 SDNodeFlags Flags; 3497 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3498 Flags.setNoUnsignedWrap(true); 3499 3500 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3501 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3502 } 3503 } else { 3504 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3505 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3506 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3507 3508 // If this is a scalar constant or a splat vector of constants, 3509 // handle it quickly. 3510 const auto *CI = dyn_cast<ConstantInt>(Idx); 3511 if (!CI && isa<ConstantDataVector>(Idx) && 3512 cast<ConstantDataVector>(Idx)->getSplatValue()) 3513 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3514 3515 if (CI) { 3516 if (CI->isZero()) 3517 continue; 3518 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3519 LLVMContext &Context = *DAG.getContext(); 3520 SDValue OffsVal = VectorWidth ? 3521 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3522 DAG.getConstant(Offs, dl, IdxTy); 3523 3524 // In an inbouds GEP with an offset that is nonnegative even when 3525 // interpreted as signed, assume there is no unsigned overflow. 3526 SDNodeFlags Flags; 3527 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3528 Flags.setNoUnsignedWrap(true); 3529 3530 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3531 continue; 3532 } 3533 3534 // N = N + Idx * ElementSize; 3535 SDValue IdxN = getValue(Idx); 3536 3537 if (!IdxN.getValueType().isVector() && VectorWidth) { 3538 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3539 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3540 } 3541 3542 // If the index is smaller or larger than intptr_t, truncate or extend 3543 // it. 3544 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3545 3546 // If this is a multiply by a power of two, turn it into a shl 3547 // immediately. This is a very common case. 3548 if (ElementSize != 1) { 3549 if (ElementSize.isPowerOf2()) { 3550 unsigned Amt = ElementSize.logBase2(); 3551 IdxN = DAG.getNode(ISD::SHL, dl, 3552 N.getValueType(), IdxN, 3553 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3554 } else { 3555 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3556 IdxN = DAG.getNode(ISD::MUL, dl, 3557 N.getValueType(), IdxN, Scale); 3558 } 3559 } 3560 3561 N = DAG.getNode(ISD::ADD, dl, 3562 N.getValueType(), N, IdxN); 3563 } 3564 } 3565 3566 setValue(&I, N); 3567 } 3568 3569 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3570 // If this is a fixed sized alloca in the entry block of the function, 3571 // allocate it statically on the stack. 3572 if (FuncInfo.StaticAllocaMap.count(&I)) 3573 return; // getValue will auto-populate this. 3574 3575 SDLoc dl = getCurSDLoc(); 3576 Type *Ty = I.getAllocatedType(); 3577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3578 auto &DL = DAG.getDataLayout(); 3579 uint64_t TySize = DL.getTypeAllocSize(Ty); 3580 unsigned Align = 3581 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3582 3583 SDValue AllocSize = getValue(I.getArraySize()); 3584 3585 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3586 if (AllocSize.getValueType() != IntPtr) 3587 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3588 3589 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3590 AllocSize, 3591 DAG.getConstant(TySize, dl, IntPtr)); 3592 3593 // Handle alignment. If the requested alignment is less than or equal to 3594 // the stack alignment, ignore it. If the size is greater than or equal to 3595 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3596 unsigned StackAlign = 3597 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3598 if (Align <= StackAlign) 3599 Align = 0; 3600 3601 // Round the size of the allocation up to the stack alignment size 3602 // by add SA-1 to the size. This doesn't overflow because we're computing 3603 // an address inside an alloca. 3604 SDNodeFlags Flags; 3605 Flags.setNoUnsignedWrap(true); 3606 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3607 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3608 3609 // Mask out the low bits for alignment purposes. 3610 AllocSize = 3611 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3612 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3613 3614 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3615 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3616 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3617 setValue(&I, DSA); 3618 DAG.setRoot(DSA.getValue(1)); 3619 3620 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3621 } 3622 3623 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3624 if (I.isAtomic()) 3625 return visitAtomicLoad(I); 3626 3627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3628 const Value *SV = I.getOperand(0); 3629 if (TLI.supportSwiftError()) { 3630 // Swifterror values can come from either a function parameter with 3631 // swifterror attribute or an alloca with swifterror attribute. 3632 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3633 if (Arg->hasSwiftErrorAttr()) 3634 return visitLoadFromSwiftError(I); 3635 } 3636 3637 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3638 if (Alloca->isSwiftError()) 3639 return visitLoadFromSwiftError(I); 3640 } 3641 } 3642 3643 SDValue Ptr = getValue(SV); 3644 3645 Type *Ty = I.getType(); 3646 3647 bool isVolatile = I.isVolatile(); 3648 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3649 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3650 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3651 unsigned Alignment = I.getAlignment(); 3652 3653 AAMDNodes AAInfo; 3654 I.getAAMetadata(AAInfo); 3655 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3656 3657 SmallVector<EVT, 4> ValueVTs; 3658 SmallVector<uint64_t, 4> Offsets; 3659 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3660 unsigned NumValues = ValueVTs.size(); 3661 if (NumValues == 0) 3662 return; 3663 3664 SDValue Root; 3665 bool ConstantMemory = false; 3666 if (isVolatile || NumValues > MaxParallelChains) 3667 // Serialize volatile loads with other side effects. 3668 Root = getRoot(); 3669 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3670 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3671 // Do not serialize (non-volatile) loads of constant memory with anything. 3672 Root = DAG.getEntryNode(); 3673 ConstantMemory = true; 3674 } else { 3675 // Do not serialize non-volatile loads against each other. 3676 Root = DAG.getRoot(); 3677 } 3678 3679 SDLoc dl = getCurSDLoc(); 3680 3681 if (isVolatile) 3682 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3683 3684 // An aggregate load cannot wrap around the address space, so offsets to its 3685 // parts don't wrap either. 3686 SDNodeFlags Flags; 3687 Flags.setNoUnsignedWrap(true); 3688 3689 SmallVector<SDValue, 4> Values(NumValues); 3690 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3691 EVT PtrVT = Ptr.getValueType(); 3692 unsigned ChainI = 0; 3693 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3694 // Serializing loads here may result in excessive register pressure, and 3695 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3696 // could recover a bit by hoisting nodes upward in the chain by recognizing 3697 // they are side-effect free or do not alias. The optimizer should really 3698 // avoid this case by converting large object/array copies to llvm.memcpy 3699 // (MaxParallelChains should always remain as failsafe). 3700 if (ChainI == MaxParallelChains) { 3701 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3702 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3703 makeArrayRef(Chains.data(), ChainI)); 3704 Root = Chain; 3705 ChainI = 0; 3706 } 3707 SDValue A = DAG.getNode(ISD::ADD, dl, 3708 PtrVT, Ptr, 3709 DAG.getConstant(Offsets[i], dl, PtrVT), 3710 Flags); 3711 auto MMOFlags = MachineMemOperand::MONone; 3712 if (isVolatile) 3713 MMOFlags |= MachineMemOperand::MOVolatile; 3714 if (isNonTemporal) 3715 MMOFlags |= MachineMemOperand::MONonTemporal; 3716 if (isInvariant) 3717 MMOFlags |= MachineMemOperand::MOInvariant; 3718 if (isDereferenceable) 3719 MMOFlags |= MachineMemOperand::MODereferenceable; 3720 MMOFlags |= TLI.getMMOFlags(I); 3721 3722 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3723 MachinePointerInfo(SV, Offsets[i]), Alignment, 3724 MMOFlags, AAInfo, Ranges); 3725 3726 Values[i] = L; 3727 Chains[ChainI] = L.getValue(1); 3728 } 3729 3730 if (!ConstantMemory) { 3731 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3732 makeArrayRef(Chains.data(), ChainI)); 3733 if (isVolatile) 3734 DAG.setRoot(Chain); 3735 else 3736 PendingLoads.push_back(Chain); 3737 } 3738 3739 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3740 DAG.getVTList(ValueVTs), Values)); 3741 } 3742 3743 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3744 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3745 "call visitStoreToSwiftError when backend supports swifterror"); 3746 3747 SmallVector<EVT, 4> ValueVTs; 3748 SmallVector<uint64_t, 4> Offsets; 3749 const Value *SrcV = I.getOperand(0); 3750 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3751 SrcV->getType(), ValueVTs, &Offsets); 3752 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3753 "expect a single EVT for swifterror"); 3754 3755 SDValue Src = getValue(SrcV); 3756 // Create a virtual register, then update the virtual register. 3757 unsigned VReg; bool CreatedVReg; 3758 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3759 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3760 // Chain can be getRoot or getControlRoot. 3761 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3762 SDValue(Src.getNode(), Src.getResNo())); 3763 DAG.setRoot(CopyNode); 3764 if (CreatedVReg) 3765 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3766 } 3767 3768 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3769 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3770 "call visitLoadFromSwiftError when backend supports swifterror"); 3771 3772 assert(!I.isVolatile() && 3773 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3774 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3775 "Support volatile, non temporal, invariant for load_from_swift_error"); 3776 3777 const Value *SV = I.getOperand(0); 3778 Type *Ty = I.getType(); 3779 AAMDNodes AAInfo; 3780 I.getAAMetadata(AAInfo); 3781 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3782 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3783 "load_from_swift_error should not be constant memory"); 3784 3785 SmallVector<EVT, 4> ValueVTs; 3786 SmallVector<uint64_t, 4> Offsets; 3787 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3788 ValueVTs, &Offsets); 3789 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3790 "expect a single EVT for swifterror"); 3791 3792 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3793 SDValue L = DAG.getCopyFromReg( 3794 getRoot(), getCurSDLoc(), 3795 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3796 ValueVTs[0]); 3797 3798 setValue(&I, L); 3799 } 3800 3801 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3802 if (I.isAtomic()) 3803 return visitAtomicStore(I); 3804 3805 const Value *SrcV = I.getOperand(0); 3806 const Value *PtrV = I.getOperand(1); 3807 3808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3809 if (TLI.supportSwiftError()) { 3810 // Swifterror values can come from either a function parameter with 3811 // swifterror attribute or an alloca with swifterror attribute. 3812 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3813 if (Arg->hasSwiftErrorAttr()) 3814 return visitStoreToSwiftError(I); 3815 } 3816 3817 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3818 if (Alloca->isSwiftError()) 3819 return visitStoreToSwiftError(I); 3820 } 3821 } 3822 3823 SmallVector<EVT, 4> ValueVTs; 3824 SmallVector<uint64_t, 4> Offsets; 3825 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3826 SrcV->getType(), ValueVTs, &Offsets); 3827 unsigned NumValues = ValueVTs.size(); 3828 if (NumValues == 0) 3829 return; 3830 3831 // Get the lowered operands. Note that we do this after 3832 // checking if NumResults is zero, because with zero results 3833 // the operands won't have values in the map. 3834 SDValue Src = getValue(SrcV); 3835 SDValue Ptr = getValue(PtrV); 3836 3837 SDValue Root = getRoot(); 3838 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3839 SDLoc dl = getCurSDLoc(); 3840 EVT PtrVT = Ptr.getValueType(); 3841 unsigned Alignment = I.getAlignment(); 3842 AAMDNodes AAInfo; 3843 I.getAAMetadata(AAInfo); 3844 3845 auto MMOFlags = MachineMemOperand::MONone; 3846 if (I.isVolatile()) 3847 MMOFlags |= MachineMemOperand::MOVolatile; 3848 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3849 MMOFlags |= MachineMemOperand::MONonTemporal; 3850 MMOFlags |= TLI.getMMOFlags(I); 3851 3852 // An aggregate load cannot wrap around the address space, so offsets to its 3853 // parts don't wrap either. 3854 SDNodeFlags Flags; 3855 Flags.setNoUnsignedWrap(true); 3856 3857 unsigned ChainI = 0; 3858 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3859 // See visitLoad comments. 3860 if (ChainI == MaxParallelChains) { 3861 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3862 makeArrayRef(Chains.data(), ChainI)); 3863 Root = Chain; 3864 ChainI = 0; 3865 } 3866 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3867 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3868 SDValue St = DAG.getStore( 3869 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3870 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3871 Chains[ChainI] = St; 3872 } 3873 3874 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3875 makeArrayRef(Chains.data(), ChainI)); 3876 DAG.setRoot(StoreNode); 3877 } 3878 3879 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3880 bool IsCompressing) { 3881 SDLoc sdl = getCurSDLoc(); 3882 3883 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3884 unsigned& Alignment) { 3885 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3886 Src0 = I.getArgOperand(0); 3887 Ptr = I.getArgOperand(1); 3888 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3889 Mask = I.getArgOperand(3); 3890 }; 3891 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3892 unsigned& Alignment) { 3893 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3894 Src0 = I.getArgOperand(0); 3895 Ptr = I.getArgOperand(1); 3896 Mask = I.getArgOperand(2); 3897 Alignment = 0; 3898 }; 3899 3900 Value *PtrOperand, *MaskOperand, *Src0Operand; 3901 unsigned Alignment; 3902 if (IsCompressing) 3903 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3904 else 3905 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3906 3907 SDValue Ptr = getValue(PtrOperand); 3908 SDValue Src0 = getValue(Src0Operand); 3909 SDValue Mask = getValue(MaskOperand); 3910 3911 EVT VT = Src0.getValueType(); 3912 if (!Alignment) 3913 Alignment = DAG.getEVTAlignment(VT); 3914 3915 AAMDNodes AAInfo; 3916 I.getAAMetadata(AAInfo); 3917 3918 MachineMemOperand *MMO = 3919 DAG.getMachineFunction(). 3920 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3921 MachineMemOperand::MOStore, VT.getStoreSize(), 3922 Alignment, AAInfo); 3923 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3924 MMO, false /* Truncating */, 3925 IsCompressing); 3926 DAG.setRoot(StoreNode); 3927 setValue(&I, StoreNode); 3928 } 3929 3930 // Get a uniform base for the Gather/Scatter intrinsic. 3931 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3932 // We try to represent it as a base pointer + vector of indices. 3933 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3934 // The first operand of the GEP may be a single pointer or a vector of pointers 3935 // Example: 3936 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3937 // or 3938 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3939 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3940 // 3941 // When the first GEP operand is a single pointer - it is the uniform base we 3942 // are looking for. If first operand of the GEP is a splat vector - we 3943 // extract the splat value and use it as a uniform base. 3944 // In all other cases the function returns 'false'. 3945 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3946 SDValue &Scale, SelectionDAGBuilder* SDB) { 3947 SelectionDAG& DAG = SDB->DAG; 3948 LLVMContext &Context = *DAG.getContext(); 3949 3950 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3951 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3952 if (!GEP) 3953 return false; 3954 3955 const Value *GEPPtr = GEP->getPointerOperand(); 3956 if (!GEPPtr->getType()->isVectorTy()) 3957 Ptr = GEPPtr; 3958 else if (!(Ptr = getSplatValue(GEPPtr))) 3959 return false; 3960 3961 unsigned FinalIndex = GEP->getNumOperands() - 1; 3962 Value *IndexVal = GEP->getOperand(FinalIndex); 3963 3964 // Ensure all the other indices are 0. 3965 for (unsigned i = 1; i < FinalIndex; ++i) { 3966 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3967 if (!C || !C->isZero()) 3968 return false; 3969 } 3970 3971 // The operands of the GEP may be defined in another basic block. 3972 // In this case we'll not find nodes for the operands. 3973 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3974 return false; 3975 3976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3977 const DataLayout &DL = DAG.getDataLayout(); 3978 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3979 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3980 Base = SDB->getValue(Ptr); 3981 Index = SDB->getValue(IndexVal); 3982 3983 if (!Index.getValueType().isVector()) { 3984 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3985 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3986 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3987 } 3988 return true; 3989 } 3990 3991 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3992 SDLoc sdl = getCurSDLoc(); 3993 3994 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3995 const Value *Ptr = I.getArgOperand(1); 3996 SDValue Src0 = getValue(I.getArgOperand(0)); 3997 SDValue Mask = getValue(I.getArgOperand(3)); 3998 EVT VT = Src0.getValueType(); 3999 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4000 if (!Alignment) 4001 Alignment = DAG.getEVTAlignment(VT); 4002 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4003 4004 AAMDNodes AAInfo; 4005 I.getAAMetadata(AAInfo); 4006 4007 SDValue Base; 4008 SDValue Index; 4009 SDValue Scale; 4010 const Value *BasePtr = Ptr; 4011 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4012 4013 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4014 MachineMemOperand *MMO = DAG.getMachineFunction(). 4015 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4016 MachineMemOperand::MOStore, VT.getStoreSize(), 4017 Alignment, AAInfo); 4018 if (!UniformBase) { 4019 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4020 Index = getValue(Ptr); 4021 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4022 } 4023 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4024 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4025 Ops, MMO); 4026 DAG.setRoot(Scatter); 4027 setValue(&I, Scatter); 4028 } 4029 4030 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4031 SDLoc sdl = getCurSDLoc(); 4032 4033 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4034 unsigned& Alignment) { 4035 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4036 Ptr = I.getArgOperand(0); 4037 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4038 Mask = I.getArgOperand(2); 4039 Src0 = I.getArgOperand(3); 4040 }; 4041 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4042 unsigned& Alignment) { 4043 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4044 Ptr = I.getArgOperand(0); 4045 Alignment = 0; 4046 Mask = I.getArgOperand(1); 4047 Src0 = I.getArgOperand(2); 4048 }; 4049 4050 Value *PtrOperand, *MaskOperand, *Src0Operand; 4051 unsigned Alignment; 4052 if (IsExpanding) 4053 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4054 else 4055 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4056 4057 SDValue Ptr = getValue(PtrOperand); 4058 SDValue Src0 = getValue(Src0Operand); 4059 SDValue Mask = getValue(MaskOperand); 4060 4061 EVT VT = Src0.getValueType(); 4062 if (!Alignment) 4063 Alignment = DAG.getEVTAlignment(VT); 4064 4065 AAMDNodes AAInfo; 4066 I.getAAMetadata(AAInfo); 4067 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4068 4069 // Do not serialize masked loads of constant memory with anything. 4070 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4071 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4072 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4073 4074 MachineMemOperand *MMO = 4075 DAG.getMachineFunction(). 4076 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4077 MachineMemOperand::MOLoad, VT.getStoreSize(), 4078 Alignment, AAInfo, Ranges); 4079 4080 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4081 ISD::NON_EXTLOAD, IsExpanding); 4082 if (AddToChain) 4083 PendingLoads.push_back(Load.getValue(1)); 4084 setValue(&I, Load); 4085 } 4086 4087 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4088 SDLoc sdl = getCurSDLoc(); 4089 4090 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4091 const Value *Ptr = I.getArgOperand(0); 4092 SDValue Src0 = getValue(I.getArgOperand(3)); 4093 SDValue Mask = getValue(I.getArgOperand(2)); 4094 4095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4096 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4097 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4098 if (!Alignment) 4099 Alignment = DAG.getEVTAlignment(VT); 4100 4101 AAMDNodes AAInfo; 4102 I.getAAMetadata(AAInfo); 4103 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4104 4105 SDValue Root = DAG.getRoot(); 4106 SDValue Base; 4107 SDValue Index; 4108 SDValue Scale; 4109 const Value *BasePtr = Ptr; 4110 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4111 bool ConstantMemory = false; 4112 if (UniformBase && 4113 AA && AA->pointsToConstantMemory(MemoryLocation( 4114 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4115 AAInfo))) { 4116 // Do not serialize (non-volatile) loads of constant memory with anything. 4117 Root = DAG.getEntryNode(); 4118 ConstantMemory = true; 4119 } 4120 4121 MachineMemOperand *MMO = 4122 DAG.getMachineFunction(). 4123 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4124 MachineMemOperand::MOLoad, VT.getStoreSize(), 4125 Alignment, AAInfo, Ranges); 4126 4127 if (!UniformBase) { 4128 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4129 Index = getValue(Ptr); 4130 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4131 } 4132 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4133 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4134 Ops, MMO); 4135 4136 SDValue OutChain = Gather.getValue(1); 4137 if (!ConstantMemory) 4138 PendingLoads.push_back(OutChain); 4139 setValue(&I, Gather); 4140 } 4141 4142 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4143 SDLoc dl = getCurSDLoc(); 4144 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4145 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4146 SyncScope::ID SSID = I.getSyncScopeID(); 4147 4148 SDValue InChain = getRoot(); 4149 4150 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4151 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4152 SDValue L = DAG.getAtomicCmpSwap( 4153 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4154 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4155 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4156 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4157 4158 SDValue OutChain = L.getValue(2); 4159 4160 setValue(&I, L); 4161 DAG.setRoot(OutChain); 4162 } 4163 4164 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4165 SDLoc dl = getCurSDLoc(); 4166 ISD::NodeType NT; 4167 switch (I.getOperation()) { 4168 default: llvm_unreachable("Unknown atomicrmw operation"); 4169 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4170 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4171 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4172 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4173 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4174 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4175 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4176 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4177 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4178 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4179 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4180 } 4181 AtomicOrdering Order = I.getOrdering(); 4182 SyncScope::ID SSID = I.getSyncScopeID(); 4183 4184 SDValue InChain = getRoot(); 4185 4186 SDValue L = 4187 DAG.getAtomic(NT, dl, 4188 getValue(I.getValOperand()).getSimpleValueType(), 4189 InChain, 4190 getValue(I.getPointerOperand()), 4191 getValue(I.getValOperand()), 4192 I.getPointerOperand(), 4193 /* Alignment=*/ 0, Order, SSID); 4194 4195 SDValue OutChain = L.getValue(1); 4196 4197 setValue(&I, L); 4198 DAG.setRoot(OutChain); 4199 } 4200 4201 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4202 SDLoc dl = getCurSDLoc(); 4203 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4204 SDValue Ops[3]; 4205 Ops[0] = getRoot(); 4206 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4207 TLI.getFenceOperandTy(DAG.getDataLayout())); 4208 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4209 TLI.getFenceOperandTy(DAG.getDataLayout())); 4210 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4211 } 4212 4213 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4214 SDLoc dl = getCurSDLoc(); 4215 AtomicOrdering Order = I.getOrdering(); 4216 SyncScope::ID SSID = I.getSyncScopeID(); 4217 4218 SDValue InChain = getRoot(); 4219 4220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4221 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4222 4223 if (!TLI.supportsUnalignedAtomics() && 4224 I.getAlignment() < VT.getStoreSize()) 4225 report_fatal_error("Cannot generate unaligned atomic load"); 4226 4227 MachineMemOperand *MMO = 4228 DAG.getMachineFunction(). 4229 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4230 MachineMemOperand::MOVolatile | 4231 MachineMemOperand::MOLoad, 4232 VT.getStoreSize(), 4233 I.getAlignment() ? I.getAlignment() : 4234 DAG.getEVTAlignment(VT), 4235 AAMDNodes(), nullptr, SSID, Order); 4236 4237 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4238 SDValue L = 4239 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4240 getValue(I.getPointerOperand()), MMO); 4241 4242 SDValue OutChain = L.getValue(1); 4243 4244 setValue(&I, L); 4245 DAG.setRoot(OutChain); 4246 } 4247 4248 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4249 SDLoc dl = getCurSDLoc(); 4250 4251 AtomicOrdering Order = I.getOrdering(); 4252 SyncScope::ID SSID = I.getSyncScopeID(); 4253 4254 SDValue InChain = getRoot(); 4255 4256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4257 EVT VT = 4258 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4259 4260 if (I.getAlignment() < VT.getStoreSize()) 4261 report_fatal_error("Cannot generate unaligned atomic store"); 4262 4263 SDValue OutChain = 4264 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4265 InChain, 4266 getValue(I.getPointerOperand()), 4267 getValue(I.getValueOperand()), 4268 I.getPointerOperand(), I.getAlignment(), 4269 Order, SSID); 4270 4271 DAG.setRoot(OutChain); 4272 } 4273 4274 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4275 /// node. 4276 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4277 unsigned Intrinsic) { 4278 // Ignore the callsite's attributes. A specific call site may be marked with 4279 // readnone, but the lowering code will expect the chain based on the 4280 // definition. 4281 const Function *F = I.getCalledFunction(); 4282 bool HasChain = !F->doesNotAccessMemory(); 4283 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4284 4285 // Build the operand list. 4286 SmallVector<SDValue, 8> Ops; 4287 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4288 if (OnlyLoad) { 4289 // We don't need to serialize loads against other loads. 4290 Ops.push_back(DAG.getRoot()); 4291 } else { 4292 Ops.push_back(getRoot()); 4293 } 4294 } 4295 4296 // Info is set by getTgtMemInstrinsic 4297 TargetLowering::IntrinsicInfo Info; 4298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4299 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4300 DAG.getMachineFunction(), 4301 Intrinsic); 4302 4303 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4304 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4305 Info.opc == ISD::INTRINSIC_W_CHAIN) 4306 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4307 TLI.getPointerTy(DAG.getDataLayout()))); 4308 4309 // Add all operands of the call to the operand list. 4310 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4311 SDValue Op = getValue(I.getArgOperand(i)); 4312 Ops.push_back(Op); 4313 } 4314 4315 SmallVector<EVT, 4> ValueVTs; 4316 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4317 4318 if (HasChain) 4319 ValueVTs.push_back(MVT::Other); 4320 4321 SDVTList VTs = DAG.getVTList(ValueVTs); 4322 4323 // Create the node. 4324 SDValue Result; 4325 if (IsTgtIntrinsic) { 4326 // This is target intrinsic that touches memory 4327 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4328 Ops, Info.memVT, 4329 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4330 Info.flags, Info.size); 4331 } else if (!HasChain) { 4332 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4333 } else if (!I.getType()->isVoidTy()) { 4334 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4335 } else { 4336 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4337 } 4338 4339 if (HasChain) { 4340 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4341 if (OnlyLoad) 4342 PendingLoads.push_back(Chain); 4343 else 4344 DAG.setRoot(Chain); 4345 } 4346 4347 if (!I.getType()->isVoidTy()) { 4348 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4349 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4350 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4351 } else 4352 Result = lowerRangeToAssertZExt(DAG, I, Result); 4353 4354 setValue(&I, Result); 4355 } 4356 } 4357 4358 /// GetSignificand - Get the significand and build it into a floating-point 4359 /// number with exponent of 1: 4360 /// 4361 /// Op = (Op & 0x007fffff) | 0x3f800000; 4362 /// 4363 /// where Op is the hexadecimal representation of floating point value. 4364 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4365 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4366 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4367 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4368 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4369 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4370 } 4371 4372 /// GetExponent - Get the exponent: 4373 /// 4374 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4375 /// 4376 /// where Op is the hexadecimal representation of floating point value. 4377 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4378 const TargetLowering &TLI, const SDLoc &dl) { 4379 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4380 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4381 SDValue t1 = DAG.getNode( 4382 ISD::SRL, dl, MVT::i32, t0, 4383 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4384 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4385 DAG.getConstant(127, dl, MVT::i32)); 4386 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4387 } 4388 4389 /// getF32Constant - Get 32-bit floating point constant. 4390 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4391 const SDLoc &dl) { 4392 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4393 MVT::f32); 4394 } 4395 4396 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4397 SelectionDAG &DAG) { 4398 // TODO: What fast-math-flags should be set on the floating-point nodes? 4399 4400 // IntegerPartOfX = ((int32_t)(t0); 4401 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4402 4403 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4404 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4405 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4406 4407 // IntegerPartOfX <<= 23; 4408 IntegerPartOfX = DAG.getNode( 4409 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4410 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4411 DAG.getDataLayout()))); 4412 4413 SDValue TwoToFractionalPartOfX; 4414 if (LimitFloatPrecision <= 6) { 4415 // For floating-point precision of 6: 4416 // 4417 // TwoToFractionalPartOfX = 4418 // 0.997535578f + 4419 // (0.735607626f + 0.252464424f * x) * x; 4420 // 4421 // error 0.0144103317, which is 6 bits 4422 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4423 getF32Constant(DAG, 0x3e814304, dl)); 4424 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4425 getF32Constant(DAG, 0x3f3c50c8, dl)); 4426 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4427 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4428 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4429 } else if (LimitFloatPrecision <= 12) { 4430 // For floating-point precision of 12: 4431 // 4432 // TwoToFractionalPartOfX = 4433 // 0.999892986f + 4434 // (0.696457318f + 4435 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4436 // 4437 // error 0.000107046256, which is 13 to 14 bits 4438 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4439 getF32Constant(DAG, 0x3da235e3, dl)); 4440 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4441 getF32Constant(DAG, 0x3e65b8f3, dl)); 4442 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4443 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4444 getF32Constant(DAG, 0x3f324b07, dl)); 4445 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4446 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4447 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4448 } else { // LimitFloatPrecision <= 18 4449 // For floating-point precision of 18: 4450 // 4451 // TwoToFractionalPartOfX = 4452 // 0.999999982f + 4453 // (0.693148872f + 4454 // (0.240227044f + 4455 // (0.554906021e-1f + 4456 // (0.961591928e-2f + 4457 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4458 // error 2.47208000*10^(-7), which is better than 18 bits 4459 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4460 getF32Constant(DAG, 0x3924b03e, dl)); 4461 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4462 getF32Constant(DAG, 0x3ab24b87, dl)); 4463 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4464 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4465 getF32Constant(DAG, 0x3c1d8c17, dl)); 4466 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4467 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4468 getF32Constant(DAG, 0x3d634a1d, dl)); 4469 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4470 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4471 getF32Constant(DAG, 0x3e75fe14, dl)); 4472 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4473 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4474 getF32Constant(DAG, 0x3f317234, dl)); 4475 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4476 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4477 getF32Constant(DAG, 0x3f800000, dl)); 4478 } 4479 4480 // Add the exponent into the result in integer domain. 4481 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4482 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4483 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4484 } 4485 4486 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4487 /// limited-precision mode. 4488 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4489 const TargetLowering &TLI) { 4490 if (Op.getValueType() == MVT::f32 && 4491 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4492 4493 // Put the exponent in the right bit position for later addition to the 4494 // final result: 4495 // 4496 // #define LOG2OFe 1.4426950f 4497 // t0 = Op * LOG2OFe 4498 4499 // TODO: What fast-math-flags should be set here? 4500 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4501 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4502 return getLimitedPrecisionExp2(t0, dl, DAG); 4503 } 4504 4505 // No special expansion. 4506 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4507 } 4508 4509 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4510 /// limited-precision mode. 4511 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4512 const TargetLowering &TLI) { 4513 // TODO: What fast-math-flags should be set on the floating-point nodes? 4514 4515 if (Op.getValueType() == MVT::f32 && 4516 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4517 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4518 4519 // Scale the exponent by log(2) [0.69314718f]. 4520 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4521 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4522 getF32Constant(DAG, 0x3f317218, dl)); 4523 4524 // Get the significand and build it into a floating-point number with 4525 // exponent of 1. 4526 SDValue X = GetSignificand(DAG, Op1, dl); 4527 4528 SDValue LogOfMantissa; 4529 if (LimitFloatPrecision <= 6) { 4530 // For floating-point precision of 6: 4531 // 4532 // LogofMantissa = 4533 // -1.1609546f + 4534 // (1.4034025f - 0.23903021f * x) * x; 4535 // 4536 // error 0.0034276066, which is better than 8 bits 4537 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4538 getF32Constant(DAG, 0xbe74c456, dl)); 4539 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4540 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4542 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4543 getF32Constant(DAG, 0x3f949a29, dl)); 4544 } else if (LimitFloatPrecision <= 12) { 4545 // For floating-point precision of 12: 4546 // 4547 // LogOfMantissa = 4548 // -1.7417939f + 4549 // (2.8212026f + 4550 // (-1.4699568f + 4551 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4552 // 4553 // error 0.000061011436, which is 14 bits 4554 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4555 getF32Constant(DAG, 0xbd67b6d6, dl)); 4556 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4557 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4558 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4559 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4560 getF32Constant(DAG, 0x3fbc278b, dl)); 4561 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4562 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4563 getF32Constant(DAG, 0x40348e95, dl)); 4564 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4565 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4566 getF32Constant(DAG, 0x3fdef31a, dl)); 4567 } else { // LimitFloatPrecision <= 18 4568 // For floating-point precision of 18: 4569 // 4570 // LogOfMantissa = 4571 // -2.1072184f + 4572 // (4.2372794f + 4573 // (-3.7029485f + 4574 // (2.2781945f + 4575 // (-0.87823314f + 4576 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4577 // 4578 // error 0.0000023660568, which is better than 18 bits 4579 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4580 getF32Constant(DAG, 0xbc91e5ac, dl)); 4581 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4582 getF32Constant(DAG, 0x3e4350aa, dl)); 4583 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4584 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4585 getF32Constant(DAG, 0x3f60d3e3, dl)); 4586 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4587 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4588 getF32Constant(DAG, 0x4011cdf0, dl)); 4589 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4590 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4591 getF32Constant(DAG, 0x406cfd1c, dl)); 4592 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4593 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4594 getF32Constant(DAG, 0x408797cb, dl)); 4595 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4596 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4597 getF32Constant(DAG, 0x4006dcab, dl)); 4598 } 4599 4600 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4601 } 4602 4603 // No special expansion. 4604 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4605 } 4606 4607 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4608 /// limited-precision mode. 4609 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4610 const TargetLowering &TLI) { 4611 // TODO: What fast-math-flags should be set on the floating-point nodes? 4612 4613 if (Op.getValueType() == MVT::f32 && 4614 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4615 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4616 4617 // Get the exponent. 4618 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4619 4620 // Get the significand and build it into a floating-point number with 4621 // exponent of 1. 4622 SDValue X = GetSignificand(DAG, Op1, dl); 4623 4624 // Different possible minimax approximations of significand in 4625 // floating-point for various degrees of accuracy over [1,2]. 4626 SDValue Log2ofMantissa; 4627 if (LimitFloatPrecision <= 6) { 4628 // For floating-point precision of 6: 4629 // 4630 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4631 // 4632 // error 0.0049451742, which is more than 7 bits 4633 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4634 getF32Constant(DAG, 0xbeb08fe0, dl)); 4635 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4636 getF32Constant(DAG, 0x40019463, dl)); 4637 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4638 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4639 getF32Constant(DAG, 0x3fd6633d, dl)); 4640 } else if (LimitFloatPrecision <= 12) { 4641 // For floating-point precision of 12: 4642 // 4643 // Log2ofMantissa = 4644 // -2.51285454f + 4645 // (4.07009056f + 4646 // (-2.12067489f + 4647 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4648 // 4649 // error 0.0000876136000, which is better than 13 bits 4650 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4651 getF32Constant(DAG, 0xbda7262e, dl)); 4652 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4653 getF32Constant(DAG, 0x3f25280b, dl)); 4654 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4655 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4656 getF32Constant(DAG, 0x4007b923, dl)); 4657 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4658 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4659 getF32Constant(DAG, 0x40823e2f, dl)); 4660 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4661 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4662 getF32Constant(DAG, 0x4020d29c, dl)); 4663 } else { // LimitFloatPrecision <= 18 4664 // For floating-point precision of 18: 4665 // 4666 // Log2ofMantissa = 4667 // -3.0400495f + 4668 // (6.1129976f + 4669 // (-5.3420409f + 4670 // (3.2865683f + 4671 // (-1.2669343f + 4672 // (0.27515199f - 4673 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4674 // 4675 // error 0.0000018516, which is better than 18 bits 4676 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4677 getF32Constant(DAG, 0xbcd2769e, dl)); 4678 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4679 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4680 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4681 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4682 getF32Constant(DAG, 0x3fa22ae7, dl)); 4683 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4684 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4685 getF32Constant(DAG, 0x40525723, dl)); 4686 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4687 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4688 getF32Constant(DAG, 0x40aaf200, dl)); 4689 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4690 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4691 getF32Constant(DAG, 0x40c39dad, dl)); 4692 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4693 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4694 getF32Constant(DAG, 0x4042902c, dl)); 4695 } 4696 4697 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4698 } 4699 4700 // No special expansion. 4701 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4702 } 4703 4704 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4705 /// limited-precision mode. 4706 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4707 const TargetLowering &TLI) { 4708 // TODO: What fast-math-flags should be set on the floating-point nodes? 4709 4710 if (Op.getValueType() == MVT::f32 && 4711 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4712 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4713 4714 // Scale the exponent by log10(2) [0.30102999f]. 4715 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4716 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4717 getF32Constant(DAG, 0x3e9a209a, dl)); 4718 4719 // Get the significand and build it into a floating-point number with 4720 // exponent of 1. 4721 SDValue X = GetSignificand(DAG, Op1, dl); 4722 4723 SDValue Log10ofMantissa; 4724 if (LimitFloatPrecision <= 6) { 4725 // For floating-point precision of 6: 4726 // 4727 // Log10ofMantissa = 4728 // -0.50419619f + 4729 // (0.60948995f - 0.10380950f * x) * x; 4730 // 4731 // error 0.0014886165, which is 6 bits 4732 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4733 getF32Constant(DAG, 0xbdd49a13, dl)); 4734 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4735 getF32Constant(DAG, 0x3f1c0789, dl)); 4736 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4737 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4738 getF32Constant(DAG, 0x3f011300, dl)); 4739 } else if (LimitFloatPrecision <= 12) { 4740 // For floating-point precision of 12: 4741 // 4742 // Log10ofMantissa = 4743 // -0.64831180f + 4744 // (0.91751397f + 4745 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4746 // 4747 // error 0.00019228036, which is better than 12 bits 4748 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4749 getF32Constant(DAG, 0x3d431f31, dl)); 4750 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4751 getF32Constant(DAG, 0x3ea21fb2, dl)); 4752 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4753 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4754 getF32Constant(DAG, 0x3f6ae232, dl)); 4755 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4756 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4757 getF32Constant(DAG, 0x3f25f7c3, dl)); 4758 } else { // LimitFloatPrecision <= 18 4759 // For floating-point precision of 18: 4760 // 4761 // Log10ofMantissa = 4762 // -0.84299375f + 4763 // (1.5327582f + 4764 // (-1.0688956f + 4765 // (0.49102474f + 4766 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4767 // 4768 // error 0.0000037995730, which is better than 18 bits 4769 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4770 getF32Constant(DAG, 0x3c5d51ce, dl)); 4771 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4772 getF32Constant(DAG, 0x3e00685a, dl)); 4773 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4774 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4775 getF32Constant(DAG, 0x3efb6798, dl)); 4776 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4777 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4778 getF32Constant(DAG, 0x3f88d192, dl)); 4779 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4780 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4781 getF32Constant(DAG, 0x3fc4316c, dl)); 4782 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4783 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4784 getF32Constant(DAG, 0x3f57ce70, dl)); 4785 } 4786 4787 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4788 } 4789 4790 // No special expansion. 4791 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4792 } 4793 4794 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4795 /// limited-precision mode. 4796 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4797 const TargetLowering &TLI) { 4798 if (Op.getValueType() == MVT::f32 && 4799 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4800 return getLimitedPrecisionExp2(Op, dl, DAG); 4801 4802 // No special expansion. 4803 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4804 } 4805 4806 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4807 /// limited-precision mode with x == 10.0f. 4808 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4809 SelectionDAG &DAG, const TargetLowering &TLI) { 4810 bool IsExp10 = false; 4811 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4812 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4813 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4814 APFloat Ten(10.0f); 4815 IsExp10 = LHSC->isExactlyValue(Ten); 4816 } 4817 } 4818 4819 // TODO: What fast-math-flags should be set on the FMUL node? 4820 if (IsExp10) { 4821 // Put the exponent in the right bit position for later addition to the 4822 // final result: 4823 // 4824 // #define LOG2OF10 3.3219281f 4825 // t0 = Op * LOG2OF10; 4826 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4827 getF32Constant(DAG, 0x40549a78, dl)); 4828 return getLimitedPrecisionExp2(t0, dl, DAG); 4829 } 4830 4831 // No special expansion. 4832 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4833 } 4834 4835 /// ExpandPowI - Expand a llvm.powi intrinsic. 4836 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4837 SelectionDAG &DAG) { 4838 // If RHS is a constant, we can expand this out to a multiplication tree, 4839 // otherwise we end up lowering to a call to __powidf2 (for example). When 4840 // optimizing for size, we only want to do this if the expansion would produce 4841 // a small number of multiplies, otherwise we do the full expansion. 4842 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4843 // Get the exponent as a positive value. 4844 unsigned Val = RHSC->getSExtValue(); 4845 if ((int)Val < 0) Val = -Val; 4846 4847 // powi(x, 0) -> 1.0 4848 if (Val == 0) 4849 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4850 4851 const Function &F = DAG.getMachineFunction().getFunction(); 4852 if (!F.optForSize() || 4853 // If optimizing for size, don't insert too many multiplies. 4854 // This inserts up to 5 multiplies. 4855 countPopulation(Val) + Log2_32(Val) < 7) { 4856 // We use the simple binary decomposition method to generate the multiply 4857 // sequence. There are more optimal ways to do this (for example, 4858 // powi(x,15) generates one more multiply than it should), but this has 4859 // the benefit of being both really simple and much better than a libcall. 4860 SDValue Res; // Logically starts equal to 1.0 4861 SDValue CurSquare = LHS; 4862 // TODO: Intrinsics should have fast-math-flags that propagate to these 4863 // nodes. 4864 while (Val) { 4865 if (Val & 1) { 4866 if (Res.getNode()) 4867 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4868 else 4869 Res = CurSquare; // 1.0*CurSquare. 4870 } 4871 4872 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4873 CurSquare, CurSquare); 4874 Val >>= 1; 4875 } 4876 4877 // If the original was negative, invert the result, producing 1/(x*x*x). 4878 if (RHSC->getSExtValue() < 0) 4879 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4880 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4881 return Res; 4882 } 4883 } 4884 4885 // Otherwise, expand to a libcall. 4886 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4887 } 4888 4889 // getUnderlyingArgReg - Find underlying register used for a truncated or 4890 // bitcasted argument. 4891 static unsigned getUnderlyingArgReg(const SDValue &N) { 4892 switch (N.getOpcode()) { 4893 case ISD::CopyFromReg: 4894 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4895 case ISD::BITCAST: 4896 case ISD::AssertZext: 4897 case ISD::AssertSext: 4898 case ISD::TRUNCATE: 4899 return getUnderlyingArgReg(N.getOperand(0)); 4900 default: 4901 return 0; 4902 } 4903 } 4904 4905 /// If the DbgValueInst is a dbg_value of a function argument, create the 4906 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4907 /// instruction selection, they will be inserted to the entry BB. 4908 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4909 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4910 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4911 const Argument *Arg = dyn_cast<Argument>(V); 4912 if (!Arg) 4913 return false; 4914 4915 MachineFunction &MF = DAG.getMachineFunction(); 4916 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4917 4918 bool IsIndirect = false; 4919 Optional<MachineOperand> Op; 4920 // Some arguments' frame index is recorded during argument lowering. 4921 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4922 if (FI != std::numeric_limits<int>::max()) 4923 Op = MachineOperand::CreateFI(FI); 4924 4925 if (!Op && N.getNode()) { 4926 unsigned Reg = getUnderlyingArgReg(N); 4927 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4928 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4929 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4930 if (PR) 4931 Reg = PR; 4932 } 4933 if (Reg) { 4934 Op = MachineOperand::CreateReg(Reg, false); 4935 IsIndirect = IsDbgDeclare; 4936 } 4937 } 4938 4939 if (!Op && N.getNode()) 4940 // Check if frame index is available. 4941 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4942 if (FrameIndexSDNode *FINode = 4943 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4944 Op = MachineOperand::CreateFI(FINode->getIndex()); 4945 4946 if (!Op) { 4947 // Check if ValueMap has reg number. 4948 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4949 if (VMI != FuncInfo.ValueMap.end()) { 4950 const auto &TLI = DAG.getTargetLoweringInfo(); 4951 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4952 V->getType(), getABIRegCopyCC(V)); 4953 if (RFV.occupiesMultipleRegs()) { 4954 unsigned Offset = 0; 4955 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4956 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4957 auto FragmentExpr = DIExpression::createFragmentExpression( 4958 Expr, Offset, RegAndSize.second); 4959 if (!FragmentExpr) 4960 continue; 4961 FuncInfo.ArgDbgValues.push_back( 4962 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4963 Op->getReg(), Variable, *FragmentExpr)); 4964 Offset += RegAndSize.second; 4965 } 4966 return true; 4967 } 4968 Op = MachineOperand::CreateReg(VMI->second, false); 4969 IsIndirect = IsDbgDeclare; 4970 } 4971 } 4972 4973 if (!Op) 4974 return false; 4975 4976 assert(Variable->isValidLocationForIntrinsic(DL) && 4977 "Expected inlined-at fields to agree"); 4978 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4979 FuncInfo.ArgDbgValues.push_back( 4980 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4981 *Op, Variable, Expr)); 4982 4983 return true; 4984 } 4985 4986 /// Return the appropriate SDDbgValue based on N. 4987 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4988 DILocalVariable *Variable, 4989 DIExpression *Expr, 4990 const DebugLoc &dl, 4991 unsigned DbgSDNodeOrder) { 4992 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4993 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4994 // stack slot locations. 4995 // 4996 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 4997 // debug values here after optimization: 4998 // 4999 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5000 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5001 // 5002 // Both describe the direct values of their associated variables. 5003 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5004 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5005 } 5006 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5007 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5008 } 5009 5010 // VisualStudio defines setjmp as _setjmp 5011 #if defined(_MSC_VER) && defined(setjmp) && \ 5012 !defined(setjmp_undefined_for_msvc) 5013 # pragma push_macro("setjmp") 5014 # undef setjmp 5015 # define setjmp_undefined_for_msvc 5016 #endif 5017 5018 /// Lower the call to the specified intrinsic function. If we want to emit this 5019 /// as a call to a named external function, return the name. Otherwise, lower it 5020 /// and return null. 5021 const char * 5022 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5024 SDLoc sdl = getCurSDLoc(); 5025 DebugLoc dl = getCurDebugLoc(); 5026 SDValue Res; 5027 5028 switch (Intrinsic) { 5029 default: 5030 // By default, turn this into a target intrinsic node. 5031 visitTargetIntrinsic(I, Intrinsic); 5032 return nullptr; 5033 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5034 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5035 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5036 case Intrinsic::returnaddress: 5037 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5038 TLI.getPointerTy(DAG.getDataLayout()), 5039 getValue(I.getArgOperand(0)))); 5040 return nullptr; 5041 case Intrinsic::addressofreturnaddress: 5042 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5043 TLI.getPointerTy(DAG.getDataLayout()))); 5044 return nullptr; 5045 case Intrinsic::frameaddress: 5046 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5047 TLI.getPointerTy(DAG.getDataLayout()), 5048 getValue(I.getArgOperand(0)))); 5049 return nullptr; 5050 case Intrinsic::read_register: { 5051 Value *Reg = I.getArgOperand(0); 5052 SDValue Chain = getRoot(); 5053 SDValue RegName = 5054 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5055 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5056 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5057 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5058 setValue(&I, Res); 5059 DAG.setRoot(Res.getValue(1)); 5060 return nullptr; 5061 } 5062 case Intrinsic::write_register: { 5063 Value *Reg = I.getArgOperand(0); 5064 Value *RegValue = I.getArgOperand(1); 5065 SDValue Chain = getRoot(); 5066 SDValue RegName = 5067 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5068 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5069 RegName, getValue(RegValue))); 5070 return nullptr; 5071 } 5072 case Intrinsic::setjmp: 5073 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5074 case Intrinsic::longjmp: 5075 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5076 case Intrinsic::memcpy: { 5077 const auto &MCI = cast<MemCpyInst>(I); 5078 SDValue Op1 = getValue(I.getArgOperand(0)); 5079 SDValue Op2 = getValue(I.getArgOperand(1)); 5080 SDValue Op3 = getValue(I.getArgOperand(2)); 5081 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5082 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5083 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5084 unsigned Align = MinAlign(DstAlign, SrcAlign); 5085 bool isVol = MCI.isVolatile(); 5086 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5087 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5088 // node. 5089 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5090 false, isTC, 5091 MachinePointerInfo(I.getArgOperand(0)), 5092 MachinePointerInfo(I.getArgOperand(1))); 5093 updateDAGForMaybeTailCall(MC); 5094 return nullptr; 5095 } 5096 case Intrinsic::memset: { 5097 const auto &MSI = cast<MemSetInst>(I); 5098 SDValue Op1 = getValue(I.getArgOperand(0)); 5099 SDValue Op2 = getValue(I.getArgOperand(1)); 5100 SDValue Op3 = getValue(I.getArgOperand(2)); 5101 // @llvm.memset defines 0 and 1 to both mean no alignment. 5102 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5103 bool isVol = MSI.isVolatile(); 5104 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5105 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5106 isTC, MachinePointerInfo(I.getArgOperand(0))); 5107 updateDAGForMaybeTailCall(MS); 5108 return nullptr; 5109 } 5110 case Intrinsic::memmove: { 5111 const auto &MMI = cast<MemMoveInst>(I); 5112 SDValue Op1 = getValue(I.getArgOperand(0)); 5113 SDValue Op2 = getValue(I.getArgOperand(1)); 5114 SDValue Op3 = getValue(I.getArgOperand(2)); 5115 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5116 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5117 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5118 unsigned Align = MinAlign(DstAlign, SrcAlign); 5119 bool isVol = MMI.isVolatile(); 5120 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5121 // FIXME: Support passing different dest/src alignments to the memmove DAG 5122 // node. 5123 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5124 isTC, MachinePointerInfo(I.getArgOperand(0)), 5125 MachinePointerInfo(I.getArgOperand(1))); 5126 updateDAGForMaybeTailCall(MM); 5127 return nullptr; 5128 } 5129 case Intrinsic::memcpy_element_unordered_atomic: { 5130 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5131 SDValue Dst = getValue(MI.getRawDest()); 5132 SDValue Src = getValue(MI.getRawSource()); 5133 SDValue Length = getValue(MI.getLength()); 5134 5135 unsigned DstAlign = MI.getDestAlignment(); 5136 unsigned SrcAlign = MI.getSourceAlignment(); 5137 Type *LengthTy = MI.getLength()->getType(); 5138 unsigned ElemSz = MI.getElementSizeInBytes(); 5139 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5140 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5141 SrcAlign, Length, LengthTy, ElemSz, isTC, 5142 MachinePointerInfo(MI.getRawDest()), 5143 MachinePointerInfo(MI.getRawSource())); 5144 updateDAGForMaybeTailCall(MC); 5145 return nullptr; 5146 } 5147 case Intrinsic::memmove_element_unordered_atomic: { 5148 auto &MI = cast<AtomicMemMoveInst>(I); 5149 SDValue Dst = getValue(MI.getRawDest()); 5150 SDValue Src = getValue(MI.getRawSource()); 5151 SDValue Length = getValue(MI.getLength()); 5152 5153 unsigned DstAlign = MI.getDestAlignment(); 5154 unsigned SrcAlign = MI.getSourceAlignment(); 5155 Type *LengthTy = MI.getLength()->getType(); 5156 unsigned ElemSz = MI.getElementSizeInBytes(); 5157 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5158 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5159 SrcAlign, Length, LengthTy, ElemSz, isTC, 5160 MachinePointerInfo(MI.getRawDest()), 5161 MachinePointerInfo(MI.getRawSource())); 5162 updateDAGForMaybeTailCall(MC); 5163 return nullptr; 5164 } 5165 case Intrinsic::memset_element_unordered_atomic: { 5166 auto &MI = cast<AtomicMemSetInst>(I); 5167 SDValue Dst = getValue(MI.getRawDest()); 5168 SDValue Val = getValue(MI.getValue()); 5169 SDValue Length = getValue(MI.getLength()); 5170 5171 unsigned DstAlign = MI.getDestAlignment(); 5172 Type *LengthTy = MI.getLength()->getType(); 5173 unsigned ElemSz = MI.getElementSizeInBytes(); 5174 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5175 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5176 LengthTy, ElemSz, isTC, 5177 MachinePointerInfo(MI.getRawDest())); 5178 updateDAGForMaybeTailCall(MC); 5179 return nullptr; 5180 } 5181 case Intrinsic::dbg_addr: 5182 case Intrinsic::dbg_declare: { 5183 const auto &DI = cast<DbgVariableIntrinsic>(I); 5184 DILocalVariable *Variable = DI.getVariable(); 5185 DIExpression *Expression = DI.getExpression(); 5186 dropDanglingDebugInfo(Variable, Expression); 5187 assert(Variable && "Missing variable"); 5188 5189 // Check if address has undef value. 5190 const Value *Address = DI.getVariableLocation(); 5191 if (!Address || isa<UndefValue>(Address) || 5192 (Address->use_empty() && !isa<Argument>(Address))) { 5193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5194 return nullptr; 5195 } 5196 5197 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5198 5199 // Check if this variable can be described by a frame index, typically 5200 // either as a static alloca or a byval parameter. 5201 int FI = std::numeric_limits<int>::max(); 5202 if (const auto *AI = 5203 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5204 if (AI->isStaticAlloca()) { 5205 auto I = FuncInfo.StaticAllocaMap.find(AI); 5206 if (I != FuncInfo.StaticAllocaMap.end()) 5207 FI = I->second; 5208 } 5209 } else if (const auto *Arg = dyn_cast<Argument>( 5210 Address->stripInBoundsConstantOffsets())) { 5211 FI = FuncInfo.getArgumentFrameIndex(Arg); 5212 } 5213 5214 // llvm.dbg.addr is control dependent and always generates indirect 5215 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5216 // the MachineFunction variable table. 5217 if (FI != std::numeric_limits<int>::max()) { 5218 if (Intrinsic == Intrinsic::dbg_addr) { 5219 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5220 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5221 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5222 } 5223 return nullptr; 5224 } 5225 5226 SDValue &N = NodeMap[Address]; 5227 if (!N.getNode() && isa<Argument>(Address)) 5228 // Check unused arguments map. 5229 N = UnusedArgNodeMap[Address]; 5230 SDDbgValue *SDV; 5231 if (N.getNode()) { 5232 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5233 Address = BCI->getOperand(0); 5234 // Parameters are handled specially. 5235 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5236 if (isParameter && FINode) { 5237 // Byval parameter. We have a frame index at this point. 5238 SDV = 5239 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5240 /*IsIndirect*/ true, dl, SDNodeOrder); 5241 } else if (isa<Argument>(Address)) { 5242 // Address is an argument, so try to emit its dbg value using 5243 // virtual register info from the FuncInfo.ValueMap. 5244 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5245 return nullptr; 5246 } else { 5247 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5248 true, dl, SDNodeOrder); 5249 } 5250 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5251 } else { 5252 // If Address is an argument then try to emit its dbg value using 5253 // virtual register info from the FuncInfo.ValueMap. 5254 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5255 N)) { 5256 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5257 } 5258 } 5259 return nullptr; 5260 } 5261 case Intrinsic::dbg_label: { 5262 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5263 DILabel *Label = DI.getLabel(); 5264 assert(Label && "Missing label"); 5265 5266 SDDbgLabel *SDV; 5267 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5268 DAG.AddDbgLabel(SDV); 5269 return nullptr; 5270 } 5271 case Intrinsic::dbg_value: { 5272 const DbgValueInst &DI = cast<DbgValueInst>(I); 5273 assert(DI.getVariable() && "Missing variable"); 5274 5275 DILocalVariable *Variable = DI.getVariable(); 5276 DIExpression *Expression = DI.getExpression(); 5277 dropDanglingDebugInfo(Variable, Expression); 5278 const Value *V = DI.getValue(); 5279 if (!V) 5280 return nullptr; 5281 5282 SDDbgValue *SDV; 5283 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5284 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5285 DAG.AddDbgValue(SDV, nullptr, false); 5286 return nullptr; 5287 } 5288 5289 // Do not use getValue() in here; we don't want to generate code at 5290 // this point if it hasn't been done yet. 5291 SDValue N = NodeMap[V]; 5292 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5293 N = UnusedArgNodeMap[V]; 5294 if (N.getNode()) { 5295 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5296 return nullptr; 5297 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5298 DAG.AddDbgValue(SDV, N.getNode(), false); 5299 return nullptr; 5300 } 5301 5302 // PHI nodes have already been selected, so we should know which VReg that 5303 // is assigns to already. 5304 if (isa<PHINode>(V)) { 5305 auto VMI = FuncInfo.ValueMap.find(V); 5306 if (VMI != FuncInfo.ValueMap.end()) { 5307 unsigned Reg = VMI->second; 5308 // The PHI node may be split up into several MI PHI nodes (in 5309 // FunctionLoweringInfo::set). 5310 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5311 V->getType(), None); 5312 if (RFV.occupiesMultipleRegs()) { 5313 unsigned Offset = 0; 5314 unsigned BitsToDescribe = 0; 5315 if (auto VarSize = Variable->getSizeInBits()) 5316 BitsToDescribe = *VarSize; 5317 if (auto Fragment = Expression->getFragmentInfo()) 5318 BitsToDescribe = Fragment->SizeInBits; 5319 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5320 unsigned RegisterSize = RegAndSize.second; 5321 // Bail out if all bits are described already. 5322 if (Offset >= BitsToDescribe) 5323 break; 5324 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5325 ? BitsToDescribe - Offset 5326 : RegisterSize; 5327 auto FragmentExpr = DIExpression::createFragmentExpression( 5328 Expression, Offset, FragmentSize); 5329 if (!FragmentExpr) 5330 continue; 5331 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5332 false, dl, SDNodeOrder); 5333 DAG.AddDbgValue(SDV, nullptr, false); 5334 Offset += RegisterSize; 5335 } 5336 } else { 5337 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5338 SDNodeOrder); 5339 DAG.AddDbgValue(SDV, nullptr, false); 5340 } 5341 return nullptr; 5342 } 5343 } 5344 5345 // TODO: When we get here we will either drop the dbg.value completely, or 5346 // we try to move it forward by letting it dangle for awhile. So we should 5347 // probably add an extra DbgValue to the DAG here, with a reference to 5348 // "noreg", to indicate that we have lost the debug location for the 5349 // variable. 5350 5351 if (!V->use_empty() ) { 5352 // Do not call getValue(V) yet, as we don't want to generate code. 5353 // Remember it for later. 5354 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5355 return nullptr; 5356 } 5357 5358 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5359 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5360 return nullptr; 5361 } 5362 5363 case Intrinsic::eh_typeid_for: { 5364 // Find the type id for the given typeinfo. 5365 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5366 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5367 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5368 setValue(&I, Res); 5369 return nullptr; 5370 } 5371 5372 case Intrinsic::eh_return_i32: 5373 case Intrinsic::eh_return_i64: 5374 DAG.getMachineFunction().setCallsEHReturn(true); 5375 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5376 MVT::Other, 5377 getControlRoot(), 5378 getValue(I.getArgOperand(0)), 5379 getValue(I.getArgOperand(1)))); 5380 return nullptr; 5381 case Intrinsic::eh_unwind_init: 5382 DAG.getMachineFunction().setCallsUnwindInit(true); 5383 return nullptr; 5384 case Intrinsic::eh_dwarf_cfa: 5385 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5386 TLI.getPointerTy(DAG.getDataLayout()), 5387 getValue(I.getArgOperand(0)))); 5388 return nullptr; 5389 case Intrinsic::eh_sjlj_callsite: { 5390 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5391 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5392 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5393 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5394 5395 MMI.setCurrentCallSite(CI->getZExtValue()); 5396 return nullptr; 5397 } 5398 case Intrinsic::eh_sjlj_functioncontext: { 5399 // Get and store the index of the function context. 5400 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5401 AllocaInst *FnCtx = 5402 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5403 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5404 MFI.setFunctionContextIndex(FI); 5405 return nullptr; 5406 } 5407 case Intrinsic::eh_sjlj_setjmp: { 5408 SDValue Ops[2]; 5409 Ops[0] = getRoot(); 5410 Ops[1] = getValue(I.getArgOperand(0)); 5411 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5412 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5413 setValue(&I, Op.getValue(0)); 5414 DAG.setRoot(Op.getValue(1)); 5415 return nullptr; 5416 } 5417 case Intrinsic::eh_sjlj_longjmp: 5418 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5419 getRoot(), getValue(I.getArgOperand(0)))); 5420 return nullptr; 5421 case Intrinsic::eh_sjlj_setup_dispatch: 5422 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5423 getRoot())); 5424 return nullptr; 5425 case Intrinsic::masked_gather: 5426 visitMaskedGather(I); 5427 return nullptr; 5428 case Intrinsic::masked_load: 5429 visitMaskedLoad(I); 5430 return nullptr; 5431 case Intrinsic::masked_scatter: 5432 visitMaskedScatter(I); 5433 return nullptr; 5434 case Intrinsic::masked_store: 5435 visitMaskedStore(I); 5436 return nullptr; 5437 case Intrinsic::masked_expandload: 5438 visitMaskedLoad(I, true /* IsExpanding */); 5439 return nullptr; 5440 case Intrinsic::masked_compressstore: 5441 visitMaskedStore(I, true /* IsCompressing */); 5442 return nullptr; 5443 case Intrinsic::x86_mmx_pslli_w: 5444 case Intrinsic::x86_mmx_pslli_d: 5445 case Intrinsic::x86_mmx_pslli_q: 5446 case Intrinsic::x86_mmx_psrli_w: 5447 case Intrinsic::x86_mmx_psrli_d: 5448 case Intrinsic::x86_mmx_psrli_q: 5449 case Intrinsic::x86_mmx_psrai_w: 5450 case Intrinsic::x86_mmx_psrai_d: { 5451 SDValue ShAmt = getValue(I.getArgOperand(1)); 5452 if (isa<ConstantSDNode>(ShAmt)) { 5453 visitTargetIntrinsic(I, Intrinsic); 5454 return nullptr; 5455 } 5456 unsigned NewIntrinsic = 0; 5457 EVT ShAmtVT = MVT::v2i32; 5458 switch (Intrinsic) { 5459 case Intrinsic::x86_mmx_pslli_w: 5460 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5461 break; 5462 case Intrinsic::x86_mmx_pslli_d: 5463 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5464 break; 5465 case Intrinsic::x86_mmx_pslli_q: 5466 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5467 break; 5468 case Intrinsic::x86_mmx_psrli_w: 5469 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5470 break; 5471 case Intrinsic::x86_mmx_psrli_d: 5472 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5473 break; 5474 case Intrinsic::x86_mmx_psrli_q: 5475 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5476 break; 5477 case Intrinsic::x86_mmx_psrai_w: 5478 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5479 break; 5480 case Intrinsic::x86_mmx_psrai_d: 5481 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5482 break; 5483 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5484 } 5485 5486 // The vector shift intrinsics with scalars uses 32b shift amounts but 5487 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5488 // to be zero. 5489 // We must do this early because v2i32 is not a legal type. 5490 SDValue ShOps[2]; 5491 ShOps[0] = ShAmt; 5492 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5493 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5494 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5495 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5496 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5497 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5498 getValue(I.getArgOperand(0)), ShAmt); 5499 setValue(&I, Res); 5500 return nullptr; 5501 } 5502 case Intrinsic::powi: 5503 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5504 getValue(I.getArgOperand(1)), DAG)); 5505 return nullptr; 5506 case Intrinsic::log: 5507 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5508 return nullptr; 5509 case Intrinsic::log2: 5510 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5511 return nullptr; 5512 case Intrinsic::log10: 5513 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5514 return nullptr; 5515 case Intrinsic::exp: 5516 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5517 return nullptr; 5518 case Intrinsic::exp2: 5519 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5520 return nullptr; 5521 case Intrinsic::pow: 5522 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5523 getValue(I.getArgOperand(1)), DAG, TLI)); 5524 return nullptr; 5525 case Intrinsic::sqrt: 5526 case Intrinsic::fabs: 5527 case Intrinsic::sin: 5528 case Intrinsic::cos: 5529 case Intrinsic::floor: 5530 case Intrinsic::ceil: 5531 case Intrinsic::trunc: 5532 case Intrinsic::rint: 5533 case Intrinsic::nearbyint: 5534 case Intrinsic::round: 5535 case Intrinsic::canonicalize: { 5536 unsigned Opcode; 5537 switch (Intrinsic) { 5538 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5539 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5540 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5541 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5542 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5543 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5544 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5545 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5546 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5547 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5548 case Intrinsic::round: Opcode = ISD::FROUND; break; 5549 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5550 } 5551 5552 setValue(&I, DAG.getNode(Opcode, sdl, 5553 getValue(I.getArgOperand(0)).getValueType(), 5554 getValue(I.getArgOperand(0)))); 5555 return nullptr; 5556 } 5557 case Intrinsic::minnum: { 5558 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5559 unsigned Opc = 5560 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5561 ? ISD::FMINNAN 5562 : ISD::FMINNUM; 5563 setValue(&I, DAG.getNode(Opc, sdl, VT, 5564 getValue(I.getArgOperand(0)), 5565 getValue(I.getArgOperand(1)))); 5566 return nullptr; 5567 } 5568 case Intrinsic::maxnum: { 5569 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5570 unsigned Opc = 5571 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5572 ? ISD::FMAXNAN 5573 : ISD::FMAXNUM; 5574 setValue(&I, DAG.getNode(Opc, sdl, VT, 5575 getValue(I.getArgOperand(0)), 5576 getValue(I.getArgOperand(1)))); 5577 return nullptr; 5578 } 5579 case Intrinsic::copysign: 5580 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5581 getValue(I.getArgOperand(0)).getValueType(), 5582 getValue(I.getArgOperand(0)), 5583 getValue(I.getArgOperand(1)))); 5584 return nullptr; 5585 case Intrinsic::fma: 5586 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5587 getValue(I.getArgOperand(0)).getValueType(), 5588 getValue(I.getArgOperand(0)), 5589 getValue(I.getArgOperand(1)), 5590 getValue(I.getArgOperand(2)))); 5591 return nullptr; 5592 case Intrinsic::experimental_constrained_fadd: 5593 case Intrinsic::experimental_constrained_fsub: 5594 case Intrinsic::experimental_constrained_fmul: 5595 case Intrinsic::experimental_constrained_fdiv: 5596 case Intrinsic::experimental_constrained_frem: 5597 case Intrinsic::experimental_constrained_fma: 5598 case Intrinsic::experimental_constrained_sqrt: 5599 case Intrinsic::experimental_constrained_pow: 5600 case Intrinsic::experimental_constrained_powi: 5601 case Intrinsic::experimental_constrained_sin: 5602 case Intrinsic::experimental_constrained_cos: 5603 case Intrinsic::experimental_constrained_exp: 5604 case Intrinsic::experimental_constrained_exp2: 5605 case Intrinsic::experimental_constrained_log: 5606 case Intrinsic::experimental_constrained_log10: 5607 case Intrinsic::experimental_constrained_log2: 5608 case Intrinsic::experimental_constrained_rint: 5609 case Intrinsic::experimental_constrained_nearbyint: 5610 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5611 return nullptr; 5612 case Intrinsic::fmuladd: { 5613 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5614 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5615 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5616 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5617 getValue(I.getArgOperand(0)).getValueType(), 5618 getValue(I.getArgOperand(0)), 5619 getValue(I.getArgOperand(1)), 5620 getValue(I.getArgOperand(2)))); 5621 } else { 5622 // TODO: Intrinsic calls should have fast-math-flags. 5623 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5624 getValue(I.getArgOperand(0)).getValueType(), 5625 getValue(I.getArgOperand(0)), 5626 getValue(I.getArgOperand(1))); 5627 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5628 getValue(I.getArgOperand(0)).getValueType(), 5629 Mul, 5630 getValue(I.getArgOperand(2))); 5631 setValue(&I, Add); 5632 } 5633 return nullptr; 5634 } 5635 case Intrinsic::convert_to_fp16: 5636 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5637 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5638 getValue(I.getArgOperand(0)), 5639 DAG.getTargetConstant(0, sdl, 5640 MVT::i32)))); 5641 return nullptr; 5642 case Intrinsic::convert_from_fp16: 5643 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5644 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5645 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5646 getValue(I.getArgOperand(0))))); 5647 return nullptr; 5648 case Intrinsic::pcmarker: { 5649 SDValue Tmp = getValue(I.getArgOperand(0)); 5650 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5651 return nullptr; 5652 } 5653 case Intrinsic::readcyclecounter: { 5654 SDValue Op = getRoot(); 5655 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5656 DAG.getVTList(MVT::i64, MVT::Other), Op); 5657 setValue(&I, Res); 5658 DAG.setRoot(Res.getValue(1)); 5659 return nullptr; 5660 } 5661 case Intrinsic::bitreverse: 5662 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5663 getValue(I.getArgOperand(0)).getValueType(), 5664 getValue(I.getArgOperand(0)))); 5665 return nullptr; 5666 case Intrinsic::bswap: 5667 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5668 getValue(I.getArgOperand(0)).getValueType(), 5669 getValue(I.getArgOperand(0)))); 5670 return nullptr; 5671 case Intrinsic::cttz: { 5672 SDValue Arg = getValue(I.getArgOperand(0)); 5673 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5674 EVT Ty = Arg.getValueType(); 5675 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5676 sdl, Ty, Arg)); 5677 return nullptr; 5678 } 5679 case Intrinsic::ctlz: { 5680 SDValue Arg = getValue(I.getArgOperand(0)); 5681 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5682 EVT Ty = Arg.getValueType(); 5683 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5684 sdl, Ty, Arg)); 5685 return nullptr; 5686 } 5687 case Intrinsic::ctpop: { 5688 SDValue Arg = getValue(I.getArgOperand(0)); 5689 EVT Ty = Arg.getValueType(); 5690 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5691 return nullptr; 5692 } 5693 case Intrinsic::fshl: 5694 case Intrinsic::fshr: { 5695 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5696 SDValue X = getValue(I.getArgOperand(0)); 5697 SDValue Y = getValue(I.getArgOperand(1)); 5698 SDValue Z = getValue(I.getArgOperand(2)); 5699 EVT VT = X.getValueType(); 5700 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5701 SDValue Zero = DAG.getConstant(0, sdl, VT); 5702 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5703 5704 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5705 // avoid the select that is necessary in the general case to filter out 5706 // the 0-shift possibility that leads to UB. 5707 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5708 // TODO: This should also be done if the operation is custom, but we have 5709 // to make sure targets are handling the modulo shift amount as expected. 5710 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5711 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5712 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5713 return nullptr; 5714 } 5715 5716 // Some targets only rotate one way. Try the opposite direction. 5717 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5718 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5719 // Negate the shift amount because it is safe to ignore the high bits. 5720 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5721 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5722 return nullptr; 5723 } 5724 5725 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5726 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5727 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5728 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5729 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5730 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5731 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5732 return nullptr; 5733 } 5734 5735 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5736 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5737 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5738 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5739 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5740 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5741 5742 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5743 // and that is undefined. We must compare and select to avoid UB. 5744 EVT CCVT = MVT::i1; 5745 if (VT.isVector()) 5746 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5747 5748 // For fshl, 0-shift returns the 1st arg (X). 5749 // For fshr, 0-shift returns the 2nd arg (Y). 5750 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5751 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5752 return nullptr; 5753 } 5754 case Intrinsic::stacksave: { 5755 SDValue Op = getRoot(); 5756 Res = DAG.getNode( 5757 ISD::STACKSAVE, sdl, 5758 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5759 setValue(&I, Res); 5760 DAG.setRoot(Res.getValue(1)); 5761 return nullptr; 5762 } 5763 case Intrinsic::stackrestore: 5764 Res = getValue(I.getArgOperand(0)); 5765 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5766 return nullptr; 5767 case Intrinsic::get_dynamic_area_offset: { 5768 SDValue Op = getRoot(); 5769 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5770 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5771 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5772 // target. 5773 if (PtrTy != ResTy) 5774 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5775 " intrinsic!"); 5776 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5777 Op); 5778 DAG.setRoot(Op); 5779 setValue(&I, Res); 5780 return nullptr; 5781 } 5782 case Intrinsic::stackguard: { 5783 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5784 MachineFunction &MF = DAG.getMachineFunction(); 5785 const Module &M = *MF.getFunction().getParent(); 5786 SDValue Chain = getRoot(); 5787 if (TLI.useLoadStackGuardNode()) { 5788 Res = getLoadStackGuard(DAG, sdl, Chain); 5789 } else { 5790 const Value *Global = TLI.getSDagStackGuard(M); 5791 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5792 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5793 MachinePointerInfo(Global, 0), Align, 5794 MachineMemOperand::MOVolatile); 5795 } 5796 if (TLI.useStackGuardXorFP()) 5797 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5798 DAG.setRoot(Chain); 5799 setValue(&I, Res); 5800 return nullptr; 5801 } 5802 case Intrinsic::stackprotector: { 5803 // Emit code into the DAG to store the stack guard onto the stack. 5804 MachineFunction &MF = DAG.getMachineFunction(); 5805 MachineFrameInfo &MFI = MF.getFrameInfo(); 5806 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5807 SDValue Src, Chain = getRoot(); 5808 5809 if (TLI.useLoadStackGuardNode()) 5810 Src = getLoadStackGuard(DAG, sdl, Chain); 5811 else 5812 Src = getValue(I.getArgOperand(0)); // The guard's value. 5813 5814 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5815 5816 int FI = FuncInfo.StaticAllocaMap[Slot]; 5817 MFI.setStackProtectorIndex(FI); 5818 5819 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5820 5821 // Store the stack protector onto the stack. 5822 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5823 DAG.getMachineFunction(), FI), 5824 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5825 setValue(&I, Res); 5826 DAG.setRoot(Res); 5827 return nullptr; 5828 } 5829 case Intrinsic::objectsize: { 5830 // If we don't know by now, we're never going to know. 5831 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5832 5833 assert(CI && "Non-constant type in __builtin_object_size?"); 5834 5835 SDValue Arg = getValue(I.getCalledValue()); 5836 EVT Ty = Arg.getValueType(); 5837 5838 if (CI->isZero()) 5839 Res = DAG.getConstant(-1ULL, sdl, Ty); 5840 else 5841 Res = DAG.getConstant(0, sdl, Ty); 5842 5843 setValue(&I, Res); 5844 return nullptr; 5845 } 5846 case Intrinsic::annotation: 5847 case Intrinsic::ptr_annotation: 5848 case Intrinsic::launder_invariant_group: 5849 case Intrinsic::strip_invariant_group: 5850 // Drop the intrinsic, but forward the value 5851 setValue(&I, getValue(I.getOperand(0))); 5852 return nullptr; 5853 case Intrinsic::assume: 5854 case Intrinsic::var_annotation: 5855 case Intrinsic::sideeffect: 5856 // Discard annotate attributes, assumptions, and artificial side-effects. 5857 return nullptr; 5858 5859 case Intrinsic::codeview_annotation: { 5860 // Emit a label associated with this metadata. 5861 MachineFunction &MF = DAG.getMachineFunction(); 5862 MCSymbol *Label = 5863 MF.getMMI().getContext().createTempSymbol("annotation", true); 5864 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5865 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5866 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5867 DAG.setRoot(Res); 5868 return nullptr; 5869 } 5870 5871 case Intrinsic::init_trampoline: { 5872 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5873 5874 SDValue Ops[6]; 5875 Ops[0] = getRoot(); 5876 Ops[1] = getValue(I.getArgOperand(0)); 5877 Ops[2] = getValue(I.getArgOperand(1)); 5878 Ops[3] = getValue(I.getArgOperand(2)); 5879 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5880 Ops[5] = DAG.getSrcValue(F); 5881 5882 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5883 5884 DAG.setRoot(Res); 5885 return nullptr; 5886 } 5887 case Intrinsic::adjust_trampoline: 5888 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5889 TLI.getPointerTy(DAG.getDataLayout()), 5890 getValue(I.getArgOperand(0)))); 5891 return nullptr; 5892 case Intrinsic::gcroot: { 5893 assert(DAG.getMachineFunction().getFunction().hasGC() && 5894 "only valid in functions with gc specified, enforced by Verifier"); 5895 assert(GFI && "implied by previous"); 5896 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5897 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5898 5899 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5900 GFI->addStackRoot(FI->getIndex(), TypeMap); 5901 return nullptr; 5902 } 5903 case Intrinsic::gcread: 5904 case Intrinsic::gcwrite: 5905 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5906 case Intrinsic::flt_rounds: 5907 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5908 return nullptr; 5909 5910 case Intrinsic::expect: 5911 // Just replace __builtin_expect(exp, c) with EXP. 5912 setValue(&I, getValue(I.getArgOperand(0))); 5913 return nullptr; 5914 5915 case Intrinsic::debugtrap: 5916 case Intrinsic::trap: { 5917 StringRef TrapFuncName = 5918 I.getAttributes() 5919 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5920 .getValueAsString(); 5921 if (TrapFuncName.empty()) { 5922 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5923 ISD::TRAP : ISD::DEBUGTRAP; 5924 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5925 return nullptr; 5926 } 5927 TargetLowering::ArgListTy Args; 5928 5929 TargetLowering::CallLoweringInfo CLI(DAG); 5930 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5931 CallingConv::C, I.getType(), 5932 DAG.getExternalSymbol(TrapFuncName.data(), 5933 TLI.getPointerTy(DAG.getDataLayout())), 5934 std::move(Args)); 5935 5936 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5937 DAG.setRoot(Result.second); 5938 return nullptr; 5939 } 5940 5941 case Intrinsic::uadd_with_overflow: 5942 case Intrinsic::sadd_with_overflow: 5943 case Intrinsic::usub_with_overflow: 5944 case Intrinsic::ssub_with_overflow: 5945 case Intrinsic::umul_with_overflow: 5946 case Intrinsic::smul_with_overflow: { 5947 ISD::NodeType Op; 5948 switch (Intrinsic) { 5949 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5950 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5951 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5952 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5953 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5954 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5955 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5956 } 5957 SDValue Op1 = getValue(I.getArgOperand(0)); 5958 SDValue Op2 = getValue(I.getArgOperand(1)); 5959 5960 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5961 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5962 return nullptr; 5963 } 5964 case Intrinsic::prefetch: { 5965 SDValue Ops[5]; 5966 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5967 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5968 Ops[0] = DAG.getRoot(); 5969 Ops[1] = getValue(I.getArgOperand(0)); 5970 Ops[2] = getValue(I.getArgOperand(1)); 5971 Ops[3] = getValue(I.getArgOperand(2)); 5972 Ops[4] = getValue(I.getArgOperand(3)); 5973 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5974 DAG.getVTList(MVT::Other), Ops, 5975 EVT::getIntegerVT(*Context, 8), 5976 MachinePointerInfo(I.getArgOperand(0)), 5977 0, /* align */ 5978 Flags); 5979 5980 // Chain the prefetch in parallell with any pending loads, to stay out of 5981 // the way of later optimizations. 5982 PendingLoads.push_back(Result); 5983 Result = getRoot(); 5984 DAG.setRoot(Result); 5985 return nullptr; 5986 } 5987 case Intrinsic::lifetime_start: 5988 case Intrinsic::lifetime_end: { 5989 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5990 // Stack coloring is not enabled in O0, discard region information. 5991 if (TM.getOptLevel() == CodeGenOpt::None) 5992 return nullptr; 5993 5994 SmallVector<Value *, 4> Allocas; 5995 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5996 5997 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5998 E = Allocas.end(); Object != E; ++Object) { 5999 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6000 6001 // Could not find an Alloca. 6002 if (!LifetimeObject) 6003 continue; 6004 6005 // First check that the Alloca is static, otherwise it won't have a 6006 // valid frame index. 6007 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6008 if (SI == FuncInfo.StaticAllocaMap.end()) 6009 return nullptr; 6010 6011 int FI = SI->second; 6012 6013 SDValue Ops[2]; 6014 Ops[0] = getRoot(); 6015 Ops[1] = 6016 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6017 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6018 6019 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6020 DAG.setRoot(Res); 6021 } 6022 return nullptr; 6023 } 6024 case Intrinsic::invariant_start: 6025 // Discard region information. 6026 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6027 return nullptr; 6028 case Intrinsic::invariant_end: 6029 // Discard region information. 6030 return nullptr; 6031 case Intrinsic::clear_cache: 6032 return TLI.getClearCacheBuiltinName(); 6033 case Intrinsic::donothing: 6034 // ignore 6035 return nullptr; 6036 case Intrinsic::experimental_stackmap: 6037 visitStackmap(I); 6038 return nullptr; 6039 case Intrinsic::experimental_patchpoint_void: 6040 case Intrinsic::experimental_patchpoint_i64: 6041 visitPatchpoint(&I); 6042 return nullptr; 6043 case Intrinsic::experimental_gc_statepoint: 6044 LowerStatepoint(ImmutableStatepoint(&I)); 6045 return nullptr; 6046 case Intrinsic::experimental_gc_result: 6047 visitGCResult(cast<GCResultInst>(I)); 6048 return nullptr; 6049 case Intrinsic::experimental_gc_relocate: 6050 visitGCRelocate(cast<GCRelocateInst>(I)); 6051 return nullptr; 6052 case Intrinsic::instrprof_increment: 6053 llvm_unreachable("instrprof failed to lower an increment"); 6054 case Intrinsic::instrprof_value_profile: 6055 llvm_unreachable("instrprof failed to lower a value profiling call"); 6056 case Intrinsic::localescape: { 6057 MachineFunction &MF = DAG.getMachineFunction(); 6058 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6059 6060 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6061 // is the same on all targets. 6062 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6063 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6064 if (isa<ConstantPointerNull>(Arg)) 6065 continue; // Skip null pointers. They represent a hole in index space. 6066 AllocaInst *Slot = cast<AllocaInst>(Arg); 6067 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6068 "can only escape static allocas"); 6069 int FI = FuncInfo.StaticAllocaMap[Slot]; 6070 MCSymbol *FrameAllocSym = 6071 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6072 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6074 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6075 .addSym(FrameAllocSym) 6076 .addFrameIndex(FI); 6077 } 6078 6079 return nullptr; 6080 } 6081 6082 case Intrinsic::localrecover: { 6083 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6084 MachineFunction &MF = DAG.getMachineFunction(); 6085 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6086 6087 // Get the symbol that defines the frame offset. 6088 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6089 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6090 unsigned IdxVal = 6091 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6092 MCSymbol *FrameAllocSym = 6093 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6094 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6095 6096 // Create a MCSymbol for the label to avoid any target lowering 6097 // that would make this PC relative. 6098 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6099 SDValue OffsetVal = 6100 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6101 6102 // Add the offset to the FP. 6103 Value *FP = I.getArgOperand(1); 6104 SDValue FPVal = getValue(FP); 6105 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6106 setValue(&I, Add); 6107 6108 return nullptr; 6109 } 6110 6111 case Intrinsic::eh_exceptionpointer: 6112 case Intrinsic::eh_exceptioncode: { 6113 // Get the exception pointer vreg, copy from it, and resize it to fit. 6114 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6115 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6116 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6117 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6118 SDValue N = 6119 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6120 if (Intrinsic == Intrinsic::eh_exceptioncode) 6121 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6122 setValue(&I, N); 6123 return nullptr; 6124 } 6125 case Intrinsic::xray_customevent: { 6126 // Here we want to make sure that the intrinsic behaves as if it has a 6127 // specific calling convention, and only for x86_64. 6128 // FIXME: Support other platforms later. 6129 const auto &Triple = DAG.getTarget().getTargetTriple(); 6130 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6131 return nullptr; 6132 6133 SDLoc DL = getCurSDLoc(); 6134 SmallVector<SDValue, 8> Ops; 6135 6136 // We want to say that we always want the arguments in registers. 6137 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6138 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6139 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6140 SDValue Chain = getRoot(); 6141 Ops.push_back(LogEntryVal); 6142 Ops.push_back(StrSizeVal); 6143 Ops.push_back(Chain); 6144 6145 // We need to enforce the calling convention for the callsite, so that 6146 // argument ordering is enforced correctly, and that register allocation can 6147 // see that some registers may be assumed clobbered and have to preserve 6148 // them across calls to the intrinsic. 6149 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6150 DL, NodeTys, Ops); 6151 SDValue patchableNode = SDValue(MN, 0); 6152 DAG.setRoot(patchableNode); 6153 setValue(&I, patchableNode); 6154 return nullptr; 6155 } 6156 case Intrinsic::xray_typedevent: { 6157 // Here we want to make sure that the intrinsic behaves as if it has a 6158 // specific calling convention, and only for x86_64. 6159 // FIXME: Support other platforms later. 6160 const auto &Triple = DAG.getTarget().getTargetTriple(); 6161 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6162 return nullptr; 6163 6164 SDLoc DL = getCurSDLoc(); 6165 SmallVector<SDValue, 8> Ops; 6166 6167 // We want to say that we always want the arguments in registers. 6168 // It's unclear to me how manipulating the selection DAG here forces callers 6169 // to provide arguments in registers instead of on the stack. 6170 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6171 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6172 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6173 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6174 SDValue Chain = getRoot(); 6175 Ops.push_back(LogTypeId); 6176 Ops.push_back(LogEntryVal); 6177 Ops.push_back(StrSizeVal); 6178 Ops.push_back(Chain); 6179 6180 // We need to enforce the calling convention for the callsite, so that 6181 // argument ordering is enforced correctly, and that register allocation can 6182 // see that some registers may be assumed clobbered and have to preserve 6183 // them across calls to the intrinsic. 6184 MachineSDNode *MN = DAG.getMachineNode( 6185 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6186 SDValue patchableNode = SDValue(MN, 0); 6187 DAG.setRoot(patchableNode); 6188 setValue(&I, patchableNode); 6189 return nullptr; 6190 } 6191 case Intrinsic::experimental_deoptimize: 6192 LowerDeoptimizeCall(&I); 6193 return nullptr; 6194 6195 case Intrinsic::experimental_vector_reduce_fadd: 6196 case Intrinsic::experimental_vector_reduce_fmul: 6197 case Intrinsic::experimental_vector_reduce_add: 6198 case Intrinsic::experimental_vector_reduce_mul: 6199 case Intrinsic::experimental_vector_reduce_and: 6200 case Intrinsic::experimental_vector_reduce_or: 6201 case Intrinsic::experimental_vector_reduce_xor: 6202 case Intrinsic::experimental_vector_reduce_smax: 6203 case Intrinsic::experimental_vector_reduce_smin: 6204 case Intrinsic::experimental_vector_reduce_umax: 6205 case Intrinsic::experimental_vector_reduce_umin: 6206 case Intrinsic::experimental_vector_reduce_fmax: 6207 case Intrinsic::experimental_vector_reduce_fmin: 6208 visitVectorReduce(I, Intrinsic); 6209 return nullptr; 6210 6211 case Intrinsic::icall_branch_funnel: { 6212 SmallVector<SDValue, 16> Ops; 6213 Ops.push_back(DAG.getRoot()); 6214 Ops.push_back(getValue(I.getArgOperand(0))); 6215 6216 int64_t Offset; 6217 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6218 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6219 if (!Base) 6220 report_fatal_error( 6221 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6222 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6223 6224 struct BranchFunnelTarget { 6225 int64_t Offset; 6226 SDValue Target; 6227 }; 6228 SmallVector<BranchFunnelTarget, 8> Targets; 6229 6230 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6231 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6232 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6233 if (ElemBase != Base) 6234 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6235 "to the same GlobalValue"); 6236 6237 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6238 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6239 if (!GA) 6240 report_fatal_error( 6241 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6242 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6243 GA->getGlobal(), getCurSDLoc(), 6244 Val.getValueType(), GA->getOffset())}); 6245 } 6246 llvm::sort(Targets.begin(), Targets.end(), 6247 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6248 return T1.Offset < T2.Offset; 6249 }); 6250 6251 for (auto &T : Targets) { 6252 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6253 Ops.push_back(T.Target); 6254 } 6255 6256 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6257 getCurSDLoc(), MVT::Other, Ops), 6258 0); 6259 DAG.setRoot(N); 6260 setValue(&I, N); 6261 HasTailCall = true; 6262 return nullptr; 6263 } 6264 6265 case Intrinsic::wasm_landingpad_index: { 6266 // TODO store landing pad index in a map, which will be used when generating 6267 // LSDA information 6268 return nullptr; 6269 } 6270 } 6271 } 6272 6273 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6274 const ConstrainedFPIntrinsic &FPI) { 6275 SDLoc sdl = getCurSDLoc(); 6276 unsigned Opcode; 6277 switch (FPI.getIntrinsicID()) { 6278 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6279 case Intrinsic::experimental_constrained_fadd: 6280 Opcode = ISD::STRICT_FADD; 6281 break; 6282 case Intrinsic::experimental_constrained_fsub: 6283 Opcode = ISD::STRICT_FSUB; 6284 break; 6285 case Intrinsic::experimental_constrained_fmul: 6286 Opcode = ISD::STRICT_FMUL; 6287 break; 6288 case Intrinsic::experimental_constrained_fdiv: 6289 Opcode = ISD::STRICT_FDIV; 6290 break; 6291 case Intrinsic::experimental_constrained_frem: 6292 Opcode = ISD::STRICT_FREM; 6293 break; 6294 case Intrinsic::experimental_constrained_fma: 6295 Opcode = ISD::STRICT_FMA; 6296 break; 6297 case Intrinsic::experimental_constrained_sqrt: 6298 Opcode = ISD::STRICT_FSQRT; 6299 break; 6300 case Intrinsic::experimental_constrained_pow: 6301 Opcode = ISD::STRICT_FPOW; 6302 break; 6303 case Intrinsic::experimental_constrained_powi: 6304 Opcode = ISD::STRICT_FPOWI; 6305 break; 6306 case Intrinsic::experimental_constrained_sin: 6307 Opcode = ISD::STRICT_FSIN; 6308 break; 6309 case Intrinsic::experimental_constrained_cos: 6310 Opcode = ISD::STRICT_FCOS; 6311 break; 6312 case Intrinsic::experimental_constrained_exp: 6313 Opcode = ISD::STRICT_FEXP; 6314 break; 6315 case Intrinsic::experimental_constrained_exp2: 6316 Opcode = ISD::STRICT_FEXP2; 6317 break; 6318 case Intrinsic::experimental_constrained_log: 6319 Opcode = ISD::STRICT_FLOG; 6320 break; 6321 case Intrinsic::experimental_constrained_log10: 6322 Opcode = ISD::STRICT_FLOG10; 6323 break; 6324 case Intrinsic::experimental_constrained_log2: 6325 Opcode = ISD::STRICT_FLOG2; 6326 break; 6327 case Intrinsic::experimental_constrained_rint: 6328 Opcode = ISD::STRICT_FRINT; 6329 break; 6330 case Intrinsic::experimental_constrained_nearbyint: 6331 Opcode = ISD::STRICT_FNEARBYINT; 6332 break; 6333 } 6334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6335 SDValue Chain = getRoot(); 6336 SmallVector<EVT, 4> ValueVTs; 6337 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6338 ValueVTs.push_back(MVT::Other); // Out chain 6339 6340 SDVTList VTs = DAG.getVTList(ValueVTs); 6341 SDValue Result; 6342 if (FPI.isUnaryOp()) 6343 Result = DAG.getNode(Opcode, sdl, VTs, 6344 { Chain, getValue(FPI.getArgOperand(0)) }); 6345 else if (FPI.isTernaryOp()) 6346 Result = DAG.getNode(Opcode, sdl, VTs, 6347 { Chain, getValue(FPI.getArgOperand(0)), 6348 getValue(FPI.getArgOperand(1)), 6349 getValue(FPI.getArgOperand(2)) }); 6350 else 6351 Result = DAG.getNode(Opcode, sdl, VTs, 6352 { Chain, getValue(FPI.getArgOperand(0)), 6353 getValue(FPI.getArgOperand(1)) }); 6354 6355 assert(Result.getNode()->getNumValues() == 2); 6356 SDValue OutChain = Result.getValue(1); 6357 DAG.setRoot(OutChain); 6358 SDValue FPResult = Result.getValue(0); 6359 setValue(&FPI, FPResult); 6360 } 6361 6362 std::pair<SDValue, SDValue> 6363 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6364 const BasicBlock *EHPadBB) { 6365 MachineFunction &MF = DAG.getMachineFunction(); 6366 MachineModuleInfo &MMI = MF.getMMI(); 6367 MCSymbol *BeginLabel = nullptr; 6368 6369 if (EHPadBB) { 6370 // Insert a label before the invoke call to mark the try range. This can be 6371 // used to detect deletion of the invoke via the MachineModuleInfo. 6372 BeginLabel = MMI.getContext().createTempSymbol(); 6373 6374 // For SjLj, keep track of which landing pads go with which invokes 6375 // so as to maintain the ordering of pads in the LSDA. 6376 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6377 if (CallSiteIndex) { 6378 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6379 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6380 6381 // Now that the call site is handled, stop tracking it. 6382 MMI.setCurrentCallSite(0); 6383 } 6384 6385 // Both PendingLoads and PendingExports must be flushed here; 6386 // this call might not return. 6387 (void)getRoot(); 6388 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6389 6390 CLI.setChain(getRoot()); 6391 } 6392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6393 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6394 6395 assert((CLI.IsTailCall || Result.second.getNode()) && 6396 "Non-null chain expected with non-tail call!"); 6397 assert((Result.second.getNode() || !Result.first.getNode()) && 6398 "Null value expected with tail call!"); 6399 6400 if (!Result.second.getNode()) { 6401 // As a special case, a null chain means that a tail call has been emitted 6402 // and the DAG root is already updated. 6403 HasTailCall = true; 6404 6405 // Since there's no actual continuation from this block, nothing can be 6406 // relying on us setting vregs for them. 6407 PendingExports.clear(); 6408 } else { 6409 DAG.setRoot(Result.second); 6410 } 6411 6412 if (EHPadBB) { 6413 // Insert a label at the end of the invoke call to mark the try range. This 6414 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6415 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6416 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6417 6418 // Inform MachineModuleInfo of range. 6419 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6420 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6421 // actually use outlined funclets and their LSDA info style. 6422 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6423 assert(CLI.CS); 6424 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6425 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6426 BeginLabel, EndLabel); 6427 } else { 6428 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6429 } 6430 } 6431 6432 return Result; 6433 } 6434 6435 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6436 bool isTailCall, 6437 const BasicBlock *EHPadBB) { 6438 auto &DL = DAG.getDataLayout(); 6439 FunctionType *FTy = CS.getFunctionType(); 6440 Type *RetTy = CS.getType(); 6441 6442 TargetLowering::ArgListTy Args; 6443 Args.reserve(CS.arg_size()); 6444 6445 const Value *SwiftErrorVal = nullptr; 6446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6447 6448 // We can't tail call inside a function with a swifterror argument. Lowering 6449 // does not support this yet. It would have to move into the swifterror 6450 // register before the call. 6451 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6452 if (TLI.supportSwiftError() && 6453 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6454 isTailCall = false; 6455 6456 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6457 i != e; ++i) { 6458 TargetLowering::ArgListEntry Entry; 6459 const Value *V = *i; 6460 6461 // Skip empty types 6462 if (V->getType()->isEmptyTy()) 6463 continue; 6464 6465 SDValue ArgNode = getValue(V); 6466 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6467 6468 Entry.setAttributes(&CS, i - CS.arg_begin()); 6469 6470 // Use swifterror virtual register as input to the call. 6471 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6472 SwiftErrorVal = V; 6473 // We find the virtual register for the actual swifterror argument. 6474 // Instead of using the Value, we use the virtual register instead. 6475 Entry.Node = DAG.getRegister(FuncInfo 6476 .getOrCreateSwiftErrorVRegUseAt( 6477 CS.getInstruction(), FuncInfo.MBB, V) 6478 .first, 6479 EVT(TLI.getPointerTy(DL))); 6480 } 6481 6482 Args.push_back(Entry); 6483 6484 // If we have an explicit sret argument that is an Instruction, (i.e., it 6485 // might point to function-local memory), we can't meaningfully tail-call. 6486 if (Entry.IsSRet && isa<Instruction>(V)) 6487 isTailCall = false; 6488 } 6489 6490 // Check if target-independent constraints permit a tail call here. 6491 // Target-dependent constraints are checked within TLI->LowerCallTo. 6492 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6493 isTailCall = false; 6494 6495 // Disable tail calls if there is an swifterror argument. Targets have not 6496 // been updated to support tail calls. 6497 if (TLI.supportSwiftError() && SwiftErrorVal) 6498 isTailCall = false; 6499 6500 TargetLowering::CallLoweringInfo CLI(DAG); 6501 CLI.setDebugLoc(getCurSDLoc()) 6502 .setChain(getRoot()) 6503 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6504 .setTailCall(isTailCall) 6505 .setConvergent(CS.isConvergent()); 6506 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6507 6508 if (Result.first.getNode()) { 6509 const Instruction *Inst = CS.getInstruction(); 6510 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6511 setValue(Inst, Result.first); 6512 } 6513 6514 // The last element of CLI.InVals has the SDValue for swifterror return. 6515 // Here we copy it to a virtual register and update SwiftErrorMap for 6516 // book-keeping. 6517 if (SwiftErrorVal && TLI.supportSwiftError()) { 6518 // Get the last element of InVals. 6519 SDValue Src = CLI.InVals.back(); 6520 unsigned VReg; bool CreatedVReg; 6521 std::tie(VReg, CreatedVReg) = 6522 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6523 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6524 // We update the virtual register for the actual swifterror argument. 6525 if (CreatedVReg) 6526 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6527 DAG.setRoot(CopyNode); 6528 } 6529 } 6530 6531 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6532 SelectionDAGBuilder &Builder) { 6533 // Check to see if this load can be trivially constant folded, e.g. if the 6534 // input is from a string literal. 6535 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6536 // Cast pointer to the type we really want to load. 6537 Type *LoadTy = 6538 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6539 if (LoadVT.isVector()) 6540 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6541 6542 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6543 PointerType::getUnqual(LoadTy)); 6544 6545 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6546 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6547 return Builder.getValue(LoadCst); 6548 } 6549 6550 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6551 // still constant memory, the input chain can be the entry node. 6552 SDValue Root; 6553 bool ConstantMemory = false; 6554 6555 // Do not serialize (non-volatile) loads of constant memory with anything. 6556 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6557 Root = Builder.DAG.getEntryNode(); 6558 ConstantMemory = true; 6559 } else { 6560 // Do not serialize non-volatile loads against each other. 6561 Root = Builder.DAG.getRoot(); 6562 } 6563 6564 SDValue Ptr = Builder.getValue(PtrVal); 6565 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6566 Ptr, MachinePointerInfo(PtrVal), 6567 /* Alignment = */ 1); 6568 6569 if (!ConstantMemory) 6570 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6571 return LoadVal; 6572 } 6573 6574 /// Record the value for an instruction that produces an integer result, 6575 /// converting the type where necessary. 6576 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6577 SDValue Value, 6578 bool IsSigned) { 6579 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6580 I.getType(), true); 6581 if (IsSigned) 6582 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6583 else 6584 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6585 setValue(&I, Value); 6586 } 6587 6588 /// See if we can lower a memcmp call into an optimized form. If so, return 6589 /// true and lower it. Otherwise return false, and it will be lowered like a 6590 /// normal call. 6591 /// The caller already checked that \p I calls the appropriate LibFunc with a 6592 /// correct prototype. 6593 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6594 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6595 const Value *Size = I.getArgOperand(2); 6596 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6597 if (CSize && CSize->getZExtValue() == 0) { 6598 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6599 I.getType(), true); 6600 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6601 return true; 6602 } 6603 6604 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6605 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6606 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6607 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6608 if (Res.first.getNode()) { 6609 processIntegerCallValue(I, Res.first, true); 6610 PendingLoads.push_back(Res.second); 6611 return true; 6612 } 6613 6614 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6615 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6616 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6617 return false; 6618 6619 // If the target has a fast compare for the given size, it will return a 6620 // preferred load type for that size. Require that the load VT is legal and 6621 // that the target supports unaligned loads of that type. Otherwise, return 6622 // INVALID. 6623 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6625 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6626 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6627 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6628 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6629 // TODO: Check alignment of src and dest ptrs. 6630 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6631 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6632 if (!TLI.isTypeLegal(LVT) || 6633 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6634 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6635 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6636 } 6637 6638 return LVT; 6639 }; 6640 6641 // This turns into unaligned loads. We only do this if the target natively 6642 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6643 // we'll only produce a small number of byte loads. 6644 MVT LoadVT; 6645 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6646 switch (NumBitsToCompare) { 6647 default: 6648 return false; 6649 case 16: 6650 LoadVT = MVT::i16; 6651 break; 6652 case 32: 6653 LoadVT = MVT::i32; 6654 break; 6655 case 64: 6656 case 128: 6657 case 256: 6658 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6659 break; 6660 } 6661 6662 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6663 return false; 6664 6665 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6666 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6667 6668 // Bitcast to a wide integer type if the loads are vectors. 6669 if (LoadVT.isVector()) { 6670 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6671 LoadL = DAG.getBitcast(CmpVT, LoadL); 6672 LoadR = DAG.getBitcast(CmpVT, LoadR); 6673 } 6674 6675 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6676 processIntegerCallValue(I, Cmp, false); 6677 return true; 6678 } 6679 6680 /// See if we can lower a memchr call into an optimized form. If so, return 6681 /// true and lower it. Otherwise return false, and it will be lowered like a 6682 /// normal call. 6683 /// The caller already checked that \p I calls the appropriate LibFunc with a 6684 /// correct prototype. 6685 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6686 const Value *Src = I.getArgOperand(0); 6687 const Value *Char = I.getArgOperand(1); 6688 const Value *Length = I.getArgOperand(2); 6689 6690 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6691 std::pair<SDValue, SDValue> Res = 6692 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6693 getValue(Src), getValue(Char), getValue(Length), 6694 MachinePointerInfo(Src)); 6695 if (Res.first.getNode()) { 6696 setValue(&I, Res.first); 6697 PendingLoads.push_back(Res.second); 6698 return true; 6699 } 6700 6701 return false; 6702 } 6703 6704 /// See if we can lower a mempcpy call into an optimized form. If so, return 6705 /// true and lower it. Otherwise return false, and it will be lowered like a 6706 /// normal call. 6707 /// The caller already checked that \p I calls the appropriate LibFunc with a 6708 /// correct prototype. 6709 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6710 SDValue Dst = getValue(I.getArgOperand(0)); 6711 SDValue Src = getValue(I.getArgOperand(1)); 6712 SDValue Size = getValue(I.getArgOperand(2)); 6713 6714 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6715 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6716 unsigned Align = std::min(DstAlign, SrcAlign); 6717 if (Align == 0) // Alignment of one or both could not be inferred. 6718 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6719 6720 bool isVol = false; 6721 SDLoc sdl = getCurSDLoc(); 6722 6723 // In the mempcpy context we need to pass in a false value for isTailCall 6724 // because the return pointer needs to be adjusted by the size of 6725 // the copied memory. 6726 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6727 false, /*isTailCall=*/false, 6728 MachinePointerInfo(I.getArgOperand(0)), 6729 MachinePointerInfo(I.getArgOperand(1))); 6730 assert(MC.getNode() != nullptr && 6731 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6732 DAG.setRoot(MC); 6733 6734 // Check if Size needs to be truncated or extended. 6735 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6736 6737 // Adjust return pointer to point just past the last dst byte. 6738 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6739 Dst, Size); 6740 setValue(&I, DstPlusSize); 6741 return true; 6742 } 6743 6744 /// See if we can lower a strcpy call into an optimized form. If so, return 6745 /// true and lower it, otherwise return false and it will be lowered like a 6746 /// normal call. 6747 /// The caller already checked that \p I calls the appropriate LibFunc with a 6748 /// correct prototype. 6749 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6750 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6751 6752 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6753 std::pair<SDValue, SDValue> Res = 6754 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6755 getValue(Arg0), getValue(Arg1), 6756 MachinePointerInfo(Arg0), 6757 MachinePointerInfo(Arg1), isStpcpy); 6758 if (Res.first.getNode()) { 6759 setValue(&I, Res.first); 6760 DAG.setRoot(Res.second); 6761 return true; 6762 } 6763 6764 return false; 6765 } 6766 6767 /// See if we can lower a strcmp call into an optimized form. If so, return 6768 /// true and lower it, otherwise return false and it will be lowered like a 6769 /// normal call. 6770 /// The caller already checked that \p I calls the appropriate LibFunc with a 6771 /// correct prototype. 6772 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6773 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6774 6775 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6776 std::pair<SDValue, SDValue> Res = 6777 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6778 getValue(Arg0), getValue(Arg1), 6779 MachinePointerInfo(Arg0), 6780 MachinePointerInfo(Arg1)); 6781 if (Res.first.getNode()) { 6782 processIntegerCallValue(I, Res.first, true); 6783 PendingLoads.push_back(Res.second); 6784 return true; 6785 } 6786 6787 return false; 6788 } 6789 6790 /// See if we can lower a strlen call into an optimized form. If so, return 6791 /// true and lower it, otherwise return false and it will be lowered like a 6792 /// normal call. 6793 /// The caller already checked that \p I calls the appropriate LibFunc with a 6794 /// correct prototype. 6795 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6796 const Value *Arg0 = I.getArgOperand(0); 6797 6798 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6799 std::pair<SDValue, SDValue> Res = 6800 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6801 getValue(Arg0), MachinePointerInfo(Arg0)); 6802 if (Res.first.getNode()) { 6803 processIntegerCallValue(I, Res.first, false); 6804 PendingLoads.push_back(Res.second); 6805 return true; 6806 } 6807 6808 return false; 6809 } 6810 6811 /// See if we can lower a strnlen call into an optimized form. If so, return 6812 /// true and lower it, otherwise return false and it will be lowered like a 6813 /// normal call. 6814 /// The caller already checked that \p I calls the appropriate LibFunc with a 6815 /// correct prototype. 6816 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6817 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6818 6819 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6820 std::pair<SDValue, SDValue> Res = 6821 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6822 getValue(Arg0), getValue(Arg1), 6823 MachinePointerInfo(Arg0)); 6824 if (Res.first.getNode()) { 6825 processIntegerCallValue(I, Res.first, false); 6826 PendingLoads.push_back(Res.second); 6827 return true; 6828 } 6829 6830 return false; 6831 } 6832 6833 /// See if we can lower a unary floating-point operation into an SDNode with 6834 /// the specified Opcode. If so, return true and lower it, otherwise return 6835 /// false and it will be lowered like a normal call. 6836 /// The caller already checked that \p I calls the appropriate LibFunc with a 6837 /// correct prototype. 6838 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6839 unsigned Opcode) { 6840 // We already checked this call's prototype; verify it doesn't modify errno. 6841 if (!I.onlyReadsMemory()) 6842 return false; 6843 6844 SDValue Tmp = getValue(I.getArgOperand(0)); 6845 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6846 return true; 6847 } 6848 6849 /// See if we can lower a binary floating-point operation into an SDNode with 6850 /// the specified Opcode. If so, return true and lower it. Otherwise return 6851 /// false, and it will be lowered like a normal call. 6852 /// The caller already checked that \p I calls the appropriate LibFunc with a 6853 /// correct prototype. 6854 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6855 unsigned Opcode) { 6856 // We already checked this call's prototype; verify it doesn't modify errno. 6857 if (!I.onlyReadsMemory()) 6858 return false; 6859 6860 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6861 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6862 EVT VT = Tmp0.getValueType(); 6863 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6864 return true; 6865 } 6866 6867 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6868 // Handle inline assembly differently. 6869 if (isa<InlineAsm>(I.getCalledValue())) { 6870 visitInlineAsm(&I); 6871 return; 6872 } 6873 6874 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6875 computeUsesVAFloatArgument(I, MMI); 6876 6877 const char *RenameFn = nullptr; 6878 if (Function *F = I.getCalledFunction()) { 6879 if (F->isDeclaration()) { 6880 // Is this an LLVM intrinsic or a target-specific intrinsic? 6881 unsigned IID = F->getIntrinsicID(); 6882 if (!IID) 6883 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6884 IID = II->getIntrinsicID(F); 6885 6886 if (IID) { 6887 RenameFn = visitIntrinsicCall(I, IID); 6888 if (!RenameFn) 6889 return; 6890 } 6891 } 6892 6893 // Check for well-known libc/libm calls. If the function is internal, it 6894 // can't be a library call. Don't do the check if marked as nobuiltin for 6895 // some reason or the call site requires strict floating point semantics. 6896 LibFunc Func; 6897 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6898 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6899 LibInfo->hasOptimizedCodeGen(Func)) { 6900 switch (Func) { 6901 default: break; 6902 case LibFunc_copysign: 6903 case LibFunc_copysignf: 6904 case LibFunc_copysignl: 6905 // We already checked this call's prototype; verify it doesn't modify 6906 // errno. 6907 if (I.onlyReadsMemory()) { 6908 SDValue LHS = getValue(I.getArgOperand(0)); 6909 SDValue RHS = getValue(I.getArgOperand(1)); 6910 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6911 LHS.getValueType(), LHS, RHS)); 6912 return; 6913 } 6914 break; 6915 case LibFunc_fabs: 6916 case LibFunc_fabsf: 6917 case LibFunc_fabsl: 6918 if (visitUnaryFloatCall(I, ISD::FABS)) 6919 return; 6920 break; 6921 case LibFunc_fmin: 6922 case LibFunc_fminf: 6923 case LibFunc_fminl: 6924 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6925 return; 6926 break; 6927 case LibFunc_fmax: 6928 case LibFunc_fmaxf: 6929 case LibFunc_fmaxl: 6930 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6931 return; 6932 break; 6933 case LibFunc_sin: 6934 case LibFunc_sinf: 6935 case LibFunc_sinl: 6936 if (visitUnaryFloatCall(I, ISD::FSIN)) 6937 return; 6938 break; 6939 case LibFunc_cos: 6940 case LibFunc_cosf: 6941 case LibFunc_cosl: 6942 if (visitUnaryFloatCall(I, ISD::FCOS)) 6943 return; 6944 break; 6945 case LibFunc_sqrt: 6946 case LibFunc_sqrtf: 6947 case LibFunc_sqrtl: 6948 case LibFunc_sqrt_finite: 6949 case LibFunc_sqrtf_finite: 6950 case LibFunc_sqrtl_finite: 6951 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6952 return; 6953 break; 6954 case LibFunc_floor: 6955 case LibFunc_floorf: 6956 case LibFunc_floorl: 6957 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6958 return; 6959 break; 6960 case LibFunc_nearbyint: 6961 case LibFunc_nearbyintf: 6962 case LibFunc_nearbyintl: 6963 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6964 return; 6965 break; 6966 case LibFunc_ceil: 6967 case LibFunc_ceilf: 6968 case LibFunc_ceill: 6969 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6970 return; 6971 break; 6972 case LibFunc_rint: 6973 case LibFunc_rintf: 6974 case LibFunc_rintl: 6975 if (visitUnaryFloatCall(I, ISD::FRINT)) 6976 return; 6977 break; 6978 case LibFunc_round: 6979 case LibFunc_roundf: 6980 case LibFunc_roundl: 6981 if (visitUnaryFloatCall(I, ISD::FROUND)) 6982 return; 6983 break; 6984 case LibFunc_trunc: 6985 case LibFunc_truncf: 6986 case LibFunc_truncl: 6987 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6988 return; 6989 break; 6990 case LibFunc_log2: 6991 case LibFunc_log2f: 6992 case LibFunc_log2l: 6993 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6994 return; 6995 break; 6996 case LibFunc_exp2: 6997 case LibFunc_exp2f: 6998 case LibFunc_exp2l: 6999 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7000 return; 7001 break; 7002 case LibFunc_memcmp: 7003 if (visitMemCmpCall(I)) 7004 return; 7005 break; 7006 case LibFunc_mempcpy: 7007 if (visitMemPCpyCall(I)) 7008 return; 7009 break; 7010 case LibFunc_memchr: 7011 if (visitMemChrCall(I)) 7012 return; 7013 break; 7014 case LibFunc_strcpy: 7015 if (visitStrCpyCall(I, false)) 7016 return; 7017 break; 7018 case LibFunc_stpcpy: 7019 if (visitStrCpyCall(I, true)) 7020 return; 7021 break; 7022 case LibFunc_strcmp: 7023 if (visitStrCmpCall(I)) 7024 return; 7025 break; 7026 case LibFunc_strlen: 7027 if (visitStrLenCall(I)) 7028 return; 7029 break; 7030 case LibFunc_strnlen: 7031 if (visitStrNLenCall(I)) 7032 return; 7033 break; 7034 } 7035 } 7036 } 7037 7038 SDValue Callee; 7039 if (!RenameFn) 7040 Callee = getValue(I.getCalledValue()); 7041 else 7042 Callee = DAG.getExternalSymbol( 7043 RenameFn, 7044 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7045 7046 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7047 // have to do anything here to lower funclet bundles. 7048 assert(!I.hasOperandBundlesOtherThan( 7049 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7050 "Cannot lower calls with arbitrary operand bundles!"); 7051 7052 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7053 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7054 else 7055 // Check if we can potentially perform a tail call. More detailed checking 7056 // is be done within LowerCallTo, after more information about the call is 7057 // known. 7058 LowerCallTo(&I, Callee, I.isTailCall()); 7059 } 7060 7061 namespace { 7062 7063 /// AsmOperandInfo - This contains information for each constraint that we are 7064 /// lowering. 7065 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7066 public: 7067 /// CallOperand - If this is the result output operand or a clobber 7068 /// this is null, otherwise it is the incoming operand to the CallInst. 7069 /// This gets modified as the asm is processed. 7070 SDValue CallOperand; 7071 7072 /// AssignedRegs - If this is a register or register class operand, this 7073 /// contains the set of register corresponding to the operand. 7074 RegsForValue AssignedRegs; 7075 7076 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7077 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7078 } 7079 7080 /// Whether or not this operand accesses memory 7081 bool hasMemory(const TargetLowering &TLI) const { 7082 // Indirect operand accesses access memory. 7083 if (isIndirect) 7084 return true; 7085 7086 for (const auto &Code : Codes) 7087 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7088 return true; 7089 7090 return false; 7091 } 7092 7093 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7094 /// corresponds to. If there is no Value* for this operand, it returns 7095 /// MVT::Other. 7096 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7097 const DataLayout &DL) const { 7098 if (!CallOperandVal) return MVT::Other; 7099 7100 if (isa<BasicBlock>(CallOperandVal)) 7101 return TLI.getPointerTy(DL); 7102 7103 llvm::Type *OpTy = CallOperandVal->getType(); 7104 7105 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7106 // If this is an indirect operand, the operand is a pointer to the 7107 // accessed type. 7108 if (isIndirect) { 7109 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7110 if (!PtrTy) 7111 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7112 OpTy = PtrTy->getElementType(); 7113 } 7114 7115 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7116 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7117 if (STy->getNumElements() == 1) 7118 OpTy = STy->getElementType(0); 7119 7120 // If OpTy is not a single value, it may be a struct/union that we 7121 // can tile with integers. 7122 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7123 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7124 switch (BitSize) { 7125 default: break; 7126 case 1: 7127 case 8: 7128 case 16: 7129 case 32: 7130 case 64: 7131 case 128: 7132 OpTy = IntegerType::get(Context, BitSize); 7133 break; 7134 } 7135 } 7136 7137 return TLI.getValueType(DL, OpTy, true); 7138 } 7139 }; 7140 7141 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7142 7143 } // end anonymous namespace 7144 7145 /// Make sure that the output operand \p OpInfo and its corresponding input 7146 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7147 /// out). 7148 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7149 SDISelAsmOperandInfo &MatchingOpInfo, 7150 SelectionDAG &DAG) { 7151 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7152 return; 7153 7154 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7155 const auto &TLI = DAG.getTargetLoweringInfo(); 7156 7157 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7158 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7159 OpInfo.ConstraintVT); 7160 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7161 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7162 MatchingOpInfo.ConstraintVT); 7163 if ((OpInfo.ConstraintVT.isInteger() != 7164 MatchingOpInfo.ConstraintVT.isInteger()) || 7165 (MatchRC.second != InputRC.second)) { 7166 // FIXME: error out in a more elegant fashion 7167 report_fatal_error("Unsupported asm: input constraint" 7168 " with a matching output constraint of" 7169 " incompatible type!"); 7170 } 7171 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7172 } 7173 7174 /// Get a direct memory input to behave well as an indirect operand. 7175 /// This may introduce stores, hence the need for a \p Chain. 7176 /// \return The (possibly updated) chain. 7177 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7178 SDISelAsmOperandInfo &OpInfo, 7179 SelectionDAG &DAG) { 7180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7181 7182 // If we don't have an indirect input, put it in the constpool if we can, 7183 // otherwise spill it to a stack slot. 7184 // TODO: This isn't quite right. We need to handle these according to 7185 // the addressing mode that the constraint wants. Also, this may take 7186 // an additional register for the computation and we don't want that 7187 // either. 7188 7189 // If the operand is a float, integer, or vector constant, spill to a 7190 // constant pool entry to get its address. 7191 const Value *OpVal = OpInfo.CallOperandVal; 7192 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7193 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7194 OpInfo.CallOperand = DAG.getConstantPool( 7195 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7196 return Chain; 7197 } 7198 7199 // Otherwise, create a stack slot and emit a store to it before the asm. 7200 Type *Ty = OpVal->getType(); 7201 auto &DL = DAG.getDataLayout(); 7202 uint64_t TySize = DL.getTypeAllocSize(Ty); 7203 unsigned Align = DL.getPrefTypeAlignment(Ty); 7204 MachineFunction &MF = DAG.getMachineFunction(); 7205 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7206 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7207 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7208 MachinePointerInfo::getFixedStack(MF, SSFI)); 7209 OpInfo.CallOperand = StackSlot; 7210 7211 return Chain; 7212 } 7213 7214 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7215 /// specified operand. We prefer to assign virtual registers, to allow the 7216 /// register allocator to handle the assignment process. However, if the asm 7217 /// uses features that we can't model on machineinstrs, we have SDISel do the 7218 /// allocation. This produces generally horrible, but correct, code. 7219 /// 7220 /// OpInfo describes the operand 7221 /// RefOpInfo describes the matching operand if any, the operand otherwise 7222 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7223 const SDLoc &DL, SDISelAsmOperandInfo &OpInfo, 7224 SDISelAsmOperandInfo &RefOpInfo) { 7225 LLVMContext &Context = *DAG.getContext(); 7226 7227 MachineFunction &MF = DAG.getMachineFunction(); 7228 SmallVector<unsigned, 4> Regs; 7229 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7230 7231 // If this is a constraint for a single physreg, or a constraint for a 7232 // register class, find it. 7233 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7234 TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode, 7235 RefOpInfo.ConstraintVT); 7236 7237 unsigned NumRegs = 1; 7238 if (OpInfo.ConstraintVT != MVT::Other) { 7239 // If this is an FP operand in an integer register (or visa versa), or more 7240 // generally if the operand value disagrees with the register class we plan 7241 // to stick it in, fix the operand type. 7242 // 7243 // If this is an input value, the bitcast to the new type is done now. 7244 // Bitcast for output value is done at the end of visitInlineAsm(). 7245 if ((OpInfo.Type == InlineAsm::isOutput || 7246 OpInfo.Type == InlineAsm::isInput) && 7247 PhysReg.second && 7248 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7249 // Try to convert to the first EVT that the reg class contains. If the 7250 // types are identical size, use a bitcast to convert (e.g. two differing 7251 // vector types). Note: output bitcast is done at the end of 7252 // visitInlineAsm(). 7253 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7254 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7255 // Exclude indirect inputs while they are unsupported because the code 7256 // to perform the load is missing and thus OpInfo.CallOperand still 7257 // refers to the input address rather than the pointed-to value. 7258 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7259 OpInfo.CallOperand = 7260 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7261 OpInfo.ConstraintVT = RegVT; 7262 // If the operand is an FP value and we want it in integer registers, 7263 // use the corresponding integer type. This turns an f64 value into 7264 // i64, which can be passed with two i32 values on a 32-bit machine. 7265 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7266 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7267 if (OpInfo.Type == InlineAsm::isInput) 7268 OpInfo.CallOperand = 7269 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7270 OpInfo.ConstraintVT = RegVT; 7271 } 7272 } 7273 7274 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7275 } 7276 7277 // No need to allocate a matching input constraint since the constraint it's 7278 // matching to has already been allocated. 7279 if (OpInfo.isMatchingInputConstraint()) 7280 return; 7281 7282 MVT RegVT; 7283 EVT ValueVT = OpInfo.ConstraintVT; 7284 7285 // If this is a constraint for a specific physical register, like {r17}, 7286 // assign it now. 7287 if (unsigned AssignedReg = PhysReg.first) { 7288 const TargetRegisterClass *RC = PhysReg.second; 7289 if (OpInfo.ConstraintVT == MVT::Other) 7290 ValueVT = *TRI.legalclasstypes_begin(*RC); 7291 7292 // Get the actual register value type. This is important, because the user 7293 // may have asked for (e.g.) the AX register in i32 type. We need to 7294 // remember that AX is actually i16 to get the right extension. 7295 RegVT = *TRI.legalclasstypes_begin(*RC); 7296 7297 // This is an explicit reference to a physical register. 7298 Regs.push_back(AssignedReg); 7299 7300 // If this is an expanded reference, add the rest of the regs to Regs. 7301 if (NumRegs != 1) { 7302 TargetRegisterClass::iterator I = RC->begin(); 7303 for (; *I != AssignedReg; ++I) 7304 assert(I != RC->end() && "Didn't find reg!"); 7305 7306 // Already added the first reg. 7307 --NumRegs; ++I; 7308 for (; NumRegs; --NumRegs, ++I) { 7309 assert(I != RC->end() && "Ran out of registers to allocate!"); 7310 Regs.push_back(*I); 7311 } 7312 } 7313 7314 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7315 return; 7316 } 7317 7318 // Otherwise, if this was a reference to an LLVM register class, create vregs 7319 // for this reference. 7320 if (const TargetRegisterClass *RC = PhysReg.second) { 7321 RegVT = *TRI.legalclasstypes_begin(*RC); 7322 if (OpInfo.ConstraintVT == MVT::Other) 7323 ValueVT = RegVT; 7324 7325 // Create the appropriate number of virtual registers. 7326 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7327 for (; NumRegs; --NumRegs) 7328 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7329 7330 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7331 return; 7332 } 7333 7334 // Otherwise, we couldn't allocate enough registers for this. 7335 } 7336 7337 static unsigned 7338 findMatchingInlineAsmOperand(unsigned OperandNo, 7339 const std::vector<SDValue> &AsmNodeOperands) { 7340 // Scan until we find the definition we already emitted of this operand. 7341 unsigned CurOp = InlineAsm::Op_FirstOperand; 7342 for (; OperandNo; --OperandNo) { 7343 // Advance to the next operand. 7344 unsigned OpFlag = 7345 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7346 assert((InlineAsm::isRegDefKind(OpFlag) || 7347 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7348 InlineAsm::isMemKind(OpFlag)) && 7349 "Skipped past definitions?"); 7350 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7351 } 7352 return CurOp; 7353 } 7354 7355 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7356 /// \return true if it has succeeded, false otherwise 7357 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7358 MVT RegVT, SelectionDAG &DAG) { 7359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7360 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7361 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7362 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7363 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7364 else 7365 return false; 7366 } 7367 return true; 7368 } 7369 7370 namespace { 7371 7372 class ExtraFlags { 7373 unsigned Flags = 0; 7374 7375 public: 7376 explicit ExtraFlags(ImmutableCallSite CS) { 7377 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7378 if (IA->hasSideEffects()) 7379 Flags |= InlineAsm::Extra_HasSideEffects; 7380 if (IA->isAlignStack()) 7381 Flags |= InlineAsm::Extra_IsAlignStack; 7382 if (CS.isConvergent()) 7383 Flags |= InlineAsm::Extra_IsConvergent; 7384 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7385 } 7386 7387 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7388 // Ideally, we would only check against memory constraints. However, the 7389 // meaning of an Other constraint can be target-specific and we can't easily 7390 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7391 // for Other constraints as well. 7392 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7393 OpInfo.ConstraintType == TargetLowering::C_Other) { 7394 if (OpInfo.Type == InlineAsm::isInput) 7395 Flags |= InlineAsm::Extra_MayLoad; 7396 else if (OpInfo.Type == InlineAsm::isOutput) 7397 Flags |= InlineAsm::Extra_MayStore; 7398 else if (OpInfo.Type == InlineAsm::isClobber) 7399 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7400 } 7401 } 7402 7403 unsigned get() const { return Flags; } 7404 }; 7405 7406 } // end anonymous namespace 7407 7408 /// visitInlineAsm - Handle a call to an InlineAsm object. 7409 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7410 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7411 7412 /// ConstraintOperands - Information about all of the constraints. 7413 SDISelAsmOperandInfoVector ConstraintOperands; 7414 7415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7416 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7417 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7418 7419 bool hasMemory = false; 7420 7421 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7422 ExtraFlags ExtraInfo(CS); 7423 7424 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7425 unsigned ResNo = 0; // ResNo - The result number of the next output. 7426 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7427 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7428 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7429 7430 MVT OpVT = MVT::Other; 7431 7432 // Compute the value type for each operand. 7433 if (OpInfo.Type == InlineAsm::isInput || 7434 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7435 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7436 7437 // Process the call argument. BasicBlocks are labels, currently appearing 7438 // only in asm's. 7439 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7440 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7441 } else { 7442 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7443 } 7444 7445 OpVT = 7446 OpInfo 7447 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7448 .getSimpleVT(); 7449 } 7450 7451 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7452 // The return value of the call is this value. As such, there is no 7453 // corresponding argument. 7454 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7455 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7456 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7457 STy->getElementType(ResNo)); 7458 } else { 7459 assert(ResNo == 0 && "Asm only has one result!"); 7460 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7461 } 7462 ++ResNo; 7463 } 7464 7465 OpInfo.ConstraintVT = OpVT; 7466 7467 if (!hasMemory) 7468 hasMemory = OpInfo.hasMemory(TLI); 7469 7470 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7471 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7472 auto TargetConstraint = TargetConstraints[i]; 7473 7474 // Compute the constraint code and ConstraintType to use. 7475 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7476 7477 ExtraInfo.update(TargetConstraint); 7478 } 7479 7480 SDValue Chain, Flag; 7481 7482 // We won't need to flush pending loads if this asm doesn't touch 7483 // memory and is nonvolatile. 7484 if (hasMemory || IA->hasSideEffects()) 7485 Chain = getRoot(); 7486 else 7487 Chain = DAG.getRoot(); 7488 7489 // Second pass over the constraints: compute which constraint option to use 7490 // and assign registers to constraints that want a specific physreg. 7491 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7492 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7493 7494 // If this is an output operand with a matching input operand, look up the 7495 // matching input. If their types mismatch, e.g. one is an integer, the 7496 // other is floating point, or their sizes are different, flag it as an 7497 // error. 7498 if (OpInfo.hasMatchingInput()) { 7499 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7500 patchMatchingInput(OpInfo, Input, DAG); 7501 } 7502 7503 // Compute the constraint code and ConstraintType to use. 7504 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7505 7506 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7507 OpInfo.Type == InlineAsm::isClobber) 7508 continue; 7509 7510 // If this is a memory input, and if the operand is not indirect, do what we 7511 // need to provide an address for the memory input. 7512 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7513 !OpInfo.isIndirect) { 7514 assert((OpInfo.isMultipleAlternative || 7515 (OpInfo.Type == InlineAsm::isInput)) && 7516 "Can only indirectify direct input operands!"); 7517 7518 // Memory operands really want the address of the value. 7519 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7520 7521 // There is no longer a Value* corresponding to this operand. 7522 OpInfo.CallOperandVal = nullptr; 7523 7524 // It is now an indirect operand. 7525 OpInfo.isIndirect = true; 7526 } 7527 7528 // If this constraint is for a specific register, allocate it before 7529 // anything else. 7530 SDISelAsmOperandInfo &RefOpInfo = 7531 OpInfo.isMatchingInputConstraint() 7532 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7533 : ConstraintOperands[i]; 7534 if (RefOpInfo.ConstraintType == TargetLowering::C_Register) 7535 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7536 } 7537 7538 // Third pass - Loop over all of the operands, assigning virtual or physregs 7539 // to register class operands. 7540 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7541 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7542 SDISelAsmOperandInfo &RefOpInfo = 7543 OpInfo.isMatchingInputConstraint() 7544 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7545 : ConstraintOperands[i]; 7546 7547 // C_Register operands have already been allocated, Other/Memory don't need 7548 // to be. 7549 if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7550 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7551 } 7552 7553 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7554 std::vector<SDValue> AsmNodeOperands; 7555 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7556 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7557 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7558 7559 // If we have a !srcloc metadata node associated with it, we want to attach 7560 // this to the ultimately generated inline asm machineinstr. To do this, we 7561 // pass in the third operand as this (potentially null) inline asm MDNode. 7562 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7563 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7564 7565 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7566 // bits as operand 3. 7567 AsmNodeOperands.push_back(DAG.getTargetConstant( 7568 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7569 7570 // Loop over all of the inputs, copying the operand values into the 7571 // appropriate registers and processing the output regs. 7572 RegsForValue RetValRegs; 7573 7574 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7575 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7576 7577 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7578 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7579 7580 switch (OpInfo.Type) { 7581 case InlineAsm::isOutput: 7582 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7583 OpInfo.ConstraintType != TargetLowering::C_Register) { 7584 // Memory output, or 'other' output (e.g. 'X' constraint). 7585 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7586 7587 unsigned ConstraintID = 7588 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7589 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7590 "Failed to convert memory constraint code to constraint id."); 7591 7592 // Add information to the INLINEASM node to know about this output. 7593 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7594 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7595 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7596 MVT::i32)); 7597 AsmNodeOperands.push_back(OpInfo.CallOperand); 7598 break; 7599 } 7600 7601 // Otherwise, this is a register or register class output. 7602 7603 // Copy the output from the appropriate register. Find a register that 7604 // we can use. 7605 if (OpInfo.AssignedRegs.Regs.empty()) { 7606 emitInlineAsmError( 7607 CS, "couldn't allocate output register for constraint '" + 7608 Twine(OpInfo.ConstraintCode) + "'"); 7609 return; 7610 } 7611 7612 // If this is an indirect operand, store through the pointer after the 7613 // asm. 7614 if (OpInfo.isIndirect) { 7615 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7616 OpInfo.CallOperandVal)); 7617 } else { 7618 // This is the result value of the call. 7619 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7620 // Concatenate this output onto the outputs list. 7621 RetValRegs.append(OpInfo.AssignedRegs); 7622 } 7623 7624 // Add information to the INLINEASM node to know that this register is 7625 // set. 7626 OpInfo.AssignedRegs 7627 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7628 ? InlineAsm::Kind_RegDefEarlyClobber 7629 : InlineAsm::Kind_RegDef, 7630 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7631 break; 7632 7633 case InlineAsm::isInput: { 7634 SDValue InOperandVal = OpInfo.CallOperand; 7635 7636 if (OpInfo.isMatchingInputConstraint()) { 7637 // If this is required to match an output register we have already set, 7638 // just use its register. 7639 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7640 AsmNodeOperands); 7641 unsigned OpFlag = 7642 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7643 if (InlineAsm::isRegDefKind(OpFlag) || 7644 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7645 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7646 if (OpInfo.isIndirect) { 7647 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7648 emitInlineAsmError(CS, "inline asm not supported yet:" 7649 " don't know how to handle tied " 7650 "indirect register inputs"); 7651 return; 7652 } 7653 7654 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7655 SmallVector<unsigned, 4> Regs; 7656 7657 if (!createVirtualRegs(Regs, 7658 InlineAsm::getNumOperandRegisters(OpFlag), 7659 RegVT, DAG)) { 7660 emitInlineAsmError(CS, "inline asm error: This value type register " 7661 "class is not natively supported!"); 7662 return; 7663 } 7664 7665 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7666 7667 SDLoc dl = getCurSDLoc(); 7668 // Use the produced MatchedRegs object to 7669 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7670 CS.getInstruction()); 7671 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7672 true, OpInfo.getMatchedOperand(), dl, 7673 DAG, AsmNodeOperands); 7674 break; 7675 } 7676 7677 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7678 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7679 "Unexpected number of operands"); 7680 // Add information to the INLINEASM node to know about this input. 7681 // See InlineAsm.h isUseOperandTiedToDef. 7682 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7683 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7684 OpInfo.getMatchedOperand()); 7685 AsmNodeOperands.push_back(DAG.getTargetConstant( 7686 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7687 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7688 break; 7689 } 7690 7691 // Treat indirect 'X' constraint as memory. 7692 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7693 OpInfo.isIndirect) 7694 OpInfo.ConstraintType = TargetLowering::C_Memory; 7695 7696 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7697 std::vector<SDValue> Ops; 7698 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7699 Ops, DAG); 7700 if (Ops.empty()) { 7701 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7702 Twine(OpInfo.ConstraintCode) + "'"); 7703 return; 7704 } 7705 7706 // Add information to the INLINEASM node to know about this input. 7707 unsigned ResOpType = 7708 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7709 AsmNodeOperands.push_back(DAG.getTargetConstant( 7710 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7711 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7712 break; 7713 } 7714 7715 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7716 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7717 assert(InOperandVal.getValueType() == 7718 TLI.getPointerTy(DAG.getDataLayout()) && 7719 "Memory operands expect pointer values"); 7720 7721 unsigned ConstraintID = 7722 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7723 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7724 "Failed to convert memory constraint code to constraint id."); 7725 7726 // Add information to the INLINEASM node to know about this input. 7727 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7728 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7729 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7730 getCurSDLoc(), 7731 MVT::i32)); 7732 AsmNodeOperands.push_back(InOperandVal); 7733 break; 7734 } 7735 7736 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7737 OpInfo.ConstraintType == TargetLowering::C_Register) && 7738 "Unknown constraint type!"); 7739 7740 // TODO: Support this. 7741 if (OpInfo.isIndirect) { 7742 emitInlineAsmError( 7743 CS, "Don't know how to handle indirect register inputs yet " 7744 "for constraint '" + 7745 Twine(OpInfo.ConstraintCode) + "'"); 7746 return; 7747 } 7748 7749 // Copy the input into the appropriate registers. 7750 if (OpInfo.AssignedRegs.Regs.empty()) { 7751 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7752 Twine(OpInfo.ConstraintCode) + "'"); 7753 return; 7754 } 7755 7756 SDLoc dl = getCurSDLoc(); 7757 7758 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7759 Chain, &Flag, CS.getInstruction()); 7760 7761 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7762 dl, DAG, AsmNodeOperands); 7763 break; 7764 } 7765 case InlineAsm::isClobber: 7766 // Add the clobbered value to the operand list, so that the register 7767 // allocator is aware that the physreg got clobbered. 7768 if (!OpInfo.AssignedRegs.Regs.empty()) 7769 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7770 false, 0, getCurSDLoc(), DAG, 7771 AsmNodeOperands); 7772 break; 7773 } 7774 } 7775 7776 // Finish up input operands. Set the input chain and add the flag last. 7777 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7778 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7779 7780 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7781 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7782 Flag = Chain.getValue(1); 7783 7784 // If this asm returns a register value, copy the result from that register 7785 // and set it as the value of the call. 7786 if (!RetValRegs.Regs.empty()) { 7787 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7788 Chain, &Flag, CS.getInstruction()); 7789 7790 llvm::Type *CSResultType = CS.getType(); 7791 unsigned numRet; 7792 ArrayRef<Type *> ResultTypes; 7793 SmallVector<SDValue, 1> ResultValues(1); 7794 if (CSResultType->isSingleValueType()) { 7795 numRet = 1; 7796 ResultValues[0] = Val; 7797 ResultTypes = makeArrayRef(CSResultType); 7798 } else { 7799 numRet = CSResultType->getNumContainedTypes(); 7800 assert(Val->getNumOperands() == numRet && 7801 "Mismatch in number of output operands in asm result"); 7802 ResultTypes = CSResultType->subtypes(); 7803 ArrayRef<SDUse> ValueUses = Val->ops(); 7804 ResultValues.resize(numRet); 7805 std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(), 7806 [](const SDUse &u) -> SDValue { return u.get(); }); 7807 } 7808 SmallVector<EVT, 1> ResultVTs(numRet); 7809 for (unsigned i = 0; i < numRet; i++) { 7810 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]); 7811 SDValue Val = ResultValues[i]; 7812 assert(ResultTypes[i]->isSized() && "Unexpected unsized type"); 7813 // If the type of the inline asm call site return value is different but 7814 // has same size as the type of the asm output bitcast it. One example 7815 // of this is for vectors with different width / number of elements. 7816 // This can happen for register classes that can contain multiple 7817 // different value types. The preg or vreg allocated may not have the 7818 // same VT as was expected. 7819 // 7820 // This can also happen for a return value that disagrees with the 7821 // register class it is put in, eg. a double in a general-purpose 7822 // register on a 32-bit machine. 7823 if (ResultVT != Val.getValueType() && 7824 ResultVT.getSizeInBits() == Val.getValueSizeInBits()) 7825 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val); 7826 else if (ResultVT != Val.getValueType() && ResultVT.isInteger() && 7827 Val.getValueType().isInteger()) { 7828 // If a result value was tied to an input value, the computed result 7829 // may have a wider width than the expected result. Extract the 7830 // relevant portion. 7831 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val); 7832 } 7833 7834 assert(ResultVT == Val.getValueType() && "Asm result value mismatch!"); 7835 ResultVTs[i] = ResultVT; 7836 ResultValues[i] = Val; 7837 } 7838 7839 Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 7840 DAG.getVTList(ResultVTs), ResultValues); 7841 setValue(CS.getInstruction(), Val); 7842 // Don't need to use this as a chain in this case. 7843 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7844 return; 7845 } 7846 7847 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7848 7849 // Process indirect outputs, first output all of the flagged copies out of 7850 // physregs. 7851 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7852 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7853 const Value *Ptr = IndirectStoresToEmit[i].second; 7854 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7855 Chain, &Flag, IA); 7856 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7857 } 7858 7859 // Emit the non-flagged stores from the physregs. 7860 SmallVector<SDValue, 8> OutChains; 7861 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7862 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7863 getValue(StoresToEmit[i].second), 7864 MachinePointerInfo(StoresToEmit[i].second)); 7865 OutChains.push_back(Val); 7866 } 7867 7868 if (!OutChains.empty()) 7869 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7870 7871 DAG.setRoot(Chain); 7872 } 7873 7874 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7875 const Twine &Message) { 7876 LLVMContext &Ctx = *DAG.getContext(); 7877 Ctx.emitError(CS.getInstruction(), Message); 7878 7879 // Make sure we leave the DAG in a valid state 7880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7881 SmallVector<EVT, 1> ValueVTs; 7882 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7883 7884 if (ValueVTs.empty()) 7885 return; 7886 7887 SmallVector<SDValue, 1> Ops; 7888 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7889 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7890 7891 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7892 } 7893 7894 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7895 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7896 MVT::Other, getRoot(), 7897 getValue(I.getArgOperand(0)), 7898 DAG.getSrcValue(I.getArgOperand(0)))); 7899 } 7900 7901 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7903 const DataLayout &DL = DAG.getDataLayout(); 7904 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7905 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7906 DAG.getSrcValue(I.getOperand(0)), 7907 DL.getABITypeAlignment(I.getType())); 7908 setValue(&I, V); 7909 DAG.setRoot(V.getValue(1)); 7910 } 7911 7912 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7913 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7914 MVT::Other, getRoot(), 7915 getValue(I.getArgOperand(0)), 7916 DAG.getSrcValue(I.getArgOperand(0)))); 7917 } 7918 7919 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7920 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7921 MVT::Other, getRoot(), 7922 getValue(I.getArgOperand(0)), 7923 getValue(I.getArgOperand(1)), 7924 DAG.getSrcValue(I.getArgOperand(0)), 7925 DAG.getSrcValue(I.getArgOperand(1)))); 7926 } 7927 7928 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7929 const Instruction &I, 7930 SDValue Op) { 7931 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7932 if (!Range) 7933 return Op; 7934 7935 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7936 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7937 return Op; 7938 7939 APInt Lo = CR.getUnsignedMin(); 7940 if (!Lo.isMinValue()) 7941 return Op; 7942 7943 APInt Hi = CR.getUnsignedMax(); 7944 unsigned Bits = Hi.getActiveBits(); 7945 7946 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7947 7948 SDLoc SL = getCurSDLoc(); 7949 7950 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7951 DAG.getValueType(SmallVT)); 7952 unsigned NumVals = Op.getNode()->getNumValues(); 7953 if (NumVals == 1) 7954 return ZExt; 7955 7956 SmallVector<SDValue, 4> Ops; 7957 7958 Ops.push_back(ZExt); 7959 for (unsigned I = 1; I != NumVals; ++I) 7960 Ops.push_back(Op.getValue(I)); 7961 7962 return DAG.getMergeValues(Ops, SL); 7963 } 7964 7965 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7966 /// the call being lowered. 7967 /// 7968 /// This is a helper for lowering intrinsics that follow a target calling 7969 /// convention or require stack pointer adjustment. Only a subset of the 7970 /// intrinsic's operands need to participate in the calling convention. 7971 void SelectionDAGBuilder::populateCallLoweringInfo( 7972 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7973 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7974 bool IsPatchPoint) { 7975 TargetLowering::ArgListTy Args; 7976 Args.reserve(NumArgs); 7977 7978 // Populate the argument list. 7979 // Attributes for args start at offset 1, after the return attribute. 7980 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7981 ArgI != ArgE; ++ArgI) { 7982 const Value *V = CS->getOperand(ArgI); 7983 7984 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7985 7986 TargetLowering::ArgListEntry Entry; 7987 Entry.Node = getValue(V); 7988 Entry.Ty = V->getType(); 7989 Entry.setAttributes(&CS, ArgI); 7990 Args.push_back(Entry); 7991 } 7992 7993 CLI.setDebugLoc(getCurSDLoc()) 7994 .setChain(getRoot()) 7995 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7996 .setDiscardResult(CS->use_empty()) 7997 .setIsPatchPoint(IsPatchPoint); 7998 } 7999 8000 /// Add a stack map intrinsic call's live variable operands to a stackmap 8001 /// or patchpoint target node's operand list. 8002 /// 8003 /// Constants are converted to TargetConstants purely as an optimization to 8004 /// avoid constant materialization and register allocation. 8005 /// 8006 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8007 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8008 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8009 /// address materialization and register allocation, but may also be required 8010 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8011 /// alloca in the entry block, then the runtime may assume that the alloca's 8012 /// StackMap location can be read immediately after compilation and that the 8013 /// location is valid at any point during execution (this is similar to the 8014 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8015 /// only available in a register, then the runtime would need to trap when 8016 /// execution reaches the StackMap in order to read the alloca's location. 8017 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8018 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8019 SelectionDAGBuilder &Builder) { 8020 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8021 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8022 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8023 Ops.push_back( 8024 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8025 Ops.push_back( 8026 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8027 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8028 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8029 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8030 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8031 } else 8032 Ops.push_back(OpVal); 8033 } 8034 } 8035 8036 /// Lower llvm.experimental.stackmap directly to its target opcode. 8037 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8038 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8039 // [live variables...]) 8040 8041 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8042 8043 SDValue Chain, InFlag, Callee, NullPtr; 8044 SmallVector<SDValue, 32> Ops; 8045 8046 SDLoc DL = getCurSDLoc(); 8047 Callee = getValue(CI.getCalledValue()); 8048 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8049 8050 // The stackmap intrinsic only records the live variables (the arguemnts 8051 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8052 // intrinsic, this won't be lowered to a function call. This means we don't 8053 // have to worry about calling conventions and target specific lowering code. 8054 // Instead we perform the call lowering right here. 8055 // 8056 // chain, flag = CALLSEQ_START(chain, 0, 0) 8057 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8058 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8059 // 8060 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8061 InFlag = Chain.getValue(1); 8062 8063 // Add the <id> and <numBytes> constants. 8064 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8065 Ops.push_back(DAG.getTargetConstant( 8066 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8067 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8068 Ops.push_back(DAG.getTargetConstant( 8069 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8070 MVT::i32)); 8071 8072 // Push live variables for the stack map. 8073 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8074 8075 // We are not pushing any register mask info here on the operands list, 8076 // because the stackmap doesn't clobber anything. 8077 8078 // Push the chain and the glue flag. 8079 Ops.push_back(Chain); 8080 Ops.push_back(InFlag); 8081 8082 // Create the STACKMAP node. 8083 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8084 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8085 Chain = SDValue(SM, 0); 8086 InFlag = Chain.getValue(1); 8087 8088 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8089 8090 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8091 8092 // Set the root to the target-lowered call chain. 8093 DAG.setRoot(Chain); 8094 8095 // Inform the Frame Information that we have a stackmap in this function. 8096 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8097 } 8098 8099 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8100 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8101 const BasicBlock *EHPadBB) { 8102 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8103 // i32 <numBytes>, 8104 // i8* <target>, 8105 // i32 <numArgs>, 8106 // [Args...], 8107 // [live variables...]) 8108 8109 CallingConv::ID CC = CS.getCallingConv(); 8110 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8111 bool HasDef = !CS->getType()->isVoidTy(); 8112 SDLoc dl = getCurSDLoc(); 8113 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8114 8115 // Handle immediate and symbolic callees. 8116 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8117 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8118 /*isTarget=*/true); 8119 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8120 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8121 SDLoc(SymbolicCallee), 8122 SymbolicCallee->getValueType(0)); 8123 8124 // Get the real number of arguments participating in the call <numArgs> 8125 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8126 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8127 8128 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8129 // Intrinsics include all meta-operands up to but not including CC. 8130 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8131 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8132 "Not enough arguments provided to the patchpoint intrinsic"); 8133 8134 // For AnyRegCC the arguments are lowered later on manually. 8135 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8136 Type *ReturnTy = 8137 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8138 8139 TargetLowering::CallLoweringInfo CLI(DAG); 8140 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8141 true); 8142 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8143 8144 SDNode *CallEnd = Result.second.getNode(); 8145 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8146 CallEnd = CallEnd->getOperand(0).getNode(); 8147 8148 /// Get a call instruction from the call sequence chain. 8149 /// Tail calls are not allowed. 8150 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8151 "Expected a callseq node."); 8152 SDNode *Call = CallEnd->getOperand(0).getNode(); 8153 bool HasGlue = Call->getGluedNode(); 8154 8155 // Replace the target specific call node with the patchable intrinsic. 8156 SmallVector<SDValue, 8> Ops; 8157 8158 // Add the <id> and <numBytes> constants. 8159 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8160 Ops.push_back(DAG.getTargetConstant( 8161 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8162 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8163 Ops.push_back(DAG.getTargetConstant( 8164 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8165 MVT::i32)); 8166 8167 // Add the callee. 8168 Ops.push_back(Callee); 8169 8170 // Adjust <numArgs> to account for any arguments that have been passed on the 8171 // stack instead. 8172 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8173 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8174 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8175 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8176 8177 // Add the calling convention 8178 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8179 8180 // Add the arguments we omitted previously. The register allocator should 8181 // place these in any free register. 8182 if (IsAnyRegCC) 8183 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8184 Ops.push_back(getValue(CS.getArgument(i))); 8185 8186 // Push the arguments from the call instruction up to the register mask. 8187 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8188 Ops.append(Call->op_begin() + 2, e); 8189 8190 // Push live variables for the stack map. 8191 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8192 8193 // Push the register mask info. 8194 if (HasGlue) 8195 Ops.push_back(*(Call->op_end()-2)); 8196 else 8197 Ops.push_back(*(Call->op_end()-1)); 8198 8199 // Push the chain (this is originally the first operand of the call, but 8200 // becomes now the last or second to last operand). 8201 Ops.push_back(*(Call->op_begin())); 8202 8203 // Push the glue flag (last operand). 8204 if (HasGlue) 8205 Ops.push_back(*(Call->op_end()-1)); 8206 8207 SDVTList NodeTys; 8208 if (IsAnyRegCC && HasDef) { 8209 // Create the return types based on the intrinsic definition 8210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8211 SmallVector<EVT, 3> ValueVTs; 8212 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8213 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8214 8215 // There is always a chain and a glue type at the end 8216 ValueVTs.push_back(MVT::Other); 8217 ValueVTs.push_back(MVT::Glue); 8218 NodeTys = DAG.getVTList(ValueVTs); 8219 } else 8220 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8221 8222 // Replace the target specific call node with a PATCHPOINT node. 8223 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8224 dl, NodeTys, Ops); 8225 8226 // Update the NodeMap. 8227 if (HasDef) { 8228 if (IsAnyRegCC) 8229 setValue(CS.getInstruction(), SDValue(MN, 0)); 8230 else 8231 setValue(CS.getInstruction(), Result.first); 8232 } 8233 8234 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8235 // call sequence. Furthermore the location of the chain and glue can change 8236 // when the AnyReg calling convention is used and the intrinsic returns a 8237 // value. 8238 if (IsAnyRegCC && HasDef) { 8239 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8240 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8241 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8242 } else 8243 DAG.ReplaceAllUsesWith(Call, MN); 8244 DAG.DeleteNode(Call); 8245 8246 // Inform the Frame Information that we have a patchpoint in this function. 8247 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8248 } 8249 8250 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8251 unsigned Intrinsic) { 8252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8253 SDValue Op1 = getValue(I.getArgOperand(0)); 8254 SDValue Op2; 8255 if (I.getNumArgOperands() > 1) 8256 Op2 = getValue(I.getArgOperand(1)); 8257 SDLoc dl = getCurSDLoc(); 8258 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8259 SDValue Res; 8260 FastMathFlags FMF; 8261 if (isa<FPMathOperator>(I)) 8262 FMF = I.getFastMathFlags(); 8263 8264 switch (Intrinsic) { 8265 case Intrinsic::experimental_vector_reduce_fadd: 8266 if (FMF.isFast()) 8267 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8268 else 8269 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8270 break; 8271 case Intrinsic::experimental_vector_reduce_fmul: 8272 if (FMF.isFast()) 8273 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8274 else 8275 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8276 break; 8277 case Intrinsic::experimental_vector_reduce_add: 8278 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8279 break; 8280 case Intrinsic::experimental_vector_reduce_mul: 8281 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8282 break; 8283 case Intrinsic::experimental_vector_reduce_and: 8284 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8285 break; 8286 case Intrinsic::experimental_vector_reduce_or: 8287 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8288 break; 8289 case Intrinsic::experimental_vector_reduce_xor: 8290 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8291 break; 8292 case Intrinsic::experimental_vector_reduce_smax: 8293 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8294 break; 8295 case Intrinsic::experimental_vector_reduce_smin: 8296 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8297 break; 8298 case Intrinsic::experimental_vector_reduce_umax: 8299 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8300 break; 8301 case Intrinsic::experimental_vector_reduce_umin: 8302 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8303 break; 8304 case Intrinsic::experimental_vector_reduce_fmax: 8305 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8306 break; 8307 case Intrinsic::experimental_vector_reduce_fmin: 8308 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8309 break; 8310 default: 8311 llvm_unreachable("Unhandled vector reduce intrinsic"); 8312 } 8313 setValue(&I, Res); 8314 } 8315 8316 /// Returns an AttributeList representing the attributes applied to the return 8317 /// value of the given call. 8318 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8319 SmallVector<Attribute::AttrKind, 2> Attrs; 8320 if (CLI.RetSExt) 8321 Attrs.push_back(Attribute::SExt); 8322 if (CLI.RetZExt) 8323 Attrs.push_back(Attribute::ZExt); 8324 if (CLI.IsInReg) 8325 Attrs.push_back(Attribute::InReg); 8326 8327 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8328 Attrs); 8329 } 8330 8331 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8332 /// implementation, which just calls LowerCall. 8333 /// FIXME: When all targets are 8334 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8335 std::pair<SDValue, SDValue> 8336 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8337 // Handle the incoming return values from the call. 8338 CLI.Ins.clear(); 8339 Type *OrigRetTy = CLI.RetTy; 8340 SmallVector<EVT, 4> RetTys; 8341 SmallVector<uint64_t, 4> Offsets; 8342 auto &DL = CLI.DAG.getDataLayout(); 8343 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8344 8345 if (CLI.IsPostTypeLegalization) { 8346 // If we are lowering a libcall after legalization, split the return type. 8347 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8348 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8349 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8350 EVT RetVT = OldRetTys[i]; 8351 uint64_t Offset = OldOffsets[i]; 8352 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8353 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8354 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8355 RetTys.append(NumRegs, RegisterVT); 8356 for (unsigned j = 0; j != NumRegs; ++j) 8357 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8358 } 8359 } 8360 8361 SmallVector<ISD::OutputArg, 4> Outs; 8362 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8363 8364 bool CanLowerReturn = 8365 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8366 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8367 8368 SDValue DemoteStackSlot; 8369 int DemoteStackIdx = -100; 8370 if (!CanLowerReturn) { 8371 // FIXME: equivalent assert? 8372 // assert(!CS.hasInAllocaArgument() && 8373 // "sret demotion is incompatible with inalloca"); 8374 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8375 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8376 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8377 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8378 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8379 DL.getAllocaAddrSpace()); 8380 8381 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8382 ArgListEntry Entry; 8383 Entry.Node = DemoteStackSlot; 8384 Entry.Ty = StackSlotPtrType; 8385 Entry.IsSExt = false; 8386 Entry.IsZExt = false; 8387 Entry.IsInReg = false; 8388 Entry.IsSRet = true; 8389 Entry.IsNest = false; 8390 Entry.IsByVal = false; 8391 Entry.IsReturned = false; 8392 Entry.IsSwiftSelf = false; 8393 Entry.IsSwiftError = false; 8394 Entry.Alignment = Align; 8395 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8396 CLI.NumFixedArgs += 1; 8397 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8398 8399 // sret demotion isn't compatible with tail-calls, since the sret argument 8400 // points into the callers stack frame. 8401 CLI.IsTailCall = false; 8402 } else { 8403 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8404 EVT VT = RetTys[I]; 8405 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8406 CLI.CallConv, VT); 8407 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8408 CLI.CallConv, VT); 8409 for (unsigned i = 0; i != NumRegs; ++i) { 8410 ISD::InputArg MyFlags; 8411 MyFlags.VT = RegisterVT; 8412 MyFlags.ArgVT = VT; 8413 MyFlags.Used = CLI.IsReturnValueUsed; 8414 if (CLI.RetSExt) 8415 MyFlags.Flags.setSExt(); 8416 if (CLI.RetZExt) 8417 MyFlags.Flags.setZExt(); 8418 if (CLI.IsInReg) 8419 MyFlags.Flags.setInReg(); 8420 CLI.Ins.push_back(MyFlags); 8421 } 8422 } 8423 } 8424 8425 // We push in swifterror return as the last element of CLI.Ins. 8426 ArgListTy &Args = CLI.getArgs(); 8427 if (supportSwiftError()) { 8428 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8429 if (Args[i].IsSwiftError) { 8430 ISD::InputArg MyFlags; 8431 MyFlags.VT = getPointerTy(DL); 8432 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8433 MyFlags.Flags.setSwiftError(); 8434 CLI.Ins.push_back(MyFlags); 8435 } 8436 } 8437 } 8438 8439 // Handle all of the outgoing arguments. 8440 CLI.Outs.clear(); 8441 CLI.OutVals.clear(); 8442 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8443 SmallVector<EVT, 4> ValueVTs; 8444 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8445 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8446 Type *FinalType = Args[i].Ty; 8447 if (Args[i].IsByVal) 8448 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8449 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8450 FinalType, CLI.CallConv, CLI.IsVarArg); 8451 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8452 ++Value) { 8453 EVT VT = ValueVTs[Value]; 8454 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8455 SDValue Op = SDValue(Args[i].Node.getNode(), 8456 Args[i].Node.getResNo() + Value); 8457 ISD::ArgFlagsTy Flags; 8458 8459 // Certain targets (such as MIPS), may have a different ABI alignment 8460 // for a type depending on the context. Give the target a chance to 8461 // specify the alignment it wants. 8462 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8463 8464 if (Args[i].IsZExt) 8465 Flags.setZExt(); 8466 if (Args[i].IsSExt) 8467 Flags.setSExt(); 8468 if (Args[i].IsInReg) { 8469 // If we are using vectorcall calling convention, a structure that is 8470 // passed InReg - is surely an HVA 8471 if (CLI.CallConv == CallingConv::X86_VectorCall && 8472 isa<StructType>(FinalType)) { 8473 // The first value of a structure is marked 8474 if (0 == Value) 8475 Flags.setHvaStart(); 8476 Flags.setHva(); 8477 } 8478 // Set InReg Flag 8479 Flags.setInReg(); 8480 } 8481 if (Args[i].IsSRet) 8482 Flags.setSRet(); 8483 if (Args[i].IsSwiftSelf) 8484 Flags.setSwiftSelf(); 8485 if (Args[i].IsSwiftError) 8486 Flags.setSwiftError(); 8487 if (Args[i].IsByVal) 8488 Flags.setByVal(); 8489 if (Args[i].IsInAlloca) { 8490 Flags.setInAlloca(); 8491 // Set the byval flag for CCAssignFn callbacks that don't know about 8492 // inalloca. This way we can know how many bytes we should've allocated 8493 // and how many bytes a callee cleanup function will pop. If we port 8494 // inalloca to more targets, we'll have to add custom inalloca handling 8495 // in the various CC lowering callbacks. 8496 Flags.setByVal(); 8497 } 8498 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8499 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8500 Type *ElementTy = Ty->getElementType(); 8501 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8502 // For ByVal, alignment should come from FE. BE will guess if this 8503 // info is not there but there are cases it cannot get right. 8504 unsigned FrameAlign; 8505 if (Args[i].Alignment) 8506 FrameAlign = Args[i].Alignment; 8507 else 8508 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8509 Flags.setByValAlign(FrameAlign); 8510 } 8511 if (Args[i].IsNest) 8512 Flags.setNest(); 8513 if (NeedsRegBlock) 8514 Flags.setInConsecutiveRegs(); 8515 Flags.setOrigAlign(OriginalAlignment); 8516 8517 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8518 CLI.CallConv, VT); 8519 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8520 CLI.CallConv, VT); 8521 SmallVector<SDValue, 4> Parts(NumParts); 8522 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8523 8524 if (Args[i].IsSExt) 8525 ExtendKind = ISD::SIGN_EXTEND; 8526 else if (Args[i].IsZExt) 8527 ExtendKind = ISD::ZERO_EXTEND; 8528 8529 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8530 // for now. 8531 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8532 CanLowerReturn) { 8533 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8534 "unexpected use of 'returned'"); 8535 // Before passing 'returned' to the target lowering code, ensure that 8536 // either the register MVT and the actual EVT are the same size or that 8537 // the return value and argument are extended in the same way; in these 8538 // cases it's safe to pass the argument register value unchanged as the 8539 // return register value (although it's at the target's option whether 8540 // to do so) 8541 // TODO: allow code generation to take advantage of partially preserved 8542 // registers rather than clobbering the entire register when the 8543 // parameter extension method is not compatible with the return 8544 // extension method 8545 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8546 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8547 CLI.RetZExt == Args[i].IsZExt)) 8548 Flags.setReturned(); 8549 } 8550 8551 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8552 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8553 8554 for (unsigned j = 0; j != NumParts; ++j) { 8555 // if it isn't first piece, alignment must be 1 8556 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8557 i < CLI.NumFixedArgs, 8558 i, j*Parts[j].getValueType().getStoreSize()); 8559 if (NumParts > 1 && j == 0) 8560 MyFlags.Flags.setSplit(); 8561 else if (j != 0) { 8562 MyFlags.Flags.setOrigAlign(1); 8563 if (j == NumParts - 1) 8564 MyFlags.Flags.setSplitEnd(); 8565 } 8566 8567 CLI.Outs.push_back(MyFlags); 8568 CLI.OutVals.push_back(Parts[j]); 8569 } 8570 8571 if (NeedsRegBlock && Value == NumValues - 1) 8572 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8573 } 8574 } 8575 8576 SmallVector<SDValue, 4> InVals; 8577 CLI.Chain = LowerCall(CLI, InVals); 8578 8579 // Update CLI.InVals to use outside of this function. 8580 CLI.InVals = InVals; 8581 8582 // Verify that the target's LowerCall behaved as expected. 8583 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8584 "LowerCall didn't return a valid chain!"); 8585 assert((!CLI.IsTailCall || InVals.empty()) && 8586 "LowerCall emitted a return value for a tail call!"); 8587 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8588 "LowerCall didn't emit the correct number of values!"); 8589 8590 // For a tail call, the return value is merely live-out and there aren't 8591 // any nodes in the DAG representing it. Return a special value to 8592 // indicate that a tail call has been emitted and no more Instructions 8593 // should be processed in the current block. 8594 if (CLI.IsTailCall) { 8595 CLI.DAG.setRoot(CLI.Chain); 8596 return std::make_pair(SDValue(), SDValue()); 8597 } 8598 8599 #ifndef NDEBUG 8600 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8601 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8602 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8603 "LowerCall emitted a value with the wrong type!"); 8604 } 8605 #endif 8606 8607 SmallVector<SDValue, 4> ReturnValues; 8608 if (!CanLowerReturn) { 8609 // The instruction result is the result of loading from the 8610 // hidden sret parameter. 8611 SmallVector<EVT, 1> PVTs; 8612 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8613 8614 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8615 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8616 EVT PtrVT = PVTs[0]; 8617 8618 unsigned NumValues = RetTys.size(); 8619 ReturnValues.resize(NumValues); 8620 SmallVector<SDValue, 4> Chains(NumValues); 8621 8622 // An aggregate return value cannot wrap around the address space, so 8623 // offsets to its parts don't wrap either. 8624 SDNodeFlags Flags; 8625 Flags.setNoUnsignedWrap(true); 8626 8627 for (unsigned i = 0; i < NumValues; ++i) { 8628 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8629 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8630 PtrVT), Flags); 8631 SDValue L = CLI.DAG.getLoad( 8632 RetTys[i], CLI.DL, CLI.Chain, Add, 8633 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8634 DemoteStackIdx, Offsets[i]), 8635 /* Alignment = */ 1); 8636 ReturnValues[i] = L; 8637 Chains[i] = L.getValue(1); 8638 } 8639 8640 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8641 } else { 8642 // Collect the legal value parts into potentially illegal values 8643 // that correspond to the original function's return values. 8644 Optional<ISD::NodeType> AssertOp; 8645 if (CLI.RetSExt) 8646 AssertOp = ISD::AssertSext; 8647 else if (CLI.RetZExt) 8648 AssertOp = ISD::AssertZext; 8649 unsigned CurReg = 0; 8650 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8651 EVT VT = RetTys[I]; 8652 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8653 CLI.CallConv, VT); 8654 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8655 CLI.CallConv, VT); 8656 8657 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8658 NumRegs, RegisterVT, VT, nullptr, 8659 CLI.CallConv, AssertOp)); 8660 CurReg += NumRegs; 8661 } 8662 8663 // For a function returning void, there is no return value. We can't create 8664 // such a node, so we just return a null return value in that case. In 8665 // that case, nothing will actually look at the value. 8666 if (ReturnValues.empty()) 8667 return std::make_pair(SDValue(), CLI.Chain); 8668 } 8669 8670 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8671 CLI.DAG.getVTList(RetTys), ReturnValues); 8672 return std::make_pair(Res, CLI.Chain); 8673 } 8674 8675 void TargetLowering::LowerOperationWrapper(SDNode *N, 8676 SmallVectorImpl<SDValue> &Results, 8677 SelectionDAG &DAG) const { 8678 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8679 Results.push_back(Res); 8680 } 8681 8682 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8683 llvm_unreachable("LowerOperation not implemented for this target!"); 8684 } 8685 8686 void 8687 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8688 SDValue Op = getNonRegisterValue(V); 8689 assert((Op.getOpcode() != ISD::CopyFromReg || 8690 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8691 "Copy from a reg to the same reg!"); 8692 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8693 8694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8695 // If this is an InlineAsm we have to match the registers required, not the 8696 // notional registers required by the type. 8697 8698 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8699 getABIRegCopyCC(V)); 8700 SDValue Chain = DAG.getEntryNode(); 8701 8702 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8703 FuncInfo.PreferredExtendType.end()) 8704 ? ISD::ANY_EXTEND 8705 : FuncInfo.PreferredExtendType[V]; 8706 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8707 PendingExports.push_back(Chain); 8708 } 8709 8710 #include "llvm/CodeGen/SelectionDAGISel.h" 8711 8712 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8713 /// entry block, return true. This includes arguments used by switches, since 8714 /// the switch may expand into multiple basic blocks. 8715 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8716 // With FastISel active, we may be splitting blocks, so force creation 8717 // of virtual registers for all non-dead arguments. 8718 if (FastISel) 8719 return A->use_empty(); 8720 8721 const BasicBlock &Entry = A->getParent()->front(); 8722 for (const User *U : A->users()) 8723 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8724 return false; // Use not in entry block. 8725 8726 return true; 8727 } 8728 8729 using ArgCopyElisionMapTy = 8730 DenseMap<const Argument *, 8731 std::pair<const AllocaInst *, const StoreInst *>>; 8732 8733 /// Scan the entry block of the function in FuncInfo for arguments that look 8734 /// like copies into a local alloca. Record any copied arguments in 8735 /// ArgCopyElisionCandidates. 8736 static void 8737 findArgumentCopyElisionCandidates(const DataLayout &DL, 8738 FunctionLoweringInfo *FuncInfo, 8739 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8740 // Record the state of every static alloca used in the entry block. Argument 8741 // allocas are all used in the entry block, so we need approximately as many 8742 // entries as we have arguments. 8743 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8744 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8745 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8746 StaticAllocas.reserve(NumArgs * 2); 8747 8748 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8749 if (!V) 8750 return nullptr; 8751 V = V->stripPointerCasts(); 8752 const auto *AI = dyn_cast<AllocaInst>(V); 8753 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8754 return nullptr; 8755 auto Iter = StaticAllocas.insert({AI, Unknown}); 8756 return &Iter.first->second; 8757 }; 8758 8759 // Look for stores of arguments to static allocas. Look through bitcasts and 8760 // GEPs to handle type coercions, as long as the alloca is fully initialized 8761 // by the store. Any non-store use of an alloca escapes it and any subsequent 8762 // unanalyzed store might write it. 8763 // FIXME: Handle structs initialized with multiple stores. 8764 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8765 // Look for stores, and handle non-store uses conservatively. 8766 const auto *SI = dyn_cast<StoreInst>(&I); 8767 if (!SI) { 8768 // We will look through cast uses, so ignore them completely. 8769 if (I.isCast()) 8770 continue; 8771 // Ignore debug info intrinsics, they don't escape or store to allocas. 8772 if (isa<DbgInfoIntrinsic>(I)) 8773 continue; 8774 // This is an unknown instruction. Assume it escapes or writes to all 8775 // static alloca operands. 8776 for (const Use &U : I.operands()) { 8777 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8778 *Info = StaticAllocaInfo::Clobbered; 8779 } 8780 continue; 8781 } 8782 8783 // If the stored value is a static alloca, mark it as escaped. 8784 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8785 *Info = StaticAllocaInfo::Clobbered; 8786 8787 // Check if the destination is a static alloca. 8788 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8789 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8790 if (!Info) 8791 continue; 8792 const AllocaInst *AI = cast<AllocaInst>(Dst); 8793 8794 // Skip allocas that have been initialized or clobbered. 8795 if (*Info != StaticAllocaInfo::Unknown) 8796 continue; 8797 8798 // Check if the stored value is an argument, and that this store fully 8799 // initializes the alloca. Don't elide copies from the same argument twice. 8800 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8801 const auto *Arg = dyn_cast<Argument>(Val); 8802 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8803 Arg->getType()->isEmptyTy() || 8804 DL.getTypeStoreSize(Arg->getType()) != 8805 DL.getTypeAllocSize(AI->getAllocatedType()) || 8806 ArgCopyElisionCandidates.count(Arg)) { 8807 *Info = StaticAllocaInfo::Clobbered; 8808 continue; 8809 } 8810 8811 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8812 << '\n'); 8813 8814 // Mark this alloca and store for argument copy elision. 8815 *Info = StaticAllocaInfo::Elidable; 8816 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8817 8818 // Stop scanning if we've seen all arguments. This will happen early in -O0 8819 // builds, which is useful, because -O0 builds have large entry blocks and 8820 // many allocas. 8821 if (ArgCopyElisionCandidates.size() == NumArgs) 8822 break; 8823 } 8824 } 8825 8826 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8827 /// ArgVal is a load from a suitable fixed stack object. 8828 static void tryToElideArgumentCopy( 8829 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8830 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8831 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8832 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8833 SDValue ArgVal, bool &ArgHasUses) { 8834 // Check if this is a load from a fixed stack object. 8835 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8836 if (!LNode) 8837 return; 8838 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8839 if (!FINode) 8840 return; 8841 8842 // Check that the fixed stack object is the right size and alignment. 8843 // Look at the alignment that the user wrote on the alloca instead of looking 8844 // at the stack object. 8845 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8846 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8847 const AllocaInst *AI = ArgCopyIter->second.first; 8848 int FixedIndex = FINode->getIndex(); 8849 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8850 int OldIndex = AllocaIndex; 8851 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8852 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8853 LLVM_DEBUG( 8854 dbgs() << " argument copy elision failed due to bad fixed stack " 8855 "object size\n"); 8856 return; 8857 } 8858 unsigned RequiredAlignment = AI->getAlignment(); 8859 if (!RequiredAlignment) { 8860 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8861 AI->getAllocatedType()); 8862 } 8863 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8864 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8865 "greater than stack argument alignment (" 8866 << RequiredAlignment << " vs " 8867 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8868 return; 8869 } 8870 8871 // Perform the elision. Delete the old stack object and replace its only use 8872 // in the variable info map. Mark the stack object as mutable. 8873 LLVM_DEBUG({ 8874 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8875 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8876 << '\n'; 8877 }); 8878 MFI.RemoveStackObject(OldIndex); 8879 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8880 AllocaIndex = FixedIndex; 8881 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8882 Chains.push_back(ArgVal.getValue(1)); 8883 8884 // Avoid emitting code for the store implementing the copy. 8885 const StoreInst *SI = ArgCopyIter->second.second; 8886 ElidedArgCopyInstrs.insert(SI); 8887 8888 // Check for uses of the argument again so that we can avoid exporting ArgVal 8889 // if it is't used by anything other than the store. 8890 for (const Value *U : Arg.users()) { 8891 if (U != SI) { 8892 ArgHasUses = true; 8893 break; 8894 } 8895 } 8896 } 8897 8898 void SelectionDAGISel::LowerArguments(const Function &F) { 8899 SelectionDAG &DAG = SDB->DAG; 8900 SDLoc dl = SDB->getCurSDLoc(); 8901 const DataLayout &DL = DAG.getDataLayout(); 8902 SmallVector<ISD::InputArg, 16> Ins; 8903 8904 if (!FuncInfo->CanLowerReturn) { 8905 // Put in an sret pointer parameter before all the other parameters. 8906 SmallVector<EVT, 1> ValueVTs; 8907 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8908 F.getReturnType()->getPointerTo( 8909 DAG.getDataLayout().getAllocaAddrSpace()), 8910 ValueVTs); 8911 8912 // NOTE: Assuming that a pointer will never break down to more than one VT 8913 // or one register. 8914 ISD::ArgFlagsTy Flags; 8915 Flags.setSRet(); 8916 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8917 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8918 ISD::InputArg::NoArgIndex, 0); 8919 Ins.push_back(RetArg); 8920 } 8921 8922 // Look for stores of arguments to static allocas. Mark such arguments with a 8923 // flag to ask the target to give us the memory location of that argument if 8924 // available. 8925 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8926 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8927 8928 // Set up the incoming argument description vector. 8929 for (const Argument &Arg : F.args()) { 8930 unsigned ArgNo = Arg.getArgNo(); 8931 SmallVector<EVT, 4> ValueVTs; 8932 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8933 bool isArgValueUsed = !Arg.use_empty(); 8934 unsigned PartBase = 0; 8935 Type *FinalType = Arg.getType(); 8936 if (Arg.hasAttribute(Attribute::ByVal)) 8937 FinalType = cast<PointerType>(FinalType)->getElementType(); 8938 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8939 FinalType, F.getCallingConv(), F.isVarArg()); 8940 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8941 Value != NumValues; ++Value) { 8942 EVT VT = ValueVTs[Value]; 8943 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8944 ISD::ArgFlagsTy Flags; 8945 8946 // Certain targets (such as MIPS), may have a different ABI alignment 8947 // for a type depending on the context. Give the target a chance to 8948 // specify the alignment it wants. 8949 unsigned OriginalAlignment = 8950 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8951 8952 if (Arg.hasAttribute(Attribute::ZExt)) 8953 Flags.setZExt(); 8954 if (Arg.hasAttribute(Attribute::SExt)) 8955 Flags.setSExt(); 8956 if (Arg.hasAttribute(Attribute::InReg)) { 8957 // If we are using vectorcall calling convention, a structure that is 8958 // passed InReg - is surely an HVA 8959 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8960 isa<StructType>(Arg.getType())) { 8961 // The first value of a structure is marked 8962 if (0 == Value) 8963 Flags.setHvaStart(); 8964 Flags.setHva(); 8965 } 8966 // Set InReg Flag 8967 Flags.setInReg(); 8968 } 8969 if (Arg.hasAttribute(Attribute::StructRet)) 8970 Flags.setSRet(); 8971 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8972 Flags.setSwiftSelf(); 8973 if (Arg.hasAttribute(Attribute::SwiftError)) 8974 Flags.setSwiftError(); 8975 if (Arg.hasAttribute(Attribute::ByVal)) 8976 Flags.setByVal(); 8977 if (Arg.hasAttribute(Attribute::InAlloca)) { 8978 Flags.setInAlloca(); 8979 // Set the byval flag for CCAssignFn callbacks that don't know about 8980 // inalloca. This way we can know how many bytes we should've allocated 8981 // and how many bytes a callee cleanup function will pop. If we port 8982 // inalloca to more targets, we'll have to add custom inalloca handling 8983 // in the various CC lowering callbacks. 8984 Flags.setByVal(); 8985 } 8986 if (F.getCallingConv() == CallingConv::X86_INTR) { 8987 // IA Interrupt passes frame (1st parameter) by value in the stack. 8988 if (ArgNo == 0) 8989 Flags.setByVal(); 8990 } 8991 if (Flags.isByVal() || Flags.isInAlloca()) { 8992 PointerType *Ty = cast<PointerType>(Arg.getType()); 8993 Type *ElementTy = Ty->getElementType(); 8994 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8995 // For ByVal, alignment should be passed from FE. BE will guess if 8996 // this info is not there but there are cases it cannot get right. 8997 unsigned FrameAlign; 8998 if (Arg.getParamAlignment()) 8999 FrameAlign = Arg.getParamAlignment(); 9000 else 9001 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9002 Flags.setByValAlign(FrameAlign); 9003 } 9004 if (Arg.hasAttribute(Attribute::Nest)) 9005 Flags.setNest(); 9006 if (NeedsRegBlock) 9007 Flags.setInConsecutiveRegs(); 9008 Flags.setOrigAlign(OriginalAlignment); 9009 if (ArgCopyElisionCandidates.count(&Arg)) 9010 Flags.setCopyElisionCandidate(); 9011 9012 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9013 *CurDAG->getContext(), F.getCallingConv(), VT); 9014 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9015 *CurDAG->getContext(), F.getCallingConv(), VT); 9016 for (unsigned i = 0; i != NumRegs; ++i) { 9017 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9018 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9019 if (NumRegs > 1 && i == 0) 9020 MyFlags.Flags.setSplit(); 9021 // if it isn't first piece, alignment must be 1 9022 else if (i > 0) { 9023 MyFlags.Flags.setOrigAlign(1); 9024 if (i == NumRegs - 1) 9025 MyFlags.Flags.setSplitEnd(); 9026 } 9027 Ins.push_back(MyFlags); 9028 } 9029 if (NeedsRegBlock && Value == NumValues - 1) 9030 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9031 PartBase += VT.getStoreSize(); 9032 } 9033 } 9034 9035 // Call the target to set up the argument values. 9036 SmallVector<SDValue, 8> InVals; 9037 SDValue NewRoot = TLI->LowerFormalArguments( 9038 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9039 9040 // Verify that the target's LowerFormalArguments behaved as expected. 9041 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9042 "LowerFormalArguments didn't return a valid chain!"); 9043 assert(InVals.size() == Ins.size() && 9044 "LowerFormalArguments didn't emit the correct number of values!"); 9045 LLVM_DEBUG({ 9046 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9047 assert(InVals[i].getNode() && 9048 "LowerFormalArguments emitted a null value!"); 9049 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9050 "LowerFormalArguments emitted a value with the wrong type!"); 9051 } 9052 }); 9053 9054 // Update the DAG with the new chain value resulting from argument lowering. 9055 DAG.setRoot(NewRoot); 9056 9057 // Set up the argument values. 9058 unsigned i = 0; 9059 if (!FuncInfo->CanLowerReturn) { 9060 // Create a virtual register for the sret pointer, and put in a copy 9061 // from the sret argument into it. 9062 SmallVector<EVT, 1> ValueVTs; 9063 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9064 F.getReturnType()->getPointerTo( 9065 DAG.getDataLayout().getAllocaAddrSpace()), 9066 ValueVTs); 9067 MVT VT = ValueVTs[0].getSimpleVT(); 9068 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9069 Optional<ISD::NodeType> AssertOp = None; 9070 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9071 nullptr, F.getCallingConv(), AssertOp); 9072 9073 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9074 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9075 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9076 FuncInfo->DemoteRegister = SRetReg; 9077 NewRoot = 9078 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9079 DAG.setRoot(NewRoot); 9080 9081 // i indexes lowered arguments. Bump it past the hidden sret argument. 9082 ++i; 9083 } 9084 9085 SmallVector<SDValue, 4> Chains; 9086 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9087 for (const Argument &Arg : F.args()) { 9088 SmallVector<SDValue, 4> ArgValues; 9089 SmallVector<EVT, 4> ValueVTs; 9090 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9091 unsigned NumValues = ValueVTs.size(); 9092 if (NumValues == 0) 9093 continue; 9094 9095 bool ArgHasUses = !Arg.use_empty(); 9096 9097 // Elide the copying store if the target loaded this argument from a 9098 // suitable fixed stack object. 9099 if (Ins[i].Flags.isCopyElisionCandidate()) { 9100 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9101 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9102 InVals[i], ArgHasUses); 9103 } 9104 9105 // If this argument is unused then remember its value. It is used to generate 9106 // debugging information. 9107 bool isSwiftErrorArg = 9108 TLI->supportSwiftError() && 9109 Arg.hasAttribute(Attribute::SwiftError); 9110 if (!ArgHasUses && !isSwiftErrorArg) { 9111 SDB->setUnusedArgValue(&Arg, InVals[i]); 9112 9113 // Also remember any frame index for use in FastISel. 9114 if (FrameIndexSDNode *FI = 9115 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9116 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9117 } 9118 9119 for (unsigned Val = 0; Val != NumValues; ++Val) { 9120 EVT VT = ValueVTs[Val]; 9121 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9122 F.getCallingConv(), VT); 9123 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9124 *CurDAG->getContext(), F.getCallingConv(), VT); 9125 9126 // Even an apparant 'unused' swifterror argument needs to be returned. So 9127 // we do generate a copy for it that can be used on return from the 9128 // function. 9129 if (ArgHasUses || isSwiftErrorArg) { 9130 Optional<ISD::NodeType> AssertOp; 9131 if (Arg.hasAttribute(Attribute::SExt)) 9132 AssertOp = ISD::AssertSext; 9133 else if (Arg.hasAttribute(Attribute::ZExt)) 9134 AssertOp = ISD::AssertZext; 9135 9136 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9137 PartVT, VT, nullptr, 9138 F.getCallingConv(), AssertOp)); 9139 } 9140 9141 i += NumParts; 9142 } 9143 9144 // We don't need to do anything else for unused arguments. 9145 if (ArgValues.empty()) 9146 continue; 9147 9148 // Note down frame index. 9149 if (FrameIndexSDNode *FI = 9150 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9151 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9152 9153 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9154 SDB->getCurSDLoc()); 9155 9156 SDB->setValue(&Arg, Res); 9157 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9158 // We want to associate the argument with the frame index, among 9159 // involved operands, that correspond to the lowest address. The 9160 // getCopyFromParts function, called earlier, is swapping the order of 9161 // the operands to BUILD_PAIR depending on endianness. The result of 9162 // that swapping is that the least significant bits of the argument will 9163 // be in the first operand of the BUILD_PAIR node, and the most 9164 // significant bits will be in the second operand. 9165 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9166 if (LoadSDNode *LNode = 9167 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9168 if (FrameIndexSDNode *FI = 9169 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9170 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9171 } 9172 9173 // Update the SwiftErrorVRegDefMap. 9174 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9175 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9176 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9177 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9178 FuncInfo->SwiftErrorArg, Reg); 9179 } 9180 9181 // If this argument is live outside of the entry block, insert a copy from 9182 // wherever we got it to the vreg that other BB's will reference it as. 9183 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9184 // If we can, though, try to skip creating an unnecessary vreg. 9185 // FIXME: This isn't very clean... it would be nice to make this more 9186 // general. It's also subtly incompatible with the hacks FastISel 9187 // uses with vregs. 9188 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9189 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9190 FuncInfo->ValueMap[&Arg] = Reg; 9191 continue; 9192 } 9193 } 9194 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9195 FuncInfo->InitializeRegForValue(&Arg); 9196 SDB->CopyToExportRegsIfNeeded(&Arg); 9197 } 9198 } 9199 9200 if (!Chains.empty()) { 9201 Chains.push_back(NewRoot); 9202 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9203 } 9204 9205 DAG.setRoot(NewRoot); 9206 9207 assert(i == InVals.size() && "Argument register count mismatch!"); 9208 9209 // If any argument copy elisions occurred and we have debug info, update the 9210 // stale frame indices used in the dbg.declare variable info table. 9211 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9212 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9213 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9214 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9215 if (I != ArgCopyElisionFrameIndexMap.end()) 9216 VI.Slot = I->second; 9217 } 9218 } 9219 9220 // Finally, if the target has anything special to do, allow it to do so. 9221 EmitFunctionEntryCode(); 9222 } 9223 9224 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9225 /// ensure constants are generated when needed. Remember the virtual registers 9226 /// that need to be added to the Machine PHI nodes as input. We cannot just 9227 /// directly add them, because expansion might result in multiple MBB's for one 9228 /// BB. As such, the start of the BB might correspond to a different MBB than 9229 /// the end. 9230 void 9231 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9232 const TerminatorInst *TI = LLVMBB->getTerminator(); 9233 9234 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9235 9236 // Check PHI nodes in successors that expect a value to be available from this 9237 // block. 9238 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9239 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9240 if (!isa<PHINode>(SuccBB->begin())) continue; 9241 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9242 9243 // If this terminator has multiple identical successors (common for 9244 // switches), only handle each succ once. 9245 if (!SuccsHandled.insert(SuccMBB).second) 9246 continue; 9247 9248 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9249 9250 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9251 // nodes and Machine PHI nodes, but the incoming operands have not been 9252 // emitted yet. 9253 for (const PHINode &PN : SuccBB->phis()) { 9254 // Ignore dead phi's. 9255 if (PN.use_empty()) 9256 continue; 9257 9258 // Skip empty types 9259 if (PN.getType()->isEmptyTy()) 9260 continue; 9261 9262 unsigned Reg; 9263 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9264 9265 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9266 unsigned &RegOut = ConstantsOut[C]; 9267 if (RegOut == 0) { 9268 RegOut = FuncInfo.CreateRegs(C->getType()); 9269 CopyValueToVirtualRegister(C, RegOut); 9270 } 9271 Reg = RegOut; 9272 } else { 9273 DenseMap<const Value *, unsigned>::iterator I = 9274 FuncInfo.ValueMap.find(PHIOp); 9275 if (I != FuncInfo.ValueMap.end()) 9276 Reg = I->second; 9277 else { 9278 assert(isa<AllocaInst>(PHIOp) && 9279 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9280 "Didn't codegen value into a register!??"); 9281 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9282 CopyValueToVirtualRegister(PHIOp, Reg); 9283 } 9284 } 9285 9286 // Remember that this register needs to added to the machine PHI node as 9287 // the input for this MBB. 9288 SmallVector<EVT, 4> ValueVTs; 9289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9290 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9291 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9292 EVT VT = ValueVTs[vti]; 9293 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9294 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9295 FuncInfo.PHINodesToUpdate.push_back( 9296 std::make_pair(&*MBBI++, Reg + i)); 9297 Reg += NumRegisters; 9298 } 9299 } 9300 } 9301 9302 ConstantsOut.clear(); 9303 } 9304 9305 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9306 /// is 0. 9307 MachineBasicBlock * 9308 SelectionDAGBuilder::StackProtectorDescriptor:: 9309 AddSuccessorMBB(const BasicBlock *BB, 9310 MachineBasicBlock *ParentMBB, 9311 bool IsLikely, 9312 MachineBasicBlock *SuccMBB) { 9313 // If SuccBB has not been created yet, create it. 9314 if (!SuccMBB) { 9315 MachineFunction *MF = ParentMBB->getParent(); 9316 MachineFunction::iterator BBI(ParentMBB); 9317 SuccMBB = MF->CreateMachineBasicBlock(BB); 9318 MF->insert(++BBI, SuccMBB); 9319 } 9320 // Add it as a successor of ParentMBB. 9321 ParentMBB->addSuccessor( 9322 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9323 return SuccMBB; 9324 } 9325 9326 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9327 MachineFunction::iterator I(MBB); 9328 if (++I == FuncInfo.MF->end()) 9329 return nullptr; 9330 return &*I; 9331 } 9332 9333 /// During lowering new call nodes can be created (such as memset, etc.). 9334 /// Those will become new roots of the current DAG, but complications arise 9335 /// when they are tail calls. In such cases, the call lowering will update 9336 /// the root, but the builder still needs to know that a tail call has been 9337 /// lowered in order to avoid generating an additional return. 9338 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9339 // If the node is null, we do have a tail call. 9340 if (MaybeTC.getNode() != nullptr) 9341 DAG.setRoot(MaybeTC); 9342 else 9343 HasTailCall = true; 9344 } 9345 9346 uint64_t 9347 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9348 unsigned First, unsigned Last) const { 9349 assert(Last >= First); 9350 const APInt &LowCase = Clusters[First].Low->getValue(); 9351 const APInt &HighCase = Clusters[Last].High->getValue(); 9352 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9353 9354 // FIXME: A range of consecutive cases has 100% density, but only requires one 9355 // comparison to lower. We should discriminate against such consecutive ranges 9356 // in jump tables. 9357 9358 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9359 } 9360 9361 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9362 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9363 unsigned Last) const { 9364 assert(Last >= First); 9365 assert(TotalCases[Last] >= TotalCases[First]); 9366 uint64_t NumCases = 9367 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9368 return NumCases; 9369 } 9370 9371 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9372 unsigned First, unsigned Last, 9373 const SwitchInst *SI, 9374 MachineBasicBlock *DefaultMBB, 9375 CaseCluster &JTCluster) { 9376 assert(First <= Last); 9377 9378 auto Prob = BranchProbability::getZero(); 9379 unsigned NumCmps = 0; 9380 std::vector<MachineBasicBlock*> Table; 9381 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9382 9383 // Initialize probabilities in JTProbs. 9384 for (unsigned I = First; I <= Last; ++I) 9385 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9386 9387 for (unsigned I = First; I <= Last; ++I) { 9388 assert(Clusters[I].Kind == CC_Range); 9389 Prob += Clusters[I].Prob; 9390 const APInt &Low = Clusters[I].Low->getValue(); 9391 const APInt &High = Clusters[I].High->getValue(); 9392 NumCmps += (Low == High) ? 1 : 2; 9393 if (I != First) { 9394 // Fill the gap between this and the previous cluster. 9395 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9396 assert(PreviousHigh.slt(Low)); 9397 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9398 for (uint64_t J = 0; J < Gap; J++) 9399 Table.push_back(DefaultMBB); 9400 } 9401 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9402 for (uint64_t J = 0; J < ClusterSize; ++J) 9403 Table.push_back(Clusters[I].MBB); 9404 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9405 } 9406 9407 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9408 unsigned NumDests = JTProbs.size(); 9409 if (TLI.isSuitableForBitTests( 9410 NumDests, NumCmps, Clusters[First].Low->getValue(), 9411 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9412 // Clusters[First..Last] should be lowered as bit tests instead. 9413 return false; 9414 } 9415 9416 // Create the MBB that will load from and jump through the table. 9417 // Note: We create it here, but it's not inserted into the function yet. 9418 MachineFunction *CurMF = FuncInfo.MF; 9419 MachineBasicBlock *JumpTableMBB = 9420 CurMF->CreateMachineBasicBlock(SI->getParent()); 9421 9422 // Add successors. Note: use table order for determinism. 9423 SmallPtrSet<MachineBasicBlock *, 8> Done; 9424 for (MachineBasicBlock *Succ : Table) { 9425 if (Done.count(Succ)) 9426 continue; 9427 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9428 Done.insert(Succ); 9429 } 9430 JumpTableMBB->normalizeSuccProbs(); 9431 9432 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9433 ->createJumpTableIndex(Table); 9434 9435 // Set up the jump table info. 9436 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9437 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9438 Clusters[Last].High->getValue(), SI->getCondition(), 9439 nullptr, false); 9440 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9441 9442 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9443 JTCases.size() - 1, Prob); 9444 return true; 9445 } 9446 9447 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9448 const SwitchInst *SI, 9449 MachineBasicBlock *DefaultMBB) { 9450 #ifndef NDEBUG 9451 // Clusters must be non-empty, sorted, and only contain Range clusters. 9452 assert(!Clusters.empty()); 9453 for (CaseCluster &C : Clusters) 9454 assert(C.Kind == CC_Range); 9455 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9456 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9457 #endif 9458 9459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9460 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9461 return; 9462 9463 const int64_t N = Clusters.size(); 9464 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9465 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9466 9467 if (N < 2 || N < MinJumpTableEntries) 9468 return; 9469 9470 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9471 SmallVector<unsigned, 8> TotalCases(N); 9472 for (unsigned i = 0; i < N; ++i) { 9473 const APInt &Hi = Clusters[i].High->getValue(); 9474 const APInt &Lo = Clusters[i].Low->getValue(); 9475 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9476 if (i != 0) 9477 TotalCases[i] += TotalCases[i - 1]; 9478 } 9479 9480 // Cheap case: the whole range may be suitable for jump table. 9481 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9482 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9483 assert(NumCases < UINT64_MAX / 100); 9484 assert(Range >= NumCases); 9485 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9486 CaseCluster JTCluster; 9487 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9488 Clusters[0] = JTCluster; 9489 Clusters.resize(1); 9490 return; 9491 } 9492 } 9493 9494 // The algorithm below is not suitable for -O0. 9495 if (TM.getOptLevel() == CodeGenOpt::None) 9496 return; 9497 9498 // Split Clusters into minimum number of dense partitions. The algorithm uses 9499 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9500 // for the Case Statement'" (1994), but builds the MinPartitions array in 9501 // reverse order to make it easier to reconstruct the partitions in ascending 9502 // order. In the choice between two optimal partitionings, it picks the one 9503 // which yields more jump tables. 9504 9505 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9506 SmallVector<unsigned, 8> MinPartitions(N); 9507 // LastElement[i] is the last element of the partition starting at i. 9508 SmallVector<unsigned, 8> LastElement(N); 9509 // PartitionsScore[i] is used to break ties when choosing between two 9510 // partitionings resulting in the same number of partitions. 9511 SmallVector<unsigned, 8> PartitionsScore(N); 9512 // For PartitionsScore, a small number of comparisons is considered as good as 9513 // a jump table and a single comparison is considered better than a jump 9514 // table. 9515 enum PartitionScores : unsigned { 9516 NoTable = 0, 9517 Table = 1, 9518 FewCases = 1, 9519 SingleCase = 2 9520 }; 9521 9522 // Base case: There is only one way to partition Clusters[N-1]. 9523 MinPartitions[N - 1] = 1; 9524 LastElement[N - 1] = N - 1; 9525 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9526 9527 // Note: loop indexes are signed to avoid underflow. 9528 for (int64_t i = N - 2; i >= 0; i--) { 9529 // Find optimal partitioning of Clusters[i..N-1]. 9530 // Baseline: Put Clusters[i] into a partition on its own. 9531 MinPartitions[i] = MinPartitions[i + 1] + 1; 9532 LastElement[i] = i; 9533 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9534 9535 // Search for a solution that results in fewer partitions. 9536 for (int64_t j = N - 1; j > i; j--) { 9537 // Try building a partition from Clusters[i..j]. 9538 uint64_t Range = getJumpTableRange(Clusters, i, j); 9539 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9540 assert(NumCases < UINT64_MAX / 100); 9541 assert(Range >= NumCases); 9542 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9543 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9544 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9545 int64_t NumEntries = j - i + 1; 9546 9547 if (NumEntries == 1) 9548 Score += PartitionScores::SingleCase; 9549 else if (NumEntries <= SmallNumberOfEntries) 9550 Score += PartitionScores::FewCases; 9551 else if (NumEntries >= MinJumpTableEntries) 9552 Score += PartitionScores::Table; 9553 9554 // If this leads to fewer partitions, or to the same number of 9555 // partitions with better score, it is a better partitioning. 9556 if (NumPartitions < MinPartitions[i] || 9557 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9558 MinPartitions[i] = NumPartitions; 9559 LastElement[i] = j; 9560 PartitionsScore[i] = Score; 9561 } 9562 } 9563 } 9564 } 9565 9566 // Iterate over the partitions, replacing some with jump tables in-place. 9567 unsigned DstIndex = 0; 9568 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9569 Last = LastElement[First]; 9570 assert(Last >= First); 9571 assert(DstIndex <= First); 9572 unsigned NumClusters = Last - First + 1; 9573 9574 CaseCluster JTCluster; 9575 if (NumClusters >= MinJumpTableEntries && 9576 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9577 Clusters[DstIndex++] = JTCluster; 9578 } else { 9579 for (unsigned I = First; I <= Last; ++I) 9580 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9581 } 9582 } 9583 Clusters.resize(DstIndex); 9584 } 9585 9586 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9587 unsigned First, unsigned Last, 9588 const SwitchInst *SI, 9589 CaseCluster &BTCluster) { 9590 assert(First <= Last); 9591 if (First == Last) 9592 return false; 9593 9594 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9595 unsigned NumCmps = 0; 9596 for (int64_t I = First; I <= Last; ++I) { 9597 assert(Clusters[I].Kind == CC_Range); 9598 Dests.set(Clusters[I].MBB->getNumber()); 9599 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9600 } 9601 unsigned NumDests = Dests.count(); 9602 9603 APInt Low = Clusters[First].Low->getValue(); 9604 APInt High = Clusters[Last].High->getValue(); 9605 assert(Low.slt(High)); 9606 9607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9608 const DataLayout &DL = DAG.getDataLayout(); 9609 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9610 return false; 9611 9612 APInt LowBound; 9613 APInt CmpRange; 9614 9615 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9616 assert(TLI.rangeFitsInWord(Low, High, DL) && 9617 "Case range must fit in bit mask!"); 9618 9619 // Check if the clusters cover a contiguous range such that no value in the 9620 // range will jump to the default statement. 9621 bool ContiguousRange = true; 9622 for (int64_t I = First + 1; I <= Last; ++I) { 9623 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9624 ContiguousRange = false; 9625 break; 9626 } 9627 } 9628 9629 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9630 // Optimize the case where all the case values fit in a word without having 9631 // to subtract minValue. In this case, we can optimize away the subtraction. 9632 LowBound = APInt::getNullValue(Low.getBitWidth()); 9633 CmpRange = High; 9634 ContiguousRange = false; 9635 } else { 9636 LowBound = Low; 9637 CmpRange = High - Low; 9638 } 9639 9640 CaseBitsVector CBV; 9641 auto TotalProb = BranchProbability::getZero(); 9642 for (unsigned i = First; i <= Last; ++i) { 9643 // Find the CaseBits for this destination. 9644 unsigned j; 9645 for (j = 0; j < CBV.size(); ++j) 9646 if (CBV[j].BB == Clusters[i].MBB) 9647 break; 9648 if (j == CBV.size()) 9649 CBV.push_back( 9650 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9651 CaseBits *CB = &CBV[j]; 9652 9653 // Update Mask, Bits and ExtraProb. 9654 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9655 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9656 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9657 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9658 CB->Bits += Hi - Lo + 1; 9659 CB->ExtraProb += Clusters[i].Prob; 9660 TotalProb += Clusters[i].Prob; 9661 } 9662 9663 BitTestInfo BTI; 9664 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9665 // Sort by probability first, number of bits second, bit mask third. 9666 if (a.ExtraProb != b.ExtraProb) 9667 return a.ExtraProb > b.ExtraProb; 9668 if (a.Bits != b.Bits) 9669 return a.Bits > b.Bits; 9670 return a.Mask < b.Mask; 9671 }); 9672 9673 for (auto &CB : CBV) { 9674 MachineBasicBlock *BitTestBB = 9675 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9676 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9677 } 9678 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9679 SI->getCondition(), -1U, MVT::Other, false, 9680 ContiguousRange, nullptr, nullptr, std::move(BTI), 9681 TotalProb); 9682 9683 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9684 BitTestCases.size() - 1, TotalProb); 9685 return true; 9686 } 9687 9688 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9689 const SwitchInst *SI) { 9690 // Partition Clusters into as few subsets as possible, where each subset has a 9691 // range that fits in a machine word and has <= 3 unique destinations. 9692 9693 #ifndef NDEBUG 9694 // Clusters must be sorted and contain Range or JumpTable clusters. 9695 assert(!Clusters.empty()); 9696 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9697 for (const CaseCluster &C : Clusters) 9698 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9699 for (unsigned i = 1; i < Clusters.size(); ++i) 9700 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9701 #endif 9702 9703 // The algorithm below is not suitable for -O0. 9704 if (TM.getOptLevel() == CodeGenOpt::None) 9705 return; 9706 9707 // If target does not have legal shift left, do not emit bit tests at all. 9708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9709 const DataLayout &DL = DAG.getDataLayout(); 9710 9711 EVT PTy = TLI.getPointerTy(DL); 9712 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9713 return; 9714 9715 int BitWidth = PTy.getSizeInBits(); 9716 const int64_t N = Clusters.size(); 9717 9718 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9719 SmallVector<unsigned, 8> MinPartitions(N); 9720 // LastElement[i] is the last element of the partition starting at i. 9721 SmallVector<unsigned, 8> LastElement(N); 9722 9723 // FIXME: This might not be the best algorithm for finding bit test clusters. 9724 9725 // Base case: There is only one way to partition Clusters[N-1]. 9726 MinPartitions[N - 1] = 1; 9727 LastElement[N - 1] = N - 1; 9728 9729 // Note: loop indexes are signed to avoid underflow. 9730 for (int64_t i = N - 2; i >= 0; --i) { 9731 // Find optimal partitioning of Clusters[i..N-1]. 9732 // Baseline: Put Clusters[i] into a partition on its own. 9733 MinPartitions[i] = MinPartitions[i + 1] + 1; 9734 LastElement[i] = i; 9735 9736 // Search for a solution that results in fewer partitions. 9737 // Note: the search is limited by BitWidth, reducing time complexity. 9738 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9739 // Try building a partition from Clusters[i..j]. 9740 9741 // Check the range. 9742 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9743 Clusters[j].High->getValue(), DL)) 9744 continue; 9745 9746 // Check nbr of destinations and cluster types. 9747 // FIXME: This works, but doesn't seem very efficient. 9748 bool RangesOnly = true; 9749 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9750 for (int64_t k = i; k <= j; k++) { 9751 if (Clusters[k].Kind != CC_Range) { 9752 RangesOnly = false; 9753 break; 9754 } 9755 Dests.set(Clusters[k].MBB->getNumber()); 9756 } 9757 if (!RangesOnly || Dests.count() > 3) 9758 break; 9759 9760 // Check if it's a better partition. 9761 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9762 if (NumPartitions < MinPartitions[i]) { 9763 // Found a better partition. 9764 MinPartitions[i] = NumPartitions; 9765 LastElement[i] = j; 9766 } 9767 } 9768 } 9769 9770 // Iterate over the partitions, replacing with bit-test clusters in-place. 9771 unsigned DstIndex = 0; 9772 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9773 Last = LastElement[First]; 9774 assert(First <= Last); 9775 assert(DstIndex <= First); 9776 9777 CaseCluster BitTestCluster; 9778 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9779 Clusters[DstIndex++] = BitTestCluster; 9780 } else { 9781 size_t NumClusters = Last - First + 1; 9782 std::memmove(&Clusters[DstIndex], &Clusters[First], 9783 sizeof(Clusters[0]) * NumClusters); 9784 DstIndex += NumClusters; 9785 } 9786 } 9787 Clusters.resize(DstIndex); 9788 } 9789 9790 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9791 MachineBasicBlock *SwitchMBB, 9792 MachineBasicBlock *DefaultMBB) { 9793 MachineFunction *CurMF = FuncInfo.MF; 9794 MachineBasicBlock *NextMBB = nullptr; 9795 MachineFunction::iterator BBI(W.MBB); 9796 if (++BBI != FuncInfo.MF->end()) 9797 NextMBB = &*BBI; 9798 9799 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9800 9801 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9802 9803 if (Size == 2 && W.MBB == SwitchMBB) { 9804 // If any two of the cases has the same destination, and if one value 9805 // is the same as the other, but has one bit unset that the other has set, 9806 // use bit manipulation to do two compares at once. For example: 9807 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9808 // TODO: This could be extended to merge any 2 cases in switches with 3 9809 // cases. 9810 // TODO: Handle cases where W.CaseBB != SwitchBB. 9811 CaseCluster &Small = *W.FirstCluster; 9812 CaseCluster &Big = *W.LastCluster; 9813 9814 if (Small.Low == Small.High && Big.Low == Big.High && 9815 Small.MBB == Big.MBB) { 9816 const APInt &SmallValue = Small.Low->getValue(); 9817 const APInt &BigValue = Big.Low->getValue(); 9818 9819 // Check that there is only one bit different. 9820 APInt CommonBit = BigValue ^ SmallValue; 9821 if (CommonBit.isPowerOf2()) { 9822 SDValue CondLHS = getValue(Cond); 9823 EVT VT = CondLHS.getValueType(); 9824 SDLoc DL = getCurSDLoc(); 9825 9826 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9827 DAG.getConstant(CommonBit, DL, VT)); 9828 SDValue Cond = DAG.getSetCC( 9829 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9830 ISD::SETEQ); 9831 9832 // Update successor info. 9833 // Both Small and Big will jump to Small.BB, so we sum up the 9834 // probabilities. 9835 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9836 if (BPI) 9837 addSuccessorWithProb( 9838 SwitchMBB, DefaultMBB, 9839 // The default destination is the first successor in IR. 9840 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9841 else 9842 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9843 9844 // Insert the true branch. 9845 SDValue BrCond = 9846 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9847 DAG.getBasicBlock(Small.MBB)); 9848 // Insert the false branch. 9849 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9850 DAG.getBasicBlock(DefaultMBB)); 9851 9852 DAG.setRoot(BrCond); 9853 return; 9854 } 9855 } 9856 } 9857 9858 if (TM.getOptLevel() != CodeGenOpt::None) { 9859 // Here, we order cases by probability so the most likely case will be 9860 // checked first. However, two clusters can have the same probability in 9861 // which case their relative ordering is non-deterministic. So we use Low 9862 // as a tie-breaker as clusters are guaranteed to never overlap. 9863 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9864 [](const CaseCluster &a, const CaseCluster &b) { 9865 return a.Prob != b.Prob ? 9866 a.Prob > b.Prob : 9867 a.Low->getValue().slt(b.Low->getValue()); 9868 }); 9869 9870 // Rearrange the case blocks so that the last one falls through if possible 9871 // without changing the order of probabilities. 9872 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9873 --I; 9874 if (I->Prob > W.LastCluster->Prob) 9875 break; 9876 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9877 std::swap(*I, *W.LastCluster); 9878 break; 9879 } 9880 } 9881 } 9882 9883 // Compute total probability. 9884 BranchProbability DefaultProb = W.DefaultProb; 9885 BranchProbability UnhandledProbs = DefaultProb; 9886 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9887 UnhandledProbs += I->Prob; 9888 9889 MachineBasicBlock *CurMBB = W.MBB; 9890 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9891 MachineBasicBlock *Fallthrough; 9892 if (I == W.LastCluster) { 9893 // For the last cluster, fall through to the default destination. 9894 Fallthrough = DefaultMBB; 9895 } else { 9896 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9897 CurMF->insert(BBI, Fallthrough); 9898 // Put Cond in a virtual register to make it available from the new blocks. 9899 ExportFromCurrentBlock(Cond); 9900 } 9901 UnhandledProbs -= I->Prob; 9902 9903 switch (I->Kind) { 9904 case CC_JumpTable: { 9905 // FIXME: Optimize away range check based on pivot comparisons. 9906 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9907 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9908 9909 // The jump block hasn't been inserted yet; insert it here. 9910 MachineBasicBlock *JumpMBB = JT->MBB; 9911 CurMF->insert(BBI, JumpMBB); 9912 9913 auto JumpProb = I->Prob; 9914 auto FallthroughProb = UnhandledProbs; 9915 9916 // If the default statement is a target of the jump table, we evenly 9917 // distribute the default probability to successors of CurMBB. Also 9918 // update the probability on the edge from JumpMBB to Fallthrough. 9919 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9920 SE = JumpMBB->succ_end(); 9921 SI != SE; ++SI) { 9922 if (*SI == DefaultMBB) { 9923 JumpProb += DefaultProb / 2; 9924 FallthroughProb -= DefaultProb / 2; 9925 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9926 JumpMBB->normalizeSuccProbs(); 9927 break; 9928 } 9929 } 9930 9931 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9932 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9933 CurMBB->normalizeSuccProbs(); 9934 9935 // The jump table header will be inserted in our current block, do the 9936 // range check, and fall through to our fallthrough block. 9937 JTH->HeaderBB = CurMBB; 9938 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9939 9940 // If we're in the right place, emit the jump table header right now. 9941 if (CurMBB == SwitchMBB) { 9942 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9943 JTH->Emitted = true; 9944 } 9945 break; 9946 } 9947 case CC_BitTests: { 9948 // FIXME: Optimize away range check based on pivot comparisons. 9949 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9950 9951 // The bit test blocks haven't been inserted yet; insert them here. 9952 for (BitTestCase &BTC : BTB->Cases) 9953 CurMF->insert(BBI, BTC.ThisBB); 9954 9955 // Fill in fields of the BitTestBlock. 9956 BTB->Parent = CurMBB; 9957 BTB->Default = Fallthrough; 9958 9959 BTB->DefaultProb = UnhandledProbs; 9960 // If the cases in bit test don't form a contiguous range, we evenly 9961 // distribute the probability on the edge to Fallthrough to two 9962 // successors of CurMBB. 9963 if (!BTB->ContiguousRange) { 9964 BTB->Prob += DefaultProb / 2; 9965 BTB->DefaultProb -= DefaultProb / 2; 9966 } 9967 9968 // If we're in the right place, emit the bit test header right now. 9969 if (CurMBB == SwitchMBB) { 9970 visitBitTestHeader(*BTB, SwitchMBB); 9971 BTB->Emitted = true; 9972 } 9973 break; 9974 } 9975 case CC_Range: { 9976 const Value *RHS, *LHS, *MHS; 9977 ISD::CondCode CC; 9978 if (I->Low == I->High) { 9979 // Check Cond == I->Low. 9980 CC = ISD::SETEQ; 9981 LHS = Cond; 9982 RHS=I->Low; 9983 MHS = nullptr; 9984 } else { 9985 // Check I->Low <= Cond <= I->High. 9986 CC = ISD::SETLE; 9987 LHS = I->Low; 9988 MHS = Cond; 9989 RHS = I->High; 9990 } 9991 9992 // The false probability is the sum of all unhandled cases. 9993 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9994 getCurSDLoc(), I->Prob, UnhandledProbs); 9995 9996 if (CurMBB == SwitchMBB) 9997 visitSwitchCase(CB, SwitchMBB); 9998 else 9999 SwitchCases.push_back(CB); 10000 10001 break; 10002 } 10003 } 10004 CurMBB = Fallthrough; 10005 } 10006 } 10007 10008 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10009 CaseClusterIt First, 10010 CaseClusterIt Last) { 10011 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10012 if (X.Prob != CC.Prob) 10013 return X.Prob > CC.Prob; 10014 10015 // Ties are broken by comparing the case value. 10016 return X.Low->getValue().slt(CC.Low->getValue()); 10017 }); 10018 } 10019 10020 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10021 const SwitchWorkListItem &W, 10022 Value *Cond, 10023 MachineBasicBlock *SwitchMBB) { 10024 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10025 "Clusters not sorted?"); 10026 10027 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10028 10029 // Balance the tree based on branch probabilities to create a near-optimal (in 10030 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10031 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10032 CaseClusterIt LastLeft = W.FirstCluster; 10033 CaseClusterIt FirstRight = W.LastCluster; 10034 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10035 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10036 10037 // Move LastLeft and FirstRight towards each other from opposite directions to 10038 // find a partitioning of the clusters which balances the probability on both 10039 // sides. If LeftProb and RightProb are equal, alternate which side is 10040 // taken to ensure 0-probability nodes are distributed evenly. 10041 unsigned I = 0; 10042 while (LastLeft + 1 < FirstRight) { 10043 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10044 LeftProb += (++LastLeft)->Prob; 10045 else 10046 RightProb += (--FirstRight)->Prob; 10047 I++; 10048 } 10049 10050 while (true) { 10051 // Our binary search tree differs from a typical BST in that ours can have up 10052 // to three values in each leaf. The pivot selection above doesn't take that 10053 // into account, which means the tree might require more nodes and be less 10054 // efficient. We compensate for this here. 10055 10056 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10057 unsigned NumRight = W.LastCluster - FirstRight + 1; 10058 10059 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10060 // If one side has less than 3 clusters, and the other has more than 3, 10061 // consider taking a cluster from the other side. 10062 10063 if (NumLeft < NumRight) { 10064 // Consider moving the first cluster on the right to the left side. 10065 CaseCluster &CC = *FirstRight; 10066 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10067 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10068 if (LeftSideRank <= RightSideRank) { 10069 // Moving the cluster to the left does not demote it. 10070 ++LastLeft; 10071 ++FirstRight; 10072 continue; 10073 } 10074 } else { 10075 assert(NumRight < NumLeft); 10076 // Consider moving the last element on the left to the right side. 10077 CaseCluster &CC = *LastLeft; 10078 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10079 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10080 if (RightSideRank <= LeftSideRank) { 10081 // Moving the cluster to the right does not demot it. 10082 --LastLeft; 10083 --FirstRight; 10084 continue; 10085 } 10086 } 10087 } 10088 break; 10089 } 10090 10091 assert(LastLeft + 1 == FirstRight); 10092 assert(LastLeft >= W.FirstCluster); 10093 assert(FirstRight <= W.LastCluster); 10094 10095 // Use the first element on the right as pivot since we will make less-than 10096 // comparisons against it. 10097 CaseClusterIt PivotCluster = FirstRight; 10098 assert(PivotCluster > W.FirstCluster); 10099 assert(PivotCluster <= W.LastCluster); 10100 10101 CaseClusterIt FirstLeft = W.FirstCluster; 10102 CaseClusterIt LastRight = W.LastCluster; 10103 10104 const ConstantInt *Pivot = PivotCluster->Low; 10105 10106 // New blocks will be inserted immediately after the current one. 10107 MachineFunction::iterator BBI(W.MBB); 10108 ++BBI; 10109 10110 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10111 // we can branch to its destination directly if it's squeezed exactly in 10112 // between the known lower bound and Pivot - 1. 10113 MachineBasicBlock *LeftMBB; 10114 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10115 FirstLeft->Low == W.GE && 10116 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10117 LeftMBB = FirstLeft->MBB; 10118 } else { 10119 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10120 FuncInfo.MF->insert(BBI, LeftMBB); 10121 WorkList.push_back( 10122 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10123 // Put Cond in a virtual register to make it available from the new blocks. 10124 ExportFromCurrentBlock(Cond); 10125 } 10126 10127 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10128 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10129 // directly if RHS.High equals the current upper bound. 10130 MachineBasicBlock *RightMBB; 10131 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10132 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10133 RightMBB = FirstRight->MBB; 10134 } else { 10135 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10136 FuncInfo.MF->insert(BBI, RightMBB); 10137 WorkList.push_back( 10138 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10139 // Put Cond in a virtual register to make it available from the new blocks. 10140 ExportFromCurrentBlock(Cond); 10141 } 10142 10143 // Create the CaseBlock record that will be used to lower the branch. 10144 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10145 getCurSDLoc(), LeftProb, RightProb); 10146 10147 if (W.MBB == SwitchMBB) 10148 visitSwitchCase(CB, SwitchMBB); 10149 else 10150 SwitchCases.push_back(CB); 10151 } 10152 10153 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10154 // from the swith statement. 10155 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10156 BranchProbability PeeledCaseProb) { 10157 if (PeeledCaseProb == BranchProbability::getOne()) 10158 return BranchProbability::getZero(); 10159 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10160 10161 uint32_t Numerator = CaseProb.getNumerator(); 10162 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10163 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10164 } 10165 10166 // Try to peel the top probability case if it exceeds the threshold. 10167 // Return current MachineBasicBlock for the switch statement if the peeling 10168 // does not occur. 10169 // If the peeling is performed, return the newly created MachineBasicBlock 10170 // for the peeled switch statement. Also update Clusters to remove the peeled 10171 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10172 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10173 const SwitchInst &SI, CaseClusterVector &Clusters, 10174 BranchProbability &PeeledCaseProb) { 10175 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10176 // Don't perform if there is only one cluster or optimizing for size. 10177 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10178 TM.getOptLevel() == CodeGenOpt::None || 10179 SwitchMBB->getParent()->getFunction().optForMinSize()) 10180 return SwitchMBB; 10181 10182 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10183 unsigned PeeledCaseIndex = 0; 10184 bool SwitchPeeled = false; 10185 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10186 CaseCluster &CC = Clusters[Index]; 10187 if (CC.Prob < TopCaseProb) 10188 continue; 10189 TopCaseProb = CC.Prob; 10190 PeeledCaseIndex = Index; 10191 SwitchPeeled = true; 10192 } 10193 if (!SwitchPeeled) 10194 return SwitchMBB; 10195 10196 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10197 << TopCaseProb << "\n"); 10198 10199 // Record the MBB for the peeled switch statement. 10200 MachineFunction::iterator BBI(SwitchMBB); 10201 ++BBI; 10202 MachineBasicBlock *PeeledSwitchMBB = 10203 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10204 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10205 10206 ExportFromCurrentBlock(SI.getCondition()); 10207 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10208 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10209 nullptr, nullptr, TopCaseProb.getCompl()}; 10210 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10211 10212 Clusters.erase(PeeledCaseIt); 10213 for (CaseCluster &CC : Clusters) { 10214 LLVM_DEBUG( 10215 dbgs() << "Scale the probablity for one cluster, before scaling: " 10216 << CC.Prob << "\n"); 10217 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10218 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10219 } 10220 PeeledCaseProb = TopCaseProb; 10221 return PeeledSwitchMBB; 10222 } 10223 10224 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10225 // Extract cases from the switch. 10226 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10227 CaseClusterVector Clusters; 10228 Clusters.reserve(SI.getNumCases()); 10229 for (auto I : SI.cases()) { 10230 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10231 const ConstantInt *CaseVal = I.getCaseValue(); 10232 BranchProbability Prob = 10233 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10234 : BranchProbability(1, SI.getNumCases() + 1); 10235 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10236 } 10237 10238 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10239 10240 // Cluster adjacent cases with the same destination. We do this at all 10241 // optimization levels because it's cheap to do and will make codegen faster 10242 // if there are many clusters. 10243 sortAndRangeify(Clusters); 10244 10245 if (TM.getOptLevel() != CodeGenOpt::None) { 10246 // Replace an unreachable default with the most popular destination. 10247 // FIXME: Exploit unreachable default more aggressively. 10248 bool UnreachableDefault = 10249 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10250 if (UnreachableDefault && !Clusters.empty()) { 10251 DenseMap<const BasicBlock *, unsigned> Popularity; 10252 unsigned MaxPop = 0; 10253 const BasicBlock *MaxBB = nullptr; 10254 for (auto I : SI.cases()) { 10255 const BasicBlock *BB = I.getCaseSuccessor(); 10256 if (++Popularity[BB] > MaxPop) { 10257 MaxPop = Popularity[BB]; 10258 MaxBB = BB; 10259 } 10260 } 10261 // Set new default. 10262 assert(MaxPop > 0 && MaxBB); 10263 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10264 10265 // Remove cases that were pointing to the destination that is now the 10266 // default. 10267 CaseClusterVector New; 10268 New.reserve(Clusters.size()); 10269 for (CaseCluster &CC : Clusters) { 10270 if (CC.MBB != DefaultMBB) 10271 New.push_back(CC); 10272 } 10273 Clusters = std::move(New); 10274 } 10275 } 10276 10277 // The branch probablity of the peeled case. 10278 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10279 MachineBasicBlock *PeeledSwitchMBB = 10280 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10281 10282 // If there is only the default destination, jump there directly. 10283 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10284 if (Clusters.empty()) { 10285 assert(PeeledSwitchMBB == SwitchMBB); 10286 SwitchMBB->addSuccessor(DefaultMBB); 10287 if (DefaultMBB != NextBlock(SwitchMBB)) { 10288 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10289 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10290 } 10291 return; 10292 } 10293 10294 findJumpTables(Clusters, &SI, DefaultMBB); 10295 findBitTestClusters(Clusters, &SI); 10296 10297 LLVM_DEBUG({ 10298 dbgs() << "Case clusters: "; 10299 for (const CaseCluster &C : Clusters) { 10300 if (C.Kind == CC_JumpTable) 10301 dbgs() << "JT:"; 10302 if (C.Kind == CC_BitTests) 10303 dbgs() << "BT:"; 10304 10305 C.Low->getValue().print(dbgs(), true); 10306 if (C.Low != C.High) { 10307 dbgs() << '-'; 10308 C.High->getValue().print(dbgs(), true); 10309 } 10310 dbgs() << ' '; 10311 } 10312 dbgs() << '\n'; 10313 }); 10314 10315 assert(!Clusters.empty()); 10316 SwitchWorkList WorkList; 10317 CaseClusterIt First = Clusters.begin(); 10318 CaseClusterIt Last = Clusters.end() - 1; 10319 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10320 // Scale the branchprobability for DefaultMBB if the peel occurs and 10321 // DefaultMBB is not replaced. 10322 if (PeeledCaseProb != BranchProbability::getZero() && 10323 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10324 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10325 WorkList.push_back( 10326 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10327 10328 while (!WorkList.empty()) { 10329 SwitchWorkListItem W = WorkList.back(); 10330 WorkList.pop_back(); 10331 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10332 10333 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10334 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10335 // For optimized builds, lower large range as a balanced binary tree. 10336 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10337 continue; 10338 } 10339 10340 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10341 } 10342 } 10343