1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 IntermediateVT.isVector() 419 ? EVT::getVectorVT( 420 *DAG.getContext(), IntermediateVT.getScalarType(), 421 IntermediateVT.getVectorElementCount() * NumParts) 422 : EVT::getVectorVT(*DAG.getContext(), 423 IntermediateVT.getScalarType(), 424 NumIntermediates); 425 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 426 : ISD::BUILD_VECTOR, 427 DL, BuiltVectorTy, Ops); 428 } 429 430 // There is now one part, held in Val. Correct it to match ValueVT. 431 EVT PartEVT = Val.getValueType(); 432 433 if (PartEVT == ValueVT) 434 return Val; 435 436 if (PartEVT.isVector()) { 437 // If the element type of the source/dest vectors are the same, but the 438 // parts vector has more elements than the value vector, then we have a 439 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 440 // elements we want. 441 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 442 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 443 "Cannot narrow, it would be a lossy transformation"); 444 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 445 DAG.getVectorIdxConstant(0, DL)); 446 } 447 448 // Vector/Vector bitcast. 449 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 453 "Cannot handle this kind of promotion"); 454 // Promoted vector extract 455 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 456 457 } 458 459 // Trivial bitcast if the types are the same size and the destination 460 // vector type is legal. 461 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 462 TLI.isTypeLegal(ValueVT)) 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 465 if (ValueVT.getVectorNumElements() != 1) { 466 // Certain ABIs require that vectors are passed as integers. For vectors 467 // are the same size, this is an obvious bitcast. 468 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 469 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 470 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 471 // Bitcast Val back the original type and extract the corresponding 472 // vector we want. 473 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 474 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 475 ValueVT.getVectorElementType(), Elts); 476 Val = DAG.getBitcast(WiderVecType, Val); 477 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 478 DAG.getVectorIdxConstant(0, DL)); 479 } 480 481 diagnosePossiblyInvalidConstraint( 482 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 483 return DAG.getUNDEF(ValueVT); 484 } 485 486 // Handle cases such as i8 -> <1 x i1> 487 EVT ValueSVT = ValueVT.getVectorElementType(); 488 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 489 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 490 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 491 else 492 Val = ValueVT.isFloatingPoint() 493 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 494 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 495 } 496 497 return DAG.getBuildVector(ValueVT, DL, Val); 498 } 499 500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 501 SDValue Val, SDValue *Parts, unsigned NumParts, 502 MVT PartVT, const Value *V, 503 Optional<CallingConv::ID> CallConv); 504 505 /// getCopyToParts - Create a series of nodes that contain the specified value 506 /// split into legal parts. If the parts contain more bits than Val, then, for 507 /// integers, ExtendKind can be used to specify how to generate the extra bits. 508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 509 SDValue *Parts, unsigned NumParts, MVT PartVT, 510 const Value *V, 511 Optional<CallingConv::ID> CallConv = None, 512 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 513 EVT ValueVT = Val.getValueType(); 514 515 // Handle the vector case separately. 516 if (ValueVT.isVector()) 517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 518 CallConv); 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 537 // If the parts cover more bits than the value has, promote the value. 538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 539 assert(NumParts == 1 && "Do not know what to promote to!"); 540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 541 } else { 542 if (ValueVT.isFloatingPoint()) { 543 // FP values need to be bitcast, then extended if they are being put 544 // into a larger container. 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 547 } 548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 549 ValueVT.isInteger() && 550 "Unknown mismatch!"); 551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 553 if (PartVT == MVT::x86mmx) 554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 555 } 556 } else if (PartBits == ValueVT.getSizeInBits()) { 557 // Different types of the same size. 558 assert(NumParts == 1 && PartEVT != ValueVT); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 561 // If the parts cover less bits than value has, truncate the value. 562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 563 ValueVT.isInteger() && 564 "Unknown mismatch!"); 565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 567 if (PartVT == MVT::x86mmx) 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 // The value may have changed - recompute ValueVT. 572 ValueVT = Val.getValueType(); 573 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 574 "Failed to tile the value with PartVT!"); 575 576 if (NumParts == 1) { 577 if (PartEVT != ValueVT) { 578 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 579 "scalar-to-vector conversion failed"); 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 Parts[0] = Val; 584 return; 585 } 586 587 // Expand the value into multiple parts. 588 if (NumParts & (NumParts - 1)) { 589 // The number of parts is not a power of 2. Split off and copy the tail. 590 assert(PartVT.isInteger() && ValueVT.isInteger() && 591 "Do not know what to expand to!"); 592 unsigned RoundParts = 1 << Log2_32(NumParts); 593 unsigned RoundBits = RoundParts * PartBits; 594 unsigned OddParts = NumParts - RoundParts; 595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 597 598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 599 CallConv); 600 601 if (DAG.getDataLayout().isBigEndian()) 602 // The odd parts were reversed by getCopyToParts - unreverse them. 603 std::reverse(Parts + RoundParts, Parts + NumParts); 604 605 NumParts = RoundParts; 606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 608 } 609 610 // The number of parts is a power of 2. Repeatedly bisect the value using 611 // EXTRACT_ELEMENT. 612 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 613 EVT::getIntegerVT(*DAG.getContext(), 614 ValueVT.getSizeInBits()), 615 Val); 616 617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 618 for (unsigned i = 0; i < NumParts; i += StepSize) { 619 unsigned ThisBits = StepSize * PartBits / 2; 620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 621 SDValue &Part0 = Parts[i]; 622 SDValue &Part1 = Parts[i+StepSize/2]; 623 624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 628 629 if (ThisBits == PartBits && ThisVT != PartVT) { 630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 632 } 633 } 634 } 635 636 if (DAG.getDataLayout().isBigEndian()) 637 std::reverse(Parts, Parts + OrigNumParts); 638 } 639 640 static SDValue widenVectorToPartType(SelectionDAG &DAG, 641 SDValue Val, const SDLoc &DL, EVT PartVT) { 642 if (!PartVT.isVector()) 643 return SDValue(); 644 645 EVT ValueVT = Val.getValueType(); 646 unsigned PartNumElts = PartVT.getVectorNumElements(); 647 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 648 if (PartNumElts > ValueNumElts && 649 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 650 EVT ElementVT = PartVT.getVectorElementType(); 651 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 652 // undef elements. 653 SmallVector<SDValue, 16> Ops; 654 DAG.ExtractVectorElements(Val, Ops); 655 SDValue EltUndef = DAG.getUNDEF(ElementVT); 656 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 657 Ops.push_back(EltUndef); 658 659 // FIXME: Use CONCAT for 2x -> 4x. 660 return DAG.getBuildVector(PartVT, DL, Ops); 661 } 662 663 return SDValue(); 664 } 665 666 /// getCopyToPartsVector - Create a series of nodes that contain the specified 667 /// value split into legal parts. 668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 669 SDValue Val, SDValue *Parts, unsigned NumParts, 670 MVT PartVT, const Value *V, 671 Optional<CallingConv::ID> CallConv) { 672 EVT ValueVT = Val.getValueType(); 673 assert(ValueVT.isVector() && "Not a vector"); 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 const bool IsABIRegCopy = CallConv.hasValue(); 676 677 if (NumParts == 1) { 678 EVT PartEVT = PartVT; 679 if (PartEVT == ValueVT) { 680 // Nothing to do. 681 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 682 // Bitconvert vector->vector case. 683 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 684 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 685 Val = Widened; 686 } else if (PartVT.isVector() && 687 PartEVT.getVectorElementType().bitsGE( 688 ValueVT.getVectorElementType()) && 689 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 690 691 // Promoted vector extract 692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 693 } else { 694 if (ValueVT.getVectorNumElements() == 1) { 695 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 696 DAG.getVectorIdxConstant(0, DL)); 697 } else { 698 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 699 "lossy conversion of vector to scalar type"); 700 EVT IntermediateType = 701 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 702 Val = DAG.getBitcast(IntermediateType, Val); 703 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 704 } 705 } 706 707 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 708 Parts[0] = Val; 709 return; 710 } 711 712 // Handle a multi-element vector. 713 EVT IntermediateVT; 714 MVT RegisterVT; 715 unsigned NumIntermediates; 716 unsigned NumRegs; 717 if (IsABIRegCopy) { 718 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 719 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 720 NumIntermediates, RegisterVT); 721 } else { 722 NumRegs = 723 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 724 NumIntermediates, RegisterVT); 725 } 726 727 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 728 NumParts = NumRegs; // Silence a compiler warning. 729 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 730 731 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 732 IntermediateVT.getVectorNumElements() : 1; 733 734 // Convert the vector to the appropriate type if necessary. 735 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 736 737 EVT BuiltVectorTy = EVT::getVectorVT( 738 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 739 if (ValueVT != BuiltVectorTy) { 740 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 741 Val = Widened; 742 743 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 744 } 745 746 // Split the vector into intermediate operands. 747 SmallVector<SDValue, 8> Ops(NumIntermediates); 748 for (unsigned i = 0; i != NumIntermediates; ++i) { 749 if (IntermediateVT.isVector()) { 750 Ops[i] = 751 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 753 } else { 754 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 755 DAG.getVectorIdxConstant(i, DL)); 756 } 757 } 758 759 // Split the intermediate operands into legal parts. 760 if (NumParts == NumIntermediates) { 761 // If the register was not expanded, promote or copy the value, 762 // as appropriate. 763 for (unsigned i = 0; i != NumParts; ++i) 764 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 765 } else if (NumParts > 0) { 766 // If the intermediate type was expanded, split each the value into 767 // legal parts. 768 assert(NumIntermediates != 0 && "division by zero"); 769 assert(NumParts % NumIntermediates == 0 && 770 "Must expand into a divisible number of parts!"); 771 unsigned Factor = NumParts / NumIntermediates; 772 for (unsigned i = 0; i != NumIntermediates; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 774 CallConv); 775 } 776 } 777 778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 779 EVT valuevt, Optional<CallingConv::ID> CC) 780 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 781 RegCount(1, regs.size()), CallConv(CC) {} 782 783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 784 const DataLayout &DL, unsigned Reg, Type *Ty, 785 Optional<CallingConv::ID> CC) { 786 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 787 788 CallConv = CC; 789 790 for (EVT ValueVT : ValueVTs) { 791 unsigned NumRegs = 792 isABIMangled() 793 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getNumRegisters(Context, ValueVT); 795 MVT RegisterVT = 796 isABIMangled() 797 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 798 : TLI.getRegisterType(Context, ValueVT); 799 for (unsigned i = 0; i != NumRegs; ++i) 800 Regs.push_back(Reg + i); 801 RegVTs.push_back(RegisterVT); 802 RegCount.push_back(NumRegs); 803 Reg += NumRegs; 804 } 805 } 806 807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 808 FunctionLoweringInfo &FuncInfo, 809 const SDLoc &dl, SDValue &Chain, 810 SDValue *Flag, const Value *V) const { 811 // A Value with type {} or [0 x %t] needs no registers. 812 if (ValueVTs.empty()) 813 return SDValue(); 814 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 // Assemble the legal parts into the final values. 818 SmallVector<SDValue, 4> Values(ValueVTs.size()); 819 SmallVector<SDValue, 8> Parts; 820 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 821 // Copy the legal parts from the registers. 822 EVT ValueVT = ValueVTs[Value]; 823 unsigned NumRegs = RegCount[Value]; 824 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 825 *DAG.getContext(), 826 CallConv.getValue(), RegVTs[Value]) 827 : RegVTs[Value]; 828 829 Parts.resize(NumRegs); 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 SDValue P; 832 if (!Flag) { 833 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 834 } else { 835 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 836 *Flag = P.getValue(2); 837 } 838 839 Chain = P.getValue(1); 840 Parts[i] = P; 841 842 // If the source register was virtual and if we know something about it, 843 // add an assert node. 844 if (!Register::isVirtualRegister(Regs[Part + i]) || 845 !RegisterVT.isInteger()) 846 continue; 847 848 const FunctionLoweringInfo::LiveOutInfo *LOI = 849 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 850 if (!LOI) 851 continue; 852 853 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 854 unsigned NumSignBits = LOI->NumSignBits; 855 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 856 857 if (NumZeroBits == RegSize) { 858 // The current value is a zero. 859 // Explicitly express that as it would be easier for 860 // optimizations to kick in. 861 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 862 continue; 863 } 864 865 // FIXME: We capture more information than the dag can represent. For 866 // now, just use the tightest assertzext/assertsext possible. 867 bool isSExt; 868 EVT FromVT(MVT::Other); 869 if (NumZeroBits) { 870 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 871 isSExt = false; 872 } else if (NumSignBits > 1) { 873 FromVT = 874 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 875 isSExt = true; 876 } else { 877 continue; 878 } 879 // Add an assertion node. 880 assert(FromVT != MVT::Other); 881 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 882 RegisterVT, P, DAG.getValueType(FromVT)); 883 } 884 885 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 886 RegisterVT, ValueVT, V, CallConv); 887 Part += NumRegs; 888 Parts.clear(); 889 } 890 891 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 892 } 893 894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 895 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 896 const Value *V, 897 ISD::NodeType PreferredExtendType) const { 898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 899 ISD::NodeType ExtendKind = PreferredExtendType; 900 901 // Get the list of the values's legal parts. 902 unsigned NumRegs = Regs.size(); 903 SmallVector<SDValue, 8> Parts(NumRegs); 904 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 905 unsigned NumParts = RegCount[Value]; 906 907 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 908 *DAG.getContext(), 909 CallConv.getValue(), RegVTs[Value]) 910 : RegVTs[Value]; 911 912 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 913 ExtendKind = ISD::ZERO_EXTEND; 914 915 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 916 NumParts, RegisterVT, V, CallConv, ExtendKind); 917 Part += NumParts; 918 } 919 920 // Copy the parts into the registers. 921 SmallVector<SDValue, 8> Chains(NumRegs); 922 for (unsigned i = 0; i != NumRegs; ++i) { 923 SDValue Part; 924 if (!Flag) { 925 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 926 } else { 927 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 928 *Flag = Part.getValue(1); 929 } 930 931 Chains[i] = Part.getValue(0); 932 } 933 934 if (NumRegs == 1 || Flag) 935 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 936 // flagged to it. That is the CopyToReg nodes and the user are considered 937 // a single scheduling unit. If we create a TokenFactor and return it as 938 // chain, then the TokenFactor is both a predecessor (operand) of the 939 // user as well as a successor (the TF operands are flagged to the user). 940 // c1, f1 = CopyToReg 941 // c2, f2 = CopyToReg 942 // c3 = TokenFactor c1, c2 943 // ... 944 // = op c3, ..., f2 945 Chain = Chains[NumRegs-1]; 946 else 947 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 948 } 949 950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 951 unsigned MatchingIdx, const SDLoc &dl, 952 SelectionDAG &DAG, 953 std::vector<SDValue> &Ops) const { 954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 955 956 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 957 if (HasMatching) 958 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 959 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 960 // Put the register class of the virtual registers in the flag word. That 961 // way, later passes can recompute register class constraints for inline 962 // assembly as well as normal instructions. 963 // Don't do this for tied operands that can use the regclass information 964 // from the def. 965 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 966 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 967 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 968 } 969 970 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 971 Ops.push_back(Res); 972 973 if (Code == InlineAsm::Kind_Clobber) { 974 // Clobbers should always have a 1:1 mapping with registers, and may 975 // reference registers that have illegal (e.g. vector) types. Hence, we 976 // shouldn't try to apply any sort of splitting logic to them. 977 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 978 "No 1:1 mapping from clobbers to regs?"); 979 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 980 (void)SP; 981 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 982 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 983 assert( 984 (Regs[I] != SP || 985 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 986 "If we clobbered the stack pointer, MFI should know about it."); 987 } 988 return; 989 } 990 991 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 993 MVT RegisterVT = RegVTs[Value]; 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, unsigned>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1119 // ConstrainedFPIntrinsics handle their own FMF. 1120 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1121 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1122 // maps to this instruction. 1123 // TODO: We could handle all flags (nsw, etc) here. 1124 // TODO: If an IR instruction maps to >1 node, only the final node will have 1125 // flags set. 1126 if (SDNode *Node = getNodeForIRValue(&I)) { 1127 SDNodeFlags IncomingFlags; 1128 IncomingFlags.copyFMF(*FPMO); 1129 if (!Node->getFlags().isDefined()) 1130 Node->setFlags(IncomingFlags); 1131 else 1132 Node->intersectFlagsWith(IncomingFlags); 1133 } 1134 } 1135 } 1136 1137 if (!I.isTerminator() && !HasTailCall && 1138 !isStatepoint(&I)) // statepoints handle their exports internally 1139 CopyToExportRegsIfNeeded(&I); 1140 1141 CurInst = nullptr; 1142 } 1143 1144 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1145 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1146 } 1147 1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1149 // Note: this doesn't use InstVisitor, because it has to work with 1150 // ConstantExpr's in addition to instructions. 1151 switch (Opcode) { 1152 default: llvm_unreachable("Unknown instruction type encountered!"); 1153 // Build the switch statement using the Instruction.def file. 1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1155 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1156 #include "llvm/IR/Instruction.def" 1157 } 1158 } 1159 1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1161 const DIExpression *Expr) { 1162 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1163 const DbgValueInst *DI = DDI.getDI(); 1164 DIVariable *DanglingVariable = DI->getVariable(); 1165 DIExpression *DanglingExpr = DI->getExpression(); 1166 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1167 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1168 return true; 1169 } 1170 return false; 1171 }; 1172 1173 for (auto &DDIMI : DanglingDebugInfoMap) { 1174 DanglingDebugInfoVector &DDIV = DDIMI.second; 1175 1176 // If debug info is to be dropped, run it through final checks to see 1177 // whether it can be salvaged. 1178 for (auto &DDI : DDIV) 1179 if (isMatchingDbgValue(DDI)) 1180 salvageUnresolvedDbgValue(DDI); 1181 1182 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1183 } 1184 } 1185 1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1187 // generate the debug data structures now that we've seen its definition. 1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1189 SDValue Val) { 1190 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1191 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1192 return; 1193 1194 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1195 for (auto &DDI : DDIV) { 1196 const DbgValueInst *DI = DDI.getDI(); 1197 assert(DI && "Ill-formed DanglingDebugInfo"); 1198 DebugLoc dl = DDI.getdl(); 1199 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1200 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1201 DILocalVariable *Variable = DI->getVariable(); 1202 DIExpression *Expr = DI->getExpression(); 1203 assert(Variable->isValidLocationForIntrinsic(dl) && 1204 "Expected inlined-at fields to agree"); 1205 SDDbgValue *SDV; 1206 if (Val.getNode()) { 1207 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1208 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1209 // we couldn't resolve it directly when examining the DbgValue intrinsic 1210 // in the first place we should not be more successful here). Unless we 1211 // have some test case that prove this to be correct we should avoid 1212 // calling EmitFuncArgumentDbgValue here. 1213 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1214 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1215 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1216 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1217 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1218 // inserted after the definition of Val when emitting the instructions 1219 // after ISel. An alternative could be to teach 1220 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1221 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1222 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1223 << ValSDNodeOrder << "\n"); 1224 SDV = getDbgValue(Val, Variable, Expr, dl, 1225 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1226 DAG.AddDbgValue(SDV, Val.getNode(), false); 1227 } else 1228 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1229 << "in EmitFuncArgumentDbgValue\n"); 1230 } else { 1231 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1232 auto Undef = 1233 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1234 auto SDV = 1235 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1236 DAG.AddDbgValue(SDV, nullptr, false); 1237 } 1238 } 1239 DDIV.clear(); 1240 } 1241 1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1243 Value *V = DDI.getDI()->getValue(); 1244 DILocalVariable *Var = DDI.getDI()->getVariable(); 1245 DIExpression *Expr = DDI.getDI()->getExpression(); 1246 DebugLoc DL = DDI.getdl(); 1247 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1248 unsigned SDOrder = DDI.getSDNodeOrder(); 1249 1250 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1251 // that DW_OP_stack_value is desired. 1252 assert(isa<DbgValueInst>(DDI.getDI())); 1253 bool StackValue = true; 1254 1255 // Can this Value can be encoded without any further work? 1256 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1257 return; 1258 1259 // Attempt to salvage back through as many instructions as possible. Bail if 1260 // a non-instruction is seen, such as a constant expression or global 1261 // variable. FIXME: Further work could recover those too. 1262 while (isa<Instruction>(V)) { 1263 Instruction &VAsInst = *cast<Instruction>(V); 1264 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1265 1266 // If we cannot salvage any further, and haven't yet found a suitable debug 1267 // expression, bail out. 1268 if (!NewExpr) 1269 break; 1270 1271 // New value and expr now represent this debuginfo. 1272 V = VAsInst.getOperand(0); 1273 Expr = NewExpr; 1274 1275 // Some kind of simplification occurred: check whether the operand of the 1276 // salvaged debug expression can be encoded in this DAG. 1277 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1278 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1279 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1280 return; 1281 } 1282 } 1283 1284 // This was the final opportunity to salvage this debug information, and it 1285 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1286 // any earlier variable location. 1287 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1288 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 1291 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1292 << "\n"); 1293 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1294 << "\n"); 1295 } 1296 1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1298 DIExpression *Expr, DebugLoc dl, 1299 DebugLoc InstDL, unsigned Order) { 1300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1301 SDDbgValue *SDV; 1302 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1303 isa<ConstantPointerNull>(V)) { 1304 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, nullptr, false); 1306 return true; 1307 } 1308 1309 // If the Value is a frame index, we can create a FrameIndex debug value 1310 // without relying on the DAG at all. 1311 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1312 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1313 if (SI != FuncInfo.StaticAllocaMap.end()) { 1314 auto SDV = 1315 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1316 /*IsIndirect*/ false, dl, SDNodeOrder); 1317 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1318 // is still available even if the SDNode gets optimized out. 1319 DAG.AddDbgValue(SDV, nullptr, false); 1320 return true; 1321 } 1322 } 1323 1324 // Do not use getValue() in here; we don't want to generate code at 1325 // this point if it hasn't been done yet. 1326 SDValue N = NodeMap[V]; 1327 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1328 N = UnusedArgNodeMap[V]; 1329 if (N.getNode()) { 1330 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1331 return true; 1332 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1333 DAG.AddDbgValue(SDV, N.getNode(), false); 1334 return true; 1335 } 1336 1337 // Special rules apply for the first dbg.values of parameter variables in a 1338 // function. Identify them by the fact they reference Argument Values, that 1339 // they're parameters, and they are parameters of the current function. We 1340 // need to let them dangle until they get an SDNode. 1341 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1342 !InstDL.getInlinedAt(); 1343 if (!IsParamOfFunc) { 1344 // The value is not used in this block yet (or it would have an SDNode). 1345 // We still want the value to appear for the user if possible -- if it has 1346 // an associated VReg, we can refer to that instead. 1347 auto VMI = FuncInfo.ValueMap.find(V); 1348 if (VMI != FuncInfo.ValueMap.end()) { 1349 unsigned Reg = VMI->second; 1350 // If this is a PHI node, it may be split up into several MI PHI nodes 1351 // (in FunctionLoweringInfo::set). 1352 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1353 V->getType(), None); 1354 if (RFV.occupiesMultipleRegs()) { 1355 unsigned Offset = 0; 1356 unsigned BitsToDescribe = 0; 1357 if (auto VarSize = Var->getSizeInBits()) 1358 BitsToDescribe = *VarSize; 1359 if (auto Fragment = Expr->getFragmentInfo()) 1360 BitsToDescribe = Fragment->SizeInBits; 1361 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1362 unsigned RegisterSize = RegAndSize.second; 1363 // Bail out if all bits are described already. 1364 if (Offset >= BitsToDescribe) 1365 break; 1366 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1367 ? BitsToDescribe - Offset 1368 : RegisterSize; 1369 auto FragmentExpr = DIExpression::createFragmentExpression( 1370 Expr, Offset, FragmentSize); 1371 if (!FragmentExpr) 1372 continue; 1373 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1374 false, dl, SDNodeOrder); 1375 DAG.AddDbgValue(SDV, nullptr, false); 1376 Offset += RegisterSize; 1377 } 1378 } else { 1379 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, nullptr, false); 1381 } 1382 return true; 1383 } 1384 } 1385 1386 return false; 1387 } 1388 1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1390 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1391 for (auto &Pair : DanglingDebugInfoMap) 1392 for (auto &DDI : Pair.second) 1393 salvageUnresolvedDbgValue(DDI); 1394 clearDanglingDebugInfo(); 1395 } 1396 1397 /// getCopyFromRegs - If there was virtual register allocated for the value V 1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1400 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1401 SDValue Result; 1402 1403 if (It != FuncInfo.ValueMap.end()) { 1404 unsigned InReg = It->second; 1405 1406 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1407 DAG.getDataLayout(), InReg, Ty, 1408 None); // This is not an ABI copy. 1409 SDValue Chain = DAG.getEntryNode(); 1410 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1411 V); 1412 resolveDanglingDebugInfo(V, Result); 1413 } 1414 1415 return Result; 1416 } 1417 1418 /// getValue - Return an SDValue for the given Value. 1419 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1420 // If we already have an SDValue for this value, use it. It's important 1421 // to do this first, so that we don't create a CopyFromReg if we already 1422 // have a regular SDValue. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) return N; 1425 1426 // If there's a virtual register allocated and initialized for this 1427 // value, use it. 1428 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1429 return copyFromReg; 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 // Return true if SDValue exists for the given Value 1439 bool SelectionDAGBuilder::findValue(const Value *V) const { 1440 return (NodeMap.find(V) != NodeMap.end()) || 1441 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1442 } 1443 1444 /// getNonRegisterValue - Return an SDValue for the given Value, but 1445 /// don't look in FuncInfo.ValueMap for a virtual register. 1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1447 // If we already have an SDValue for this value, use it. 1448 SDValue &N = NodeMap[V]; 1449 if (N.getNode()) { 1450 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1451 // Remove the debug location from the node as the node is about to be used 1452 // in a location which may differ from the original debug location. This 1453 // is relevant to Constant and ConstantFP nodes because they can appear 1454 // as constant expressions inside PHI nodes. 1455 N->setDebugLoc(DebugLoc()); 1456 } 1457 return N; 1458 } 1459 1460 // Otherwise create a new SDValue and remember it. 1461 SDValue Val = getValueImpl(V); 1462 NodeMap[V] = Val; 1463 resolveDanglingDebugInfo(V, Val); 1464 return Val; 1465 } 1466 1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1468 /// Create an SDValue for the given value. 1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1471 1472 if (const Constant *C = dyn_cast<Constant>(V)) { 1473 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1474 1475 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1476 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1477 1478 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1479 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1480 1481 if (isa<ConstantPointerNull>(C)) { 1482 unsigned AS = V->getType()->getPointerAddressSpace(); 1483 return DAG.getConstant(0, getCurSDLoc(), 1484 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1485 } 1486 1487 if (match(C, m_VScale(DAG.getDataLayout()))) 1488 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1489 1490 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1491 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1492 1493 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1494 return DAG.getUNDEF(VT); 1495 1496 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1497 visit(CE->getOpcode(), *CE); 1498 SDValue N1 = NodeMap[V]; 1499 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1500 return N1; 1501 } 1502 1503 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1504 SmallVector<SDValue, 4> Constants; 1505 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1506 OI != OE; ++OI) { 1507 SDNode *Val = getValue(*OI).getNode(); 1508 // If the operand is an empty aggregate, there are no values. 1509 if (!Val) continue; 1510 // Add each leaf value from the operand to the Constants list 1511 // to form a flattened list of all the values. 1512 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1513 Constants.push_back(SDValue(Val, i)); 1514 } 1515 1516 return DAG.getMergeValues(Constants, getCurSDLoc()); 1517 } 1518 1519 if (const ConstantDataSequential *CDS = 1520 dyn_cast<ConstantDataSequential>(C)) { 1521 SmallVector<SDValue, 4> Ops; 1522 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1523 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1524 // Add each leaf value from the operand to the Constants list 1525 // to form a flattened list of all the values. 1526 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1527 Ops.push_back(SDValue(Val, i)); 1528 } 1529 1530 if (isa<ArrayType>(CDS->getType())) 1531 return DAG.getMergeValues(Ops, getCurSDLoc()); 1532 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1533 } 1534 1535 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1536 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1537 "Unknown struct or array constant!"); 1538 1539 SmallVector<EVT, 4> ValueVTs; 1540 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1541 unsigned NumElts = ValueVTs.size(); 1542 if (NumElts == 0) 1543 return SDValue(); // empty struct 1544 SmallVector<SDValue, 4> Constants(NumElts); 1545 for (unsigned i = 0; i != NumElts; ++i) { 1546 EVT EltVT = ValueVTs[i]; 1547 if (isa<UndefValue>(C)) 1548 Constants[i] = DAG.getUNDEF(EltVT); 1549 else if (EltVT.isFloatingPoint()) 1550 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1551 else 1552 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1553 } 1554 1555 return DAG.getMergeValues(Constants, getCurSDLoc()); 1556 } 1557 1558 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1559 return DAG.getBlockAddress(BA, VT); 1560 1561 VectorType *VecTy = cast<VectorType>(V->getType()); 1562 unsigned NumElements = VecTy->getNumElements(); 1563 1564 // Now that we know the number and type of the elements, get that number of 1565 // elements into the Ops array based on what kind of constant it is. 1566 SmallVector<SDValue, 16> Ops; 1567 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1568 for (unsigned i = 0; i != NumElements; ++i) 1569 Ops.push_back(getValue(CV->getOperand(i))); 1570 } else { 1571 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1572 EVT EltVT = 1573 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1574 1575 SDValue Op; 1576 if (EltVT.isFloatingPoint()) 1577 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1578 else 1579 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1580 Ops.assign(NumElements, Op); 1581 } 1582 1583 // Create a BUILD_VECTOR node. 1584 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1585 } 1586 1587 // If this is a static alloca, generate it as the frameindex instead of 1588 // computation. 1589 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1590 DenseMap<const AllocaInst*, int>::iterator SI = 1591 FuncInfo.StaticAllocaMap.find(AI); 1592 if (SI != FuncInfo.StaticAllocaMap.end()) 1593 return DAG.getFrameIndex(SI->second, 1594 TLI.getFrameIndexTy(DAG.getDataLayout())); 1595 } 1596 1597 // If this is an instruction which fast-isel has deferred, select it now. 1598 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1599 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1600 1601 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1602 Inst->getType(), getABIRegCopyCC(V)); 1603 SDValue Chain = DAG.getEntryNode(); 1604 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1605 } 1606 1607 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1608 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1609 } 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1619 if (!IsSEH) 1620 CatchPadMBB->setIsEHScopeEntry(); 1621 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1622 if (IsMSVCCXX || IsCoreCLR) 1623 CatchPadMBB->setIsEHFuncletEntry(); 1624 } 1625 1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1627 // Update machine-CFG edge. 1628 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1629 FuncInfo.MBB->addSuccessor(TargetMBB); 1630 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsSEH = isAsynchronousEHPersonality(Pers); 1633 if (IsSEH) { 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1637 TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1639 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1640 return; 1641 } 1642 1643 // Figure out the funclet membership for the catchret's successor. 1644 // This will be used by the FuncletLayout pass to determine how to order the 1645 // BB's. 1646 // A 'catchret' returns to the outer scope's color. 1647 Value *ParentPad = I.getCatchSwitchParentPad(); 1648 const BasicBlock *SuccessorColor; 1649 if (isa<ConstantTokenNone>(ParentPad)) 1650 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1651 else 1652 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1653 assert(SuccessorColor && "No parent funclet for catchret!"); 1654 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1655 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1656 1657 // Create the terminator node. 1658 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1659 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1660 DAG.getBasicBlock(SuccessorColorMBB)); 1661 DAG.setRoot(Ret); 1662 } 1663 1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1665 // Don't emit any special code for the cleanuppad instruction. It just marks 1666 // the start of an EH scope/funclet. 1667 FuncInfo.MBB->setIsEHScopeEntry(); 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 if (Pers != EHPersonality::Wasm_CXX) { 1670 FuncInfo.MBB->setIsEHFuncletEntry(); 1671 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1672 } 1673 } 1674 1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1676 // the control flow always stops at the single catch pad, as it does for a 1677 // cleanup pad. In case the exception caught is not of the types the catch pad 1678 // catches, it will be rethrown by a rethrow. 1679 static void findWasmUnwindDestinations( 1680 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1681 BranchProbability Prob, 1682 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1683 &UnwindDests) { 1684 while (EHPadBB) { 1685 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1686 if (isa<CleanupPadInst>(Pad)) { 1687 // Stop on cleanup pads. 1688 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1689 UnwindDests.back().first->setIsEHScopeEntry(); 1690 break; 1691 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1692 // Add the catchpad handlers to the possible destinations. We don't 1693 // continue to the unwind destination of the catchswitch for wasm. 1694 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 } 1698 break; 1699 } else { 1700 continue; 1701 } 1702 } 1703 } 1704 1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1706 /// many places it could ultimately go. In the IR, we have a single unwind 1707 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1708 /// This function skips over imaginary basic blocks that hold catchswitch 1709 /// instructions, and finds all the "real" machine 1710 /// basic block destinations. As those destinations may not be successors of 1711 /// EHPadBB, here we also calculate the edge probability to those destinations. 1712 /// The passed-in Prob is the edge probability to EHPadBB. 1713 static void findUnwindDestinations( 1714 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1715 BranchProbability Prob, 1716 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1717 &UnwindDests) { 1718 EHPersonality Personality = 1719 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1720 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1721 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1722 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1723 bool IsSEH = isAsynchronousEHPersonality(Personality); 1724 1725 if (IsWasmCXX) { 1726 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1727 assert(UnwindDests.size() <= 1 && 1728 "There should be at most one unwind destination for wasm"); 1729 return; 1730 } 1731 1732 while (EHPadBB) { 1733 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1734 BasicBlock *NewEHPadBB = nullptr; 1735 if (isa<LandingPadInst>(Pad)) { 1736 // Stop on landingpads. They are not funclets. 1737 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1738 break; 1739 } else if (isa<CleanupPadInst>(Pad)) { 1740 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1741 // personalities. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 UnwindDests.back().first->setIsEHFuncletEntry(); 1745 break; 1746 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1747 // Add the catchpad handlers to the possible destinations. 1748 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1750 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1751 if (IsMSVCCXX || IsCoreCLR) 1752 UnwindDests.back().first->setIsEHFuncletEntry(); 1753 if (!IsSEH) 1754 UnwindDests.back().first->setIsEHScopeEntry(); 1755 } 1756 NewEHPadBB = CatchSwitch->getUnwindDest(); 1757 } else { 1758 continue; 1759 } 1760 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 if (BPI && NewEHPadBB) 1763 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1764 EHPadBB = NewEHPadBB; 1765 } 1766 } 1767 1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1769 // Update successor info. 1770 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1771 auto UnwindDest = I.getUnwindDest(); 1772 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1773 BranchProbability UnwindDestProb = 1774 (BPI && UnwindDest) 1775 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1776 : BranchProbability::getZero(); 1777 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1778 for (auto &UnwindDest : UnwindDests) { 1779 UnwindDest.first->setIsEHPad(); 1780 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1781 } 1782 FuncInfo.MBB->normalizeSuccProbs(); 1783 1784 // Create the terminator node. 1785 SDValue Ret = 1786 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1787 DAG.setRoot(Ret); 1788 } 1789 1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1791 report_fatal_error("visitCatchSwitch not yet implemented!"); 1792 } 1793 1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 auto &DL = DAG.getDataLayout(); 1797 SDValue Chain = getControlRoot(); 1798 SmallVector<ISD::OutputArg, 8> Outs; 1799 SmallVector<SDValue, 8> OutVals; 1800 1801 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1802 // lower 1803 // 1804 // %val = call <ty> @llvm.experimental.deoptimize() 1805 // ret <ty> %val 1806 // 1807 // differently. 1808 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1809 LowerDeoptimizingReturn(); 1810 return; 1811 } 1812 1813 if (!FuncInfo.CanLowerReturn) { 1814 unsigned DemoteReg = FuncInfo.DemoteRegister; 1815 const Function *F = I.getParent()->getParent(); 1816 1817 // Emit a store of the return value through the virtual register. 1818 // Leave Outs empty so that LowerReturn won't try to load return 1819 // registers the usual way. 1820 SmallVector<EVT, 1> PtrValueVTs; 1821 ComputeValueVTs(TLI, DL, 1822 F->getReturnType()->getPointerTo( 1823 DAG.getDataLayout().getAllocaAddrSpace()), 1824 PtrValueVTs); 1825 1826 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1827 DemoteReg, PtrValueVTs[0]); 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 SmallVector<EVT, 4> ValueVTs, MemVTs; 1831 SmallVector<uint64_t, 4> Offsets; 1832 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1833 &Offsets); 1834 unsigned NumValues = ValueVTs.size(); 1835 1836 SmallVector<SDValue, 4> Chains(NumValues); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1846 // FIXME: better loc info would be nice. 1847 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1848 } 1849 1850 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1851 MVT::Other, Chains); 1852 } else if (I.getNumOperands() != 0) { 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1855 unsigned NumValues = ValueVTs.size(); 1856 if (NumValues) { 1857 SDValue RetOp = getValue(I.getOperand(0)); 1858 1859 const Function *F = I.getParent()->getParent(); 1860 1861 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1862 I.getOperand(0)->getType(), F->getCallingConv(), 1863 /*IsVarArg*/ false); 1864 1865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1866 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::SExt)) 1868 ExtendKind = ISD::SIGN_EXTEND; 1869 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1870 Attribute::ZExt)) 1871 ExtendKind = ISD::ZERO_EXTEND; 1872 1873 LLVMContext &Context = F->getContext(); 1874 bool RetInReg = F->getAttributes().hasAttribute( 1875 AttributeList::ReturnIndex, Attribute::InReg); 1876 1877 for (unsigned j = 0; j != NumValues; ++j) { 1878 EVT VT = ValueVTs[j]; 1879 1880 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1881 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1882 1883 CallingConv::ID CC = F->getCallingConv(); 1884 1885 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1886 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1887 SmallVector<SDValue, 4> Parts(NumParts); 1888 getCopyToParts(DAG, getCurSDLoc(), 1889 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1890 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1891 1892 // 'inreg' on function refers to return value 1893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1894 if (RetInReg) 1895 Flags.setInReg(); 1896 1897 if (I.getOperand(0)->getType()->isPointerTy()) { 1898 Flags.setPointer(); 1899 Flags.setPointerAddrSpace( 1900 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1901 } 1902 1903 if (NeedsRegBlock) { 1904 Flags.setInConsecutiveRegs(); 1905 if (j == NumValues - 1) 1906 Flags.setInConsecutiveRegsLast(); 1907 } 1908 1909 // Propagate extension type if any 1910 if (ExtendKind == ISD::SIGN_EXTEND) 1911 Flags.setSExt(); 1912 else if (ExtendKind == ISD::ZERO_EXTEND) 1913 Flags.setZExt(); 1914 1915 for (unsigned i = 0; i < NumParts; ++i) { 1916 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1917 VT, /*isfixed=*/true, 0, 0)); 1918 OutVals.push_back(Parts[i]); 1919 } 1920 } 1921 } 1922 } 1923 1924 // Push in swifterror virtual register as the last element of Outs. This makes 1925 // sure swifterror virtual register will be returned in the swifterror 1926 // physical register. 1927 const Function *F = I.getParent()->getParent(); 1928 if (TLI.supportSwiftError() && 1929 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1930 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1931 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1932 Flags.setSwiftError(); 1933 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1934 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1935 true /*isfixed*/, 1 /*origidx*/, 1936 0 /*partOffs*/)); 1937 // Create SDNode for the swifterror virtual register. 1938 OutVals.push_back( 1939 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1940 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1941 EVT(TLI.getPointerTy(DL)))); 1942 } 1943 1944 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1945 CallingConv::ID CallConv = 1946 DAG.getMachineFunction().getFunction().getCallingConv(); 1947 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1948 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1949 1950 // Verify that the target's LowerReturn behaved as expected. 1951 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1952 "LowerReturn didn't return a valid chain!"); 1953 1954 // Update the DAG with the new chain value resulting from return lowering. 1955 DAG.setRoot(Chain); 1956 } 1957 1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1959 /// created for it, emit nodes to copy the value into the virtual 1960 /// registers. 1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1962 // Skip empty types 1963 if (V->getType()->isEmptyTy()) 1964 return; 1965 1966 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1967 if (VMI != FuncInfo.ValueMap.end()) { 1968 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1969 CopyValueToVirtualRegister(V, VMI->second); 1970 } 1971 } 1972 1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1974 /// the current basic block, add it to ValueMap now so that we'll get a 1975 /// CopyTo/FromReg. 1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1977 // No need to export constants. 1978 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1979 1980 // Already exported? 1981 if (FuncInfo.isExportedInst(V)) return; 1982 1983 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1984 CopyValueToVirtualRegister(V, Reg); 1985 } 1986 1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1988 const BasicBlock *FromBB) { 1989 // The operands of the setcc have to be in this block. We don't know 1990 // how to export them from some other block. 1991 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1992 // Can export from current BB. 1993 if (VI->getParent() == FromBB) 1994 return true; 1995 1996 // Is already exported, noop. 1997 return FuncInfo.isExportedInst(V); 1998 } 1999 2000 // If this is an argument, we can export it if the BB is the entry block or 2001 // if it is already exported. 2002 if (isa<Argument>(V)) { 2003 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2004 return true; 2005 2006 // Otherwise, can only export this if it is already exported. 2007 return FuncInfo.isExportedInst(V); 2008 } 2009 2010 // Otherwise, constants can always be exported. 2011 return true; 2012 } 2013 2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2015 BranchProbability 2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2017 const MachineBasicBlock *Dst) const { 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 const BasicBlock *SrcBB = Src->getBasicBlock(); 2020 const BasicBlock *DstBB = Dst->getBasicBlock(); 2021 if (!BPI) { 2022 // If BPI is not available, set the default probability as 1 / N, where N is 2023 // the number of successors. 2024 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2025 return BranchProbability(1, SuccSize); 2026 } 2027 return BPI->getEdgeProbability(SrcBB, DstBB); 2028 } 2029 2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2031 MachineBasicBlock *Dst, 2032 BranchProbability Prob) { 2033 if (!FuncInfo.BPI) 2034 Src->addSuccessorWithoutProb(Dst); 2035 else { 2036 if (Prob.isUnknown()) 2037 Prob = getEdgeProbability(Src, Dst); 2038 Src->addSuccessor(Dst, Prob); 2039 } 2040 } 2041 2042 static bool InBlock(const Value *V, const BasicBlock *BB) { 2043 if (const Instruction *I = dyn_cast<Instruction>(V)) 2044 return I->getParent() == BB; 2045 return true; 2046 } 2047 2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2049 /// This function emits a branch and is used at the leaves of an OR or an 2050 /// AND operator tree. 2051 void 2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2053 MachineBasicBlock *TBB, 2054 MachineBasicBlock *FBB, 2055 MachineBasicBlock *CurBB, 2056 MachineBasicBlock *SwitchBB, 2057 BranchProbability TProb, 2058 BranchProbability FProb, 2059 bool InvertCond) { 2060 const BasicBlock *BB = CurBB->getBasicBlock(); 2061 2062 // If the leaf of the tree is a comparison, merge the condition into 2063 // the caseblock. 2064 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2065 // The operands of the cmp have to be in this block. We don't know 2066 // how to export them from some other block. If this is the first block 2067 // of the sequence, no exporting is needed. 2068 if (CurBB == SwitchBB || 2069 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2070 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2071 ISD::CondCode Condition; 2072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2073 ICmpInst::Predicate Pred = 2074 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2075 Condition = getICmpCondCode(Pred); 2076 } else { 2077 const FCmpInst *FC = cast<FCmpInst>(Cond); 2078 FCmpInst::Predicate Pred = 2079 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2080 Condition = getFCmpCondCode(Pred); 2081 if (TM.Options.NoNaNsFPMath) 2082 Condition = getFCmpCodeWithoutNaN(Condition); 2083 } 2084 2085 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2086 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 return; 2089 } 2090 } 2091 2092 // Create a CaseBlock record representing this branch. 2093 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2094 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2095 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2096 SL->SwitchCases.push_back(CB); 2097 } 2098 2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2100 MachineBasicBlock *TBB, 2101 MachineBasicBlock *FBB, 2102 MachineBasicBlock *CurBB, 2103 MachineBasicBlock *SwitchBB, 2104 Instruction::BinaryOps Opc, 2105 BranchProbability TProb, 2106 BranchProbability FProb, 2107 bool InvertCond) { 2108 // Skip over not part of the tree and remember to invert op and operands at 2109 // next level. 2110 Value *NotCond; 2111 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2112 InBlock(NotCond, CurBB->getBasicBlock())) { 2113 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2114 !InvertCond); 2115 return; 2116 } 2117 2118 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2119 // Compute the effective opcode for Cond, taking into account whether it needs 2120 // to be inverted, e.g. 2121 // and (not (or A, B)), C 2122 // gets lowered as 2123 // and (and (not A, not B), C) 2124 unsigned BOpc = 0; 2125 if (BOp) { 2126 BOpc = BOp->getOpcode(); 2127 if (InvertCond) { 2128 if (BOpc == Instruction::And) 2129 BOpc = Instruction::Or; 2130 else if (BOpc == Instruction::Or) 2131 BOpc = Instruction::And; 2132 } 2133 } 2134 2135 // If this node is not part of the or/and tree, emit it as a branch. 2136 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2137 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2138 BOp->getParent() != CurBB->getBasicBlock() || 2139 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2140 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2141 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2142 TProb, FProb, InvertCond); 2143 return; 2144 } 2145 2146 // Create TmpBB after CurBB. 2147 MachineFunction::iterator BBI(CurBB); 2148 MachineFunction &MF = DAG.getMachineFunction(); 2149 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2150 CurBB->getParent()->insert(++BBI, TmpBB); 2151 2152 if (Opc == Instruction::Or) { 2153 // Codegen X | Y as: 2154 // BB1: 2155 // jmp_if_X TBB 2156 // jmp TmpBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2165 // = TrueProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2168 // A/(1+B) and 2B/(1+B). This choice assumes that 2169 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2170 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2171 // TmpBB, but the math is more complicated. 2172 2173 auto NewTrueProb = TProb / 2; 2174 auto NewFalseProb = TProb / 2 + FProb; 2175 // Emit the LHS condition. 2176 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2177 NewTrueProb, NewFalseProb, InvertCond); 2178 2179 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2180 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2181 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2182 // Emit the RHS condition into TmpBB. 2183 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2184 Probs[0], Probs[1], InvertCond); 2185 } else { 2186 assert(Opc == Instruction::And && "Unknown merge op!"); 2187 // Codegen X & Y as: 2188 // BB1: 2189 // jmp_if_X TmpBB 2190 // jmp FBB 2191 // TmpBB: 2192 // jmp_if_Y TBB 2193 // jmp FBB 2194 // 2195 // This requires creation of TmpBB after CurBB. 2196 2197 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2198 // The requirement is that 2199 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2200 // = FalseProb for original BB. 2201 // Assuming the original probabilities are A and B, one choice is to set 2202 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2203 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2204 // TrueProb for BB1 * FalseProb for TmpBB. 2205 2206 auto NewTrueProb = TProb + FProb / 2; 2207 auto NewFalseProb = FProb / 2; 2208 // Emit the LHS condition. 2209 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2210 NewTrueProb, NewFalseProb, InvertCond); 2211 2212 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2213 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2214 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2215 // Emit the RHS condition into TmpBB. 2216 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2217 Probs[0], Probs[1], InvertCond); 2218 } 2219 } 2220 2221 /// If the set of cases should be emitted as a series of branches, return true. 2222 /// If we should emit this as a bunch of and/or'd together conditions, return 2223 /// false. 2224 bool 2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2226 if (Cases.size() != 2) return true; 2227 2228 // If this is two comparisons of the same values or'd or and'd together, they 2229 // will get folded into a single comparison, so don't emit two blocks. 2230 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2231 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2232 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2233 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2234 return false; 2235 } 2236 2237 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2238 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2239 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2240 Cases[0].CC == Cases[1].CC && 2241 isa<Constant>(Cases[0].CmpRHS) && 2242 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2243 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2244 return false; 2245 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2246 return false; 2247 } 2248 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2253 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2254 2255 // Update machine-CFG edges. 2256 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 2258 if (I.isUnconditional()) { 2259 // Update machine-CFG edges. 2260 BrMBB->addSuccessor(Succ0MBB); 2261 2262 // If this is not a fall-through branch or optimizations are switched off, 2263 // emit the branch. 2264 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2266 MVT::Other, getControlRoot(), 2267 DAG.getBasicBlock(Succ0MBB))); 2268 2269 return; 2270 } 2271 2272 // If this condition is one of the special cases we handle, do special stuff 2273 // now. 2274 const Value *CondVal = I.getCondition(); 2275 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2276 2277 // If this is a series of conditions that are or'd or and'd together, emit 2278 // this as a sequence of branches instead of setcc's with and/or operations. 2279 // As long as jumps are not expensive, this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2293 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2295 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2296 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2297 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2298 Opcode, 2299 getEdgeProbability(BrMBB, Succ0MBB), 2300 getEdgeProbability(BrMBB, Succ1MBB), 2301 /*InvertCond=*/false); 2302 // If the compares in later blocks need to use values not currently 2303 // exported from this block, export them now. This block should always 2304 // be the first entry. 2305 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2306 2307 // Allow some cases to be rejected. 2308 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2309 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2312 } 2313 2314 // Emit the branch for this block. 2315 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2316 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2317 return; 2318 } 2319 2320 // Okay, we decided not to do this, remove any inserted MBB's and clear 2321 // SwitchCases. 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2323 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2324 2325 SL->SwitchCases.clear(); 2326 } 2327 } 2328 2329 // Create a CaseBlock record representing this branch. 2330 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2331 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2332 2333 // Use visitSwitchCase to actually insert the fast branch sequence for this 2334 // cond branch. 2335 visitSwitchCase(CB, BrMBB); 2336 } 2337 2338 /// visitSwitchCase - Emits the necessary code to represent a single node in 2339 /// the binary search tree resulting from lowering a switch instruction. 2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2341 MachineBasicBlock *SwitchBB) { 2342 SDValue Cond; 2343 SDValue CondLHS = getValue(CB.CmpLHS); 2344 SDLoc dl = CB.DL; 2345 2346 if (CB.CC == ISD::SETTRUE) { 2347 // Branch or fall through to TrueBB. 2348 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2349 SwitchBB->normalizeSuccProbs(); 2350 if (CB.TrueBB != NextBlock(SwitchBB)) { 2351 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2352 DAG.getBasicBlock(CB.TrueBB))); 2353 } 2354 return; 2355 } 2356 2357 auto &TLI = DAG.getTargetLoweringInfo(); 2358 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2359 2360 // Build the setcc now. 2361 if (!CB.CmpMHS) { 2362 // Fold "(X == true)" to X and "(X == false)" to !X to 2363 // handle common cases produced by branch lowering. 2364 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) 2366 Cond = CondLHS; 2367 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2368 CB.CC == ISD::SETEQ) { 2369 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2370 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2371 } else { 2372 SDValue CondRHS = getValue(CB.CmpRHS); 2373 2374 // If a pointer's DAG type is larger than its memory type then the DAG 2375 // values are zero-extended. This breaks signed comparisons so truncate 2376 // back to the underlying type before doing the compare. 2377 if (CondLHS.getValueType() != MemVT) { 2378 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2379 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2380 } 2381 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2382 } 2383 } else { 2384 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2385 2386 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2387 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2388 2389 SDValue CmpOp = getValue(CB.CmpMHS); 2390 EVT VT = CmpOp.getValueType(); 2391 2392 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2393 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2394 ISD::SETLE); 2395 } else { 2396 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2397 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2398 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2399 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2400 } 2401 } 2402 2403 // Update successor info 2404 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2405 // TrueBB and FalseBB are always different unless the incoming IR is 2406 // degenerate. This only happens when running llc on weird IR. 2407 if (CB.TrueBB != CB.FalseBB) 2408 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2409 SwitchBB->normalizeSuccProbs(); 2410 2411 // If the lhs block is the next block, invert the condition so that we can 2412 // fall through to the lhs instead of the rhs block. 2413 if (CB.TrueBB == NextBlock(SwitchBB)) { 2414 std::swap(CB.TrueBB, CB.FalseBB); 2415 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2416 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2417 } 2418 2419 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2420 MVT::Other, getControlRoot(), Cond, 2421 DAG.getBasicBlock(CB.TrueBB)); 2422 2423 // Insert the false branch. Do this even if it's a fall through branch, 2424 // this makes it easier to do DAG optimizations which require inverting 2425 // the branch condition. 2426 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2427 DAG.getBasicBlock(CB.FalseBB)); 2428 2429 DAG.setRoot(BrCond); 2430 } 2431 2432 /// visitJumpTable - Emit JumpTable node in the current MBB 2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2434 // Emit the code for the jump table 2435 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2436 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2437 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2438 JT.Reg, PTy); 2439 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2440 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2441 MVT::Other, Index.getValue(1), 2442 Table, Index); 2443 DAG.setRoot(BrJumpTable); 2444 } 2445 2446 /// visitJumpTableHeader - This function emits necessary code to produce index 2447 /// in the JumpTable from switch case. 2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2449 JumpTableHeader &JTH, 2450 MachineBasicBlock *SwitchBB) { 2451 SDLoc dl = getCurSDLoc(); 2452 2453 // Subtract the lowest switch case value from the value being switched on. 2454 SDValue SwitchOp = getValue(JTH.SValue); 2455 EVT VT = SwitchOp.getValueType(); 2456 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2457 DAG.getConstant(JTH.First, dl, VT)); 2458 2459 // The SDNode we just created, which holds the value being switched on minus 2460 // the smallest case value, needs to be copied to a virtual register so it 2461 // can be used as an index into the jump table in a subsequent basic block. 2462 // This value may be smaller or larger than the target's pointer type, and 2463 // therefore require extension or truncating. 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2466 2467 unsigned JumpTableReg = 2468 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2469 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2470 JumpTableReg, SwitchOp); 2471 JT.Reg = JumpTableReg; 2472 2473 if (!JTH.OmitRangeCheck) { 2474 // Emit the range check for the jump table, and branch to the default block 2475 // for the switch statement if the value being switched on exceeds the 2476 // largest case in the switch. 2477 SDValue CMP = DAG.getSetCC( 2478 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2479 Sub.getValueType()), 2480 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2481 2482 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2483 MVT::Other, CopyTo, CMP, 2484 DAG.getBasicBlock(JT.Default)); 2485 2486 // Avoid emitting unnecessary branches to the next block. 2487 if (JT.MBB != NextBlock(SwitchBB)) 2488 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2489 DAG.getBasicBlock(JT.MBB)); 2490 2491 DAG.setRoot(BrCond); 2492 } else { 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2496 DAG.getBasicBlock(JT.MBB))); 2497 else 2498 DAG.setRoot(CopyTo); 2499 } 2500 } 2501 2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2503 /// variable if there exists one. 2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2505 SDValue &Chain) { 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 MachineFunction &MF = DAG.getMachineFunction(); 2510 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2511 MachineSDNode *Node = 2512 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2513 if (Global) { 2514 MachinePointerInfo MPInfo(Global); 2515 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2516 MachineMemOperand::MODereferenceable; 2517 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2518 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2519 DAG.setNodeMemRefs(Node, {MemRef}); 2520 } 2521 if (PtrTy != PtrMemTy) 2522 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2523 return SDValue(Node, 0); 2524 } 2525 2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2527 /// tail spliced into a stack protector check success bb. 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2533 MachineBasicBlock *ParentBB) { 2534 2535 // First create the loads to the guard/stack slot for the comparison. 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2538 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2539 2540 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2541 int FI = MFI.getStackProtectorIndex(); 2542 2543 SDValue Guard; 2544 SDLoc dl = getCurSDLoc(); 2545 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2546 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2547 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2548 2549 // Generate code to load the content of the guard slot. 2550 SDValue GuardVal = DAG.getLoad( 2551 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2553 MachineMemOperand::MOVolatile); 2554 2555 if (TLI.useStackGuardXorFP()) 2556 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2557 2558 // Retrieve guard check function, nullptr if instrumentation is inlined. 2559 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2560 // The target provides a guard check function to validate the guard value. 2561 // Generate a call to that function with the content of the guard slot as 2562 // argument. 2563 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2564 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2565 2566 TargetLowering::ArgListTy Args; 2567 TargetLowering::ArgListEntry Entry; 2568 Entry.Node = GuardVal; 2569 Entry.Ty = FnTy->getParamType(0); 2570 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2571 Entry.IsInReg = true; 2572 Args.push_back(Entry); 2573 2574 TargetLowering::CallLoweringInfo CLI(DAG); 2575 CLI.setDebugLoc(getCurSDLoc()) 2576 .setChain(DAG.getEntryNode()) 2577 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2578 getValue(GuardCheckFn), std::move(Args)); 2579 2580 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2581 DAG.setRoot(Result.second); 2582 return; 2583 } 2584 2585 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2586 // Otherwise, emit a volatile load to retrieve the stack guard value. 2587 SDValue Chain = DAG.getEntryNode(); 2588 if (TLI.useLoadStackGuardNode()) { 2589 Guard = getLoadStackGuard(DAG, dl, Chain); 2590 } else { 2591 const Value *IRGuard = TLI.getSDagStackGuard(M); 2592 SDValue GuardPtr = getValue(IRGuard); 2593 2594 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2595 MachinePointerInfo(IRGuard, 0), Align, 2596 MachineMemOperand::MOVolatile); 2597 } 2598 2599 // Perform the comparison via a getsetcc. 2600 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2601 *DAG.getContext(), 2602 Guard.getValueType()), 2603 Guard, GuardVal, ISD::SETNE); 2604 2605 // If the guard/stackslot do not equal, branch to failure MBB. 2606 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2607 MVT::Other, GuardVal.getOperand(0), 2608 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2609 // Otherwise branch to success MBB. 2610 SDValue Br = DAG.getNode(ISD::BR, dl, 2611 MVT::Other, BrCond, 2612 DAG.getBasicBlock(SPD.getSuccessMBB())); 2613 2614 DAG.setRoot(Br); 2615 } 2616 2617 /// Codegen the failure basic block for a stack protector check. 2618 /// 2619 /// A failure stack protector machine basic block consists simply of a call to 2620 /// __stack_chk_fail(). 2621 /// 2622 /// For a high level explanation of how this fits into the stack protector 2623 /// generation see the comment on the declaration of class 2624 /// StackProtectorDescriptor. 2625 void 2626 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2628 TargetLowering::MakeLibCallOptions CallOptions; 2629 CallOptions.setDiscardResult(true); 2630 SDValue Chain = 2631 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2632 None, CallOptions, getCurSDLoc()).second; 2633 // On PS4, the "return address" must still be within the calling function, 2634 // even if it's at the very end, so emit an explicit TRAP here. 2635 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2636 if (TM.getTargetTriple().isPS4CPU()) 2637 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2638 2639 DAG.setRoot(Chain); 2640 } 2641 2642 /// visitBitTestHeader - This function emits necessary code to produce value 2643 /// suitable for "bit tests" 2644 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2645 MachineBasicBlock *SwitchBB) { 2646 SDLoc dl = getCurSDLoc(); 2647 2648 // Subtract the minimum value. 2649 SDValue SwitchOp = getValue(B.SValue); 2650 EVT VT = SwitchOp.getValueType(); 2651 SDValue RangeSub = 2652 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2653 2654 // Determine the type of the test operands. 2655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2656 bool UsePtrType = false; 2657 if (!TLI.isTypeLegal(VT)) { 2658 UsePtrType = true; 2659 } else { 2660 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2661 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2662 // Switch table case range are encoded into series of masks. 2663 // Just use pointer type, it's guaranteed to fit. 2664 UsePtrType = true; 2665 break; 2666 } 2667 } 2668 SDValue Sub = RangeSub; 2669 if (UsePtrType) { 2670 VT = TLI.getPointerTy(DAG.getDataLayout()); 2671 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2672 } 2673 2674 B.RegVT = VT.getSimpleVT(); 2675 B.Reg = FuncInfo.CreateReg(B.RegVT); 2676 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2677 2678 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2679 2680 if (!B.OmitRangeCheck) 2681 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2682 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2683 SwitchBB->normalizeSuccProbs(); 2684 2685 SDValue Root = CopyTo; 2686 if (!B.OmitRangeCheck) { 2687 // Conditional branch to the default block. 2688 SDValue RangeCmp = DAG.getSetCC(dl, 2689 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2690 RangeSub.getValueType()), 2691 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2692 ISD::SETUGT); 2693 2694 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2695 DAG.getBasicBlock(B.Default)); 2696 } 2697 2698 // Avoid emitting unnecessary branches to the next block. 2699 if (MBB != NextBlock(SwitchBB)) 2700 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2701 2702 DAG.setRoot(Root); 2703 } 2704 2705 /// visitBitTestCase - this function produces one "bit test" 2706 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2707 MachineBasicBlock* NextMBB, 2708 BranchProbability BranchProbToNext, 2709 unsigned Reg, 2710 BitTestCase &B, 2711 MachineBasicBlock *SwitchBB) { 2712 SDLoc dl = getCurSDLoc(); 2713 MVT VT = BB.RegVT; 2714 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2715 SDValue Cmp; 2716 unsigned PopCount = countPopulation(B.Mask); 2717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2718 if (PopCount == 1) { 2719 // Testing for a single bit; just compare the shift count with what it 2720 // would need to be to shift a 1 bit in that position. 2721 Cmp = DAG.getSetCC( 2722 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2723 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2724 ISD::SETEQ); 2725 } else if (PopCount == BB.Range) { 2726 // There is only one zero bit in the range, test for it directly. 2727 Cmp = DAG.getSetCC( 2728 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2729 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2730 ISD::SETNE); 2731 } else { 2732 // Make desired shift 2733 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2734 DAG.getConstant(1, dl, VT), ShiftOp); 2735 2736 // Emit bit tests and jumps 2737 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2738 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2742 } 2743 2744 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2745 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2746 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2747 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2748 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2749 // one as they are relative probabilities (and thus work more like weights), 2750 // and hence we need to normalize them to let the sum of them become one. 2751 SwitchBB->normalizeSuccProbs(); 2752 2753 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2754 MVT::Other, getControlRoot(), 2755 Cmp, DAG.getBasicBlock(B.TargetBB)); 2756 2757 // Avoid emitting unnecessary branches to the next block. 2758 if (NextMBB != NextBlock(SwitchBB)) 2759 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2760 DAG.getBasicBlock(NextMBB)); 2761 2762 DAG.setRoot(BrAnd); 2763 } 2764 2765 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2766 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2767 2768 // Retrieve successors. Look through artificial IR level blocks like 2769 // catchswitch for successors. 2770 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2771 const BasicBlock *EHPadBB = I.getSuccessor(1); 2772 2773 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2774 // have to do anything here to lower funclet bundles. 2775 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2776 LLVMContext::OB_funclet, 2777 LLVMContext::OB_cfguardtarget}) && 2778 "Cannot lower invokes with arbitrary operand bundles yet!"); 2779 2780 const Value *Callee(I.getCalledValue()); 2781 const Function *Fn = dyn_cast<Function>(Callee); 2782 if (isa<InlineAsm>(Callee)) 2783 visitInlineAsm(&I); 2784 else if (Fn && Fn->isIntrinsic()) { 2785 switch (Fn->getIntrinsicID()) { 2786 default: 2787 llvm_unreachable("Cannot invoke this intrinsic"); 2788 case Intrinsic::donothing: 2789 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2790 break; 2791 case Intrinsic::experimental_patchpoint_void: 2792 case Intrinsic::experimental_patchpoint_i64: 2793 visitPatchpoint(&I, EHPadBB); 2794 break; 2795 case Intrinsic::experimental_gc_statepoint: 2796 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2797 break; 2798 case Intrinsic::wasm_rethrow_in_catch: { 2799 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2800 // special because it can be invoked, so we manually lower it to a DAG 2801 // node here. 2802 SmallVector<SDValue, 8> Ops; 2803 Ops.push_back(getRoot()); // inchain 2804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2805 Ops.push_back( 2806 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2807 TLI.getPointerTy(DAG.getDataLayout()))); 2808 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2809 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2810 break; 2811 } 2812 } 2813 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2814 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2815 // Eventually we will support lowering the @llvm.experimental.deoptimize 2816 // intrinsic, and right now there are no plans to support other intrinsics 2817 // with deopt state. 2818 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2819 } else { 2820 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2821 } 2822 2823 // If the value of the invoke is used outside of its defining block, make it 2824 // available as a virtual register. 2825 // We already took care of the exported value for the statepoint instruction 2826 // during call to the LowerStatepoint. 2827 if (!isStatepoint(I)) { 2828 CopyToExportRegsIfNeeded(&I); 2829 } 2830 2831 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2832 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2833 BranchProbability EHPadBBProb = 2834 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2835 : BranchProbability::getZero(); 2836 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2837 2838 // Update successor info. 2839 addSuccessorWithProb(InvokeMBB, Return); 2840 for (auto &UnwindDest : UnwindDests) { 2841 UnwindDest.first->setIsEHPad(); 2842 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2843 } 2844 InvokeMBB->normalizeSuccProbs(); 2845 2846 // Drop into normal successor. 2847 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2848 DAG.getBasicBlock(Return))); 2849 } 2850 2851 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2852 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2853 2854 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2855 // have to do anything here to lower funclet bundles. 2856 assert(!I.hasOperandBundlesOtherThan( 2857 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2858 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2859 2860 assert(isa<InlineAsm>(I.getCalledValue()) && 2861 "Only know how to handle inlineasm callbr"); 2862 visitInlineAsm(&I); 2863 CopyToExportRegsIfNeeded(&I); 2864 2865 // Retrieve successors. 2866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2867 Return->setInlineAsmBrDefaultTarget(); 2868 2869 // Update successor info. 2870 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2871 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2872 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2873 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2874 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2875 } 2876 CallBrMBB->normalizeSuccProbs(); 2877 2878 // Drop into default successor. 2879 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2880 MVT::Other, getControlRoot(), 2881 DAG.getBasicBlock(Return))); 2882 } 2883 2884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2886 } 2887 2888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2889 assert(FuncInfo.MBB->isEHPad() && 2890 "Call to landingpad not in landing pad!"); 2891 2892 // If there aren't registers to copy the values into (e.g., during SjLj 2893 // exceptions), then don't bother to create these DAG nodes. 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2896 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2897 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2898 return; 2899 2900 // If landingpad's return type is token type, we don't create DAG nodes 2901 // for its exception pointer and selector value. The extraction of exception 2902 // pointer or selector value from token type landingpads is not currently 2903 // supported. 2904 if (LP.getType()->isTokenTy()) 2905 return; 2906 2907 SmallVector<EVT, 2> ValueVTs; 2908 SDLoc dl = getCurSDLoc(); 2909 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2910 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2911 2912 // Get the two live-in registers as SDValues. The physregs have already been 2913 // copied into virtual registers. 2914 SDValue Ops[2]; 2915 if (FuncInfo.ExceptionPointerVirtReg) { 2916 Ops[0] = DAG.getZExtOrTrunc( 2917 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2918 FuncInfo.ExceptionPointerVirtReg, 2919 TLI.getPointerTy(DAG.getDataLayout())), 2920 dl, ValueVTs[0]); 2921 } else { 2922 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2923 } 2924 Ops[1] = DAG.getZExtOrTrunc( 2925 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2926 FuncInfo.ExceptionSelectorVirtReg, 2927 TLI.getPointerTy(DAG.getDataLayout())), 2928 dl, ValueVTs[1]); 2929 2930 // Merge into one. 2931 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2932 DAG.getVTList(ValueVTs), Ops); 2933 setValue(&LP, Res); 2934 } 2935 2936 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2937 MachineBasicBlock *Last) { 2938 // Update JTCases. 2939 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2940 if (SL->JTCases[i].first.HeaderBB == First) 2941 SL->JTCases[i].first.HeaderBB = Last; 2942 2943 // Update BitTestCases. 2944 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2945 if (SL->BitTestCases[i].Parent == First) 2946 SL->BitTestCases[i].Parent = Last; 2947 } 2948 2949 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2950 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2951 2952 // Update machine-CFG edges with unique successors. 2953 SmallSet<BasicBlock*, 32> Done; 2954 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2955 BasicBlock *BB = I.getSuccessor(i); 2956 bool Inserted = Done.insert(BB).second; 2957 if (!Inserted) 2958 continue; 2959 2960 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2961 addSuccessorWithProb(IndirectBrMBB, Succ); 2962 } 2963 IndirectBrMBB->normalizeSuccProbs(); 2964 2965 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2966 MVT::Other, getControlRoot(), 2967 getValue(I.getAddress()))); 2968 } 2969 2970 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2971 if (!DAG.getTarget().Options.TrapUnreachable) 2972 return; 2973 2974 // We may be able to ignore unreachable behind a noreturn call. 2975 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2976 const BasicBlock &BB = *I.getParent(); 2977 if (&I != &BB.front()) { 2978 BasicBlock::const_iterator PredI = 2979 std::prev(BasicBlock::const_iterator(&I)); 2980 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2981 if (Call->doesNotReturn()) 2982 return; 2983 } 2984 } 2985 } 2986 2987 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2988 } 2989 2990 void SelectionDAGBuilder::visitFSub(const User &I) { 2991 // -0.0 - X --> fneg 2992 Type *Ty = I.getType(); 2993 if (isa<Constant>(I.getOperand(0)) && 2994 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2995 SDValue Op2 = getValue(I.getOperand(1)); 2996 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2997 Op2.getValueType(), Op2)); 2998 return; 2999 } 3000 3001 visitBinary(I, ISD::FSUB); 3002 } 3003 3004 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3005 SDNodeFlags Flags; 3006 3007 SDValue Op = getValue(I.getOperand(0)); 3008 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3009 Op, Flags); 3010 setValue(&I, UnNodeValue); 3011 } 3012 3013 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3014 SDNodeFlags Flags; 3015 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3016 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3017 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3018 } 3019 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3020 Flags.setExact(ExactOp->isExact()); 3021 } 3022 3023 SDValue Op1 = getValue(I.getOperand(0)); 3024 SDValue Op2 = getValue(I.getOperand(1)); 3025 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3026 Op1, Op2, Flags); 3027 setValue(&I, BinNodeValue); 3028 } 3029 3030 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3031 SDValue Op1 = getValue(I.getOperand(0)); 3032 SDValue Op2 = getValue(I.getOperand(1)); 3033 3034 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3035 Op1.getValueType(), DAG.getDataLayout()); 3036 3037 // Coerce the shift amount to the right type if we can. 3038 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3039 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3040 unsigned Op2Size = Op2.getValueSizeInBits(); 3041 SDLoc DL = getCurSDLoc(); 3042 3043 // If the operand is smaller than the shift count type, promote it. 3044 if (ShiftSize > Op2Size) 3045 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3046 3047 // If the operand is larger than the shift count type but the shift 3048 // count type has enough bits to represent any shift value, truncate 3049 // it now. This is a common case and it exposes the truncate to 3050 // optimization early. 3051 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3052 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3053 // Otherwise we'll need to temporarily settle for some other convenient 3054 // type. Type legalization will make adjustments once the shiftee is split. 3055 else 3056 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3057 } 3058 3059 bool nuw = false; 3060 bool nsw = false; 3061 bool exact = false; 3062 3063 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3064 3065 if (const OverflowingBinaryOperator *OFBinOp = 3066 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3067 nuw = OFBinOp->hasNoUnsignedWrap(); 3068 nsw = OFBinOp->hasNoSignedWrap(); 3069 } 3070 if (const PossiblyExactOperator *ExactOp = 3071 dyn_cast<const PossiblyExactOperator>(&I)) 3072 exact = ExactOp->isExact(); 3073 } 3074 SDNodeFlags Flags; 3075 Flags.setExact(exact); 3076 Flags.setNoSignedWrap(nsw); 3077 Flags.setNoUnsignedWrap(nuw); 3078 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3079 Flags); 3080 setValue(&I, Res); 3081 } 3082 3083 void SelectionDAGBuilder::visitSDiv(const User &I) { 3084 SDValue Op1 = getValue(I.getOperand(0)); 3085 SDValue Op2 = getValue(I.getOperand(1)); 3086 3087 SDNodeFlags Flags; 3088 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3089 cast<PossiblyExactOperator>(&I)->isExact()); 3090 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3091 Op2, Flags)); 3092 } 3093 3094 void SelectionDAGBuilder::visitICmp(const User &I) { 3095 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3096 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3097 predicate = IC->getPredicate(); 3098 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3099 predicate = ICmpInst::Predicate(IC->getPredicate()); 3100 SDValue Op1 = getValue(I.getOperand(0)); 3101 SDValue Op2 = getValue(I.getOperand(1)); 3102 ISD::CondCode Opcode = getICmpCondCode(predicate); 3103 3104 auto &TLI = DAG.getTargetLoweringInfo(); 3105 EVT MemVT = 3106 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3107 3108 // If a pointer's DAG type is larger than its memory type then the DAG values 3109 // are zero-extended. This breaks signed comparisons so truncate back to the 3110 // underlying type before doing the compare. 3111 if (Op1.getValueType() != MemVT) { 3112 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3113 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3114 } 3115 3116 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3117 I.getType()); 3118 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3119 } 3120 3121 void SelectionDAGBuilder::visitFCmp(const User &I) { 3122 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3123 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3124 predicate = FC->getPredicate(); 3125 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3126 predicate = FCmpInst::Predicate(FC->getPredicate()); 3127 SDValue Op1 = getValue(I.getOperand(0)); 3128 SDValue Op2 = getValue(I.getOperand(1)); 3129 3130 ISD::CondCode Condition = getFCmpCondCode(predicate); 3131 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3132 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3133 Condition = getFCmpCodeWithoutNaN(Condition); 3134 3135 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3136 I.getType()); 3137 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3138 } 3139 3140 // Check if the condition of the select has one use or two users that are both 3141 // selects with the same condition. 3142 static bool hasOnlySelectUsers(const Value *Cond) { 3143 return llvm::all_of(Cond->users(), [](const Value *V) { 3144 return isa<SelectInst>(V); 3145 }); 3146 } 3147 3148 void SelectionDAGBuilder::visitSelect(const User &I) { 3149 SmallVector<EVT, 4> ValueVTs; 3150 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3151 ValueVTs); 3152 unsigned NumValues = ValueVTs.size(); 3153 if (NumValues == 0) return; 3154 3155 SmallVector<SDValue, 4> Values(NumValues); 3156 SDValue Cond = getValue(I.getOperand(0)); 3157 SDValue LHSVal = getValue(I.getOperand(1)); 3158 SDValue RHSVal = getValue(I.getOperand(2)); 3159 SmallVector<SDValue, 1> BaseOps(1, Cond); 3160 ISD::NodeType OpCode = 3161 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3162 3163 bool IsUnaryAbs = false; 3164 3165 // Min/max matching is only viable if all output VTs are the same. 3166 if (is_splat(ValueVTs)) { 3167 EVT VT = ValueVTs[0]; 3168 LLVMContext &Ctx = *DAG.getContext(); 3169 auto &TLI = DAG.getTargetLoweringInfo(); 3170 3171 // We care about the legality of the operation after it has been type 3172 // legalized. 3173 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3174 VT = TLI.getTypeToTransformTo(Ctx, VT); 3175 3176 // If the vselect is legal, assume we want to leave this as a vector setcc + 3177 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3178 // min/max is legal on the scalar type. 3179 bool UseScalarMinMax = VT.isVector() && 3180 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3181 3182 Value *LHS, *RHS; 3183 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3184 ISD::NodeType Opc = ISD::DELETED_NODE; 3185 switch (SPR.Flavor) { 3186 case SPF_UMAX: Opc = ISD::UMAX; break; 3187 case SPF_UMIN: Opc = ISD::UMIN; break; 3188 case SPF_SMAX: Opc = ISD::SMAX; break; 3189 case SPF_SMIN: Opc = ISD::SMIN; break; 3190 case SPF_FMINNUM: 3191 switch (SPR.NaNBehavior) { 3192 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3193 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3194 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3195 case SPNB_RETURNS_ANY: { 3196 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3197 Opc = ISD::FMINNUM; 3198 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3199 Opc = ISD::FMINIMUM; 3200 else if (UseScalarMinMax) 3201 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3202 ISD::FMINNUM : ISD::FMINIMUM; 3203 break; 3204 } 3205 } 3206 break; 3207 case SPF_FMAXNUM: 3208 switch (SPR.NaNBehavior) { 3209 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3210 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3211 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3212 case SPNB_RETURNS_ANY: 3213 3214 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3215 Opc = ISD::FMAXNUM; 3216 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3217 Opc = ISD::FMAXIMUM; 3218 else if (UseScalarMinMax) 3219 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3220 ISD::FMAXNUM : ISD::FMAXIMUM; 3221 break; 3222 } 3223 break; 3224 case SPF_ABS: 3225 IsUnaryAbs = true; 3226 Opc = ISD::ABS; 3227 break; 3228 case SPF_NABS: 3229 // TODO: we need to produce sub(0, abs(X)). 3230 default: break; 3231 } 3232 3233 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3234 (TLI.isOperationLegalOrCustom(Opc, VT) || 3235 (UseScalarMinMax && 3236 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3237 // If the underlying comparison instruction is used by any other 3238 // instruction, the consumed instructions won't be destroyed, so it is 3239 // not profitable to convert to a min/max. 3240 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3241 OpCode = Opc; 3242 LHSVal = getValue(LHS); 3243 RHSVal = getValue(RHS); 3244 BaseOps.clear(); 3245 } 3246 3247 if (IsUnaryAbs) { 3248 OpCode = Opc; 3249 LHSVal = getValue(LHS); 3250 BaseOps.clear(); 3251 } 3252 } 3253 3254 if (IsUnaryAbs) { 3255 for (unsigned i = 0; i != NumValues; ++i) { 3256 Values[i] = 3257 DAG.getNode(OpCode, getCurSDLoc(), 3258 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3259 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3260 } 3261 } else { 3262 for (unsigned i = 0; i != NumValues; ++i) { 3263 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3264 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3265 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3266 Values[i] = DAG.getNode( 3267 OpCode, getCurSDLoc(), 3268 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3269 } 3270 } 3271 3272 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3273 DAG.getVTList(ValueVTs), Values)); 3274 } 3275 3276 void SelectionDAGBuilder::visitTrunc(const User &I) { 3277 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3278 SDValue N = getValue(I.getOperand(0)); 3279 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3280 I.getType()); 3281 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3282 } 3283 3284 void SelectionDAGBuilder::visitZExt(const User &I) { 3285 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3286 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3287 SDValue N = getValue(I.getOperand(0)); 3288 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3289 I.getType()); 3290 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3291 } 3292 3293 void SelectionDAGBuilder::visitSExt(const User &I) { 3294 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3295 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3296 SDValue N = getValue(I.getOperand(0)); 3297 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3298 I.getType()); 3299 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3300 } 3301 3302 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3303 // FPTrunc is never a no-op cast, no need to check 3304 SDValue N = getValue(I.getOperand(0)); 3305 SDLoc dl = getCurSDLoc(); 3306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3307 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3308 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3309 DAG.getTargetConstant( 3310 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3311 } 3312 3313 void SelectionDAGBuilder::visitFPExt(const User &I) { 3314 // FPExt is never a no-op cast, no need to check 3315 SDValue N = getValue(I.getOperand(0)); 3316 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3317 I.getType()); 3318 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3319 } 3320 3321 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3322 // FPToUI is never a no-op cast, no need to check 3323 SDValue N = getValue(I.getOperand(0)); 3324 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3325 I.getType()); 3326 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3327 } 3328 3329 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3330 // FPToSI is never a no-op cast, no need to check 3331 SDValue N = getValue(I.getOperand(0)); 3332 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3333 I.getType()); 3334 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3335 } 3336 3337 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3338 // UIToFP is never a no-op cast, no need to check 3339 SDValue N = getValue(I.getOperand(0)); 3340 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3341 I.getType()); 3342 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3343 } 3344 3345 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3346 // SIToFP is never a no-op cast, no need to check 3347 SDValue N = getValue(I.getOperand(0)); 3348 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3349 I.getType()); 3350 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3351 } 3352 3353 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3354 // What to do depends on the size of the integer and the size of the pointer. 3355 // We can either truncate, zero extend, or no-op, accordingly. 3356 SDValue N = getValue(I.getOperand(0)); 3357 auto &TLI = DAG.getTargetLoweringInfo(); 3358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3359 I.getType()); 3360 EVT PtrMemVT = 3361 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3362 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3363 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3364 setValue(&I, N); 3365 } 3366 3367 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3368 // What to do depends on the size of the integer and the size of the pointer. 3369 // We can either truncate, zero extend, or no-op, accordingly. 3370 SDValue N = getValue(I.getOperand(0)); 3371 auto &TLI = DAG.getTargetLoweringInfo(); 3372 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3373 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3374 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3375 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3376 setValue(&I, N); 3377 } 3378 3379 void SelectionDAGBuilder::visitBitCast(const User &I) { 3380 SDValue N = getValue(I.getOperand(0)); 3381 SDLoc dl = getCurSDLoc(); 3382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3383 I.getType()); 3384 3385 // BitCast assures us that source and destination are the same size so this is 3386 // either a BITCAST or a no-op. 3387 if (DestVT != N.getValueType()) 3388 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3389 DestVT, N)); // convert types. 3390 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3391 // might fold any kind of constant expression to an integer constant and that 3392 // is not what we are looking for. Only recognize a bitcast of a genuine 3393 // constant integer as an opaque constant. 3394 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3395 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3396 /*isOpaque*/true)); 3397 else 3398 setValue(&I, N); // noop cast. 3399 } 3400 3401 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 const Value *SV = I.getOperand(0); 3404 SDValue N = getValue(SV); 3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3406 3407 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3408 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3409 3410 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3411 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3412 3413 setValue(&I, N); 3414 } 3415 3416 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 SDValue InVec = getValue(I.getOperand(0)); 3419 SDValue InVal = getValue(I.getOperand(1)); 3420 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3421 TLI.getVectorIdxTy(DAG.getDataLayout())); 3422 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3423 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3424 InVec, InVal, InIdx)); 3425 } 3426 3427 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 SDValue InVec = getValue(I.getOperand(0)); 3430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3431 TLI.getVectorIdxTy(DAG.getDataLayout())); 3432 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3433 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3434 InVec, InIdx)); 3435 } 3436 3437 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3438 SDValue Src1 = getValue(I.getOperand(0)); 3439 SDValue Src2 = getValue(I.getOperand(1)); 3440 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3441 SDLoc DL = getCurSDLoc(); 3442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3443 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3444 EVT SrcVT = Src1.getValueType(); 3445 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3446 3447 if (MaskV->isNullValue() && VT.isScalableVector()) { 3448 // Canonical splat form of first element of first input vector. 3449 SDValue FirstElt = 3450 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3451 DAG.getVectorIdxConstant(0, DL)); 3452 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3453 return; 3454 } 3455 3456 // For now, we only handle splats for scalable vectors. 3457 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3458 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3459 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3460 3461 SmallVector<int, 8> Mask; 3462 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3463 unsigned MaskNumElts = Mask.size(); 3464 3465 if (SrcNumElts == MaskNumElts) { 3466 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3467 return; 3468 } 3469 3470 // Normalize the shuffle vector since mask and vector length don't match. 3471 if (SrcNumElts < MaskNumElts) { 3472 // Mask is longer than the source vectors. We can use concatenate vector to 3473 // make the mask and vectors lengths match. 3474 3475 if (MaskNumElts % SrcNumElts == 0) { 3476 // Mask length is a multiple of the source vector length. 3477 // Check if the shuffle is some kind of concatenation of the input 3478 // vectors. 3479 unsigned NumConcat = MaskNumElts / SrcNumElts; 3480 bool IsConcat = true; 3481 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3482 for (unsigned i = 0; i != MaskNumElts; ++i) { 3483 int Idx = Mask[i]; 3484 if (Idx < 0) 3485 continue; 3486 // Ensure the indices in each SrcVT sized piece are sequential and that 3487 // the same source is used for the whole piece. 3488 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3489 (ConcatSrcs[i / SrcNumElts] >= 0 && 3490 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3491 IsConcat = false; 3492 break; 3493 } 3494 // Remember which source this index came from. 3495 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3496 } 3497 3498 // The shuffle is concatenating multiple vectors together. Just emit 3499 // a CONCAT_VECTORS operation. 3500 if (IsConcat) { 3501 SmallVector<SDValue, 8> ConcatOps; 3502 for (auto Src : ConcatSrcs) { 3503 if (Src < 0) 3504 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3505 else if (Src == 0) 3506 ConcatOps.push_back(Src1); 3507 else 3508 ConcatOps.push_back(Src2); 3509 } 3510 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3511 return; 3512 } 3513 } 3514 3515 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3516 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3517 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3518 PaddedMaskNumElts); 3519 3520 // Pad both vectors with undefs to make them the same length as the mask. 3521 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3522 3523 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3524 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3525 MOps1[0] = Src1; 3526 MOps2[0] = Src2; 3527 3528 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3529 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3530 3531 // Readjust mask for new input vector length. 3532 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3533 for (unsigned i = 0; i != MaskNumElts; ++i) { 3534 int Idx = Mask[i]; 3535 if (Idx >= (int)SrcNumElts) 3536 Idx -= SrcNumElts - PaddedMaskNumElts; 3537 MappedOps[i] = Idx; 3538 } 3539 3540 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3541 3542 // If the concatenated vector was padded, extract a subvector with the 3543 // correct number of elements. 3544 if (MaskNumElts != PaddedMaskNumElts) 3545 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3546 DAG.getVectorIdxConstant(0, DL)); 3547 3548 setValue(&I, Result); 3549 return; 3550 } 3551 3552 if (SrcNumElts > MaskNumElts) { 3553 // Analyze the access pattern of the vector to see if we can extract 3554 // two subvectors and do the shuffle. 3555 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3556 bool CanExtract = true; 3557 for (int Idx : Mask) { 3558 unsigned Input = 0; 3559 if (Idx < 0) 3560 continue; 3561 3562 if (Idx >= (int)SrcNumElts) { 3563 Input = 1; 3564 Idx -= SrcNumElts; 3565 } 3566 3567 // If all the indices come from the same MaskNumElts sized portion of 3568 // the sources we can use extract. Also make sure the extract wouldn't 3569 // extract past the end of the source. 3570 int NewStartIdx = alignDown(Idx, MaskNumElts); 3571 if (NewStartIdx + MaskNumElts > SrcNumElts || 3572 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3573 CanExtract = false; 3574 // Make sure we always update StartIdx as we use it to track if all 3575 // elements are undef. 3576 StartIdx[Input] = NewStartIdx; 3577 } 3578 3579 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3580 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3581 return; 3582 } 3583 if (CanExtract) { 3584 // Extract appropriate subvector and generate a vector shuffle 3585 for (unsigned Input = 0; Input < 2; ++Input) { 3586 SDValue &Src = Input == 0 ? Src1 : Src2; 3587 if (StartIdx[Input] < 0) 3588 Src = DAG.getUNDEF(VT); 3589 else { 3590 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3591 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3592 } 3593 } 3594 3595 // Calculate new mask. 3596 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3597 for (int &Idx : MappedOps) { 3598 if (Idx >= (int)SrcNumElts) 3599 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3600 else if (Idx >= 0) 3601 Idx -= StartIdx[0]; 3602 } 3603 3604 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3605 return; 3606 } 3607 } 3608 3609 // We can't use either concat vectors or extract subvectors so fall back to 3610 // replacing the shuffle with extract and build vector. 3611 // to insert and build vector. 3612 EVT EltVT = VT.getVectorElementType(); 3613 SmallVector<SDValue,8> Ops; 3614 for (int Idx : Mask) { 3615 SDValue Res; 3616 3617 if (Idx < 0) { 3618 Res = DAG.getUNDEF(EltVT); 3619 } else { 3620 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3621 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3622 3623 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3624 DAG.getVectorIdxConstant(Idx, DL)); 3625 } 3626 3627 Ops.push_back(Res); 3628 } 3629 3630 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3631 } 3632 3633 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3634 ArrayRef<unsigned> Indices; 3635 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3636 Indices = IV->getIndices(); 3637 else 3638 Indices = cast<ConstantExpr>(&I)->getIndices(); 3639 3640 const Value *Op0 = I.getOperand(0); 3641 const Value *Op1 = I.getOperand(1); 3642 Type *AggTy = I.getType(); 3643 Type *ValTy = Op1->getType(); 3644 bool IntoUndef = isa<UndefValue>(Op0); 3645 bool FromUndef = isa<UndefValue>(Op1); 3646 3647 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3648 3649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3650 SmallVector<EVT, 4> AggValueVTs; 3651 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3652 SmallVector<EVT, 4> ValValueVTs; 3653 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3654 3655 unsigned NumAggValues = AggValueVTs.size(); 3656 unsigned NumValValues = ValValueVTs.size(); 3657 SmallVector<SDValue, 4> Values(NumAggValues); 3658 3659 // Ignore an insertvalue that produces an empty object 3660 if (!NumAggValues) { 3661 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3662 return; 3663 } 3664 3665 SDValue Agg = getValue(Op0); 3666 unsigned i = 0; 3667 // Copy the beginning value(s) from the original aggregate. 3668 for (; i != LinearIndex; ++i) 3669 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3670 SDValue(Agg.getNode(), Agg.getResNo() + i); 3671 // Copy values from the inserted value(s). 3672 if (NumValValues) { 3673 SDValue Val = getValue(Op1); 3674 for (; i != LinearIndex + NumValValues; ++i) 3675 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3676 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3677 } 3678 // Copy remaining value(s) from the original aggregate. 3679 for (; i != NumAggValues; ++i) 3680 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3681 SDValue(Agg.getNode(), Agg.getResNo() + i); 3682 3683 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3684 DAG.getVTList(AggValueVTs), Values)); 3685 } 3686 3687 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3688 ArrayRef<unsigned> Indices; 3689 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3690 Indices = EV->getIndices(); 3691 else 3692 Indices = cast<ConstantExpr>(&I)->getIndices(); 3693 3694 const Value *Op0 = I.getOperand(0); 3695 Type *AggTy = Op0->getType(); 3696 Type *ValTy = I.getType(); 3697 bool OutOfUndef = isa<UndefValue>(Op0); 3698 3699 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3700 3701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3702 SmallVector<EVT, 4> ValValueVTs; 3703 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3704 3705 unsigned NumValValues = ValValueVTs.size(); 3706 3707 // Ignore a extractvalue that produces an empty object 3708 if (!NumValValues) { 3709 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3710 return; 3711 } 3712 3713 SmallVector<SDValue, 4> Values(NumValValues); 3714 3715 SDValue Agg = getValue(Op0); 3716 // Copy out the selected value(s). 3717 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3718 Values[i - LinearIndex] = 3719 OutOfUndef ? 3720 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3721 SDValue(Agg.getNode(), Agg.getResNo() + i); 3722 3723 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3724 DAG.getVTList(ValValueVTs), Values)); 3725 } 3726 3727 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3728 Value *Op0 = I.getOperand(0); 3729 // Note that the pointer operand may be a vector of pointers. Take the scalar 3730 // element which holds a pointer. 3731 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3732 SDValue N = getValue(Op0); 3733 SDLoc dl = getCurSDLoc(); 3734 auto &TLI = DAG.getTargetLoweringInfo(); 3735 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3736 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3737 3738 // Normalize Vector GEP - all scalar operands should be converted to the 3739 // splat vector. 3740 bool IsVectorGEP = I.getType()->isVectorTy(); 3741 ElementCount VectorElementCount = IsVectorGEP ? 3742 I.getType()->getVectorElementCount() : ElementCount(0, false); 3743 3744 if (IsVectorGEP && !N.getValueType().isVector()) { 3745 LLVMContext &Context = *DAG.getContext(); 3746 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3747 if (VectorElementCount.Scalable) 3748 N = DAG.getSplatVector(VT, dl, N); 3749 else 3750 N = DAG.getSplatBuildVector(VT, dl, N); 3751 } 3752 3753 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3754 GTI != E; ++GTI) { 3755 const Value *Idx = GTI.getOperand(); 3756 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3757 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3758 if (Field) { 3759 // N = N + Offset 3760 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3761 3762 // In an inbounds GEP with an offset that is nonnegative even when 3763 // interpreted as signed, assume there is no unsigned overflow. 3764 SDNodeFlags Flags; 3765 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3766 Flags.setNoUnsignedWrap(true); 3767 3768 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3769 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3770 } 3771 } else { 3772 // IdxSize is the width of the arithmetic according to IR semantics. 3773 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3774 // (and fix up the result later). 3775 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3776 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3777 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3778 // We intentionally mask away the high bits here; ElementSize may not 3779 // fit in IdxTy. 3780 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3781 bool ElementScalable = ElementSize.isScalable(); 3782 3783 // If this is a scalar constant or a splat vector of constants, 3784 // handle it quickly. 3785 const auto *C = dyn_cast<Constant>(Idx); 3786 if (C && isa<VectorType>(C->getType())) 3787 C = C->getSplatValue(); 3788 3789 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3790 if (CI && CI->isZero()) 3791 continue; 3792 if (CI && !ElementScalable) { 3793 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3794 LLVMContext &Context = *DAG.getContext(); 3795 SDValue OffsVal; 3796 if (IsVectorGEP) 3797 OffsVal = DAG.getConstant( 3798 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3799 else 3800 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3801 3802 // In an inbounds GEP with an offset that is nonnegative even when 3803 // interpreted as signed, assume there is no unsigned overflow. 3804 SDNodeFlags Flags; 3805 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3806 Flags.setNoUnsignedWrap(true); 3807 3808 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3809 3810 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3811 continue; 3812 } 3813 3814 // N = N + Idx * ElementMul; 3815 SDValue IdxN = getValue(Idx); 3816 3817 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3818 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3819 VectorElementCount); 3820 if (VectorElementCount.Scalable) 3821 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3822 else 3823 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3824 } 3825 3826 // If the index is smaller or larger than intptr_t, truncate or extend 3827 // it. 3828 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3829 3830 if (ElementScalable) { 3831 EVT VScaleTy = N.getValueType().getScalarType(); 3832 SDValue VScale = DAG.getNode( 3833 ISD::VSCALE, dl, VScaleTy, 3834 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3835 if (IsVectorGEP) 3836 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3837 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3838 } else { 3839 // If this is a multiply by a power of two, turn it into a shl 3840 // immediately. This is a very common case. 3841 if (ElementMul != 1) { 3842 if (ElementMul.isPowerOf2()) { 3843 unsigned Amt = ElementMul.logBase2(); 3844 IdxN = DAG.getNode(ISD::SHL, dl, 3845 N.getValueType(), IdxN, 3846 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3847 } else { 3848 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3849 IdxN.getValueType()); 3850 IdxN = DAG.getNode(ISD::MUL, dl, 3851 N.getValueType(), IdxN, Scale); 3852 } 3853 } 3854 } 3855 3856 N = DAG.getNode(ISD::ADD, dl, 3857 N.getValueType(), N, IdxN); 3858 } 3859 } 3860 3861 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3862 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3863 3864 setValue(&I, N); 3865 } 3866 3867 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3868 // If this is a fixed sized alloca in the entry block of the function, 3869 // allocate it statically on the stack. 3870 if (FuncInfo.StaticAllocaMap.count(&I)) 3871 return; // getValue will auto-populate this. 3872 3873 SDLoc dl = getCurSDLoc(); 3874 Type *Ty = I.getAllocatedType(); 3875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3876 auto &DL = DAG.getDataLayout(); 3877 uint64_t TySize = DL.getTypeAllocSize(Ty); 3878 MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3879 3880 SDValue AllocSize = getValue(I.getArraySize()); 3881 3882 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3883 if (AllocSize.getValueType() != IntPtr) 3884 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3885 3886 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3887 AllocSize, 3888 DAG.getConstant(TySize, dl, IntPtr)); 3889 3890 // Handle alignment. If the requested alignment is less than or equal to 3891 // the stack alignment, ignore it. If the size is greater than or equal to 3892 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3893 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3894 if (Alignment <= StackAlign) 3895 Alignment = None; 3896 3897 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3898 // Round the size of the allocation up to the stack alignment size 3899 // by add SA-1 to the size. This doesn't overflow because we're computing 3900 // an address inside an alloca. 3901 SDNodeFlags Flags; 3902 Flags.setNoUnsignedWrap(true); 3903 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3904 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3905 3906 // Mask out the low bits for alignment purposes. 3907 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3908 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3909 3910 SDValue Ops[] = { 3911 getRoot(), AllocSize, 3912 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3913 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3914 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3915 setValue(&I, DSA); 3916 DAG.setRoot(DSA.getValue(1)); 3917 3918 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3919 } 3920 3921 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3922 if (I.isAtomic()) 3923 return visitAtomicLoad(I); 3924 3925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3926 const Value *SV = I.getOperand(0); 3927 if (TLI.supportSwiftError()) { 3928 // Swifterror values can come from either a function parameter with 3929 // swifterror attribute or an alloca with swifterror attribute. 3930 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3931 if (Arg->hasSwiftErrorAttr()) 3932 return visitLoadFromSwiftError(I); 3933 } 3934 3935 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3936 if (Alloca->isSwiftError()) 3937 return visitLoadFromSwiftError(I); 3938 } 3939 } 3940 3941 SDValue Ptr = getValue(SV); 3942 3943 Type *Ty = I.getType(); 3944 unsigned Alignment = I.getAlignment(); 3945 3946 AAMDNodes AAInfo; 3947 I.getAAMetadata(AAInfo); 3948 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3949 3950 SmallVector<EVT, 4> ValueVTs, MemVTs; 3951 SmallVector<uint64_t, 4> Offsets; 3952 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3953 unsigned NumValues = ValueVTs.size(); 3954 if (NumValues == 0) 3955 return; 3956 3957 bool isVolatile = I.isVolatile(); 3958 3959 SDValue Root; 3960 bool ConstantMemory = false; 3961 if (isVolatile) 3962 // Serialize volatile loads with other side effects. 3963 Root = getRoot(); 3964 else if (NumValues > MaxParallelChains) 3965 Root = getMemoryRoot(); 3966 else if (AA && 3967 AA->pointsToConstantMemory(MemoryLocation( 3968 SV, 3969 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3970 AAInfo))) { 3971 // Do not serialize (non-volatile) loads of constant memory with anything. 3972 Root = DAG.getEntryNode(); 3973 ConstantMemory = true; 3974 } else { 3975 // Do not serialize non-volatile loads against each other. 3976 Root = DAG.getRoot(); 3977 } 3978 3979 SDLoc dl = getCurSDLoc(); 3980 3981 if (isVolatile) 3982 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3983 3984 // An aggregate load cannot wrap around the address space, so offsets to its 3985 // parts don't wrap either. 3986 SDNodeFlags Flags; 3987 Flags.setNoUnsignedWrap(true); 3988 3989 SmallVector<SDValue, 4> Values(NumValues); 3990 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3991 EVT PtrVT = Ptr.getValueType(); 3992 3993 MachineMemOperand::Flags MMOFlags 3994 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 3995 3996 unsigned ChainI = 0; 3997 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3998 // Serializing loads here may result in excessive register pressure, and 3999 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4000 // could recover a bit by hoisting nodes upward in the chain by recognizing 4001 // they are side-effect free or do not alias. The optimizer should really 4002 // avoid this case by converting large object/array copies to llvm.memcpy 4003 // (MaxParallelChains should always remain as failsafe). 4004 if (ChainI == MaxParallelChains) { 4005 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4006 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4007 makeArrayRef(Chains.data(), ChainI)); 4008 Root = Chain; 4009 ChainI = 0; 4010 } 4011 SDValue A = DAG.getNode(ISD::ADD, dl, 4012 PtrVT, Ptr, 4013 DAG.getConstant(Offsets[i], dl, PtrVT), 4014 Flags); 4015 4016 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4017 MachinePointerInfo(SV, Offsets[i]), Alignment, 4018 MMOFlags, AAInfo, Ranges); 4019 Chains[ChainI] = L.getValue(1); 4020 4021 if (MemVTs[i] != ValueVTs[i]) 4022 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4023 4024 Values[i] = L; 4025 } 4026 4027 if (!ConstantMemory) { 4028 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4029 makeArrayRef(Chains.data(), ChainI)); 4030 if (isVolatile) 4031 DAG.setRoot(Chain); 4032 else 4033 PendingLoads.push_back(Chain); 4034 } 4035 4036 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4037 DAG.getVTList(ValueVTs), Values)); 4038 } 4039 4040 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4041 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4042 "call visitStoreToSwiftError when backend supports swifterror"); 4043 4044 SmallVector<EVT, 4> ValueVTs; 4045 SmallVector<uint64_t, 4> Offsets; 4046 const Value *SrcV = I.getOperand(0); 4047 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4048 SrcV->getType(), ValueVTs, &Offsets); 4049 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4050 "expect a single EVT for swifterror"); 4051 4052 SDValue Src = getValue(SrcV); 4053 // Create a virtual register, then update the virtual register. 4054 Register VReg = 4055 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4056 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4057 // Chain can be getRoot or getControlRoot. 4058 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4059 SDValue(Src.getNode(), Src.getResNo())); 4060 DAG.setRoot(CopyNode); 4061 } 4062 4063 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4064 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4065 "call visitLoadFromSwiftError when backend supports swifterror"); 4066 4067 assert(!I.isVolatile() && 4068 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4069 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4070 "Support volatile, non temporal, invariant for load_from_swift_error"); 4071 4072 const Value *SV = I.getOperand(0); 4073 Type *Ty = I.getType(); 4074 AAMDNodes AAInfo; 4075 I.getAAMetadata(AAInfo); 4076 assert( 4077 (!AA || 4078 !AA->pointsToConstantMemory(MemoryLocation( 4079 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4080 AAInfo))) && 4081 "load_from_swift_error should not be constant memory"); 4082 4083 SmallVector<EVT, 4> ValueVTs; 4084 SmallVector<uint64_t, 4> Offsets; 4085 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4086 ValueVTs, &Offsets); 4087 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4088 "expect a single EVT for swifterror"); 4089 4090 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4091 SDValue L = DAG.getCopyFromReg( 4092 getRoot(), getCurSDLoc(), 4093 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4094 4095 setValue(&I, L); 4096 } 4097 4098 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4099 if (I.isAtomic()) 4100 return visitAtomicStore(I); 4101 4102 const Value *SrcV = I.getOperand(0); 4103 const Value *PtrV = I.getOperand(1); 4104 4105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4106 if (TLI.supportSwiftError()) { 4107 // Swifterror values can come from either a function parameter with 4108 // swifterror attribute or an alloca with swifterror attribute. 4109 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4110 if (Arg->hasSwiftErrorAttr()) 4111 return visitStoreToSwiftError(I); 4112 } 4113 4114 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4115 if (Alloca->isSwiftError()) 4116 return visitStoreToSwiftError(I); 4117 } 4118 } 4119 4120 SmallVector<EVT, 4> ValueVTs, MemVTs; 4121 SmallVector<uint64_t, 4> Offsets; 4122 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4123 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4124 unsigned NumValues = ValueVTs.size(); 4125 if (NumValues == 0) 4126 return; 4127 4128 // Get the lowered operands. Note that we do this after 4129 // checking if NumResults is zero, because with zero results 4130 // the operands won't have values in the map. 4131 SDValue Src = getValue(SrcV); 4132 SDValue Ptr = getValue(PtrV); 4133 4134 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4135 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4136 SDLoc dl = getCurSDLoc(); 4137 unsigned Alignment = I.getAlignment(); 4138 AAMDNodes AAInfo; 4139 I.getAAMetadata(AAInfo); 4140 4141 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4142 4143 // An aggregate load cannot wrap around the address space, so offsets to its 4144 // parts don't wrap either. 4145 SDNodeFlags Flags; 4146 Flags.setNoUnsignedWrap(true); 4147 4148 unsigned ChainI = 0; 4149 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4150 // See visitLoad comments. 4151 if (ChainI == MaxParallelChains) { 4152 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4153 makeArrayRef(Chains.data(), ChainI)); 4154 Root = Chain; 4155 ChainI = 0; 4156 } 4157 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4158 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4159 if (MemVTs[i] != ValueVTs[i]) 4160 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4161 SDValue St = 4162 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4163 Alignment, MMOFlags, AAInfo); 4164 Chains[ChainI] = St; 4165 } 4166 4167 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4168 makeArrayRef(Chains.data(), ChainI)); 4169 DAG.setRoot(StoreNode); 4170 } 4171 4172 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4173 bool IsCompressing) { 4174 SDLoc sdl = getCurSDLoc(); 4175 4176 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4177 MaybeAlign &Alignment) { 4178 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4179 Src0 = I.getArgOperand(0); 4180 Ptr = I.getArgOperand(1); 4181 Alignment = 4182 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4183 Mask = I.getArgOperand(3); 4184 }; 4185 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4186 MaybeAlign &Alignment) { 4187 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4188 Src0 = I.getArgOperand(0); 4189 Ptr = I.getArgOperand(1); 4190 Mask = I.getArgOperand(2); 4191 Alignment = None; 4192 }; 4193 4194 Value *PtrOperand, *MaskOperand, *Src0Operand; 4195 MaybeAlign Alignment; 4196 if (IsCompressing) 4197 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4198 else 4199 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4200 4201 SDValue Ptr = getValue(PtrOperand); 4202 SDValue Src0 = getValue(Src0Operand); 4203 SDValue Mask = getValue(MaskOperand); 4204 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4205 4206 EVT VT = Src0.getValueType(); 4207 if (!Alignment) 4208 Alignment = DAG.getEVTAlign(VT); 4209 4210 AAMDNodes AAInfo; 4211 I.getAAMetadata(AAInfo); 4212 4213 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4214 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4215 // TODO: Make MachineMemOperands aware of scalable 4216 // vectors. 4217 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4218 SDValue StoreNode = 4219 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4220 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4221 DAG.setRoot(StoreNode); 4222 setValue(&I, StoreNode); 4223 } 4224 4225 // Get a uniform base for the Gather/Scatter intrinsic. 4226 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4227 // We try to represent it as a base pointer + vector of indices. 4228 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4229 // The first operand of the GEP may be a single pointer or a vector of pointers 4230 // Example: 4231 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4232 // or 4233 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4234 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4235 // 4236 // When the first GEP operand is a single pointer - it is the uniform base we 4237 // are looking for. If first operand of the GEP is a splat vector - we 4238 // extract the splat value and use it as a uniform base. 4239 // In all other cases the function returns 'false'. 4240 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4241 ISD::MemIndexType &IndexType, SDValue &Scale, 4242 SelectionDAGBuilder *SDB) { 4243 SelectionDAG& DAG = SDB->DAG; 4244 LLVMContext &Context = *DAG.getContext(); 4245 4246 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4247 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4248 if (!GEP) 4249 return false; 4250 4251 const Value *BasePtr = GEP->getPointerOperand(); 4252 if (BasePtr->getType()->isVectorTy()) { 4253 BasePtr = getSplatValue(BasePtr); 4254 if (!BasePtr) 4255 return false; 4256 } 4257 4258 unsigned FinalIndex = GEP->getNumOperands() - 1; 4259 Value *IndexVal = GEP->getOperand(FinalIndex); 4260 gep_type_iterator GTI = gep_type_begin(*GEP); 4261 4262 // Ensure all the other indices are 0. 4263 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4264 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4265 if (!C) 4266 return false; 4267 if (isa<VectorType>(C->getType())) 4268 C = C->getSplatValue(); 4269 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4270 if (!CI || !CI->isZero()) 4271 return false; 4272 } 4273 4274 // The operands of the GEP may be defined in another basic block. 4275 // In this case we'll not find nodes for the operands. 4276 if (!SDB->findValue(BasePtr)) 4277 return false; 4278 Constant *C = dyn_cast<Constant>(IndexVal); 4279 if (!C && !SDB->findValue(IndexVal)) 4280 return false; 4281 4282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4283 const DataLayout &DL = DAG.getDataLayout(); 4284 StructType *STy = GTI.getStructTypeOrNull(); 4285 4286 if (STy) { 4287 const StructLayout *SL = DL.getStructLayout(STy); 4288 unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue(); 4289 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4290 Index = DAG.getConstant(SL->getElementOffset(Field), 4291 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4292 } else { 4293 Scale = DAG.getTargetConstant( 4294 DL.getTypeAllocSize(GEP->getResultElementType()), 4295 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4296 Index = SDB->getValue(IndexVal); 4297 } 4298 Base = SDB->getValue(BasePtr); 4299 IndexType = ISD::SIGNED_SCALED; 4300 4301 if (STy || !Index.getValueType().isVector()) { 4302 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4303 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4304 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4305 } 4306 return true; 4307 } 4308 4309 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4310 SDLoc sdl = getCurSDLoc(); 4311 4312 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4313 const Value *Ptr = I.getArgOperand(1); 4314 SDValue Src0 = getValue(I.getArgOperand(0)); 4315 SDValue Mask = getValue(I.getArgOperand(3)); 4316 EVT VT = Src0.getValueType(); 4317 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4318 if (!Alignment) 4319 Alignment = DAG.getEVTAlign(VT); 4320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4321 4322 AAMDNodes AAInfo; 4323 I.getAAMetadata(AAInfo); 4324 4325 SDValue Base; 4326 SDValue Index; 4327 ISD::MemIndexType IndexType; 4328 SDValue Scale; 4329 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4330 4331 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4332 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4333 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4334 // TODO: Make MachineMemOperands aware of scalable 4335 // vectors. 4336 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4337 if (!UniformBase) { 4338 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4339 Index = getValue(Ptr); 4340 IndexType = ISD::SIGNED_SCALED; 4341 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4342 } 4343 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4344 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4345 Ops, MMO, IndexType); 4346 DAG.setRoot(Scatter); 4347 setValue(&I, Scatter); 4348 } 4349 4350 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4351 SDLoc sdl = getCurSDLoc(); 4352 4353 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4354 MaybeAlign &Alignment) { 4355 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4356 Ptr = I.getArgOperand(0); 4357 Alignment = 4358 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4359 Mask = I.getArgOperand(2); 4360 Src0 = I.getArgOperand(3); 4361 }; 4362 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4363 MaybeAlign &Alignment) { 4364 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4365 Ptr = I.getArgOperand(0); 4366 Alignment = None; 4367 Mask = I.getArgOperand(1); 4368 Src0 = I.getArgOperand(2); 4369 }; 4370 4371 Value *PtrOperand, *MaskOperand, *Src0Operand; 4372 MaybeAlign Alignment; 4373 if (IsExpanding) 4374 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4375 else 4376 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4377 4378 SDValue Ptr = getValue(PtrOperand); 4379 SDValue Src0 = getValue(Src0Operand); 4380 SDValue Mask = getValue(MaskOperand); 4381 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4382 4383 EVT VT = Src0.getValueType(); 4384 if (!Alignment) 4385 Alignment = DAG.getEVTAlign(VT); 4386 4387 AAMDNodes AAInfo; 4388 I.getAAMetadata(AAInfo); 4389 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4390 4391 // Do not serialize masked loads of constant memory with anything. 4392 MemoryLocation ML; 4393 if (VT.isScalableVector()) 4394 ML = MemoryLocation(PtrOperand); 4395 else 4396 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4397 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4398 AAInfo); 4399 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4400 4401 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4402 4403 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4404 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4405 // TODO: Make MachineMemOperands aware of scalable 4406 // vectors. 4407 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4408 4409 SDValue Load = 4410 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4411 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4412 if (AddToChain) 4413 PendingLoads.push_back(Load.getValue(1)); 4414 setValue(&I, Load); 4415 } 4416 4417 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4418 SDLoc sdl = getCurSDLoc(); 4419 4420 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4421 const Value *Ptr = I.getArgOperand(0); 4422 SDValue Src0 = getValue(I.getArgOperand(3)); 4423 SDValue Mask = getValue(I.getArgOperand(2)); 4424 4425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4426 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4427 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4428 if (!Alignment) 4429 Alignment = DAG.getEVTAlign(VT); 4430 4431 AAMDNodes AAInfo; 4432 I.getAAMetadata(AAInfo); 4433 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4434 4435 SDValue Root = DAG.getRoot(); 4436 SDValue Base; 4437 SDValue Index; 4438 ISD::MemIndexType IndexType; 4439 SDValue Scale; 4440 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this); 4441 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4442 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4443 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4444 // TODO: Make MachineMemOperands aware of scalable 4445 // vectors. 4446 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4447 4448 if (!UniformBase) { 4449 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4450 Index = getValue(Ptr); 4451 IndexType = ISD::SIGNED_SCALED; 4452 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4453 } 4454 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4455 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4456 Ops, MMO, IndexType); 4457 4458 PendingLoads.push_back(Gather.getValue(1)); 4459 setValue(&I, Gather); 4460 } 4461 4462 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4463 SDLoc dl = getCurSDLoc(); 4464 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4465 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4466 SyncScope::ID SSID = I.getSyncScopeID(); 4467 4468 SDValue InChain = getRoot(); 4469 4470 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4471 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4472 4473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4474 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4475 4476 MachineFunction &MF = DAG.getMachineFunction(); 4477 MachineMemOperand *MMO = MF.getMachineMemOperand( 4478 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4479 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4480 FailureOrdering); 4481 4482 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4483 dl, MemVT, VTs, InChain, 4484 getValue(I.getPointerOperand()), 4485 getValue(I.getCompareOperand()), 4486 getValue(I.getNewValOperand()), MMO); 4487 4488 SDValue OutChain = L.getValue(2); 4489 4490 setValue(&I, L); 4491 DAG.setRoot(OutChain); 4492 } 4493 4494 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4495 SDLoc dl = getCurSDLoc(); 4496 ISD::NodeType NT; 4497 switch (I.getOperation()) { 4498 default: llvm_unreachable("Unknown atomicrmw operation"); 4499 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4500 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4501 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4502 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4503 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4504 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4505 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4506 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4507 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4508 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4509 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4510 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4511 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4512 } 4513 AtomicOrdering Ordering = I.getOrdering(); 4514 SyncScope::ID SSID = I.getSyncScopeID(); 4515 4516 SDValue InChain = getRoot(); 4517 4518 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4520 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4521 4522 MachineFunction &MF = DAG.getMachineFunction(); 4523 MachineMemOperand *MMO = MF.getMachineMemOperand( 4524 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4525 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4526 4527 SDValue L = 4528 DAG.getAtomic(NT, dl, MemVT, InChain, 4529 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4530 MMO); 4531 4532 SDValue OutChain = L.getValue(1); 4533 4534 setValue(&I, L); 4535 DAG.setRoot(OutChain); 4536 } 4537 4538 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4539 SDLoc dl = getCurSDLoc(); 4540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4541 SDValue Ops[3]; 4542 Ops[0] = getRoot(); 4543 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4544 TLI.getFenceOperandTy(DAG.getDataLayout())); 4545 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4546 TLI.getFenceOperandTy(DAG.getDataLayout())); 4547 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4548 } 4549 4550 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4551 SDLoc dl = getCurSDLoc(); 4552 AtomicOrdering Order = I.getOrdering(); 4553 SyncScope::ID SSID = I.getSyncScopeID(); 4554 4555 SDValue InChain = getRoot(); 4556 4557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4559 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4560 4561 if (!TLI.supportsUnalignedAtomics() && 4562 I.getAlignment() < MemVT.getSizeInBits() / 8) 4563 report_fatal_error("Cannot generate unaligned atomic load"); 4564 4565 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4566 4567 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4568 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4569 I.getAlign().getValueOr(DAG.getEVTAlign(MemVT)), AAMDNodes(), nullptr, 4570 SSID, Order); 4571 4572 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4573 4574 SDValue Ptr = getValue(I.getPointerOperand()); 4575 4576 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4577 // TODO: Once this is better exercised by tests, it should be merged with 4578 // the normal path for loads to prevent future divergence. 4579 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4580 if (MemVT != VT) 4581 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4582 4583 setValue(&I, L); 4584 SDValue OutChain = L.getValue(1); 4585 if (!I.isUnordered()) 4586 DAG.setRoot(OutChain); 4587 else 4588 PendingLoads.push_back(OutChain); 4589 return; 4590 } 4591 4592 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4593 Ptr, MMO); 4594 4595 SDValue OutChain = L.getValue(1); 4596 if (MemVT != VT) 4597 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4598 4599 setValue(&I, L); 4600 DAG.setRoot(OutChain); 4601 } 4602 4603 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4604 SDLoc dl = getCurSDLoc(); 4605 4606 AtomicOrdering Ordering = I.getOrdering(); 4607 SyncScope::ID SSID = I.getSyncScopeID(); 4608 4609 SDValue InChain = getRoot(); 4610 4611 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4612 EVT MemVT = 4613 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4614 4615 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4616 report_fatal_error("Cannot generate unaligned atomic store"); 4617 4618 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4619 4620 MachineFunction &MF = DAG.getMachineFunction(); 4621 MachineMemOperand *MMO = MF.getMachineMemOperand( 4622 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4623 *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4624 4625 SDValue Val = getValue(I.getValueOperand()); 4626 if (Val.getValueType() != MemVT) 4627 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4628 SDValue Ptr = getValue(I.getPointerOperand()); 4629 4630 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4631 // TODO: Once this is better exercised by tests, it should be merged with 4632 // the normal path for stores to prevent future divergence. 4633 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4634 DAG.setRoot(S); 4635 return; 4636 } 4637 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4638 Ptr, Val, MMO); 4639 4640 4641 DAG.setRoot(OutChain); 4642 } 4643 4644 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4645 /// node. 4646 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4647 unsigned Intrinsic) { 4648 // Ignore the callsite's attributes. A specific call site may be marked with 4649 // readnone, but the lowering code will expect the chain based on the 4650 // definition. 4651 const Function *F = I.getCalledFunction(); 4652 bool HasChain = !F->doesNotAccessMemory(); 4653 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4654 4655 // Build the operand list. 4656 SmallVector<SDValue, 8> Ops; 4657 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4658 if (OnlyLoad) { 4659 // We don't need to serialize loads against other loads. 4660 Ops.push_back(DAG.getRoot()); 4661 } else { 4662 Ops.push_back(getRoot()); 4663 } 4664 } 4665 4666 // Info is set by getTgtMemInstrinsic 4667 TargetLowering::IntrinsicInfo Info; 4668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4669 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4670 DAG.getMachineFunction(), 4671 Intrinsic); 4672 4673 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4674 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4675 Info.opc == ISD::INTRINSIC_W_CHAIN) 4676 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4677 TLI.getPointerTy(DAG.getDataLayout()))); 4678 4679 // Add all operands of the call to the operand list. 4680 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4681 const Value *Arg = I.getArgOperand(i); 4682 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4683 Ops.push_back(getValue(Arg)); 4684 continue; 4685 } 4686 4687 // Use TargetConstant instead of a regular constant for immarg. 4688 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4689 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4690 assert(CI->getBitWidth() <= 64 && 4691 "large intrinsic immediates not handled"); 4692 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4693 } else { 4694 Ops.push_back( 4695 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4696 } 4697 } 4698 4699 SmallVector<EVT, 4> ValueVTs; 4700 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4701 4702 if (HasChain) 4703 ValueVTs.push_back(MVT::Other); 4704 4705 SDVTList VTs = DAG.getVTList(ValueVTs); 4706 4707 // Create the node. 4708 SDValue Result; 4709 if (IsTgtIntrinsic) { 4710 // This is target intrinsic that touches memory 4711 AAMDNodes AAInfo; 4712 I.getAAMetadata(AAInfo); 4713 Result = DAG.getMemIntrinsicNode( 4714 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4715 MachinePointerInfo(Info.ptrVal, Info.offset), 4716 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4717 } else if (!HasChain) { 4718 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4719 } else if (!I.getType()->isVoidTy()) { 4720 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4721 } else { 4722 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4723 } 4724 4725 if (HasChain) { 4726 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4727 if (OnlyLoad) 4728 PendingLoads.push_back(Chain); 4729 else 4730 DAG.setRoot(Chain); 4731 } 4732 4733 if (!I.getType()->isVoidTy()) { 4734 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4735 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4736 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4737 } else 4738 Result = lowerRangeToAssertZExt(DAG, I, Result); 4739 4740 setValue(&I, Result); 4741 } 4742 } 4743 4744 /// GetSignificand - Get the significand and build it into a floating-point 4745 /// number with exponent of 1: 4746 /// 4747 /// Op = (Op & 0x007fffff) | 0x3f800000; 4748 /// 4749 /// where Op is the hexadecimal representation of floating point value. 4750 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4751 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4752 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4753 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4754 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4755 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4756 } 4757 4758 /// GetExponent - Get the exponent: 4759 /// 4760 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4761 /// 4762 /// where Op is the hexadecimal representation of floating point value. 4763 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4764 const TargetLowering &TLI, const SDLoc &dl) { 4765 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4766 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4767 SDValue t1 = DAG.getNode( 4768 ISD::SRL, dl, MVT::i32, t0, 4769 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4770 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4771 DAG.getConstant(127, dl, MVT::i32)); 4772 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4773 } 4774 4775 /// getF32Constant - Get 32-bit floating point constant. 4776 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4777 const SDLoc &dl) { 4778 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4779 MVT::f32); 4780 } 4781 4782 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4783 SelectionDAG &DAG) { 4784 // TODO: What fast-math-flags should be set on the floating-point nodes? 4785 4786 // IntegerPartOfX = ((int32_t)(t0); 4787 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4788 4789 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4790 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4791 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4792 4793 // IntegerPartOfX <<= 23; 4794 IntegerPartOfX = DAG.getNode( 4795 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4796 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4797 DAG.getDataLayout()))); 4798 4799 SDValue TwoToFractionalPartOfX; 4800 if (LimitFloatPrecision <= 6) { 4801 // For floating-point precision of 6: 4802 // 4803 // TwoToFractionalPartOfX = 4804 // 0.997535578f + 4805 // (0.735607626f + 0.252464424f * x) * x; 4806 // 4807 // error 0.0144103317, which is 6 bits 4808 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4809 getF32Constant(DAG, 0x3e814304, dl)); 4810 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4811 getF32Constant(DAG, 0x3f3c50c8, dl)); 4812 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4813 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4814 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4815 } else if (LimitFloatPrecision <= 12) { 4816 // For floating-point precision of 12: 4817 // 4818 // TwoToFractionalPartOfX = 4819 // 0.999892986f + 4820 // (0.696457318f + 4821 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4822 // 4823 // error 0.000107046256, which is 13 to 14 bits 4824 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4825 getF32Constant(DAG, 0x3da235e3, dl)); 4826 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4827 getF32Constant(DAG, 0x3e65b8f3, dl)); 4828 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4829 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4830 getF32Constant(DAG, 0x3f324b07, dl)); 4831 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4832 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4833 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4834 } else { // LimitFloatPrecision <= 18 4835 // For floating-point precision of 18: 4836 // 4837 // TwoToFractionalPartOfX = 4838 // 0.999999982f + 4839 // (0.693148872f + 4840 // (0.240227044f + 4841 // (0.554906021e-1f + 4842 // (0.961591928e-2f + 4843 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4844 // error 2.47208000*10^(-7), which is better than 18 bits 4845 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4846 getF32Constant(DAG, 0x3924b03e, dl)); 4847 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4848 getF32Constant(DAG, 0x3ab24b87, dl)); 4849 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4850 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4851 getF32Constant(DAG, 0x3c1d8c17, dl)); 4852 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4853 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4854 getF32Constant(DAG, 0x3d634a1d, dl)); 4855 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4856 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4857 getF32Constant(DAG, 0x3e75fe14, dl)); 4858 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4859 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4860 getF32Constant(DAG, 0x3f317234, dl)); 4861 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4862 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4863 getF32Constant(DAG, 0x3f800000, dl)); 4864 } 4865 4866 // Add the exponent into the result in integer domain. 4867 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4868 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4869 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4870 } 4871 4872 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4873 /// limited-precision mode. 4874 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4875 const TargetLowering &TLI) { 4876 if (Op.getValueType() == MVT::f32 && 4877 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4878 4879 // Put the exponent in the right bit position for later addition to the 4880 // final result: 4881 // 4882 // t0 = Op * log2(e) 4883 4884 // TODO: What fast-math-flags should be set here? 4885 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4886 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4887 return getLimitedPrecisionExp2(t0, dl, DAG); 4888 } 4889 4890 // No special expansion. 4891 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4892 } 4893 4894 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4895 /// limited-precision mode. 4896 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4897 const TargetLowering &TLI) { 4898 // TODO: What fast-math-flags should be set on the floating-point nodes? 4899 4900 if (Op.getValueType() == MVT::f32 && 4901 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4902 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4903 4904 // Scale the exponent by log(2). 4905 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4906 SDValue LogOfExponent = 4907 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4908 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4909 4910 // Get the significand and build it into a floating-point number with 4911 // exponent of 1. 4912 SDValue X = GetSignificand(DAG, Op1, dl); 4913 4914 SDValue LogOfMantissa; 4915 if (LimitFloatPrecision <= 6) { 4916 // For floating-point precision of 6: 4917 // 4918 // LogofMantissa = 4919 // -1.1609546f + 4920 // (1.4034025f - 0.23903021f * x) * x; 4921 // 4922 // error 0.0034276066, which is better than 8 bits 4923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4924 getF32Constant(DAG, 0xbe74c456, dl)); 4925 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4926 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4928 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4929 getF32Constant(DAG, 0x3f949a29, dl)); 4930 } else if (LimitFloatPrecision <= 12) { 4931 // For floating-point precision of 12: 4932 // 4933 // LogOfMantissa = 4934 // -1.7417939f + 4935 // (2.8212026f + 4936 // (-1.4699568f + 4937 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4938 // 4939 // error 0.000061011436, which is 14 bits 4940 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4941 getF32Constant(DAG, 0xbd67b6d6, dl)); 4942 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4943 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4944 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4945 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4946 getF32Constant(DAG, 0x3fbc278b, dl)); 4947 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4948 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4949 getF32Constant(DAG, 0x40348e95, dl)); 4950 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4951 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4952 getF32Constant(DAG, 0x3fdef31a, dl)); 4953 } else { // LimitFloatPrecision <= 18 4954 // For floating-point precision of 18: 4955 // 4956 // LogOfMantissa = 4957 // -2.1072184f + 4958 // (4.2372794f + 4959 // (-3.7029485f + 4960 // (2.2781945f + 4961 // (-0.87823314f + 4962 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4963 // 4964 // error 0.0000023660568, which is better than 18 bits 4965 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4966 getF32Constant(DAG, 0xbc91e5ac, dl)); 4967 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4968 getF32Constant(DAG, 0x3e4350aa, dl)); 4969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4970 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4971 getF32Constant(DAG, 0x3f60d3e3, dl)); 4972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4973 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4974 getF32Constant(DAG, 0x4011cdf0, dl)); 4975 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4976 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4977 getF32Constant(DAG, 0x406cfd1c, dl)); 4978 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4979 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4980 getF32Constant(DAG, 0x408797cb, dl)); 4981 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4982 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4983 getF32Constant(DAG, 0x4006dcab, dl)); 4984 } 4985 4986 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4987 } 4988 4989 // No special expansion. 4990 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4991 } 4992 4993 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4994 /// limited-precision mode. 4995 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4996 const TargetLowering &TLI) { 4997 // TODO: What fast-math-flags should be set on the floating-point nodes? 4998 4999 if (Op.getValueType() == MVT::f32 && 5000 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5001 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5002 5003 // Get the exponent. 5004 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5005 5006 // Get the significand and build it into a floating-point number with 5007 // exponent of 1. 5008 SDValue X = GetSignificand(DAG, Op1, dl); 5009 5010 // Different possible minimax approximations of significand in 5011 // floating-point for various degrees of accuracy over [1,2]. 5012 SDValue Log2ofMantissa; 5013 if (LimitFloatPrecision <= 6) { 5014 // For floating-point precision of 6: 5015 // 5016 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5017 // 5018 // error 0.0049451742, which is more than 7 bits 5019 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5020 getF32Constant(DAG, 0xbeb08fe0, dl)); 5021 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5022 getF32Constant(DAG, 0x40019463, dl)); 5023 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5024 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5025 getF32Constant(DAG, 0x3fd6633d, dl)); 5026 } else if (LimitFloatPrecision <= 12) { 5027 // For floating-point precision of 12: 5028 // 5029 // Log2ofMantissa = 5030 // -2.51285454f + 5031 // (4.07009056f + 5032 // (-2.12067489f + 5033 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5034 // 5035 // error 0.0000876136000, which is better than 13 bits 5036 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5037 getF32Constant(DAG, 0xbda7262e, dl)); 5038 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5039 getF32Constant(DAG, 0x3f25280b, dl)); 5040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5041 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5042 getF32Constant(DAG, 0x4007b923, dl)); 5043 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5044 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5045 getF32Constant(DAG, 0x40823e2f, dl)); 5046 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5047 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5048 getF32Constant(DAG, 0x4020d29c, dl)); 5049 } else { // LimitFloatPrecision <= 18 5050 // For floating-point precision of 18: 5051 // 5052 // Log2ofMantissa = 5053 // -3.0400495f + 5054 // (6.1129976f + 5055 // (-5.3420409f + 5056 // (3.2865683f + 5057 // (-1.2669343f + 5058 // (0.27515199f - 5059 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5060 // 5061 // error 0.0000018516, which is better than 18 bits 5062 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5063 getF32Constant(DAG, 0xbcd2769e, dl)); 5064 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5065 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5066 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5067 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5068 getF32Constant(DAG, 0x3fa22ae7, dl)); 5069 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5070 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5071 getF32Constant(DAG, 0x40525723, dl)); 5072 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5073 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5074 getF32Constant(DAG, 0x40aaf200, dl)); 5075 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5076 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5077 getF32Constant(DAG, 0x40c39dad, dl)); 5078 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5079 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5080 getF32Constant(DAG, 0x4042902c, dl)); 5081 } 5082 5083 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5084 } 5085 5086 // No special expansion. 5087 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5088 } 5089 5090 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5091 /// limited-precision mode. 5092 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5093 const TargetLowering &TLI) { 5094 // TODO: What fast-math-flags should be set on the floating-point nodes? 5095 5096 if (Op.getValueType() == MVT::f32 && 5097 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5098 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5099 5100 // Scale the exponent by log10(2) [0.30102999f]. 5101 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5102 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5103 getF32Constant(DAG, 0x3e9a209a, dl)); 5104 5105 // Get the significand and build it into a floating-point number with 5106 // exponent of 1. 5107 SDValue X = GetSignificand(DAG, Op1, dl); 5108 5109 SDValue Log10ofMantissa; 5110 if (LimitFloatPrecision <= 6) { 5111 // For floating-point precision of 6: 5112 // 5113 // Log10ofMantissa = 5114 // -0.50419619f + 5115 // (0.60948995f - 0.10380950f * x) * x; 5116 // 5117 // error 0.0014886165, which is 6 bits 5118 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5119 getF32Constant(DAG, 0xbdd49a13, dl)); 5120 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5121 getF32Constant(DAG, 0x3f1c0789, dl)); 5122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5123 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5124 getF32Constant(DAG, 0x3f011300, dl)); 5125 } else if (LimitFloatPrecision <= 12) { 5126 // For floating-point precision of 12: 5127 // 5128 // Log10ofMantissa = 5129 // -0.64831180f + 5130 // (0.91751397f + 5131 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5132 // 5133 // error 0.00019228036, which is better than 12 bits 5134 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5135 getF32Constant(DAG, 0x3d431f31, dl)); 5136 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5137 getF32Constant(DAG, 0x3ea21fb2, dl)); 5138 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5139 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5140 getF32Constant(DAG, 0x3f6ae232, dl)); 5141 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5142 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5143 getF32Constant(DAG, 0x3f25f7c3, dl)); 5144 } else { // LimitFloatPrecision <= 18 5145 // For floating-point precision of 18: 5146 // 5147 // Log10ofMantissa = 5148 // -0.84299375f + 5149 // (1.5327582f + 5150 // (-1.0688956f + 5151 // (0.49102474f + 5152 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5153 // 5154 // error 0.0000037995730, which is better than 18 bits 5155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5156 getF32Constant(DAG, 0x3c5d51ce, dl)); 5157 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5158 getF32Constant(DAG, 0x3e00685a, dl)); 5159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5160 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5161 getF32Constant(DAG, 0x3efb6798, dl)); 5162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5163 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5164 getF32Constant(DAG, 0x3f88d192, dl)); 5165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5166 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5167 getF32Constant(DAG, 0x3fc4316c, dl)); 5168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5169 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5170 getF32Constant(DAG, 0x3f57ce70, dl)); 5171 } 5172 5173 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5174 } 5175 5176 // No special expansion. 5177 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5178 } 5179 5180 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5181 /// limited-precision mode. 5182 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5183 const TargetLowering &TLI) { 5184 if (Op.getValueType() == MVT::f32 && 5185 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5186 return getLimitedPrecisionExp2(Op, dl, DAG); 5187 5188 // No special expansion. 5189 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5190 } 5191 5192 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5193 /// limited-precision mode with x == 10.0f. 5194 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5195 SelectionDAG &DAG, const TargetLowering &TLI) { 5196 bool IsExp10 = false; 5197 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5198 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5199 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5200 APFloat Ten(10.0f); 5201 IsExp10 = LHSC->isExactlyValue(Ten); 5202 } 5203 } 5204 5205 // TODO: What fast-math-flags should be set on the FMUL node? 5206 if (IsExp10) { 5207 // Put the exponent in the right bit position for later addition to the 5208 // final result: 5209 // 5210 // #define LOG2OF10 3.3219281f 5211 // t0 = Op * LOG2OF10; 5212 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5213 getF32Constant(DAG, 0x40549a78, dl)); 5214 return getLimitedPrecisionExp2(t0, dl, DAG); 5215 } 5216 5217 // No special expansion. 5218 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5219 } 5220 5221 /// ExpandPowI - Expand a llvm.powi intrinsic. 5222 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5223 SelectionDAG &DAG) { 5224 // If RHS is a constant, we can expand this out to a multiplication tree, 5225 // otherwise we end up lowering to a call to __powidf2 (for example). When 5226 // optimizing for size, we only want to do this if the expansion would produce 5227 // a small number of multiplies, otherwise we do the full expansion. 5228 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5229 // Get the exponent as a positive value. 5230 unsigned Val = RHSC->getSExtValue(); 5231 if ((int)Val < 0) Val = -Val; 5232 5233 // powi(x, 0) -> 1.0 5234 if (Val == 0) 5235 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5236 5237 bool OptForSize = DAG.shouldOptForSize(); 5238 if (!OptForSize || 5239 // If optimizing for size, don't insert too many multiplies. 5240 // This inserts up to 5 multiplies. 5241 countPopulation(Val) + Log2_32(Val) < 7) { 5242 // We use the simple binary decomposition method to generate the multiply 5243 // sequence. There are more optimal ways to do this (for example, 5244 // powi(x,15) generates one more multiply than it should), but this has 5245 // the benefit of being both really simple and much better than a libcall. 5246 SDValue Res; // Logically starts equal to 1.0 5247 SDValue CurSquare = LHS; 5248 // TODO: Intrinsics should have fast-math-flags that propagate to these 5249 // nodes. 5250 while (Val) { 5251 if (Val & 1) { 5252 if (Res.getNode()) 5253 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5254 else 5255 Res = CurSquare; // 1.0*CurSquare. 5256 } 5257 5258 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5259 CurSquare, CurSquare); 5260 Val >>= 1; 5261 } 5262 5263 // If the original was negative, invert the result, producing 1/(x*x*x). 5264 if (RHSC->getSExtValue() < 0) 5265 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5266 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5267 return Res; 5268 } 5269 } 5270 5271 // Otherwise, expand to a libcall. 5272 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5273 } 5274 5275 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5276 SDValue LHS, SDValue RHS, SDValue Scale, 5277 SelectionDAG &DAG, const TargetLowering &TLI) { 5278 EVT VT = LHS.getValueType(); 5279 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5280 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5281 LLVMContext &Ctx = *DAG.getContext(); 5282 5283 // If the type is legal but the operation isn't, this node might survive all 5284 // the way to operation legalization. If we end up there and we do not have 5285 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5286 // node. 5287 5288 // Coax the legalizer into expanding the node during type legalization instead 5289 // by bumping the size by one bit. This will force it to Promote, enabling the 5290 // early expansion and avoiding the need to expand later. 5291 5292 // We don't have to do this if Scale is 0; that can always be expanded, unless 5293 // it's a saturating signed operation. Those can experience true integer 5294 // division overflow, a case which we must avoid. 5295 5296 // FIXME: We wouldn't have to do this (or any of the early 5297 // expansion/promotion) if it was possible to expand a libcall of an 5298 // illegal type during operation legalization. But it's not, so things 5299 // get a bit hacky. 5300 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5301 if ((ScaleInt > 0 || (Saturating && Signed)) && 5302 (TLI.isTypeLegal(VT) || 5303 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5304 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5305 Opcode, VT, ScaleInt); 5306 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5307 EVT PromVT; 5308 if (VT.isScalarInteger()) 5309 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5310 else if (VT.isVector()) { 5311 PromVT = VT.getVectorElementType(); 5312 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5313 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5314 } else 5315 llvm_unreachable("Wrong VT for DIVFIX?"); 5316 if (Signed) { 5317 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5318 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5319 } else { 5320 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5321 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5322 } 5323 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5324 // For saturating operations, we need to shift up the LHS to get the 5325 // proper saturation width, and then shift down again afterwards. 5326 if (Saturating) 5327 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5328 DAG.getConstant(1, DL, ShiftTy)); 5329 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5330 if (Saturating) 5331 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5332 DAG.getConstant(1, DL, ShiftTy)); 5333 return DAG.getZExtOrTrunc(Res, DL, VT); 5334 } 5335 } 5336 5337 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5338 } 5339 5340 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5341 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5342 static void 5343 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5344 const SDValue &N) { 5345 switch (N.getOpcode()) { 5346 case ISD::CopyFromReg: { 5347 SDValue Op = N.getOperand(1); 5348 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5349 Op.getValueType().getSizeInBits()); 5350 return; 5351 } 5352 case ISD::BITCAST: 5353 case ISD::AssertZext: 5354 case ISD::AssertSext: 5355 case ISD::TRUNCATE: 5356 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5357 return; 5358 case ISD::BUILD_PAIR: 5359 case ISD::BUILD_VECTOR: 5360 case ISD::CONCAT_VECTORS: 5361 for (SDValue Op : N->op_values()) 5362 getUnderlyingArgRegs(Regs, Op); 5363 return; 5364 default: 5365 return; 5366 } 5367 } 5368 5369 /// If the DbgValueInst is a dbg_value of a function argument, create the 5370 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5371 /// instruction selection, they will be inserted to the entry BB. 5372 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5373 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5374 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5375 const Argument *Arg = dyn_cast<Argument>(V); 5376 if (!Arg) 5377 return false; 5378 5379 if (!IsDbgDeclare) { 5380 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5381 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5382 // the entry block. 5383 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5384 if (!IsInEntryBlock) 5385 return false; 5386 5387 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5388 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5389 // variable that also is a param. 5390 // 5391 // Although, if we are at the top of the entry block already, we can still 5392 // emit using ArgDbgValue. This might catch some situations when the 5393 // dbg.value refers to an argument that isn't used in the entry block, so 5394 // any CopyToReg node would be optimized out and the only way to express 5395 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5396 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5397 // we should only emit as ArgDbgValue if the Variable is an argument to the 5398 // current function, and the dbg.value intrinsic is found in the entry 5399 // block. 5400 bool VariableIsFunctionInputArg = Variable->isParameter() && 5401 !DL->getInlinedAt(); 5402 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5403 if (!IsInPrologue && !VariableIsFunctionInputArg) 5404 return false; 5405 5406 // Here we assume that a function argument on IR level only can be used to 5407 // describe one input parameter on source level. If we for example have 5408 // source code like this 5409 // 5410 // struct A { long x, y; }; 5411 // void foo(struct A a, long b) { 5412 // ... 5413 // b = a.x; 5414 // ... 5415 // } 5416 // 5417 // and IR like this 5418 // 5419 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5420 // entry: 5421 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5422 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5423 // call void @llvm.dbg.value(metadata i32 %b, "b", 5424 // ... 5425 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5426 // ... 5427 // 5428 // then the last dbg.value is describing a parameter "b" using a value that 5429 // is an argument. But since we already has used %a1 to describe a parameter 5430 // we should not handle that last dbg.value here (that would result in an 5431 // incorrect hoisting of the DBG_VALUE to the function entry). 5432 // Notice that we allow one dbg.value per IR level argument, to accommodate 5433 // for the situation with fragments above. 5434 if (VariableIsFunctionInputArg) { 5435 unsigned ArgNo = Arg->getArgNo(); 5436 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5437 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5438 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5439 return false; 5440 FuncInfo.DescribedArgs.set(ArgNo); 5441 } 5442 } 5443 5444 MachineFunction &MF = DAG.getMachineFunction(); 5445 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5446 5447 bool IsIndirect = false; 5448 Optional<MachineOperand> Op; 5449 // Some arguments' frame index is recorded during argument lowering. 5450 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5451 if (FI != std::numeric_limits<int>::max()) 5452 Op = MachineOperand::CreateFI(FI); 5453 5454 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5455 if (!Op && N.getNode()) { 5456 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5457 Register Reg; 5458 if (ArgRegsAndSizes.size() == 1) 5459 Reg = ArgRegsAndSizes.front().first; 5460 5461 if (Reg && Reg.isVirtual()) { 5462 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5463 Register PR = RegInfo.getLiveInPhysReg(Reg); 5464 if (PR) 5465 Reg = PR; 5466 } 5467 if (Reg) { 5468 Op = MachineOperand::CreateReg(Reg, false); 5469 IsIndirect = IsDbgDeclare; 5470 } 5471 } 5472 5473 if (!Op && N.getNode()) { 5474 // Check if frame index is available. 5475 SDValue LCandidate = peekThroughBitcasts(N); 5476 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5477 if (FrameIndexSDNode *FINode = 5478 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5479 Op = MachineOperand::CreateFI(FINode->getIndex()); 5480 } 5481 5482 if (!Op) { 5483 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5484 auto splitMultiRegDbgValue 5485 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5486 unsigned Offset = 0; 5487 for (auto RegAndSize : SplitRegs) { 5488 // If the expression is already a fragment, the current register 5489 // offset+size might extend beyond the fragment. In this case, only 5490 // the register bits that are inside the fragment are relevant. 5491 int RegFragmentSizeInBits = RegAndSize.second; 5492 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5493 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5494 // The register is entirely outside the expression fragment, 5495 // so is irrelevant for debug info. 5496 if (Offset >= ExprFragmentSizeInBits) 5497 break; 5498 // The register is partially outside the expression fragment, only 5499 // the low bits within the fragment are relevant for debug info. 5500 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5501 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5502 } 5503 } 5504 5505 auto FragmentExpr = DIExpression::createFragmentExpression( 5506 Expr, Offset, RegFragmentSizeInBits); 5507 Offset += RegAndSize.second; 5508 // If a valid fragment expression cannot be created, the variable's 5509 // correct value cannot be determined and so it is set as Undef. 5510 if (!FragmentExpr) { 5511 SDDbgValue *SDV = DAG.getConstantDbgValue( 5512 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5513 DAG.AddDbgValue(SDV, nullptr, false); 5514 continue; 5515 } 5516 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5517 FuncInfo.ArgDbgValues.push_back( 5518 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5519 RegAndSize.first, Variable, *FragmentExpr)); 5520 } 5521 }; 5522 5523 // Check if ValueMap has reg number. 5524 DenseMap<const Value *, unsigned>::const_iterator 5525 VMI = FuncInfo.ValueMap.find(V); 5526 if (VMI != FuncInfo.ValueMap.end()) { 5527 const auto &TLI = DAG.getTargetLoweringInfo(); 5528 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5529 V->getType(), getABIRegCopyCC(V)); 5530 if (RFV.occupiesMultipleRegs()) { 5531 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5532 return true; 5533 } 5534 5535 Op = MachineOperand::CreateReg(VMI->second, false); 5536 IsIndirect = IsDbgDeclare; 5537 } else if (ArgRegsAndSizes.size() > 1) { 5538 // This was split due to the calling convention, and no virtual register 5539 // mapping exists for the value. 5540 splitMultiRegDbgValue(ArgRegsAndSizes); 5541 return true; 5542 } 5543 } 5544 5545 if (!Op) 5546 return false; 5547 5548 assert(Variable->isValidLocationForIntrinsic(DL) && 5549 "Expected inlined-at fields to agree"); 5550 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5551 FuncInfo.ArgDbgValues.push_back( 5552 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5553 *Op, Variable, Expr)); 5554 5555 return true; 5556 } 5557 5558 /// Return the appropriate SDDbgValue based on N. 5559 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5560 DILocalVariable *Variable, 5561 DIExpression *Expr, 5562 const DebugLoc &dl, 5563 unsigned DbgSDNodeOrder) { 5564 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5565 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5566 // stack slot locations. 5567 // 5568 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5569 // debug values here after optimization: 5570 // 5571 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5572 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5573 // 5574 // Both describe the direct values of their associated variables. 5575 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5576 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5577 } 5578 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5579 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5580 } 5581 5582 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5583 switch (Intrinsic) { 5584 case Intrinsic::smul_fix: 5585 return ISD::SMULFIX; 5586 case Intrinsic::umul_fix: 5587 return ISD::UMULFIX; 5588 case Intrinsic::smul_fix_sat: 5589 return ISD::SMULFIXSAT; 5590 case Intrinsic::umul_fix_sat: 5591 return ISD::UMULFIXSAT; 5592 case Intrinsic::sdiv_fix: 5593 return ISD::SDIVFIX; 5594 case Intrinsic::udiv_fix: 5595 return ISD::UDIVFIX; 5596 case Intrinsic::sdiv_fix_sat: 5597 return ISD::SDIVFIXSAT; 5598 case Intrinsic::udiv_fix_sat: 5599 return ISD::UDIVFIXSAT; 5600 default: 5601 llvm_unreachable("Unhandled fixed point intrinsic"); 5602 } 5603 } 5604 5605 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5606 const char *FunctionName) { 5607 assert(FunctionName && "FunctionName must not be nullptr"); 5608 SDValue Callee = DAG.getExternalSymbol( 5609 FunctionName, 5610 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5611 LowerCallTo(&I, Callee, I.isTailCall()); 5612 } 5613 5614 /// Lower the call to the specified intrinsic function. 5615 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5616 unsigned Intrinsic) { 5617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5618 SDLoc sdl = getCurSDLoc(); 5619 DebugLoc dl = getCurDebugLoc(); 5620 SDValue Res; 5621 5622 switch (Intrinsic) { 5623 default: 5624 // By default, turn this into a target intrinsic node. 5625 visitTargetIntrinsic(I, Intrinsic); 5626 return; 5627 case Intrinsic::vscale: { 5628 match(&I, m_VScale(DAG.getDataLayout())); 5629 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5630 setValue(&I, 5631 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5632 return; 5633 } 5634 case Intrinsic::vastart: visitVAStart(I); return; 5635 case Intrinsic::vaend: visitVAEnd(I); return; 5636 case Intrinsic::vacopy: visitVACopy(I); return; 5637 case Intrinsic::returnaddress: 5638 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5639 TLI.getPointerTy(DAG.getDataLayout()), 5640 getValue(I.getArgOperand(0)))); 5641 return; 5642 case Intrinsic::addressofreturnaddress: 5643 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5644 TLI.getPointerTy(DAG.getDataLayout()))); 5645 return; 5646 case Intrinsic::sponentry: 5647 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5648 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5649 return; 5650 case Intrinsic::frameaddress: 5651 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5652 TLI.getFrameIndexTy(DAG.getDataLayout()), 5653 getValue(I.getArgOperand(0)))); 5654 return; 5655 case Intrinsic::read_register: { 5656 Value *Reg = I.getArgOperand(0); 5657 SDValue Chain = getRoot(); 5658 SDValue RegName = 5659 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5660 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5661 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5662 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5663 setValue(&I, Res); 5664 DAG.setRoot(Res.getValue(1)); 5665 return; 5666 } 5667 case Intrinsic::write_register: { 5668 Value *Reg = I.getArgOperand(0); 5669 Value *RegValue = I.getArgOperand(1); 5670 SDValue Chain = getRoot(); 5671 SDValue RegName = 5672 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5673 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5674 RegName, getValue(RegValue))); 5675 return; 5676 } 5677 case Intrinsic::memcpy: { 5678 const auto &MCI = cast<MemCpyInst>(I); 5679 SDValue Op1 = getValue(I.getArgOperand(0)); 5680 SDValue Op2 = getValue(I.getArgOperand(1)); 5681 SDValue Op3 = getValue(I.getArgOperand(2)); 5682 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5683 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5684 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5685 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5686 bool isVol = MCI.isVolatile(); 5687 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5688 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5689 // node. 5690 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5691 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5692 /* AlwaysInline */ false, isTC, 5693 MachinePointerInfo(I.getArgOperand(0)), 5694 MachinePointerInfo(I.getArgOperand(1))); 5695 updateDAGForMaybeTailCall(MC); 5696 return; 5697 } 5698 case Intrinsic::memcpy_inline: { 5699 const auto &MCI = cast<MemCpyInlineInst>(I); 5700 SDValue Dst = getValue(I.getArgOperand(0)); 5701 SDValue Src = getValue(I.getArgOperand(1)); 5702 SDValue Size = getValue(I.getArgOperand(2)); 5703 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5704 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5705 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5706 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5707 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5708 bool isVol = MCI.isVolatile(); 5709 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5710 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5711 // node. 5712 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5713 /* AlwaysInline */ true, isTC, 5714 MachinePointerInfo(I.getArgOperand(0)), 5715 MachinePointerInfo(I.getArgOperand(1))); 5716 updateDAGForMaybeTailCall(MC); 5717 return; 5718 } 5719 case Intrinsic::memset: { 5720 const auto &MSI = cast<MemSetInst>(I); 5721 SDValue Op1 = getValue(I.getArgOperand(0)); 5722 SDValue Op2 = getValue(I.getArgOperand(1)); 5723 SDValue Op3 = getValue(I.getArgOperand(2)); 5724 // @llvm.memset defines 0 and 1 to both mean no alignment. 5725 Align Alignment = MSI.getDestAlign().valueOrOne(); 5726 bool isVol = MSI.isVolatile(); 5727 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5728 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5729 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5730 MachinePointerInfo(I.getArgOperand(0))); 5731 updateDAGForMaybeTailCall(MS); 5732 return; 5733 } 5734 case Intrinsic::memmove: { 5735 const auto &MMI = cast<MemMoveInst>(I); 5736 SDValue Op1 = getValue(I.getArgOperand(0)); 5737 SDValue Op2 = getValue(I.getArgOperand(1)); 5738 SDValue Op3 = getValue(I.getArgOperand(2)); 5739 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5740 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5741 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5742 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5743 bool isVol = MMI.isVolatile(); 5744 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5745 // FIXME: Support passing different dest/src alignments to the memmove DAG 5746 // node. 5747 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5748 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5749 isTC, MachinePointerInfo(I.getArgOperand(0)), 5750 MachinePointerInfo(I.getArgOperand(1))); 5751 updateDAGForMaybeTailCall(MM); 5752 return; 5753 } 5754 case Intrinsic::memcpy_element_unordered_atomic: { 5755 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5756 SDValue Dst = getValue(MI.getRawDest()); 5757 SDValue Src = getValue(MI.getRawSource()); 5758 SDValue Length = getValue(MI.getLength()); 5759 5760 unsigned DstAlign = MI.getDestAlignment(); 5761 unsigned SrcAlign = MI.getSourceAlignment(); 5762 Type *LengthTy = MI.getLength()->getType(); 5763 unsigned ElemSz = MI.getElementSizeInBytes(); 5764 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5765 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5766 SrcAlign, Length, LengthTy, ElemSz, isTC, 5767 MachinePointerInfo(MI.getRawDest()), 5768 MachinePointerInfo(MI.getRawSource())); 5769 updateDAGForMaybeTailCall(MC); 5770 return; 5771 } 5772 case Intrinsic::memmove_element_unordered_atomic: { 5773 auto &MI = cast<AtomicMemMoveInst>(I); 5774 SDValue Dst = getValue(MI.getRawDest()); 5775 SDValue Src = getValue(MI.getRawSource()); 5776 SDValue Length = getValue(MI.getLength()); 5777 5778 unsigned DstAlign = MI.getDestAlignment(); 5779 unsigned SrcAlign = MI.getSourceAlignment(); 5780 Type *LengthTy = MI.getLength()->getType(); 5781 unsigned ElemSz = MI.getElementSizeInBytes(); 5782 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5783 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5784 SrcAlign, Length, LengthTy, ElemSz, isTC, 5785 MachinePointerInfo(MI.getRawDest()), 5786 MachinePointerInfo(MI.getRawSource())); 5787 updateDAGForMaybeTailCall(MC); 5788 return; 5789 } 5790 case Intrinsic::memset_element_unordered_atomic: { 5791 auto &MI = cast<AtomicMemSetInst>(I); 5792 SDValue Dst = getValue(MI.getRawDest()); 5793 SDValue Val = getValue(MI.getValue()); 5794 SDValue Length = getValue(MI.getLength()); 5795 5796 unsigned DstAlign = MI.getDestAlignment(); 5797 Type *LengthTy = MI.getLength()->getType(); 5798 unsigned ElemSz = MI.getElementSizeInBytes(); 5799 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5800 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5801 LengthTy, ElemSz, isTC, 5802 MachinePointerInfo(MI.getRawDest())); 5803 updateDAGForMaybeTailCall(MC); 5804 return; 5805 } 5806 case Intrinsic::dbg_addr: 5807 case Intrinsic::dbg_declare: { 5808 const auto &DI = cast<DbgVariableIntrinsic>(I); 5809 DILocalVariable *Variable = DI.getVariable(); 5810 DIExpression *Expression = DI.getExpression(); 5811 dropDanglingDebugInfo(Variable, Expression); 5812 assert(Variable && "Missing variable"); 5813 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5814 << "\n"); 5815 // Check if address has undef value. 5816 const Value *Address = DI.getVariableLocation(); 5817 if (!Address || isa<UndefValue>(Address) || 5818 (Address->use_empty() && !isa<Argument>(Address))) { 5819 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5820 << " (bad/undef/unused-arg address)\n"); 5821 return; 5822 } 5823 5824 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5825 5826 // Check if this variable can be described by a frame index, typically 5827 // either as a static alloca or a byval parameter. 5828 int FI = std::numeric_limits<int>::max(); 5829 if (const auto *AI = 5830 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5831 if (AI->isStaticAlloca()) { 5832 auto I = FuncInfo.StaticAllocaMap.find(AI); 5833 if (I != FuncInfo.StaticAllocaMap.end()) 5834 FI = I->second; 5835 } 5836 } else if (const auto *Arg = dyn_cast<Argument>( 5837 Address->stripInBoundsConstantOffsets())) { 5838 FI = FuncInfo.getArgumentFrameIndex(Arg); 5839 } 5840 5841 // llvm.dbg.addr is control dependent and always generates indirect 5842 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5843 // the MachineFunction variable table. 5844 if (FI != std::numeric_limits<int>::max()) { 5845 if (Intrinsic == Intrinsic::dbg_addr) { 5846 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5847 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5848 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5849 } else { 5850 LLVM_DEBUG(dbgs() << "Skipping " << DI 5851 << " (variable info stashed in MF side table)\n"); 5852 } 5853 return; 5854 } 5855 5856 SDValue &N = NodeMap[Address]; 5857 if (!N.getNode() && isa<Argument>(Address)) 5858 // Check unused arguments map. 5859 N = UnusedArgNodeMap[Address]; 5860 SDDbgValue *SDV; 5861 if (N.getNode()) { 5862 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5863 Address = BCI->getOperand(0); 5864 // Parameters are handled specially. 5865 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5866 if (isParameter && FINode) { 5867 // Byval parameter. We have a frame index at this point. 5868 SDV = 5869 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5870 /*IsIndirect*/ true, dl, SDNodeOrder); 5871 } else if (isa<Argument>(Address)) { 5872 // Address is an argument, so try to emit its dbg value using 5873 // virtual register info from the FuncInfo.ValueMap. 5874 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5875 return; 5876 } else { 5877 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5878 true, dl, SDNodeOrder); 5879 } 5880 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5881 } else { 5882 // If Address is an argument then try to emit its dbg value using 5883 // virtual register info from the FuncInfo.ValueMap. 5884 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5885 N)) { 5886 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5887 << " (could not emit func-arg dbg_value)\n"); 5888 } 5889 } 5890 return; 5891 } 5892 case Intrinsic::dbg_label: { 5893 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5894 DILabel *Label = DI.getLabel(); 5895 assert(Label && "Missing label"); 5896 5897 SDDbgLabel *SDV; 5898 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5899 DAG.AddDbgLabel(SDV); 5900 return; 5901 } 5902 case Intrinsic::dbg_value: { 5903 const DbgValueInst &DI = cast<DbgValueInst>(I); 5904 assert(DI.getVariable() && "Missing variable"); 5905 5906 DILocalVariable *Variable = DI.getVariable(); 5907 DIExpression *Expression = DI.getExpression(); 5908 dropDanglingDebugInfo(Variable, Expression); 5909 const Value *V = DI.getValue(); 5910 if (!V) 5911 return; 5912 5913 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5914 SDNodeOrder)) 5915 return; 5916 5917 // TODO: Dangling debug info will eventually either be resolved or produce 5918 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5919 // between the original dbg.value location and its resolved DBG_VALUE, which 5920 // we should ideally fill with an extra Undef DBG_VALUE. 5921 5922 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5923 return; 5924 } 5925 5926 case Intrinsic::eh_typeid_for: { 5927 // Find the type id for the given typeinfo. 5928 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5929 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5930 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5931 setValue(&I, Res); 5932 return; 5933 } 5934 5935 case Intrinsic::eh_return_i32: 5936 case Intrinsic::eh_return_i64: 5937 DAG.getMachineFunction().setCallsEHReturn(true); 5938 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5939 MVT::Other, 5940 getControlRoot(), 5941 getValue(I.getArgOperand(0)), 5942 getValue(I.getArgOperand(1)))); 5943 return; 5944 case Intrinsic::eh_unwind_init: 5945 DAG.getMachineFunction().setCallsUnwindInit(true); 5946 return; 5947 case Intrinsic::eh_dwarf_cfa: 5948 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5949 TLI.getPointerTy(DAG.getDataLayout()), 5950 getValue(I.getArgOperand(0)))); 5951 return; 5952 case Intrinsic::eh_sjlj_callsite: { 5953 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5954 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5955 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5956 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5957 5958 MMI.setCurrentCallSite(CI->getZExtValue()); 5959 return; 5960 } 5961 case Intrinsic::eh_sjlj_functioncontext: { 5962 // Get and store the index of the function context. 5963 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5964 AllocaInst *FnCtx = 5965 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5966 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5967 MFI.setFunctionContextIndex(FI); 5968 return; 5969 } 5970 case Intrinsic::eh_sjlj_setjmp: { 5971 SDValue Ops[2]; 5972 Ops[0] = getRoot(); 5973 Ops[1] = getValue(I.getArgOperand(0)); 5974 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5975 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5976 setValue(&I, Op.getValue(0)); 5977 DAG.setRoot(Op.getValue(1)); 5978 return; 5979 } 5980 case Intrinsic::eh_sjlj_longjmp: 5981 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5982 getRoot(), getValue(I.getArgOperand(0)))); 5983 return; 5984 case Intrinsic::eh_sjlj_setup_dispatch: 5985 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5986 getRoot())); 5987 return; 5988 case Intrinsic::masked_gather: 5989 visitMaskedGather(I); 5990 return; 5991 case Intrinsic::masked_load: 5992 visitMaskedLoad(I); 5993 return; 5994 case Intrinsic::masked_scatter: 5995 visitMaskedScatter(I); 5996 return; 5997 case Intrinsic::masked_store: 5998 visitMaskedStore(I); 5999 return; 6000 case Intrinsic::masked_expandload: 6001 visitMaskedLoad(I, true /* IsExpanding */); 6002 return; 6003 case Intrinsic::masked_compressstore: 6004 visitMaskedStore(I, true /* IsCompressing */); 6005 return; 6006 case Intrinsic::powi: 6007 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6008 getValue(I.getArgOperand(1)), DAG)); 6009 return; 6010 case Intrinsic::log: 6011 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6012 return; 6013 case Intrinsic::log2: 6014 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6015 return; 6016 case Intrinsic::log10: 6017 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6018 return; 6019 case Intrinsic::exp: 6020 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6021 return; 6022 case Intrinsic::exp2: 6023 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6024 return; 6025 case Intrinsic::pow: 6026 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6027 getValue(I.getArgOperand(1)), DAG, TLI)); 6028 return; 6029 case Intrinsic::sqrt: 6030 case Intrinsic::fabs: 6031 case Intrinsic::sin: 6032 case Intrinsic::cos: 6033 case Intrinsic::floor: 6034 case Intrinsic::ceil: 6035 case Intrinsic::trunc: 6036 case Intrinsic::rint: 6037 case Intrinsic::nearbyint: 6038 case Intrinsic::round: 6039 case Intrinsic::canonicalize: { 6040 unsigned Opcode; 6041 switch (Intrinsic) { 6042 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6043 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6044 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6045 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6046 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6047 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6048 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6049 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6050 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6051 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6052 case Intrinsic::round: Opcode = ISD::FROUND; break; 6053 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6054 } 6055 6056 setValue(&I, DAG.getNode(Opcode, sdl, 6057 getValue(I.getArgOperand(0)).getValueType(), 6058 getValue(I.getArgOperand(0)))); 6059 return; 6060 } 6061 case Intrinsic::lround: 6062 case Intrinsic::llround: 6063 case Intrinsic::lrint: 6064 case Intrinsic::llrint: { 6065 unsigned Opcode; 6066 switch (Intrinsic) { 6067 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6068 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6069 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6070 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6071 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6072 } 6073 6074 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6075 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6076 getValue(I.getArgOperand(0)))); 6077 return; 6078 } 6079 case Intrinsic::minnum: 6080 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6081 getValue(I.getArgOperand(0)).getValueType(), 6082 getValue(I.getArgOperand(0)), 6083 getValue(I.getArgOperand(1)))); 6084 return; 6085 case Intrinsic::maxnum: 6086 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6087 getValue(I.getArgOperand(0)).getValueType(), 6088 getValue(I.getArgOperand(0)), 6089 getValue(I.getArgOperand(1)))); 6090 return; 6091 case Intrinsic::minimum: 6092 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6093 getValue(I.getArgOperand(0)).getValueType(), 6094 getValue(I.getArgOperand(0)), 6095 getValue(I.getArgOperand(1)))); 6096 return; 6097 case Intrinsic::maximum: 6098 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6099 getValue(I.getArgOperand(0)).getValueType(), 6100 getValue(I.getArgOperand(0)), 6101 getValue(I.getArgOperand(1)))); 6102 return; 6103 case Intrinsic::copysign: 6104 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6105 getValue(I.getArgOperand(0)).getValueType(), 6106 getValue(I.getArgOperand(0)), 6107 getValue(I.getArgOperand(1)))); 6108 return; 6109 case Intrinsic::fma: 6110 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6111 getValue(I.getArgOperand(0)).getValueType(), 6112 getValue(I.getArgOperand(0)), 6113 getValue(I.getArgOperand(1)), 6114 getValue(I.getArgOperand(2)))); 6115 return; 6116 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6117 case Intrinsic::INTRINSIC: 6118 #include "llvm/IR/ConstrainedOps.def" 6119 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6120 return; 6121 case Intrinsic::fmuladd: { 6122 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6123 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6124 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6125 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6126 getValue(I.getArgOperand(0)).getValueType(), 6127 getValue(I.getArgOperand(0)), 6128 getValue(I.getArgOperand(1)), 6129 getValue(I.getArgOperand(2)))); 6130 } else { 6131 // TODO: Intrinsic calls should have fast-math-flags. 6132 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6133 getValue(I.getArgOperand(0)).getValueType(), 6134 getValue(I.getArgOperand(0)), 6135 getValue(I.getArgOperand(1))); 6136 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6137 getValue(I.getArgOperand(0)).getValueType(), 6138 Mul, 6139 getValue(I.getArgOperand(2))); 6140 setValue(&I, Add); 6141 } 6142 return; 6143 } 6144 case Intrinsic::convert_to_fp16: 6145 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6146 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6147 getValue(I.getArgOperand(0)), 6148 DAG.getTargetConstant(0, sdl, 6149 MVT::i32)))); 6150 return; 6151 case Intrinsic::convert_from_fp16: 6152 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6153 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6154 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6155 getValue(I.getArgOperand(0))))); 6156 return; 6157 case Intrinsic::pcmarker: { 6158 SDValue Tmp = getValue(I.getArgOperand(0)); 6159 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6160 return; 6161 } 6162 case Intrinsic::readcyclecounter: { 6163 SDValue Op = getRoot(); 6164 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6165 DAG.getVTList(MVT::i64, MVT::Other), Op); 6166 setValue(&I, Res); 6167 DAG.setRoot(Res.getValue(1)); 6168 return; 6169 } 6170 case Intrinsic::bitreverse: 6171 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6172 getValue(I.getArgOperand(0)).getValueType(), 6173 getValue(I.getArgOperand(0)))); 6174 return; 6175 case Intrinsic::bswap: 6176 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6177 getValue(I.getArgOperand(0)).getValueType(), 6178 getValue(I.getArgOperand(0)))); 6179 return; 6180 case Intrinsic::cttz: { 6181 SDValue Arg = getValue(I.getArgOperand(0)); 6182 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6183 EVT Ty = Arg.getValueType(); 6184 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6185 sdl, Ty, Arg)); 6186 return; 6187 } 6188 case Intrinsic::ctlz: { 6189 SDValue Arg = getValue(I.getArgOperand(0)); 6190 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6191 EVT Ty = Arg.getValueType(); 6192 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6193 sdl, Ty, Arg)); 6194 return; 6195 } 6196 case Intrinsic::ctpop: { 6197 SDValue Arg = getValue(I.getArgOperand(0)); 6198 EVT Ty = Arg.getValueType(); 6199 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6200 return; 6201 } 6202 case Intrinsic::fshl: 6203 case Intrinsic::fshr: { 6204 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6205 SDValue X = getValue(I.getArgOperand(0)); 6206 SDValue Y = getValue(I.getArgOperand(1)); 6207 SDValue Z = getValue(I.getArgOperand(2)); 6208 EVT VT = X.getValueType(); 6209 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6210 SDValue Zero = DAG.getConstant(0, sdl, VT); 6211 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6212 6213 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6214 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6215 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6216 return; 6217 } 6218 6219 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6220 // avoid the select that is necessary in the general case to filter out 6221 // the 0-shift possibility that leads to UB. 6222 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6223 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6224 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6225 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6226 return; 6227 } 6228 6229 // Some targets only rotate one way. Try the opposite direction. 6230 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6231 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6232 // Negate the shift amount because it is safe to ignore the high bits. 6233 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6234 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6235 return; 6236 } 6237 6238 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6239 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6240 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6241 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6242 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6243 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6244 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6245 return; 6246 } 6247 6248 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6249 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6250 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6251 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6252 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6253 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6254 6255 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6256 // and that is undefined. We must compare and select to avoid UB. 6257 EVT CCVT = MVT::i1; 6258 if (VT.isVector()) 6259 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6260 6261 // For fshl, 0-shift returns the 1st arg (X). 6262 // For fshr, 0-shift returns the 2nd arg (Y). 6263 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6264 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6265 return; 6266 } 6267 case Intrinsic::sadd_sat: { 6268 SDValue Op1 = getValue(I.getArgOperand(0)); 6269 SDValue Op2 = getValue(I.getArgOperand(1)); 6270 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6271 return; 6272 } 6273 case Intrinsic::uadd_sat: { 6274 SDValue Op1 = getValue(I.getArgOperand(0)); 6275 SDValue Op2 = getValue(I.getArgOperand(1)); 6276 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6277 return; 6278 } 6279 case Intrinsic::ssub_sat: { 6280 SDValue Op1 = getValue(I.getArgOperand(0)); 6281 SDValue Op2 = getValue(I.getArgOperand(1)); 6282 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6283 return; 6284 } 6285 case Intrinsic::usub_sat: { 6286 SDValue Op1 = getValue(I.getArgOperand(0)); 6287 SDValue Op2 = getValue(I.getArgOperand(1)); 6288 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6289 return; 6290 } 6291 case Intrinsic::smul_fix: 6292 case Intrinsic::umul_fix: 6293 case Intrinsic::smul_fix_sat: 6294 case Intrinsic::umul_fix_sat: { 6295 SDValue Op1 = getValue(I.getArgOperand(0)); 6296 SDValue Op2 = getValue(I.getArgOperand(1)); 6297 SDValue Op3 = getValue(I.getArgOperand(2)); 6298 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6299 Op1.getValueType(), Op1, Op2, Op3)); 6300 return; 6301 } 6302 case Intrinsic::sdiv_fix: 6303 case Intrinsic::udiv_fix: 6304 case Intrinsic::sdiv_fix_sat: 6305 case Intrinsic::udiv_fix_sat: { 6306 SDValue Op1 = getValue(I.getArgOperand(0)); 6307 SDValue Op2 = getValue(I.getArgOperand(1)); 6308 SDValue Op3 = getValue(I.getArgOperand(2)); 6309 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6310 Op1, Op2, Op3, DAG, TLI)); 6311 return; 6312 } 6313 case Intrinsic::stacksave: { 6314 SDValue Op = getRoot(); 6315 Res = DAG.getNode( 6316 ISD::STACKSAVE, sdl, 6317 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6318 setValue(&I, Res); 6319 DAG.setRoot(Res.getValue(1)); 6320 return; 6321 } 6322 case Intrinsic::stackrestore: 6323 Res = getValue(I.getArgOperand(0)); 6324 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6325 return; 6326 case Intrinsic::get_dynamic_area_offset: { 6327 SDValue Op = getRoot(); 6328 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6329 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6330 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6331 // target. 6332 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6333 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6334 " intrinsic!"); 6335 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6336 Op); 6337 DAG.setRoot(Op); 6338 setValue(&I, Res); 6339 return; 6340 } 6341 case Intrinsic::stackguard: { 6342 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6343 MachineFunction &MF = DAG.getMachineFunction(); 6344 const Module &M = *MF.getFunction().getParent(); 6345 SDValue Chain = getRoot(); 6346 if (TLI.useLoadStackGuardNode()) { 6347 Res = getLoadStackGuard(DAG, sdl, Chain); 6348 } else { 6349 const Value *Global = TLI.getSDagStackGuard(M); 6350 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6351 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6352 MachinePointerInfo(Global, 0), Align, 6353 MachineMemOperand::MOVolatile); 6354 } 6355 if (TLI.useStackGuardXorFP()) 6356 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6357 DAG.setRoot(Chain); 6358 setValue(&I, Res); 6359 return; 6360 } 6361 case Intrinsic::stackprotector: { 6362 // Emit code into the DAG to store the stack guard onto the stack. 6363 MachineFunction &MF = DAG.getMachineFunction(); 6364 MachineFrameInfo &MFI = MF.getFrameInfo(); 6365 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6366 SDValue Src, Chain = getRoot(); 6367 6368 if (TLI.useLoadStackGuardNode()) 6369 Src = getLoadStackGuard(DAG, sdl, Chain); 6370 else 6371 Src = getValue(I.getArgOperand(0)); // The guard's value. 6372 6373 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6374 6375 int FI = FuncInfo.StaticAllocaMap[Slot]; 6376 MFI.setStackProtectorIndex(FI); 6377 6378 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6379 6380 // Store the stack protector onto the stack. 6381 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6382 DAG.getMachineFunction(), FI), 6383 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6384 setValue(&I, Res); 6385 DAG.setRoot(Res); 6386 return; 6387 } 6388 case Intrinsic::objectsize: 6389 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6390 6391 case Intrinsic::is_constant: 6392 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6393 6394 case Intrinsic::annotation: 6395 case Intrinsic::ptr_annotation: 6396 case Intrinsic::launder_invariant_group: 6397 case Intrinsic::strip_invariant_group: 6398 // Drop the intrinsic, but forward the value 6399 setValue(&I, getValue(I.getOperand(0))); 6400 return; 6401 case Intrinsic::assume: 6402 case Intrinsic::var_annotation: 6403 case Intrinsic::sideeffect: 6404 // Discard annotate attributes, assumptions, and artificial side-effects. 6405 return; 6406 6407 case Intrinsic::codeview_annotation: { 6408 // Emit a label associated with this metadata. 6409 MachineFunction &MF = DAG.getMachineFunction(); 6410 MCSymbol *Label = 6411 MF.getMMI().getContext().createTempSymbol("annotation", true); 6412 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6413 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6414 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6415 DAG.setRoot(Res); 6416 return; 6417 } 6418 6419 case Intrinsic::init_trampoline: { 6420 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6421 6422 SDValue Ops[6]; 6423 Ops[0] = getRoot(); 6424 Ops[1] = getValue(I.getArgOperand(0)); 6425 Ops[2] = getValue(I.getArgOperand(1)); 6426 Ops[3] = getValue(I.getArgOperand(2)); 6427 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6428 Ops[5] = DAG.getSrcValue(F); 6429 6430 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6431 6432 DAG.setRoot(Res); 6433 return; 6434 } 6435 case Intrinsic::adjust_trampoline: 6436 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6437 TLI.getPointerTy(DAG.getDataLayout()), 6438 getValue(I.getArgOperand(0)))); 6439 return; 6440 case Intrinsic::gcroot: { 6441 assert(DAG.getMachineFunction().getFunction().hasGC() && 6442 "only valid in functions with gc specified, enforced by Verifier"); 6443 assert(GFI && "implied by previous"); 6444 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6445 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6446 6447 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6448 GFI->addStackRoot(FI->getIndex(), TypeMap); 6449 return; 6450 } 6451 case Intrinsic::gcread: 6452 case Intrinsic::gcwrite: 6453 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6454 case Intrinsic::flt_rounds: 6455 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6456 setValue(&I, Res); 6457 DAG.setRoot(Res.getValue(1)); 6458 return; 6459 6460 case Intrinsic::expect: 6461 // Just replace __builtin_expect(exp, c) with EXP. 6462 setValue(&I, getValue(I.getArgOperand(0))); 6463 return; 6464 6465 case Intrinsic::debugtrap: 6466 case Intrinsic::trap: { 6467 StringRef TrapFuncName = 6468 I.getAttributes() 6469 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6470 .getValueAsString(); 6471 if (TrapFuncName.empty()) { 6472 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6473 ISD::TRAP : ISD::DEBUGTRAP; 6474 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6475 return; 6476 } 6477 TargetLowering::ArgListTy Args; 6478 6479 TargetLowering::CallLoweringInfo CLI(DAG); 6480 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6481 CallingConv::C, I.getType(), 6482 DAG.getExternalSymbol(TrapFuncName.data(), 6483 TLI.getPointerTy(DAG.getDataLayout())), 6484 std::move(Args)); 6485 6486 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6487 DAG.setRoot(Result.second); 6488 return; 6489 } 6490 6491 case Intrinsic::uadd_with_overflow: 6492 case Intrinsic::sadd_with_overflow: 6493 case Intrinsic::usub_with_overflow: 6494 case Intrinsic::ssub_with_overflow: 6495 case Intrinsic::umul_with_overflow: 6496 case Intrinsic::smul_with_overflow: { 6497 ISD::NodeType Op; 6498 switch (Intrinsic) { 6499 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6500 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6501 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6502 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6503 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6504 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6505 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6506 } 6507 SDValue Op1 = getValue(I.getArgOperand(0)); 6508 SDValue Op2 = getValue(I.getArgOperand(1)); 6509 6510 EVT ResultVT = Op1.getValueType(); 6511 EVT OverflowVT = MVT::i1; 6512 if (ResultVT.isVector()) 6513 OverflowVT = EVT::getVectorVT( 6514 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6515 6516 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6517 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6518 return; 6519 } 6520 case Intrinsic::prefetch: { 6521 SDValue Ops[5]; 6522 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6523 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6524 Ops[0] = DAG.getRoot(); 6525 Ops[1] = getValue(I.getArgOperand(0)); 6526 Ops[2] = getValue(I.getArgOperand(1)); 6527 Ops[3] = getValue(I.getArgOperand(2)); 6528 Ops[4] = getValue(I.getArgOperand(3)); 6529 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6530 DAG.getVTList(MVT::Other), Ops, 6531 EVT::getIntegerVT(*Context, 8), 6532 MachinePointerInfo(I.getArgOperand(0)), 6533 0, /* align */ 6534 Flags); 6535 6536 // Chain the prefetch in parallell with any pending loads, to stay out of 6537 // the way of later optimizations. 6538 PendingLoads.push_back(Result); 6539 Result = getRoot(); 6540 DAG.setRoot(Result); 6541 return; 6542 } 6543 case Intrinsic::lifetime_start: 6544 case Intrinsic::lifetime_end: { 6545 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6546 // Stack coloring is not enabled in O0, discard region information. 6547 if (TM.getOptLevel() == CodeGenOpt::None) 6548 return; 6549 6550 const int64_t ObjectSize = 6551 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6552 Value *const ObjectPtr = I.getArgOperand(1); 6553 SmallVector<const Value *, 4> Allocas; 6554 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6555 6556 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6557 E = Allocas.end(); Object != E; ++Object) { 6558 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6559 6560 // Could not find an Alloca. 6561 if (!LifetimeObject) 6562 continue; 6563 6564 // First check that the Alloca is static, otherwise it won't have a 6565 // valid frame index. 6566 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6567 if (SI == FuncInfo.StaticAllocaMap.end()) 6568 return; 6569 6570 const int FrameIndex = SI->second; 6571 int64_t Offset; 6572 if (GetPointerBaseWithConstantOffset( 6573 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6574 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6575 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6576 Offset); 6577 DAG.setRoot(Res); 6578 } 6579 return; 6580 } 6581 case Intrinsic::invariant_start: 6582 // Discard region information. 6583 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6584 return; 6585 case Intrinsic::invariant_end: 6586 // Discard region information. 6587 return; 6588 case Intrinsic::clear_cache: 6589 /// FunctionName may be null. 6590 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6591 lowerCallToExternalSymbol(I, FunctionName); 6592 return; 6593 case Intrinsic::donothing: 6594 // ignore 6595 return; 6596 case Intrinsic::experimental_stackmap: 6597 visitStackmap(I); 6598 return; 6599 case Intrinsic::experimental_patchpoint_void: 6600 case Intrinsic::experimental_patchpoint_i64: 6601 visitPatchpoint(&I); 6602 return; 6603 case Intrinsic::experimental_gc_statepoint: 6604 LowerStatepoint(ImmutableStatepoint(&I)); 6605 return; 6606 case Intrinsic::experimental_gc_result: 6607 visitGCResult(cast<GCResultInst>(I)); 6608 return; 6609 case Intrinsic::experimental_gc_relocate: 6610 visitGCRelocate(cast<GCRelocateInst>(I)); 6611 return; 6612 case Intrinsic::instrprof_increment: 6613 llvm_unreachable("instrprof failed to lower an increment"); 6614 case Intrinsic::instrprof_value_profile: 6615 llvm_unreachable("instrprof failed to lower a value profiling call"); 6616 case Intrinsic::localescape: { 6617 MachineFunction &MF = DAG.getMachineFunction(); 6618 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6619 6620 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6621 // is the same on all targets. 6622 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6623 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6624 if (isa<ConstantPointerNull>(Arg)) 6625 continue; // Skip null pointers. They represent a hole in index space. 6626 AllocaInst *Slot = cast<AllocaInst>(Arg); 6627 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6628 "can only escape static allocas"); 6629 int FI = FuncInfo.StaticAllocaMap[Slot]; 6630 MCSymbol *FrameAllocSym = 6631 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6632 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6633 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6634 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6635 .addSym(FrameAllocSym) 6636 .addFrameIndex(FI); 6637 } 6638 6639 return; 6640 } 6641 6642 case Intrinsic::localrecover: { 6643 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6644 MachineFunction &MF = DAG.getMachineFunction(); 6645 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6646 6647 // Get the symbol that defines the frame offset. 6648 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6649 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6650 unsigned IdxVal = 6651 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6652 MCSymbol *FrameAllocSym = 6653 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6654 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6655 6656 // Create a MCSymbol for the label to avoid any target lowering 6657 // that would make this PC relative. 6658 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6659 SDValue OffsetVal = 6660 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6661 6662 // Add the offset to the FP. 6663 Value *FP = I.getArgOperand(1); 6664 SDValue FPVal = getValue(FP); 6665 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6666 setValue(&I, Add); 6667 6668 return; 6669 } 6670 6671 case Intrinsic::eh_exceptionpointer: 6672 case Intrinsic::eh_exceptioncode: { 6673 // Get the exception pointer vreg, copy from it, and resize it to fit. 6674 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6675 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6676 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6677 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6678 SDValue N = 6679 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6680 if (Intrinsic == Intrinsic::eh_exceptioncode) 6681 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6682 setValue(&I, N); 6683 return; 6684 } 6685 case Intrinsic::xray_customevent: { 6686 // Here we want to make sure that the intrinsic behaves as if it has a 6687 // specific calling convention, and only for x86_64. 6688 // FIXME: Support other platforms later. 6689 const auto &Triple = DAG.getTarget().getTargetTriple(); 6690 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6691 return; 6692 6693 SDLoc DL = getCurSDLoc(); 6694 SmallVector<SDValue, 8> Ops; 6695 6696 // We want to say that we always want the arguments in registers. 6697 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6698 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6699 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6700 SDValue Chain = getRoot(); 6701 Ops.push_back(LogEntryVal); 6702 Ops.push_back(StrSizeVal); 6703 Ops.push_back(Chain); 6704 6705 // We need to enforce the calling convention for the callsite, so that 6706 // argument ordering is enforced correctly, and that register allocation can 6707 // see that some registers may be assumed clobbered and have to preserve 6708 // them across calls to the intrinsic. 6709 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6710 DL, NodeTys, Ops); 6711 SDValue patchableNode = SDValue(MN, 0); 6712 DAG.setRoot(patchableNode); 6713 setValue(&I, patchableNode); 6714 return; 6715 } 6716 case Intrinsic::xray_typedevent: { 6717 // Here we want to make sure that the intrinsic behaves as if it has a 6718 // specific calling convention, and only for x86_64. 6719 // FIXME: Support other platforms later. 6720 const auto &Triple = DAG.getTarget().getTargetTriple(); 6721 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6722 return; 6723 6724 SDLoc DL = getCurSDLoc(); 6725 SmallVector<SDValue, 8> Ops; 6726 6727 // We want to say that we always want the arguments in registers. 6728 // It's unclear to me how manipulating the selection DAG here forces callers 6729 // to provide arguments in registers instead of on the stack. 6730 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6731 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6732 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6733 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6734 SDValue Chain = getRoot(); 6735 Ops.push_back(LogTypeId); 6736 Ops.push_back(LogEntryVal); 6737 Ops.push_back(StrSizeVal); 6738 Ops.push_back(Chain); 6739 6740 // We need to enforce the calling convention for the callsite, so that 6741 // argument ordering is enforced correctly, and that register allocation can 6742 // see that some registers may be assumed clobbered and have to preserve 6743 // them across calls to the intrinsic. 6744 MachineSDNode *MN = DAG.getMachineNode( 6745 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6746 SDValue patchableNode = SDValue(MN, 0); 6747 DAG.setRoot(patchableNode); 6748 setValue(&I, patchableNode); 6749 return; 6750 } 6751 case Intrinsic::experimental_deoptimize: 6752 LowerDeoptimizeCall(&I); 6753 return; 6754 6755 case Intrinsic::experimental_vector_reduce_v2_fadd: 6756 case Intrinsic::experimental_vector_reduce_v2_fmul: 6757 case Intrinsic::experimental_vector_reduce_add: 6758 case Intrinsic::experimental_vector_reduce_mul: 6759 case Intrinsic::experimental_vector_reduce_and: 6760 case Intrinsic::experimental_vector_reduce_or: 6761 case Intrinsic::experimental_vector_reduce_xor: 6762 case Intrinsic::experimental_vector_reduce_smax: 6763 case Intrinsic::experimental_vector_reduce_smin: 6764 case Intrinsic::experimental_vector_reduce_umax: 6765 case Intrinsic::experimental_vector_reduce_umin: 6766 case Intrinsic::experimental_vector_reduce_fmax: 6767 case Intrinsic::experimental_vector_reduce_fmin: 6768 visitVectorReduce(I, Intrinsic); 6769 return; 6770 6771 case Intrinsic::icall_branch_funnel: { 6772 SmallVector<SDValue, 16> Ops; 6773 Ops.push_back(getValue(I.getArgOperand(0))); 6774 6775 int64_t Offset; 6776 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6777 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6778 if (!Base) 6779 report_fatal_error( 6780 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6781 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6782 6783 struct BranchFunnelTarget { 6784 int64_t Offset; 6785 SDValue Target; 6786 }; 6787 SmallVector<BranchFunnelTarget, 8> Targets; 6788 6789 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6790 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6791 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6792 if (ElemBase != Base) 6793 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6794 "to the same GlobalValue"); 6795 6796 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6797 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6798 if (!GA) 6799 report_fatal_error( 6800 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6801 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6802 GA->getGlobal(), getCurSDLoc(), 6803 Val.getValueType(), GA->getOffset())}); 6804 } 6805 llvm::sort(Targets, 6806 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6807 return T1.Offset < T2.Offset; 6808 }); 6809 6810 for (auto &T : Targets) { 6811 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6812 Ops.push_back(T.Target); 6813 } 6814 6815 Ops.push_back(DAG.getRoot()); // Chain 6816 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6817 getCurSDLoc(), MVT::Other, Ops), 6818 0); 6819 DAG.setRoot(N); 6820 setValue(&I, N); 6821 HasTailCall = true; 6822 return; 6823 } 6824 6825 case Intrinsic::wasm_landingpad_index: 6826 // Information this intrinsic contained has been transferred to 6827 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6828 // delete it now. 6829 return; 6830 6831 case Intrinsic::aarch64_settag: 6832 case Intrinsic::aarch64_settag_zero: { 6833 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6834 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6835 SDValue Val = TSI.EmitTargetCodeForSetTag( 6836 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6837 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6838 ZeroMemory); 6839 DAG.setRoot(Val); 6840 setValue(&I, Val); 6841 return; 6842 } 6843 case Intrinsic::ptrmask: { 6844 SDValue Ptr = getValue(I.getOperand(0)); 6845 SDValue Const = getValue(I.getOperand(1)); 6846 6847 EVT DestVT = 6848 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6849 6850 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6851 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6852 return; 6853 } 6854 } 6855 } 6856 6857 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6858 const ConstrainedFPIntrinsic &FPI) { 6859 SDLoc sdl = getCurSDLoc(); 6860 6861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6862 SmallVector<EVT, 4> ValueVTs; 6863 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6864 ValueVTs.push_back(MVT::Other); // Out chain 6865 6866 // We do not need to serialize constrained FP intrinsics against 6867 // each other or against (nonvolatile) loads, so they can be 6868 // chained like loads. 6869 SDValue Chain = DAG.getRoot(); 6870 SmallVector<SDValue, 4> Opers; 6871 Opers.push_back(Chain); 6872 if (FPI.isUnaryOp()) { 6873 Opers.push_back(getValue(FPI.getArgOperand(0))); 6874 } else if (FPI.isTernaryOp()) { 6875 Opers.push_back(getValue(FPI.getArgOperand(0))); 6876 Opers.push_back(getValue(FPI.getArgOperand(1))); 6877 Opers.push_back(getValue(FPI.getArgOperand(2))); 6878 } else { 6879 Opers.push_back(getValue(FPI.getArgOperand(0))); 6880 Opers.push_back(getValue(FPI.getArgOperand(1))); 6881 } 6882 6883 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6884 assert(Result.getNode()->getNumValues() == 2); 6885 6886 // Push node to the appropriate list so that future instructions can be 6887 // chained up correctly. 6888 SDValue OutChain = Result.getValue(1); 6889 switch (EB) { 6890 case fp::ExceptionBehavior::ebIgnore: 6891 // The only reason why ebIgnore nodes still need to be chained is that 6892 // they might depend on the current rounding mode, and therefore must 6893 // not be moved across instruction that may change that mode. 6894 LLVM_FALLTHROUGH; 6895 case fp::ExceptionBehavior::ebMayTrap: 6896 // These must not be moved across calls or instructions that may change 6897 // floating-point exception masks. 6898 PendingConstrainedFP.push_back(OutChain); 6899 break; 6900 case fp::ExceptionBehavior::ebStrict: 6901 // These must not be moved across calls or instructions that may change 6902 // floating-point exception masks or read floating-point exception flags. 6903 // In addition, they cannot be optimized out even if unused. 6904 PendingConstrainedFPStrict.push_back(OutChain); 6905 break; 6906 } 6907 }; 6908 6909 SDVTList VTs = DAG.getVTList(ValueVTs); 6910 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6911 6912 SDNodeFlags Flags; 6913 if (EB == fp::ExceptionBehavior::ebIgnore) 6914 Flags.setNoFPExcept(true); 6915 6916 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6917 Flags.copyFMF(*FPOp); 6918 6919 unsigned Opcode; 6920 switch (FPI.getIntrinsicID()) { 6921 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6922 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6923 case Intrinsic::INTRINSIC: \ 6924 Opcode = ISD::STRICT_##DAGN; \ 6925 break; 6926 #include "llvm/IR/ConstrainedOps.def" 6927 case Intrinsic::experimental_constrained_fmuladd: { 6928 Opcode = ISD::STRICT_FMA; 6929 // Break fmuladd into fmul and fadd. 6930 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6931 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6932 ValueVTs[0])) { 6933 Opers.pop_back(); 6934 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6935 pushOutChain(Mul, EB); 6936 Opcode = ISD::STRICT_FADD; 6937 Opers.clear(); 6938 Opers.push_back(Mul.getValue(1)); 6939 Opers.push_back(Mul.getValue(0)); 6940 Opers.push_back(getValue(FPI.getArgOperand(2))); 6941 } 6942 break; 6943 } 6944 } 6945 6946 // A few strict DAG nodes carry additional operands that are not 6947 // set up by the default code above. 6948 switch (Opcode) { 6949 default: break; 6950 case ISD::STRICT_FP_ROUND: 6951 Opers.push_back( 6952 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6953 break; 6954 case ISD::STRICT_FSETCC: 6955 case ISD::STRICT_FSETCCS: { 6956 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6957 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6958 break; 6959 } 6960 } 6961 6962 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6963 pushOutChain(Result, EB); 6964 6965 SDValue FPResult = Result.getValue(0); 6966 setValue(&FPI, FPResult); 6967 } 6968 6969 std::pair<SDValue, SDValue> 6970 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6971 const BasicBlock *EHPadBB) { 6972 MachineFunction &MF = DAG.getMachineFunction(); 6973 MachineModuleInfo &MMI = MF.getMMI(); 6974 MCSymbol *BeginLabel = nullptr; 6975 6976 if (EHPadBB) { 6977 // Insert a label before the invoke call to mark the try range. This can be 6978 // used to detect deletion of the invoke via the MachineModuleInfo. 6979 BeginLabel = MMI.getContext().createTempSymbol(); 6980 6981 // For SjLj, keep track of which landing pads go with which invokes 6982 // so as to maintain the ordering of pads in the LSDA. 6983 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6984 if (CallSiteIndex) { 6985 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6986 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6987 6988 // Now that the call site is handled, stop tracking it. 6989 MMI.setCurrentCallSite(0); 6990 } 6991 6992 // Both PendingLoads and PendingExports must be flushed here; 6993 // this call might not return. 6994 (void)getRoot(); 6995 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6996 6997 CLI.setChain(getRoot()); 6998 } 6999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7000 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7001 7002 assert((CLI.IsTailCall || Result.second.getNode()) && 7003 "Non-null chain expected with non-tail call!"); 7004 assert((Result.second.getNode() || !Result.first.getNode()) && 7005 "Null value expected with tail call!"); 7006 7007 if (!Result.second.getNode()) { 7008 // As a special case, a null chain means that a tail call has been emitted 7009 // and the DAG root is already updated. 7010 HasTailCall = true; 7011 7012 // Since there's no actual continuation from this block, nothing can be 7013 // relying on us setting vregs for them. 7014 PendingExports.clear(); 7015 } else { 7016 DAG.setRoot(Result.second); 7017 } 7018 7019 if (EHPadBB) { 7020 // Insert a label at the end of the invoke call to mark the try range. This 7021 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7022 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7023 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7024 7025 // Inform MachineModuleInfo of range. 7026 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7027 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7028 // actually use outlined funclets and their LSDA info style. 7029 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7030 assert(CLI.CS); 7031 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7032 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7033 BeginLabel, EndLabel); 7034 } else if (!isScopedEHPersonality(Pers)) { 7035 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7036 } 7037 } 7038 7039 return Result; 7040 } 7041 7042 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7043 bool isTailCall, 7044 const BasicBlock *EHPadBB) { 7045 auto &DL = DAG.getDataLayout(); 7046 FunctionType *FTy = CS.getFunctionType(); 7047 Type *RetTy = CS.getType(); 7048 7049 TargetLowering::ArgListTy Args; 7050 Args.reserve(CS.arg_size()); 7051 7052 const Value *SwiftErrorVal = nullptr; 7053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7054 7055 if (isTailCall) { 7056 // Avoid emitting tail calls in functions with the disable-tail-calls 7057 // attribute. 7058 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7059 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7060 "true") 7061 isTailCall = false; 7062 7063 // We can't tail call inside a function with a swifterror argument. Lowering 7064 // does not support this yet. It would have to move into the swifterror 7065 // register before the call. 7066 if (TLI.supportSwiftError() && 7067 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7068 isTailCall = false; 7069 } 7070 7071 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7072 i != e; ++i) { 7073 TargetLowering::ArgListEntry Entry; 7074 const Value *V = *i; 7075 7076 // Skip empty types 7077 if (V->getType()->isEmptyTy()) 7078 continue; 7079 7080 SDValue ArgNode = getValue(V); 7081 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7082 7083 Entry.setAttributes(&CS, i - CS.arg_begin()); 7084 7085 // Use swifterror virtual register as input to the call. 7086 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7087 SwiftErrorVal = V; 7088 // We find the virtual register for the actual swifterror argument. 7089 // Instead of using the Value, we use the virtual register instead. 7090 Entry.Node = DAG.getRegister( 7091 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7092 EVT(TLI.getPointerTy(DL))); 7093 } 7094 7095 Args.push_back(Entry); 7096 7097 // If we have an explicit sret argument that is an Instruction, (i.e., it 7098 // might point to function-local memory), we can't meaningfully tail-call. 7099 if (Entry.IsSRet && isa<Instruction>(V)) 7100 isTailCall = false; 7101 } 7102 7103 // If call site has a cfguardtarget operand bundle, create and add an 7104 // additional ArgListEntry. 7105 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7106 TargetLowering::ArgListEntry Entry; 7107 Value *V = Bundle->Inputs[0]; 7108 SDValue ArgNode = getValue(V); 7109 Entry.Node = ArgNode; 7110 Entry.Ty = V->getType(); 7111 Entry.IsCFGuardTarget = true; 7112 Args.push_back(Entry); 7113 } 7114 7115 // Check if target-independent constraints permit a tail call here. 7116 // Target-dependent constraints are checked within TLI->LowerCallTo. 7117 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7118 isTailCall = false; 7119 7120 // Disable tail calls if there is an swifterror argument. Targets have not 7121 // been updated to support tail calls. 7122 if (TLI.supportSwiftError() && SwiftErrorVal) 7123 isTailCall = false; 7124 7125 TargetLowering::CallLoweringInfo CLI(DAG); 7126 CLI.setDebugLoc(getCurSDLoc()) 7127 .setChain(getRoot()) 7128 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7129 .setTailCall(isTailCall) 7130 .setConvergent(CS.isConvergent()); 7131 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7132 7133 if (Result.first.getNode()) { 7134 const Instruction *Inst = CS.getInstruction(); 7135 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7136 setValue(Inst, Result.first); 7137 } 7138 7139 // The last element of CLI.InVals has the SDValue for swifterror return. 7140 // Here we copy it to a virtual register and update SwiftErrorMap for 7141 // book-keeping. 7142 if (SwiftErrorVal && TLI.supportSwiftError()) { 7143 // Get the last element of InVals. 7144 SDValue Src = CLI.InVals.back(); 7145 Register VReg = SwiftError.getOrCreateVRegDefAt( 7146 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7147 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7148 DAG.setRoot(CopyNode); 7149 } 7150 } 7151 7152 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7153 SelectionDAGBuilder &Builder) { 7154 // Check to see if this load can be trivially constant folded, e.g. if the 7155 // input is from a string literal. 7156 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7157 // Cast pointer to the type we really want to load. 7158 Type *LoadTy = 7159 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7160 if (LoadVT.isVector()) 7161 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7162 7163 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7164 PointerType::getUnqual(LoadTy)); 7165 7166 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7167 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7168 return Builder.getValue(LoadCst); 7169 } 7170 7171 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7172 // still constant memory, the input chain can be the entry node. 7173 SDValue Root; 7174 bool ConstantMemory = false; 7175 7176 // Do not serialize (non-volatile) loads of constant memory with anything. 7177 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7178 Root = Builder.DAG.getEntryNode(); 7179 ConstantMemory = true; 7180 } else { 7181 // Do not serialize non-volatile loads against each other. 7182 Root = Builder.DAG.getRoot(); 7183 } 7184 7185 SDValue Ptr = Builder.getValue(PtrVal); 7186 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7187 Ptr, MachinePointerInfo(PtrVal), 7188 /* Alignment = */ 1); 7189 7190 if (!ConstantMemory) 7191 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7192 return LoadVal; 7193 } 7194 7195 /// Record the value for an instruction that produces an integer result, 7196 /// converting the type where necessary. 7197 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7198 SDValue Value, 7199 bool IsSigned) { 7200 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7201 I.getType(), true); 7202 if (IsSigned) 7203 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7204 else 7205 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7206 setValue(&I, Value); 7207 } 7208 7209 /// See if we can lower a memcmp call into an optimized form. If so, return 7210 /// true and lower it. Otherwise return false, and it will be lowered like a 7211 /// normal call. 7212 /// The caller already checked that \p I calls the appropriate LibFunc with a 7213 /// correct prototype. 7214 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7215 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7216 const Value *Size = I.getArgOperand(2); 7217 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7218 if (CSize && CSize->getZExtValue() == 0) { 7219 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7220 I.getType(), true); 7221 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7222 return true; 7223 } 7224 7225 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7226 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7227 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7228 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7229 if (Res.first.getNode()) { 7230 processIntegerCallValue(I, Res.first, true); 7231 PendingLoads.push_back(Res.second); 7232 return true; 7233 } 7234 7235 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7236 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7237 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7238 return false; 7239 7240 // If the target has a fast compare for the given size, it will return a 7241 // preferred load type for that size. Require that the load VT is legal and 7242 // that the target supports unaligned loads of that type. Otherwise, return 7243 // INVALID. 7244 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7246 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7247 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7248 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7249 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7250 // TODO: Check alignment of src and dest ptrs. 7251 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7252 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7253 if (!TLI.isTypeLegal(LVT) || 7254 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7255 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7256 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7257 } 7258 7259 return LVT; 7260 }; 7261 7262 // This turns into unaligned loads. We only do this if the target natively 7263 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7264 // we'll only produce a small number of byte loads. 7265 MVT LoadVT; 7266 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7267 switch (NumBitsToCompare) { 7268 default: 7269 return false; 7270 case 16: 7271 LoadVT = MVT::i16; 7272 break; 7273 case 32: 7274 LoadVT = MVT::i32; 7275 break; 7276 case 64: 7277 case 128: 7278 case 256: 7279 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7280 break; 7281 } 7282 7283 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7284 return false; 7285 7286 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7287 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7288 7289 // Bitcast to a wide integer type if the loads are vectors. 7290 if (LoadVT.isVector()) { 7291 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7292 LoadL = DAG.getBitcast(CmpVT, LoadL); 7293 LoadR = DAG.getBitcast(CmpVT, LoadR); 7294 } 7295 7296 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7297 processIntegerCallValue(I, Cmp, false); 7298 return true; 7299 } 7300 7301 /// See if we can lower a memchr call into an optimized form. If so, return 7302 /// true and lower it. Otherwise return false, and it will be lowered like a 7303 /// normal call. 7304 /// The caller already checked that \p I calls the appropriate LibFunc with a 7305 /// correct prototype. 7306 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7307 const Value *Src = I.getArgOperand(0); 7308 const Value *Char = I.getArgOperand(1); 7309 const Value *Length = I.getArgOperand(2); 7310 7311 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7312 std::pair<SDValue, SDValue> Res = 7313 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7314 getValue(Src), getValue(Char), getValue(Length), 7315 MachinePointerInfo(Src)); 7316 if (Res.first.getNode()) { 7317 setValue(&I, Res.first); 7318 PendingLoads.push_back(Res.second); 7319 return true; 7320 } 7321 7322 return false; 7323 } 7324 7325 /// See if we can lower a mempcpy call into an optimized form. If so, return 7326 /// true and lower it. Otherwise return false, and it will be lowered like a 7327 /// normal call. 7328 /// The caller already checked that \p I calls the appropriate LibFunc with a 7329 /// correct prototype. 7330 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7331 SDValue Dst = getValue(I.getArgOperand(0)); 7332 SDValue Src = getValue(I.getArgOperand(1)); 7333 SDValue Size = getValue(I.getArgOperand(2)); 7334 7335 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7336 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7337 // DAG::getMemcpy needs Alignment to be defined. 7338 Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign)); 7339 7340 bool isVol = false; 7341 SDLoc sdl = getCurSDLoc(); 7342 7343 // In the mempcpy context we need to pass in a false value for isTailCall 7344 // because the return pointer needs to be adjusted by the size of 7345 // the copied memory. 7346 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7347 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7348 /*isTailCall=*/false, 7349 MachinePointerInfo(I.getArgOperand(0)), 7350 MachinePointerInfo(I.getArgOperand(1))); 7351 assert(MC.getNode() != nullptr && 7352 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7353 DAG.setRoot(MC); 7354 7355 // Check if Size needs to be truncated or extended. 7356 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7357 7358 // Adjust return pointer to point just past the last dst byte. 7359 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7360 Dst, Size); 7361 setValue(&I, DstPlusSize); 7362 return true; 7363 } 7364 7365 /// See if we can lower a strcpy call into an optimized form. If so, return 7366 /// true and lower it, otherwise return false and it will be lowered like a 7367 /// normal call. 7368 /// The caller already checked that \p I calls the appropriate LibFunc with a 7369 /// correct prototype. 7370 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7371 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7372 7373 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7374 std::pair<SDValue, SDValue> Res = 7375 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7376 getValue(Arg0), getValue(Arg1), 7377 MachinePointerInfo(Arg0), 7378 MachinePointerInfo(Arg1), isStpcpy); 7379 if (Res.first.getNode()) { 7380 setValue(&I, Res.first); 7381 DAG.setRoot(Res.second); 7382 return true; 7383 } 7384 7385 return false; 7386 } 7387 7388 /// See if we can lower a strcmp call into an optimized form. If so, return 7389 /// true and lower it, otherwise return false and it will be lowered like a 7390 /// normal call. 7391 /// The caller already checked that \p I calls the appropriate LibFunc with a 7392 /// correct prototype. 7393 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7394 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7395 7396 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7397 std::pair<SDValue, SDValue> Res = 7398 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7399 getValue(Arg0), getValue(Arg1), 7400 MachinePointerInfo(Arg0), 7401 MachinePointerInfo(Arg1)); 7402 if (Res.first.getNode()) { 7403 processIntegerCallValue(I, Res.first, true); 7404 PendingLoads.push_back(Res.second); 7405 return true; 7406 } 7407 7408 return false; 7409 } 7410 7411 /// See if we can lower a strlen call into an optimized form. If so, return 7412 /// true and lower it, otherwise return false and it will be lowered like a 7413 /// normal call. 7414 /// The caller already checked that \p I calls the appropriate LibFunc with a 7415 /// correct prototype. 7416 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7417 const Value *Arg0 = I.getArgOperand(0); 7418 7419 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7420 std::pair<SDValue, SDValue> Res = 7421 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7422 getValue(Arg0), MachinePointerInfo(Arg0)); 7423 if (Res.first.getNode()) { 7424 processIntegerCallValue(I, Res.first, false); 7425 PendingLoads.push_back(Res.second); 7426 return true; 7427 } 7428 7429 return false; 7430 } 7431 7432 /// See if we can lower a strnlen call into an optimized form. If so, return 7433 /// true and lower it, otherwise return false and it will be lowered like a 7434 /// normal call. 7435 /// The caller already checked that \p I calls the appropriate LibFunc with a 7436 /// correct prototype. 7437 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7438 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7439 7440 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7441 std::pair<SDValue, SDValue> Res = 7442 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7443 getValue(Arg0), getValue(Arg1), 7444 MachinePointerInfo(Arg0)); 7445 if (Res.first.getNode()) { 7446 processIntegerCallValue(I, Res.first, false); 7447 PendingLoads.push_back(Res.second); 7448 return true; 7449 } 7450 7451 return false; 7452 } 7453 7454 /// See if we can lower a unary floating-point operation into an SDNode with 7455 /// the specified Opcode. If so, return true and lower it, otherwise return 7456 /// false and it will be lowered like a normal call. 7457 /// The caller already checked that \p I calls the appropriate LibFunc with a 7458 /// correct prototype. 7459 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7460 unsigned Opcode) { 7461 // We already checked this call's prototype; verify it doesn't modify errno. 7462 if (!I.onlyReadsMemory()) 7463 return false; 7464 7465 SDValue Tmp = getValue(I.getArgOperand(0)); 7466 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7467 return true; 7468 } 7469 7470 /// See if we can lower a binary floating-point operation into an SDNode with 7471 /// the specified Opcode. If so, return true and lower it. Otherwise return 7472 /// false, and it will be lowered like a normal call. 7473 /// The caller already checked that \p I calls the appropriate LibFunc with a 7474 /// correct prototype. 7475 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7476 unsigned Opcode) { 7477 // We already checked this call's prototype; verify it doesn't modify errno. 7478 if (!I.onlyReadsMemory()) 7479 return false; 7480 7481 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7482 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7483 EVT VT = Tmp0.getValueType(); 7484 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7485 return true; 7486 } 7487 7488 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7489 // Handle inline assembly differently. 7490 if (isa<InlineAsm>(I.getCalledValue())) { 7491 visitInlineAsm(&I); 7492 return; 7493 } 7494 7495 if (Function *F = I.getCalledFunction()) { 7496 if (F->isDeclaration()) { 7497 // Is this an LLVM intrinsic or a target-specific intrinsic? 7498 unsigned IID = F->getIntrinsicID(); 7499 if (!IID) 7500 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7501 IID = II->getIntrinsicID(F); 7502 7503 if (IID) { 7504 visitIntrinsicCall(I, IID); 7505 return; 7506 } 7507 } 7508 7509 // Check for well-known libc/libm calls. If the function is internal, it 7510 // can't be a library call. Don't do the check if marked as nobuiltin for 7511 // some reason or the call site requires strict floating point semantics. 7512 LibFunc Func; 7513 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7514 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7515 LibInfo->hasOptimizedCodeGen(Func)) { 7516 switch (Func) { 7517 default: break; 7518 case LibFunc_copysign: 7519 case LibFunc_copysignf: 7520 case LibFunc_copysignl: 7521 // We already checked this call's prototype; verify it doesn't modify 7522 // errno. 7523 if (I.onlyReadsMemory()) { 7524 SDValue LHS = getValue(I.getArgOperand(0)); 7525 SDValue RHS = getValue(I.getArgOperand(1)); 7526 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7527 LHS.getValueType(), LHS, RHS)); 7528 return; 7529 } 7530 break; 7531 case LibFunc_fabs: 7532 case LibFunc_fabsf: 7533 case LibFunc_fabsl: 7534 if (visitUnaryFloatCall(I, ISD::FABS)) 7535 return; 7536 break; 7537 case LibFunc_fmin: 7538 case LibFunc_fminf: 7539 case LibFunc_fminl: 7540 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7541 return; 7542 break; 7543 case LibFunc_fmax: 7544 case LibFunc_fmaxf: 7545 case LibFunc_fmaxl: 7546 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7547 return; 7548 break; 7549 case LibFunc_sin: 7550 case LibFunc_sinf: 7551 case LibFunc_sinl: 7552 if (visitUnaryFloatCall(I, ISD::FSIN)) 7553 return; 7554 break; 7555 case LibFunc_cos: 7556 case LibFunc_cosf: 7557 case LibFunc_cosl: 7558 if (visitUnaryFloatCall(I, ISD::FCOS)) 7559 return; 7560 break; 7561 case LibFunc_sqrt: 7562 case LibFunc_sqrtf: 7563 case LibFunc_sqrtl: 7564 case LibFunc_sqrt_finite: 7565 case LibFunc_sqrtf_finite: 7566 case LibFunc_sqrtl_finite: 7567 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7568 return; 7569 break; 7570 case LibFunc_floor: 7571 case LibFunc_floorf: 7572 case LibFunc_floorl: 7573 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7574 return; 7575 break; 7576 case LibFunc_nearbyint: 7577 case LibFunc_nearbyintf: 7578 case LibFunc_nearbyintl: 7579 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7580 return; 7581 break; 7582 case LibFunc_ceil: 7583 case LibFunc_ceilf: 7584 case LibFunc_ceill: 7585 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7586 return; 7587 break; 7588 case LibFunc_rint: 7589 case LibFunc_rintf: 7590 case LibFunc_rintl: 7591 if (visitUnaryFloatCall(I, ISD::FRINT)) 7592 return; 7593 break; 7594 case LibFunc_round: 7595 case LibFunc_roundf: 7596 case LibFunc_roundl: 7597 if (visitUnaryFloatCall(I, ISD::FROUND)) 7598 return; 7599 break; 7600 case LibFunc_trunc: 7601 case LibFunc_truncf: 7602 case LibFunc_truncl: 7603 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7604 return; 7605 break; 7606 case LibFunc_log2: 7607 case LibFunc_log2f: 7608 case LibFunc_log2l: 7609 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7610 return; 7611 break; 7612 case LibFunc_exp2: 7613 case LibFunc_exp2f: 7614 case LibFunc_exp2l: 7615 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7616 return; 7617 break; 7618 case LibFunc_memcmp: 7619 if (visitMemCmpCall(I)) 7620 return; 7621 break; 7622 case LibFunc_mempcpy: 7623 if (visitMemPCpyCall(I)) 7624 return; 7625 break; 7626 case LibFunc_memchr: 7627 if (visitMemChrCall(I)) 7628 return; 7629 break; 7630 case LibFunc_strcpy: 7631 if (visitStrCpyCall(I, false)) 7632 return; 7633 break; 7634 case LibFunc_stpcpy: 7635 if (visitStrCpyCall(I, true)) 7636 return; 7637 break; 7638 case LibFunc_strcmp: 7639 if (visitStrCmpCall(I)) 7640 return; 7641 break; 7642 case LibFunc_strlen: 7643 if (visitStrLenCall(I)) 7644 return; 7645 break; 7646 case LibFunc_strnlen: 7647 if (visitStrNLenCall(I)) 7648 return; 7649 break; 7650 } 7651 } 7652 } 7653 7654 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7655 // have to do anything here to lower funclet bundles. 7656 // CFGuardTarget bundles are lowered in LowerCallTo. 7657 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7658 LLVMContext::OB_funclet, 7659 LLVMContext::OB_cfguardtarget}) && 7660 "Cannot lower calls with arbitrary operand bundles!"); 7661 7662 SDValue Callee = getValue(I.getCalledValue()); 7663 7664 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7665 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7666 else 7667 // Check if we can potentially perform a tail call. More detailed checking 7668 // is be done within LowerCallTo, after more information about the call is 7669 // known. 7670 LowerCallTo(&I, Callee, I.isTailCall()); 7671 } 7672 7673 namespace { 7674 7675 /// AsmOperandInfo - This contains information for each constraint that we are 7676 /// lowering. 7677 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7678 public: 7679 /// CallOperand - If this is the result output operand or a clobber 7680 /// this is null, otherwise it is the incoming operand to the CallInst. 7681 /// This gets modified as the asm is processed. 7682 SDValue CallOperand; 7683 7684 /// AssignedRegs - If this is a register or register class operand, this 7685 /// contains the set of register corresponding to the operand. 7686 RegsForValue AssignedRegs; 7687 7688 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7689 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7690 } 7691 7692 /// Whether or not this operand accesses memory 7693 bool hasMemory(const TargetLowering &TLI) const { 7694 // Indirect operand accesses access memory. 7695 if (isIndirect) 7696 return true; 7697 7698 for (const auto &Code : Codes) 7699 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7700 return true; 7701 7702 return false; 7703 } 7704 7705 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7706 /// corresponds to. If there is no Value* for this operand, it returns 7707 /// MVT::Other. 7708 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7709 const DataLayout &DL) const { 7710 if (!CallOperandVal) return MVT::Other; 7711 7712 if (isa<BasicBlock>(CallOperandVal)) 7713 return TLI.getPointerTy(DL); 7714 7715 llvm::Type *OpTy = CallOperandVal->getType(); 7716 7717 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7718 // If this is an indirect operand, the operand is a pointer to the 7719 // accessed type. 7720 if (isIndirect) { 7721 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7722 if (!PtrTy) 7723 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7724 OpTy = PtrTy->getElementType(); 7725 } 7726 7727 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7728 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7729 if (STy->getNumElements() == 1) 7730 OpTy = STy->getElementType(0); 7731 7732 // If OpTy is not a single value, it may be a struct/union that we 7733 // can tile with integers. 7734 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7735 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7736 switch (BitSize) { 7737 default: break; 7738 case 1: 7739 case 8: 7740 case 16: 7741 case 32: 7742 case 64: 7743 case 128: 7744 OpTy = IntegerType::get(Context, BitSize); 7745 break; 7746 } 7747 } 7748 7749 return TLI.getValueType(DL, OpTy, true); 7750 } 7751 }; 7752 7753 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7754 7755 } // end anonymous namespace 7756 7757 /// Make sure that the output operand \p OpInfo and its corresponding input 7758 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7759 /// out). 7760 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7761 SDISelAsmOperandInfo &MatchingOpInfo, 7762 SelectionDAG &DAG) { 7763 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7764 return; 7765 7766 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7767 const auto &TLI = DAG.getTargetLoweringInfo(); 7768 7769 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7770 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7771 OpInfo.ConstraintVT); 7772 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7773 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7774 MatchingOpInfo.ConstraintVT); 7775 if ((OpInfo.ConstraintVT.isInteger() != 7776 MatchingOpInfo.ConstraintVT.isInteger()) || 7777 (MatchRC.second != InputRC.second)) { 7778 // FIXME: error out in a more elegant fashion 7779 report_fatal_error("Unsupported asm: input constraint" 7780 " with a matching output constraint of" 7781 " incompatible type!"); 7782 } 7783 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7784 } 7785 7786 /// Get a direct memory input to behave well as an indirect operand. 7787 /// This may introduce stores, hence the need for a \p Chain. 7788 /// \return The (possibly updated) chain. 7789 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7790 SDISelAsmOperandInfo &OpInfo, 7791 SelectionDAG &DAG) { 7792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7793 7794 // If we don't have an indirect input, put it in the constpool if we can, 7795 // otherwise spill it to a stack slot. 7796 // TODO: This isn't quite right. We need to handle these according to 7797 // the addressing mode that the constraint wants. Also, this may take 7798 // an additional register for the computation and we don't want that 7799 // either. 7800 7801 // If the operand is a float, integer, or vector constant, spill to a 7802 // constant pool entry to get its address. 7803 const Value *OpVal = OpInfo.CallOperandVal; 7804 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7805 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7806 OpInfo.CallOperand = DAG.getConstantPool( 7807 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7808 return Chain; 7809 } 7810 7811 // Otherwise, create a stack slot and emit a store to it before the asm. 7812 Type *Ty = OpVal->getType(); 7813 auto &DL = DAG.getDataLayout(); 7814 uint64_t TySize = DL.getTypeAllocSize(Ty); 7815 unsigned Align = DL.getPrefTypeAlignment(Ty); 7816 MachineFunction &MF = DAG.getMachineFunction(); 7817 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7818 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7819 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7820 MachinePointerInfo::getFixedStack(MF, SSFI), 7821 TLI.getMemValueType(DL, Ty)); 7822 OpInfo.CallOperand = StackSlot; 7823 7824 return Chain; 7825 } 7826 7827 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7828 /// specified operand. We prefer to assign virtual registers, to allow the 7829 /// register allocator to handle the assignment process. However, if the asm 7830 /// uses features that we can't model on machineinstrs, we have SDISel do the 7831 /// allocation. This produces generally horrible, but correct, code. 7832 /// 7833 /// OpInfo describes the operand 7834 /// RefOpInfo describes the matching operand if any, the operand otherwise 7835 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7836 SDISelAsmOperandInfo &OpInfo, 7837 SDISelAsmOperandInfo &RefOpInfo) { 7838 LLVMContext &Context = *DAG.getContext(); 7839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7840 7841 MachineFunction &MF = DAG.getMachineFunction(); 7842 SmallVector<unsigned, 4> Regs; 7843 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7844 7845 // No work to do for memory operations. 7846 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7847 return; 7848 7849 // If this is a constraint for a single physreg, or a constraint for a 7850 // register class, find it. 7851 unsigned AssignedReg; 7852 const TargetRegisterClass *RC; 7853 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7854 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7855 // RC is unset only on failure. Return immediately. 7856 if (!RC) 7857 return; 7858 7859 // Get the actual register value type. This is important, because the user 7860 // may have asked for (e.g.) the AX register in i32 type. We need to 7861 // remember that AX is actually i16 to get the right extension. 7862 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7863 7864 if (OpInfo.ConstraintVT != MVT::Other) { 7865 // If this is an FP operand in an integer register (or visa versa), or more 7866 // generally if the operand value disagrees with the register class we plan 7867 // to stick it in, fix the operand type. 7868 // 7869 // If this is an input value, the bitcast to the new type is done now. 7870 // Bitcast for output value is done at the end of visitInlineAsm(). 7871 if ((OpInfo.Type == InlineAsm::isOutput || 7872 OpInfo.Type == InlineAsm::isInput) && 7873 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7874 // Try to convert to the first EVT that the reg class contains. If the 7875 // types are identical size, use a bitcast to convert (e.g. two differing 7876 // vector types). Note: output bitcast is done at the end of 7877 // visitInlineAsm(). 7878 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7879 // Exclude indirect inputs while they are unsupported because the code 7880 // to perform the load is missing and thus OpInfo.CallOperand still 7881 // refers to the input address rather than the pointed-to value. 7882 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7883 OpInfo.CallOperand = 7884 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7885 OpInfo.ConstraintVT = RegVT; 7886 // If the operand is an FP value and we want it in integer registers, 7887 // use the corresponding integer type. This turns an f64 value into 7888 // i64, which can be passed with two i32 values on a 32-bit machine. 7889 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7890 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7891 if (OpInfo.Type == InlineAsm::isInput) 7892 OpInfo.CallOperand = 7893 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7894 OpInfo.ConstraintVT = VT; 7895 } 7896 } 7897 } 7898 7899 // No need to allocate a matching input constraint since the constraint it's 7900 // matching to has already been allocated. 7901 if (OpInfo.isMatchingInputConstraint()) 7902 return; 7903 7904 EVT ValueVT = OpInfo.ConstraintVT; 7905 if (OpInfo.ConstraintVT == MVT::Other) 7906 ValueVT = RegVT; 7907 7908 // Initialize NumRegs. 7909 unsigned NumRegs = 1; 7910 if (OpInfo.ConstraintVT != MVT::Other) 7911 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7912 7913 // If this is a constraint for a specific physical register, like {r17}, 7914 // assign it now. 7915 7916 // If this associated to a specific register, initialize iterator to correct 7917 // place. If virtual, make sure we have enough registers 7918 7919 // Initialize iterator if necessary 7920 TargetRegisterClass::iterator I = RC->begin(); 7921 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7922 7923 // Do not check for single registers. 7924 if (AssignedReg) { 7925 for (; *I != AssignedReg; ++I) 7926 assert(I != RC->end() && "AssignedReg should be member of RC"); 7927 } 7928 7929 for (; NumRegs; --NumRegs, ++I) { 7930 assert(I != RC->end() && "Ran out of registers to allocate!"); 7931 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7932 Regs.push_back(R); 7933 } 7934 7935 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7936 } 7937 7938 static unsigned 7939 findMatchingInlineAsmOperand(unsigned OperandNo, 7940 const std::vector<SDValue> &AsmNodeOperands) { 7941 // Scan until we find the definition we already emitted of this operand. 7942 unsigned CurOp = InlineAsm::Op_FirstOperand; 7943 for (; OperandNo; --OperandNo) { 7944 // Advance to the next operand. 7945 unsigned OpFlag = 7946 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7947 assert((InlineAsm::isRegDefKind(OpFlag) || 7948 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7949 InlineAsm::isMemKind(OpFlag)) && 7950 "Skipped past definitions?"); 7951 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7952 } 7953 return CurOp; 7954 } 7955 7956 namespace { 7957 7958 class ExtraFlags { 7959 unsigned Flags = 0; 7960 7961 public: 7962 explicit ExtraFlags(ImmutableCallSite CS) { 7963 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7964 if (IA->hasSideEffects()) 7965 Flags |= InlineAsm::Extra_HasSideEffects; 7966 if (IA->isAlignStack()) 7967 Flags |= InlineAsm::Extra_IsAlignStack; 7968 if (CS.isConvergent()) 7969 Flags |= InlineAsm::Extra_IsConvergent; 7970 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7971 } 7972 7973 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7974 // Ideally, we would only check against memory constraints. However, the 7975 // meaning of an Other constraint can be target-specific and we can't easily 7976 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7977 // for Other constraints as well. 7978 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7979 OpInfo.ConstraintType == TargetLowering::C_Other) { 7980 if (OpInfo.Type == InlineAsm::isInput) 7981 Flags |= InlineAsm::Extra_MayLoad; 7982 else if (OpInfo.Type == InlineAsm::isOutput) 7983 Flags |= InlineAsm::Extra_MayStore; 7984 else if (OpInfo.Type == InlineAsm::isClobber) 7985 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7986 } 7987 } 7988 7989 unsigned get() const { return Flags; } 7990 }; 7991 7992 } // end anonymous namespace 7993 7994 /// visitInlineAsm - Handle a call to an InlineAsm object. 7995 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7996 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7997 7998 /// ConstraintOperands - Information about all of the constraints. 7999 SDISelAsmOperandInfoVector ConstraintOperands; 8000 8001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8002 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8003 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8004 8005 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8006 // AsmDialect, MayLoad, MayStore). 8007 bool HasSideEffect = IA->hasSideEffects(); 8008 ExtraFlags ExtraInfo(CS); 8009 8010 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8011 unsigned ResNo = 0; // ResNo - The result number of the next output. 8012 unsigned NumMatchingOps = 0; 8013 for (auto &T : TargetConstraints) { 8014 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8015 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8016 8017 // Compute the value type for each operand. 8018 if (OpInfo.Type == InlineAsm::isInput || 8019 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8020 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8021 8022 // Process the call argument. BasicBlocks are labels, currently appearing 8023 // only in asm's. 8024 const Instruction *I = CS.getInstruction(); 8025 if (isa<CallBrInst>(I) && 8026 ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() - 8027 cast<CallBrInst>(I)->getNumIndirectDests() - 8028 NumMatchingOps) && 8029 (NumMatchingOps == 0 || 8030 ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() - 8031 NumMatchingOps))) { 8032 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8033 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8034 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8035 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8036 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8037 } else { 8038 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8039 } 8040 8041 OpInfo.ConstraintVT = 8042 OpInfo 8043 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8044 .getSimpleVT(); 8045 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8046 // The return value of the call is this value. As such, there is no 8047 // corresponding argument. 8048 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8049 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8050 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8051 DAG.getDataLayout(), STy->getElementType(ResNo)); 8052 } else { 8053 assert(ResNo == 0 && "Asm only has one result!"); 8054 OpInfo.ConstraintVT = 8055 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8056 } 8057 ++ResNo; 8058 } else { 8059 OpInfo.ConstraintVT = MVT::Other; 8060 } 8061 8062 if (OpInfo.hasMatchingInput()) 8063 ++NumMatchingOps; 8064 8065 if (!HasSideEffect) 8066 HasSideEffect = OpInfo.hasMemory(TLI); 8067 8068 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8069 // FIXME: Could we compute this on OpInfo rather than T? 8070 8071 // Compute the constraint code and ConstraintType to use. 8072 TLI.ComputeConstraintToUse(T, SDValue()); 8073 8074 if (T.ConstraintType == TargetLowering::C_Immediate && 8075 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8076 // We've delayed emitting a diagnostic like the "n" constraint because 8077 // inlining could cause an integer showing up. 8078 return emitInlineAsmError( 8079 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8080 "integer constant expression"); 8081 8082 ExtraInfo.update(T); 8083 } 8084 8085 8086 // We won't need to flush pending loads if this asm doesn't touch 8087 // memory and is nonvolatile. 8088 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8089 8090 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8091 if (IsCallBr) { 8092 // If this is a callbr we need to flush pending exports since inlineasm_br 8093 // is a terminator. We need to do this before nodes are glued to 8094 // the inlineasm_br node. 8095 Chain = getControlRoot(); 8096 } 8097 8098 // Second pass over the constraints: compute which constraint option to use. 8099 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8100 // If this is an output operand with a matching input operand, look up the 8101 // matching input. If their types mismatch, e.g. one is an integer, the 8102 // other is floating point, or their sizes are different, flag it as an 8103 // error. 8104 if (OpInfo.hasMatchingInput()) { 8105 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8106 patchMatchingInput(OpInfo, Input, DAG); 8107 } 8108 8109 // Compute the constraint code and ConstraintType to use. 8110 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8111 8112 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8113 OpInfo.Type == InlineAsm::isClobber) 8114 continue; 8115 8116 // If this is a memory input, and if the operand is not indirect, do what we 8117 // need to provide an address for the memory input. 8118 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8119 !OpInfo.isIndirect) { 8120 assert((OpInfo.isMultipleAlternative || 8121 (OpInfo.Type == InlineAsm::isInput)) && 8122 "Can only indirectify direct input operands!"); 8123 8124 // Memory operands really want the address of the value. 8125 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8126 8127 // There is no longer a Value* corresponding to this operand. 8128 OpInfo.CallOperandVal = nullptr; 8129 8130 // It is now an indirect operand. 8131 OpInfo.isIndirect = true; 8132 } 8133 8134 } 8135 8136 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8137 std::vector<SDValue> AsmNodeOperands; 8138 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8139 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8140 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8141 8142 // If we have a !srcloc metadata node associated with it, we want to attach 8143 // this to the ultimately generated inline asm machineinstr. To do this, we 8144 // pass in the third operand as this (potentially null) inline asm MDNode. 8145 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8146 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8147 8148 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8149 // bits as operand 3. 8150 AsmNodeOperands.push_back(DAG.getTargetConstant( 8151 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8152 8153 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8154 // this, assign virtual and physical registers for inputs and otput. 8155 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8156 // Assign Registers. 8157 SDISelAsmOperandInfo &RefOpInfo = 8158 OpInfo.isMatchingInputConstraint() 8159 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8160 : OpInfo; 8161 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8162 8163 switch (OpInfo.Type) { 8164 case InlineAsm::isOutput: 8165 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8166 unsigned ConstraintID = 8167 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8168 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8169 "Failed to convert memory constraint code to constraint id."); 8170 8171 // Add information to the INLINEASM node to know about this output. 8172 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8173 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8174 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8175 MVT::i32)); 8176 AsmNodeOperands.push_back(OpInfo.CallOperand); 8177 } else { 8178 // Otherwise, this outputs to a register (directly for C_Register / 8179 // C_RegisterClass, and a target-defined fashion for 8180 // C_Immediate/C_Other). Find a register that we can use. 8181 if (OpInfo.AssignedRegs.Regs.empty()) { 8182 emitInlineAsmError( 8183 CS, "couldn't allocate output register for constraint '" + 8184 Twine(OpInfo.ConstraintCode) + "'"); 8185 return; 8186 } 8187 8188 // Add information to the INLINEASM node to know that this register is 8189 // set. 8190 OpInfo.AssignedRegs.AddInlineAsmOperands( 8191 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8192 : InlineAsm::Kind_RegDef, 8193 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8194 } 8195 break; 8196 8197 case InlineAsm::isInput: { 8198 SDValue InOperandVal = OpInfo.CallOperand; 8199 8200 if (OpInfo.isMatchingInputConstraint()) { 8201 // If this is required to match an output register we have already set, 8202 // just use its register. 8203 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8204 AsmNodeOperands); 8205 unsigned OpFlag = 8206 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8207 if (InlineAsm::isRegDefKind(OpFlag) || 8208 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8209 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8210 if (OpInfo.isIndirect) { 8211 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8212 emitInlineAsmError(CS, "inline asm not supported yet:" 8213 " don't know how to handle tied " 8214 "indirect register inputs"); 8215 return; 8216 } 8217 8218 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8219 SmallVector<unsigned, 4> Regs; 8220 8221 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8222 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8223 MachineRegisterInfo &RegInfo = 8224 DAG.getMachineFunction().getRegInfo(); 8225 for (unsigned i = 0; i != NumRegs; ++i) 8226 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8227 } else { 8228 emitInlineAsmError(CS, "inline asm error: This value type register " 8229 "class is not natively supported!"); 8230 return; 8231 } 8232 8233 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8234 8235 SDLoc dl = getCurSDLoc(); 8236 // Use the produced MatchedRegs object to 8237 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8238 CS.getInstruction()); 8239 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8240 true, OpInfo.getMatchedOperand(), dl, 8241 DAG, AsmNodeOperands); 8242 break; 8243 } 8244 8245 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8246 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8247 "Unexpected number of operands"); 8248 // Add information to the INLINEASM node to know about this input. 8249 // See InlineAsm.h isUseOperandTiedToDef. 8250 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8251 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8252 OpInfo.getMatchedOperand()); 8253 AsmNodeOperands.push_back(DAG.getTargetConstant( 8254 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8255 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8256 break; 8257 } 8258 8259 // Treat indirect 'X' constraint as memory. 8260 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8261 OpInfo.isIndirect) 8262 OpInfo.ConstraintType = TargetLowering::C_Memory; 8263 8264 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8265 OpInfo.ConstraintType == TargetLowering::C_Other) { 8266 std::vector<SDValue> Ops; 8267 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8268 Ops, DAG); 8269 if (Ops.empty()) { 8270 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8271 if (isa<ConstantSDNode>(InOperandVal)) { 8272 emitInlineAsmError(CS, "value out of range for constraint '" + 8273 Twine(OpInfo.ConstraintCode) + "'"); 8274 return; 8275 } 8276 8277 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8278 Twine(OpInfo.ConstraintCode) + "'"); 8279 return; 8280 } 8281 8282 // Add information to the INLINEASM node to know about this input. 8283 unsigned ResOpType = 8284 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8285 AsmNodeOperands.push_back(DAG.getTargetConstant( 8286 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8287 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8288 break; 8289 } 8290 8291 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8292 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8293 assert(InOperandVal.getValueType() == 8294 TLI.getPointerTy(DAG.getDataLayout()) && 8295 "Memory operands expect pointer values"); 8296 8297 unsigned ConstraintID = 8298 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8299 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8300 "Failed to convert memory constraint code to constraint id."); 8301 8302 // Add information to the INLINEASM node to know about this input. 8303 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8304 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8305 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8306 getCurSDLoc(), 8307 MVT::i32)); 8308 AsmNodeOperands.push_back(InOperandVal); 8309 break; 8310 } 8311 8312 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8313 OpInfo.ConstraintType == TargetLowering::C_Register) && 8314 "Unknown constraint type!"); 8315 8316 // TODO: Support this. 8317 if (OpInfo.isIndirect) { 8318 emitInlineAsmError( 8319 CS, "Don't know how to handle indirect register inputs yet " 8320 "for constraint '" + 8321 Twine(OpInfo.ConstraintCode) + "'"); 8322 return; 8323 } 8324 8325 // Copy the input into the appropriate registers. 8326 if (OpInfo.AssignedRegs.Regs.empty()) { 8327 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8328 Twine(OpInfo.ConstraintCode) + "'"); 8329 return; 8330 } 8331 8332 SDLoc dl = getCurSDLoc(); 8333 8334 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8335 Chain, &Flag, CS.getInstruction()); 8336 8337 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8338 dl, DAG, AsmNodeOperands); 8339 break; 8340 } 8341 case InlineAsm::isClobber: 8342 // Add the clobbered value to the operand list, so that the register 8343 // allocator is aware that the physreg got clobbered. 8344 if (!OpInfo.AssignedRegs.Regs.empty()) 8345 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8346 false, 0, getCurSDLoc(), DAG, 8347 AsmNodeOperands); 8348 break; 8349 } 8350 } 8351 8352 // Finish up input operands. Set the input chain and add the flag last. 8353 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8354 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8355 8356 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8357 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8358 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8359 Flag = Chain.getValue(1); 8360 8361 // Do additional work to generate outputs. 8362 8363 SmallVector<EVT, 1> ResultVTs; 8364 SmallVector<SDValue, 1> ResultValues; 8365 SmallVector<SDValue, 8> OutChains; 8366 8367 llvm::Type *CSResultType = CS.getType(); 8368 ArrayRef<Type *> ResultTypes; 8369 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8370 ResultTypes = StructResult->elements(); 8371 else if (!CSResultType->isVoidTy()) 8372 ResultTypes = makeArrayRef(CSResultType); 8373 8374 auto CurResultType = ResultTypes.begin(); 8375 auto handleRegAssign = [&](SDValue V) { 8376 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8377 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8378 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8379 ++CurResultType; 8380 // If the type of the inline asm call site return value is different but has 8381 // same size as the type of the asm output bitcast it. One example of this 8382 // is for vectors with different width / number of elements. This can 8383 // happen for register classes that can contain multiple different value 8384 // types. The preg or vreg allocated may not have the same VT as was 8385 // expected. 8386 // 8387 // This can also happen for a return value that disagrees with the register 8388 // class it is put in, eg. a double in a general-purpose register on a 8389 // 32-bit machine. 8390 if (ResultVT != V.getValueType() && 8391 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8392 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8393 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8394 V.getValueType().isInteger()) { 8395 // If a result value was tied to an input value, the computed result 8396 // may have a wider width than the expected result. Extract the 8397 // relevant portion. 8398 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8399 } 8400 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8401 ResultVTs.push_back(ResultVT); 8402 ResultValues.push_back(V); 8403 }; 8404 8405 // Deal with output operands. 8406 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8407 if (OpInfo.Type == InlineAsm::isOutput) { 8408 SDValue Val; 8409 // Skip trivial output operands. 8410 if (OpInfo.AssignedRegs.Regs.empty()) 8411 continue; 8412 8413 switch (OpInfo.ConstraintType) { 8414 case TargetLowering::C_Register: 8415 case TargetLowering::C_RegisterClass: 8416 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8417 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8418 break; 8419 case TargetLowering::C_Immediate: 8420 case TargetLowering::C_Other: 8421 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8422 OpInfo, DAG); 8423 break; 8424 case TargetLowering::C_Memory: 8425 break; // Already handled. 8426 case TargetLowering::C_Unknown: 8427 assert(false && "Unexpected unknown constraint"); 8428 } 8429 8430 // Indirect output manifest as stores. Record output chains. 8431 if (OpInfo.isIndirect) { 8432 const Value *Ptr = OpInfo.CallOperandVal; 8433 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8434 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8435 MachinePointerInfo(Ptr)); 8436 OutChains.push_back(Store); 8437 } else { 8438 // generate CopyFromRegs to associated registers. 8439 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8440 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8441 for (const SDValue &V : Val->op_values()) 8442 handleRegAssign(V); 8443 } else 8444 handleRegAssign(Val); 8445 } 8446 } 8447 } 8448 8449 // Set results. 8450 if (!ResultValues.empty()) { 8451 assert(CurResultType == ResultTypes.end() && 8452 "Mismatch in number of ResultTypes"); 8453 assert(ResultValues.size() == ResultTypes.size() && 8454 "Mismatch in number of output operands in asm result"); 8455 8456 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8457 DAG.getVTList(ResultVTs), ResultValues); 8458 setValue(CS.getInstruction(), V); 8459 } 8460 8461 // Collect store chains. 8462 if (!OutChains.empty()) 8463 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8464 8465 // Only Update Root if inline assembly has a memory effect. 8466 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8467 DAG.setRoot(Chain); 8468 } 8469 8470 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8471 const Twine &Message) { 8472 LLVMContext &Ctx = *DAG.getContext(); 8473 Ctx.emitError(CS.getInstruction(), Message); 8474 8475 // Make sure we leave the DAG in a valid state 8476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8477 SmallVector<EVT, 1> ValueVTs; 8478 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8479 8480 if (ValueVTs.empty()) 8481 return; 8482 8483 SmallVector<SDValue, 1> Ops; 8484 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8485 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8486 8487 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8488 } 8489 8490 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8491 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8492 MVT::Other, getRoot(), 8493 getValue(I.getArgOperand(0)), 8494 DAG.getSrcValue(I.getArgOperand(0)))); 8495 } 8496 8497 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8499 const DataLayout &DL = DAG.getDataLayout(); 8500 SDValue V = DAG.getVAArg( 8501 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8502 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8503 DL.getABITypeAlignment(I.getType())); 8504 DAG.setRoot(V.getValue(1)); 8505 8506 if (I.getType()->isPointerTy()) 8507 V = DAG.getPtrExtOrTrunc( 8508 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8509 setValue(&I, V); 8510 } 8511 8512 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8513 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8514 MVT::Other, getRoot(), 8515 getValue(I.getArgOperand(0)), 8516 DAG.getSrcValue(I.getArgOperand(0)))); 8517 } 8518 8519 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8520 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8521 MVT::Other, getRoot(), 8522 getValue(I.getArgOperand(0)), 8523 getValue(I.getArgOperand(1)), 8524 DAG.getSrcValue(I.getArgOperand(0)), 8525 DAG.getSrcValue(I.getArgOperand(1)))); 8526 } 8527 8528 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8529 const Instruction &I, 8530 SDValue Op) { 8531 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8532 if (!Range) 8533 return Op; 8534 8535 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8536 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8537 return Op; 8538 8539 APInt Lo = CR.getUnsignedMin(); 8540 if (!Lo.isMinValue()) 8541 return Op; 8542 8543 APInt Hi = CR.getUnsignedMax(); 8544 unsigned Bits = std::max(Hi.getActiveBits(), 8545 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8546 8547 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8548 8549 SDLoc SL = getCurSDLoc(); 8550 8551 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8552 DAG.getValueType(SmallVT)); 8553 unsigned NumVals = Op.getNode()->getNumValues(); 8554 if (NumVals == 1) 8555 return ZExt; 8556 8557 SmallVector<SDValue, 4> Ops; 8558 8559 Ops.push_back(ZExt); 8560 for (unsigned I = 1; I != NumVals; ++I) 8561 Ops.push_back(Op.getValue(I)); 8562 8563 return DAG.getMergeValues(Ops, SL); 8564 } 8565 8566 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8567 /// the call being lowered. 8568 /// 8569 /// This is a helper for lowering intrinsics that follow a target calling 8570 /// convention or require stack pointer adjustment. Only a subset of the 8571 /// intrinsic's operands need to participate in the calling convention. 8572 void SelectionDAGBuilder::populateCallLoweringInfo( 8573 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8574 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8575 bool IsPatchPoint) { 8576 TargetLowering::ArgListTy Args; 8577 Args.reserve(NumArgs); 8578 8579 // Populate the argument list. 8580 // Attributes for args start at offset 1, after the return attribute. 8581 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8582 ArgI != ArgE; ++ArgI) { 8583 const Value *V = Call->getOperand(ArgI); 8584 8585 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8586 8587 TargetLowering::ArgListEntry Entry; 8588 Entry.Node = getValue(V); 8589 Entry.Ty = V->getType(); 8590 Entry.setAttributes(Call, ArgI); 8591 Args.push_back(Entry); 8592 } 8593 8594 CLI.setDebugLoc(getCurSDLoc()) 8595 .setChain(getRoot()) 8596 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8597 .setDiscardResult(Call->use_empty()) 8598 .setIsPatchPoint(IsPatchPoint); 8599 } 8600 8601 /// Add a stack map intrinsic call's live variable operands to a stackmap 8602 /// or patchpoint target node's operand list. 8603 /// 8604 /// Constants are converted to TargetConstants purely as an optimization to 8605 /// avoid constant materialization and register allocation. 8606 /// 8607 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8608 /// generate addess computation nodes, and so FinalizeISel can convert the 8609 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8610 /// address materialization and register allocation, but may also be required 8611 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8612 /// alloca in the entry block, then the runtime may assume that the alloca's 8613 /// StackMap location can be read immediately after compilation and that the 8614 /// location is valid at any point during execution (this is similar to the 8615 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8616 /// only available in a register, then the runtime would need to trap when 8617 /// execution reaches the StackMap in order to read the alloca's location. 8618 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8619 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8620 SelectionDAGBuilder &Builder) { 8621 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8622 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8623 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8624 Ops.push_back( 8625 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8626 Ops.push_back( 8627 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8628 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8629 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8630 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8631 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8632 } else 8633 Ops.push_back(OpVal); 8634 } 8635 } 8636 8637 /// Lower llvm.experimental.stackmap directly to its target opcode. 8638 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8639 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8640 // [live variables...]) 8641 8642 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8643 8644 SDValue Chain, InFlag, Callee, NullPtr; 8645 SmallVector<SDValue, 32> Ops; 8646 8647 SDLoc DL = getCurSDLoc(); 8648 Callee = getValue(CI.getCalledValue()); 8649 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8650 8651 // The stackmap intrinsic only records the live variables (the arguments 8652 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8653 // intrinsic, this won't be lowered to a function call. This means we don't 8654 // have to worry about calling conventions and target specific lowering code. 8655 // Instead we perform the call lowering right here. 8656 // 8657 // chain, flag = CALLSEQ_START(chain, 0, 0) 8658 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8659 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8660 // 8661 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8662 InFlag = Chain.getValue(1); 8663 8664 // Add the <id> and <numBytes> constants. 8665 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8666 Ops.push_back(DAG.getTargetConstant( 8667 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8668 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8669 Ops.push_back(DAG.getTargetConstant( 8670 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8671 MVT::i32)); 8672 8673 // Push live variables for the stack map. 8674 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8675 8676 // We are not pushing any register mask info here on the operands list, 8677 // because the stackmap doesn't clobber anything. 8678 8679 // Push the chain and the glue flag. 8680 Ops.push_back(Chain); 8681 Ops.push_back(InFlag); 8682 8683 // Create the STACKMAP node. 8684 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8685 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8686 Chain = SDValue(SM, 0); 8687 InFlag = Chain.getValue(1); 8688 8689 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8690 8691 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8692 8693 // Set the root to the target-lowered call chain. 8694 DAG.setRoot(Chain); 8695 8696 // Inform the Frame Information that we have a stackmap in this function. 8697 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8698 } 8699 8700 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8701 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8702 const BasicBlock *EHPadBB) { 8703 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8704 // i32 <numBytes>, 8705 // i8* <target>, 8706 // i32 <numArgs>, 8707 // [Args...], 8708 // [live variables...]) 8709 8710 CallingConv::ID CC = CS.getCallingConv(); 8711 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8712 bool HasDef = !CS->getType()->isVoidTy(); 8713 SDLoc dl = getCurSDLoc(); 8714 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8715 8716 // Handle immediate and symbolic callees. 8717 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8718 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8719 /*isTarget=*/true); 8720 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8721 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8722 SDLoc(SymbolicCallee), 8723 SymbolicCallee->getValueType(0)); 8724 8725 // Get the real number of arguments participating in the call <numArgs> 8726 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8727 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8728 8729 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8730 // Intrinsics include all meta-operands up to but not including CC. 8731 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8732 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8733 "Not enough arguments provided to the patchpoint intrinsic"); 8734 8735 // For AnyRegCC the arguments are lowered later on manually. 8736 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8737 Type *ReturnTy = 8738 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8739 8740 TargetLowering::CallLoweringInfo CLI(DAG); 8741 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8742 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8743 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8744 8745 SDNode *CallEnd = Result.second.getNode(); 8746 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8747 CallEnd = CallEnd->getOperand(0).getNode(); 8748 8749 /// Get a call instruction from the call sequence chain. 8750 /// Tail calls are not allowed. 8751 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8752 "Expected a callseq node."); 8753 SDNode *Call = CallEnd->getOperand(0).getNode(); 8754 bool HasGlue = Call->getGluedNode(); 8755 8756 // Replace the target specific call node with the patchable intrinsic. 8757 SmallVector<SDValue, 8> Ops; 8758 8759 // Add the <id> and <numBytes> constants. 8760 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8761 Ops.push_back(DAG.getTargetConstant( 8762 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8763 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8764 Ops.push_back(DAG.getTargetConstant( 8765 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8766 MVT::i32)); 8767 8768 // Add the callee. 8769 Ops.push_back(Callee); 8770 8771 // Adjust <numArgs> to account for any arguments that have been passed on the 8772 // stack instead. 8773 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8774 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8775 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8776 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8777 8778 // Add the calling convention 8779 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8780 8781 // Add the arguments we omitted previously. The register allocator should 8782 // place these in any free register. 8783 if (IsAnyRegCC) 8784 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8785 Ops.push_back(getValue(CS.getArgument(i))); 8786 8787 // Push the arguments from the call instruction up to the register mask. 8788 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8789 Ops.append(Call->op_begin() + 2, e); 8790 8791 // Push live variables for the stack map. 8792 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8793 8794 // Push the register mask info. 8795 if (HasGlue) 8796 Ops.push_back(*(Call->op_end()-2)); 8797 else 8798 Ops.push_back(*(Call->op_end()-1)); 8799 8800 // Push the chain (this is originally the first operand of the call, but 8801 // becomes now the last or second to last operand). 8802 Ops.push_back(*(Call->op_begin())); 8803 8804 // Push the glue flag (last operand). 8805 if (HasGlue) 8806 Ops.push_back(*(Call->op_end()-1)); 8807 8808 SDVTList NodeTys; 8809 if (IsAnyRegCC && HasDef) { 8810 // Create the return types based on the intrinsic definition 8811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8812 SmallVector<EVT, 3> ValueVTs; 8813 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8814 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8815 8816 // There is always a chain and a glue type at the end 8817 ValueVTs.push_back(MVT::Other); 8818 ValueVTs.push_back(MVT::Glue); 8819 NodeTys = DAG.getVTList(ValueVTs); 8820 } else 8821 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8822 8823 // Replace the target specific call node with a PATCHPOINT node. 8824 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8825 dl, NodeTys, Ops); 8826 8827 // Update the NodeMap. 8828 if (HasDef) { 8829 if (IsAnyRegCC) 8830 setValue(CS.getInstruction(), SDValue(MN, 0)); 8831 else 8832 setValue(CS.getInstruction(), Result.first); 8833 } 8834 8835 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8836 // call sequence. Furthermore the location of the chain and glue can change 8837 // when the AnyReg calling convention is used and the intrinsic returns a 8838 // value. 8839 if (IsAnyRegCC && HasDef) { 8840 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8841 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8842 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8843 } else 8844 DAG.ReplaceAllUsesWith(Call, MN); 8845 DAG.DeleteNode(Call); 8846 8847 // Inform the Frame Information that we have a patchpoint in this function. 8848 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8849 } 8850 8851 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8852 unsigned Intrinsic) { 8853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8854 SDValue Op1 = getValue(I.getArgOperand(0)); 8855 SDValue Op2; 8856 if (I.getNumArgOperands() > 1) 8857 Op2 = getValue(I.getArgOperand(1)); 8858 SDLoc dl = getCurSDLoc(); 8859 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8860 SDValue Res; 8861 FastMathFlags FMF; 8862 if (isa<FPMathOperator>(I)) 8863 FMF = I.getFastMathFlags(); 8864 8865 switch (Intrinsic) { 8866 case Intrinsic::experimental_vector_reduce_v2_fadd: 8867 if (FMF.allowReassoc()) 8868 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8869 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8870 else 8871 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8872 break; 8873 case Intrinsic::experimental_vector_reduce_v2_fmul: 8874 if (FMF.allowReassoc()) 8875 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8876 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8877 else 8878 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8879 break; 8880 case Intrinsic::experimental_vector_reduce_add: 8881 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8882 break; 8883 case Intrinsic::experimental_vector_reduce_mul: 8884 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8885 break; 8886 case Intrinsic::experimental_vector_reduce_and: 8887 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8888 break; 8889 case Intrinsic::experimental_vector_reduce_or: 8890 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8891 break; 8892 case Intrinsic::experimental_vector_reduce_xor: 8893 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8894 break; 8895 case Intrinsic::experimental_vector_reduce_smax: 8896 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8897 break; 8898 case Intrinsic::experimental_vector_reduce_smin: 8899 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8900 break; 8901 case Intrinsic::experimental_vector_reduce_umax: 8902 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8903 break; 8904 case Intrinsic::experimental_vector_reduce_umin: 8905 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8906 break; 8907 case Intrinsic::experimental_vector_reduce_fmax: 8908 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8909 break; 8910 case Intrinsic::experimental_vector_reduce_fmin: 8911 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8912 break; 8913 default: 8914 llvm_unreachable("Unhandled vector reduce intrinsic"); 8915 } 8916 setValue(&I, Res); 8917 } 8918 8919 /// Returns an AttributeList representing the attributes applied to the return 8920 /// value of the given call. 8921 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8922 SmallVector<Attribute::AttrKind, 2> Attrs; 8923 if (CLI.RetSExt) 8924 Attrs.push_back(Attribute::SExt); 8925 if (CLI.RetZExt) 8926 Attrs.push_back(Attribute::ZExt); 8927 if (CLI.IsInReg) 8928 Attrs.push_back(Attribute::InReg); 8929 8930 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8931 Attrs); 8932 } 8933 8934 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8935 /// implementation, which just calls LowerCall. 8936 /// FIXME: When all targets are 8937 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8938 std::pair<SDValue, SDValue> 8939 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8940 // Handle the incoming return values from the call. 8941 CLI.Ins.clear(); 8942 Type *OrigRetTy = CLI.RetTy; 8943 SmallVector<EVT, 4> RetTys; 8944 SmallVector<uint64_t, 4> Offsets; 8945 auto &DL = CLI.DAG.getDataLayout(); 8946 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8947 8948 if (CLI.IsPostTypeLegalization) { 8949 // If we are lowering a libcall after legalization, split the return type. 8950 SmallVector<EVT, 4> OldRetTys; 8951 SmallVector<uint64_t, 4> OldOffsets; 8952 RetTys.swap(OldRetTys); 8953 Offsets.swap(OldOffsets); 8954 8955 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8956 EVT RetVT = OldRetTys[i]; 8957 uint64_t Offset = OldOffsets[i]; 8958 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8959 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8960 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8961 RetTys.append(NumRegs, RegisterVT); 8962 for (unsigned j = 0; j != NumRegs; ++j) 8963 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8964 } 8965 } 8966 8967 SmallVector<ISD::OutputArg, 4> Outs; 8968 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8969 8970 bool CanLowerReturn = 8971 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8972 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8973 8974 SDValue DemoteStackSlot; 8975 int DemoteStackIdx = -100; 8976 if (!CanLowerReturn) { 8977 // FIXME: equivalent assert? 8978 // assert(!CS.hasInAllocaArgument() && 8979 // "sret demotion is incompatible with inalloca"); 8980 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8981 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8982 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8983 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8984 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8985 DL.getAllocaAddrSpace()); 8986 8987 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8988 ArgListEntry Entry; 8989 Entry.Node = DemoteStackSlot; 8990 Entry.Ty = StackSlotPtrType; 8991 Entry.IsSExt = false; 8992 Entry.IsZExt = false; 8993 Entry.IsInReg = false; 8994 Entry.IsSRet = true; 8995 Entry.IsNest = false; 8996 Entry.IsByVal = false; 8997 Entry.IsReturned = false; 8998 Entry.IsSwiftSelf = false; 8999 Entry.IsSwiftError = false; 9000 Entry.IsCFGuardTarget = false; 9001 Entry.Alignment = Align; 9002 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9003 CLI.NumFixedArgs += 1; 9004 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9005 9006 // sret demotion isn't compatible with tail-calls, since the sret argument 9007 // points into the callers stack frame. 9008 CLI.IsTailCall = false; 9009 } else { 9010 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9011 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9012 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9013 ISD::ArgFlagsTy Flags; 9014 if (NeedsRegBlock) { 9015 Flags.setInConsecutiveRegs(); 9016 if (I == RetTys.size() - 1) 9017 Flags.setInConsecutiveRegsLast(); 9018 } 9019 EVT VT = RetTys[I]; 9020 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9021 CLI.CallConv, VT); 9022 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9023 CLI.CallConv, VT); 9024 for (unsigned i = 0; i != NumRegs; ++i) { 9025 ISD::InputArg MyFlags; 9026 MyFlags.Flags = Flags; 9027 MyFlags.VT = RegisterVT; 9028 MyFlags.ArgVT = VT; 9029 MyFlags.Used = CLI.IsReturnValueUsed; 9030 if (CLI.RetTy->isPointerTy()) { 9031 MyFlags.Flags.setPointer(); 9032 MyFlags.Flags.setPointerAddrSpace( 9033 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9034 } 9035 if (CLI.RetSExt) 9036 MyFlags.Flags.setSExt(); 9037 if (CLI.RetZExt) 9038 MyFlags.Flags.setZExt(); 9039 if (CLI.IsInReg) 9040 MyFlags.Flags.setInReg(); 9041 CLI.Ins.push_back(MyFlags); 9042 } 9043 } 9044 } 9045 9046 // We push in swifterror return as the last element of CLI.Ins. 9047 ArgListTy &Args = CLI.getArgs(); 9048 if (supportSwiftError()) { 9049 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9050 if (Args[i].IsSwiftError) { 9051 ISD::InputArg MyFlags; 9052 MyFlags.VT = getPointerTy(DL); 9053 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9054 MyFlags.Flags.setSwiftError(); 9055 CLI.Ins.push_back(MyFlags); 9056 } 9057 } 9058 } 9059 9060 // Handle all of the outgoing arguments. 9061 CLI.Outs.clear(); 9062 CLI.OutVals.clear(); 9063 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9064 SmallVector<EVT, 4> ValueVTs; 9065 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9066 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9067 Type *FinalType = Args[i].Ty; 9068 if (Args[i].IsByVal) 9069 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9070 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9071 FinalType, CLI.CallConv, CLI.IsVarArg); 9072 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9073 ++Value) { 9074 EVT VT = ValueVTs[Value]; 9075 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9076 SDValue Op = SDValue(Args[i].Node.getNode(), 9077 Args[i].Node.getResNo() + Value); 9078 ISD::ArgFlagsTy Flags; 9079 9080 // Certain targets (such as MIPS), may have a different ABI alignment 9081 // for a type depending on the context. Give the target a chance to 9082 // specify the alignment it wants. 9083 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9084 9085 if (Args[i].Ty->isPointerTy()) { 9086 Flags.setPointer(); 9087 Flags.setPointerAddrSpace( 9088 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9089 } 9090 if (Args[i].IsZExt) 9091 Flags.setZExt(); 9092 if (Args[i].IsSExt) 9093 Flags.setSExt(); 9094 if (Args[i].IsInReg) { 9095 // If we are using vectorcall calling convention, a structure that is 9096 // passed InReg - is surely an HVA 9097 if (CLI.CallConv == CallingConv::X86_VectorCall && 9098 isa<StructType>(FinalType)) { 9099 // The first value of a structure is marked 9100 if (0 == Value) 9101 Flags.setHvaStart(); 9102 Flags.setHva(); 9103 } 9104 // Set InReg Flag 9105 Flags.setInReg(); 9106 } 9107 if (Args[i].IsSRet) 9108 Flags.setSRet(); 9109 if (Args[i].IsSwiftSelf) 9110 Flags.setSwiftSelf(); 9111 if (Args[i].IsSwiftError) 9112 Flags.setSwiftError(); 9113 if (Args[i].IsCFGuardTarget) 9114 Flags.setCFGuardTarget(); 9115 if (Args[i].IsByVal) 9116 Flags.setByVal(); 9117 if (Args[i].IsInAlloca) { 9118 Flags.setInAlloca(); 9119 // Set the byval flag for CCAssignFn callbacks that don't know about 9120 // inalloca. This way we can know how many bytes we should've allocated 9121 // and how many bytes a callee cleanup function will pop. If we port 9122 // inalloca to more targets, we'll have to add custom inalloca handling 9123 // in the various CC lowering callbacks. 9124 Flags.setByVal(); 9125 } 9126 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9127 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9128 Type *ElementTy = Ty->getElementType(); 9129 9130 unsigned FrameSize = DL.getTypeAllocSize( 9131 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9132 Flags.setByValSize(FrameSize); 9133 9134 // info is not there but there are cases it cannot get right. 9135 unsigned FrameAlign; 9136 if (Args[i].Alignment) 9137 FrameAlign = Args[i].Alignment; 9138 else 9139 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9140 Flags.setByValAlign(Align(FrameAlign)); 9141 } 9142 if (Args[i].IsNest) 9143 Flags.setNest(); 9144 if (NeedsRegBlock) 9145 Flags.setInConsecutiveRegs(); 9146 Flags.setOrigAlign(OriginalAlignment); 9147 9148 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9149 CLI.CallConv, VT); 9150 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9151 CLI.CallConv, VT); 9152 SmallVector<SDValue, 4> Parts(NumParts); 9153 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9154 9155 if (Args[i].IsSExt) 9156 ExtendKind = ISD::SIGN_EXTEND; 9157 else if (Args[i].IsZExt) 9158 ExtendKind = ISD::ZERO_EXTEND; 9159 9160 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9161 // for now. 9162 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9163 CanLowerReturn) { 9164 assert((CLI.RetTy == Args[i].Ty || 9165 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9166 CLI.RetTy->getPointerAddressSpace() == 9167 Args[i].Ty->getPointerAddressSpace())) && 9168 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9169 // Before passing 'returned' to the target lowering code, ensure that 9170 // either the register MVT and the actual EVT are the same size or that 9171 // the return value and argument are extended in the same way; in these 9172 // cases it's safe to pass the argument register value unchanged as the 9173 // return register value (although it's at the target's option whether 9174 // to do so) 9175 // TODO: allow code generation to take advantage of partially preserved 9176 // registers rather than clobbering the entire register when the 9177 // parameter extension method is not compatible with the return 9178 // extension method 9179 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9180 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9181 CLI.RetZExt == Args[i].IsZExt)) 9182 Flags.setReturned(); 9183 } 9184 9185 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9186 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9187 9188 for (unsigned j = 0; j != NumParts; ++j) { 9189 // if it isn't first piece, alignment must be 1 9190 // For scalable vectors the scalable part is currently handled 9191 // by individual targets, so we just use the known minimum size here. 9192 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9193 i < CLI.NumFixedArgs, i, 9194 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9195 if (NumParts > 1 && j == 0) 9196 MyFlags.Flags.setSplit(); 9197 else if (j != 0) { 9198 MyFlags.Flags.setOrigAlign(Align(1)); 9199 if (j == NumParts - 1) 9200 MyFlags.Flags.setSplitEnd(); 9201 } 9202 9203 CLI.Outs.push_back(MyFlags); 9204 CLI.OutVals.push_back(Parts[j]); 9205 } 9206 9207 if (NeedsRegBlock && Value == NumValues - 1) 9208 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9209 } 9210 } 9211 9212 SmallVector<SDValue, 4> InVals; 9213 CLI.Chain = LowerCall(CLI, InVals); 9214 9215 // Update CLI.InVals to use outside of this function. 9216 CLI.InVals = InVals; 9217 9218 // Verify that the target's LowerCall behaved as expected. 9219 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9220 "LowerCall didn't return a valid chain!"); 9221 assert((!CLI.IsTailCall || InVals.empty()) && 9222 "LowerCall emitted a return value for a tail call!"); 9223 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9224 "LowerCall didn't emit the correct number of values!"); 9225 9226 // For a tail call, the return value is merely live-out and there aren't 9227 // any nodes in the DAG representing it. Return a special value to 9228 // indicate that a tail call has been emitted and no more Instructions 9229 // should be processed in the current block. 9230 if (CLI.IsTailCall) { 9231 CLI.DAG.setRoot(CLI.Chain); 9232 return std::make_pair(SDValue(), SDValue()); 9233 } 9234 9235 #ifndef NDEBUG 9236 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9237 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9238 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9239 "LowerCall emitted a value with the wrong type!"); 9240 } 9241 #endif 9242 9243 SmallVector<SDValue, 4> ReturnValues; 9244 if (!CanLowerReturn) { 9245 // The instruction result is the result of loading from the 9246 // hidden sret parameter. 9247 SmallVector<EVT, 1> PVTs; 9248 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9249 9250 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9251 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9252 EVT PtrVT = PVTs[0]; 9253 9254 unsigned NumValues = RetTys.size(); 9255 ReturnValues.resize(NumValues); 9256 SmallVector<SDValue, 4> Chains(NumValues); 9257 9258 // An aggregate return value cannot wrap around the address space, so 9259 // offsets to its parts don't wrap either. 9260 SDNodeFlags Flags; 9261 Flags.setNoUnsignedWrap(true); 9262 9263 for (unsigned i = 0; i < NumValues; ++i) { 9264 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9265 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9266 PtrVT), Flags); 9267 SDValue L = CLI.DAG.getLoad( 9268 RetTys[i], CLI.DL, CLI.Chain, Add, 9269 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9270 DemoteStackIdx, Offsets[i]), 9271 /* Alignment = */ 1); 9272 ReturnValues[i] = L; 9273 Chains[i] = L.getValue(1); 9274 } 9275 9276 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9277 } else { 9278 // Collect the legal value parts into potentially illegal values 9279 // that correspond to the original function's return values. 9280 Optional<ISD::NodeType> AssertOp; 9281 if (CLI.RetSExt) 9282 AssertOp = ISD::AssertSext; 9283 else if (CLI.RetZExt) 9284 AssertOp = ISD::AssertZext; 9285 unsigned CurReg = 0; 9286 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9287 EVT VT = RetTys[I]; 9288 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9289 CLI.CallConv, VT); 9290 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9291 CLI.CallConv, VT); 9292 9293 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9294 NumRegs, RegisterVT, VT, nullptr, 9295 CLI.CallConv, AssertOp)); 9296 CurReg += NumRegs; 9297 } 9298 9299 // For a function returning void, there is no return value. We can't create 9300 // such a node, so we just return a null return value in that case. In 9301 // that case, nothing will actually look at the value. 9302 if (ReturnValues.empty()) 9303 return std::make_pair(SDValue(), CLI.Chain); 9304 } 9305 9306 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9307 CLI.DAG.getVTList(RetTys), ReturnValues); 9308 return std::make_pair(Res, CLI.Chain); 9309 } 9310 9311 void TargetLowering::LowerOperationWrapper(SDNode *N, 9312 SmallVectorImpl<SDValue> &Results, 9313 SelectionDAG &DAG) const { 9314 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9315 Results.push_back(Res); 9316 } 9317 9318 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9319 llvm_unreachable("LowerOperation not implemented for this target!"); 9320 } 9321 9322 void 9323 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9324 SDValue Op = getNonRegisterValue(V); 9325 assert((Op.getOpcode() != ISD::CopyFromReg || 9326 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9327 "Copy from a reg to the same reg!"); 9328 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9329 9330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9331 // If this is an InlineAsm we have to match the registers required, not the 9332 // notional registers required by the type. 9333 9334 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9335 None); // This is not an ABI copy. 9336 SDValue Chain = DAG.getEntryNode(); 9337 9338 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9339 FuncInfo.PreferredExtendType.end()) 9340 ? ISD::ANY_EXTEND 9341 : FuncInfo.PreferredExtendType[V]; 9342 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9343 PendingExports.push_back(Chain); 9344 } 9345 9346 #include "llvm/CodeGen/SelectionDAGISel.h" 9347 9348 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9349 /// entry block, return true. This includes arguments used by switches, since 9350 /// the switch may expand into multiple basic blocks. 9351 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9352 // With FastISel active, we may be splitting blocks, so force creation 9353 // of virtual registers for all non-dead arguments. 9354 if (FastISel) 9355 return A->use_empty(); 9356 9357 const BasicBlock &Entry = A->getParent()->front(); 9358 for (const User *U : A->users()) 9359 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9360 return false; // Use not in entry block. 9361 9362 return true; 9363 } 9364 9365 using ArgCopyElisionMapTy = 9366 DenseMap<const Argument *, 9367 std::pair<const AllocaInst *, const StoreInst *>>; 9368 9369 /// Scan the entry block of the function in FuncInfo for arguments that look 9370 /// like copies into a local alloca. Record any copied arguments in 9371 /// ArgCopyElisionCandidates. 9372 static void 9373 findArgumentCopyElisionCandidates(const DataLayout &DL, 9374 FunctionLoweringInfo *FuncInfo, 9375 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9376 // Record the state of every static alloca used in the entry block. Argument 9377 // allocas are all used in the entry block, so we need approximately as many 9378 // entries as we have arguments. 9379 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9380 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9381 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9382 StaticAllocas.reserve(NumArgs * 2); 9383 9384 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9385 if (!V) 9386 return nullptr; 9387 V = V->stripPointerCasts(); 9388 const auto *AI = dyn_cast<AllocaInst>(V); 9389 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9390 return nullptr; 9391 auto Iter = StaticAllocas.insert({AI, Unknown}); 9392 return &Iter.first->second; 9393 }; 9394 9395 // Look for stores of arguments to static allocas. Look through bitcasts and 9396 // GEPs to handle type coercions, as long as the alloca is fully initialized 9397 // by the store. Any non-store use of an alloca escapes it and any subsequent 9398 // unanalyzed store might write it. 9399 // FIXME: Handle structs initialized with multiple stores. 9400 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9401 // Look for stores, and handle non-store uses conservatively. 9402 const auto *SI = dyn_cast<StoreInst>(&I); 9403 if (!SI) { 9404 // We will look through cast uses, so ignore them completely. 9405 if (I.isCast()) 9406 continue; 9407 // Ignore debug info intrinsics, they don't escape or store to allocas. 9408 if (isa<DbgInfoIntrinsic>(I)) 9409 continue; 9410 // This is an unknown instruction. Assume it escapes or writes to all 9411 // static alloca operands. 9412 for (const Use &U : I.operands()) { 9413 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9414 *Info = StaticAllocaInfo::Clobbered; 9415 } 9416 continue; 9417 } 9418 9419 // If the stored value is a static alloca, mark it as escaped. 9420 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9421 *Info = StaticAllocaInfo::Clobbered; 9422 9423 // Check if the destination is a static alloca. 9424 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9425 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9426 if (!Info) 9427 continue; 9428 const AllocaInst *AI = cast<AllocaInst>(Dst); 9429 9430 // Skip allocas that have been initialized or clobbered. 9431 if (*Info != StaticAllocaInfo::Unknown) 9432 continue; 9433 9434 // Check if the stored value is an argument, and that this store fully 9435 // initializes the alloca. Don't elide copies from the same argument twice. 9436 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9437 const auto *Arg = dyn_cast<Argument>(Val); 9438 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9439 Arg->getType()->isEmptyTy() || 9440 DL.getTypeStoreSize(Arg->getType()) != 9441 DL.getTypeAllocSize(AI->getAllocatedType()) || 9442 ArgCopyElisionCandidates.count(Arg)) { 9443 *Info = StaticAllocaInfo::Clobbered; 9444 continue; 9445 } 9446 9447 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9448 << '\n'); 9449 9450 // Mark this alloca and store for argument copy elision. 9451 *Info = StaticAllocaInfo::Elidable; 9452 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9453 9454 // Stop scanning if we've seen all arguments. This will happen early in -O0 9455 // builds, which is useful, because -O0 builds have large entry blocks and 9456 // many allocas. 9457 if (ArgCopyElisionCandidates.size() == NumArgs) 9458 break; 9459 } 9460 } 9461 9462 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9463 /// ArgVal is a load from a suitable fixed stack object. 9464 static void tryToElideArgumentCopy( 9465 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9466 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9467 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9468 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9469 SDValue ArgVal, bool &ArgHasUses) { 9470 // Check if this is a load from a fixed stack object. 9471 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9472 if (!LNode) 9473 return; 9474 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9475 if (!FINode) 9476 return; 9477 9478 // Check that the fixed stack object is the right size and alignment. 9479 // Look at the alignment that the user wrote on the alloca instead of looking 9480 // at the stack object. 9481 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9482 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9483 const AllocaInst *AI = ArgCopyIter->second.first; 9484 int FixedIndex = FINode->getIndex(); 9485 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9486 int OldIndex = AllocaIndex; 9487 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9488 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9489 LLVM_DEBUG( 9490 dbgs() << " argument copy elision failed due to bad fixed stack " 9491 "object size\n"); 9492 return; 9493 } 9494 unsigned RequiredAlignment = AI->getAlignment(); 9495 if (!RequiredAlignment) { 9496 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9497 AI->getAllocatedType()); 9498 } 9499 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9500 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9501 "greater than stack argument alignment (" 9502 << RequiredAlignment << " vs " 9503 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9504 return; 9505 } 9506 9507 // Perform the elision. Delete the old stack object and replace its only use 9508 // in the variable info map. Mark the stack object as mutable. 9509 LLVM_DEBUG({ 9510 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9511 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9512 << '\n'; 9513 }); 9514 MFI.RemoveStackObject(OldIndex); 9515 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9516 AllocaIndex = FixedIndex; 9517 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9518 Chains.push_back(ArgVal.getValue(1)); 9519 9520 // Avoid emitting code for the store implementing the copy. 9521 const StoreInst *SI = ArgCopyIter->second.second; 9522 ElidedArgCopyInstrs.insert(SI); 9523 9524 // Check for uses of the argument again so that we can avoid exporting ArgVal 9525 // if it is't used by anything other than the store. 9526 for (const Value *U : Arg.users()) { 9527 if (U != SI) { 9528 ArgHasUses = true; 9529 break; 9530 } 9531 } 9532 } 9533 9534 void SelectionDAGISel::LowerArguments(const Function &F) { 9535 SelectionDAG &DAG = SDB->DAG; 9536 SDLoc dl = SDB->getCurSDLoc(); 9537 const DataLayout &DL = DAG.getDataLayout(); 9538 SmallVector<ISD::InputArg, 16> Ins; 9539 9540 if (!FuncInfo->CanLowerReturn) { 9541 // Put in an sret pointer parameter before all the other parameters. 9542 SmallVector<EVT, 1> ValueVTs; 9543 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9544 F.getReturnType()->getPointerTo( 9545 DAG.getDataLayout().getAllocaAddrSpace()), 9546 ValueVTs); 9547 9548 // NOTE: Assuming that a pointer will never break down to more than one VT 9549 // or one register. 9550 ISD::ArgFlagsTy Flags; 9551 Flags.setSRet(); 9552 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9553 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9554 ISD::InputArg::NoArgIndex, 0); 9555 Ins.push_back(RetArg); 9556 } 9557 9558 // Look for stores of arguments to static allocas. Mark such arguments with a 9559 // flag to ask the target to give us the memory location of that argument if 9560 // available. 9561 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9562 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9563 ArgCopyElisionCandidates); 9564 9565 // Set up the incoming argument description vector. 9566 for (const Argument &Arg : F.args()) { 9567 unsigned ArgNo = Arg.getArgNo(); 9568 SmallVector<EVT, 4> ValueVTs; 9569 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9570 bool isArgValueUsed = !Arg.use_empty(); 9571 unsigned PartBase = 0; 9572 Type *FinalType = Arg.getType(); 9573 if (Arg.hasAttribute(Attribute::ByVal)) 9574 FinalType = Arg.getParamByValType(); 9575 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9576 FinalType, F.getCallingConv(), F.isVarArg()); 9577 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9578 Value != NumValues; ++Value) { 9579 EVT VT = ValueVTs[Value]; 9580 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9581 ISD::ArgFlagsTy Flags; 9582 9583 // Certain targets (such as MIPS), may have a different ABI alignment 9584 // for a type depending on the context. Give the target a chance to 9585 // specify the alignment it wants. 9586 const Align OriginalAlignment( 9587 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9588 9589 if (Arg.getType()->isPointerTy()) { 9590 Flags.setPointer(); 9591 Flags.setPointerAddrSpace( 9592 cast<PointerType>(Arg.getType())->getAddressSpace()); 9593 } 9594 if (Arg.hasAttribute(Attribute::ZExt)) 9595 Flags.setZExt(); 9596 if (Arg.hasAttribute(Attribute::SExt)) 9597 Flags.setSExt(); 9598 if (Arg.hasAttribute(Attribute::InReg)) { 9599 // If we are using vectorcall calling convention, a structure that is 9600 // passed InReg - is surely an HVA 9601 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9602 isa<StructType>(Arg.getType())) { 9603 // The first value of a structure is marked 9604 if (0 == Value) 9605 Flags.setHvaStart(); 9606 Flags.setHva(); 9607 } 9608 // Set InReg Flag 9609 Flags.setInReg(); 9610 } 9611 if (Arg.hasAttribute(Attribute::StructRet)) 9612 Flags.setSRet(); 9613 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9614 Flags.setSwiftSelf(); 9615 if (Arg.hasAttribute(Attribute::SwiftError)) 9616 Flags.setSwiftError(); 9617 if (Arg.hasAttribute(Attribute::ByVal)) 9618 Flags.setByVal(); 9619 if (Arg.hasAttribute(Attribute::InAlloca)) { 9620 Flags.setInAlloca(); 9621 // Set the byval flag for CCAssignFn callbacks that don't know about 9622 // inalloca. This way we can know how many bytes we should've allocated 9623 // and how many bytes a callee cleanup function will pop. If we port 9624 // inalloca to more targets, we'll have to add custom inalloca handling 9625 // in the various CC lowering callbacks. 9626 Flags.setByVal(); 9627 } 9628 if (F.getCallingConv() == CallingConv::X86_INTR) { 9629 // IA Interrupt passes frame (1st parameter) by value in the stack. 9630 if (ArgNo == 0) 9631 Flags.setByVal(); 9632 } 9633 if (Flags.isByVal() || Flags.isInAlloca()) { 9634 Type *ElementTy = Arg.getParamByValType(); 9635 9636 // For ByVal, size and alignment should be passed from FE. BE will 9637 // guess if this info is not there but there are cases it cannot get 9638 // right. 9639 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9640 Flags.setByValSize(FrameSize); 9641 9642 unsigned FrameAlign; 9643 if (Arg.getParamAlignment()) 9644 FrameAlign = Arg.getParamAlignment(); 9645 else 9646 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9647 Flags.setByValAlign(Align(FrameAlign)); 9648 } 9649 if (Arg.hasAttribute(Attribute::Nest)) 9650 Flags.setNest(); 9651 if (NeedsRegBlock) 9652 Flags.setInConsecutiveRegs(); 9653 Flags.setOrigAlign(OriginalAlignment); 9654 if (ArgCopyElisionCandidates.count(&Arg)) 9655 Flags.setCopyElisionCandidate(); 9656 if (Arg.hasAttribute(Attribute::Returned)) 9657 Flags.setReturned(); 9658 9659 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9660 *CurDAG->getContext(), F.getCallingConv(), VT); 9661 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9662 *CurDAG->getContext(), F.getCallingConv(), VT); 9663 for (unsigned i = 0; i != NumRegs; ++i) { 9664 // For scalable vectors, use the minimum size; individual targets 9665 // are responsible for handling scalable vector arguments and 9666 // return values. 9667 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9668 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9669 if (NumRegs > 1 && i == 0) 9670 MyFlags.Flags.setSplit(); 9671 // if it isn't first piece, alignment must be 1 9672 else if (i > 0) { 9673 MyFlags.Flags.setOrigAlign(Align(1)); 9674 if (i == NumRegs - 1) 9675 MyFlags.Flags.setSplitEnd(); 9676 } 9677 Ins.push_back(MyFlags); 9678 } 9679 if (NeedsRegBlock && Value == NumValues - 1) 9680 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9681 PartBase += VT.getStoreSize().getKnownMinSize(); 9682 } 9683 } 9684 9685 // Call the target to set up the argument values. 9686 SmallVector<SDValue, 8> InVals; 9687 SDValue NewRoot = TLI->LowerFormalArguments( 9688 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9689 9690 // Verify that the target's LowerFormalArguments behaved as expected. 9691 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9692 "LowerFormalArguments didn't return a valid chain!"); 9693 assert(InVals.size() == Ins.size() && 9694 "LowerFormalArguments didn't emit the correct number of values!"); 9695 LLVM_DEBUG({ 9696 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9697 assert(InVals[i].getNode() && 9698 "LowerFormalArguments emitted a null value!"); 9699 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9700 "LowerFormalArguments emitted a value with the wrong type!"); 9701 } 9702 }); 9703 9704 // Update the DAG with the new chain value resulting from argument lowering. 9705 DAG.setRoot(NewRoot); 9706 9707 // Set up the argument values. 9708 unsigned i = 0; 9709 if (!FuncInfo->CanLowerReturn) { 9710 // Create a virtual register for the sret pointer, and put in a copy 9711 // from the sret argument into it. 9712 SmallVector<EVT, 1> ValueVTs; 9713 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9714 F.getReturnType()->getPointerTo( 9715 DAG.getDataLayout().getAllocaAddrSpace()), 9716 ValueVTs); 9717 MVT VT = ValueVTs[0].getSimpleVT(); 9718 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9719 Optional<ISD::NodeType> AssertOp = None; 9720 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9721 nullptr, F.getCallingConv(), AssertOp); 9722 9723 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9724 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9725 Register SRetReg = 9726 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9727 FuncInfo->DemoteRegister = SRetReg; 9728 NewRoot = 9729 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9730 DAG.setRoot(NewRoot); 9731 9732 // i indexes lowered arguments. Bump it past the hidden sret argument. 9733 ++i; 9734 } 9735 9736 SmallVector<SDValue, 4> Chains; 9737 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9738 for (const Argument &Arg : F.args()) { 9739 SmallVector<SDValue, 4> ArgValues; 9740 SmallVector<EVT, 4> ValueVTs; 9741 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9742 unsigned NumValues = ValueVTs.size(); 9743 if (NumValues == 0) 9744 continue; 9745 9746 bool ArgHasUses = !Arg.use_empty(); 9747 9748 // Elide the copying store if the target loaded this argument from a 9749 // suitable fixed stack object. 9750 if (Ins[i].Flags.isCopyElisionCandidate()) { 9751 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9752 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9753 InVals[i], ArgHasUses); 9754 } 9755 9756 // If this argument is unused then remember its value. It is used to generate 9757 // debugging information. 9758 bool isSwiftErrorArg = 9759 TLI->supportSwiftError() && 9760 Arg.hasAttribute(Attribute::SwiftError); 9761 if (!ArgHasUses && !isSwiftErrorArg) { 9762 SDB->setUnusedArgValue(&Arg, InVals[i]); 9763 9764 // Also remember any frame index for use in FastISel. 9765 if (FrameIndexSDNode *FI = 9766 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9767 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9768 } 9769 9770 for (unsigned Val = 0; Val != NumValues; ++Val) { 9771 EVT VT = ValueVTs[Val]; 9772 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9773 F.getCallingConv(), VT); 9774 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9775 *CurDAG->getContext(), F.getCallingConv(), VT); 9776 9777 // Even an apparent 'unused' swifterror argument needs to be returned. So 9778 // we do generate a copy for it that can be used on return from the 9779 // function. 9780 if (ArgHasUses || isSwiftErrorArg) { 9781 Optional<ISD::NodeType> AssertOp; 9782 if (Arg.hasAttribute(Attribute::SExt)) 9783 AssertOp = ISD::AssertSext; 9784 else if (Arg.hasAttribute(Attribute::ZExt)) 9785 AssertOp = ISD::AssertZext; 9786 9787 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9788 PartVT, VT, nullptr, 9789 F.getCallingConv(), AssertOp)); 9790 } 9791 9792 i += NumParts; 9793 } 9794 9795 // We don't need to do anything else for unused arguments. 9796 if (ArgValues.empty()) 9797 continue; 9798 9799 // Note down frame index. 9800 if (FrameIndexSDNode *FI = 9801 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9802 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9803 9804 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9805 SDB->getCurSDLoc()); 9806 9807 SDB->setValue(&Arg, Res); 9808 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9809 // We want to associate the argument with the frame index, among 9810 // involved operands, that correspond to the lowest address. The 9811 // getCopyFromParts function, called earlier, is swapping the order of 9812 // the operands to BUILD_PAIR depending on endianness. The result of 9813 // that swapping is that the least significant bits of the argument will 9814 // be in the first operand of the BUILD_PAIR node, and the most 9815 // significant bits will be in the second operand. 9816 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9817 if (LoadSDNode *LNode = 9818 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9819 if (FrameIndexSDNode *FI = 9820 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9821 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9822 } 9823 9824 // Analyses past this point are naive and don't expect an assertion. 9825 if (Res.getOpcode() == ISD::AssertZext) 9826 Res = Res.getOperand(0); 9827 9828 // Update the SwiftErrorVRegDefMap. 9829 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9830 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9831 if (Register::isVirtualRegister(Reg)) 9832 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9833 Reg); 9834 } 9835 9836 // If this argument is live outside of the entry block, insert a copy from 9837 // wherever we got it to the vreg that other BB's will reference it as. 9838 if (Res.getOpcode() == ISD::CopyFromReg) { 9839 // If we can, though, try to skip creating an unnecessary vreg. 9840 // FIXME: This isn't very clean... it would be nice to make this more 9841 // general. 9842 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9843 if (Register::isVirtualRegister(Reg)) { 9844 FuncInfo->ValueMap[&Arg] = Reg; 9845 continue; 9846 } 9847 } 9848 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9849 FuncInfo->InitializeRegForValue(&Arg); 9850 SDB->CopyToExportRegsIfNeeded(&Arg); 9851 } 9852 } 9853 9854 if (!Chains.empty()) { 9855 Chains.push_back(NewRoot); 9856 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9857 } 9858 9859 DAG.setRoot(NewRoot); 9860 9861 assert(i == InVals.size() && "Argument register count mismatch!"); 9862 9863 // If any argument copy elisions occurred and we have debug info, update the 9864 // stale frame indices used in the dbg.declare variable info table. 9865 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9866 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9867 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9868 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9869 if (I != ArgCopyElisionFrameIndexMap.end()) 9870 VI.Slot = I->second; 9871 } 9872 } 9873 9874 // Finally, if the target has anything special to do, allow it to do so. 9875 emitFunctionEntryCode(); 9876 } 9877 9878 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9879 /// ensure constants are generated when needed. Remember the virtual registers 9880 /// that need to be added to the Machine PHI nodes as input. We cannot just 9881 /// directly add them, because expansion might result in multiple MBB's for one 9882 /// BB. As such, the start of the BB might correspond to a different MBB than 9883 /// the end. 9884 void 9885 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9886 const Instruction *TI = LLVMBB->getTerminator(); 9887 9888 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9889 9890 // Check PHI nodes in successors that expect a value to be available from this 9891 // block. 9892 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9893 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9894 if (!isa<PHINode>(SuccBB->begin())) continue; 9895 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9896 9897 // If this terminator has multiple identical successors (common for 9898 // switches), only handle each succ once. 9899 if (!SuccsHandled.insert(SuccMBB).second) 9900 continue; 9901 9902 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9903 9904 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9905 // nodes and Machine PHI nodes, but the incoming operands have not been 9906 // emitted yet. 9907 for (const PHINode &PN : SuccBB->phis()) { 9908 // Ignore dead phi's. 9909 if (PN.use_empty()) 9910 continue; 9911 9912 // Skip empty types 9913 if (PN.getType()->isEmptyTy()) 9914 continue; 9915 9916 unsigned Reg; 9917 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9918 9919 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9920 unsigned &RegOut = ConstantsOut[C]; 9921 if (RegOut == 0) { 9922 RegOut = FuncInfo.CreateRegs(C); 9923 CopyValueToVirtualRegister(C, RegOut); 9924 } 9925 Reg = RegOut; 9926 } else { 9927 DenseMap<const Value *, unsigned>::iterator I = 9928 FuncInfo.ValueMap.find(PHIOp); 9929 if (I != FuncInfo.ValueMap.end()) 9930 Reg = I->second; 9931 else { 9932 assert(isa<AllocaInst>(PHIOp) && 9933 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9934 "Didn't codegen value into a register!??"); 9935 Reg = FuncInfo.CreateRegs(PHIOp); 9936 CopyValueToVirtualRegister(PHIOp, Reg); 9937 } 9938 } 9939 9940 // Remember that this register needs to added to the machine PHI node as 9941 // the input for this MBB. 9942 SmallVector<EVT, 4> ValueVTs; 9943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9944 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9945 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9946 EVT VT = ValueVTs[vti]; 9947 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9948 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9949 FuncInfo.PHINodesToUpdate.push_back( 9950 std::make_pair(&*MBBI++, Reg + i)); 9951 Reg += NumRegisters; 9952 } 9953 } 9954 } 9955 9956 ConstantsOut.clear(); 9957 } 9958 9959 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9960 /// is 0. 9961 MachineBasicBlock * 9962 SelectionDAGBuilder::StackProtectorDescriptor:: 9963 AddSuccessorMBB(const BasicBlock *BB, 9964 MachineBasicBlock *ParentMBB, 9965 bool IsLikely, 9966 MachineBasicBlock *SuccMBB) { 9967 // If SuccBB has not been created yet, create it. 9968 if (!SuccMBB) { 9969 MachineFunction *MF = ParentMBB->getParent(); 9970 MachineFunction::iterator BBI(ParentMBB); 9971 SuccMBB = MF->CreateMachineBasicBlock(BB); 9972 MF->insert(++BBI, SuccMBB); 9973 } 9974 // Add it as a successor of ParentMBB. 9975 ParentMBB->addSuccessor( 9976 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9977 return SuccMBB; 9978 } 9979 9980 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9981 MachineFunction::iterator I(MBB); 9982 if (++I == FuncInfo.MF->end()) 9983 return nullptr; 9984 return &*I; 9985 } 9986 9987 /// During lowering new call nodes can be created (such as memset, etc.). 9988 /// Those will become new roots of the current DAG, but complications arise 9989 /// when they are tail calls. In such cases, the call lowering will update 9990 /// the root, but the builder still needs to know that a tail call has been 9991 /// lowered in order to avoid generating an additional return. 9992 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9993 // If the node is null, we do have a tail call. 9994 if (MaybeTC.getNode() != nullptr) 9995 DAG.setRoot(MaybeTC); 9996 else 9997 HasTailCall = true; 9998 } 9999 10000 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10001 MachineBasicBlock *SwitchMBB, 10002 MachineBasicBlock *DefaultMBB) { 10003 MachineFunction *CurMF = FuncInfo.MF; 10004 MachineBasicBlock *NextMBB = nullptr; 10005 MachineFunction::iterator BBI(W.MBB); 10006 if (++BBI != FuncInfo.MF->end()) 10007 NextMBB = &*BBI; 10008 10009 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10010 10011 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10012 10013 if (Size == 2 && W.MBB == SwitchMBB) { 10014 // If any two of the cases has the same destination, and if one value 10015 // is the same as the other, but has one bit unset that the other has set, 10016 // use bit manipulation to do two compares at once. For example: 10017 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10018 // TODO: This could be extended to merge any 2 cases in switches with 3 10019 // cases. 10020 // TODO: Handle cases where W.CaseBB != SwitchBB. 10021 CaseCluster &Small = *W.FirstCluster; 10022 CaseCluster &Big = *W.LastCluster; 10023 10024 if (Small.Low == Small.High && Big.Low == Big.High && 10025 Small.MBB == Big.MBB) { 10026 const APInt &SmallValue = Small.Low->getValue(); 10027 const APInt &BigValue = Big.Low->getValue(); 10028 10029 // Check that there is only one bit different. 10030 APInt CommonBit = BigValue ^ SmallValue; 10031 if (CommonBit.isPowerOf2()) { 10032 SDValue CondLHS = getValue(Cond); 10033 EVT VT = CondLHS.getValueType(); 10034 SDLoc DL = getCurSDLoc(); 10035 10036 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10037 DAG.getConstant(CommonBit, DL, VT)); 10038 SDValue Cond = DAG.getSetCC( 10039 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10040 ISD::SETEQ); 10041 10042 // Update successor info. 10043 // Both Small and Big will jump to Small.BB, so we sum up the 10044 // probabilities. 10045 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10046 if (BPI) 10047 addSuccessorWithProb( 10048 SwitchMBB, DefaultMBB, 10049 // The default destination is the first successor in IR. 10050 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10051 else 10052 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10053 10054 // Insert the true branch. 10055 SDValue BrCond = 10056 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10057 DAG.getBasicBlock(Small.MBB)); 10058 // Insert the false branch. 10059 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10060 DAG.getBasicBlock(DefaultMBB)); 10061 10062 DAG.setRoot(BrCond); 10063 return; 10064 } 10065 } 10066 } 10067 10068 if (TM.getOptLevel() != CodeGenOpt::None) { 10069 // Here, we order cases by probability so the most likely case will be 10070 // checked first. However, two clusters can have the same probability in 10071 // which case their relative ordering is non-deterministic. So we use Low 10072 // as a tie-breaker as clusters are guaranteed to never overlap. 10073 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10074 [](const CaseCluster &a, const CaseCluster &b) { 10075 return a.Prob != b.Prob ? 10076 a.Prob > b.Prob : 10077 a.Low->getValue().slt(b.Low->getValue()); 10078 }); 10079 10080 // Rearrange the case blocks so that the last one falls through if possible 10081 // without changing the order of probabilities. 10082 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10083 --I; 10084 if (I->Prob > W.LastCluster->Prob) 10085 break; 10086 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10087 std::swap(*I, *W.LastCluster); 10088 break; 10089 } 10090 } 10091 } 10092 10093 // Compute total probability. 10094 BranchProbability DefaultProb = W.DefaultProb; 10095 BranchProbability UnhandledProbs = DefaultProb; 10096 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10097 UnhandledProbs += I->Prob; 10098 10099 MachineBasicBlock *CurMBB = W.MBB; 10100 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10101 bool FallthroughUnreachable = false; 10102 MachineBasicBlock *Fallthrough; 10103 if (I == W.LastCluster) { 10104 // For the last cluster, fall through to the default destination. 10105 Fallthrough = DefaultMBB; 10106 FallthroughUnreachable = isa<UnreachableInst>( 10107 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10108 } else { 10109 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10110 CurMF->insert(BBI, Fallthrough); 10111 // Put Cond in a virtual register to make it available from the new blocks. 10112 ExportFromCurrentBlock(Cond); 10113 } 10114 UnhandledProbs -= I->Prob; 10115 10116 switch (I->Kind) { 10117 case CC_JumpTable: { 10118 // FIXME: Optimize away range check based on pivot comparisons. 10119 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10120 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10121 10122 // The jump block hasn't been inserted yet; insert it here. 10123 MachineBasicBlock *JumpMBB = JT->MBB; 10124 CurMF->insert(BBI, JumpMBB); 10125 10126 auto JumpProb = I->Prob; 10127 auto FallthroughProb = UnhandledProbs; 10128 10129 // If the default statement is a target of the jump table, we evenly 10130 // distribute the default probability to successors of CurMBB. Also 10131 // update the probability on the edge from JumpMBB to Fallthrough. 10132 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10133 SE = JumpMBB->succ_end(); 10134 SI != SE; ++SI) { 10135 if (*SI == DefaultMBB) { 10136 JumpProb += DefaultProb / 2; 10137 FallthroughProb -= DefaultProb / 2; 10138 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10139 JumpMBB->normalizeSuccProbs(); 10140 break; 10141 } 10142 } 10143 10144 if (FallthroughUnreachable) { 10145 // Skip the range check if the fallthrough block is unreachable. 10146 JTH->OmitRangeCheck = true; 10147 } 10148 10149 if (!JTH->OmitRangeCheck) 10150 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10151 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10152 CurMBB->normalizeSuccProbs(); 10153 10154 // The jump table header will be inserted in our current block, do the 10155 // range check, and fall through to our fallthrough block. 10156 JTH->HeaderBB = CurMBB; 10157 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10158 10159 // If we're in the right place, emit the jump table header right now. 10160 if (CurMBB == SwitchMBB) { 10161 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10162 JTH->Emitted = true; 10163 } 10164 break; 10165 } 10166 case CC_BitTests: { 10167 // FIXME: Optimize away range check based on pivot comparisons. 10168 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10169 10170 // The bit test blocks haven't been inserted yet; insert them here. 10171 for (BitTestCase &BTC : BTB->Cases) 10172 CurMF->insert(BBI, BTC.ThisBB); 10173 10174 // Fill in fields of the BitTestBlock. 10175 BTB->Parent = CurMBB; 10176 BTB->Default = Fallthrough; 10177 10178 BTB->DefaultProb = UnhandledProbs; 10179 // If the cases in bit test don't form a contiguous range, we evenly 10180 // distribute the probability on the edge to Fallthrough to two 10181 // successors of CurMBB. 10182 if (!BTB->ContiguousRange) { 10183 BTB->Prob += DefaultProb / 2; 10184 BTB->DefaultProb -= DefaultProb / 2; 10185 } 10186 10187 if (FallthroughUnreachable) { 10188 // Skip the range check if the fallthrough block is unreachable. 10189 BTB->OmitRangeCheck = true; 10190 } 10191 10192 // If we're in the right place, emit the bit test header right now. 10193 if (CurMBB == SwitchMBB) { 10194 visitBitTestHeader(*BTB, SwitchMBB); 10195 BTB->Emitted = true; 10196 } 10197 break; 10198 } 10199 case CC_Range: { 10200 const Value *RHS, *LHS, *MHS; 10201 ISD::CondCode CC; 10202 if (I->Low == I->High) { 10203 // Check Cond == I->Low. 10204 CC = ISD::SETEQ; 10205 LHS = Cond; 10206 RHS=I->Low; 10207 MHS = nullptr; 10208 } else { 10209 // Check I->Low <= Cond <= I->High. 10210 CC = ISD::SETLE; 10211 LHS = I->Low; 10212 MHS = Cond; 10213 RHS = I->High; 10214 } 10215 10216 // If Fallthrough is unreachable, fold away the comparison. 10217 if (FallthroughUnreachable) 10218 CC = ISD::SETTRUE; 10219 10220 // The false probability is the sum of all unhandled cases. 10221 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10222 getCurSDLoc(), I->Prob, UnhandledProbs); 10223 10224 if (CurMBB == SwitchMBB) 10225 visitSwitchCase(CB, SwitchMBB); 10226 else 10227 SL->SwitchCases.push_back(CB); 10228 10229 break; 10230 } 10231 } 10232 CurMBB = Fallthrough; 10233 } 10234 } 10235 10236 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10237 CaseClusterIt First, 10238 CaseClusterIt Last) { 10239 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10240 if (X.Prob != CC.Prob) 10241 return X.Prob > CC.Prob; 10242 10243 // Ties are broken by comparing the case value. 10244 return X.Low->getValue().slt(CC.Low->getValue()); 10245 }); 10246 } 10247 10248 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10249 const SwitchWorkListItem &W, 10250 Value *Cond, 10251 MachineBasicBlock *SwitchMBB) { 10252 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10253 "Clusters not sorted?"); 10254 10255 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10256 10257 // Balance the tree based on branch probabilities to create a near-optimal (in 10258 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10259 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10260 CaseClusterIt LastLeft = W.FirstCluster; 10261 CaseClusterIt FirstRight = W.LastCluster; 10262 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10263 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10264 10265 // Move LastLeft and FirstRight towards each other from opposite directions to 10266 // find a partitioning of the clusters which balances the probability on both 10267 // sides. If LeftProb and RightProb are equal, alternate which side is 10268 // taken to ensure 0-probability nodes are distributed evenly. 10269 unsigned I = 0; 10270 while (LastLeft + 1 < FirstRight) { 10271 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10272 LeftProb += (++LastLeft)->Prob; 10273 else 10274 RightProb += (--FirstRight)->Prob; 10275 I++; 10276 } 10277 10278 while (true) { 10279 // Our binary search tree differs from a typical BST in that ours can have up 10280 // to three values in each leaf. The pivot selection above doesn't take that 10281 // into account, which means the tree might require more nodes and be less 10282 // efficient. We compensate for this here. 10283 10284 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10285 unsigned NumRight = W.LastCluster - FirstRight + 1; 10286 10287 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10288 // If one side has less than 3 clusters, and the other has more than 3, 10289 // consider taking a cluster from the other side. 10290 10291 if (NumLeft < NumRight) { 10292 // Consider moving the first cluster on the right to the left side. 10293 CaseCluster &CC = *FirstRight; 10294 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10295 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10296 if (LeftSideRank <= RightSideRank) { 10297 // Moving the cluster to the left does not demote it. 10298 ++LastLeft; 10299 ++FirstRight; 10300 continue; 10301 } 10302 } else { 10303 assert(NumRight < NumLeft); 10304 // Consider moving the last element on the left to the right side. 10305 CaseCluster &CC = *LastLeft; 10306 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10307 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10308 if (RightSideRank <= LeftSideRank) { 10309 // Moving the cluster to the right does not demot it. 10310 --LastLeft; 10311 --FirstRight; 10312 continue; 10313 } 10314 } 10315 } 10316 break; 10317 } 10318 10319 assert(LastLeft + 1 == FirstRight); 10320 assert(LastLeft >= W.FirstCluster); 10321 assert(FirstRight <= W.LastCluster); 10322 10323 // Use the first element on the right as pivot since we will make less-than 10324 // comparisons against it. 10325 CaseClusterIt PivotCluster = FirstRight; 10326 assert(PivotCluster > W.FirstCluster); 10327 assert(PivotCluster <= W.LastCluster); 10328 10329 CaseClusterIt FirstLeft = W.FirstCluster; 10330 CaseClusterIt LastRight = W.LastCluster; 10331 10332 const ConstantInt *Pivot = PivotCluster->Low; 10333 10334 // New blocks will be inserted immediately after the current one. 10335 MachineFunction::iterator BBI(W.MBB); 10336 ++BBI; 10337 10338 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10339 // we can branch to its destination directly if it's squeezed exactly in 10340 // between the known lower bound and Pivot - 1. 10341 MachineBasicBlock *LeftMBB; 10342 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10343 FirstLeft->Low == W.GE && 10344 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10345 LeftMBB = FirstLeft->MBB; 10346 } else { 10347 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10348 FuncInfo.MF->insert(BBI, LeftMBB); 10349 WorkList.push_back( 10350 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10351 // Put Cond in a virtual register to make it available from the new blocks. 10352 ExportFromCurrentBlock(Cond); 10353 } 10354 10355 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10356 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10357 // directly if RHS.High equals the current upper bound. 10358 MachineBasicBlock *RightMBB; 10359 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10360 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10361 RightMBB = FirstRight->MBB; 10362 } else { 10363 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10364 FuncInfo.MF->insert(BBI, RightMBB); 10365 WorkList.push_back( 10366 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10367 // Put Cond in a virtual register to make it available from the new blocks. 10368 ExportFromCurrentBlock(Cond); 10369 } 10370 10371 // Create the CaseBlock record that will be used to lower the branch. 10372 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10373 getCurSDLoc(), LeftProb, RightProb); 10374 10375 if (W.MBB == SwitchMBB) 10376 visitSwitchCase(CB, SwitchMBB); 10377 else 10378 SL->SwitchCases.push_back(CB); 10379 } 10380 10381 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10382 // from the swith statement. 10383 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10384 BranchProbability PeeledCaseProb) { 10385 if (PeeledCaseProb == BranchProbability::getOne()) 10386 return BranchProbability::getZero(); 10387 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10388 10389 uint32_t Numerator = CaseProb.getNumerator(); 10390 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10391 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10392 } 10393 10394 // Try to peel the top probability case if it exceeds the threshold. 10395 // Return current MachineBasicBlock for the switch statement if the peeling 10396 // does not occur. 10397 // If the peeling is performed, return the newly created MachineBasicBlock 10398 // for the peeled switch statement. Also update Clusters to remove the peeled 10399 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10400 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10401 const SwitchInst &SI, CaseClusterVector &Clusters, 10402 BranchProbability &PeeledCaseProb) { 10403 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10404 // Don't perform if there is only one cluster or optimizing for size. 10405 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10406 TM.getOptLevel() == CodeGenOpt::None || 10407 SwitchMBB->getParent()->getFunction().hasMinSize()) 10408 return SwitchMBB; 10409 10410 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10411 unsigned PeeledCaseIndex = 0; 10412 bool SwitchPeeled = false; 10413 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10414 CaseCluster &CC = Clusters[Index]; 10415 if (CC.Prob < TopCaseProb) 10416 continue; 10417 TopCaseProb = CC.Prob; 10418 PeeledCaseIndex = Index; 10419 SwitchPeeled = true; 10420 } 10421 if (!SwitchPeeled) 10422 return SwitchMBB; 10423 10424 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10425 << TopCaseProb << "\n"); 10426 10427 // Record the MBB for the peeled switch statement. 10428 MachineFunction::iterator BBI(SwitchMBB); 10429 ++BBI; 10430 MachineBasicBlock *PeeledSwitchMBB = 10431 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10432 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10433 10434 ExportFromCurrentBlock(SI.getCondition()); 10435 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10436 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10437 nullptr, nullptr, TopCaseProb.getCompl()}; 10438 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10439 10440 Clusters.erase(PeeledCaseIt); 10441 for (CaseCluster &CC : Clusters) { 10442 LLVM_DEBUG( 10443 dbgs() << "Scale the probablity for one cluster, before scaling: " 10444 << CC.Prob << "\n"); 10445 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10446 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10447 } 10448 PeeledCaseProb = TopCaseProb; 10449 return PeeledSwitchMBB; 10450 } 10451 10452 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10453 // Extract cases from the switch. 10454 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10455 CaseClusterVector Clusters; 10456 Clusters.reserve(SI.getNumCases()); 10457 for (auto I : SI.cases()) { 10458 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10459 const ConstantInt *CaseVal = I.getCaseValue(); 10460 BranchProbability Prob = 10461 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10462 : BranchProbability(1, SI.getNumCases() + 1); 10463 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10464 } 10465 10466 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10467 10468 // Cluster adjacent cases with the same destination. We do this at all 10469 // optimization levels because it's cheap to do and will make codegen faster 10470 // if there are many clusters. 10471 sortAndRangeify(Clusters); 10472 10473 // The branch probablity of the peeled case. 10474 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10475 MachineBasicBlock *PeeledSwitchMBB = 10476 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10477 10478 // If there is only the default destination, jump there directly. 10479 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10480 if (Clusters.empty()) { 10481 assert(PeeledSwitchMBB == SwitchMBB); 10482 SwitchMBB->addSuccessor(DefaultMBB); 10483 if (DefaultMBB != NextBlock(SwitchMBB)) { 10484 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10485 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10486 } 10487 return; 10488 } 10489 10490 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10491 SL->findBitTestClusters(Clusters, &SI); 10492 10493 LLVM_DEBUG({ 10494 dbgs() << "Case clusters: "; 10495 for (const CaseCluster &C : Clusters) { 10496 if (C.Kind == CC_JumpTable) 10497 dbgs() << "JT:"; 10498 if (C.Kind == CC_BitTests) 10499 dbgs() << "BT:"; 10500 10501 C.Low->getValue().print(dbgs(), true); 10502 if (C.Low != C.High) { 10503 dbgs() << '-'; 10504 C.High->getValue().print(dbgs(), true); 10505 } 10506 dbgs() << ' '; 10507 } 10508 dbgs() << '\n'; 10509 }); 10510 10511 assert(!Clusters.empty()); 10512 SwitchWorkList WorkList; 10513 CaseClusterIt First = Clusters.begin(); 10514 CaseClusterIt Last = Clusters.end() - 1; 10515 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10516 // Scale the branchprobability for DefaultMBB if the peel occurs and 10517 // DefaultMBB is not replaced. 10518 if (PeeledCaseProb != BranchProbability::getZero() && 10519 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10520 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10521 WorkList.push_back( 10522 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10523 10524 while (!WorkList.empty()) { 10525 SwitchWorkListItem W = WorkList.back(); 10526 WorkList.pop_back(); 10527 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10528 10529 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10530 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10531 // For optimized builds, lower large range as a balanced binary tree. 10532 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10533 continue; 10534 } 10535 10536 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10537 } 10538 } 10539 10540 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10541 SDNodeFlags Flags; 10542 10543 SDValue Op = getValue(I.getOperand(0)); 10544 if (I.getOperand(0)->getType()->isAggregateType()) { 10545 EVT VT = Op.getValueType(); 10546 SmallVector<SDValue, 1> Values; 10547 for (unsigned i = 0; i < Op.getNumOperands(); ++i) { 10548 SDValue Arg(Op.getNode(), i); 10549 SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), VT, Arg, Flags); 10550 Values.push_back(UnNodeValue); 10551 } 10552 SDValue MergedValue = DAG.getMergeValues(Values, getCurSDLoc()); 10553 setValue(&I, MergedValue); 10554 } else { 10555 SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), Op.getValueType(), 10556 Op, Flags); 10557 setValue(&I, UnNodeValue); 10558 } 10559 } 10560