1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <iterator> 108 #include <limits> 109 #include <optional> 110 #include <tuple> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 using namespace SwitchCG; 115 116 #define DEBUG_TYPE "isel" 117 118 /// LimitFloatPrecision - Generate low-precision inline sequences for 119 /// some float libcalls (6, 8 or 12 bits). 120 static unsigned LimitFloatPrecision; 121 122 static cl::opt<bool> 123 InsertAssertAlign("insert-assert-align", cl::init(true), 124 cl::desc("Insert the experimental `assertalign` node."), 125 cl::ReallyHidden); 126 127 static cl::opt<unsigned, true> 128 LimitFPPrecision("limit-float-precision", 129 cl::desc("Generate low-precision inline sequences " 130 "for some float libcalls"), 131 cl::location(LimitFloatPrecision), cl::Hidden, 132 cl::init(0)); 133 134 static cl::opt<unsigned> SwitchPeelThreshold( 135 "switch-peel-threshold", cl::Hidden, cl::init(66), 136 cl::desc("Set the case probability threshold for peeling the case from a " 137 "switch statement. A value greater than 100 will void this " 138 "optimization")); 139 140 // Limit the width of DAG chains. This is important in general to prevent 141 // DAG-based analysis from blowing up. For example, alias analysis and 142 // load clustering may not complete in reasonable time. It is difficult to 143 // recognize and avoid this situation within each individual analysis, and 144 // future analyses are likely to have the same behavior. Limiting DAG width is 145 // the safe approach and will be especially important with global DAGs. 146 // 147 // MaxParallelChains default is arbitrarily high to avoid affecting 148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 149 // sequence over this should have been converted to llvm.memcpy by the 150 // frontend. It is easy to induce this behavior with .ll code such as: 151 // %buffer = alloca [4096 x i8] 152 // %data = load [4096 x i8]* %argPtr 153 // store [4096 x i8] %data, [4096 x i8]* %buffer 154 static const unsigned MaxParallelChains = 64; 155 156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 157 const SDValue *Parts, unsigned NumParts, 158 MVT PartVT, EVT ValueVT, const Value *V, 159 SDValue InChain, 160 std::optional<CallingConv::ID> CC); 161 162 /// getCopyFromParts - Create a value that contains the specified legal parts 163 /// combined into the value they represent. If the parts combine to a type 164 /// larger than ValueVT then AssertOp can be used to specify whether the extra 165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 166 /// (ISD::AssertSext). 167 static SDValue 168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 169 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 170 SDValue InChain, 171 std::optional<CallingConv::ID> CC = std::nullopt, 172 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 173 // Let the target assemble the parts if it wants to 174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 175 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 176 PartVT, ValueVT, CC)) 177 return Val; 178 179 if (ValueVT.isVector()) 180 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 181 InChain, CC); 182 183 assert(NumParts > 0 && "No parts to assemble!"); 184 SDValue Val = Parts[0]; 185 186 if (NumParts > 1) { 187 // Assemble the value from multiple parts. 188 if (ValueVT.isInteger()) { 189 unsigned PartBits = PartVT.getSizeInBits(); 190 unsigned ValueBits = ValueVT.getSizeInBits(); 191 192 // Assemble the power of 2 part. 193 unsigned RoundParts = llvm::bit_floor(NumParts); 194 unsigned RoundBits = PartBits * RoundParts; 195 EVT RoundVT = RoundBits == ValueBits ? 196 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 197 SDValue Lo, Hi; 198 199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 200 201 if (RoundParts > 2) { 202 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 203 InChain); 204 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 205 PartVT, HalfVT, V, InChain); 206 } else { 207 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 208 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 209 } 210 211 if (DAG.getDataLayout().isBigEndian()) 212 std::swap(Lo, Hi); 213 214 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 215 216 if (RoundParts < NumParts) { 217 // Assemble the trailing non-power-of-2 part. 218 unsigned OddParts = NumParts - RoundParts; 219 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 220 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 221 OddVT, V, InChain, CC); 222 223 // Combine the round and odd parts. 224 Lo = Val; 225 if (DAG.getDataLayout().isBigEndian()) 226 std::swap(Lo, Hi); 227 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 228 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 229 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 230 DAG.getConstant(Lo.getValueSizeInBits(), DL, 231 TLI.getShiftAmountTy( 232 TotalVT, DAG.getDataLayout()))); 233 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 234 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 235 } 236 } else if (PartVT.isFloatingPoint()) { 237 // FP split into multiple FP parts (for ppcf128) 238 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 239 "Unexpected split"); 240 SDValue Lo, Hi; 241 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 242 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 243 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 244 std::swap(Lo, Hi); 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 246 } else { 247 // FP split into integer parts (soft fp) 248 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 249 !PartVT.isVector() && "Unexpected split"); 250 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 251 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 252 InChain, CC); 253 } 254 } 255 256 // There is now one part, held in Val. Correct it to match ValueVT. 257 // PartEVT is the type of the register class that holds the value. 258 // ValueVT is the type of the inline asm operation. 259 EVT PartEVT = Val.getValueType(); 260 261 if (PartEVT == ValueVT) 262 return Val; 263 264 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 265 ValueVT.bitsLT(PartEVT)) { 266 // For an FP value in an integer part, we need to truncate to the right 267 // width first. 268 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 270 } 271 272 // Handle types that have the same size. 273 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 274 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 275 276 // Handle types with different sizes. 277 if (PartEVT.isInteger() && ValueVT.isInteger()) { 278 if (ValueVT.bitsLT(PartEVT)) { 279 // For a truncate, see if we have any information to 280 // indicate whether the truncated bits will always be 281 // zero or sign-extension. 282 if (AssertOp) 283 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 284 DAG.getValueType(ValueVT)); 285 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 286 } 287 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 288 } 289 290 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 291 // FP_ROUND's are always exact here. 292 if (ValueVT.bitsLT(Val.getValueType())) { 293 294 SDValue NoChange = 295 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 296 297 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 298 llvm::Attribute::StrictFP)) { 299 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 300 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 301 NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 305 } 306 307 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 308 } 309 310 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 311 // then truncating. 312 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 313 ValueVT.bitsLT(PartEVT)) { 314 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 318 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (CI->isInlineAsm()) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 SDValue InChain, 344 std::optional<CallingConv::ID> CallConv) { 345 assert(ValueVT.isVector() && "Not a vector value"); 346 assert(NumParts > 0 && "No parts to assemble!"); 347 const bool IsABIRegCopy = CallConv.has_value(); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 SDValue Val = Parts[0]; 351 352 // Handle a multi-element vector. 353 if (NumParts > 1) { 354 EVT IntermediateVT; 355 MVT RegisterVT; 356 unsigned NumIntermediates; 357 unsigned NumRegs; 358 359 if (IsABIRegCopy) { 360 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 361 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } else { 364 NumRegs = 365 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } 368 369 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 370 NumParts = NumRegs; // Silence a compiler warning. 371 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 372 assert(RegisterVT.getSizeInBits() == 373 Parts[0].getSimpleValueType().getSizeInBits() && 374 "Part type sizes don't match!"); 375 376 // Assemble the parts into intermediate operands. 377 SmallVector<SDValue, 8> Ops(NumIntermediates); 378 if (NumIntermediates == NumParts) { 379 // If the register was not expanded, truncate or copy the value, 380 // as appropriate. 381 for (unsigned i = 0; i != NumParts; ++i) 382 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 383 V, InChain, CallConv); 384 } else if (NumParts > 0) { 385 // If the intermediate type was expanded, build the intermediate 386 // operands from the parts. 387 assert(NumParts % NumIntermediates == 0 && 388 "Must expand into a divisible number of parts!"); 389 unsigned Factor = NumParts / NumIntermediates; 390 for (unsigned i = 0; i != NumIntermediates; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 392 IntermediateVT, V, InChain, CallConv); 393 } 394 395 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 396 // intermediate operands. 397 EVT BuiltVectorTy = 398 IntermediateVT.isVector() 399 ? EVT::getVectorVT( 400 *DAG.getContext(), IntermediateVT.getScalarType(), 401 IntermediateVT.getVectorElementCount() * NumParts) 402 : EVT::getVectorVT(*DAG.getContext(), 403 IntermediateVT.getScalarType(), 404 NumIntermediates); 405 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 406 : ISD::BUILD_VECTOR, 407 DL, BuiltVectorTy, Ops); 408 } 409 410 // There is now one part, held in Val. Correct it to match ValueVT. 411 EVT PartEVT = Val.getValueType(); 412 413 if (PartEVT == ValueVT) 414 return Val; 415 416 if (PartEVT.isVector()) { 417 // Vector/Vector bitcast. 418 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 419 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 421 // If the parts vector has more elements than the value vector, then we 422 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 423 // Extract the elements we want. 424 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 425 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 426 ValueVT.getVectorElementCount().getKnownMinValue()) && 427 (PartEVT.getVectorElementCount().isScalable() == 428 ValueVT.getVectorElementCount().isScalable()) && 429 "Cannot narrow, it would be a lossy transformation"); 430 PartEVT = 431 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 432 ValueVT.getVectorElementCount()); 433 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 434 DAG.getVectorIdxConstant(0, DL)); 435 if (PartEVT == ValueVT) 436 return Val; 437 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } 444 445 // Promoted vector extract 446 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 447 } 448 449 // Trivial bitcast if the types are the same size and the destination 450 // vector type is legal. 451 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 452 TLI.isTypeLegal(ValueVT)) 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 455 if (ValueVT.getVectorNumElements() != 1) { 456 // Certain ABIs require that vectors are passed as integers. For vectors 457 // are the same size, this is an obvious bitcast. 458 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 459 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 460 } else if (ValueVT.bitsLT(PartEVT)) { 461 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 // Drop the extra bits. 464 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 465 return DAG.getBitcast(ValueVT, Val); 466 } 467 468 diagnosePossiblyInvalidConstraint( 469 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 470 return DAG.getUNDEF(ValueVT); 471 } 472 473 // Handle cases such as i8 -> <1 x i1> 474 EVT ValueSVT = ValueVT.getVectorElementType(); 475 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 476 unsigned ValueSize = ValueSVT.getSizeInBits(); 477 if (ValueSize == PartEVT.getSizeInBits()) { 478 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 479 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 480 // It's possible a scalar floating point type gets softened to integer and 481 // then promoted to a larger integer. If PartEVT is the larger integer 482 // we need to truncate it and then bitcast to the FP type. 483 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 484 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 485 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 486 Val = DAG.getBitcast(ValueSVT, Val); 487 } else { 488 Val = ValueVT.isFloatingPoint() 489 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 490 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 491 } 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 std::optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void 506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 507 unsigned NumParts, MVT PartVT, const Value *V, 508 std::optional<CallingConv::ID> CallConv = std::nullopt, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 // Let the target split the parts if it wants to 511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 512 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 513 CallConv)) 514 return; 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned OrigNumParts = NumParts; 523 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 524 "Copying to an illegal type!"); 525 526 if (NumParts == 0) 527 return; 528 529 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 530 EVT PartEVT = PartVT; 531 if (PartEVT == ValueVT) { 532 assert(NumParts == 1 && "No-op copy with multiple parts!"); 533 Parts[0] = Val; 534 return; 535 } 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = llvm::bit_floor(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 643 const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 EVT PartEVT = PartVT.getVectorElementType(); 649 EVT ValueEVT = ValueVT.getVectorElementType(); 650 ElementCount PartNumElts = PartVT.getVectorElementCount(); 651 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 652 653 // We only support widening vectors with equivalent element types and 654 // fixed/scalable properties. If a target needs to widen a fixed-length type 655 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 656 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 657 PartNumElts.isScalable() != ValueNumElts.isScalable()) 658 return SDValue(); 659 660 // Have a try for bf16 because some targets share its ABI with fp16. 661 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 662 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 663 "Cannot widen to illegal type"); 664 Val = DAG.getNode(ISD::BITCAST, DL, 665 ValueVT.changeVectorElementType(MVT::f16), Val); 666 } else if (PartEVT != ValueEVT) { 667 return SDValue(); 668 } 669 670 // Widening a scalable vector to another scalable vector is done by inserting 671 // the vector into a larger undef one. 672 if (PartNumElts.isScalable()) 673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 674 Val, DAG.getVectorIdxConstant(0, DL)); 675 676 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 677 // undef elements. 678 SmallVector<SDValue, 16> Ops; 679 DAG.ExtractVectorElements(Val, Ops); 680 SDValue EltUndef = DAG.getUNDEF(PartEVT); 681 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 682 683 // FIXME: Use CONCAT for 2x -> 4x. 684 return DAG.getBuildVector(PartVT, DL, Ops); 685 } 686 687 /// getCopyToPartsVector - Create a series of nodes that contain the specified 688 /// value split into legal parts. 689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 690 SDValue Val, SDValue *Parts, unsigned NumParts, 691 MVT PartVT, const Value *V, 692 std::optional<CallingConv::ID> CallConv) { 693 EVT ValueVT = Val.getValueType(); 694 assert(ValueVT.isVector() && "Not a vector"); 695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 696 const bool IsABIRegCopy = CallConv.has_value(); 697 698 if (NumParts == 1) { 699 EVT PartEVT = PartVT; 700 if (PartEVT == ValueVT) { 701 // Nothing to do. 702 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 703 // Bitconvert vector->vector case. 704 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 705 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 706 Val = Widened; 707 } else if (PartVT.isVector() && 708 PartEVT.getVectorElementType().bitsGE( 709 ValueVT.getVectorElementType()) && 710 PartEVT.getVectorElementCount() == 711 ValueVT.getVectorElementCount()) { 712 713 // Promoted vector extract 714 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 715 } else if (PartEVT.isVector() && 716 PartEVT.getVectorElementType() != 717 ValueVT.getVectorElementType() && 718 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 719 TargetLowering::TypeWidenVector) { 720 // Combination of widening and promotion. 721 EVT WidenVT = 722 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 723 PartVT.getVectorElementCount()); 724 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 725 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 726 } else { 727 // Don't extract an integer from a float vector. This can happen if the 728 // FP type gets softened to integer and then promoted. The promotion 729 // prevents it from being picked up by the earlier bitcast case. 730 if (ValueVT.getVectorElementCount().isScalar() && 731 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 732 // If we reach this condition and PartVT is FP, this means that 733 // ValueVT is also FP and both have a different size, otherwise we 734 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 735 // would be invalid since that would mean the smaller FP type has to 736 // be extended to the larger one. 737 if (PartVT.isFloatingPoint()) { 738 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 739 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 740 } else 741 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 742 DAG.getVectorIdxConstant(0, DL)); 743 } else { 744 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 745 assert(PartVT.getFixedSizeInBits() > ValueSize && 746 "lossy conversion of vector to scalar type"); 747 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 748 Val = DAG.getBitcast(IntermediateType, Val); 749 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 750 } 751 } 752 753 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 754 Parts[0] = Val; 755 return; 756 } 757 758 // Handle a multi-element vector. 759 EVT IntermediateVT; 760 MVT RegisterVT; 761 unsigned NumIntermediates; 762 unsigned NumRegs; 763 if (IsABIRegCopy) { 764 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 765 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 766 RegisterVT); 767 } else { 768 NumRegs = 769 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 770 NumIntermediates, RegisterVT); 771 } 772 773 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 774 NumParts = NumRegs; // Silence a compiler warning. 775 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 776 777 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 778 "Mixing scalable and fixed vectors when copying in parts"); 779 780 std::optional<ElementCount> DestEltCnt; 781 782 if (IntermediateVT.isVector()) 783 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 784 else 785 DestEltCnt = ElementCount::getFixed(NumIntermediates); 786 787 EVT BuiltVectorTy = EVT::getVectorVT( 788 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 789 790 if (ValueVT == BuiltVectorTy) { 791 // Nothing to do. 792 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 793 // Bitconvert vector->vector case. 794 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 795 } else { 796 if (BuiltVectorTy.getVectorElementType().bitsGT( 797 ValueVT.getVectorElementType())) { 798 // Integer promotion. 799 ValueVT = EVT::getVectorVT(*DAG.getContext(), 800 BuiltVectorTy.getVectorElementType(), 801 ValueVT.getVectorElementCount()); 802 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 803 } 804 805 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 806 Val = Widened; 807 } 808 } 809 810 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 811 812 // Split the vector into intermediate operands. 813 SmallVector<SDValue, 8> Ops(NumIntermediates); 814 for (unsigned i = 0; i != NumIntermediates; ++i) { 815 if (IntermediateVT.isVector()) { 816 // This does something sensible for scalable vectors - see the 817 // definition of EXTRACT_SUBVECTOR for further details. 818 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 819 Ops[i] = 820 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 821 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 822 } else { 823 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 824 DAG.getVectorIdxConstant(i, DL)); 825 } 826 } 827 828 // Split the intermediate operands into legal parts. 829 if (NumParts == NumIntermediates) { 830 // If the register was not expanded, promote or copy the value, 831 // as appropriate. 832 for (unsigned i = 0; i != NumParts; ++i) 833 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 834 } else if (NumParts > 0) { 835 // If the intermediate type was expanded, split each the value into 836 // legal parts. 837 assert(NumIntermediates != 0 && "division by zero"); 838 assert(NumParts % NumIntermediates == 0 && 839 "Must expand into a divisible number of parts!"); 840 unsigned Factor = NumParts / NumIntermediates; 841 for (unsigned i = 0; i != NumIntermediates; ++i) 842 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 843 CallConv); 844 } 845 } 846 847 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 848 EVT valuevt, std::optional<CallingConv::ID> CC) 849 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 850 RegCount(1, regs.size()), CallConv(CC) {} 851 852 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 853 const DataLayout &DL, unsigned Reg, Type *Ty, 854 std::optional<CallingConv::ID> CC) { 855 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 856 857 CallConv = CC; 858 859 for (EVT ValueVT : ValueVTs) { 860 unsigned NumRegs = 861 isABIMangled() 862 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 863 : TLI.getNumRegisters(Context, ValueVT); 864 MVT RegisterVT = 865 isABIMangled() 866 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 867 : TLI.getRegisterType(Context, ValueVT); 868 for (unsigned i = 0; i != NumRegs; ++i) 869 Regs.push_back(Reg + i); 870 RegVTs.push_back(RegisterVT); 871 RegCount.push_back(NumRegs); 872 Reg += NumRegs; 873 } 874 } 875 876 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 877 FunctionLoweringInfo &FuncInfo, 878 const SDLoc &dl, SDValue &Chain, 879 SDValue *Glue, const Value *V) const { 880 // A Value with type {} or [0 x %t] needs no registers. 881 if (ValueVTs.empty()) 882 return SDValue(); 883 884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 885 886 // Assemble the legal parts into the final values. 887 SmallVector<SDValue, 4> Values(ValueVTs.size()); 888 SmallVector<SDValue, 8> Parts; 889 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 890 // Copy the legal parts from the registers. 891 EVT ValueVT = ValueVTs[Value]; 892 unsigned NumRegs = RegCount[Value]; 893 MVT RegisterVT = isABIMangled() 894 ? TLI.getRegisterTypeForCallingConv( 895 *DAG.getContext(), *CallConv, RegVTs[Value]) 896 : RegVTs[Value]; 897 898 Parts.resize(NumRegs); 899 for (unsigned i = 0; i != NumRegs; ++i) { 900 SDValue P; 901 if (!Glue) { 902 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 903 } else { 904 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 905 *Glue = P.getValue(2); 906 } 907 908 Chain = P.getValue(1); 909 Parts[i] = P; 910 911 // If the source register was virtual and if we know something about it, 912 // add an assert node. 913 if (!Register::isVirtualRegister(Regs[Part + i]) || 914 !RegisterVT.isInteger()) 915 continue; 916 917 const FunctionLoweringInfo::LiveOutInfo *LOI = 918 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 919 if (!LOI) 920 continue; 921 922 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 923 unsigned NumSignBits = LOI->NumSignBits; 924 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 925 926 if (NumZeroBits == RegSize) { 927 // The current value is a zero. 928 // Explicitly express that as it would be easier for 929 // optimizations to kick in. 930 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 931 continue; 932 } 933 934 // FIXME: We capture more information than the dag can represent. For 935 // now, just use the tightest assertzext/assertsext possible. 936 bool isSExt; 937 EVT FromVT(MVT::Other); 938 if (NumZeroBits) { 939 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 940 isSExt = false; 941 } else if (NumSignBits > 1) { 942 FromVT = 943 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 944 isSExt = true; 945 } else { 946 continue; 947 } 948 // Add an assertion node. 949 assert(FromVT != MVT::Other); 950 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 951 RegisterVT, P, DAG.getValueType(FromVT)); 952 } 953 954 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 955 RegisterVT, ValueVT, V, Chain, CallConv); 956 Part += NumRegs; 957 Parts.clear(); 958 } 959 960 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 961 } 962 963 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 964 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 965 const Value *V, 966 ISD::NodeType PreferredExtendType) const { 967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 968 ISD::NodeType ExtendKind = PreferredExtendType; 969 970 // Get the list of the values's legal parts. 971 unsigned NumRegs = Regs.size(); 972 SmallVector<SDValue, 8> Parts(NumRegs); 973 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumParts = RegCount[Value]; 975 976 MVT RegisterVT = isABIMangled() 977 ? TLI.getRegisterTypeForCallingConv( 978 *DAG.getContext(), *CallConv, RegVTs[Value]) 979 : RegVTs[Value]; 980 981 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 982 ExtendKind = ISD::ZERO_EXTEND; 983 984 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 985 NumParts, RegisterVT, V, CallConv, ExtendKind); 986 Part += NumParts; 987 } 988 989 // Copy the parts into the registers. 990 SmallVector<SDValue, 8> Chains(NumRegs); 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 SDValue Part; 993 if (!Glue) { 994 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 995 } else { 996 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 997 *Glue = Part.getValue(1); 998 } 999 1000 Chains[i] = Part.getValue(0); 1001 } 1002 1003 if (NumRegs == 1 || Glue) 1004 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1005 // flagged to it. That is the CopyToReg nodes and the user are considered 1006 // a single scheduling unit. If we create a TokenFactor and return it as 1007 // chain, then the TokenFactor is both a predecessor (operand) of the 1008 // user as well as a successor (the TF operands are flagged to the user). 1009 // c1, f1 = CopyToReg 1010 // c2, f2 = CopyToReg 1011 // c3 = TokenFactor c1, c2 1012 // ... 1013 // = op c3, ..., f2 1014 Chain = Chains[NumRegs-1]; 1015 else 1016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1017 } 1018 1019 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1020 unsigned MatchingIdx, const SDLoc &dl, 1021 SelectionDAG &DAG, 1022 std::vector<SDValue> &Ops) const { 1023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1024 1025 InlineAsm::Flag Flag(Code, Regs.size()); 1026 if (HasMatching) 1027 Flag.setMatchingOp(MatchingIdx); 1028 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1029 // Put the register class of the virtual registers in the flag word. That 1030 // way, later passes can recompute register class constraints for inline 1031 // assembly as well as normal instructions. 1032 // Don't do this for tied operands that can use the regclass information 1033 // from the def. 1034 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1035 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1036 Flag.setRegClass(RC->getID()); 1037 } 1038 1039 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1040 Ops.push_back(Res); 1041 1042 if (Code == InlineAsm::Kind::Clobber) { 1043 // Clobbers should always have a 1:1 mapping with registers, and may 1044 // reference registers that have illegal (e.g. vector) types. Hence, we 1045 // shouldn't try to apply any sort of splitting logic to them. 1046 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1047 "No 1:1 mapping from clobbers to regs?"); 1048 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1049 (void)SP; 1050 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1051 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1052 assert( 1053 (Regs[I] != SP || 1054 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1055 "If we clobbered the stack pointer, MFI should know about it."); 1056 } 1057 return; 1058 } 1059 1060 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1061 MVT RegisterVT = RegVTs[Value]; 1062 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1063 RegisterVT); 1064 for (unsigned i = 0; i != NumRegs; ++i) { 1065 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1066 unsigned TheReg = Regs[Reg++]; 1067 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1068 } 1069 } 1070 } 1071 1072 SmallVector<std::pair<unsigned, TypeSize>, 4> 1073 RegsForValue::getRegsAndSizes() const { 1074 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1075 unsigned I = 0; 1076 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1077 unsigned RegCount = std::get<0>(CountAndVT); 1078 MVT RegisterVT = std::get<1>(CountAndVT); 1079 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1080 for (unsigned E = I + RegCount; I != E; ++I) 1081 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1082 } 1083 return OutVec; 1084 } 1085 1086 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1087 AssumptionCache *ac, 1088 const TargetLibraryInfo *li) { 1089 AA = aa; 1090 AC = ac; 1091 GFI = gfi; 1092 LibInfo = li; 1093 Context = DAG.getContext(); 1094 LPadToCallSiteMap.clear(); 1095 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1096 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1097 *DAG.getMachineFunction().getFunction().getParent()); 1098 } 1099 1100 void SelectionDAGBuilder::clear() { 1101 NodeMap.clear(); 1102 UnusedArgNodeMap.clear(); 1103 PendingLoads.clear(); 1104 PendingExports.clear(); 1105 PendingConstrainedFP.clear(); 1106 PendingConstrainedFPStrict.clear(); 1107 CurInst = nullptr; 1108 HasTailCall = false; 1109 SDNodeOrder = LowestSDNodeOrder; 1110 StatepointLowering.clear(); 1111 } 1112 1113 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1114 DanglingDebugInfoMap.clear(); 1115 } 1116 1117 // Update DAG root to include dependencies on Pending chains. 1118 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1119 SDValue Root = DAG.getRoot(); 1120 1121 if (Pending.empty()) 1122 return Root; 1123 1124 // Add current root to PendingChains, unless we already indirectly 1125 // depend on it. 1126 if (Root.getOpcode() != ISD::EntryToken) { 1127 unsigned i = 0, e = Pending.size(); 1128 for (; i != e; ++i) { 1129 assert(Pending[i].getNode()->getNumOperands() > 1); 1130 if (Pending[i].getNode()->getOperand(0) == Root) 1131 break; // Don't add the root if we already indirectly depend on it. 1132 } 1133 1134 if (i == e) 1135 Pending.push_back(Root); 1136 } 1137 1138 if (Pending.size() == 1) 1139 Root = Pending[0]; 1140 else 1141 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1142 1143 DAG.setRoot(Root); 1144 Pending.clear(); 1145 return Root; 1146 } 1147 1148 SDValue SelectionDAGBuilder::getMemoryRoot() { 1149 return updateRoot(PendingLoads); 1150 } 1151 1152 SDValue SelectionDAGBuilder::getRoot() { 1153 // Chain up all pending constrained intrinsics together with all 1154 // pending loads, by simply appending them to PendingLoads and 1155 // then calling getMemoryRoot(). 1156 PendingLoads.reserve(PendingLoads.size() + 1157 PendingConstrainedFP.size() + 1158 PendingConstrainedFPStrict.size()); 1159 PendingLoads.append(PendingConstrainedFP.begin(), 1160 PendingConstrainedFP.end()); 1161 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFP.clear(); 1164 PendingConstrainedFPStrict.clear(); 1165 return getMemoryRoot(); 1166 } 1167 1168 SDValue SelectionDAGBuilder::getControlRoot() { 1169 // We need to emit pending fpexcept.strict constrained intrinsics, 1170 // so append them to the PendingExports list. 1171 PendingExports.append(PendingConstrainedFPStrict.begin(), 1172 PendingConstrainedFPStrict.end()); 1173 PendingConstrainedFPStrict.clear(); 1174 return updateRoot(PendingExports); 1175 } 1176 1177 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1178 DILocalVariable *Variable, 1179 DIExpression *Expression, 1180 DebugLoc DL) { 1181 assert(Variable && "Missing variable"); 1182 1183 // Check if address has undef value. 1184 if (!Address || isa<UndefValue>(Address) || 1185 (Address->use_empty() && !isa<Argument>(Address))) { 1186 LLVM_DEBUG( 1187 dbgs() 1188 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1189 return; 1190 } 1191 1192 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1193 1194 SDValue &N = NodeMap[Address]; 1195 if (!N.getNode() && isa<Argument>(Address)) 1196 // Check unused arguments map. 1197 N = UnusedArgNodeMap[Address]; 1198 SDDbgValue *SDV; 1199 if (N.getNode()) { 1200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1201 Address = BCI->getOperand(0); 1202 // Parameters are handled specially. 1203 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1204 if (IsParameter && FINode) { 1205 // Byval parameter. We have a frame index at this point. 1206 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1207 /*IsIndirect*/ true, DL, SDNodeOrder); 1208 } else if (isa<Argument>(Address)) { 1209 // Address is an argument, so try to emit its dbg value using 1210 // virtual register info from the FuncInfo.ValueMap. 1211 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1212 FuncArgumentDbgValueKind::Declare, N); 1213 return; 1214 } else { 1215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1216 true, DL, SDNodeOrder); 1217 } 1218 DAG.AddDbgValue(SDV, IsParameter); 1219 } else { 1220 // If Address is an argument then try to emit its dbg value using 1221 // virtual register info from the FuncInfo.ValueMap. 1222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1223 FuncArgumentDbgValueKind::Declare, N)) { 1224 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1225 << " (could not emit func-arg dbg_value)\n"); 1226 } 1227 } 1228 return; 1229 } 1230 1231 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1232 // Add SDDbgValue nodes for any var locs here. Do so before updating 1233 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1234 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1235 // Add SDDbgValue nodes for any var locs here. Do so before updating 1236 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1237 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1238 It != End; ++It) { 1239 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1240 dropDanglingDebugInfo(Var, It->Expr); 1241 if (It->Values.isKillLocation(It->Expr)) { 1242 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1243 continue; 1244 } 1245 SmallVector<Value *> Values(It->Values.location_ops()); 1246 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1247 It->Values.hasArgList())) { 1248 SmallVector<Value *, 4> Vals; 1249 for (Value *V : It->Values.location_ops()) 1250 Vals.push_back(V); 1251 addDanglingDebugInfo(Vals, 1252 FnVarLocs->getDILocalVariable(It->VariableID), 1253 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1254 } 1255 } 1256 } 1257 1258 // We must skip DbgVariableRecords if they've already been processed above as 1259 // we have just emitted the debug values resulting from assignment tracking 1260 // analysis, making any existing DbgVariableRecords redundant (and probably 1261 // less correct). We still need to process DbgLabelRecords. This does sink 1262 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1263 // be important as it does so deterministcally and ordering between 1264 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1265 // printing). 1266 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1267 // Is there is any debug-info attached to this instruction, in the form of 1268 // DbgRecord non-instruction debug-info records. 1269 for (DbgRecord &DR : I.getDbgRecordRange()) { 1270 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1271 assert(DLR->getLabel() && "Missing label"); 1272 SDDbgLabel *SDV = 1273 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1274 DAG.AddDbgLabel(SDV); 1275 continue; 1276 } 1277 1278 if (SkipDbgVariableRecords) 1279 continue; 1280 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1281 DILocalVariable *Variable = DVR.getVariable(); 1282 DIExpression *Expression = DVR.getExpression(); 1283 dropDanglingDebugInfo(Variable, Expression); 1284 1285 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1286 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1287 continue; 1288 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1289 << "\n"); 1290 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1291 DVR.getDebugLoc()); 1292 continue; 1293 } 1294 1295 // A DbgVariableRecord with no locations is a kill location. 1296 SmallVector<Value *, 4> Values(DVR.location_ops()); 1297 if (Values.empty()) { 1298 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1299 SDNodeOrder); 1300 continue; 1301 } 1302 1303 // A DbgVariableRecord with an undef or absent location is also a kill 1304 // location. 1305 if (llvm::any_of(Values, 1306 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1307 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1308 SDNodeOrder); 1309 continue; 1310 } 1311 1312 bool IsVariadic = DVR.hasArgList(); 1313 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1314 SDNodeOrder, IsVariadic)) { 1315 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1316 DVR.getDebugLoc(), SDNodeOrder); 1317 } 1318 } 1319 } 1320 1321 void SelectionDAGBuilder::visit(const Instruction &I) { 1322 visitDbgInfo(I); 1323 1324 // Set up outgoing PHI node register values before emitting the terminator. 1325 if (I.isTerminator()) { 1326 HandlePHINodesInSuccessorBlocks(I.getParent()); 1327 } 1328 1329 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1330 if (!isa<DbgInfoIntrinsic>(I)) 1331 ++SDNodeOrder; 1332 1333 CurInst = &I; 1334 1335 // Set inserted listener only if required. 1336 bool NodeInserted = false; 1337 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1338 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1339 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1340 if (PCSectionsMD || MMRA) { 1341 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1342 DAG, [&](SDNode *) { NodeInserted = true; }); 1343 } 1344 1345 visit(I.getOpcode(), I); 1346 1347 if (!I.isTerminator() && !HasTailCall && 1348 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1349 CopyToExportRegsIfNeeded(&I); 1350 1351 // Handle metadata. 1352 if (PCSectionsMD || MMRA) { 1353 auto It = NodeMap.find(&I); 1354 if (It != NodeMap.end()) { 1355 if (PCSectionsMD) 1356 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1357 if (MMRA) 1358 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1359 } else if (NodeInserted) { 1360 // This should not happen; if it does, don't let it go unnoticed so we can 1361 // fix it. Relevant visit*() function is probably missing a setValue(). 1362 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1363 << I.getModule()->getName() << "]\n"; 1364 LLVM_DEBUG(I.dump()); 1365 assert(false); 1366 } 1367 } 1368 1369 CurInst = nullptr; 1370 } 1371 1372 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1373 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1374 } 1375 1376 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1377 // Note: this doesn't use InstVisitor, because it has to work with 1378 // ConstantExpr's in addition to instructions. 1379 switch (Opcode) { 1380 default: llvm_unreachable("Unknown instruction type encountered!"); 1381 // Build the switch statement using the Instruction.def file. 1382 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1383 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1384 #include "llvm/IR/Instruction.def" 1385 } 1386 } 1387 1388 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1389 DILocalVariable *Variable, 1390 DebugLoc DL, unsigned Order, 1391 SmallVectorImpl<Value *> &Values, 1392 DIExpression *Expression) { 1393 // For variadic dbg_values we will now insert an undef. 1394 // FIXME: We can potentially recover these! 1395 SmallVector<SDDbgOperand, 2> Locs; 1396 for (const Value *V : Values) { 1397 auto *Undef = UndefValue::get(V->getType()); 1398 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1399 } 1400 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1401 /*IsIndirect=*/false, DL, Order, 1402 /*IsVariadic=*/true); 1403 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1404 return true; 1405 } 1406 1407 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1408 DILocalVariable *Var, 1409 DIExpression *Expr, 1410 bool IsVariadic, DebugLoc DL, 1411 unsigned Order) { 1412 if (IsVariadic) { 1413 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1414 return; 1415 } 1416 // TODO: Dangling debug info will eventually either be resolved or produce 1417 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1418 // between the original dbg.value location and its resolved DBG_VALUE, 1419 // which we should ideally fill with an extra Undef DBG_VALUE. 1420 assert(Values.size() == 1); 1421 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1422 } 1423 1424 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1425 const DIExpression *Expr) { 1426 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1427 DIVariable *DanglingVariable = DDI.getVariable(); 1428 DIExpression *DanglingExpr = DDI.getExpression(); 1429 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1430 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1431 << printDDI(nullptr, DDI) << "\n"); 1432 return true; 1433 } 1434 return false; 1435 }; 1436 1437 for (auto &DDIMI : DanglingDebugInfoMap) { 1438 DanglingDebugInfoVector &DDIV = DDIMI.second; 1439 1440 // If debug info is to be dropped, run it through final checks to see 1441 // whether it can be salvaged. 1442 for (auto &DDI : DDIV) 1443 if (isMatchingDbgValue(DDI)) 1444 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1445 1446 erase_if(DDIV, isMatchingDbgValue); 1447 } 1448 } 1449 1450 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1451 // generate the debug data structures now that we've seen its definition. 1452 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1453 SDValue Val) { 1454 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1455 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1456 return; 1457 1458 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1459 for (auto &DDI : DDIV) { 1460 DebugLoc DL = DDI.getDebugLoc(); 1461 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1462 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1463 DILocalVariable *Variable = DDI.getVariable(); 1464 DIExpression *Expr = DDI.getExpression(); 1465 assert(Variable->isValidLocationForIntrinsic(DL) && 1466 "Expected inlined-at fields to agree"); 1467 SDDbgValue *SDV; 1468 if (Val.getNode()) { 1469 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1470 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1471 // we couldn't resolve it directly when examining the DbgValue intrinsic 1472 // in the first place we should not be more successful here). Unless we 1473 // have some test case that prove this to be correct we should avoid 1474 // calling EmitFuncArgumentDbgValue here. 1475 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1476 FuncArgumentDbgValueKind::Value, Val)) { 1477 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1478 << printDDI(V, DDI) << "\n"); 1479 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1480 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1481 // inserted after the definition of Val when emitting the instructions 1482 // after ISel. An alternative could be to teach 1483 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1484 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1485 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1486 << ValSDNodeOrder << "\n"); 1487 SDV = getDbgValue(Val, Variable, Expr, DL, 1488 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1489 DAG.AddDbgValue(SDV, false); 1490 } else 1491 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1492 << printDDI(V, DDI) 1493 << " in EmitFuncArgumentDbgValue\n"); 1494 } else { 1495 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1496 << "\n"); 1497 auto Undef = UndefValue::get(V->getType()); 1498 auto SDV = 1499 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1500 DAG.AddDbgValue(SDV, false); 1501 } 1502 } 1503 DDIV.clear(); 1504 } 1505 1506 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1507 DanglingDebugInfo &DDI) { 1508 // TODO: For the variadic implementation, instead of only checking the fail 1509 // state of `handleDebugValue`, we need know specifically which values were 1510 // invalid, so that we attempt to salvage only those values when processing 1511 // a DIArgList. 1512 const Value *OrigV = V; 1513 DILocalVariable *Var = DDI.getVariable(); 1514 DIExpression *Expr = DDI.getExpression(); 1515 DebugLoc DL = DDI.getDebugLoc(); 1516 unsigned SDOrder = DDI.getSDNodeOrder(); 1517 1518 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1519 // that DW_OP_stack_value is desired. 1520 bool StackValue = true; 1521 1522 // Can this Value can be encoded without any further work? 1523 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1524 return; 1525 1526 // Attempt to salvage back through as many instructions as possible. Bail if 1527 // a non-instruction is seen, such as a constant expression or global 1528 // variable. FIXME: Further work could recover those too. 1529 while (isa<Instruction>(V)) { 1530 const Instruction &VAsInst = *cast<const Instruction>(V); 1531 // Temporary "0", awaiting real implementation. 1532 SmallVector<uint64_t, 16> Ops; 1533 SmallVector<Value *, 4> AdditionalValues; 1534 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1535 Expr->getNumLocationOperands(), Ops, 1536 AdditionalValues); 1537 // If we cannot salvage any further, and haven't yet found a suitable debug 1538 // expression, bail out. 1539 if (!V) 1540 break; 1541 1542 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1543 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1544 // here for variadic dbg_values, remove that condition. 1545 if (!AdditionalValues.empty()) 1546 break; 1547 1548 // New value and expr now represent this debuginfo. 1549 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1550 1551 // Some kind of simplification occurred: check whether the operand of the 1552 // salvaged debug expression can be encoded in this DAG. 1553 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1554 LLVM_DEBUG( 1555 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1556 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1557 return; 1558 } 1559 } 1560 1561 // This was the final opportunity to salvage this debug information, and it 1562 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1563 // any earlier variable location. 1564 assert(OrigV && "V shouldn't be null"); 1565 auto *Undef = UndefValue::get(OrigV->getType()); 1566 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1567 DAG.AddDbgValue(SDV, false); 1568 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1569 << printDDI(OrigV, DDI) << "\n"); 1570 } 1571 1572 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1573 DIExpression *Expr, 1574 DebugLoc DbgLoc, 1575 unsigned Order) { 1576 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1577 DIExpression *NewExpr = 1578 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1579 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1580 /*IsVariadic*/ false); 1581 } 1582 1583 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1584 DILocalVariable *Var, 1585 DIExpression *Expr, DebugLoc DbgLoc, 1586 unsigned Order, bool IsVariadic) { 1587 if (Values.empty()) 1588 return true; 1589 1590 // Filter EntryValue locations out early. 1591 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1592 return true; 1593 1594 SmallVector<SDDbgOperand> LocationOps; 1595 SmallVector<SDNode *> Dependencies; 1596 for (const Value *V : Values) { 1597 // Constant value. 1598 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1599 isa<ConstantPointerNull>(V)) { 1600 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1601 continue; 1602 } 1603 1604 // Look through IntToPtr constants. 1605 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1606 if (CE->getOpcode() == Instruction::IntToPtr) { 1607 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1608 continue; 1609 } 1610 1611 // If the Value is a frame index, we can create a FrameIndex debug value 1612 // without relying on the DAG at all. 1613 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1614 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1615 if (SI != FuncInfo.StaticAllocaMap.end()) { 1616 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1617 continue; 1618 } 1619 } 1620 1621 // Do not use getValue() in here; we don't want to generate code at 1622 // this point if it hasn't been done yet. 1623 SDValue N = NodeMap[V]; 1624 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1625 N = UnusedArgNodeMap[V]; 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (isa<ConstantPointerNull>(C)) { 1806 unsigned AS = V->getType()->getPointerAddressSpace(); 1807 return DAG.getConstant(0, getCurSDLoc(), 1808 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1809 } 1810 1811 if (match(C, m_VScale())) 1812 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1813 1814 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1815 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1816 1817 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1818 return DAG.getUNDEF(VT); 1819 1820 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1821 visit(CE->getOpcode(), *CE); 1822 SDValue N1 = NodeMap[V]; 1823 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1824 return N1; 1825 } 1826 1827 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1828 SmallVector<SDValue, 4> Constants; 1829 for (const Use &U : C->operands()) { 1830 SDNode *Val = getValue(U).getNode(); 1831 // If the operand is an empty aggregate, there are no values. 1832 if (!Val) continue; 1833 // Add each leaf value from the operand to the Constants list 1834 // to form a flattened list of all the values. 1835 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1836 Constants.push_back(SDValue(Val, i)); 1837 } 1838 1839 return DAG.getMergeValues(Constants, getCurSDLoc()); 1840 } 1841 1842 if (const ConstantDataSequential *CDS = 1843 dyn_cast<ConstantDataSequential>(C)) { 1844 SmallVector<SDValue, 4> Ops; 1845 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1846 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1847 // Add each leaf value from the operand to the Constants list 1848 // to form a flattened list of all the values. 1849 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1850 Ops.push_back(SDValue(Val, i)); 1851 } 1852 1853 if (isa<ArrayType>(CDS->getType())) 1854 return DAG.getMergeValues(Ops, getCurSDLoc()); 1855 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1856 } 1857 1858 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1859 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1860 "Unknown struct or array constant!"); 1861 1862 SmallVector<EVT, 4> ValueVTs; 1863 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1864 unsigned NumElts = ValueVTs.size(); 1865 if (NumElts == 0) 1866 return SDValue(); // empty struct 1867 SmallVector<SDValue, 4> Constants(NumElts); 1868 for (unsigned i = 0; i != NumElts; ++i) { 1869 EVT EltVT = ValueVTs[i]; 1870 if (isa<UndefValue>(C)) 1871 Constants[i] = DAG.getUNDEF(EltVT); 1872 else if (EltVT.isFloatingPoint()) 1873 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1874 else 1875 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1876 } 1877 1878 return DAG.getMergeValues(Constants, getCurSDLoc()); 1879 } 1880 1881 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1882 return DAG.getBlockAddress(BA, VT); 1883 1884 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1885 return getValue(Equiv->getGlobalValue()); 1886 1887 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1888 return getValue(NC->getGlobalValue()); 1889 1890 if (VT == MVT::aarch64svcount) { 1891 assert(C->isNullValue() && "Can only zero this target type!"); 1892 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1893 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1894 } 1895 1896 VectorType *VecTy = cast<VectorType>(V->getType()); 1897 1898 // Now that we know the number and type of the elements, get that number of 1899 // elements into the Ops array based on what kind of constant it is. 1900 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1901 SmallVector<SDValue, 16> Ops; 1902 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1903 for (unsigned i = 0; i != NumElements; ++i) 1904 Ops.push_back(getValue(CV->getOperand(i))); 1905 1906 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1907 } 1908 1909 if (isa<ConstantAggregateZero>(C)) { 1910 EVT EltVT = 1911 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1912 1913 SDValue Op; 1914 if (EltVT.isFloatingPoint()) 1915 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1916 else 1917 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1918 1919 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1920 } 1921 1922 llvm_unreachable("Unknown vector constant"); 1923 } 1924 1925 // If this is a static alloca, generate it as the frameindex instead of 1926 // computation. 1927 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1928 DenseMap<const AllocaInst*, int>::iterator SI = 1929 FuncInfo.StaticAllocaMap.find(AI); 1930 if (SI != FuncInfo.StaticAllocaMap.end()) 1931 return DAG.getFrameIndex( 1932 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1933 } 1934 1935 // If this is an instruction which fast-isel has deferred, select it now. 1936 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1937 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1938 1939 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1940 Inst->getType(), std::nullopt); 1941 SDValue Chain = DAG.getEntryNode(); 1942 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1943 } 1944 1945 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1946 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1947 1948 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1949 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1950 1951 llvm_unreachable("Can't get register for value!"); 1952 } 1953 1954 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1955 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1956 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1957 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1958 bool IsSEH = isAsynchronousEHPersonality(Pers); 1959 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1960 if (!IsSEH) 1961 CatchPadMBB->setIsEHScopeEntry(); 1962 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1963 if (IsMSVCCXX || IsCoreCLR) 1964 CatchPadMBB->setIsEHFuncletEntry(); 1965 } 1966 1967 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1968 // Update machine-CFG edge. 1969 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1970 FuncInfo.MBB->addSuccessor(TargetMBB); 1971 TargetMBB->setIsEHCatchretTarget(true); 1972 DAG.getMachineFunction().setHasEHCatchret(true); 1973 1974 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1975 bool IsSEH = isAsynchronousEHPersonality(Pers); 1976 if (IsSEH) { 1977 // If this is not a fall-through branch or optimizations are switched off, 1978 // emit the branch. 1979 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1980 TM.getOptLevel() == CodeGenOptLevel::None) 1981 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1982 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1983 return; 1984 } 1985 1986 // Figure out the funclet membership for the catchret's successor. 1987 // This will be used by the FuncletLayout pass to determine how to order the 1988 // BB's. 1989 // A 'catchret' returns to the outer scope's color. 1990 Value *ParentPad = I.getCatchSwitchParentPad(); 1991 const BasicBlock *SuccessorColor; 1992 if (isa<ConstantTokenNone>(ParentPad)) 1993 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1994 else 1995 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1996 assert(SuccessorColor && "No parent funclet for catchret!"); 1997 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1998 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1999 2000 // Create the terminator node. 2001 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2002 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2003 DAG.getBasicBlock(SuccessorColorMBB)); 2004 DAG.setRoot(Ret); 2005 } 2006 2007 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2008 // Don't emit any special code for the cleanuppad instruction. It just marks 2009 // the start of an EH scope/funclet. 2010 FuncInfo.MBB->setIsEHScopeEntry(); 2011 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2012 if (Pers != EHPersonality::Wasm_CXX) { 2013 FuncInfo.MBB->setIsEHFuncletEntry(); 2014 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2015 } 2016 } 2017 2018 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2019 // not match, it is OK to add only the first unwind destination catchpad to the 2020 // successors, because there will be at least one invoke instruction within the 2021 // catch scope that points to the next unwind destination, if one exists, so 2022 // CFGSort cannot mess up with BB sorting order. 2023 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2024 // call within them, and catchpads only consisting of 'catch (...)' have a 2025 // '__cxa_end_catch' call within them, both of which generate invokes in case 2026 // the next unwind destination exists, i.e., the next unwind destination is not 2027 // the caller.) 2028 // 2029 // Having at most one EH pad successor is also simpler and helps later 2030 // transformations. 2031 // 2032 // For example, 2033 // current: 2034 // invoke void @foo to ... unwind label %catch.dispatch 2035 // catch.dispatch: 2036 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2037 // catch.start: 2038 // ... 2039 // ... in this BB or some other child BB dominated by this BB there will be an 2040 // invoke that points to 'next' BB as an unwind destination 2041 // 2042 // next: ; We don't need to add this to 'current' BB's successor 2043 // ... 2044 static void findWasmUnwindDestinations( 2045 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2046 BranchProbability Prob, 2047 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2048 &UnwindDests) { 2049 while (EHPadBB) { 2050 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2051 if (isa<CleanupPadInst>(Pad)) { 2052 // Stop on cleanup pads. 2053 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2054 UnwindDests.back().first->setIsEHScopeEntry(); 2055 break; 2056 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2057 // Add the catchpad handlers to the possible destinations. We don't 2058 // continue to the unwind destination of the catchswitch for wasm. 2059 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2060 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 } 2063 break; 2064 } else { 2065 continue; 2066 } 2067 } 2068 } 2069 2070 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2071 /// many places it could ultimately go. In the IR, we have a single unwind 2072 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2073 /// This function skips over imaginary basic blocks that hold catchswitch 2074 /// instructions, and finds all the "real" machine 2075 /// basic block destinations. As those destinations may not be successors of 2076 /// EHPadBB, here we also calculate the edge probability to those destinations. 2077 /// The passed-in Prob is the edge probability to EHPadBB. 2078 static void findUnwindDestinations( 2079 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2080 BranchProbability Prob, 2081 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2082 &UnwindDests) { 2083 EHPersonality Personality = 2084 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2085 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2086 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2087 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2088 bool IsSEH = isAsynchronousEHPersonality(Personality); 2089 2090 if (IsWasmCXX) { 2091 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2092 assert(UnwindDests.size() <= 1 && 2093 "There should be at most one unwind destination for wasm"); 2094 return; 2095 } 2096 2097 while (EHPadBB) { 2098 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2099 BasicBlock *NewEHPadBB = nullptr; 2100 if (isa<LandingPadInst>(Pad)) { 2101 // Stop on landingpads. They are not funclets. 2102 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2103 break; 2104 } else if (isa<CleanupPadInst>(Pad)) { 2105 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2106 // personalities. 2107 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2108 UnwindDests.back().first->setIsEHScopeEntry(); 2109 UnwindDests.back().first->setIsEHFuncletEntry(); 2110 break; 2111 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2112 // Add the catchpad handlers to the possible destinations. 2113 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2114 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2115 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2116 if (IsMSVCCXX || IsCoreCLR) 2117 UnwindDests.back().first->setIsEHFuncletEntry(); 2118 if (!IsSEH) 2119 UnwindDests.back().first->setIsEHScopeEntry(); 2120 } 2121 NewEHPadBB = CatchSwitch->getUnwindDest(); 2122 } else { 2123 continue; 2124 } 2125 2126 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2127 if (BPI && NewEHPadBB) 2128 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2129 EHPadBB = NewEHPadBB; 2130 } 2131 } 2132 2133 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2134 // Update successor info. 2135 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2136 auto UnwindDest = I.getUnwindDest(); 2137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2138 BranchProbability UnwindDestProb = 2139 (BPI && UnwindDest) 2140 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2141 : BranchProbability::getZero(); 2142 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2143 for (auto &UnwindDest : UnwindDests) { 2144 UnwindDest.first->setIsEHPad(); 2145 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2146 } 2147 FuncInfo.MBB->normalizeSuccProbs(); 2148 2149 // Create the terminator node. 2150 SDValue Ret = 2151 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2152 DAG.setRoot(Ret); 2153 } 2154 2155 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2156 report_fatal_error("visitCatchSwitch not yet implemented!"); 2157 } 2158 2159 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2161 auto &DL = DAG.getDataLayout(); 2162 SDValue Chain = getControlRoot(); 2163 SmallVector<ISD::OutputArg, 8> Outs; 2164 SmallVector<SDValue, 8> OutVals; 2165 2166 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2167 // lower 2168 // 2169 // %val = call <ty> @llvm.experimental.deoptimize() 2170 // ret <ty> %val 2171 // 2172 // differently. 2173 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2174 LowerDeoptimizingReturn(); 2175 return; 2176 } 2177 2178 if (!FuncInfo.CanLowerReturn) { 2179 unsigned DemoteReg = FuncInfo.DemoteRegister; 2180 const Function *F = I.getParent()->getParent(); 2181 2182 // Emit a store of the return value through the virtual register. 2183 // Leave Outs empty so that LowerReturn won't try to load return 2184 // registers the usual way. 2185 SmallVector<EVT, 1> PtrValueVTs; 2186 ComputeValueVTs(TLI, DL, 2187 PointerType::get(F->getContext(), 2188 DAG.getDataLayout().getAllocaAddrSpace()), 2189 PtrValueVTs); 2190 2191 SDValue RetPtr = 2192 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2193 SDValue RetOp = getValue(I.getOperand(0)); 2194 2195 SmallVector<EVT, 4> ValueVTs, MemVTs; 2196 SmallVector<uint64_t, 4> Offsets; 2197 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2198 &Offsets, 0); 2199 unsigned NumValues = ValueVTs.size(); 2200 2201 SmallVector<SDValue, 4> Chains(NumValues); 2202 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2203 for (unsigned i = 0; i != NumValues; ++i) { 2204 // An aggregate return value cannot wrap around the address space, so 2205 // offsets to its parts don't wrap either. 2206 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2207 TypeSize::getFixed(Offsets[i])); 2208 2209 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2210 if (MemVTs[i] != ValueVTs[i]) 2211 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2212 Chains[i] = DAG.getStore( 2213 Chain, getCurSDLoc(), Val, 2214 // FIXME: better loc info would be nice. 2215 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2216 commonAlignment(BaseAlign, Offsets[i])); 2217 } 2218 2219 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2220 MVT::Other, Chains); 2221 } else if (I.getNumOperands() != 0) { 2222 SmallVector<EVT, 4> ValueVTs; 2223 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2224 unsigned NumValues = ValueVTs.size(); 2225 if (NumValues) { 2226 SDValue RetOp = getValue(I.getOperand(0)); 2227 2228 const Function *F = I.getParent()->getParent(); 2229 2230 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2231 I.getOperand(0)->getType(), F->getCallingConv(), 2232 /*IsVarArg*/ false, DL); 2233 2234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2235 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2236 ExtendKind = ISD::SIGN_EXTEND; 2237 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2238 ExtendKind = ISD::ZERO_EXTEND; 2239 2240 LLVMContext &Context = F->getContext(); 2241 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2242 2243 for (unsigned j = 0; j != NumValues; ++j) { 2244 EVT VT = ValueVTs[j]; 2245 2246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2247 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2248 2249 CallingConv::ID CC = F->getCallingConv(); 2250 2251 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2252 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2253 SmallVector<SDValue, 4> Parts(NumParts); 2254 getCopyToParts(DAG, getCurSDLoc(), 2255 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2256 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2257 2258 // 'inreg' on function refers to return value 2259 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2260 if (RetInReg) 2261 Flags.setInReg(); 2262 2263 if (I.getOperand(0)->getType()->isPointerTy()) { 2264 Flags.setPointer(); 2265 Flags.setPointerAddrSpace( 2266 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2267 } 2268 2269 if (NeedsRegBlock) { 2270 Flags.setInConsecutiveRegs(); 2271 if (j == NumValues - 1) 2272 Flags.setInConsecutiveRegsLast(); 2273 } 2274 2275 // Propagate extension type if any 2276 if (ExtendKind == ISD::SIGN_EXTEND) 2277 Flags.setSExt(); 2278 else if (ExtendKind == ISD::ZERO_EXTEND) 2279 Flags.setZExt(); 2280 2281 for (unsigned i = 0; i < NumParts; ++i) { 2282 Outs.push_back(ISD::OutputArg(Flags, 2283 Parts[i].getValueType().getSimpleVT(), 2284 VT, /*isfixed=*/true, 0, 0)); 2285 OutVals.push_back(Parts[i]); 2286 } 2287 } 2288 } 2289 } 2290 2291 // Push in swifterror virtual register as the last element of Outs. This makes 2292 // sure swifterror virtual register will be returned in the swifterror 2293 // physical register. 2294 const Function *F = I.getParent()->getParent(); 2295 if (TLI.supportSwiftError() && 2296 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2297 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2298 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2299 Flags.setSwiftError(); 2300 Outs.push_back(ISD::OutputArg( 2301 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2302 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2303 // Create SDNode for the swifterror virtual register. 2304 OutVals.push_back( 2305 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2306 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2307 EVT(TLI.getPointerTy(DL)))); 2308 } 2309 2310 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2311 CallingConv::ID CallConv = 2312 DAG.getMachineFunction().getFunction().getCallingConv(); 2313 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2314 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2315 2316 // Verify that the target's LowerReturn behaved as expected. 2317 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2318 "LowerReturn didn't return a valid chain!"); 2319 2320 // Update the DAG with the new chain value resulting from return lowering. 2321 DAG.setRoot(Chain); 2322 } 2323 2324 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2325 /// created for it, emit nodes to copy the value into the virtual 2326 /// registers. 2327 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2328 // Skip empty types 2329 if (V->getType()->isEmptyTy()) 2330 return; 2331 2332 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2333 if (VMI != FuncInfo.ValueMap.end()) { 2334 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2335 "Unused value assigned virtual registers!"); 2336 CopyValueToVirtualRegister(V, VMI->second); 2337 } 2338 } 2339 2340 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2341 /// the current basic block, add it to ValueMap now so that we'll get a 2342 /// CopyTo/FromReg. 2343 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2344 // No need to export constants. 2345 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2346 2347 // Already exported? 2348 if (FuncInfo.isExportedInst(V)) return; 2349 2350 Register Reg = FuncInfo.InitializeRegForValue(V); 2351 CopyValueToVirtualRegister(V, Reg); 2352 } 2353 2354 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2355 const BasicBlock *FromBB) { 2356 // The operands of the setcc have to be in this block. We don't know 2357 // how to export them from some other block. 2358 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2359 // Can export from current BB. 2360 if (VI->getParent() == FromBB) 2361 return true; 2362 2363 // Is already exported, noop. 2364 return FuncInfo.isExportedInst(V); 2365 } 2366 2367 // If this is an argument, we can export it if the BB is the entry block or 2368 // if it is already exported. 2369 if (isa<Argument>(V)) { 2370 if (FromBB->isEntryBlock()) 2371 return true; 2372 2373 // Otherwise, can only export this if it is already exported. 2374 return FuncInfo.isExportedInst(V); 2375 } 2376 2377 // Otherwise, constants can always be exported. 2378 return true; 2379 } 2380 2381 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2382 BranchProbability 2383 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2384 const MachineBasicBlock *Dst) const { 2385 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2386 const BasicBlock *SrcBB = Src->getBasicBlock(); 2387 const BasicBlock *DstBB = Dst->getBasicBlock(); 2388 if (!BPI) { 2389 // If BPI is not available, set the default probability as 1 / N, where N is 2390 // the number of successors. 2391 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2392 return BranchProbability(1, SuccSize); 2393 } 2394 return BPI->getEdgeProbability(SrcBB, DstBB); 2395 } 2396 2397 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2398 MachineBasicBlock *Dst, 2399 BranchProbability Prob) { 2400 if (!FuncInfo.BPI) 2401 Src->addSuccessorWithoutProb(Dst); 2402 else { 2403 if (Prob.isUnknown()) 2404 Prob = getEdgeProbability(Src, Dst); 2405 Src->addSuccessor(Dst, Prob); 2406 } 2407 } 2408 2409 static bool InBlock(const Value *V, const BasicBlock *BB) { 2410 if (const Instruction *I = dyn_cast<Instruction>(V)) 2411 return I->getParent() == BB; 2412 return true; 2413 } 2414 2415 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2416 /// This function emits a branch and is used at the leaves of an OR or an 2417 /// AND operator tree. 2418 void 2419 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2420 MachineBasicBlock *TBB, 2421 MachineBasicBlock *FBB, 2422 MachineBasicBlock *CurBB, 2423 MachineBasicBlock *SwitchBB, 2424 BranchProbability TProb, 2425 BranchProbability FProb, 2426 bool InvertCond) { 2427 const BasicBlock *BB = CurBB->getBasicBlock(); 2428 2429 // If the leaf of the tree is a comparison, merge the condition into 2430 // the caseblock. 2431 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2432 // The operands of the cmp have to be in this block. We don't know 2433 // how to export them from some other block. If this is the first block 2434 // of the sequence, no exporting is needed. 2435 if (CurBB == SwitchBB || 2436 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2437 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2438 ISD::CondCode Condition; 2439 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2440 ICmpInst::Predicate Pred = 2441 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2442 Condition = getICmpCondCode(Pred); 2443 } else { 2444 const FCmpInst *FC = cast<FCmpInst>(Cond); 2445 FCmpInst::Predicate Pred = 2446 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2447 Condition = getFCmpCondCode(Pred); 2448 if (TM.Options.NoNaNsFPMath) 2449 Condition = getFCmpCodeWithoutNaN(Condition); 2450 } 2451 2452 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2453 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2454 SL->SwitchCases.push_back(CB); 2455 return; 2456 } 2457 } 2458 2459 // Create a CaseBlock record representing this branch. 2460 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2461 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2462 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2463 SL->SwitchCases.push_back(CB); 2464 } 2465 2466 // Collect dependencies on V recursively. This is used for the cost analysis in 2467 // `shouldKeepJumpConditionsTogether`. 2468 static bool collectInstructionDeps( 2469 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2470 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2471 unsigned Depth = 0) { 2472 // Return false if we have an incomplete count. 2473 if (Depth >= SelectionDAG::MaxRecursionDepth) 2474 return false; 2475 2476 auto *I = dyn_cast<Instruction>(V); 2477 if (I == nullptr) 2478 return true; 2479 2480 if (Necessary != nullptr) { 2481 // This instruction is necessary for the other side of the condition so 2482 // don't count it. 2483 if (Necessary->contains(I)) 2484 return true; 2485 } 2486 2487 // Already added this dep. 2488 if (!Deps->try_emplace(I, false).second) 2489 return true; 2490 2491 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2492 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2493 Depth + 1)) 2494 return false; 2495 return true; 2496 } 2497 2498 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2499 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2500 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2501 TargetLoweringBase::CondMergingParams Params) const { 2502 if (I.getNumSuccessors() != 2) 2503 return false; 2504 2505 if (!I.isConditional()) 2506 return false; 2507 2508 if (Params.BaseCost < 0) 2509 return false; 2510 2511 // Baseline cost. 2512 InstructionCost CostThresh = Params.BaseCost; 2513 2514 BranchProbabilityInfo *BPI = nullptr; 2515 if (Params.LikelyBias || Params.UnlikelyBias) 2516 BPI = FuncInfo.BPI; 2517 if (BPI != nullptr) { 2518 // See if we are either likely to get an early out or compute both lhs/rhs 2519 // of the condition. 2520 BasicBlock *IfFalse = I.getSuccessor(0); 2521 BasicBlock *IfTrue = I.getSuccessor(1); 2522 2523 std::optional<bool> Likely; 2524 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2525 Likely = true; 2526 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2527 Likely = false; 2528 2529 if (Likely) { 2530 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2531 // Its likely we will have to compute both lhs and rhs of condition 2532 CostThresh += Params.LikelyBias; 2533 else { 2534 if (Params.UnlikelyBias < 0) 2535 return false; 2536 // Its likely we will get an early out. 2537 CostThresh -= Params.UnlikelyBias; 2538 } 2539 } 2540 } 2541 2542 if (CostThresh <= 0) 2543 return false; 2544 2545 // Collect "all" instructions that lhs condition is dependent on. 2546 // Use map for stable iteration (to avoid non-determanism of iteration of 2547 // SmallPtrSet). The `bool` value is just a dummy. 2548 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2549 collectInstructionDeps(&LhsDeps, Lhs); 2550 // Collect "all" instructions that rhs condition is dependent on AND are 2551 // dependencies of lhs. This gives us an estimate on which instructions we 2552 // stand to save by splitting the condition. 2553 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2554 return false; 2555 // Add the compare instruction itself unless its a dependency on the LHS. 2556 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2557 if (!LhsDeps.contains(RhsI)) 2558 RhsDeps.try_emplace(RhsI, false); 2559 2560 const auto &TLI = DAG.getTargetLoweringInfo(); 2561 const auto &TTI = 2562 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2563 2564 InstructionCost CostOfIncluding = 0; 2565 // See if this instruction will need to computed independently of whether RHS 2566 // is. 2567 Value *BrCond = I.getCondition(); 2568 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2569 for (const auto *U : Ins->users()) { 2570 // If user is independent of RHS calculation we don't need to count it. 2571 if (auto *UIns = dyn_cast<Instruction>(U)) 2572 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2573 return false; 2574 } 2575 return true; 2576 }; 2577 2578 // Prune instructions from RHS Deps that are dependencies of unrelated 2579 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2580 // arbitrary and just meant to cap the how much time we spend in the pruning 2581 // loop. Its highly unlikely to come into affect. 2582 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2583 // Stop after a certain point. No incorrectness from including too many 2584 // instructions. 2585 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2586 const Instruction *ToDrop = nullptr; 2587 for (const auto &InsPair : RhsDeps) { 2588 if (!ShouldCountInsn(InsPair.first)) { 2589 ToDrop = InsPair.first; 2590 break; 2591 } 2592 } 2593 if (ToDrop == nullptr) 2594 break; 2595 RhsDeps.erase(ToDrop); 2596 } 2597 2598 for (const auto &InsPair : RhsDeps) { 2599 // Finally accumulate latency that we can only attribute to computing the 2600 // RHS condition. Use latency because we are essentially trying to calculate 2601 // the cost of the dependency chain. 2602 // Possible TODO: We could try to estimate ILP and make this more precise. 2603 CostOfIncluding += 2604 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2605 2606 if (CostOfIncluding > CostThresh) 2607 return false; 2608 } 2609 return true; 2610 } 2611 2612 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2613 MachineBasicBlock *TBB, 2614 MachineBasicBlock *FBB, 2615 MachineBasicBlock *CurBB, 2616 MachineBasicBlock *SwitchBB, 2617 Instruction::BinaryOps Opc, 2618 BranchProbability TProb, 2619 BranchProbability FProb, 2620 bool InvertCond) { 2621 // Skip over not part of the tree and remember to invert op and operands at 2622 // next level. 2623 Value *NotCond; 2624 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2625 InBlock(NotCond, CurBB->getBasicBlock())) { 2626 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2627 !InvertCond); 2628 return; 2629 } 2630 2631 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2632 const Value *BOpOp0, *BOpOp1; 2633 // Compute the effective opcode for Cond, taking into account whether it needs 2634 // to be inverted, e.g. 2635 // and (not (or A, B)), C 2636 // gets lowered as 2637 // and (and (not A, not B), C) 2638 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2639 if (BOp) { 2640 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2641 ? Instruction::And 2642 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2643 ? Instruction::Or 2644 : (Instruction::BinaryOps)0); 2645 if (InvertCond) { 2646 if (BOpc == Instruction::And) 2647 BOpc = Instruction::Or; 2648 else if (BOpc == Instruction::Or) 2649 BOpc = Instruction::And; 2650 } 2651 } 2652 2653 // If this node is not part of the or/and tree, emit it as a branch. 2654 // Note that all nodes in the tree should have same opcode. 2655 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2656 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2657 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2658 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2659 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2660 TProb, FProb, InvertCond); 2661 return; 2662 } 2663 2664 // Create TmpBB after CurBB. 2665 MachineFunction::iterator BBI(CurBB); 2666 MachineFunction &MF = DAG.getMachineFunction(); 2667 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2668 CurBB->getParent()->insert(++BBI, TmpBB); 2669 2670 if (Opc == Instruction::Or) { 2671 // Codegen X | Y as: 2672 // BB1: 2673 // jmp_if_X TBB 2674 // jmp TmpBB 2675 // TmpBB: 2676 // jmp_if_Y TBB 2677 // jmp FBB 2678 // 2679 2680 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2681 // The requirement is that 2682 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2683 // = TrueProb for original BB. 2684 // Assuming the original probabilities are A and B, one choice is to set 2685 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2686 // A/(1+B) and 2B/(1+B). This choice assumes that 2687 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2688 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2689 // TmpBB, but the math is more complicated. 2690 2691 auto NewTrueProb = TProb / 2; 2692 auto NewFalseProb = TProb / 2 + FProb; 2693 // Emit the LHS condition. 2694 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2695 NewFalseProb, InvertCond); 2696 2697 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2698 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2699 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2700 // Emit the RHS condition into TmpBB. 2701 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2702 Probs[1], InvertCond); 2703 } else { 2704 assert(Opc == Instruction::And && "Unknown merge op!"); 2705 // Codegen X & Y as: 2706 // BB1: 2707 // jmp_if_X TmpBB 2708 // jmp FBB 2709 // TmpBB: 2710 // jmp_if_Y TBB 2711 // jmp FBB 2712 // 2713 // This requires creation of TmpBB after CurBB. 2714 2715 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2716 // The requirement is that 2717 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2718 // = FalseProb for original BB. 2719 // Assuming the original probabilities are A and B, one choice is to set 2720 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2721 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2722 // TrueProb for BB1 * FalseProb for TmpBB. 2723 2724 auto NewTrueProb = TProb + FProb / 2; 2725 auto NewFalseProb = FProb / 2; 2726 // Emit the LHS condition. 2727 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2728 NewFalseProb, InvertCond); 2729 2730 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2731 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2732 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2733 // Emit the RHS condition into TmpBB. 2734 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2735 Probs[1], InvertCond); 2736 } 2737 } 2738 2739 /// If the set of cases should be emitted as a series of branches, return true. 2740 /// If we should emit this as a bunch of and/or'd together conditions, return 2741 /// false. 2742 bool 2743 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2744 if (Cases.size() != 2) return true; 2745 2746 // If this is two comparisons of the same values or'd or and'd together, they 2747 // will get folded into a single comparison, so don't emit two blocks. 2748 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2749 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2750 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2751 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2752 return false; 2753 } 2754 2755 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2756 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2757 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2758 Cases[0].CC == Cases[1].CC && 2759 isa<Constant>(Cases[0].CmpRHS) && 2760 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2761 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2762 return false; 2763 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2764 return false; 2765 } 2766 2767 return true; 2768 } 2769 2770 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2771 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2772 2773 // Update machine-CFG edges. 2774 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2775 2776 if (I.isUnconditional()) { 2777 // Update machine-CFG edges. 2778 BrMBB->addSuccessor(Succ0MBB); 2779 2780 // If this is not a fall-through branch or optimizations are switched off, 2781 // emit the branch. 2782 if (Succ0MBB != NextBlock(BrMBB) || 2783 TM.getOptLevel() == CodeGenOptLevel::None) { 2784 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2785 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2786 setValue(&I, Br); 2787 DAG.setRoot(Br); 2788 } 2789 2790 return; 2791 } 2792 2793 // If this condition is one of the special cases we handle, do special stuff 2794 // now. 2795 const Value *CondVal = I.getCondition(); 2796 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2797 2798 // If this is a series of conditions that are or'd or and'd together, emit 2799 // this as a sequence of branches instead of setcc's with and/or operations. 2800 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2801 // unpredictable branches, and vector extracts because those jumps are likely 2802 // expensive for any target), this should improve performance. 2803 // For example, instead of something like: 2804 // cmp A, B 2805 // C = seteq 2806 // cmp D, E 2807 // F = setle 2808 // or C, F 2809 // jnz foo 2810 // Emit: 2811 // cmp A, B 2812 // je foo 2813 // cmp D, E 2814 // jle foo 2815 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2816 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2817 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2818 Value *Vec; 2819 const Value *BOp0, *BOp1; 2820 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2821 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2822 Opcode = Instruction::And; 2823 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2824 Opcode = Instruction::Or; 2825 2826 if (Opcode && 2827 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2828 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2829 !shouldKeepJumpConditionsTogether( 2830 FuncInfo, I, Opcode, BOp0, BOp1, 2831 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2832 Opcode, BOp0, BOp1))) { 2833 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2834 getEdgeProbability(BrMBB, Succ0MBB), 2835 getEdgeProbability(BrMBB, Succ1MBB), 2836 /*InvertCond=*/false); 2837 // If the compares in later blocks need to use values not currently 2838 // exported from this block, export them now. This block should always 2839 // be the first entry. 2840 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2841 2842 // Allow some cases to be rejected. 2843 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2844 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2845 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2846 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2847 } 2848 2849 // Emit the branch for this block. 2850 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2851 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2852 return; 2853 } 2854 2855 // Okay, we decided not to do this, remove any inserted MBB's and clear 2856 // SwitchCases. 2857 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2858 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2859 2860 SL->SwitchCases.clear(); 2861 } 2862 } 2863 2864 // Create a CaseBlock record representing this branch. 2865 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2866 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2867 2868 // Use visitSwitchCase to actually insert the fast branch sequence for this 2869 // cond branch. 2870 visitSwitchCase(CB, BrMBB); 2871 } 2872 2873 /// visitSwitchCase - Emits the necessary code to represent a single node in 2874 /// the binary search tree resulting from lowering a switch instruction. 2875 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2876 MachineBasicBlock *SwitchBB) { 2877 SDValue Cond; 2878 SDValue CondLHS = getValue(CB.CmpLHS); 2879 SDLoc dl = CB.DL; 2880 2881 if (CB.CC == ISD::SETTRUE) { 2882 // Branch or fall through to TrueBB. 2883 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2884 SwitchBB->normalizeSuccProbs(); 2885 if (CB.TrueBB != NextBlock(SwitchBB)) { 2886 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2887 DAG.getBasicBlock(CB.TrueBB))); 2888 } 2889 return; 2890 } 2891 2892 auto &TLI = DAG.getTargetLoweringInfo(); 2893 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2894 2895 // Build the setcc now. 2896 if (!CB.CmpMHS) { 2897 // Fold "(X == true)" to X and "(X == false)" to !X to 2898 // handle common cases produced by branch lowering. 2899 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2900 CB.CC == ISD::SETEQ) 2901 Cond = CondLHS; 2902 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2903 CB.CC == ISD::SETEQ) { 2904 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2905 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2906 } else { 2907 SDValue CondRHS = getValue(CB.CmpRHS); 2908 2909 // If a pointer's DAG type is larger than its memory type then the DAG 2910 // values are zero-extended. This breaks signed comparisons so truncate 2911 // back to the underlying type before doing the compare. 2912 if (CondLHS.getValueType() != MemVT) { 2913 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2914 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2915 } 2916 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2917 } 2918 } else { 2919 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2920 2921 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2922 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2923 2924 SDValue CmpOp = getValue(CB.CmpMHS); 2925 EVT VT = CmpOp.getValueType(); 2926 2927 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2928 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2929 ISD::SETLE); 2930 } else { 2931 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2932 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2933 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2934 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2935 } 2936 } 2937 2938 // Update successor info 2939 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2940 // TrueBB and FalseBB are always different unless the incoming IR is 2941 // degenerate. This only happens when running llc on weird IR. 2942 if (CB.TrueBB != CB.FalseBB) 2943 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2944 SwitchBB->normalizeSuccProbs(); 2945 2946 // If the lhs block is the next block, invert the condition so that we can 2947 // fall through to the lhs instead of the rhs block. 2948 if (CB.TrueBB == NextBlock(SwitchBB)) { 2949 std::swap(CB.TrueBB, CB.FalseBB); 2950 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2951 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2952 } 2953 2954 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2955 MVT::Other, getControlRoot(), Cond, 2956 DAG.getBasicBlock(CB.TrueBB)); 2957 2958 setValue(CurInst, BrCond); 2959 2960 // Insert the false branch. Do this even if it's a fall through branch, 2961 // this makes it easier to do DAG optimizations which require inverting 2962 // the branch condition. 2963 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2964 DAG.getBasicBlock(CB.FalseBB)); 2965 2966 DAG.setRoot(BrCond); 2967 } 2968 2969 /// visitJumpTable - Emit JumpTable node in the current MBB 2970 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2971 // Emit the code for the jump table 2972 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2973 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2974 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2975 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2976 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2977 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2978 Index.getValue(1), Table, Index); 2979 DAG.setRoot(BrJumpTable); 2980 } 2981 2982 /// visitJumpTableHeader - This function emits necessary code to produce index 2983 /// in the JumpTable from switch case. 2984 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2985 JumpTableHeader &JTH, 2986 MachineBasicBlock *SwitchBB) { 2987 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2988 const SDLoc &dl = *JT.SL; 2989 2990 // Subtract the lowest switch case value from the value being switched on. 2991 SDValue SwitchOp = getValue(JTH.SValue); 2992 EVT VT = SwitchOp.getValueType(); 2993 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2994 DAG.getConstant(JTH.First, dl, VT)); 2995 2996 // The SDNode we just created, which holds the value being switched on minus 2997 // the smallest case value, needs to be copied to a virtual register so it 2998 // can be used as an index into the jump table in a subsequent basic block. 2999 // This value may be smaller or larger than the target's pointer type, and 3000 // therefore require extension or truncating. 3001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3002 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3003 3004 unsigned JumpTableReg = 3005 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3006 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3007 JumpTableReg, SwitchOp); 3008 JT.Reg = JumpTableReg; 3009 3010 if (!JTH.FallthroughUnreachable) { 3011 // Emit the range check for the jump table, and branch to the default block 3012 // for the switch statement if the value being switched on exceeds the 3013 // largest case in the switch. 3014 SDValue CMP = DAG.getSetCC( 3015 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3016 Sub.getValueType()), 3017 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3018 3019 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3020 MVT::Other, CopyTo, CMP, 3021 DAG.getBasicBlock(JT.Default)); 3022 3023 // Avoid emitting unnecessary branches to the next block. 3024 if (JT.MBB != NextBlock(SwitchBB)) 3025 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3026 DAG.getBasicBlock(JT.MBB)); 3027 3028 DAG.setRoot(BrCond); 3029 } else { 3030 // Avoid emitting unnecessary branches to the next block. 3031 if (JT.MBB != NextBlock(SwitchBB)) 3032 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3033 DAG.getBasicBlock(JT.MBB))); 3034 else 3035 DAG.setRoot(CopyTo); 3036 } 3037 } 3038 3039 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3040 /// variable if there exists one. 3041 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3042 SDValue &Chain) { 3043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3044 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3045 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3046 MachineFunction &MF = DAG.getMachineFunction(); 3047 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3048 MachineSDNode *Node = 3049 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3050 if (Global) { 3051 MachinePointerInfo MPInfo(Global); 3052 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3053 MachineMemOperand::MODereferenceable; 3054 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3055 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3056 DAG.getEVTAlign(PtrTy)); 3057 DAG.setNodeMemRefs(Node, {MemRef}); 3058 } 3059 if (PtrTy != PtrMemTy) 3060 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3061 return SDValue(Node, 0); 3062 } 3063 3064 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3065 /// tail spliced into a stack protector check success bb. 3066 /// 3067 /// For a high level explanation of how this fits into the stack protector 3068 /// generation see the comment on the declaration of class 3069 /// StackProtectorDescriptor. 3070 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3071 MachineBasicBlock *ParentBB) { 3072 3073 // First create the loads to the guard/stack slot for the comparison. 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3076 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3077 3078 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3079 int FI = MFI.getStackProtectorIndex(); 3080 3081 SDValue Guard; 3082 SDLoc dl = getCurSDLoc(); 3083 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3084 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3085 Align Align = 3086 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3087 3088 // Generate code to load the content of the guard slot. 3089 SDValue GuardVal = DAG.getLoad( 3090 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3091 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3092 MachineMemOperand::MOVolatile); 3093 3094 if (TLI.useStackGuardXorFP()) 3095 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3096 3097 // Retrieve guard check function, nullptr if instrumentation is inlined. 3098 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3099 // The target provides a guard check function to validate the guard value. 3100 // Generate a call to that function with the content of the guard slot as 3101 // argument. 3102 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3103 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3104 3105 TargetLowering::ArgListTy Args; 3106 TargetLowering::ArgListEntry Entry; 3107 Entry.Node = GuardVal; 3108 Entry.Ty = FnTy->getParamType(0); 3109 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3110 Entry.IsInReg = true; 3111 Args.push_back(Entry); 3112 3113 TargetLowering::CallLoweringInfo CLI(DAG); 3114 CLI.setDebugLoc(getCurSDLoc()) 3115 .setChain(DAG.getEntryNode()) 3116 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3117 getValue(GuardCheckFn), std::move(Args)); 3118 3119 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3120 DAG.setRoot(Result.second); 3121 return; 3122 } 3123 3124 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3125 // Otherwise, emit a volatile load to retrieve the stack guard value. 3126 SDValue Chain = DAG.getEntryNode(); 3127 if (TLI.useLoadStackGuardNode()) { 3128 Guard = getLoadStackGuard(DAG, dl, Chain); 3129 } else { 3130 const Value *IRGuard = TLI.getSDagStackGuard(M); 3131 SDValue GuardPtr = getValue(IRGuard); 3132 3133 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3134 MachinePointerInfo(IRGuard, 0), Align, 3135 MachineMemOperand::MOVolatile); 3136 } 3137 3138 // Perform the comparison via a getsetcc. 3139 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3140 *DAG.getContext(), 3141 Guard.getValueType()), 3142 Guard, GuardVal, ISD::SETNE); 3143 3144 // If the guard/stackslot do not equal, branch to failure MBB. 3145 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3146 MVT::Other, GuardVal.getOperand(0), 3147 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3148 // Otherwise branch to success MBB. 3149 SDValue Br = DAG.getNode(ISD::BR, dl, 3150 MVT::Other, BrCond, 3151 DAG.getBasicBlock(SPD.getSuccessMBB())); 3152 3153 DAG.setRoot(Br); 3154 } 3155 3156 /// Codegen the failure basic block for a stack protector check. 3157 /// 3158 /// A failure stack protector machine basic block consists simply of a call to 3159 /// __stack_chk_fail(). 3160 /// 3161 /// For a high level explanation of how this fits into the stack protector 3162 /// generation see the comment on the declaration of class 3163 /// StackProtectorDescriptor. 3164 void 3165 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3167 TargetLowering::MakeLibCallOptions CallOptions; 3168 CallOptions.setDiscardResult(true); 3169 SDValue Chain = 3170 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3171 std::nullopt, CallOptions, getCurSDLoc()) 3172 .second; 3173 // On PS4/PS5, the "return address" must still be within the calling 3174 // function, even if it's at the very end, so emit an explicit TRAP here. 3175 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3176 if (TM.getTargetTriple().isPS()) 3177 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3178 // WebAssembly needs an unreachable instruction after a non-returning call, 3179 // because the function return type can be different from __stack_chk_fail's 3180 // return type (void). 3181 if (TM.getTargetTriple().isWasm()) 3182 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3183 3184 DAG.setRoot(Chain); 3185 } 3186 3187 /// visitBitTestHeader - This function emits necessary code to produce value 3188 /// suitable for "bit tests" 3189 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3190 MachineBasicBlock *SwitchBB) { 3191 SDLoc dl = getCurSDLoc(); 3192 3193 // Subtract the minimum value. 3194 SDValue SwitchOp = getValue(B.SValue); 3195 EVT VT = SwitchOp.getValueType(); 3196 SDValue RangeSub = 3197 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3198 3199 // Determine the type of the test operands. 3200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3201 bool UsePtrType = false; 3202 if (!TLI.isTypeLegal(VT)) { 3203 UsePtrType = true; 3204 } else { 3205 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3206 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3207 // Switch table case range are encoded into series of masks. 3208 // Just use pointer type, it's guaranteed to fit. 3209 UsePtrType = true; 3210 break; 3211 } 3212 } 3213 SDValue Sub = RangeSub; 3214 if (UsePtrType) { 3215 VT = TLI.getPointerTy(DAG.getDataLayout()); 3216 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3217 } 3218 3219 B.RegVT = VT.getSimpleVT(); 3220 B.Reg = FuncInfo.CreateReg(B.RegVT); 3221 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3222 3223 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3224 3225 if (!B.FallthroughUnreachable) 3226 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3227 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3228 SwitchBB->normalizeSuccProbs(); 3229 3230 SDValue Root = CopyTo; 3231 if (!B.FallthroughUnreachable) { 3232 // Conditional branch to the default block. 3233 SDValue RangeCmp = DAG.getSetCC(dl, 3234 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3235 RangeSub.getValueType()), 3236 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3237 ISD::SETUGT); 3238 3239 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3240 DAG.getBasicBlock(B.Default)); 3241 } 3242 3243 // Avoid emitting unnecessary branches to the next block. 3244 if (MBB != NextBlock(SwitchBB)) 3245 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3246 3247 DAG.setRoot(Root); 3248 } 3249 3250 /// visitBitTestCase - this function produces one "bit test" 3251 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3252 MachineBasicBlock* NextMBB, 3253 BranchProbability BranchProbToNext, 3254 unsigned Reg, 3255 BitTestCase &B, 3256 MachineBasicBlock *SwitchBB) { 3257 SDLoc dl = getCurSDLoc(); 3258 MVT VT = BB.RegVT; 3259 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3260 SDValue Cmp; 3261 unsigned PopCount = llvm::popcount(B.Mask); 3262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3263 if (PopCount == 1) { 3264 // Testing for a single bit; just compare the shift count with what it 3265 // would need to be to shift a 1 bit in that position. 3266 Cmp = DAG.getSetCC( 3267 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3268 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3269 ISD::SETEQ); 3270 } else if (PopCount == BB.Range) { 3271 // There is only one zero bit in the range, test for it directly. 3272 Cmp = DAG.getSetCC( 3273 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3274 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3275 } else { 3276 // Make desired shift 3277 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3278 DAG.getConstant(1, dl, VT), ShiftOp); 3279 3280 // Emit bit tests and jumps 3281 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3282 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3283 Cmp = DAG.getSetCC( 3284 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3285 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3286 } 3287 3288 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3289 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3290 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3291 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3292 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3293 // one as they are relative probabilities (and thus work more like weights), 3294 // and hence we need to normalize them to let the sum of them become one. 3295 SwitchBB->normalizeSuccProbs(); 3296 3297 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3298 MVT::Other, getControlRoot(), 3299 Cmp, DAG.getBasicBlock(B.TargetBB)); 3300 3301 // Avoid emitting unnecessary branches to the next block. 3302 if (NextMBB != NextBlock(SwitchBB)) 3303 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3304 DAG.getBasicBlock(NextMBB)); 3305 3306 DAG.setRoot(BrAnd); 3307 } 3308 3309 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3310 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3311 3312 // Retrieve successors. Look through artificial IR level blocks like 3313 // catchswitch for successors. 3314 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3315 const BasicBlock *EHPadBB = I.getSuccessor(1); 3316 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3317 3318 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3319 // have to do anything here to lower funclet bundles. 3320 assert(!I.hasOperandBundlesOtherThan( 3321 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3322 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3323 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3324 LLVMContext::OB_clang_arc_attachedcall}) && 3325 "Cannot lower invokes with arbitrary operand bundles yet!"); 3326 3327 const Value *Callee(I.getCalledOperand()); 3328 const Function *Fn = dyn_cast<Function>(Callee); 3329 if (isa<InlineAsm>(Callee)) 3330 visitInlineAsm(I, EHPadBB); 3331 else if (Fn && Fn->isIntrinsic()) { 3332 switch (Fn->getIntrinsicID()) { 3333 default: 3334 llvm_unreachable("Cannot invoke this intrinsic"); 3335 case Intrinsic::donothing: 3336 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3337 case Intrinsic::seh_try_begin: 3338 case Intrinsic::seh_scope_begin: 3339 case Intrinsic::seh_try_end: 3340 case Intrinsic::seh_scope_end: 3341 if (EHPadMBB) 3342 // a block referenced by EH table 3343 // so dtor-funclet not removed by opts 3344 EHPadMBB->setMachineBlockAddressTaken(); 3345 break; 3346 case Intrinsic::experimental_patchpoint_void: 3347 case Intrinsic::experimental_patchpoint: 3348 visitPatchpoint(I, EHPadBB); 3349 break; 3350 case Intrinsic::experimental_gc_statepoint: 3351 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3352 break; 3353 case Intrinsic::wasm_rethrow: { 3354 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3355 // special because it can be invoked, so we manually lower it to a DAG 3356 // node here. 3357 SmallVector<SDValue, 8> Ops; 3358 Ops.push_back(getRoot()); // inchain 3359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3360 Ops.push_back( 3361 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3362 TLI.getPointerTy(DAG.getDataLayout()))); 3363 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3364 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3365 break; 3366 } 3367 } 3368 } else if (I.hasDeoptState()) { 3369 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3370 // Eventually we will support lowering the @llvm.experimental.deoptimize 3371 // intrinsic, and right now there are no plans to support other intrinsics 3372 // with deopt state. 3373 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3374 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3375 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3376 } else { 3377 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3378 } 3379 3380 // If the value of the invoke is used outside of its defining block, make it 3381 // available as a virtual register. 3382 // We already took care of the exported value for the statepoint instruction 3383 // during call to the LowerStatepoint. 3384 if (!isa<GCStatepointInst>(I)) { 3385 CopyToExportRegsIfNeeded(&I); 3386 } 3387 3388 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3389 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3390 BranchProbability EHPadBBProb = 3391 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3392 : BranchProbability::getZero(); 3393 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3394 3395 // Update successor info. 3396 addSuccessorWithProb(InvokeMBB, Return); 3397 for (auto &UnwindDest : UnwindDests) { 3398 UnwindDest.first->setIsEHPad(); 3399 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3400 } 3401 InvokeMBB->normalizeSuccProbs(); 3402 3403 // Drop into normal successor. 3404 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3405 DAG.getBasicBlock(Return))); 3406 } 3407 3408 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3409 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3410 3411 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3412 // have to do anything here to lower funclet bundles. 3413 assert(!I.hasOperandBundlesOtherThan( 3414 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3415 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3416 3417 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3418 visitInlineAsm(I); 3419 CopyToExportRegsIfNeeded(&I); 3420 3421 // Retrieve successors. 3422 SmallPtrSet<BasicBlock *, 8> Dests; 3423 Dests.insert(I.getDefaultDest()); 3424 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3425 3426 // Update successor info. 3427 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3428 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3429 BasicBlock *Dest = I.getIndirectDest(i); 3430 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3431 Target->setIsInlineAsmBrIndirectTarget(); 3432 Target->setMachineBlockAddressTaken(); 3433 Target->setLabelMustBeEmitted(); 3434 // Don't add duplicate machine successors. 3435 if (Dests.insert(Dest).second) 3436 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3437 } 3438 CallBrMBB->normalizeSuccProbs(); 3439 3440 // Drop into default successor. 3441 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3442 MVT::Other, getControlRoot(), 3443 DAG.getBasicBlock(Return))); 3444 } 3445 3446 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3447 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3448 } 3449 3450 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3451 assert(FuncInfo.MBB->isEHPad() && 3452 "Call to landingpad not in landing pad!"); 3453 3454 // If there aren't registers to copy the values into (e.g., during SjLj 3455 // exceptions), then don't bother to create these DAG nodes. 3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3457 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3458 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3459 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3460 return; 3461 3462 // If landingpad's return type is token type, we don't create DAG nodes 3463 // for its exception pointer and selector value. The extraction of exception 3464 // pointer or selector value from token type landingpads is not currently 3465 // supported. 3466 if (LP.getType()->isTokenTy()) 3467 return; 3468 3469 SmallVector<EVT, 2> ValueVTs; 3470 SDLoc dl = getCurSDLoc(); 3471 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3472 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3473 3474 // Get the two live-in registers as SDValues. The physregs have already been 3475 // copied into virtual registers. 3476 SDValue Ops[2]; 3477 if (FuncInfo.ExceptionPointerVirtReg) { 3478 Ops[0] = DAG.getZExtOrTrunc( 3479 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3480 FuncInfo.ExceptionPointerVirtReg, 3481 TLI.getPointerTy(DAG.getDataLayout())), 3482 dl, ValueVTs[0]); 3483 } else { 3484 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3485 } 3486 Ops[1] = DAG.getZExtOrTrunc( 3487 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3488 FuncInfo.ExceptionSelectorVirtReg, 3489 TLI.getPointerTy(DAG.getDataLayout())), 3490 dl, ValueVTs[1]); 3491 3492 // Merge into one. 3493 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3494 DAG.getVTList(ValueVTs), Ops); 3495 setValue(&LP, Res); 3496 } 3497 3498 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3499 MachineBasicBlock *Last) { 3500 // Update JTCases. 3501 for (JumpTableBlock &JTB : SL->JTCases) 3502 if (JTB.first.HeaderBB == First) 3503 JTB.first.HeaderBB = Last; 3504 3505 // Update BitTestCases. 3506 for (BitTestBlock &BTB : SL->BitTestCases) 3507 if (BTB.Parent == First) 3508 BTB.Parent = Last; 3509 } 3510 3511 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3512 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3513 3514 // Update machine-CFG edges with unique successors. 3515 SmallSet<BasicBlock*, 32> Done; 3516 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3517 BasicBlock *BB = I.getSuccessor(i); 3518 bool Inserted = Done.insert(BB).second; 3519 if (!Inserted) 3520 continue; 3521 3522 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3523 addSuccessorWithProb(IndirectBrMBB, Succ); 3524 } 3525 IndirectBrMBB->normalizeSuccProbs(); 3526 3527 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3528 MVT::Other, getControlRoot(), 3529 getValue(I.getAddress()))); 3530 } 3531 3532 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3533 if (!DAG.getTarget().Options.TrapUnreachable) 3534 return; 3535 3536 // We may be able to ignore unreachable behind a noreturn call. 3537 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3538 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3539 if (Call->doesNotReturn()) 3540 return; 3541 } 3542 } 3543 3544 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3545 } 3546 3547 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3548 SDNodeFlags Flags; 3549 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3550 Flags.copyFMF(*FPOp); 3551 3552 SDValue Op = getValue(I.getOperand(0)); 3553 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3554 Op, Flags); 3555 setValue(&I, UnNodeValue); 3556 } 3557 3558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3559 SDNodeFlags Flags; 3560 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3561 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3562 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3563 } 3564 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3565 Flags.setExact(ExactOp->isExact()); 3566 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3567 Flags.setDisjoint(DisjointOp->isDisjoint()); 3568 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3569 Flags.copyFMF(*FPOp); 3570 3571 SDValue Op1 = getValue(I.getOperand(0)); 3572 SDValue Op2 = getValue(I.getOperand(1)); 3573 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3574 Op1, Op2, Flags); 3575 setValue(&I, BinNodeValue); 3576 } 3577 3578 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3579 SDValue Op1 = getValue(I.getOperand(0)); 3580 SDValue Op2 = getValue(I.getOperand(1)); 3581 3582 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3583 Op1.getValueType(), DAG.getDataLayout()); 3584 3585 // Coerce the shift amount to the right type if we can. This exposes the 3586 // truncate or zext to optimization early. 3587 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3588 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3589 "Unexpected shift type"); 3590 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3591 } 3592 3593 bool nuw = false; 3594 bool nsw = false; 3595 bool exact = false; 3596 3597 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3598 3599 if (const OverflowingBinaryOperator *OFBinOp = 3600 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3601 nuw = OFBinOp->hasNoUnsignedWrap(); 3602 nsw = OFBinOp->hasNoSignedWrap(); 3603 } 3604 if (const PossiblyExactOperator *ExactOp = 3605 dyn_cast<const PossiblyExactOperator>(&I)) 3606 exact = ExactOp->isExact(); 3607 } 3608 SDNodeFlags Flags; 3609 Flags.setExact(exact); 3610 Flags.setNoSignedWrap(nsw); 3611 Flags.setNoUnsignedWrap(nuw); 3612 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3613 Flags); 3614 setValue(&I, Res); 3615 } 3616 3617 void SelectionDAGBuilder::visitSDiv(const User &I) { 3618 SDValue Op1 = getValue(I.getOperand(0)); 3619 SDValue Op2 = getValue(I.getOperand(1)); 3620 3621 SDNodeFlags Flags; 3622 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3623 cast<PossiblyExactOperator>(&I)->isExact()); 3624 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3625 Op2, Flags)); 3626 } 3627 3628 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3629 ICmpInst::Predicate predicate = I.getPredicate(); 3630 SDValue Op1 = getValue(I.getOperand(0)); 3631 SDValue Op2 = getValue(I.getOperand(1)); 3632 ISD::CondCode Opcode = getICmpCondCode(predicate); 3633 3634 auto &TLI = DAG.getTargetLoweringInfo(); 3635 EVT MemVT = 3636 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3637 3638 // If a pointer's DAG type is larger than its memory type then the DAG values 3639 // are zero-extended. This breaks signed comparisons so truncate back to the 3640 // underlying type before doing the compare. 3641 if (Op1.getValueType() != MemVT) { 3642 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3643 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3644 } 3645 3646 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3647 I.getType()); 3648 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3649 } 3650 3651 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3652 FCmpInst::Predicate predicate = I.getPredicate(); 3653 SDValue Op1 = getValue(I.getOperand(0)); 3654 SDValue Op2 = getValue(I.getOperand(1)); 3655 3656 ISD::CondCode Condition = getFCmpCondCode(predicate); 3657 auto *FPMO = cast<FPMathOperator>(&I); 3658 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3659 Condition = getFCmpCodeWithoutNaN(Condition); 3660 3661 SDNodeFlags Flags; 3662 Flags.copyFMF(*FPMO); 3663 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3664 3665 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3666 I.getType()); 3667 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3668 } 3669 3670 // Check if the condition of the select has one use or two users that are both 3671 // selects with the same condition. 3672 static bool hasOnlySelectUsers(const Value *Cond) { 3673 return llvm::all_of(Cond->users(), [](const Value *V) { 3674 return isa<SelectInst>(V); 3675 }); 3676 } 3677 3678 void SelectionDAGBuilder::visitSelect(const User &I) { 3679 SmallVector<EVT, 4> ValueVTs; 3680 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3681 ValueVTs); 3682 unsigned NumValues = ValueVTs.size(); 3683 if (NumValues == 0) return; 3684 3685 SmallVector<SDValue, 4> Values(NumValues); 3686 SDValue Cond = getValue(I.getOperand(0)); 3687 SDValue LHSVal = getValue(I.getOperand(1)); 3688 SDValue RHSVal = getValue(I.getOperand(2)); 3689 SmallVector<SDValue, 1> BaseOps(1, Cond); 3690 ISD::NodeType OpCode = 3691 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3692 3693 bool IsUnaryAbs = false; 3694 bool Negate = false; 3695 3696 SDNodeFlags Flags; 3697 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3698 Flags.copyFMF(*FPOp); 3699 3700 Flags.setUnpredictable( 3701 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3702 3703 // Min/max matching is only viable if all output VTs are the same. 3704 if (all_equal(ValueVTs)) { 3705 EVT VT = ValueVTs[0]; 3706 LLVMContext &Ctx = *DAG.getContext(); 3707 auto &TLI = DAG.getTargetLoweringInfo(); 3708 3709 // We care about the legality of the operation after it has been type 3710 // legalized. 3711 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3712 VT = TLI.getTypeToTransformTo(Ctx, VT); 3713 3714 // If the vselect is legal, assume we want to leave this as a vector setcc + 3715 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3716 // min/max is legal on the scalar type. 3717 bool UseScalarMinMax = VT.isVector() && 3718 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3719 3720 // ValueTracking's select pattern matching does not account for -0.0, 3721 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3722 // -0.0 is less than +0.0. 3723 Value *LHS, *RHS; 3724 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3725 ISD::NodeType Opc = ISD::DELETED_NODE; 3726 switch (SPR.Flavor) { 3727 case SPF_UMAX: Opc = ISD::UMAX; break; 3728 case SPF_UMIN: Opc = ISD::UMIN; break; 3729 case SPF_SMAX: Opc = ISD::SMAX; break; 3730 case SPF_SMIN: Opc = ISD::SMIN; break; 3731 case SPF_FMINNUM: 3732 switch (SPR.NaNBehavior) { 3733 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3734 case SPNB_RETURNS_NAN: break; 3735 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3736 case SPNB_RETURNS_ANY: 3737 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3738 (UseScalarMinMax && 3739 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3740 Opc = ISD::FMINNUM; 3741 break; 3742 } 3743 break; 3744 case SPF_FMAXNUM: 3745 switch (SPR.NaNBehavior) { 3746 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3747 case SPNB_RETURNS_NAN: break; 3748 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3749 case SPNB_RETURNS_ANY: 3750 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3751 (UseScalarMinMax && 3752 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3753 Opc = ISD::FMAXNUM; 3754 break; 3755 } 3756 break; 3757 case SPF_NABS: 3758 Negate = true; 3759 [[fallthrough]]; 3760 case SPF_ABS: 3761 IsUnaryAbs = true; 3762 Opc = ISD::ABS; 3763 break; 3764 default: break; 3765 } 3766 3767 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3768 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3769 (UseScalarMinMax && 3770 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3771 // If the underlying comparison instruction is used by any other 3772 // instruction, the consumed instructions won't be destroyed, so it is 3773 // not profitable to convert to a min/max. 3774 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3775 OpCode = Opc; 3776 LHSVal = getValue(LHS); 3777 RHSVal = getValue(RHS); 3778 BaseOps.clear(); 3779 } 3780 3781 if (IsUnaryAbs) { 3782 OpCode = Opc; 3783 LHSVal = getValue(LHS); 3784 BaseOps.clear(); 3785 } 3786 } 3787 3788 if (IsUnaryAbs) { 3789 for (unsigned i = 0; i != NumValues; ++i) { 3790 SDLoc dl = getCurSDLoc(); 3791 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3792 Values[i] = 3793 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3794 if (Negate) 3795 Values[i] = DAG.getNegative(Values[i], dl, VT); 3796 } 3797 } else { 3798 for (unsigned i = 0; i != NumValues; ++i) { 3799 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3800 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3801 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3802 Values[i] = DAG.getNode( 3803 OpCode, getCurSDLoc(), 3804 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3805 } 3806 } 3807 3808 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3809 DAG.getVTList(ValueVTs), Values)); 3810 } 3811 3812 void SelectionDAGBuilder::visitTrunc(const User &I) { 3813 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3814 SDValue N = getValue(I.getOperand(0)); 3815 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3816 I.getType()); 3817 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3818 } 3819 3820 void SelectionDAGBuilder::visitZExt(const User &I) { 3821 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3822 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3823 SDValue N = getValue(I.getOperand(0)); 3824 auto &TLI = DAG.getTargetLoweringInfo(); 3825 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3826 3827 SDNodeFlags Flags; 3828 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3829 Flags.setNonNeg(PNI->hasNonNeg()); 3830 3831 // Eagerly use nonneg information to canonicalize towards sign_extend if 3832 // that is the target's preference. 3833 // TODO: Let the target do this later. 3834 if (Flags.hasNonNeg() && 3835 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3836 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3837 return; 3838 } 3839 3840 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3841 } 3842 3843 void SelectionDAGBuilder::visitSExt(const User &I) { 3844 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3845 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3846 SDValue N = getValue(I.getOperand(0)); 3847 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3848 I.getType()); 3849 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3850 } 3851 3852 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3853 // FPTrunc is never a no-op cast, no need to check 3854 SDValue N = getValue(I.getOperand(0)); 3855 SDLoc dl = getCurSDLoc(); 3856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3857 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3858 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3859 DAG.getTargetConstant( 3860 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3861 } 3862 3863 void SelectionDAGBuilder::visitFPExt(const User &I) { 3864 // FPExt is never a no-op cast, no need to check 3865 SDValue N = getValue(I.getOperand(0)); 3866 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3867 I.getType()); 3868 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3869 } 3870 3871 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3872 // FPToUI is never a no-op cast, no need to check 3873 SDValue N = getValue(I.getOperand(0)); 3874 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3875 I.getType()); 3876 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3877 } 3878 3879 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3880 // FPToSI is never a no-op cast, no need to check 3881 SDValue N = getValue(I.getOperand(0)); 3882 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3883 I.getType()); 3884 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3885 } 3886 3887 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3888 // UIToFP is never a no-op cast, no need to check 3889 SDValue N = getValue(I.getOperand(0)); 3890 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3891 I.getType()); 3892 SDNodeFlags Flags; 3893 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3894 Flags.setNonNeg(PNI->hasNonNeg()); 3895 3896 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3897 } 3898 3899 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3900 // SIToFP is never a no-op cast, no need to check 3901 SDValue N = getValue(I.getOperand(0)); 3902 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3903 I.getType()); 3904 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3905 } 3906 3907 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3908 // What to do depends on the size of the integer and the size of the pointer. 3909 // We can either truncate, zero extend, or no-op, accordingly. 3910 SDValue N = getValue(I.getOperand(0)); 3911 auto &TLI = DAG.getTargetLoweringInfo(); 3912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3913 I.getType()); 3914 EVT PtrMemVT = 3915 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3916 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3917 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3918 setValue(&I, N); 3919 } 3920 3921 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3922 // What to do depends on the size of the integer and the size of the pointer. 3923 // We can either truncate, zero extend, or no-op, accordingly. 3924 SDValue N = getValue(I.getOperand(0)); 3925 auto &TLI = DAG.getTargetLoweringInfo(); 3926 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3927 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3928 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3929 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3930 setValue(&I, N); 3931 } 3932 3933 void SelectionDAGBuilder::visitBitCast(const User &I) { 3934 SDValue N = getValue(I.getOperand(0)); 3935 SDLoc dl = getCurSDLoc(); 3936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3937 I.getType()); 3938 3939 // BitCast assures us that source and destination are the same size so this is 3940 // either a BITCAST or a no-op. 3941 if (DestVT != N.getValueType()) 3942 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3943 DestVT, N)); // convert types. 3944 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3945 // might fold any kind of constant expression to an integer constant and that 3946 // is not what we are looking for. Only recognize a bitcast of a genuine 3947 // constant integer as an opaque constant. 3948 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3949 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3950 /*isOpaque*/true)); 3951 else 3952 setValue(&I, N); // noop cast. 3953 } 3954 3955 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3957 const Value *SV = I.getOperand(0); 3958 SDValue N = getValue(SV); 3959 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3960 3961 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3962 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3963 3964 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3965 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3966 3967 setValue(&I, N); 3968 } 3969 3970 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3972 SDValue InVec = getValue(I.getOperand(0)); 3973 SDValue InVal = getValue(I.getOperand(1)); 3974 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3975 TLI.getVectorIdxTy(DAG.getDataLayout())); 3976 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3977 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3978 InVec, InVal, InIdx)); 3979 } 3980 3981 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3983 SDValue InVec = getValue(I.getOperand(0)); 3984 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3985 TLI.getVectorIdxTy(DAG.getDataLayout())); 3986 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3987 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3988 InVec, InIdx)); 3989 } 3990 3991 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3992 SDValue Src1 = getValue(I.getOperand(0)); 3993 SDValue Src2 = getValue(I.getOperand(1)); 3994 ArrayRef<int> Mask; 3995 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3996 Mask = SVI->getShuffleMask(); 3997 else 3998 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3999 SDLoc DL = getCurSDLoc(); 4000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4001 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4002 EVT SrcVT = Src1.getValueType(); 4003 4004 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4005 VT.isScalableVector()) { 4006 // Canonical splat form of first element of first input vector. 4007 SDValue FirstElt = 4008 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4009 DAG.getVectorIdxConstant(0, DL)); 4010 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4011 return; 4012 } 4013 4014 // For now, we only handle splats for scalable vectors. 4015 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4016 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4017 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4018 4019 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4020 unsigned MaskNumElts = Mask.size(); 4021 4022 if (SrcNumElts == MaskNumElts) { 4023 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4024 return; 4025 } 4026 4027 // Normalize the shuffle vector since mask and vector length don't match. 4028 if (SrcNumElts < MaskNumElts) { 4029 // Mask is longer than the source vectors. We can use concatenate vector to 4030 // make the mask and vectors lengths match. 4031 4032 if (MaskNumElts % SrcNumElts == 0) { 4033 // Mask length is a multiple of the source vector length. 4034 // Check if the shuffle is some kind of concatenation of the input 4035 // vectors. 4036 unsigned NumConcat = MaskNumElts / SrcNumElts; 4037 bool IsConcat = true; 4038 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4039 for (unsigned i = 0; i != MaskNumElts; ++i) { 4040 int Idx = Mask[i]; 4041 if (Idx < 0) 4042 continue; 4043 // Ensure the indices in each SrcVT sized piece are sequential and that 4044 // the same source is used for the whole piece. 4045 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4046 (ConcatSrcs[i / SrcNumElts] >= 0 && 4047 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4048 IsConcat = false; 4049 break; 4050 } 4051 // Remember which source this index came from. 4052 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4053 } 4054 4055 // The shuffle is concatenating multiple vectors together. Just emit 4056 // a CONCAT_VECTORS operation. 4057 if (IsConcat) { 4058 SmallVector<SDValue, 8> ConcatOps; 4059 for (auto Src : ConcatSrcs) { 4060 if (Src < 0) 4061 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4062 else if (Src == 0) 4063 ConcatOps.push_back(Src1); 4064 else 4065 ConcatOps.push_back(Src2); 4066 } 4067 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4068 return; 4069 } 4070 } 4071 4072 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4073 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4074 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4075 PaddedMaskNumElts); 4076 4077 // Pad both vectors with undefs to make them the same length as the mask. 4078 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4079 4080 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4081 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4082 MOps1[0] = Src1; 4083 MOps2[0] = Src2; 4084 4085 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4086 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4087 4088 // Readjust mask for new input vector length. 4089 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4090 for (unsigned i = 0; i != MaskNumElts; ++i) { 4091 int Idx = Mask[i]; 4092 if (Idx >= (int)SrcNumElts) 4093 Idx -= SrcNumElts - PaddedMaskNumElts; 4094 MappedOps[i] = Idx; 4095 } 4096 4097 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4098 4099 // If the concatenated vector was padded, extract a subvector with the 4100 // correct number of elements. 4101 if (MaskNumElts != PaddedMaskNumElts) 4102 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4103 DAG.getVectorIdxConstant(0, DL)); 4104 4105 setValue(&I, Result); 4106 return; 4107 } 4108 4109 if (SrcNumElts > MaskNumElts) { 4110 // Analyze the access pattern of the vector to see if we can extract 4111 // two subvectors and do the shuffle. 4112 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4113 bool CanExtract = true; 4114 for (int Idx : Mask) { 4115 unsigned Input = 0; 4116 if (Idx < 0) 4117 continue; 4118 4119 if (Idx >= (int)SrcNumElts) { 4120 Input = 1; 4121 Idx -= SrcNumElts; 4122 } 4123 4124 // If all the indices come from the same MaskNumElts sized portion of 4125 // the sources we can use extract. Also make sure the extract wouldn't 4126 // extract past the end of the source. 4127 int NewStartIdx = alignDown(Idx, MaskNumElts); 4128 if (NewStartIdx + MaskNumElts > SrcNumElts || 4129 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4130 CanExtract = false; 4131 // Make sure we always update StartIdx as we use it to track if all 4132 // elements are undef. 4133 StartIdx[Input] = NewStartIdx; 4134 } 4135 4136 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4137 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4138 return; 4139 } 4140 if (CanExtract) { 4141 // Extract appropriate subvector and generate a vector shuffle 4142 for (unsigned Input = 0; Input < 2; ++Input) { 4143 SDValue &Src = Input == 0 ? Src1 : Src2; 4144 if (StartIdx[Input] < 0) 4145 Src = DAG.getUNDEF(VT); 4146 else { 4147 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4148 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4149 } 4150 } 4151 4152 // Calculate new mask. 4153 SmallVector<int, 8> MappedOps(Mask); 4154 for (int &Idx : MappedOps) { 4155 if (Idx >= (int)SrcNumElts) 4156 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4157 else if (Idx >= 0) 4158 Idx -= StartIdx[0]; 4159 } 4160 4161 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4162 return; 4163 } 4164 } 4165 4166 // We can't use either concat vectors or extract subvectors so fall back to 4167 // replacing the shuffle with extract and build vector. 4168 // to insert and build vector. 4169 EVT EltVT = VT.getVectorElementType(); 4170 SmallVector<SDValue,8> Ops; 4171 for (int Idx : Mask) { 4172 SDValue Res; 4173 4174 if (Idx < 0) { 4175 Res = DAG.getUNDEF(EltVT); 4176 } else { 4177 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4178 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4179 4180 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4181 DAG.getVectorIdxConstant(Idx, DL)); 4182 } 4183 4184 Ops.push_back(Res); 4185 } 4186 4187 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4188 } 4189 4190 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4191 ArrayRef<unsigned> Indices = I.getIndices(); 4192 const Value *Op0 = I.getOperand(0); 4193 const Value *Op1 = I.getOperand(1); 4194 Type *AggTy = I.getType(); 4195 Type *ValTy = Op1->getType(); 4196 bool IntoUndef = isa<UndefValue>(Op0); 4197 bool FromUndef = isa<UndefValue>(Op1); 4198 4199 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4200 4201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4202 SmallVector<EVT, 4> AggValueVTs; 4203 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4204 SmallVector<EVT, 4> ValValueVTs; 4205 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4206 4207 unsigned NumAggValues = AggValueVTs.size(); 4208 unsigned NumValValues = ValValueVTs.size(); 4209 SmallVector<SDValue, 4> Values(NumAggValues); 4210 4211 // Ignore an insertvalue that produces an empty object 4212 if (!NumAggValues) { 4213 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4214 return; 4215 } 4216 4217 SDValue Agg = getValue(Op0); 4218 unsigned i = 0; 4219 // Copy the beginning value(s) from the original aggregate. 4220 for (; i != LinearIndex; ++i) 4221 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4222 SDValue(Agg.getNode(), Agg.getResNo() + i); 4223 // Copy values from the inserted value(s). 4224 if (NumValValues) { 4225 SDValue Val = getValue(Op1); 4226 for (; i != LinearIndex + NumValValues; ++i) 4227 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4228 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4229 } 4230 // Copy remaining value(s) from the original aggregate. 4231 for (; i != NumAggValues; ++i) 4232 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4233 SDValue(Agg.getNode(), Agg.getResNo() + i); 4234 4235 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4236 DAG.getVTList(AggValueVTs), Values)); 4237 } 4238 4239 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4240 ArrayRef<unsigned> Indices = I.getIndices(); 4241 const Value *Op0 = I.getOperand(0); 4242 Type *AggTy = Op0->getType(); 4243 Type *ValTy = I.getType(); 4244 bool OutOfUndef = isa<UndefValue>(Op0); 4245 4246 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4247 4248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4249 SmallVector<EVT, 4> ValValueVTs; 4250 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4251 4252 unsigned NumValValues = ValValueVTs.size(); 4253 4254 // Ignore a extractvalue that produces an empty object 4255 if (!NumValValues) { 4256 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4257 return; 4258 } 4259 4260 SmallVector<SDValue, 4> Values(NumValValues); 4261 4262 SDValue Agg = getValue(Op0); 4263 // Copy out the selected value(s). 4264 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4265 Values[i - LinearIndex] = 4266 OutOfUndef ? 4267 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4268 SDValue(Agg.getNode(), Agg.getResNo() + i); 4269 4270 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4271 DAG.getVTList(ValValueVTs), Values)); 4272 } 4273 4274 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4275 Value *Op0 = I.getOperand(0); 4276 // Note that the pointer operand may be a vector of pointers. Take the scalar 4277 // element which holds a pointer. 4278 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4279 SDValue N = getValue(Op0); 4280 SDLoc dl = getCurSDLoc(); 4281 auto &TLI = DAG.getTargetLoweringInfo(); 4282 4283 // Normalize Vector GEP - all scalar operands should be converted to the 4284 // splat vector. 4285 bool IsVectorGEP = I.getType()->isVectorTy(); 4286 ElementCount VectorElementCount = 4287 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4288 : ElementCount::getFixed(0); 4289 4290 if (IsVectorGEP && !N.getValueType().isVector()) { 4291 LLVMContext &Context = *DAG.getContext(); 4292 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4293 N = DAG.getSplat(VT, dl, N); 4294 } 4295 4296 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4297 GTI != E; ++GTI) { 4298 const Value *Idx = GTI.getOperand(); 4299 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4300 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4301 if (Field) { 4302 // N = N + Offset 4303 uint64_t Offset = 4304 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4305 4306 // In an inbounds GEP with an offset that is nonnegative even when 4307 // interpreted as signed, assume there is no unsigned overflow. 4308 SDNodeFlags Flags; 4309 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4310 Flags.setNoUnsignedWrap(true); 4311 4312 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4313 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4314 } 4315 } else { 4316 // IdxSize is the width of the arithmetic according to IR semantics. 4317 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4318 // (and fix up the result later). 4319 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4320 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4321 TypeSize ElementSize = 4322 GTI.getSequentialElementStride(DAG.getDataLayout()); 4323 // We intentionally mask away the high bits here; ElementSize may not 4324 // fit in IdxTy. 4325 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4326 bool ElementScalable = ElementSize.isScalable(); 4327 4328 // If this is a scalar constant or a splat vector of constants, 4329 // handle it quickly. 4330 const auto *C = dyn_cast<Constant>(Idx); 4331 if (C && isa<VectorType>(C->getType())) 4332 C = C->getSplatValue(); 4333 4334 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4335 if (CI && CI->isZero()) 4336 continue; 4337 if (CI && !ElementScalable) { 4338 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4339 LLVMContext &Context = *DAG.getContext(); 4340 SDValue OffsVal; 4341 if (IsVectorGEP) 4342 OffsVal = DAG.getConstant( 4343 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4344 else 4345 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4346 4347 // In an inbounds GEP with an offset that is nonnegative even when 4348 // interpreted as signed, assume there is no unsigned overflow. 4349 SDNodeFlags Flags; 4350 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4351 Flags.setNoUnsignedWrap(true); 4352 4353 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4354 4355 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4356 continue; 4357 } 4358 4359 // N = N + Idx * ElementMul; 4360 SDValue IdxN = getValue(Idx); 4361 4362 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4363 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4364 VectorElementCount); 4365 IdxN = DAG.getSplat(VT, dl, IdxN); 4366 } 4367 4368 // If the index is smaller or larger than intptr_t, truncate or extend 4369 // it. 4370 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4371 4372 if (ElementScalable) { 4373 EVT VScaleTy = N.getValueType().getScalarType(); 4374 SDValue VScale = DAG.getNode( 4375 ISD::VSCALE, dl, VScaleTy, 4376 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4377 if (IsVectorGEP) 4378 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4379 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4380 } else { 4381 // If this is a multiply by a power of two, turn it into a shl 4382 // immediately. This is a very common case. 4383 if (ElementMul != 1) { 4384 if (ElementMul.isPowerOf2()) { 4385 unsigned Amt = ElementMul.logBase2(); 4386 IdxN = DAG.getNode(ISD::SHL, dl, 4387 N.getValueType(), IdxN, 4388 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4389 } else { 4390 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4391 IdxN.getValueType()); 4392 IdxN = DAG.getNode(ISD::MUL, dl, 4393 N.getValueType(), IdxN, Scale); 4394 } 4395 } 4396 } 4397 4398 N = DAG.getNode(ISD::ADD, dl, 4399 N.getValueType(), N, IdxN); 4400 } 4401 } 4402 4403 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4404 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4405 if (IsVectorGEP) { 4406 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4407 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4408 } 4409 4410 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4411 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4412 4413 setValue(&I, N); 4414 } 4415 4416 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4417 // If this is a fixed sized alloca in the entry block of the function, 4418 // allocate it statically on the stack. 4419 if (FuncInfo.StaticAllocaMap.count(&I)) 4420 return; // getValue will auto-populate this. 4421 4422 SDLoc dl = getCurSDLoc(); 4423 Type *Ty = I.getAllocatedType(); 4424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4425 auto &DL = DAG.getDataLayout(); 4426 TypeSize TySize = DL.getTypeAllocSize(Ty); 4427 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4428 4429 SDValue AllocSize = getValue(I.getArraySize()); 4430 4431 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4432 if (AllocSize.getValueType() != IntPtr) 4433 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4434 4435 if (TySize.isScalable()) 4436 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4437 DAG.getVScale(dl, IntPtr, 4438 APInt(IntPtr.getScalarSizeInBits(), 4439 TySize.getKnownMinValue()))); 4440 else { 4441 SDValue TySizeValue = 4442 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4443 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4444 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4445 } 4446 4447 // Handle alignment. If the requested alignment is less than or equal to 4448 // the stack alignment, ignore it. If the size is greater than or equal to 4449 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4450 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4451 if (*Alignment <= StackAlign) 4452 Alignment = std::nullopt; 4453 4454 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4455 // Round the size of the allocation up to the stack alignment size 4456 // by add SA-1 to the size. This doesn't overflow because we're computing 4457 // an address inside an alloca. 4458 SDNodeFlags Flags; 4459 Flags.setNoUnsignedWrap(true); 4460 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4461 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4462 4463 // Mask out the low bits for alignment purposes. 4464 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4465 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4466 4467 SDValue Ops[] = { 4468 getRoot(), AllocSize, 4469 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4470 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4471 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4472 setValue(&I, DSA); 4473 DAG.setRoot(DSA.getValue(1)); 4474 4475 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4476 } 4477 4478 static const MDNode *getRangeMetadata(const Instruction &I) { 4479 // If !noundef is not present, then !range violation results in a poison 4480 // value rather than immediate undefined behavior. In theory, transferring 4481 // these annotations to SDAG is fine, but in practice there are key SDAG 4482 // transforms that are known not to be poison-safe, such as folding logical 4483 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4484 // also present. 4485 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4486 return nullptr; 4487 return I.getMetadata(LLVMContext::MD_range); 4488 } 4489 4490 static std::optional<ConstantRange> getRange(const Instruction &I) { 4491 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4492 // see comment in getRangeMetadata about this check 4493 if (CB->hasRetAttr(Attribute::NoUndef)) 4494 return CB->getRange(); 4495 } 4496 if (const MDNode *Range = getRangeMetadata(I)) 4497 return getConstantRangeFromMetadata(*Range); 4498 return std::nullopt; 4499 } 4500 4501 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4502 if (I.isAtomic()) 4503 return visitAtomicLoad(I); 4504 4505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4506 const Value *SV = I.getOperand(0); 4507 if (TLI.supportSwiftError()) { 4508 // Swifterror values can come from either a function parameter with 4509 // swifterror attribute or an alloca with swifterror attribute. 4510 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4511 if (Arg->hasSwiftErrorAttr()) 4512 return visitLoadFromSwiftError(I); 4513 } 4514 4515 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4516 if (Alloca->isSwiftError()) 4517 return visitLoadFromSwiftError(I); 4518 } 4519 } 4520 4521 SDValue Ptr = getValue(SV); 4522 4523 Type *Ty = I.getType(); 4524 SmallVector<EVT, 4> ValueVTs, MemVTs; 4525 SmallVector<TypeSize, 4> Offsets; 4526 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4527 unsigned NumValues = ValueVTs.size(); 4528 if (NumValues == 0) 4529 return; 4530 4531 Align Alignment = I.getAlign(); 4532 AAMDNodes AAInfo = I.getAAMetadata(); 4533 const MDNode *Ranges = getRangeMetadata(I); 4534 bool isVolatile = I.isVolatile(); 4535 MachineMemOperand::Flags MMOFlags = 4536 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4537 4538 SDValue Root; 4539 bool ConstantMemory = false; 4540 if (isVolatile) 4541 // Serialize volatile loads with other side effects. 4542 Root = getRoot(); 4543 else if (NumValues > MaxParallelChains) 4544 Root = getMemoryRoot(); 4545 else if (AA && 4546 AA->pointsToConstantMemory(MemoryLocation( 4547 SV, 4548 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4549 AAInfo))) { 4550 // Do not serialize (non-volatile) loads of constant memory with anything. 4551 Root = DAG.getEntryNode(); 4552 ConstantMemory = true; 4553 MMOFlags |= MachineMemOperand::MOInvariant; 4554 } else { 4555 // Do not serialize non-volatile loads against each other. 4556 Root = DAG.getRoot(); 4557 } 4558 4559 SDLoc dl = getCurSDLoc(); 4560 4561 if (isVolatile) 4562 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4563 4564 SmallVector<SDValue, 4> Values(NumValues); 4565 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4566 4567 unsigned ChainI = 0; 4568 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4569 // Serializing loads here may result in excessive register pressure, and 4570 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4571 // could recover a bit by hoisting nodes upward in the chain by recognizing 4572 // they are side-effect free or do not alias. The optimizer should really 4573 // avoid this case by converting large object/array copies to llvm.memcpy 4574 // (MaxParallelChains should always remain as failsafe). 4575 if (ChainI == MaxParallelChains) { 4576 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4577 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4578 ArrayRef(Chains.data(), ChainI)); 4579 Root = Chain; 4580 ChainI = 0; 4581 } 4582 4583 // TODO: MachinePointerInfo only supports a fixed length offset. 4584 MachinePointerInfo PtrInfo = 4585 !Offsets[i].isScalable() || Offsets[i].isZero() 4586 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4587 : MachinePointerInfo(); 4588 4589 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4590 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4591 MMOFlags, AAInfo, Ranges); 4592 Chains[ChainI] = L.getValue(1); 4593 4594 if (MemVTs[i] != ValueVTs[i]) 4595 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4596 4597 Values[i] = L; 4598 } 4599 4600 if (!ConstantMemory) { 4601 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4602 ArrayRef(Chains.data(), ChainI)); 4603 if (isVolatile) 4604 DAG.setRoot(Chain); 4605 else 4606 PendingLoads.push_back(Chain); 4607 } 4608 4609 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4610 DAG.getVTList(ValueVTs), Values)); 4611 } 4612 4613 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4614 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4615 "call visitStoreToSwiftError when backend supports swifterror"); 4616 4617 SmallVector<EVT, 4> ValueVTs; 4618 SmallVector<uint64_t, 4> Offsets; 4619 const Value *SrcV = I.getOperand(0); 4620 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4621 SrcV->getType(), ValueVTs, &Offsets, 0); 4622 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4623 "expect a single EVT for swifterror"); 4624 4625 SDValue Src = getValue(SrcV); 4626 // Create a virtual register, then update the virtual register. 4627 Register VReg = 4628 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4629 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4630 // Chain can be getRoot or getControlRoot. 4631 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4632 SDValue(Src.getNode(), Src.getResNo())); 4633 DAG.setRoot(CopyNode); 4634 } 4635 4636 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4637 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4638 "call visitLoadFromSwiftError when backend supports swifterror"); 4639 4640 assert(!I.isVolatile() && 4641 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4642 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4643 "Support volatile, non temporal, invariant for load_from_swift_error"); 4644 4645 const Value *SV = I.getOperand(0); 4646 Type *Ty = I.getType(); 4647 assert( 4648 (!AA || 4649 !AA->pointsToConstantMemory(MemoryLocation( 4650 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4651 I.getAAMetadata()))) && 4652 "load_from_swift_error should not be constant memory"); 4653 4654 SmallVector<EVT, 4> ValueVTs; 4655 SmallVector<uint64_t, 4> Offsets; 4656 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4657 ValueVTs, &Offsets, 0); 4658 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4659 "expect a single EVT for swifterror"); 4660 4661 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4662 SDValue L = DAG.getCopyFromReg( 4663 getRoot(), getCurSDLoc(), 4664 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4665 4666 setValue(&I, L); 4667 } 4668 4669 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4670 if (I.isAtomic()) 4671 return visitAtomicStore(I); 4672 4673 const Value *SrcV = I.getOperand(0); 4674 const Value *PtrV = I.getOperand(1); 4675 4676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4677 if (TLI.supportSwiftError()) { 4678 // Swifterror values can come from either a function parameter with 4679 // swifterror attribute or an alloca with swifterror attribute. 4680 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4681 if (Arg->hasSwiftErrorAttr()) 4682 return visitStoreToSwiftError(I); 4683 } 4684 4685 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4686 if (Alloca->isSwiftError()) 4687 return visitStoreToSwiftError(I); 4688 } 4689 } 4690 4691 SmallVector<EVT, 4> ValueVTs, MemVTs; 4692 SmallVector<TypeSize, 4> Offsets; 4693 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4694 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4695 unsigned NumValues = ValueVTs.size(); 4696 if (NumValues == 0) 4697 return; 4698 4699 // Get the lowered operands. Note that we do this after 4700 // checking if NumResults is zero, because with zero results 4701 // the operands won't have values in the map. 4702 SDValue Src = getValue(SrcV); 4703 SDValue Ptr = getValue(PtrV); 4704 4705 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4706 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4707 SDLoc dl = getCurSDLoc(); 4708 Align Alignment = I.getAlign(); 4709 AAMDNodes AAInfo = I.getAAMetadata(); 4710 4711 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4712 4713 unsigned ChainI = 0; 4714 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4715 // See visitLoad comments. 4716 if (ChainI == MaxParallelChains) { 4717 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4718 ArrayRef(Chains.data(), ChainI)); 4719 Root = Chain; 4720 ChainI = 0; 4721 } 4722 4723 // TODO: MachinePointerInfo only supports a fixed length offset. 4724 MachinePointerInfo PtrInfo = 4725 !Offsets[i].isScalable() || Offsets[i].isZero() 4726 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4727 : MachinePointerInfo(); 4728 4729 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4730 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4731 if (MemVTs[i] != ValueVTs[i]) 4732 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4733 SDValue St = 4734 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4735 Chains[ChainI] = St; 4736 } 4737 4738 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4739 ArrayRef(Chains.data(), ChainI)); 4740 setValue(&I, StoreNode); 4741 DAG.setRoot(StoreNode); 4742 } 4743 4744 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4745 bool IsCompressing) { 4746 SDLoc sdl = getCurSDLoc(); 4747 4748 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4749 Align &Alignment) { 4750 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4751 Src0 = I.getArgOperand(0); 4752 Ptr = I.getArgOperand(1); 4753 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4754 Mask = I.getArgOperand(3); 4755 }; 4756 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4757 Align &Alignment) { 4758 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4759 Src0 = I.getArgOperand(0); 4760 Ptr = I.getArgOperand(1); 4761 Mask = I.getArgOperand(2); 4762 Alignment = I.getParamAlign(1).valueOrOne(); 4763 }; 4764 4765 Value *PtrOperand, *MaskOperand, *Src0Operand; 4766 Align Alignment; 4767 if (IsCompressing) 4768 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4769 else 4770 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4771 4772 SDValue Ptr = getValue(PtrOperand); 4773 SDValue Src0 = getValue(Src0Operand); 4774 SDValue Mask = getValue(MaskOperand); 4775 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4776 4777 EVT VT = Src0.getValueType(); 4778 4779 auto MMOFlags = MachineMemOperand::MOStore; 4780 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4781 MMOFlags |= MachineMemOperand::MONonTemporal; 4782 4783 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4784 MachinePointerInfo(PtrOperand), MMOFlags, 4785 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4786 SDValue StoreNode = 4787 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4788 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4789 DAG.setRoot(StoreNode); 4790 setValue(&I, StoreNode); 4791 } 4792 4793 // Get a uniform base for the Gather/Scatter intrinsic. 4794 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4795 // We try to represent it as a base pointer + vector of indices. 4796 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4797 // The first operand of the GEP may be a single pointer or a vector of pointers 4798 // Example: 4799 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4800 // or 4801 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4802 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4803 // 4804 // When the first GEP operand is a single pointer - it is the uniform base we 4805 // are looking for. If first operand of the GEP is a splat vector - we 4806 // extract the splat value and use it as a uniform base. 4807 // In all other cases the function returns 'false'. 4808 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4809 ISD::MemIndexType &IndexType, SDValue &Scale, 4810 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4811 uint64_t ElemSize) { 4812 SelectionDAG& DAG = SDB->DAG; 4813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4814 const DataLayout &DL = DAG.getDataLayout(); 4815 4816 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4817 4818 // Handle splat constant pointer. 4819 if (auto *C = dyn_cast<Constant>(Ptr)) { 4820 C = C->getSplatValue(); 4821 if (!C) 4822 return false; 4823 4824 Base = SDB->getValue(C); 4825 4826 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4827 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4828 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4829 IndexType = ISD::SIGNED_SCALED; 4830 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4831 return true; 4832 } 4833 4834 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4835 if (!GEP || GEP->getParent() != CurBB) 4836 return false; 4837 4838 if (GEP->getNumOperands() != 2) 4839 return false; 4840 4841 const Value *BasePtr = GEP->getPointerOperand(); 4842 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4843 4844 // Make sure the base is scalar and the index is a vector. 4845 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4846 return false; 4847 4848 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4849 if (ScaleVal.isScalable()) 4850 return false; 4851 4852 // Target may not support the required addressing mode. 4853 if (ScaleVal != 1 && 4854 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4855 return false; 4856 4857 Base = SDB->getValue(BasePtr); 4858 Index = SDB->getValue(IndexVal); 4859 IndexType = ISD::SIGNED_SCALED; 4860 4861 Scale = 4862 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4863 return true; 4864 } 4865 4866 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4867 SDLoc sdl = getCurSDLoc(); 4868 4869 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4870 const Value *Ptr = I.getArgOperand(1); 4871 SDValue Src0 = getValue(I.getArgOperand(0)); 4872 SDValue Mask = getValue(I.getArgOperand(3)); 4873 EVT VT = Src0.getValueType(); 4874 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4875 ->getMaybeAlignValue() 4876 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4878 4879 SDValue Base; 4880 SDValue Index; 4881 ISD::MemIndexType IndexType; 4882 SDValue Scale; 4883 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4884 I.getParent(), VT.getScalarStoreSize()); 4885 4886 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4887 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4888 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4889 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4890 if (!UniformBase) { 4891 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4892 Index = getValue(Ptr); 4893 IndexType = ISD::SIGNED_SCALED; 4894 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4895 } 4896 4897 EVT IdxVT = Index.getValueType(); 4898 EVT EltTy = IdxVT.getVectorElementType(); 4899 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4900 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4901 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4902 } 4903 4904 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4905 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4906 Ops, MMO, IndexType, false); 4907 DAG.setRoot(Scatter); 4908 setValue(&I, Scatter); 4909 } 4910 4911 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4912 SDLoc sdl = getCurSDLoc(); 4913 4914 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4915 Align &Alignment) { 4916 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4917 Ptr = I.getArgOperand(0); 4918 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4919 Mask = I.getArgOperand(2); 4920 Src0 = I.getArgOperand(3); 4921 }; 4922 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4923 Align &Alignment) { 4924 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4925 Ptr = I.getArgOperand(0); 4926 Alignment = I.getParamAlign(0).valueOrOne(); 4927 Mask = I.getArgOperand(1); 4928 Src0 = I.getArgOperand(2); 4929 }; 4930 4931 Value *PtrOperand, *MaskOperand, *Src0Operand; 4932 Align Alignment; 4933 if (IsExpanding) 4934 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4935 else 4936 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4937 4938 SDValue Ptr = getValue(PtrOperand); 4939 SDValue Src0 = getValue(Src0Operand); 4940 SDValue Mask = getValue(MaskOperand); 4941 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4942 4943 EVT VT = Src0.getValueType(); 4944 AAMDNodes AAInfo = I.getAAMetadata(); 4945 const MDNode *Ranges = getRangeMetadata(I); 4946 4947 // Do not serialize masked loads of constant memory with anything. 4948 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4949 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4950 4951 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4952 4953 auto MMOFlags = MachineMemOperand::MOLoad; 4954 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4955 MMOFlags |= MachineMemOperand::MONonTemporal; 4956 4957 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4958 MachinePointerInfo(PtrOperand), MMOFlags, 4959 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4960 4961 SDValue Load = 4962 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4963 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4964 if (AddToChain) 4965 PendingLoads.push_back(Load.getValue(1)); 4966 setValue(&I, Load); 4967 } 4968 4969 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4970 SDLoc sdl = getCurSDLoc(); 4971 4972 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4973 const Value *Ptr = I.getArgOperand(0); 4974 SDValue Src0 = getValue(I.getArgOperand(3)); 4975 SDValue Mask = getValue(I.getArgOperand(2)); 4976 4977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4978 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4979 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4980 ->getMaybeAlignValue() 4981 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4982 4983 const MDNode *Ranges = getRangeMetadata(I); 4984 4985 SDValue Root = DAG.getRoot(); 4986 SDValue Base; 4987 SDValue Index; 4988 ISD::MemIndexType IndexType; 4989 SDValue Scale; 4990 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4991 I.getParent(), VT.getScalarStoreSize()); 4992 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4993 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4994 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4995 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 4996 Ranges); 4997 4998 if (!UniformBase) { 4999 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5000 Index = getValue(Ptr); 5001 IndexType = ISD::SIGNED_SCALED; 5002 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5003 } 5004 5005 EVT IdxVT = Index.getValueType(); 5006 EVT EltTy = IdxVT.getVectorElementType(); 5007 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5008 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5009 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5010 } 5011 5012 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5013 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5014 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5015 5016 PendingLoads.push_back(Gather.getValue(1)); 5017 setValue(&I, Gather); 5018 } 5019 5020 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5021 SDLoc dl = getCurSDLoc(); 5022 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5023 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5024 SyncScope::ID SSID = I.getSyncScopeID(); 5025 5026 SDValue InChain = getRoot(); 5027 5028 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5029 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5030 5031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5032 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5033 5034 MachineFunction &MF = DAG.getMachineFunction(); 5035 MachineMemOperand *MMO = MF.getMachineMemOperand( 5036 MachinePointerInfo(I.getPointerOperand()), Flags, 5037 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5038 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5039 5040 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5041 dl, MemVT, VTs, InChain, 5042 getValue(I.getPointerOperand()), 5043 getValue(I.getCompareOperand()), 5044 getValue(I.getNewValOperand()), MMO); 5045 5046 SDValue OutChain = L.getValue(2); 5047 5048 setValue(&I, L); 5049 DAG.setRoot(OutChain); 5050 } 5051 5052 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5053 SDLoc dl = getCurSDLoc(); 5054 ISD::NodeType NT; 5055 switch (I.getOperation()) { 5056 default: llvm_unreachable("Unknown atomicrmw operation"); 5057 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5058 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5059 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5060 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5061 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5062 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5063 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5064 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5065 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5066 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5067 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5068 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5069 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5070 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5071 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5072 case AtomicRMWInst::UIncWrap: 5073 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5074 break; 5075 case AtomicRMWInst::UDecWrap: 5076 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5077 break; 5078 } 5079 AtomicOrdering Ordering = I.getOrdering(); 5080 SyncScope::ID SSID = I.getSyncScopeID(); 5081 5082 SDValue InChain = getRoot(); 5083 5084 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5086 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5087 5088 MachineFunction &MF = DAG.getMachineFunction(); 5089 MachineMemOperand *MMO = MF.getMachineMemOperand( 5090 MachinePointerInfo(I.getPointerOperand()), Flags, 5091 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5092 AAMDNodes(), nullptr, SSID, Ordering); 5093 5094 SDValue L = 5095 DAG.getAtomic(NT, dl, MemVT, InChain, 5096 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5097 MMO); 5098 5099 SDValue OutChain = L.getValue(1); 5100 5101 setValue(&I, L); 5102 DAG.setRoot(OutChain); 5103 } 5104 5105 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5106 SDLoc dl = getCurSDLoc(); 5107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5108 SDValue Ops[3]; 5109 Ops[0] = getRoot(); 5110 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5111 TLI.getFenceOperandTy(DAG.getDataLayout())); 5112 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5113 TLI.getFenceOperandTy(DAG.getDataLayout())); 5114 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5115 setValue(&I, N); 5116 DAG.setRoot(N); 5117 } 5118 5119 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5120 SDLoc dl = getCurSDLoc(); 5121 AtomicOrdering Order = I.getOrdering(); 5122 SyncScope::ID SSID = I.getSyncScopeID(); 5123 5124 SDValue InChain = getRoot(); 5125 5126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5127 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5128 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5129 5130 if (!TLI.supportsUnalignedAtomics() && 5131 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5132 report_fatal_error("Cannot generate unaligned atomic load"); 5133 5134 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5135 5136 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5137 MachinePointerInfo(I.getPointerOperand()), Flags, 5138 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5139 nullptr, SSID, Order); 5140 5141 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5142 5143 SDValue Ptr = getValue(I.getPointerOperand()); 5144 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5145 Ptr, MMO); 5146 5147 SDValue OutChain = L.getValue(1); 5148 if (MemVT != VT) 5149 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5150 5151 setValue(&I, L); 5152 DAG.setRoot(OutChain); 5153 } 5154 5155 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5156 SDLoc dl = getCurSDLoc(); 5157 5158 AtomicOrdering Ordering = I.getOrdering(); 5159 SyncScope::ID SSID = I.getSyncScopeID(); 5160 5161 SDValue InChain = getRoot(); 5162 5163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5164 EVT MemVT = 5165 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5166 5167 if (!TLI.supportsUnalignedAtomics() && 5168 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5169 report_fatal_error("Cannot generate unaligned atomic store"); 5170 5171 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5172 5173 MachineFunction &MF = DAG.getMachineFunction(); 5174 MachineMemOperand *MMO = MF.getMachineMemOperand( 5175 MachinePointerInfo(I.getPointerOperand()), Flags, 5176 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5177 nullptr, SSID, Ordering); 5178 5179 SDValue Val = getValue(I.getValueOperand()); 5180 if (Val.getValueType() != MemVT) 5181 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5182 SDValue Ptr = getValue(I.getPointerOperand()); 5183 5184 SDValue OutChain = 5185 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5186 5187 setValue(&I, OutChain); 5188 DAG.setRoot(OutChain); 5189 } 5190 5191 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5192 /// node. 5193 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5194 unsigned Intrinsic) { 5195 // Ignore the callsite's attributes. A specific call site may be marked with 5196 // readnone, but the lowering code will expect the chain based on the 5197 // definition. 5198 const Function *F = I.getCalledFunction(); 5199 bool HasChain = !F->doesNotAccessMemory(); 5200 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5201 5202 // Build the operand list. 5203 SmallVector<SDValue, 8> Ops; 5204 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5205 if (OnlyLoad) { 5206 // We don't need to serialize loads against other loads. 5207 Ops.push_back(DAG.getRoot()); 5208 } else { 5209 Ops.push_back(getRoot()); 5210 } 5211 } 5212 5213 // Info is set by getTgtMemIntrinsic 5214 TargetLowering::IntrinsicInfo Info; 5215 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5216 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5217 DAG.getMachineFunction(), 5218 Intrinsic); 5219 5220 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5221 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5222 Info.opc == ISD::INTRINSIC_W_CHAIN) 5223 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5224 TLI.getPointerTy(DAG.getDataLayout()))); 5225 5226 // Add all operands of the call to the operand list. 5227 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5228 const Value *Arg = I.getArgOperand(i); 5229 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5230 Ops.push_back(getValue(Arg)); 5231 continue; 5232 } 5233 5234 // Use TargetConstant instead of a regular constant for immarg. 5235 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5236 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5237 assert(CI->getBitWidth() <= 64 && 5238 "large intrinsic immediates not handled"); 5239 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5240 } else { 5241 Ops.push_back( 5242 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5243 } 5244 } 5245 5246 SmallVector<EVT, 4> ValueVTs; 5247 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5248 5249 if (HasChain) 5250 ValueVTs.push_back(MVT::Other); 5251 5252 SDVTList VTs = DAG.getVTList(ValueVTs); 5253 5254 // Propagate fast-math-flags from IR to node(s). 5255 SDNodeFlags Flags; 5256 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5257 Flags.copyFMF(*FPMO); 5258 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5259 5260 // Create the node. 5261 SDValue Result; 5262 5263 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5264 auto *Token = Bundle->Inputs[0].get(); 5265 SDValue ConvControlToken = getValue(Token); 5266 assert(Ops.back().getValueType() != MVT::Glue && 5267 "Did not expected another glue node here."); 5268 ConvControlToken = 5269 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5270 Ops.push_back(ConvControlToken); 5271 } 5272 5273 // In some cases, custom collection of operands from CallInst I may be needed. 5274 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5275 if (IsTgtIntrinsic) { 5276 // This is target intrinsic that touches memory 5277 // 5278 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5279 // didn't yield anything useful. 5280 MachinePointerInfo MPI; 5281 if (Info.ptrVal) 5282 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5283 else if (Info.fallbackAddressSpace) 5284 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5285 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5286 Info.memVT, MPI, Info.align, Info.flags, 5287 Info.size, I.getAAMetadata()); 5288 } else if (!HasChain) { 5289 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5290 } else if (!I.getType()->isVoidTy()) { 5291 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5292 } else { 5293 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5294 } 5295 5296 if (HasChain) { 5297 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5298 if (OnlyLoad) 5299 PendingLoads.push_back(Chain); 5300 else 5301 DAG.setRoot(Chain); 5302 } 5303 5304 if (!I.getType()->isVoidTy()) { 5305 if (!isa<VectorType>(I.getType())) 5306 Result = lowerRangeToAssertZExt(DAG, I, Result); 5307 5308 MaybeAlign Alignment = I.getRetAlign(); 5309 5310 // Insert `assertalign` node if there's an alignment. 5311 if (InsertAssertAlign && Alignment) { 5312 Result = 5313 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5314 } 5315 } 5316 5317 setValue(&I, Result); 5318 } 5319 5320 /// GetSignificand - Get the significand and build it into a floating-point 5321 /// number with exponent of 1: 5322 /// 5323 /// Op = (Op & 0x007fffff) | 0x3f800000; 5324 /// 5325 /// where Op is the hexadecimal representation of floating point value. 5326 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5327 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5328 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5329 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5330 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5331 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5332 } 5333 5334 /// GetExponent - Get the exponent: 5335 /// 5336 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5337 /// 5338 /// where Op is the hexadecimal representation of floating point value. 5339 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5340 const TargetLowering &TLI, const SDLoc &dl) { 5341 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5342 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5343 SDValue t1 = DAG.getNode( 5344 ISD::SRL, dl, MVT::i32, t0, 5345 DAG.getConstant(23, dl, 5346 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5347 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5348 DAG.getConstant(127, dl, MVT::i32)); 5349 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5350 } 5351 5352 /// getF32Constant - Get 32-bit floating point constant. 5353 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5354 const SDLoc &dl) { 5355 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5356 MVT::f32); 5357 } 5358 5359 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5360 SelectionDAG &DAG) { 5361 // TODO: What fast-math-flags should be set on the floating-point nodes? 5362 5363 // IntegerPartOfX = ((int32_t)(t0); 5364 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5365 5366 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5367 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5368 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5369 5370 // IntegerPartOfX <<= 23; 5371 IntegerPartOfX = 5372 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5373 DAG.getConstant(23, dl, 5374 DAG.getTargetLoweringInfo().getShiftAmountTy( 5375 MVT::i32, DAG.getDataLayout()))); 5376 5377 SDValue TwoToFractionalPartOfX; 5378 if (LimitFloatPrecision <= 6) { 5379 // For floating-point precision of 6: 5380 // 5381 // TwoToFractionalPartOfX = 5382 // 0.997535578f + 5383 // (0.735607626f + 0.252464424f * x) * x; 5384 // 5385 // error 0.0144103317, which is 6 bits 5386 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5387 getF32Constant(DAG, 0x3e814304, dl)); 5388 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5389 getF32Constant(DAG, 0x3f3c50c8, dl)); 5390 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5391 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5392 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5393 } else if (LimitFloatPrecision <= 12) { 5394 // For floating-point precision of 12: 5395 // 5396 // TwoToFractionalPartOfX = 5397 // 0.999892986f + 5398 // (0.696457318f + 5399 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5400 // 5401 // error 0.000107046256, which is 13 to 14 bits 5402 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5403 getF32Constant(DAG, 0x3da235e3, dl)); 5404 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5405 getF32Constant(DAG, 0x3e65b8f3, dl)); 5406 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5407 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5408 getF32Constant(DAG, 0x3f324b07, dl)); 5409 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5410 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5411 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5412 } else { // LimitFloatPrecision <= 18 5413 // For floating-point precision of 18: 5414 // 5415 // TwoToFractionalPartOfX = 5416 // 0.999999982f + 5417 // (0.693148872f + 5418 // (0.240227044f + 5419 // (0.554906021e-1f + 5420 // (0.961591928e-2f + 5421 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5422 // error 2.47208000*10^(-7), which is better than 18 bits 5423 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5424 getF32Constant(DAG, 0x3924b03e, dl)); 5425 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5426 getF32Constant(DAG, 0x3ab24b87, dl)); 5427 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5428 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5429 getF32Constant(DAG, 0x3c1d8c17, dl)); 5430 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5431 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5432 getF32Constant(DAG, 0x3d634a1d, dl)); 5433 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5434 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5435 getF32Constant(DAG, 0x3e75fe14, dl)); 5436 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5437 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5438 getF32Constant(DAG, 0x3f317234, dl)); 5439 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5440 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5441 getF32Constant(DAG, 0x3f800000, dl)); 5442 } 5443 5444 // Add the exponent into the result in integer domain. 5445 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5446 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5447 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5448 } 5449 5450 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5451 /// limited-precision mode. 5452 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5453 const TargetLowering &TLI, SDNodeFlags Flags) { 5454 if (Op.getValueType() == MVT::f32 && 5455 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5456 5457 // Put the exponent in the right bit position for later addition to the 5458 // final result: 5459 // 5460 // t0 = Op * log2(e) 5461 5462 // TODO: What fast-math-flags should be set here? 5463 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5464 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5465 return getLimitedPrecisionExp2(t0, dl, DAG); 5466 } 5467 5468 // No special expansion. 5469 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5470 } 5471 5472 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5473 /// limited-precision mode. 5474 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5475 const TargetLowering &TLI, SDNodeFlags Flags) { 5476 // TODO: What fast-math-flags should be set on the floating-point nodes? 5477 5478 if (Op.getValueType() == MVT::f32 && 5479 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5480 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5481 5482 // Scale the exponent by log(2). 5483 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5484 SDValue LogOfExponent = 5485 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5486 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5487 5488 // Get the significand and build it into a floating-point number with 5489 // exponent of 1. 5490 SDValue X = GetSignificand(DAG, Op1, dl); 5491 5492 SDValue LogOfMantissa; 5493 if (LimitFloatPrecision <= 6) { 5494 // For floating-point precision of 6: 5495 // 5496 // LogofMantissa = 5497 // -1.1609546f + 5498 // (1.4034025f - 0.23903021f * x) * x; 5499 // 5500 // error 0.0034276066, which is better than 8 bits 5501 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5502 getF32Constant(DAG, 0xbe74c456, dl)); 5503 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5504 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5505 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5506 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5507 getF32Constant(DAG, 0x3f949a29, dl)); 5508 } else if (LimitFloatPrecision <= 12) { 5509 // For floating-point precision of 12: 5510 // 5511 // LogOfMantissa = 5512 // -1.7417939f + 5513 // (2.8212026f + 5514 // (-1.4699568f + 5515 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5516 // 5517 // error 0.000061011436, which is 14 bits 5518 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5519 getF32Constant(DAG, 0xbd67b6d6, dl)); 5520 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5521 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5522 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5523 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5524 getF32Constant(DAG, 0x3fbc278b, dl)); 5525 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5526 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5527 getF32Constant(DAG, 0x40348e95, dl)); 5528 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5529 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5530 getF32Constant(DAG, 0x3fdef31a, dl)); 5531 } else { // LimitFloatPrecision <= 18 5532 // For floating-point precision of 18: 5533 // 5534 // LogOfMantissa = 5535 // -2.1072184f + 5536 // (4.2372794f + 5537 // (-3.7029485f + 5538 // (2.2781945f + 5539 // (-0.87823314f + 5540 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5541 // 5542 // error 0.0000023660568, which is better than 18 bits 5543 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5544 getF32Constant(DAG, 0xbc91e5ac, dl)); 5545 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5546 getF32Constant(DAG, 0x3e4350aa, dl)); 5547 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5548 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5549 getF32Constant(DAG, 0x3f60d3e3, dl)); 5550 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5551 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5552 getF32Constant(DAG, 0x4011cdf0, dl)); 5553 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5554 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5555 getF32Constant(DAG, 0x406cfd1c, dl)); 5556 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5557 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5558 getF32Constant(DAG, 0x408797cb, dl)); 5559 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5560 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5561 getF32Constant(DAG, 0x4006dcab, dl)); 5562 } 5563 5564 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5565 } 5566 5567 // No special expansion. 5568 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5569 } 5570 5571 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5572 /// limited-precision mode. 5573 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5574 const TargetLowering &TLI, SDNodeFlags Flags) { 5575 // TODO: What fast-math-flags should be set on the floating-point nodes? 5576 5577 if (Op.getValueType() == MVT::f32 && 5578 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5579 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5580 5581 // Get the exponent. 5582 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5583 5584 // Get the significand and build it into a floating-point number with 5585 // exponent of 1. 5586 SDValue X = GetSignificand(DAG, Op1, dl); 5587 5588 // Different possible minimax approximations of significand in 5589 // floating-point for various degrees of accuracy over [1,2]. 5590 SDValue Log2ofMantissa; 5591 if (LimitFloatPrecision <= 6) { 5592 // For floating-point precision of 6: 5593 // 5594 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5595 // 5596 // error 0.0049451742, which is more than 7 bits 5597 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5598 getF32Constant(DAG, 0xbeb08fe0, dl)); 5599 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5600 getF32Constant(DAG, 0x40019463, dl)); 5601 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5602 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5603 getF32Constant(DAG, 0x3fd6633d, dl)); 5604 } else if (LimitFloatPrecision <= 12) { 5605 // For floating-point precision of 12: 5606 // 5607 // Log2ofMantissa = 5608 // -2.51285454f + 5609 // (4.07009056f + 5610 // (-2.12067489f + 5611 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5612 // 5613 // error 0.0000876136000, which is better than 13 bits 5614 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5615 getF32Constant(DAG, 0xbda7262e, dl)); 5616 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5617 getF32Constant(DAG, 0x3f25280b, dl)); 5618 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5619 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5620 getF32Constant(DAG, 0x4007b923, dl)); 5621 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5622 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5623 getF32Constant(DAG, 0x40823e2f, dl)); 5624 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5625 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5626 getF32Constant(DAG, 0x4020d29c, dl)); 5627 } else { // LimitFloatPrecision <= 18 5628 // For floating-point precision of 18: 5629 // 5630 // Log2ofMantissa = 5631 // -3.0400495f + 5632 // (6.1129976f + 5633 // (-5.3420409f + 5634 // (3.2865683f + 5635 // (-1.2669343f + 5636 // (0.27515199f - 5637 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5638 // 5639 // error 0.0000018516, which is better than 18 bits 5640 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5641 getF32Constant(DAG, 0xbcd2769e, dl)); 5642 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5643 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5644 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5645 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5646 getF32Constant(DAG, 0x3fa22ae7, dl)); 5647 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5648 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5649 getF32Constant(DAG, 0x40525723, dl)); 5650 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5651 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5652 getF32Constant(DAG, 0x40aaf200, dl)); 5653 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5654 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5655 getF32Constant(DAG, 0x40c39dad, dl)); 5656 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5657 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5658 getF32Constant(DAG, 0x4042902c, dl)); 5659 } 5660 5661 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5662 } 5663 5664 // No special expansion. 5665 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5666 } 5667 5668 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5669 /// limited-precision mode. 5670 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5671 const TargetLowering &TLI, SDNodeFlags Flags) { 5672 // TODO: What fast-math-flags should be set on the floating-point nodes? 5673 5674 if (Op.getValueType() == MVT::f32 && 5675 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5676 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5677 5678 // Scale the exponent by log10(2) [0.30102999f]. 5679 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5680 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5681 getF32Constant(DAG, 0x3e9a209a, dl)); 5682 5683 // Get the significand and build it into a floating-point number with 5684 // exponent of 1. 5685 SDValue X = GetSignificand(DAG, Op1, dl); 5686 5687 SDValue Log10ofMantissa; 5688 if (LimitFloatPrecision <= 6) { 5689 // For floating-point precision of 6: 5690 // 5691 // Log10ofMantissa = 5692 // -0.50419619f + 5693 // (0.60948995f - 0.10380950f * x) * x; 5694 // 5695 // error 0.0014886165, which is 6 bits 5696 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5697 getF32Constant(DAG, 0xbdd49a13, dl)); 5698 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5699 getF32Constant(DAG, 0x3f1c0789, dl)); 5700 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5701 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5702 getF32Constant(DAG, 0x3f011300, dl)); 5703 } else if (LimitFloatPrecision <= 12) { 5704 // For floating-point precision of 12: 5705 // 5706 // Log10ofMantissa = 5707 // -0.64831180f + 5708 // (0.91751397f + 5709 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5710 // 5711 // error 0.00019228036, which is better than 12 bits 5712 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5713 getF32Constant(DAG, 0x3d431f31, dl)); 5714 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5715 getF32Constant(DAG, 0x3ea21fb2, dl)); 5716 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5717 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5718 getF32Constant(DAG, 0x3f6ae232, dl)); 5719 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5720 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5721 getF32Constant(DAG, 0x3f25f7c3, dl)); 5722 } else { // LimitFloatPrecision <= 18 5723 // For floating-point precision of 18: 5724 // 5725 // Log10ofMantissa = 5726 // -0.84299375f + 5727 // (1.5327582f + 5728 // (-1.0688956f + 5729 // (0.49102474f + 5730 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5731 // 5732 // error 0.0000037995730, which is better than 18 bits 5733 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5734 getF32Constant(DAG, 0x3c5d51ce, dl)); 5735 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5736 getF32Constant(DAG, 0x3e00685a, dl)); 5737 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5738 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5739 getF32Constant(DAG, 0x3efb6798, dl)); 5740 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5741 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5742 getF32Constant(DAG, 0x3f88d192, dl)); 5743 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5744 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5745 getF32Constant(DAG, 0x3fc4316c, dl)); 5746 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5747 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5748 getF32Constant(DAG, 0x3f57ce70, dl)); 5749 } 5750 5751 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5752 } 5753 5754 // No special expansion. 5755 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5756 } 5757 5758 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5759 /// limited-precision mode. 5760 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5761 const TargetLowering &TLI, SDNodeFlags Flags) { 5762 if (Op.getValueType() == MVT::f32 && 5763 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5764 return getLimitedPrecisionExp2(Op, dl, DAG); 5765 5766 // No special expansion. 5767 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5768 } 5769 5770 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5771 /// limited-precision mode with x == 10.0f. 5772 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5773 SelectionDAG &DAG, const TargetLowering &TLI, 5774 SDNodeFlags Flags) { 5775 bool IsExp10 = false; 5776 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5777 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5778 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5779 APFloat Ten(10.0f); 5780 IsExp10 = LHSC->isExactlyValue(Ten); 5781 } 5782 } 5783 5784 // TODO: What fast-math-flags should be set on the FMUL node? 5785 if (IsExp10) { 5786 // Put the exponent in the right bit position for later addition to the 5787 // final result: 5788 // 5789 // #define LOG2OF10 3.3219281f 5790 // t0 = Op * LOG2OF10; 5791 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5792 getF32Constant(DAG, 0x40549a78, dl)); 5793 return getLimitedPrecisionExp2(t0, dl, DAG); 5794 } 5795 5796 // No special expansion. 5797 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5798 } 5799 5800 /// ExpandPowI - Expand a llvm.powi intrinsic. 5801 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5802 SelectionDAG &DAG) { 5803 // If RHS is a constant, we can expand this out to a multiplication tree if 5804 // it's beneficial on the target, otherwise we end up lowering to a call to 5805 // __powidf2 (for example). 5806 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5807 unsigned Val = RHSC->getSExtValue(); 5808 5809 // powi(x, 0) -> 1.0 5810 if (Val == 0) 5811 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5812 5813 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5814 Val, DAG.shouldOptForSize())) { 5815 // Get the exponent as a positive value. 5816 if ((int)Val < 0) 5817 Val = -Val; 5818 // We use the simple binary decomposition method to generate the multiply 5819 // sequence. There are more optimal ways to do this (for example, 5820 // powi(x,15) generates one more multiply than it should), but this has 5821 // the benefit of being both really simple and much better than a libcall. 5822 SDValue Res; // Logically starts equal to 1.0 5823 SDValue CurSquare = LHS; 5824 // TODO: Intrinsics should have fast-math-flags that propagate to these 5825 // nodes. 5826 while (Val) { 5827 if (Val & 1) { 5828 if (Res.getNode()) 5829 Res = 5830 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5831 else 5832 Res = CurSquare; // 1.0*CurSquare. 5833 } 5834 5835 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5836 CurSquare, CurSquare); 5837 Val >>= 1; 5838 } 5839 5840 // If the original was negative, invert the result, producing 1/(x*x*x). 5841 if (RHSC->getSExtValue() < 0) 5842 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5843 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5844 return Res; 5845 } 5846 } 5847 5848 // Otherwise, expand to a libcall. 5849 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5850 } 5851 5852 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5853 SDValue LHS, SDValue RHS, SDValue Scale, 5854 SelectionDAG &DAG, const TargetLowering &TLI) { 5855 EVT VT = LHS.getValueType(); 5856 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5857 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5858 LLVMContext &Ctx = *DAG.getContext(); 5859 5860 // If the type is legal but the operation isn't, this node might survive all 5861 // the way to operation legalization. If we end up there and we do not have 5862 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5863 // node. 5864 5865 // Coax the legalizer into expanding the node during type legalization instead 5866 // by bumping the size by one bit. This will force it to Promote, enabling the 5867 // early expansion and avoiding the need to expand later. 5868 5869 // We don't have to do this if Scale is 0; that can always be expanded, unless 5870 // it's a saturating signed operation. Those can experience true integer 5871 // division overflow, a case which we must avoid. 5872 5873 // FIXME: We wouldn't have to do this (or any of the early 5874 // expansion/promotion) if it was possible to expand a libcall of an 5875 // illegal type during operation legalization. But it's not, so things 5876 // get a bit hacky. 5877 unsigned ScaleInt = Scale->getAsZExtVal(); 5878 if ((ScaleInt > 0 || (Saturating && Signed)) && 5879 (TLI.isTypeLegal(VT) || 5880 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5881 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5882 Opcode, VT, ScaleInt); 5883 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5884 EVT PromVT; 5885 if (VT.isScalarInteger()) 5886 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5887 else if (VT.isVector()) { 5888 PromVT = VT.getVectorElementType(); 5889 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5890 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5891 } else 5892 llvm_unreachable("Wrong VT for DIVFIX?"); 5893 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5894 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5895 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5896 // For saturating operations, we need to shift up the LHS to get the 5897 // proper saturation width, and then shift down again afterwards. 5898 if (Saturating) 5899 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5900 DAG.getConstant(1, DL, ShiftTy)); 5901 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5902 if (Saturating) 5903 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5904 DAG.getConstant(1, DL, ShiftTy)); 5905 return DAG.getZExtOrTrunc(Res, DL, VT); 5906 } 5907 } 5908 5909 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5910 } 5911 5912 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5913 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5914 static void 5915 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5916 const SDValue &N) { 5917 switch (N.getOpcode()) { 5918 case ISD::CopyFromReg: { 5919 SDValue Op = N.getOperand(1); 5920 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5921 Op.getValueType().getSizeInBits()); 5922 return; 5923 } 5924 case ISD::BITCAST: 5925 case ISD::AssertZext: 5926 case ISD::AssertSext: 5927 case ISD::TRUNCATE: 5928 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5929 return; 5930 case ISD::BUILD_PAIR: 5931 case ISD::BUILD_VECTOR: 5932 case ISD::CONCAT_VECTORS: 5933 for (SDValue Op : N->op_values()) 5934 getUnderlyingArgRegs(Regs, Op); 5935 return; 5936 default: 5937 return; 5938 } 5939 } 5940 5941 /// If the DbgValueInst is a dbg_value of a function argument, create the 5942 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5943 /// instruction selection, they will be inserted to the entry BB. 5944 /// We don't currently support this for variadic dbg_values, as they shouldn't 5945 /// appear for function arguments or in the prologue. 5946 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5947 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5948 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5949 const Argument *Arg = dyn_cast<Argument>(V); 5950 if (!Arg) 5951 return false; 5952 5953 MachineFunction &MF = DAG.getMachineFunction(); 5954 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5955 5956 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5957 // we've been asked to pursue. 5958 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5959 bool Indirect) { 5960 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5961 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5962 // pointing at the VReg, which will be patched up later. 5963 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5964 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5965 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5966 /* isKill */ false, /* isDead */ false, 5967 /* isUndef */ false, /* isEarlyClobber */ false, 5968 /* SubReg */ 0, /* isDebug */ true)}); 5969 5970 auto *NewDIExpr = FragExpr; 5971 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5972 // the DIExpression. 5973 if (Indirect) 5974 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5975 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5976 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5977 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5978 } else { 5979 // Create a completely standard DBG_VALUE. 5980 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5981 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5982 } 5983 }; 5984 5985 if (Kind == FuncArgumentDbgValueKind::Value) { 5986 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5987 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5988 // the entry block. 5989 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5990 if (!IsInEntryBlock) 5991 return false; 5992 5993 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5994 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5995 // variable that also is a param. 5996 // 5997 // Although, if we are at the top of the entry block already, we can still 5998 // emit using ArgDbgValue. This might catch some situations when the 5999 // dbg.value refers to an argument that isn't used in the entry block, so 6000 // any CopyToReg node would be optimized out and the only way to express 6001 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6002 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6003 // we should only emit as ArgDbgValue if the Variable is an argument to the 6004 // current function, and the dbg.value intrinsic is found in the entry 6005 // block. 6006 bool VariableIsFunctionInputArg = Variable->isParameter() && 6007 !DL->getInlinedAt(); 6008 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6009 if (!IsInPrologue && !VariableIsFunctionInputArg) 6010 return false; 6011 6012 // Here we assume that a function argument on IR level only can be used to 6013 // describe one input parameter on source level. If we for example have 6014 // source code like this 6015 // 6016 // struct A { long x, y; }; 6017 // void foo(struct A a, long b) { 6018 // ... 6019 // b = a.x; 6020 // ... 6021 // } 6022 // 6023 // and IR like this 6024 // 6025 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6026 // entry: 6027 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6028 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6029 // call void @llvm.dbg.value(metadata i32 %b, "b", 6030 // ... 6031 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6032 // ... 6033 // 6034 // then the last dbg.value is describing a parameter "b" using a value that 6035 // is an argument. But since we already has used %a1 to describe a parameter 6036 // we should not handle that last dbg.value here (that would result in an 6037 // incorrect hoisting of the DBG_VALUE to the function entry). 6038 // Notice that we allow one dbg.value per IR level argument, to accommodate 6039 // for the situation with fragments above. 6040 // If there is no node for the value being handled, we return true to skip 6041 // the normal generation of debug info, as it would kill existing debug 6042 // info for the parameter in case of duplicates. 6043 if (VariableIsFunctionInputArg) { 6044 unsigned ArgNo = Arg->getArgNo(); 6045 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6046 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6047 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6048 return !NodeMap[V].getNode(); 6049 FuncInfo.DescribedArgs.set(ArgNo); 6050 } 6051 } 6052 6053 bool IsIndirect = false; 6054 std::optional<MachineOperand> Op; 6055 // Some arguments' frame index is recorded during argument lowering. 6056 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6057 if (FI != std::numeric_limits<int>::max()) 6058 Op = MachineOperand::CreateFI(FI); 6059 6060 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6061 if (!Op && N.getNode()) { 6062 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6063 Register Reg; 6064 if (ArgRegsAndSizes.size() == 1) 6065 Reg = ArgRegsAndSizes.front().first; 6066 6067 if (Reg && Reg.isVirtual()) { 6068 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6069 Register PR = RegInfo.getLiveInPhysReg(Reg); 6070 if (PR) 6071 Reg = PR; 6072 } 6073 if (Reg) { 6074 Op = MachineOperand::CreateReg(Reg, false); 6075 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6076 } 6077 } 6078 6079 if (!Op && N.getNode()) { 6080 // Check if frame index is available. 6081 SDValue LCandidate = peekThroughBitcasts(N); 6082 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6083 if (FrameIndexSDNode *FINode = 6084 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6085 Op = MachineOperand::CreateFI(FINode->getIndex()); 6086 } 6087 6088 if (!Op) { 6089 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6090 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6091 SplitRegs) { 6092 unsigned Offset = 0; 6093 for (const auto &RegAndSize : SplitRegs) { 6094 // If the expression is already a fragment, the current register 6095 // offset+size might extend beyond the fragment. In this case, only 6096 // the register bits that are inside the fragment are relevant. 6097 int RegFragmentSizeInBits = RegAndSize.second; 6098 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6099 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6100 // The register is entirely outside the expression fragment, 6101 // so is irrelevant for debug info. 6102 if (Offset >= ExprFragmentSizeInBits) 6103 break; 6104 // The register is partially outside the expression fragment, only 6105 // the low bits within the fragment are relevant for debug info. 6106 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6107 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6108 } 6109 } 6110 6111 auto FragmentExpr = DIExpression::createFragmentExpression( 6112 Expr, Offset, RegFragmentSizeInBits); 6113 Offset += RegAndSize.second; 6114 // If a valid fragment expression cannot be created, the variable's 6115 // correct value cannot be determined and so it is set as Undef. 6116 if (!FragmentExpr) { 6117 SDDbgValue *SDV = DAG.getConstantDbgValue( 6118 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6119 DAG.AddDbgValue(SDV, false); 6120 continue; 6121 } 6122 MachineInstr *NewMI = 6123 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6124 Kind != FuncArgumentDbgValueKind::Value); 6125 FuncInfo.ArgDbgValues.push_back(NewMI); 6126 } 6127 }; 6128 6129 // Check if ValueMap has reg number. 6130 DenseMap<const Value *, Register>::const_iterator 6131 VMI = FuncInfo.ValueMap.find(V); 6132 if (VMI != FuncInfo.ValueMap.end()) { 6133 const auto &TLI = DAG.getTargetLoweringInfo(); 6134 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6135 V->getType(), std::nullopt); 6136 if (RFV.occupiesMultipleRegs()) { 6137 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6138 return true; 6139 } 6140 6141 Op = MachineOperand::CreateReg(VMI->second, false); 6142 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6143 } else if (ArgRegsAndSizes.size() > 1) { 6144 // This was split due to the calling convention, and no virtual register 6145 // mapping exists for the value. 6146 splitMultiRegDbgValue(ArgRegsAndSizes); 6147 return true; 6148 } 6149 } 6150 6151 if (!Op) 6152 return false; 6153 6154 assert(Variable->isValidLocationForIntrinsic(DL) && 6155 "Expected inlined-at fields to agree"); 6156 MachineInstr *NewMI = nullptr; 6157 6158 if (Op->isReg()) 6159 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6160 else 6161 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6162 Variable, Expr); 6163 6164 // Otherwise, use ArgDbgValues. 6165 FuncInfo.ArgDbgValues.push_back(NewMI); 6166 return true; 6167 } 6168 6169 /// Return the appropriate SDDbgValue based on N. 6170 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6171 DILocalVariable *Variable, 6172 DIExpression *Expr, 6173 const DebugLoc &dl, 6174 unsigned DbgSDNodeOrder) { 6175 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6176 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6177 // stack slot locations. 6178 // 6179 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6180 // debug values here after optimization: 6181 // 6182 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6183 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6184 // 6185 // Both describe the direct values of their associated variables. 6186 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6187 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6188 } 6189 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6190 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6191 } 6192 6193 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6194 switch (Intrinsic) { 6195 case Intrinsic::smul_fix: 6196 return ISD::SMULFIX; 6197 case Intrinsic::umul_fix: 6198 return ISD::UMULFIX; 6199 case Intrinsic::smul_fix_sat: 6200 return ISD::SMULFIXSAT; 6201 case Intrinsic::umul_fix_sat: 6202 return ISD::UMULFIXSAT; 6203 case Intrinsic::sdiv_fix: 6204 return ISD::SDIVFIX; 6205 case Intrinsic::udiv_fix: 6206 return ISD::UDIVFIX; 6207 case Intrinsic::sdiv_fix_sat: 6208 return ISD::SDIVFIXSAT; 6209 case Intrinsic::udiv_fix_sat: 6210 return ISD::UDIVFIXSAT; 6211 default: 6212 llvm_unreachable("Unhandled fixed point intrinsic"); 6213 } 6214 } 6215 6216 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6217 const char *FunctionName) { 6218 assert(FunctionName && "FunctionName must not be nullptr"); 6219 SDValue Callee = DAG.getExternalSymbol( 6220 FunctionName, 6221 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6222 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6223 } 6224 6225 /// Given a @llvm.call.preallocated.setup, return the corresponding 6226 /// preallocated call. 6227 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6228 assert(cast<CallBase>(PreallocatedSetup) 6229 ->getCalledFunction() 6230 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6231 "expected call_preallocated_setup Value"); 6232 for (const auto *U : PreallocatedSetup->users()) { 6233 auto *UseCall = cast<CallBase>(U); 6234 const Function *Fn = UseCall->getCalledFunction(); 6235 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6236 return UseCall; 6237 } 6238 } 6239 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6240 } 6241 6242 /// If DI is a debug value with an EntryValue expression, lower it using the 6243 /// corresponding physical register of the associated Argument value 6244 /// (guaranteed to exist by the verifier). 6245 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6246 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6247 DIExpression *Expr, DebugLoc DbgLoc) { 6248 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6249 return false; 6250 6251 // These properties are guaranteed by the verifier. 6252 const Argument *Arg = cast<Argument>(Values[0]); 6253 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6254 6255 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6256 if (ArgIt == FuncInfo.ValueMap.end()) { 6257 LLVM_DEBUG( 6258 dbgs() << "Dropping dbg.value: expression is entry_value but " 6259 "couldn't find an associated register for the Argument\n"); 6260 return true; 6261 } 6262 Register ArgVReg = ArgIt->getSecond(); 6263 6264 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6265 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6266 SDDbgValue *SDV = DAG.getVRegDbgValue( 6267 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6268 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6269 return true; 6270 } 6271 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6272 "couldn't find a physical register\n"); 6273 return true; 6274 } 6275 6276 /// Lower the call to the specified intrinsic function. 6277 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6278 unsigned Intrinsic) { 6279 SDLoc sdl = getCurSDLoc(); 6280 switch (Intrinsic) { 6281 case Intrinsic::experimental_convergence_anchor: 6282 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6283 break; 6284 case Intrinsic::experimental_convergence_entry: 6285 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6286 break; 6287 case Intrinsic::experimental_convergence_loop: { 6288 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6289 auto *Token = Bundle->Inputs[0].get(); 6290 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6291 getValue(Token))); 6292 break; 6293 } 6294 } 6295 } 6296 6297 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6298 unsigned IntrinsicID) { 6299 // For now, we're only lowering an 'add' histogram. 6300 // We can add others later, e.g. saturating adds, min/max. 6301 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6302 "Tried to lower unsupported histogram type"); 6303 SDLoc sdl = getCurSDLoc(); 6304 Value *Ptr = I.getOperand(0); 6305 SDValue Inc = getValue(I.getOperand(1)); 6306 SDValue Mask = getValue(I.getOperand(2)); 6307 6308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6309 DataLayout TargetDL = DAG.getDataLayout(); 6310 EVT VT = Inc.getValueType(); 6311 Align Alignment = DAG.getEVTAlign(VT); 6312 6313 const MDNode *Ranges = getRangeMetadata(I); 6314 6315 SDValue Root = DAG.getRoot(); 6316 SDValue Base; 6317 SDValue Index; 6318 ISD::MemIndexType IndexType; 6319 SDValue Scale; 6320 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6321 I.getParent(), VT.getScalarStoreSize()); 6322 6323 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6324 6325 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6326 MachinePointerInfo(AS), 6327 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6328 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6329 6330 if (!UniformBase) { 6331 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6332 Index = getValue(Ptr); 6333 IndexType = ISD::SIGNED_SCALED; 6334 Scale = 6335 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6336 } 6337 6338 EVT IdxVT = Index.getValueType(); 6339 EVT EltTy = IdxVT.getVectorElementType(); 6340 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6341 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6342 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6343 } 6344 6345 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6346 6347 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6348 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6349 Ops, MMO, IndexType); 6350 6351 setValue(&I, Histogram); 6352 DAG.setRoot(Histogram); 6353 } 6354 6355 /// Lower the call to the specified intrinsic function. 6356 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6357 unsigned Intrinsic) { 6358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6359 SDLoc sdl = getCurSDLoc(); 6360 DebugLoc dl = getCurDebugLoc(); 6361 SDValue Res; 6362 6363 SDNodeFlags Flags; 6364 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6365 Flags.copyFMF(*FPOp); 6366 6367 switch (Intrinsic) { 6368 default: 6369 // By default, turn this into a target intrinsic node. 6370 visitTargetIntrinsic(I, Intrinsic); 6371 return; 6372 case Intrinsic::vscale: { 6373 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6374 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6375 return; 6376 } 6377 case Intrinsic::vastart: visitVAStart(I); return; 6378 case Intrinsic::vaend: visitVAEnd(I); return; 6379 case Intrinsic::vacopy: visitVACopy(I); return; 6380 case Intrinsic::returnaddress: 6381 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6382 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6383 getValue(I.getArgOperand(0)))); 6384 return; 6385 case Intrinsic::addressofreturnaddress: 6386 setValue(&I, 6387 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6388 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6389 return; 6390 case Intrinsic::sponentry: 6391 setValue(&I, 6392 DAG.getNode(ISD::SPONENTRY, sdl, 6393 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6394 return; 6395 case Intrinsic::frameaddress: 6396 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6397 TLI.getFrameIndexTy(DAG.getDataLayout()), 6398 getValue(I.getArgOperand(0)))); 6399 return; 6400 case Intrinsic::read_volatile_register: 6401 case Intrinsic::read_register: { 6402 Value *Reg = I.getArgOperand(0); 6403 SDValue Chain = getRoot(); 6404 SDValue RegName = 6405 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6406 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6407 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6408 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6409 setValue(&I, Res); 6410 DAG.setRoot(Res.getValue(1)); 6411 return; 6412 } 6413 case Intrinsic::write_register: { 6414 Value *Reg = I.getArgOperand(0); 6415 Value *RegValue = I.getArgOperand(1); 6416 SDValue Chain = getRoot(); 6417 SDValue RegName = 6418 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6419 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6420 RegName, getValue(RegValue))); 6421 return; 6422 } 6423 case Intrinsic::memcpy: { 6424 const auto &MCI = cast<MemCpyInst>(I); 6425 SDValue Op1 = getValue(I.getArgOperand(0)); 6426 SDValue Op2 = getValue(I.getArgOperand(1)); 6427 SDValue Op3 = getValue(I.getArgOperand(2)); 6428 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6429 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6430 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6431 Align Alignment = std::min(DstAlign, SrcAlign); 6432 bool isVol = MCI.isVolatile(); 6433 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6434 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6435 // node. 6436 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6437 SDValue MC = DAG.getMemcpy( 6438 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6439 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6440 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6441 updateDAGForMaybeTailCall(MC); 6442 return; 6443 } 6444 case Intrinsic::memcpy_inline: { 6445 const auto &MCI = cast<MemCpyInlineInst>(I); 6446 SDValue Dst = getValue(I.getArgOperand(0)); 6447 SDValue Src = getValue(I.getArgOperand(1)); 6448 SDValue Size = getValue(I.getArgOperand(2)); 6449 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6450 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6451 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6452 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6453 Align Alignment = std::min(DstAlign, SrcAlign); 6454 bool isVol = MCI.isVolatile(); 6455 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6456 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6457 // node. 6458 SDValue MC = DAG.getMemcpy( 6459 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6460 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6461 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6462 updateDAGForMaybeTailCall(MC); 6463 return; 6464 } 6465 case Intrinsic::memset: { 6466 const auto &MSI = cast<MemSetInst>(I); 6467 SDValue Op1 = getValue(I.getArgOperand(0)); 6468 SDValue Op2 = getValue(I.getArgOperand(1)); 6469 SDValue Op3 = getValue(I.getArgOperand(2)); 6470 // @llvm.memset defines 0 and 1 to both mean no alignment. 6471 Align Alignment = MSI.getDestAlign().valueOrOne(); 6472 bool isVol = MSI.isVolatile(); 6473 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6474 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6475 SDValue MS = DAG.getMemset( 6476 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6477 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6478 updateDAGForMaybeTailCall(MS); 6479 return; 6480 } 6481 case Intrinsic::memset_inline: { 6482 const auto &MSII = cast<MemSetInlineInst>(I); 6483 SDValue Dst = getValue(I.getArgOperand(0)); 6484 SDValue Value = getValue(I.getArgOperand(1)); 6485 SDValue Size = getValue(I.getArgOperand(2)); 6486 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6487 // @llvm.memset defines 0 and 1 to both mean no alignment. 6488 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6489 bool isVol = MSII.isVolatile(); 6490 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6491 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6492 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6493 /* AlwaysInline */ true, isTC, 6494 MachinePointerInfo(I.getArgOperand(0)), 6495 I.getAAMetadata()); 6496 updateDAGForMaybeTailCall(MC); 6497 return; 6498 } 6499 case Intrinsic::memmove: { 6500 const auto &MMI = cast<MemMoveInst>(I); 6501 SDValue Op1 = getValue(I.getArgOperand(0)); 6502 SDValue Op2 = getValue(I.getArgOperand(1)); 6503 SDValue Op3 = getValue(I.getArgOperand(2)); 6504 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6505 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6506 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6507 Align Alignment = std::min(DstAlign, SrcAlign); 6508 bool isVol = MMI.isVolatile(); 6509 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6510 // FIXME: Support passing different dest/src alignments to the memmove DAG 6511 // node. 6512 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6513 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6514 isTC, MachinePointerInfo(I.getArgOperand(0)), 6515 MachinePointerInfo(I.getArgOperand(1)), 6516 I.getAAMetadata(), AA); 6517 updateDAGForMaybeTailCall(MM); 6518 return; 6519 } 6520 case Intrinsic::memcpy_element_unordered_atomic: { 6521 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6522 SDValue Dst = getValue(MI.getRawDest()); 6523 SDValue Src = getValue(MI.getRawSource()); 6524 SDValue Length = getValue(MI.getLength()); 6525 6526 Type *LengthTy = MI.getLength()->getType(); 6527 unsigned ElemSz = MI.getElementSizeInBytes(); 6528 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6529 SDValue MC = 6530 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6531 isTC, MachinePointerInfo(MI.getRawDest()), 6532 MachinePointerInfo(MI.getRawSource())); 6533 updateDAGForMaybeTailCall(MC); 6534 return; 6535 } 6536 case Intrinsic::memmove_element_unordered_atomic: { 6537 auto &MI = cast<AtomicMemMoveInst>(I); 6538 SDValue Dst = getValue(MI.getRawDest()); 6539 SDValue Src = getValue(MI.getRawSource()); 6540 SDValue Length = getValue(MI.getLength()); 6541 6542 Type *LengthTy = MI.getLength()->getType(); 6543 unsigned ElemSz = MI.getElementSizeInBytes(); 6544 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6545 SDValue MC = 6546 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6547 isTC, MachinePointerInfo(MI.getRawDest()), 6548 MachinePointerInfo(MI.getRawSource())); 6549 updateDAGForMaybeTailCall(MC); 6550 return; 6551 } 6552 case Intrinsic::memset_element_unordered_atomic: { 6553 auto &MI = cast<AtomicMemSetInst>(I); 6554 SDValue Dst = getValue(MI.getRawDest()); 6555 SDValue Val = getValue(MI.getValue()); 6556 SDValue Length = getValue(MI.getLength()); 6557 6558 Type *LengthTy = MI.getLength()->getType(); 6559 unsigned ElemSz = MI.getElementSizeInBytes(); 6560 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6561 SDValue MC = 6562 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6563 isTC, MachinePointerInfo(MI.getRawDest())); 6564 updateDAGForMaybeTailCall(MC); 6565 return; 6566 } 6567 case Intrinsic::call_preallocated_setup: { 6568 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6569 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6570 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6571 getRoot(), SrcValue); 6572 setValue(&I, Res); 6573 DAG.setRoot(Res); 6574 return; 6575 } 6576 case Intrinsic::call_preallocated_arg: { 6577 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6578 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6579 SDValue Ops[3]; 6580 Ops[0] = getRoot(); 6581 Ops[1] = SrcValue; 6582 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6583 MVT::i32); // arg index 6584 SDValue Res = DAG.getNode( 6585 ISD::PREALLOCATED_ARG, sdl, 6586 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6587 setValue(&I, Res); 6588 DAG.setRoot(Res.getValue(1)); 6589 return; 6590 } 6591 case Intrinsic::dbg_declare: { 6592 const auto &DI = cast<DbgDeclareInst>(I); 6593 // Debug intrinsics are handled separately in assignment tracking mode. 6594 // Some intrinsics are handled right after Argument lowering. 6595 if (AssignmentTrackingEnabled || 6596 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6597 return; 6598 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6599 DILocalVariable *Variable = DI.getVariable(); 6600 DIExpression *Expression = DI.getExpression(); 6601 dropDanglingDebugInfo(Variable, Expression); 6602 // Assume dbg.declare can not currently use DIArgList, i.e. 6603 // it is non-variadic. 6604 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6605 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6606 DI.getDebugLoc()); 6607 return; 6608 } 6609 case Intrinsic::dbg_label: { 6610 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6611 DILabel *Label = DI.getLabel(); 6612 assert(Label && "Missing label"); 6613 6614 SDDbgLabel *SDV; 6615 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6616 DAG.AddDbgLabel(SDV); 6617 return; 6618 } 6619 case Intrinsic::dbg_assign: { 6620 // Debug intrinsics are handled separately in assignment tracking mode. 6621 if (AssignmentTrackingEnabled) 6622 return; 6623 // If assignment tracking hasn't been enabled then fall through and treat 6624 // the dbg.assign as a dbg.value. 6625 [[fallthrough]]; 6626 } 6627 case Intrinsic::dbg_value: { 6628 // Debug intrinsics are handled separately in assignment tracking mode. 6629 if (AssignmentTrackingEnabled) 6630 return; 6631 const DbgValueInst &DI = cast<DbgValueInst>(I); 6632 assert(DI.getVariable() && "Missing variable"); 6633 6634 DILocalVariable *Variable = DI.getVariable(); 6635 DIExpression *Expression = DI.getExpression(); 6636 dropDanglingDebugInfo(Variable, Expression); 6637 6638 if (DI.isKillLocation()) { 6639 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6640 return; 6641 } 6642 6643 SmallVector<Value *, 4> Values(DI.getValues()); 6644 if (Values.empty()) 6645 return; 6646 6647 bool IsVariadic = DI.hasArgList(); 6648 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6649 SDNodeOrder, IsVariadic)) 6650 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6651 DI.getDebugLoc(), SDNodeOrder); 6652 return; 6653 } 6654 6655 case Intrinsic::eh_typeid_for: { 6656 // Find the type id for the given typeinfo. 6657 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6658 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6659 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6660 setValue(&I, Res); 6661 return; 6662 } 6663 6664 case Intrinsic::eh_return_i32: 6665 case Intrinsic::eh_return_i64: 6666 DAG.getMachineFunction().setCallsEHReturn(true); 6667 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6668 MVT::Other, 6669 getControlRoot(), 6670 getValue(I.getArgOperand(0)), 6671 getValue(I.getArgOperand(1)))); 6672 return; 6673 case Intrinsic::eh_unwind_init: 6674 DAG.getMachineFunction().setCallsUnwindInit(true); 6675 return; 6676 case Intrinsic::eh_dwarf_cfa: 6677 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6678 TLI.getPointerTy(DAG.getDataLayout()), 6679 getValue(I.getArgOperand(0)))); 6680 return; 6681 case Intrinsic::eh_sjlj_callsite: { 6682 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6683 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6684 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6685 6686 MMI.setCurrentCallSite(CI->getZExtValue()); 6687 return; 6688 } 6689 case Intrinsic::eh_sjlj_functioncontext: { 6690 // Get and store the index of the function context. 6691 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6692 AllocaInst *FnCtx = 6693 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6694 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6695 MFI.setFunctionContextIndex(FI); 6696 return; 6697 } 6698 case Intrinsic::eh_sjlj_setjmp: { 6699 SDValue Ops[2]; 6700 Ops[0] = getRoot(); 6701 Ops[1] = getValue(I.getArgOperand(0)); 6702 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6703 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6704 setValue(&I, Op.getValue(0)); 6705 DAG.setRoot(Op.getValue(1)); 6706 return; 6707 } 6708 case Intrinsic::eh_sjlj_longjmp: 6709 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6710 getRoot(), getValue(I.getArgOperand(0)))); 6711 return; 6712 case Intrinsic::eh_sjlj_setup_dispatch: 6713 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6714 getRoot())); 6715 return; 6716 case Intrinsic::masked_gather: 6717 visitMaskedGather(I); 6718 return; 6719 case Intrinsic::masked_load: 6720 visitMaskedLoad(I); 6721 return; 6722 case Intrinsic::masked_scatter: 6723 visitMaskedScatter(I); 6724 return; 6725 case Intrinsic::masked_store: 6726 visitMaskedStore(I); 6727 return; 6728 case Intrinsic::masked_expandload: 6729 visitMaskedLoad(I, true /* IsExpanding */); 6730 return; 6731 case Intrinsic::masked_compressstore: 6732 visitMaskedStore(I, true /* IsCompressing */); 6733 return; 6734 case Intrinsic::powi: 6735 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6736 getValue(I.getArgOperand(1)), DAG)); 6737 return; 6738 case Intrinsic::log: 6739 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6740 return; 6741 case Intrinsic::log2: 6742 setValue(&I, 6743 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6744 return; 6745 case Intrinsic::log10: 6746 setValue(&I, 6747 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6748 return; 6749 case Intrinsic::exp: 6750 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6751 return; 6752 case Intrinsic::exp2: 6753 setValue(&I, 6754 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6755 return; 6756 case Intrinsic::pow: 6757 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6758 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6759 return; 6760 case Intrinsic::sqrt: 6761 case Intrinsic::fabs: 6762 case Intrinsic::sin: 6763 case Intrinsic::cos: 6764 case Intrinsic::tan: 6765 case Intrinsic::exp10: 6766 case Intrinsic::floor: 6767 case Intrinsic::ceil: 6768 case Intrinsic::trunc: 6769 case Intrinsic::rint: 6770 case Intrinsic::nearbyint: 6771 case Intrinsic::round: 6772 case Intrinsic::roundeven: 6773 case Intrinsic::canonicalize: { 6774 unsigned Opcode; 6775 // clang-format off 6776 switch (Intrinsic) { 6777 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6778 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6779 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6780 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6781 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6782 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6783 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6784 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6785 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6786 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6787 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6788 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6789 case Intrinsic::round: Opcode = ISD::FROUND; break; 6790 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6791 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6792 } 6793 // clang-format on 6794 6795 setValue(&I, DAG.getNode(Opcode, sdl, 6796 getValue(I.getArgOperand(0)).getValueType(), 6797 getValue(I.getArgOperand(0)), Flags)); 6798 return; 6799 } 6800 case Intrinsic::lround: 6801 case Intrinsic::llround: 6802 case Intrinsic::lrint: 6803 case Intrinsic::llrint: { 6804 unsigned Opcode; 6805 // clang-format off 6806 switch (Intrinsic) { 6807 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6808 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6809 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6810 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6811 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6812 } 6813 // clang-format on 6814 6815 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6816 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6817 getValue(I.getArgOperand(0)))); 6818 return; 6819 } 6820 case Intrinsic::minnum: 6821 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6822 getValue(I.getArgOperand(0)).getValueType(), 6823 getValue(I.getArgOperand(0)), 6824 getValue(I.getArgOperand(1)), Flags)); 6825 return; 6826 case Intrinsic::maxnum: 6827 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6828 getValue(I.getArgOperand(0)).getValueType(), 6829 getValue(I.getArgOperand(0)), 6830 getValue(I.getArgOperand(1)), Flags)); 6831 return; 6832 case Intrinsic::minimum: 6833 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6834 getValue(I.getArgOperand(0)).getValueType(), 6835 getValue(I.getArgOperand(0)), 6836 getValue(I.getArgOperand(1)), Flags)); 6837 return; 6838 case Intrinsic::maximum: 6839 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6840 getValue(I.getArgOperand(0)).getValueType(), 6841 getValue(I.getArgOperand(0)), 6842 getValue(I.getArgOperand(1)), Flags)); 6843 return; 6844 case Intrinsic::copysign: 6845 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6846 getValue(I.getArgOperand(0)).getValueType(), 6847 getValue(I.getArgOperand(0)), 6848 getValue(I.getArgOperand(1)), Flags)); 6849 return; 6850 case Intrinsic::ldexp: 6851 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6852 getValue(I.getArgOperand(0)).getValueType(), 6853 getValue(I.getArgOperand(0)), 6854 getValue(I.getArgOperand(1)), Flags)); 6855 return; 6856 case Intrinsic::frexp: { 6857 SmallVector<EVT, 2> ValueVTs; 6858 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6859 SDVTList VTs = DAG.getVTList(ValueVTs); 6860 setValue(&I, 6861 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6862 return; 6863 } 6864 case Intrinsic::arithmetic_fence: { 6865 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6866 getValue(I.getArgOperand(0)).getValueType(), 6867 getValue(I.getArgOperand(0)), Flags)); 6868 return; 6869 } 6870 case Intrinsic::fma: 6871 setValue(&I, DAG.getNode( 6872 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6873 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6874 getValue(I.getArgOperand(2)), Flags)); 6875 return; 6876 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6877 case Intrinsic::INTRINSIC: 6878 #include "llvm/IR/ConstrainedOps.def" 6879 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6880 return; 6881 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6882 #include "llvm/IR/VPIntrinsics.def" 6883 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6884 return; 6885 case Intrinsic::fptrunc_round: { 6886 // Get the last argument, the metadata and convert it to an integer in the 6887 // call 6888 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6889 std::optional<RoundingMode> RoundMode = 6890 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6891 6892 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6893 6894 // Propagate fast-math-flags from IR to node(s). 6895 SDNodeFlags Flags; 6896 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6897 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6898 6899 SDValue Result; 6900 Result = DAG.getNode( 6901 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6902 DAG.getTargetConstant((int)*RoundMode, sdl, 6903 TLI.getPointerTy(DAG.getDataLayout()))); 6904 setValue(&I, Result); 6905 6906 return; 6907 } 6908 case Intrinsic::fmuladd: { 6909 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6910 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6911 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6912 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6913 getValue(I.getArgOperand(0)).getValueType(), 6914 getValue(I.getArgOperand(0)), 6915 getValue(I.getArgOperand(1)), 6916 getValue(I.getArgOperand(2)), Flags)); 6917 } else { 6918 // TODO: Intrinsic calls should have fast-math-flags. 6919 SDValue Mul = DAG.getNode( 6920 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6921 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6922 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6923 getValue(I.getArgOperand(0)).getValueType(), 6924 Mul, getValue(I.getArgOperand(2)), Flags); 6925 setValue(&I, Add); 6926 } 6927 return; 6928 } 6929 case Intrinsic::convert_to_fp16: 6930 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6931 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6932 getValue(I.getArgOperand(0)), 6933 DAG.getTargetConstant(0, sdl, 6934 MVT::i32)))); 6935 return; 6936 case Intrinsic::convert_from_fp16: 6937 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6938 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6939 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6940 getValue(I.getArgOperand(0))))); 6941 return; 6942 case Intrinsic::fptosi_sat: { 6943 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6944 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6945 getValue(I.getArgOperand(0)), 6946 DAG.getValueType(VT.getScalarType()))); 6947 return; 6948 } 6949 case Intrinsic::fptoui_sat: { 6950 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6951 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6952 getValue(I.getArgOperand(0)), 6953 DAG.getValueType(VT.getScalarType()))); 6954 return; 6955 } 6956 case Intrinsic::set_rounding: 6957 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6958 {getRoot(), getValue(I.getArgOperand(0))}); 6959 setValue(&I, Res); 6960 DAG.setRoot(Res.getValue(0)); 6961 return; 6962 case Intrinsic::is_fpclass: { 6963 const DataLayout DLayout = DAG.getDataLayout(); 6964 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6965 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6966 FPClassTest Test = static_cast<FPClassTest>( 6967 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6968 MachineFunction &MF = DAG.getMachineFunction(); 6969 const Function &F = MF.getFunction(); 6970 SDValue Op = getValue(I.getArgOperand(0)); 6971 SDNodeFlags Flags; 6972 Flags.setNoFPExcept( 6973 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6974 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6975 // expansion can use illegal types. Making expansion early allows 6976 // legalizing these types prior to selection. 6977 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6978 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6979 setValue(&I, Result); 6980 return; 6981 } 6982 6983 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6984 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6985 setValue(&I, V); 6986 return; 6987 } 6988 case Intrinsic::get_fpenv: { 6989 const DataLayout DLayout = DAG.getDataLayout(); 6990 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6991 Align TempAlign = DAG.getEVTAlign(EnvVT); 6992 SDValue Chain = getRoot(); 6993 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6994 // and temporary storage in stack. 6995 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6996 Res = DAG.getNode( 6997 ISD::GET_FPENV, sdl, 6998 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6999 MVT::Other), 7000 Chain); 7001 } else { 7002 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7003 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7004 auto MPI = 7005 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7006 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7007 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7008 TempAlign); 7009 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7010 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7011 } 7012 setValue(&I, Res); 7013 DAG.setRoot(Res.getValue(1)); 7014 return; 7015 } 7016 case Intrinsic::set_fpenv: { 7017 const DataLayout DLayout = DAG.getDataLayout(); 7018 SDValue Env = getValue(I.getArgOperand(0)); 7019 EVT EnvVT = Env.getValueType(); 7020 Align TempAlign = DAG.getEVTAlign(EnvVT); 7021 SDValue Chain = getRoot(); 7022 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7023 // environment from memory. 7024 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7025 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7026 } else { 7027 // Allocate space in stack, copy environment bits into it and use this 7028 // memory in SET_FPENV_MEM. 7029 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7030 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7031 auto MPI = 7032 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7033 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7034 MachineMemOperand::MOStore); 7035 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7036 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7037 TempAlign); 7038 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7039 } 7040 DAG.setRoot(Chain); 7041 return; 7042 } 7043 case Intrinsic::reset_fpenv: 7044 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7045 return; 7046 case Intrinsic::get_fpmode: 7047 Res = DAG.getNode( 7048 ISD::GET_FPMODE, sdl, 7049 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7050 MVT::Other), 7051 DAG.getRoot()); 7052 setValue(&I, Res); 7053 DAG.setRoot(Res.getValue(1)); 7054 return; 7055 case Intrinsic::set_fpmode: 7056 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7057 getValue(I.getArgOperand(0))); 7058 DAG.setRoot(Res); 7059 return; 7060 case Intrinsic::reset_fpmode: { 7061 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7062 DAG.setRoot(Res); 7063 return; 7064 } 7065 case Intrinsic::pcmarker: { 7066 SDValue Tmp = getValue(I.getArgOperand(0)); 7067 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7068 return; 7069 } 7070 case Intrinsic::readcyclecounter: { 7071 SDValue Op = getRoot(); 7072 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7073 DAG.getVTList(MVT::i64, MVT::Other), Op); 7074 setValue(&I, Res); 7075 DAG.setRoot(Res.getValue(1)); 7076 return; 7077 } 7078 case Intrinsic::readsteadycounter: { 7079 SDValue Op = getRoot(); 7080 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7081 DAG.getVTList(MVT::i64, MVT::Other), Op); 7082 setValue(&I, Res); 7083 DAG.setRoot(Res.getValue(1)); 7084 return; 7085 } 7086 case Intrinsic::bitreverse: 7087 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7088 getValue(I.getArgOperand(0)).getValueType(), 7089 getValue(I.getArgOperand(0)))); 7090 return; 7091 case Intrinsic::bswap: 7092 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7093 getValue(I.getArgOperand(0)).getValueType(), 7094 getValue(I.getArgOperand(0)))); 7095 return; 7096 case Intrinsic::cttz: { 7097 SDValue Arg = getValue(I.getArgOperand(0)); 7098 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7099 EVT Ty = Arg.getValueType(); 7100 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7101 sdl, Ty, Arg)); 7102 return; 7103 } 7104 case Intrinsic::ctlz: { 7105 SDValue Arg = getValue(I.getArgOperand(0)); 7106 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7107 EVT Ty = Arg.getValueType(); 7108 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7109 sdl, Ty, Arg)); 7110 return; 7111 } 7112 case Intrinsic::ctpop: { 7113 SDValue Arg = getValue(I.getArgOperand(0)); 7114 EVT Ty = Arg.getValueType(); 7115 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7116 return; 7117 } 7118 case Intrinsic::fshl: 7119 case Intrinsic::fshr: { 7120 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7121 SDValue X = getValue(I.getArgOperand(0)); 7122 SDValue Y = getValue(I.getArgOperand(1)); 7123 SDValue Z = getValue(I.getArgOperand(2)); 7124 EVT VT = X.getValueType(); 7125 7126 if (X == Y) { 7127 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7128 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7129 } else { 7130 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7131 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7132 } 7133 return; 7134 } 7135 case Intrinsic::sadd_sat: { 7136 SDValue Op1 = getValue(I.getArgOperand(0)); 7137 SDValue Op2 = getValue(I.getArgOperand(1)); 7138 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7139 return; 7140 } 7141 case Intrinsic::uadd_sat: { 7142 SDValue Op1 = getValue(I.getArgOperand(0)); 7143 SDValue Op2 = getValue(I.getArgOperand(1)); 7144 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7145 return; 7146 } 7147 case Intrinsic::ssub_sat: { 7148 SDValue Op1 = getValue(I.getArgOperand(0)); 7149 SDValue Op2 = getValue(I.getArgOperand(1)); 7150 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7151 return; 7152 } 7153 case Intrinsic::usub_sat: { 7154 SDValue Op1 = getValue(I.getArgOperand(0)); 7155 SDValue Op2 = getValue(I.getArgOperand(1)); 7156 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7157 return; 7158 } 7159 case Intrinsic::sshl_sat: { 7160 SDValue Op1 = getValue(I.getArgOperand(0)); 7161 SDValue Op2 = getValue(I.getArgOperand(1)); 7162 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7163 return; 7164 } 7165 case Intrinsic::ushl_sat: { 7166 SDValue Op1 = getValue(I.getArgOperand(0)); 7167 SDValue Op2 = getValue(I.getArgOperand(1)); 7168 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7169 return; 7170 } 7171 case Intrinsic::smul_fix: 7172 case Intrinsic::umul_fix: 7173 case Intrinsic::smul_fix_sat: 7174 case Intrinsic::umul_fix_sat: { 7175 SDValue Op1 = getValue(I.getArgOperand(0)); 7176 SDValue Op2 = getValue(I.getArgOperand(1)); 7177 SDValue Op3 = getValue(I.getArgOperand(2)); 7178 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7179 Op1.getValueType(), Op1, Op2, Op3)); 7180 return; 7181 } 7182 case Intrinsic::sdiv_fix: 7183 case Intrinsic::udiv_fix: 7184 case Intrinsic::sdiv_fix_sat: 7185 case Intrinsic::udiv_fix_sat: { 7186 SDValue Op1 = getValue(I.getArgOperand(0)); 7187 SDValue Op2 = getValue(I.getArgOperand(1)); 7188 SDValue Op3 = getValue(I.getArgOperand(2)); 7189 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7190 Op1, Op2, Op3, DAG, TLI)); 7191 return; 7192 } 7193 case Intrinsic::smax: { 7194 SDValue Op1 = getValue(I.getArgOperand(0)); 7195 SDValue Op2 = getValue(I.getArgOperand(1)); 7196 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7197 return; 7198 } 7199 case Intrinsic::smin: { 7200 SDValue Op1 = getValue(I.getArgOperand(0)); 7201 SDValue Op2 = getValue(I.getArgOperand(1)); 7202 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7203 return; 7204 } 7205 case Intrinsic::umax: { 7206 SDValue Op1 = getValue(I.getArgOperand(0)); 7207 SDValue Op2 = getValue(I.getArgOperand(1)); 7208 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7209 return; 7210 } 7211 case Intrinsic::umin: { 7212 SDValue Op1 = getValue(I.getArgOperand(0)); 7213 SDValue Op2 = getValue(I.getArgOperand(1)); 7214 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7215 return; 7216 } 7217 case Intrinsic::abs: { 7218 // TODO: Preserve "int min is poison" arg in SDAG? 7219 SDValue Op1 = getValue(I.getArgOperand(0)); 7220 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7221 return; 7222 } 7223 case Intrinsic::scmp: { 7224 SDValue Op1 = getValue(I.getArgOperand(0)); 7225 SDValue Op2 = getValue(I.getArgOperand(1)); 7226 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7227 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7228 break; 7229 } 7230 case Intrinsic::ucmp: { 7231 SDValue Op1 = getValue(I.getArgOperand(0)); 7232 SDValue Op2 = getValue(I.getArgOperand(1)); 7233 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7234 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7235 break; 7236 } 7237 case Intrinsic::stacksave: { 7238 SDValue Op = getRoot(); 7239 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7240 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7241 setValue(&I, Res); 7242 DAG.setRoot(Res.getValue(1)); 7243 return; 7244 } 7245 case Intrinsic::stackrestore: 7246 Res = getValue(I.getArgOperand(0)); 7247 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7248 return; 7249 case Intrinsic::get_dynamic_area_offset: { 7250 SDValue Op = getRoot(); 7251 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7252 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7253 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7254 // target. 7255 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7256 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7257 " intrinsic!"); 7258 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7259 Op); 7260 DAG.setRoot(Op); 7261 setValue(&I, Res); 7262 return; 7263 } 7264 case Intrinsic::stackguard: { 7265 MachineFunction &MF = DAG.getMachineFunction(); 7266 const Module &M = *MF.getFunction().getParent(); 7267 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7268 SDValue Chain = getRoot(); 7269 if (TLI.useLoadStackGuardNode()) { 7270 Res = getLoadStackGuard(DAG, sdl, Chain); 7271 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7272 } else { 7273 const Value *Global = TLI.getSDagStackGuard(M); 7274 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7275 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7276 MachinePointerInfo(Global, 0), Align, 7277 MachineMemOperand::MOVolatile); 7278 } 7279 if (TLI.useStackGuardXorFP()) 7280 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7281 DAG.setRoot(Chain); 7282 setValue(&I, Res); 7283 return; 7284 } 7285 case Intrinsic::stackprotector: { 7286 // Emit code into the DAG to store the stack guard onto the stack. 7287 MachineFunction &MF = DAG.getMachineFunction(); 7288 MachineFrameInfo &MFI = MF.getFrameInfo(); 7289 SDValue Src, Chain = getRoot(); 7290 7291 if (TLI.useLoadStackGuardNode()) 7292 Src = getLoadStackGuard(DAG, sdl, Chain); 7293 else 7294 Src = getValue(I.getArgOperand(0)); // The guard's value. 7295 7296 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7297 7298 int FI = FuncInfo.StaticAllocaMap[Slot]; 7299 MFI.setStackProtectorIndex(FI); 7300 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7301 7302 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7303 7304 // Store the stack protector onto the stack. 7305 Res = DAG.getStore( 7306 Chain, sdl, Src, FIN, 7307 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7308 MaybeAlign(), MachineMemOperand::MOVolatile); 7309 setValue(&I, Res); 7310 DAG.setRoot(Res); 7311 return; 7312 } 7313 case Intrinsic::objectsize: 7314 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7315 7316 case Intrinsic::is_constant: 7317 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7318 7319 case Intrinsic::annotation: 7320 case Intrinsic::ptr_annotation: 7321 case Intrinsic::launder_invariant_group: 7322 case Intrinsic::strip_invariant_group: 7323 // Drop the intrinsic, but forward the value 7324 setValue(&I, getValue(I.getOperand(0))); 7325 return; 7326 7327 case Intrinsic::assume: 7328 case Intrinsic::experimental_noalias_scope_decl: 7329 case Intrinsic::var_annotation: 7330 case Intrinsic::sideeffect: 7331 // Discard annotate attributes, noalias scope declarations, assumptions, and 7332 // artificial side-effects. 7333 return; 7334 7335 case Intrinsic::codeview_annotation: { 7336 // Emit a label associated with this metadata. 7337 MachineFunction &MF = DAG.getMachineFunction(); 7338 MCSymbol *Label = 7339 MF.getMMI().getContext().createTempSymbol("annotation", true); 7340 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7341 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7342 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7343 DAG.setRoot(Res); 7344 return; 7345 } 7346 7347 case Intrinsic::init_trampoline: { 7348 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7349 7350 SDValue Ops[6]; 7351 Ops[0] = getRoot(); 7352 Ops[1] = getValue(I.getArgOperand(0)); 7353 Ops[2] = getValue(I.getArgOperand(1)); 7354 Ops[3] = getValue(I.getArgOperand(2)); 7355 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7356 Ops[5] = DAG.getSrcValue(F); 7357 7358 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7359 7360 DAG.setRoot(Res); 7361 return; 7362 } 7363 case Intrinsic::adjust_trampoline: 7364 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7365 TLI.getPointerTy(DAG.getDataLayout()), 7366 getValue(I.getArgOperand(0)))); 7367 return; 7368 case Intrinsic::gcroot: { 7369 assert(DAG.getMachineFunction().getFunction().hasGC() && 7370 "only valid in functions with gc specified, enforced by Verifier"); 7371 assert(GFI && "implied by previous"); 7372 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7373 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7374 7375 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7376 GFI->addStackRoot(FI->getIndex(), TypeMap); 7377 return; 7378 } 7379 case Intrinsic::gcread: 7380 case Intrinsic::gcwrite: 7381 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7382 case Intrinsic::get_rounding: 7383 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7384 setValue(&I, Res); 7385 DAG.setRoot(Res.getValue(1)); 7386 return; 7387 7388 case Intrinsic::expect: 7389 // Just replace __builtin_expect(exp, c) with EXP. 7390 setValue(&I, getValue(I.getArgOperand(0))); 7391 return; 7392 7393 case Intrinsic::ubsantrap: 7394 case Intrinsic::debugtrap: 7395 case Intrinsic::trap: { 7396 StringRef TrapFuncName = 7397 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7398 if (TrapFuncName.empty()) { 7399 switch (Intrinsic) { 7400 case Intrinsic::trap: 7401 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7402 break; 7403 case Intrinsic::debugtrap: 7404 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7405 break; 7406 case Intrinsic::ubsantrap: 7407 DAG.setRoot(DAG.getNode( 7408 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7409 DAG.getTargetConstant( 7410 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7411 MVT::i32))); 7412 break; 7413 default: llvm_unreachable("unknown trap intrinsic"); 7414 } 7415 return; 7416 } 7417 TargetLowering::ArgListTy Args; 7418 if (Intrinsic == Intrinsic::ubsantrap) { 7419 Args.push_back(TargetLoweringBase::ArgListEntry()); 7420 Args[0].Val = I.getArgOperand(0); 7421 Args[0].Node = getValue(Args[0].Val); 7422 Args[0].Ty = Args[0].Val->getType(); 7423 } 7424 7425 TargetLowering::CallLoweringInfo CLI(DAG); 7426 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7427 CallingConv::C, I.getType(), 7428 DAG.getExternalSymbol(TrapFuncName.data(), 7429 TLI.getPointerTy(DAG.getDataLayout())), 7430 std::move(Args)); 7431 7432 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7433 DAG.setRoot(Result.second); 7434 return; 7435 } 7436 7437 case Intrinsic::allow_runtime_check: 7438 case Intrinsic::allow_ubsan_check: 7439 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7440 return; 7441 7442 case Intrinsic::uadd_with_overflow: 7443 case Intrinsic::sadd_with_overflow: 7444 case Intrinsic::usub_with_overflow: 7445 case Intrinsic::ssub_with_overflow: 7446 case Intrinsic::umul_with_overflow: 7447 case Intrinsic::smul_with_overflow: { 7448 ISD::NodeType Op; 7449 switch (Intrinsic) { 7450 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7451 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7452 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7453 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7454 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7455 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7456 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7457 } 7458 SDValue Op1 = getValue(I.getArgOperand(0)); 7459 SDValue Op2 = getValue(I.getArgOperand(1)); 7460 7461 EVT ResultVT = Op1.getValueType(); 7462 EVT OverflowVT = MVT::i1; 7463 if (ResultVT.isVector()) 7464 OverflowVT = EVT::getVectorVT( 7465 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7466 7467 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7468 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7469 return; 7470 } 7471 case Intrinsic::prefetch: { 7472 SDValue Ops[5]; 7473 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7474 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7475 Ops[0] = DAG.getRoot(); 7476 Ops[1] = getValue(I.getArgOperand(0)); 7477 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7478 MVT::i32); 7479 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7480 MVT::i32); 7481 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7482 MVT::i32); 7483 SDValue Result = DAG.getMemIntrinsicNode( 7484 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7485 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7486 /* align */ std::nullopt, Flags); 7487 7488 // Chain the prefetch in parallel with any pending loads, to stay out of 7489 // the way of later optimizations. 7490 PendingLoads.push_back(Result); 7491 Result = getRoot(); 7492 DAG.setRoot(Result); 7493 return; 7494 } 7495 case Intrinsic::lifetime_start: 7496 case Intrinsic::lifetime_end: { 7497 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7498 // Stack coloring is not enabled in O0, discard region information. 7499 if (TM.getOptLevel() == CodeGenOptLevel::None) 7500 return; 7501 7502 const int64_t ObjectSize = 7503 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7504 Value *const ObjectPtr = I.getArgOperand(1); 7505 SmallVector<const Value *, 4> Allocas; 7506 getUnderlyingObjects(ObjectPtr, Allocas); 7507 7508 for (const Value *Alloca : Allocas) { 7509 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7510 7511 // Could not find an Alloca. 7512 if (!LifetimeObject) 7513 continue; 7514 7515 // First check that the Alloca is static, otherwise it won't have a 7516 // valid frame index. 7517 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7518 if (SI == FuncInfo.StaticAllocaMap.end()) 7519 return; 7520 7521 const int FrameIndex = SI->second; 7522 int64_t Offset; 7523 if (GetPointerBaseWithConstantOffset( 7524 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7525 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7526 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7527 Offset); 7528 DAG.setRoot(Res); 7529 } 7530 return; 7531 } 7532 case Intrinsic::pseudoprobe: { 7533 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7534 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7535 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7536 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7537 DAG.setRoot(Res); 7538 return; 7539 } 7540 case Intrinsic::invariant_start: 7541 // Discard region information. 7542 setValue(&I, 7543 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7544 return; 7545 case Intrinsic::invariant_end: 7546 // Discard region information. 7547 return; 7548 case Intrinsic::clear_cache: { 7549 SDValue InputChain = DAG.getRoot(); 7550 SDValue StartVal = getValue(I.getArgOperand(0)); 7551 SDValue EndVal = getValue(I.getArgOperand(1)); 7552 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7553 {InputChain, StartVal, EndVal}); 7554 setValue(&I, Res); 7555 DAG.setRoot(Res); 7556 return; 7557 } 7558 case Intrinsic::donothing: 7559 case Intrinsic::seh_try_begin: 7560 case Intrinsic::seh_scope_begin: 7561 case Intrinsic::seh_try_end: 7562 case Intrinsic::seh_scope_end: 7563 // ignore 7564 return; 7565 case Intrinsic::experimental_stackmap: 7566 visitStackmap(I); 7567 return; 7568 case Intrinsic::experimental_patchpoint_void: 7569 case Intrinsic::experimental_patchpoint: 7570 visitPatchpoint(I); 7571 return; 7572 case Intrinsic::experimental_gc_statepoint: 7573 LowerStatepoint(cast<GCStatepointInst>(I)); 7574 return; 7575 case Intrinsic::experimental_gc_result: 7576 visitGCResult(cast<GCResultInst>(I)); 7577 return; 7578 case Intrinsic::experimental_gc_relocate: 7579 visitGCRelocate(cast<GCRelocateInst>(I)); 7580 return; 7581 case Intrinsic::instrprof_cover: 7582 llvm_unreachable("instrprof failed to lower a cover"); 7583 case Intrinsic::instrprof_increment: 7584 llvm_unreachable("instrprof failed to lower an increment"); 7585 case Intrinsic::instrprof_timestamp: 7586 llvm_unreachable("instrprof failed to lower a timestamp"); 7587 case Intrinsic::instrprof_value_profile: 7588 llvm_unreachable("instrprof failed to lower a value profiling call"); 7589 case Intrinsic::instrprof_mcdc_parameters: 7590 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7591 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7592 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7593 case Intrinsic::localescape: { 7594 MachineFunction &MF = DAG.getMachineFunction(); 7595 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7596 7597 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7598 // is the same on all targets. 7599 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7600 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7601 if (isa<ConstantPointerNull>(Arg)) 7602 continue; // Skip null pointers. They represent a hole in index space. 7603 AllocaInst *Slot = cast<AllocaInst>(Arg); 7604 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7605 "can only escape static allocas"); 7606 int FI = FuncInfo.StaticAllocaMap[Slot]; 7607 MCSymbol *FrameAllocSym = 7608 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7609 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7610 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7611 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7612 .addSym(FrameAllocSym) 7613 .addFrameIndex(FI); 7614 } 7615 7616 return; 7617 } 7618 7619 case Intrinsic::localrecover: { 7620 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7621 MachineFunction &MF = DAG.getMachineFunction(); 7622 7623 // Get the symbol that defines the frame offset. 7624 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7625 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7626 unsigned IdxVal = 7627 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7628 MCSymbol *FrameAllocSym = 7629 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7630 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7631 7632 Value *FP = I.getArgOperand(1); 7633 SDValue FPVal = getValue(FP); 7634 EVT PtrVT = FPVal.getValueType(); 7635 7636 // Create a MCSymbol for the label to avoid any target lowering 7637 // that would make this PC relative. 7638 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7639 SDValue OffsetVal = 7640 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7641 7642 // Add the offset to the FP. 7643 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7644 setValue(&I, Add); 7645 7646 return; 7647 } 7648 7649 case Intrinsic::eh_exceptionpointer: 7650 case Intrinsic::eh_exceptioncode: { 7651 // Get the exception pointer vreg, copy from it, and resize it to fit. 7652 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7653 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7654 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7655 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7656 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7657 if (Intrinsic == Intrinsic::eh_exceptioncode) 7658 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7659 setValue(&I, N); 7660 return; 7661 } 7662 case Intrinsic::xray_customevent: { 7663 // Here we want to make sure that the intrinsic behaves as if it has a 7664 // specific calling convention. 7665 const auto &Triple = DAG.getTarget().getTargetTriple(); 7666 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7667 return; 7668 7669 SmallVector<SDValue, 8> Ops; 7670 7671 // We want to say that we always want the arguments in registers. 7672 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7673 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7674 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7675 SDValue Chain = getRoot(); 7676 Ops.push_back(LogEntryVal); 7677 Ops.push_back(StrSizeVal); 7678 Ops.push_back(Chain); 7679 7680 // We need to enforce the calling convention for the callsite, so that 7681 // argument ordering is enforced correctly, and that register allocation can 7682 // see that some registers may be assumed clobbered and have to preserve 7683 // them across calls to the intrinsic. 7684 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7685 sdl, NodeTys, Ops); 7686 SDValue patchableNode = SDValue(MN, 0); 7687 DAG.setRoot(patchableNode); 7688 setValue(&I, patchableNode); 7689 return; 7690 } 7691 case Intrinsic::xray_typedevent: { 7692 // Here we want to make sure that the intrinsic behaves as if it has a 7693 // specific calling convention. 7694 const auto &Triple = DAG.getTarget().getTargetTriple(); 7695 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7696 return; 7697 7698 SmallVector<SDValue, 8> Ops; 7699 7700 // We want to say that we always want the arguments in registers. 7701 // It's unclear to me how manipulating the selection DAG here forces callers 7702 // to provide arguments in registers instead of on the stack. 7703 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7704 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7705 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7706 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7707 SDValue Chain = getRoot(); 7708 Ops.push_back(LogTypeId); 7709 Ops.push_back(LogEntryVal); 7710 Ops.push_back(StrSizeVal); 7711 Ops.push_back(Chain); 7712 7713 // We need to enforce the calling convention for the callsite, so that 7714 // argument ordering is enforced correctly, and that register allocation can 7715 // see that some registers may be assumed clobbered and have to preserve 7716 // them across calls to the intrinsic. 7717 MachineSDNode *MN = DAG.getMachineNode( 7718 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7719 SDValue patchableNode = SDValue(MN, 0); 7720 DAG.setRoot(patchableNode); 7721 setValue(&I, patchableNode); 7722 return; 7723 } 7724 case Intrinsic::experimental_deoptimize: 7725 LowerDeoptimizeCall(&I); 7726 return; 7727 case Intrinsic::experimental_stepvector: 7728 visitStepVector(I); 7729 return; 7730 case Intrinsic::vector_reduce_fadd: 7731 case Intrinsic::vector_reduce_fmul: 7732 case Intrinsic::vector_reduce_add: 7733 case Intrinsic::vector_reduce_mul: 7734 case Intrinsic::vector_reduce_and: 7735 case Intrinsic::vector_reduce_or: 7736 case Intrinsic::vector_reduce_xor: 7737 case Intrinsic::vector_reduce_smax: 7738 case Intrinsic::vector_reduce_smin: 7739 case Intrinsic::vector_reduce_umax: 7740 case Intrinsic::vector_reduce_umin: 7741 case Intrinsic::vector_reduce_fmax: 7742 case Intrinsic::vector_reduce_fmin: 7743 case Intrinsic::vector_reduce_fmaximum: 7744 case Intrinsic::vector_reduce_fminimum: 7745 visitVectorReduce(I, Intrinsic); 7746 return; 7747 7748 case Intrinsic::icall_branch_funnel: { 7749 SmallVector<SDValue, 16> Ops; 7750 Ops.push_back(getValue(I.getArgOperand(0))); 7751 7752 int64_t Offset; 7753 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7754 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7755 if (!Base) 7756 report_fatal_error( 7757 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7758 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7759 7760 struct BranchFunnelTarget { 7761 int64_t Offset; 7762 SDValue Target; 7763 }; 7764 SmallVector<BranchFunnelTarget, 8> Targets; 7765 7766 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7767 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7768 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7769 if (ElemBase != Base) 7770 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7771 "to the same GlobalValue"); 7772 7773 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7774 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7775 if (!GA) 7776 report_fatal_error( 7777 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7778 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7779 GA->getGlobal(), sdl, Val.getValueType(), 7780 GA->getOffset())}); 7781 } 7782 llvm::sort(Targets, 7783 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7784 return T1.Offset < T2.Offset; 7785 }); 7786 7787 for (auto &T : Targets) { 7788 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7789 Ops.push_back(T.Target); 7790 } 7791 7792 Ops.push_back(DAG.getRoot()); // Chain 7793 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7794 MVT::Other, Ops), 7795 0); 7796 DAG.setRoot(N); 7797 setValue(&I, N); 7798 HasTailCall = true; 7799 return; 7800 } 7801 7802 case Intrinsic::wasm_landingpad_index: 7803 // Information this intrinsic contained has been transferred to 7804 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7805 // delete it now. 7806 return; 7807 7808 case Intrinsic::aarch64_settag: 7809 case Intrinsic::aarch64_settag_zero: { 7810 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7811 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7812 SDValue Val = TSI.EmitTargetCodeForSetTag( 7813 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7814 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7815 ZeroMemory); 7816 DAG.setRoot(Val); 7817 setValue(&I, Val); 7818 return; 7819 } 7820 case Intrinsic::amdgcn_cs_chain: { 7821 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7822 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7823 "Non-zero flags not supported yet"); 7824 7825 // At this point we don't care if it's amdgpu_cs_chain or 7826 // amdgpu_cs_chain_preserve. 7827 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7828 7829 Type *RetTy = I.getType(); 7830 assert(RetTy->isVoidTy() && "Should not return"); 7831 7832 SDValue Callee = getValue(I.getOperand(0)); 7833 7834 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7835 // We'll also tack the value of the EXEC mask at the end. 7836 TargetLowering::ArgListTy Args; 7837 Args.reserve(3); 7838 7839 for (unsigned Idx : {2, 3, 1}) { 7840 TargetLowering::ArgListEntry Arg; 7841 Arg.Node = getValue(I.getOperand(Idx)); 7842 Arg.Ty = I.getOperand(Idx)->getType(); 7843 Arg.setAttributes(&I, Idx); 7844 Args.push_back(Arg); 7845 } 7846 7847 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7848 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7849 Args[2].IsInReg = true; // EXEC should be inreg 7850 7851 TargetLowering::CallLoweringInfo CLI(DAG); 7852 CLI.setDebugLoc(getCurSDLoc()) 7853 .setChain(getRoot()) 7854 .setCallee(CC, RetTy, Callee, std::move(Args)) 7855 .setNoReturn(true) 7856 .setTailCall(true) 7857 .setConvergent(I.isConvergent()); 7858 CLI.CB = &I; 7859 std::pair<SDValue, SDValue> Result = 7860 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7861 (void)Result; 7862 assert(!Result.first.getNode() && !Result.second.getNode() && 7863 "Should've lowered as tail call"); 7864 7865 HasTailCall = true; 7866 return; 7867 } 7868 case Intrinsic::ptrmask: { 7869 SDValue Ptr = getValue(I.getOperand(0)); 7870 SDValue Mask = getValue(I.getOperand(1)); 7871 7872 // On arm64_32, pointers are 32 bits when stored in memory, but 7873 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7874 // match the index type, but the pointer is 64 bits, so the the mask must be 7875 // zero-extended up to 64 bits to match the pointer. 7876 EVT PtrVT = 7877 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7878 EVT MemVT = 7879 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7880 assert(PtrVT == Ptr.getValueType()); 7881 assert(MemVT == Mask.getValueType()); 7882 if (MemVT != PtrVT) 7883 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7884 7885 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7886 return; 7887 } 7888 case Intrinsic::threadlocal_address: { 7889 setValue(&I, getValue(I.getOperand(0))); 7890 return; 7891 } 7892 case Intrinsic::get_active_lane_mask: { 7893 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7894 SDValue Index = getValue(I.getOperand(0)); 7895 EVT ElementVT = Index.getValueType(); 7896 7897 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7898 visitTargetIntrinsic(I, Intrinsic); 7899 return; 7900 } 7901 7902 SDValue TripCount = getValue(I.getOperand(1)); 7903 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7904 CCVT.getVectorElementCount()); 7905 7906 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7907 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7908 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7909 SDValue VectorInduction = DAG.getNode( 7910 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7911 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7912 VectorTripCount, ISD::CondCode::SETULT); 7913 setValue(&I, SetCC); 7914 return; 7915 } 7916 case Intrinsic::experimental_get_vector_length: { 7917 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7918 "Expected positive VF"); 7919 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7920 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7921 7922 SDValue Count = getValue(I.getOperand(0)); 7923 EVT CountVT = Count.getValueType(); 7924 7925 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7926 visitTargetIntrinsic(I, Intrinsic); 7927 return; 7928 } 7929 7930 // Expand to a umin between the trip count and the maximum elements the type 7931 // can hold. 7932 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7933 7934 // Extend the trip count to at least the result VT. 7935 if (CountVT.bitsLT(VT)) { 7936 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7937 CountVT = VT; 7938 } 7939 7940 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7941 ElementCount::get(VF, IsScalable)); 7942 7943 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7944 // Clip to the result type if needed. 7945 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7946 7947 setValue(&I, Trunc); 7948 return; 7949 } 7950 case Intrinsic::experimental_cttz_elts: { 7951 auto DL = getCurSDLoc(); 7952 SDValue Op = getValue(I.getOperand(0)); 7953 EVT OpVT = Op.getValueType(); 7954 7955 if (!TLI.shouldExpandCttzElements(OpVT)) { 7956 visitTargetIntrinsic(I, Intrinsic); 7957 return; 7958 } 7959 7960 if (OpVT.getScalarType() != MVT::i1) { 7961 // Compare the input vector elements to zero & use to count trailing zeros 7962 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7963 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7964 OpVT.getVectorElementCount()); 7965 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7966 } 7967 7968 // If the zero-is-poison flag is set, we can assume the upper limit 7969 // of the result is VF-1. 7970 bool ZeroIsPoison = 7971 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 7972 ConstantRange VScaleRange(1, true); // Dummy value. 7973 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 7974 VScaleRange = getVScaleRange(I.getCaller(), 64); 7975 unsigned EltWidth = TLI.getBitWidthForCttzElements( 7976 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 7977 7978 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7979 7980 // Create the new vector type & get the vector length 7981 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7982 OpVT.getVectorElementCount()); 7983 7984 SDValue VL = 7985 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7986 7987 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7988 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7989 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7990 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7991 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7992 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7993 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7994 7995 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7996 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7997 7998 setValue(&I, Ret); 7999 return; 8000 } 8001 case Intrinsic::vector_insert: { 8002 SDValue Vec = getValue(I.getOperand(0)); 8003 SDValue SubVec = getValue(I.getOperand(1)); 8004 SDValue Index = getValue(I.getOperand(2)); 8005 8006 // The intrinsic's index type is i64, but the SDNode requires an index type 8007 // suitable for the target. Convert the index as required. 8008 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8009 if (Index.getValueType() != VectorIdxTy) 8010 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8011 8012 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8013 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8014 Index)); 8015 return; 8016 } 8017 case Intrinsic::vector_extract: { 8018 SDValue Vec = getValue(I.getOperand(0)); 8019 SDValue Index = getValue(I.getOperand(1)); 8020 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8021 8022 // The intrinsic's index type is i64, but the SDNode requires an index type 8023 // suitable for the target. Convert the index as required. 8024 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8025 if (Index.getValueType() != VectorIdxTy) 8026 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8027 8028 setValue(&I, 8029 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8030 return; 8031 } 8032 case Intrinsic::vector_reverse: 8033 visitVectorReverse(I); 8034 return; 8035 case Intrinsic::vector_splice: 8036 visitVectorSplice(I); 8037 return; 8038 case Intrinsic::callbr_landingpad: 8039 visitCallBrLandingPad(I); 8040 return; 8041 case Intrinsic::vector_interleave2: 8042 visitVectorInterleave(I); 8043 return; 8044 case Intrinsic::vector_deinterleave2: 8045 visitVectorDeinterleave(I); 8046 return; 8047 case Intrinsic::experimental_convergence_anchor: 8048 case Intrinsic::experimental_convergence_entry: 8049 case Intrinsic::experimental_convergence_loop: 8050 visitConvergenceControl(I, Intrinsic); 8051 return; 8052 case Intrinsic::experimental_vector_histogram_add: { 8053 visitVectorHistogram(I, Intrinsic); 8054 return; 8055 } 8056 } 8057 } 8058 8059 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8060 const ConstrainedFPIntrinsic &FPI) { 8061 SDLoc sdl = getCurSDLoc(); 8062 8063 // We do not need to serialize constrained FP intrinsics against 8064 // each other or against (nonvolatile) loads, so they can be 8065 // chained like loads. 8066 SDValue Chain = DAG.getRoot(); 8067 SmallVector<SDValue, 4> Opers; 8068 Opers.push_back(Chain); 8069 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8070 Opers.push_back(getValue(FPI.getArgOperand(I))); 8071 8072 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8073 assert(Result.getNode()->getNumValues() == 2); 8074 8075 // Push node to the appropriate list so that future instructions can be 8076 // chained up correctly. 8077 SDValue OutChain = Result.getValue(1); 8078 switch (EB) { 8079 case fp::ExceptionBehavior::ebIgnore: 8080 // The only reason why ebIgnore nodes still need to be chained is that 8081 // they might depend on the current rounding mode, and therefore must 8082 // not be moved across instruction that may change that mode. 8083 [[fallthrough]]; 8084 case fp::ExceptionBehavior::ebMayTrap: 8085 // These must not be moved across calls or instructions that may change 8086 // floating-point exception masks. 8087 PendingConstrainedFP.push_back(OutChain); 8088 break; 8089 case fp::ExceptionBehavior::ebStrict: 8090 // These must not be moved across calls or instructions that may change 8091 // floating-point exception masks or read floating-point exception flags. 8092 // In addition, they cannot be optimized out even if unused. 8093 PendingConstrainedFPStrict.push_back(OutChain); 8094 break; 8095 } 8096 }; 8097 8098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8099 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8100 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8101 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8102 8103 SDNodeFlags Flags; 8104 if (EB == fp::ExceptionBehavior::ebIgnore) 8105 Flags.setNoFPExcept(true); 8106 8107 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8108 Flags.copyFMF(*FPOp); 8109 8110 unsigned Opcode; 8111 switch (FPI.getIntrinsicID()) { 8112 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8113 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8114 case Intrinsic::INTRINSIC: \ 8115 Opcode = ISD::STRICT_##DAGN; \ 8116 break; 8117 #include "llvm/IR/ConstrainedOps.def" 8118 case Intrinsic::experimental_constrained_fmuladd: { 8119 Opcode = ISD::STRICT_FMA; 8120 // Break fmuladd into fmul and fadd. 8121 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8122 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8123 Opers.pop_back(); 8124 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8125 pushOutChain(Mul, EB); 8126 Opcode = ISD::STRICT_FADD; 8127 Opers.clear(); 8128 Opers.push_back(Mul.getValue(1)); 8129 Opers.push_back(Mul.getValue(0)); 8130 Opers.push_back(getValue(FPI.getArgOperand(2))); 8131 } 8132 break; 8133 } 8134 } 8135 8136 // A few strict DAG nodes carry additional operands that are not 8137 // set up by the default code above. 8138 switch (Opcode) { 8139 default: break; 8140 case ISD::STRICT_FP_ROUND: 8141 Opers.push_back( 8142 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8143 break; 8144 case ISD::STRICT_FSETCC: 8145 case ISD::STRICT_FSETCCS: { 8146 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8147 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8148 if (TM.Options.NoNaNsFPMath) 8149 Condition = getFCmpCodeWithoutNaN(Condition); 8150 Opers.push_back(DAG.getCondCode(Condition)); 8151 break; 8152 } 8153 } 8154 8155 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8156 pushOutChain(Result, EB); 8157 8158 SDValue FPResult = Result.getValue(0); 8159 setValue(&FPI, FPResult); 8160 } 8161 8162 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8163 std::optional<unsigned> ResOPC; 8164 switch (VPIntrin.getIntrinsicID()) { 8165 case Intrinsic::vp_ctlz: { 8166 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8167 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8168 break; 8169 } 8170 case Intrinsic::vp_cttz: { 8171 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8172 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8173 break; 8174 } 8175 case Intrinsic::vp_cttz_elts: { 8176 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8177 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8178 break; 8179 } 8180 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8181 case Intrinsic::VPID: \ 8182 ResOPC = ISD::VPSD; \ 8183 break; 8184 #include "llvm/IR/VPIntrinsics.def" 8185 } 8186 8187 if (!ResOPC) 8188 llvm_unreachable( 8189 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8190 8191 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8192 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8193 if (VPIntrin.getFastMathFlags().allowReassoc()) 8194 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8195 : ISD::VP_REDUCE_FMUL; 8196 } 8197 8198 return *ResOPC; 8199 } 8200 8201 void SelectionDAGBuilder::visitVPLoad( 8202 const VPIntrinsic &VPIntrin, EVT VT, 8203 const SmallVectorImpl<SDValue> &OpValues) { 8204 SDLoc DL = getCurSDLoc(); 8205 Value *PtrOperand = VPIntrin.getArgOperand(0); 8206 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8207 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8208 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8209 SDValue LD; 8210 // Do not serialize variable-length loads of constant memory with 8211 // anything. 8212 if (!Alignment) 8213 Alignment = DAG.getEVTAlign(VT); 8214 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8215 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8216 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8217 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8218 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8219 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8220 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8221 MMO, false /*IsExpanding */); 8222 if (AddToChain) 8223 PendingLoads.push_back(LD.getValue(1)); 8224 setValue(&VPIntrin, LD); 8225 } 8226 8227 void SelectionDAGBuilder::visitVPGather( 8228 const VPIntrinsic &VPIntrin, EVT VT, 8229 const SmallVectorImpl<SDValue> &OpValues) { 8230 SDLoc DL = getCurSDLoc(); 8231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8232 Value *PtrOperand = VPIntrin.getArgOperand(0); 8233 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8234 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8235 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8236 SDValue LD; 8237 if (!Alignment) 8238 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8239 unsigned AS = 8240 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8241 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8242 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8243 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8244 SDValue Base, Index, Scale; 8245 ISD::MemIndexType IndexType; 8246 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8247 this, VPIntrin.getParent(), 8248 VT.getScalarStoreSize()); 8249 if (!UniformBase) { 8250 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8251 Index = getValue(PtrOperand); 8252 IndexType = ISD::SIGNED_SCALED; 8253 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8254 } 8255 EVT IdxVT = Index.getValueType(); 8256 EVT EltTy = IdxVT.getVectorElementType(); 8257 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8258 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8259 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8260 } 8261 LD = DAG.getGatherVP( 8262 DAG.getVTList(VT, MVT::Other), VT, DL, 8263 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8264 IndexType); 8265 PendingLoads.push_back(LD.getValue(1)); 8266 setValue(&VPIntrin, LD); 8267 } 8268 8269 void SelectionDAGBuilder::visitVPStore( 8270 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8271 SDLoc DL = getCurSDLoc(); 8272 Value *PtrOperand = VPIntrin.getArgOperand(1); 8273 EVT VT = OpValues[0].getValueType(); 8274 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8275 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8276 SDValue ST; 8277 if (!Alignment) 8278 Alignment = DAG.getEVTAlign(VT); 8279 SDValue Ptr = OpValues[1]; 8280 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8281 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8282 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8283 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8284 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8285 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8286 /* IsTruncating */ false, /*IsCompressing*/ false); 8287 DAG.setRoot(ST); 8288 setValue(&VPIntrin, ST); 8289 } 8290 8291 void SelectionDAGBuilder::visitVPScatter( 8292 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8293 SDLoc DL = getCurSDLoc(); 8294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8295 Value *PtrOperand = VPIntrin.getArgOperand(1); 8296 EVT VT = OpValues[0].getValueType(); 8297 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8298 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8299 SDValue ST; 8300 if (!Alignment) 8301 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8302 unsigned AS = 8303 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8304 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8305 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8306 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8307 SDValue Base, Index, Scale; 8308 ISD::MemIndexType IndexType; 8309 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8310 this, VPIntrin.getParent(), 8311 VT.getScalarStoreSize()); 8312 if (!UniformBase) { 8313 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8314 Index = getValue(PtrOperand); 8315 IndexType = ISD::SIGNED_SCALED; 8316 Scale = 8317 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8318 } 8319 EVT IdxVT = Index.getValueType(); 8320 EVT EltTy = IdxVT.getVectorElementType(); 8321 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8322 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8323 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8324 } 8325 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8326 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8327 OpValues[2], OpValues[3]}, 8328 MMO, IndexType); 8329 DAG.setRoot(ST); 8330 setValue(&VPIntrin, ST); 8331 } 8332 8333 void SelectionDAGBuilder::visitVPStridedLoad( 8334 const VPIntrinsic &VPIntrin, EVT VT, 8335 const SmallVectorImpl<SDValue> &OpValues) { 8336 SDLoc DL = getCurSDLoc(); 8337 Value *PtrOperand = VPIntrin.getArgOperand(0); 8338 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8339 if (!Alignment) 8340 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8341 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8342 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8343 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8344 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8345 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8346 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8347 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8348 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8349 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8350 8351 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8352 OpValues[2], OpValues[3], MMO, 8353 false /*IsExpanding*/); 8354 8355 if (AddToChain) 8356 PendingLoads.push_back(LD.getValue(1)); 8357 setValue(&VPIntrin, LD); 8358 } 8359 8360 void SelectionDAGBuilder::visitVPStridedStore( 8361 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8362 SDLoc DL = getCurSDLoc(); 8363 Value *PtrOperand = VPIntrin.getArgOperand(1); 8364 EVT VT = OpValues[0].getValueType(); 8365 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8366 if (!Alignment) 8367 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8368 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8369 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8370 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8371 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8372 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8373 8374 SDValue ST = DAG.getStridedStoreVP( 8375 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8376 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8377 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8378 /*IsCompressing*/ false); 8379 8380 DAG.setRoot(ST); 8381 setValue(&VPIntrin, ST); 8382 } 8383 8384 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8386 SDLoc DL = getCurSDLoc(); 8387 8388 ISD::CondCode Condition; 8389 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8390 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8391 if (IsFP) { 8392 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8393 // flags, but calls that don't return floating-point types can't be 8394 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8395 Condition = getFCmpCondCode(CondCode); 8396 if (TM.Options.NoNaNsFPMath) 8397 Condition = getFCmpCodeWithoutNaN(Condition); 8398 } else { 8399 Condition = getICmpCondCode(CondCode); 8400 } 8401 8402 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8403 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8404 // #2 is the condition code 8405 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8406 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8407 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8408 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8409 "Unexpected target EVL type"); 8410 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8411 8412 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8413 VPIntrin.getType()); 8414 setValue(&VPIntrin, 8415 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8416 } 8417 8418 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8419 const VPIntrinsic &VPIntrin) { 8420 SDLoc DL = getCurSDLoc(); 8421 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8422 8423 auto IID = VPIntrin.getIntrinsicID(); 8424 8425 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8426 return visitVPCmp(*CmpI); 8427 8428 SmallVector<EVT, 4> ValueVTs; 8429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8430 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8431 SDVTList VTs = DAG.getVTList(ValueVTs); 8432 8433 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8434 8435 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8436 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8437 "Unexpected target EVL type"); 8438 8439 // Request operands. 8440 SmallVector<SDValue, 7> OpValues; 8441 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8442 auto Op = getValue(VPIntrin.getArgOperand(I)); 8443 if (I == EVLParamPos) 8444 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8445 OpValues.push_back(Op); 8446 } 8447 8448 switch (Opcode) { 8449 default: { 8450 SDNodeFlags SDFlags; 8451 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8452 SDFlags.copyFMF(*FPMO); 8453 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8454 setValue(&VPIntrin, Result); 8455 break; 8456 } 8457 case ISD::VP_LOAD: 8458 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8459 break; 8460 case ISD::VP_GATHER: 8461 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8462 break; 8463 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8464 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8465 break; 8466 case ISD::VP_STORE: 8467 visitVPStore(VPIntrin, OpValues); 8468 break; 8469 case ISD::VP_SCATTER: 8470 visitVPScatter(VPIntrin, OpValues); 8471 break; 8472 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8473 visitVPStridedStore(VPIntrin, OpValues); 8474 break; 8475 case ISD::VP_FMULADD: { 8476 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8477 SDNodeFlags SDFlags; 8478 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8479 SDFlags.copyFMF(*FPMO); 8480 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8481 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8482 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8483 } else { 8484 SDValue Mul = DAG.getNode( 8485 ISD::VP_FMUL, DL, VTs, 8486 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8487 SDValue Add = 8488 DAG.getNode(ISD::VP_FADD, DL, VTs, 8489 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8490 setValue(&VPIntrin, Add); 8491 } 8492 break; 8493 } 8494 case ISD::VP_IS_FPCLASS: { 8495 const DataLayout DLayout = DAG.getDataLayout(); 8496 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8497 auto Constant = OpValues[1]->getAsZExtVal(); 8498 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8499 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8500 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8501 setValue(&VPIntrin, V); 8502 return; 8503 } 8504 case ISD::VP_INTTOPTR: { 8505 SDValue N = OpValues[0]; 8506 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8507 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8508 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8509 OpValues[2]); 8510 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8511 OpValues[2]); 8512 setValue(&VPIntrin, N); 8513 break; 8514 } 8515 case ISD::VP_PTRTOINT: { 8516 SDValue N = OpValues[0]; 8517 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8518 VPIntrin.getType()); 8519 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8520 VPIntrin.getOperand(0)->getType()); 8521 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8522 OpValues[2]); 8523 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8524 OpValues[2]); 8525 setValue(&VPIntrin, N); 8526 break; 8527 } 8528 case ISD::VP_ABS: 8529 case ISD::VP_CTLZ: 8530 case ISD::VP_CTLZ_ZERO_UNDEF: 8531 case ISD::VP_CTTZ: 8532 case ISD::VP_CTTZ_ZERO_UNDEF: 8533 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8534 case ISD::VP_CTTZ_ELTS: { 8535 SDValue Result = 8536 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8537 setValue(&VPIntrin, Result); 8538 break; 8539 } 8540 } 8541 } 8542 8543 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8544 const BasicBlock *EHPadBB, 8545 MCSymbol *&BeginLabel) { 8546 MachineFunction &MF = DAG.getMachineFunction(); 8547 MachineModuleInfo &MMI = MF.getMMI(); 8548 8549 // Insert a label before the invoke call to mark the try range. This can be 8550 // used to detect deletion of the invoke via the MachineModuleInfo. 8551 BeginLabel = MMI.getContext().createTempSymbol(); 8552 8553 // For SjLj, keep track of which landing pads go with which invokes 8554 // so as to maintain the ordering of pads in the LSDA. 8555 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8556 if (CallSiteIndex) { 8557 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8558 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8559 8560 // Now that the call site is handled, stop tracking it. 8561 MMI.setCurrentCallSite(0); 8562 } 8563 8564 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8565 } 8566 8567 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8568 const BasicBlock *EHPadBB, 8569 MCSymbol *BeginLabel) { 8570 assert(BeginLabel && "BeginLabel should've been set"); 8571 8572 MachineFunction &MF = DAG.getMachineFunction(); 8573 MachineModuleInfo &MMI = MF.getMMI(); 8574 8575 // Insert a label at the end of the invoke call to mark the try range. This 8576 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8577 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8578 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8579 8580 // Inform MachineModuleInfo of range. 8581 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8582 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8583 // actually use outlined funclets and their LSDA info style. 8584 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8585 assert(II && "II should've been set"); 8586 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8587 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8588 } else if (!isScopedEHPersonality(Pers)) { 8589 assert(EHPadBB); 8590 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8591 } 8592 8593 return Chain; 8594 } 8595 8596 std::pair<SDValue, SDValue> 8597 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8598 const BasicBlock *EHPadBB) { 8599 MCSymbol *BeginLabel = nullptr; 8600 8601 if (EHPadBB) { 8602 // Both PendingLoads and PendingExports must be flushed here; 8603 // this call might not return. 8604 (void)getRoot(); 8605 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8606 CLI.setChain(getRoot()); 8607 } 8608 8609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8610 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8611 8612 assert((CLI.IsTailCall || Result.second.getNode()) && 8613 "Non-null chain expected with non-tail call!"); 8614 assert((Result.second.getNode() || !Result.first.getNode()) && 8615 "Null value expected with tail call!"); 8616 8617 if (!Result.second.getNode()) { 8618 // As a special case, a null chain means that a tail call has been emitted 8619 // and the DAG root is already updated. 8620 HasTailCall = true; 8621 8622 // Since there's no actual continuation from this block, nothing can be 8623 // relying on us setting vregs for them. 8624 PendingExports.clear(); 8625 } else { 8626 DAG.setRoot(Result.second); 8627 } 8628 8629 if (EHPadBB) { 8630 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8631 BeginLabel)); 8632 Result.second = getRoot(); 8633 } 8634 8635 return Result; 8636 } 8637 8638 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8639 bool isTailCall, bool isMustTailCall, 8640 const BasicBlock *EHPadBB, 8641 const TargetLowering::PtrAuthInfo *PAI) { 8642 auto &DL = DAG.getDataLayout(); 8643 FunctionType *FTy = CB.getFunctionType(); 8644 Type *RetTy = CB.getType(); 8645 8646 TargetLowering::ArgListTy Args; 8647 Args.reserve(CB.arg_size()); 8648 8649 const Value *SwiftErrorVal = nullptr; 8650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8651 8652 if (isTailCall) { 8653 // Avoid emitting tail calls in functions with the disable-tail-calls 8654 // attribute. 8655 auto *Caller = CB.getParent()->getParent(); 8656 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8657 "true" && !isMustTailCall) 8658 isTailCall = false; 8659 8660 // We can't tail call inside a function with a swifterror argument. Lowering 8661 // does not support this yet. It would have to move into the swifterror 8662 // register before the call. 8663 if (TLI.supportSwiftError() && 8664 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8665 isTailCall = false; 8666 } 8667 8668 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8669 TargetLowering::ArgListEntry Entry; 8670 const Value *V = *I; 8671 8672 // Skip empty types 8673 if (V->getType()->isEmptyTy()) 8674 continue; 8675 8676 SDValue ArgNode = getValue(V); 8677 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8678 8679 Entry.setAttributes(&CB, I - CB.arg_begin()); 8680 8681 // Use swifterror virtual register as input to the call. 8682 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8683 SwiftErrorVal = V; 8684 // We find the virtual register for the actual swifterror argument. 8685 // Instead of using the Value, we use the virtual register instead. 8686 Entry.Node = 8687 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8688 EVT(TLI.getPointerTy(DL))); 8689 } 8690 8691 Args.push_back(Entry); 8692 8693 // If we have an explicit sret argument that is an Instruction, (i.e., it 8694 // might point to function-local memory), we can't meaningfully tail-call. 8695 if (Entry.IsSRet && isa<Instruction>(V)) 8696 isTailCall = false; 8697 } 8698 8699 // If call site has a cfguardtarget operand bundle, create and add an 8700 // additional ArgListEntry. 8701 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8702 TargetLowering::ArgListEntry Entry; 8703 Value *V = Bundle->Inputs[0]; 8704 SDValue ArgNode = getValue(V); 8705 Entry.Node = ArgNode; 8706 Entry.Ty = V->getType(); 8707 Entry.IsCFGuardTarget = true; 8708 Args.push_back(Entry); 8709 } 8710 8711 // Check if target-independent constraints permit a tail call here. 8712 // Target-dependent constraints are checked within TLI->LowerCallTo. 8713 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8714 isTailCall = false; 8715 8716 // Disable tail calls if there is an swifterror argument. Targets have not 8717 // been updated to support tail calls. 8718 if (TLI.supportSwiftError() && SwiftErrorVal) 8719 isTailCall = false; 8720 8721 ConstantInt *CFIType = nullptr; 8722 if (CB.isIndirectCall()) { 8723 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8724 if (!TLI.supportKCFIBundles()) 8725 report_fatal_error( 8726 "Target doesn't support calls with kcfi operand bundles."); 8727 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8728 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8729 } 8730 } 8731 8732 SDValue ConvControlToken; 8733 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8734 auto *Token = Bundle->Inputs[0].get(); 8735 ConvControlToken = getValue(Token); 8736 } 8737 8738 TargetLowering::CallLoweringInfo CLI(DAG); 8739 CLI.setDebugLoc(getCurSDLoc()) 8740 .setChain(getRoot()) 8741 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8742 .setTailCall(isTailCall) 8743 .setConvergent(CB.isConvergent()) 8744 .setIsPreallocated( 8745 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8746 .setCFIType(CFIType) 8747 .setConvergenceControlToken(ConvControlToken); 8748 8749 // Set the pointer authentication info if we have it. 8750 if (PAI) { 8751 if (!TLI.supportPtrAuthBundles()) 8752 report_fatal_error( 8753 "This target doesn't support calls with ptrauth operand bundles."); 8754 CLI.setPtrAuth(*PAI); 8755 } 8756 8757 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8758 8759 if (Result.first.getNode()) { 8760 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8761 setValue(&CB, Result.first); 8762 } 8763 8764 // The last element of CLI.InVals has the SDValue for swifterror return. 8765 // Here we copy it to a virtual register and update SwiftErrorMap for 8766 // book-keeping. 8767 if (SwiftErrorVal && TLI.supportSwiftError()) { 8768 // Get the last element of InVals. 8769 SDValue Src = CLI.InVals.back(); 8770 Register VReg = 8771 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8772 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8773 DAG.setRoot(CopyNode); 8774 } 8775 } 8776 8777 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8778 SelectionDAGBuilder &Builder) { 8779 // Check to see if this load can be trivially constant folded, e.g. if the 8780 // input is from a string literal. 8781 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8782 // Cast pointer to the type we really want to load. 8783 Type *LoadTy = 8784 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8785 if (LoadVT.isVector()) 8786 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8787 8788 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8789 PointerType::getUnqual(LoadTy)); 8790 8791 if (const Constant *LoadCst = 8792 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8793 LoadTy, Builder.DAG.getDataLayout())) 8794 return Builder.getValue(LoadCst); 8795 } 8796 8797 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8798 // still constant memory, the input chain can be the entry node. 8799 SDValue Root; 8800 bool ConstantMemory = false; 8801 8802 // Do not serialize (non-volatile) loads of constant memory with anything. 8803 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8804 Root = Builder.DAG.getEntryNode(); 8805 ConstantMemory = true; 8806 } else { 8807 // Do not serialize non-volatile loads against each other. 8808 Root = Builder.DAG.getRoot(); 8809 } 8810 8811 SDValue Ptr = Builder.getValue(PtrVal); 8812 SDValue LoadVal = 8813 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8814 MachinePointerInfo(PtrVal), Align(1)); 8815 8816 if (!ConstantMemory) 8817 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8818 return LoadVal; 8819 } 8820 8821 /// Record the value for an instruction that produces an integer result, 8822 /// converting the type where necessary. 8823 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8824 SDValue Value, 8825 bool IsSigned) { 8826 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8827 I.getType(), true); 8828 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8829 setValue(&I, Value); 8830 } 8831 8832 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8833 /// true and lower it. Otherwise return false, and it will be lowered like a 8834 /// normal call. 8835 /// The caller already checked that \p I calls the appropriate LibFunc with a 8836 /// correct prototype. 8837 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8838 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8839 const Value *Size = I.getArgOperand(2); 8840 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8841 if (CSize && CSize->getZExtValue() == 0) { 8842 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8843 I.getType(), true); 8844 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8845 return true; 8846 } 8847 8848 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8849 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8850 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8851 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8852 if (Res.first.getNode()) { 8853 processIntegerCallValue(I, Res.first, true); 8854 PendingLoads.push_back(Res.second); 8855 return true; 8856 } 8857 8858 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8859 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8860 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8861 return false; 8862 8863 // If the target has a fast compare for the given size, it will return a 8864 // preferred load type for that size. Require that the load VT is legal and 8865 // that the target supports unaligned loads of that type. Otherwise, return 8866 // INVALID. 8867 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8869 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8870 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8871 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8872 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8873 // TODO: Check alignment of src and dest ptrs. 8874 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8875 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8876 if (!TLI.isTypeLegal(LVT) || 8877 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8878 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8879 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8880 } 8881 8882 return LVT; 8883 }; 8884 8885 // This turns into unaligned loads. We only do this if the target natively 8886 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8887 // we'll only produce a small number of byte loads. 8888 MVT LoadVT; 8889 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8890 switch (NumBitsToCompare) { 8891 default: 8892 return false; 8893 case 16: 8894 LoadVT = MVT::i16; 8895 break; 8896 case 32: 8897 LoadVT = MVT::i32; 8898 break; 8899 case 64: 8900 case 128: 8901 case 256: 8902 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8903 break; 8904 } 8905 8906 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8907 return false; 8908 8909 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8910 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8911 8912 // Bitcast to a wide integer type if the loads are vectors. 8913 if (LoadVT.isVector()) { 8914 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8915 LoadL = DAG.getBitcast(CmpVT, LoadL); 8916 LoadR = DAG.getBitcast(CmpVT, LoadR); 8917 } 8918 8919 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8920 processIntegerCallValue(I, Cmp, false); 8921 return true; 8922 } 8923 8924 /// See if we can lower a memchr call into an optimized form. If so, return 8925 /// true and lower it. Otherwise return false, and it will be lowered like a 8926 /// normal call. 8927 /// The caller already checked that \p I calls the appropriate LibFunc with a 8928 /// correct prototype. 8929 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8930 const Value *Src = I.getArgOperand(0); 8931 const Value *Char = I.getArgOperand(1); 8932 const Value *Length = I.getArgOperand(2); 8933 8934 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8935 std::pair<SDValue, SDValue> Res = 8936 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8937 getValue(Src), getValue(Char), getValue(Length), 8938 MachinePointerInfo(Src)); 8939 if (Res.first.getNode()) { 8940 setValue(&I, Res.first); 8941 PendingLoads.push_back(Res.second); 8942 return true; 8943 } 8944 8945 return false; 8946 } 8947 8948 /// See if we can lower a mempcpy call into an optimized form. If so, return 8949 /// true and lower it. Otherwise return false, and it will be lowered like a 8950 /// normal call. 8951 /// The caller already checked that \p I calls the appropriate LibFunc with a 8952 /// correct prototype. 8953 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8954 SDValue Dst = getValue(I.getArgOperand(0)); 8955 SDValue Src = getValue(I.getArgOperand(1)); 8956 SDValue Size = getValue(I.getArgOperand(2)); 8957 8958 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8959 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8960 // DAG::getMemcpy needs Alignment to be defined. 8961 Align Alignment = std::min(DstAlign, SrcAlign); 8962 8963 SDLoc sdl = getCurSDLoc(); 8964 8965 // In the mempcpy context we need to pass in a false value for isTailCall 8966 // because the return pointer needs to be adjusted by the size of 8967 // the copied memory. 8968 SDValue Root = getMemoryRoot(); 8969 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8970 /*isTailCall=*/false, 8971 MachinePointerInfo(I.getArgOperand(0)), 8972 MachinePointerInfo(I.getArgOperand(1)), 8973 I.getAAMetadata()); 8974 assert(MC.getNode() != nullptr && 8975 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8976 DAG.setRoot(MC); 8977 8978 // Check if Size needs to be truncated or extended. 8979 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8980 8981 // Adjust return pointer to point just past the last dst byte. 8982 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8983 Dst, Size); 8984 setValue(&I, DstPlusSize); 8985 return true; 8986 } 8987 8988 /// See if we can lower a strcpy call into an optimized form. If so, return 8989 /// true and lower it, otherwise return false and it will be lowered like a 8990 /// normal call. 8991 /// The caller already checked that \p I calls the appropriate LibFunc with a 8992 /// correct prototype. 8993 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8994 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8995 8996 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8997 std::pair<SDValue, SDValue> Res = 8998 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8999 getValue(Arg0), getValue(Arg1), 9000 MachinePointerInfo(Arg0), 9001 MachinePointerInfo(Arg1), isStpcpy); 9002 if (Res.first.getNode()) { 9003 setValue(&I, Res.first); 9004 DAG.setRoot(Res.second); 9005 return true; 9006 } 9007 9008 return false; 9009 } 9010 9011 /// See if we can lower a strcmp call into an optimized form. If so, return 9012 /// true and lower it, otherwise return false and it will be lowered like a 9013 /// normal call. 9014 /// The caller already checked that \p I calls the appropriate LibFunc with a 9015 /// correct prototype. 9016 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9017 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9018 9019 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9020 std::pair<SDValue, SDValue> Res = 9021 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9022 getValue(Arg0), getValue(Arg1), 9023 MachinePointerInfo(Arg0), 9024 MachinePointerInfo(Arg1)); 9025 if (Res.first.getNode()) { 9026 processIntegerCallValue(I, Res.first, true); 9027 PendingLoads.push_back(Res.second); 9028 return true; 9029 } 9030 9031 return false; 9032 } 9033 9034 /// See if we can lower a strlen call into an optimized form. If so, return 9035 /// true and lower it, otherwise return false and it will be lowered like a 9036 /// normal call. 9037 /// The caller already checked that \p I calls the appropriate LibFunc with a 9038 /// correct prototype. 9039 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9040 const Value *Arg0 = I.getArgOperand(0); 9041 9042 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9043 std::pair<SDValue, SDValue> Res = 9044 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9045 getValue(Arg0), MachinePointerInfo(Arg0)); 9046 if (Res.first.getNode()) { 9047 processIntegerCallValue(I, Res.first, false); 9048 PendingLoads.push_back(Res.second); 9049 return true; 9050 } 9051 9052 return false; 9053 } 9054 9055 /// See if we can lower a strnlen call into an optimized form. If so, return 9056 /// true and lower it, otherwise return false and it will be lowered like a 9057 /// normal call. 9058 /// The caller already checked that \p I calls the appropriate LibFunc with a 9059 /// correct prototype. 9060 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9061 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9062 9063 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9064 std::pair<SDValue, SDValue> Res = 9065 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9066 getValue(Arg0), getValue(Arg1), 9067 MachinePointerInfo(Arg0)); 9068 if (Res.first.getNode()) { 9069 processIntegerCallValue(I, Res.first, false); 9070 PendingLoads.push_back(Res.second); 9071 return true; 9072 } 9073 9074 return false; 9075 } 9076 9077 /// See if we can lower a unary floating-point operation into an SDNode with 9078 /// the specified Opcode. If so, return true and lower it, otherwise return 9079 /// false and it will be lowered like a normal call. 9080 /// The caller already checked that \p I calls the appropriate LibFunc with a 9081 /// correct prototype. 9082 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9083 unsigned Opcode) { 9084 // We already checked this call's prototype; verify it doesn't modify errno. 9085 if (!I.onlyReadsMemory()) 9086 return false; 9087 9088 SDNodeFlags Flags; 9089 Flags.copyFMF(cast<FPMathOperator>(I)); 9090 9091 SDValue Tmp = getValue(I.getArgOperand(0)); 9092 setValue(&I, 9093 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9094 return true; 9095 } 9096 9097 /// See if we can lower a binary floating-point operation into an SDNode with 9098 /// the specified Opcode. If so, return true and lower it. Otherwise return 9099 /// false, and it will be lowered like a normal call. 9100 /// The caller already checked that \p I calls the appropriate LibFunc with a 9101 /// correct prototype. 9102 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9103 unsigned Opcode) { 9104 // We already checked this call's prototype; verify it doesn't modify errno. 9105 if (!I.onlyReadsMemory()) 9106 return false; 9107 9108 SDNodeFlags Flags; 9109 Flags.copyFMF(cast<FPMathOperator>(I)); 9110 9111 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9112 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9113 EVT VT = Tmp0.getValueType(); 9114 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9115 return true; 9116 } 9117 9118 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9119 // Handle inline assembly differently. 9120 if (I.isInlineAsm()) { 9121 visitInlineAsm(I); 9122 return; 9123 } 9124 9125 diagnoseDontCall(I); 9126 9127 if (Function *F = I.getCalledFunction()) { 9128 if (F->isDeclaration()) { 9129 // Is this an LLVM intrinsic or a target-specific intrinsic? 9130 unsigned IID = F->getIntrinsicID(); 9131 if (!IID) 9132 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9133 IID = II->getIntrinsicID(F); 9134 9135 if (IID) { 9136 visitIntrinsicCall(I, IID); 9137 return; 9138 } 9139 } 9140 9141 // Check for well-known libc/libm calls. If the function is internal, it 9142 // can't be a library call. Don't do the check if marked as nobuiltin for 9143 // some reason or the call site requires strict floating point semantics. 9144 LibFunc Func; 9145 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9146 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9147 LibInfo->hasOptimizedCodeGen(Func)) { 9148 switch (Func) { 9149 default: break; 9150 case LibFunc_bcmp: 9151 if (visitMemCmpBCmpCall(I)) 9152 return; 9153 break; 9154 case LibFunc_copysign: 9155 case LibFunc_copysignf: 9156 case LibFunc_copysignl: 9157 // We already checked this call's prototype; verify it doesn't modify 9158 // errno. 9159 if (I.onlyReadsMemory()) { 9160 SDValue LHS = getValue(I.getArgOperand(0)); 9161 SDValue RHS = getValue(I.getArgOperand(1)); 9162 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9163 LHS.getValueType(), LHS, RHS)); 9164 return; 9165 } 9166 break; 9167 case LibFunc_fabs: 9168 case LibFunc_fabsf: 9169 case LibFunc_fabsl: 9170 if (visitUnaryFloatCall(I, ISD::FABS)) 9171 return; 9172 break; 9173 case LibFunc_fmin: 9174 case LibFunc_fminf: 9175 case LibFunc_fminl: 9176 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9177 return; 9178 break; 9179 case LibFunc_fmax: 9180 case LibFunc_fmaxf: 9181 case LibFunc_fmaxl: 9182 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9183 return; 9184 break; 9185 case LibFunc_sin: 9186 case LibFunc_sinf: 9187 case LibFunc_sinl: 9188 if (visitUnaryFloatCall(I, ISD::FSIN)) 9189 return; 9190 break; 9191 case LibFunc_cos: 9192 case LibFunc_cosf: 9193 case LibFunc_cosl: 9194 if (visitUnaryFloatCall(I, ISD::FCOS)) 9195 return; 9196 break; 9197 case LibFunc_tan: 9198 case LibFunc_tanf: 9199 case LibFunc_tanl: 9200 if (visitUnaryFloatCall(I, ISD::FTAN)) 9201 return; 9202 break; 9203 case LibFunc_sqrt: 9204 case LibFunc_sqrtf: 9205 case LibFunc_sqrtl: 9206 case LibFunc_sqrt_finite: 9207 case LibFunc_sqrtf_finite: 9208 case LibFunc_sqrtl_finite: 9209 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9210 return; 9211 break; 9212 case LibFunc_floor: 9213 case LibFunc_floorf: 9214 case LibFunc_floorl: 9215 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9216 return; 9217 break; 9218 case LibFunc_nearbyint: 9219 case LibFunc_nearbyintf: 9220 case LibFunc_nearbyintl: 9221 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9222 return; 9223 break; 9224 case LibFunc_ceil: 9225 case LibFunc_ceilf: 9226 case LibFunc_ceill: 9227 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9228 return; 9229 break; 9230 case LibFunc_rint: 9231 case LibFunc_rintf: 9232 case LibFunc_rintl: 9233 if (visitUnaryFloatCall(I, ISD::FRINT)) 9234 return; 9235 break; 9236 case LibFunc_round: 9237 case LibFunc_roundf: 9238 case LibFunc_roundl: 9239 if (visitUnaryFloatCall(I, ISD::FROUND)) 9240 return; 9241 break; 9242 case LibFunc_trunc: 9243 case LibFunc_truncf: 9244 case LibFunc_truncl: 9245 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9246 return; 9247 break; 9248 case LibFunc_log2: 9249 case LibFunc_log2f: 9250 case LibFunc_log2l: 9251 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9252 return; 9253 break; 9254 case LibFunc_exp2: 9255 case LibFunc_exp2f: 9256 case LibFunc_exp2l: 9257 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9258 return; 9259 break; 9260 case LibFunc_exp10: 9261 case LibFunc_exp10f: 9262 case LibFunc_exp10l: 9263 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9264 return; 9265 break; 9266 case LibFunc_ldexp: 9267 case LibFunc_ldexpf: 9268 case LibFunc_ldexpl: 9269 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9270 return; 9271 break; 9272 case LibFunc_memcmp: 9273 if (visitMemCmpBCmpCall(I)) 9274 return; 9275 break; 9276 case LibFunc_mempcpy: 9277 if (visitMemPCpyCall(I)) 9278 return; 9279 break; 9280 case LibFunc_memchr: 9281 if (visitMemChrCall(I)) 9282 return; 9283 break; 9284 case LibFunc_strcpy: 9285 if (visitStrCpyCall(I, false)) 9286 return; 9287 break; 9288 case LibFunc_stpcpy: 9289 if (visitStrCpyCall(I, true)) 9290 return; 9291 break; 9292 case LibFunc_strcmp: 9293 if (visitStrCmpCall(I)) 9294 return; 9295 break; 9296 case LibFunc_strlen: 9297 if (visitStrLenCall(I)) 9298 return; 9299 break; 9300 case LibFunc_strnlen: 9301 if (visitStrNLenCall(I)) 9302 return; 9303 break; 9304 } 9305 } 9306 } 9307 9308 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9309 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9310 return; 9311 } 9312 9313 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9314 // have to do anything here to lower funclet bundles. 9315 // CFGuardTarget bundles are lowered in LowerCallTo. 9316 assert(!I.hasOperandBundlesOtherThan( 9317 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9318 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9319 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9320 LLVMContext::OB_convergencectrl}) && 9321 "Cannot lower calls with arbitrary operand bundles!"); 9322 9323 SDValue Callee = getValue(I.getCalledOperand()); 9324 9325 if (I.hasDeoptState()) 9326 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9327 else 9328 // Check if we can potentially perform a tail call. More detailed checking 9329 // is be done within LowerCallTo, after more information about the call is 9330 // known. 9331 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9332 } 9333 9334 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9335 const CallBase &CB, const BasicBlock *EHPadBB) { 9336 auto PAB = CB.getOperandBundle("ptrauth"); 9337 const Value *CalleeV = CB.getCalledOperand(); 9338 9339 // Gather the call ptrauth data from the operand bundle: 9340 // [ i32 <key>, i64 <discriminator> ] 9341 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9342 const Value *Discriminator = PAB->Inputs[1]; 9343 9344 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9345 assert(Discriminator->getType()->isIntegerTy(64) && 9346 "Invalid ptrauth discriminator"); 9347 9348 // Functions should never be ptrauth-called directly. 9349 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9350 9351 // Otherwise, do an authenticated indirect call. 9352 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9353 getValue(Discriminator)}; 9354 9355 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9356 EHPadBB, &PAI); 9357 } 9358 9359 namespace { 9360 9361 /// AsmOperandInfo - This contains information for each constraint that we are 9362 /// lowering. 9363 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9364 public: 9365 /// CallOperand - If this is the result output operand or a clobber 9366 /// this is null, otherwise it is the incoming operand to the CallInst. 9367 /// This gets modified as the asm is processed. 9368 SDValue CallOperand; 9369 9370 /// AssignedRegs - If this is a register or register class operand, this 9371 /// contains the set of register corresponding to the operand. 9372 RegsForValue AssignedRegs; 9373 9374 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9375 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9376 } 9377 9378 /// Whether or not this operand accesses memory 9379 bool hasMemory(const TargetLowering &TLI) const { 9380 // Indirect operand accesses access memory. 9381 if (isIndirect) 9382 return true; 9383 9384 for (const auto &Code : Codes) 9385 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9386 return true; 9387 9388 return false; 9389 } 9390 }; 9391 9392 9393 } // end anonymous namespace 9394 9395 /// Make sure that the output operand \p OpInfo and its corresponding input 9396 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9397 /// out). 9398 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9399 SDISelAsmOperandInfo &MatchingOpInfo, 9400 SelectionDAG &DAG) { 9401 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9402 return; 9403 9404 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9405 const auto &TLI = DAG.getTargetLoweringInfo(); 9406 9407 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9408 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9409 OpInfo.ConstraintVT); 9410 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9411 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9412 MatchingOpInfo.ConstraintVT); 9413 if ((OpInfo.ConstraintVT.isInteger() != 9414 MatchingOpInfo.ConstraintVT.isInteger()) || 9415 (MatchRC.second != InputRC.second)) { 9416 // FIXME: error out in a more elegant fashion 9417 report_fatal_error("Unsupported asm: input constraint" 9418 " with a matching output constraint of" 9419 " incompatible type!"); 9420 } 9421 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9422 } 9423 9424 /// Get a direct memory input to behave well as an indirect operand. 9425 /// This may introduce stores, hence the need for a \p Chain. 9426 /// \return The (possibly updated) chain. 9427 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9428 SDISelAsmOperandInfo &OpInfo, 9429 SelectionDAG &DAG) { 9430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9431 9432 // If we don't have an indirect input, put it in the constpool if we can, 9433 // otherwise spill it to a stack slot. 9434 // TODO: This isn't quite right. We need to handle these according to 9435 // the addressing mode that the constraint wants. Also, this may take 9436 // an additional register for the computation and we don't want that 9437 // either. 9438 9439 // If the operand is a float, integer, or vector constant, spill to a 9440 // constant pool entry to get its address. 9441 const Value *OpVal = OpInfo.CallOperandVal; 9442 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9443 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9444 OpInfo.CallOperand = DAG.getConstantPool( 9445 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9446 return Chain; 9447 } 9448 9449 // Otherwise, create a stack slot and emit a store to it before the asm. 9450 Type *Ty = OpVal->getType(); 9451 auto &DL = DAG.getDataLayout(); 9452 uint64_t TySize = DL.getTypeAllocSize(Ty); 9453 MachineFunction &MF = DAG.getMachineFunction(); 9454 int SSFI = MF.getFrameInfo().CreateStackObject( 9455 TySize, DL.getPrefTypeAlign(Ty), false); 9456 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9457 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9458 MachinePointerInfo::getFixedStack(MF, SSFI), 9459 TLI.getMemValueType(DL, Ty)); 9460 OpInfo.CallOperand = StackSlot; 9461 9462 return Chain; 9463 } 9464 9465 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9466 /// specified operand. We prefer to assign virtual registers, to allow the 9467 /// register allocator to handle the assignment process. However, if the asm 9468 /// uses features that we can't model on machineinstrs, we have SDISel do the 9469 /// allocation. This produces generally horrible, but correct, code. 9470 /// 9471 /// OpInfo describes the operand 9472 /// RefOpInfo describes the matching operand if any, the operand otherwise 9473 static std::optional<unsigned> 9474 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9475 SDISelAsmOperandInfo &OpInfo, 9476 SDISelAsmOperandInfo &RefOpInfo) { 9477 LLVMContext &Context = *DAG.getContext(); 9478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9479 9480 MachineFunction &MF = DAG.getMachineFunction(); 9481 SmallVector<unsigned, 4> Regs; 9482 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9483 9484 // No work to do for memory/address operands. 9485 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9486 OpInfo.ConstraintType == TargetLowering::C_Address) 9487 return std::nullopt; 9488 9489 // If this is a constraint for a single physreg, or a constraint for a 9490 // register class, find it. 9491 unsigned AssignedReg; 9492 const TargetRegisterClass *RC; 9493 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9494 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9495 // RC is unset only on failure. Return immediately. 9496 if (!RC) 9497 return std::nullopt; 9498 9499 // Get the actual register value type. This is important, because the user 9500 // may have asked for (e.g.) the AX register in i32 type. We need to 9501 // remember that AX is actually i16 to get the right extension. 9502 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9503 9504 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9505 // If this is an FP operand in an integer register (or visa versa), or more 9506 // generally if the operand value disagrees with the register class we plan 9507 // to stick it in, fix the operand type. 9508 // 9509 // If this is an input value, the bitcast to the new type is done now. 9510 // Bitcast for output value is done at the end of visitInlineAsm(). 9511 if ((OpInfo.Type == InlineAsm::isOutput || 9512 OpInfo.Type == InlineAsm::isInput) && 9513 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9514 // Try to convert to the first EVT that the reg class contains. If the 9515 // types are identical size, use a bitcast to convert (e.g. two differing 9516 // vector types). Note: output bitcast is done at the end of 9517 // visitInlineAsm(). 9518 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9519 // Exclude indirect inputs while they are unsupported because the code 9520 // to perform the load is missing and thus OpInfo.CallOperand still 9521 // refers to the input address rather than the pointed-to value. 9522 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9523 OpInfo.CallOperand = 9524 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9525 OpInfo.ConstraintVT = RegVT; 9526 // If the operand is an FP value and we want it in integer registers, 9527 // use the corresponding integer type. This turns an f64 value into 9528 // i64, which can be passed with two i32 values on a 32-bit machine. 9529 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9530 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9531 if (OpInfo.Type == InlineAsm::isInput) 9532 OpInfo.CallOperand = 9533 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9534 OpInfo.ConstraintVT = VT; 9535 } 9536 } 9537 } 9538 9539 // No need to allocate a matching input constraint since the constraint it's 9540 // matching to has already been allocated. 9541 if (OpInfo.isMatchingInputConstraint()) 9542 return std::nullopt; 9543 9544 EVT ValueVT = OpInfo.ConstraintVT; 9545 if (OpInfo.ConstraintVT == MVT::Other) 9546 ValueVT = RegVT; 9547 9548 // Initialize NumRegs. 9549 unsigned NumRegs = 1; 9550 if (OpInfo.ConstraintVT != MVT::Other) 9551 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9552 9553 // If this is a constraint for a specific physical register, like {r17}, 9554 // assign it now. 9555 9556 // If this associated to a specific register, initialize iterator to correct 9557 // place. If virtual, make sure we have enough registers 9558 9559 // Initialize iterator if necessary 9560 TargetRegisterClass::iterator I = RC->begin(); 9561 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9562 9563 // Do not check for single registers. 9564 if (AssignedReg) { 9565 I = std::find(I, RC->end(), AssignedReg); 9566 if (I == RC->end()) { 9567 // RC does not contain the selected register, which indicates a 9568 // mismatch between the register and the required type/bitwidth. 9569 return {AssignedReg}; 9570 } 9571 } 9572 9573 for (; NumRegs; --NumRegs, ++I) { 9574 assert(I != RC->end() && "Ran out of registers to allocate!"); 9575 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9576 Regs.push_back(R); 9577 } 9578 9579 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9580 return std::nullopt; 9581 } 9582 9583 static unsigned 9584 findMatchingInlineAsmOperand(unsigned OperandNo, 9585 const std::vector<SDValue> &AsmNodeOperands) { 9586 // Scan until we find the definition we already emitted of this operand. 9587 unsigned CurOp = InlineAsm::Op_FirstOperand; 9588 for (; OperandNo; --OperandNo) { 9589 // Advance to the next operand. 9590 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9591 const InlineAsm::Flag F(OpFlag); 9592 assert( 9593 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9594 "Skipped past definitions?"); 9595 CurOp += F.getNumOperandRegisters() + 1; 9596 } 9597 return CurOp; 9598 } 9599 9600 namespace { 9601 9602 class ExtraFlags { 9603 unsigned Flags = 0; 9604 9605 public: 9606 explicit ExtraFlags(const CallBase &Call) { 9607 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9608 if (IA->hasSideEffects()) 9609 Flags |= InlineAsm::Extra_HasSideEffects; 9610 if (IA->isAlignStack()) 9611 Flags |= InlineAsm::Extra_IsAlignStack; 9612 if (Call.isConvergent()) 9613 Flags |= InlineAsm::Extra_IsConvergent; 9614 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9615 } 9616 9617 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9618 // Ideally, we would only check against memory constraints. However, the 9619 // meaning of an Other constraint can be target-specific and we can't easily 9620 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9621 // for Other constraints as well. 9622 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9623 OpInfo.ConstraintType == TargetLowering::C_Other) { 9624 if (OpInfo.Type == InlineAsm::isInput) 9625 Flags |= InlineAsm::Extra_MayLoad; 9626 else if (OpInfo.Type == InlineAsm::isOutput) 9627 Flags |= InlineAsm::Extra_MayStore; 9628 else if (OpInfo.Type == InlineAsm::isClobber) 9629 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9630 } 9631 } 9632 9633 unsigned get() const { return Flags; } 9634 }; 9635 9636 } // end anonymous namespace 9637 9638 static bool isFunction(SDValue Op) { 9639 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9640 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9641 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9642 9643 // In normal "call dllimport func" instruction (non-inlineasm) it force 9644 // indirect access by specifing call opcode. And usually specially print 9645 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9646 // not do in this way now. (In fact, this is similar with "Data Access" 9647 // action). So here we ignore dllimport function. 9648 if (Fn && !Fn->hasDLLImportStorageClass()) 9649 return true; 9650 } 9651 } 9652 return false; 9653 } 9654 9655 /// visitInlineAsm - Handle a call to an InlineAsm object. 9656 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9657 const BasicBlock *EHPadBB) { 9658 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9659 9660 /// ConstraintOperands - Information about all of the constraints. 9661 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9662 9663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9664 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9665 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9666 9667 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9668 // AsmDialect, MayLoad, MayStore). 9669 bool HasSideEffect = IA->hasSideEffects(); 9670 ExtraFlags ExtraInfo(Call); 9671 9672 for (auto &T : TargetConstraints) { 9673 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9674 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9675 9676 if (OpInfo.CallOperandVal) 9677 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9678 9679 if (!HasSideEffect) 9680 HasSideEffect = OpInfo.hasMemory(TLI); 9681 9682 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9683 // FIXME: Could we compute this on OpInfo rather than T? 9684 9685 // Compute the constraint code and ConstraintType to use. 9686 TLI.ComputeConstraintToUse(T, SDValue()); 9687 9688 if (T.ConstraintType == TargetLowering::C_Immediate && 9689 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9690 // We've delayed emitting a diagnostic like the "n" constraint because 9691 // inlining could cause an integer showing up. 9692 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9693 "' expects an integer constant " 9694 "expression"); 9695 9696 ExtraInfo.update(T); 9697 } 9698 9699 // We won't need to flush pending loads if this asm doesn't touch 9700 // memory and is nonvolatile. 9701 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9702 9703 bool EmitEHLabels = isa<InvokeInst>(Call); 9704 if (EmitEHLabels) { 9705 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9706 } 9707 bool IsCallBr = isa<CallBrInst>(Call); 9708 9709 if (IsCallBr || EmitEHLabels) { 9710 // If this is a callbr or invoke we need to flush pending exports since 9711 // inlineasm_br and invoke are terminators. 9712 // We need to do this before nodes are glued to the inlineasm_br node. 9713 Chain = getControlRoot(); 9714 } 9715 9716 MCSymbol *BeginLabel = nullptr; 9717 if (EmitEHLabels) { 9718 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9719 } 9720 9721 int OpNo = -1; 9722 SmallVector<StringRef> AsmStrs; 9723 IA->collectAsmStrs(AsmStrs); 9724 9725 // Second pass over the constraints: compute which constraint option to use. 9726 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9727 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9728 OpNo++; 9729 9730 // If this is an output operand with a matching input operand, look up the 9731 // matching input. If their types mismatch, e.g. one is an integer, the 9732 // other is floating point, or their sizes are different, flag it as an 9733 // error. 9734 if (OpInfo.hasMatchingInput()) { 9735 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9736 patchMatchingInput(OpInfo, Input, DAG); 9737 } 9738 9739 // Compute the constraint code and ConstraintType to use. 9740 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9741 9742 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9743 OpInfo.Type == InlineAsm::isClobber) || 9744 OpInfo.ConstraintType == TargetLowering::C_Address) 9745 continue; 9746 9747 // In Linux PIC model, there are 4 cases about value/label addressing: 9748 // 9749 // 1: Function call or Label jmp inside the module. 9750 // 2: Data access (such as global variable, static variable) inside module. 9751 // 3: Function call or Label jmp outside the module. 9752 // 4: Data access (such as global variable) outside the module. 9753 // 9754 // Due to current llvm inline asm architecture designed to not "recognize" 9755 // the asm code, there are quite troubles for us to treat mem addressing 9756 // differently for same value/adress used in different instuctions. 9757 // For example, in pic model, call a func may in plt way or direclty 9758 // pc-related, but lea/mov a function adress may use got. 9759 // 9760 // Here we try to "recognize" function call for the case 1 and case 3 in 9761 // inline asm. And try to adjust the constraint for them. 9762 // 9763 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9764 // label, so here we don't handle jmp function label now, but we need to 9765 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9766 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9767 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9768 TM.getCodeModel() != CodeModel::Large) { 9769 OpInfo.isIndirect = false; 9770 OpInfo.ConstraintType = TargetLowering::C_Address; 9771 } 9772 9773 // If this is a memory input, and if the operand is not indirect, do what we 9774 // need to provide an address for the memory input. 9775 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9776 !OpInfo.isIndirect) { 9777 assert((OpInfo.isMultipleAlternative || 9778 (OpInfo.Type == InlineAsm::isInput)) && 9779 "Can only indirectify direct input operands!"); 9780 9781 // Memory operands really want the address of the value. 9782 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9783 9784 // There is no longer a Value* corresponding to this operand. 9785 OpInfo.CallOperandVal = nullptr; 9786 9787 // It is now an indirect operand. 9788 OpInfo.isIndirect = true; 9789 } 9790 9791 } 9792 9793 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9794 std::vector<SDValue> AsmNodeOperands; 9795 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9796 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9797 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9798 9799 // If we have a !srcloc metadata node associated with it, we want to attach 9800 // this to the ultimately generated inline asm machineinstr. To do this, we 9801 // pass in the third operand as this (potentially null) inline asm MDNode. 9802 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9803 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9804 9805 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9806 // bits as operand 3. 9807 AsmNodeOperands.push_back(DAG.getTargetConstant( 9808 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9809 9810 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9811 // this, assign virtual and physical registers for inputs and otput. 9812 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9813 // Assign Registers. 9814 SDISelAsmOperandInfo &RefOpInfo = 9815 OpInfo.isMatchingInputConstraint() 9816 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9817 : OpInfo; 9818 const auto RegError = 9819 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9820 if (RegError) { 9821 const MachineFunction &MF = DAG.getMachineFunction(); 9822 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9823 const char *RegName = TRI.getName(*RegError); 9824 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9825 "' allocated for constraint '" + 9826 Twine(OpInfo.ConstraintCode) + 9827 "' does not match required type"); 9828 return; 9829 } 9830 9831 auto DetectWriteToReservedRegister = [&]() { 9832 const MachineFunction &MF = DAG.getMachineFunction(); 9833 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9834 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9835 if (Register::isPhysicalRegister(Reg) && 9836 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9837 const char *RegName = TRI.getName(Reg); 9838 emitInlineAsmError(Call, "write to reserved register '" + 9839 Twine(RegName) + "'"); 9840 return true; 9841 } 9842 } 9843 return false; 9844 }; 9845 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9846 (OpInfo.Type == InlineAsm::isInput && 9847 !OpInfo.isMatchingInputConstraint())) && 9848 "Only address as input operand is allowed."); 9849 9850 switch (OpInfo.Type) { 9851 case InlineAsm::isOutput: 9852 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9853 const InlineAsm::ConstraintCode ConstraintID = 9854 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9855 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9856 "Failed to convert memory constraint code to constraint id."); 9857 9858 // Add information to the INLINEASM node to know about this output. 9859 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9860 OpFlags.setMemConstraint(ConstraintID); 9861 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9862 MVT::i32)); 9863 AsmNodeOperands.push_back(OpInfo.CallOperand); 9864 } else { 9865 // Otherwise, this outputs to a register (directly for C_Register / 9866 // C_RegisterClass, and a target-defined fashion for 9867 // C_Immediate/C_Other). Find a register that we can use. 9868 if (OpInfo.AssignedRegs.Regs.empty()) { 9869 emitInlineAsmError( 9870 Call, "couldn't allocate output register for constraint '" + 9871 Twine(OpInfo.ConstraintCode) + "'"); 9872 return; 9873 } 9874 9875 if (DetectWriteToReservedRegister()) 9876 return; 9877 9878 // Add information to the INLINEASM node to know that this register is 9879 // set. 9880 OpInfo.AssignedRegs.AddInlineAsmOperands( 9881 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9882 : InlineAsm::Kind::RegDef, 9883 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9884 } 9885 break; 9886 9887 case InlineAsm::isInput: 9888 case InlineAsm::isLabel: { 9889 SDValue InOperandVal = OpInfo.CallOperand; 9890 9891 if (OpInfo.isMatchingInputConstraint()) { 9892 // If this is required to match an output register we have already set, 9893 // just use its register. 9894 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9895 AsmNodeOperands); 9896 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9897 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9898 if (OpInfo.isIndirect) { 9899 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9900 emitInlineAsmError(Call, "inline asm not supported yet: " 9901 "don't know how to handle tied " 9902 "indirect register inputs"); 9903 return; 9904 } 9905 9906 SmallVector<unsigned, 4> Regs; 9907 MachineFunction &MF = DAG.getMachineFunction(); 9908 MachineRegisterInfo &MRI = MF.getRegInfo(); 9909 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9910 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9911 Register TiedReg = R->getReg(); 9912 MVT RegVT = R->getSimpleValueType(0); 9913 const TargetRegisterClass *RC = 9914 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9915 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9916 : TRI.getMinimalPhysRegClass(TiedReg); 9917 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9918 Regs.push_back(MRI.createVirtualRegister(RC)); 9919 9920 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9921 9922 SDLoc dl = getCurSDLoc(); 9923 // Use the produced MatchedRegs object to 9924 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9925 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9926 OpInfo.getMatchedOperand(), dl, DAG, 9927 AsmNodeOperands); 9928 break; 9929 } 9930 9931 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9932 assert(Flag.getNumOperandRegisters() == 1 && 9933 "Unexpected number of operands"); 9934 // Add information to the INLINEASM node to know about this input. 9935 // See InlineAsm.h isUseOperandTiedToDef. 9936 Flag.clearMemConstraint(); 9937 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9938 AsmNodeOperands.push_back(DAG.getTargetConstant( 9939 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9940 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9941 break; 9942 } 9943 9944 // Treat indirect 'X' constraint as memory. 9945 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9946 OpInfo.isIndirect) 9947 OpInfo.ConstraintType = TargetLowering::C_Memory; 9948 9949 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9950 OpInfo.ConstraintType == TargetLowering::C_Other) { 9951 std::vector<SDValue> Ops; 9952 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9953 Ops, DAG); 9954 if (Ops.empty()) { 9955 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9956 if (isa<ConstantSDNode>(InOperandVal)) { 9957 emitInlineAsmError(Call, "value out of range for constraint '" + 9958 Twine(OpInfo.ConstraintCode) + "'"); 9959 return; 9960 } 9961 9962 emitInlineAsmError(Call, 9963 "invalid operand for inline asm constraint '" + 9964 Twine(OpInfo.ConstraintCode) + "'"); 9965 return; 9966 } 9967 9968 // Add information to the INLINEASM node to know about this input. 9969 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9970 AsmNodeOperands.push_back(DAG.getTargetConstant( 9971 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9972 llvm::append_range(AsmNodeOperands, Ops); 9973 break; 9974 } 9975 9976 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9977 assert((OpInfo.isIndirect || 9978 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9979 "Operand must be indirect to be a mem!"); 9980 assert(InOperandVal.getValueType() == 9981 TLI.getPointerTy(DAG.getDataLayout()) && 9982 "Memory operands expect pointer values"); 9983 9984 const InlineAsm::ConstraintCode ConstraintID = 9985 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9986 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9987 "Failed to convert memory constraint code to constraint id."); 9988 9989 // Add information to the INLINEASM node to know about this input. 9990 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9991 ResOpType.setMemConstraint(ConstraintID); 9992 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9993 getCurSDLoc(), 9994 MVT::i32)); 9995 AsmNodeOperands.push_back(InOperandVal); 9996 break; 9997 } 9998 9999 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10000 const InlineAsm::ConstraintCode ConstraintID = 10001 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10002 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10003 "Failed to convert memory constraint code to constraint id."); 10004 10005 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10006 10007 SDValue AsmOp = InOperandVal; 10008 if (isFunction(InOperandVal)) { 10009 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10010 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10011 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10012 InOperandVal.getValueType(), 10013 GA->getOffset()); 10014 } 10015 10016 // Add information to the INLINEASM node to know about this input. 10017 ResOpType.setMemConstraint(ConstraintID); 10018 10019 AsmNodeOperands.push_back( 10020 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10021 10022 AsmNodeOperands.push_back(AsmOp); 10023 break; 10024 } 10025 10026 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 10027 OpInfo.ConstraintType == TargetLowering::C_Register) && 10028 "Unknown constraint type!"); 10029 10030 // TODO: Support this. 10031 if (OpInfo.isIndirect) { 10032 emitInlineAsmError( 10033 Call, "Don't know how to handle indirect register inputs yet " 10034 "for constraint '" + 10035 Twine(OpInfo.ConstraintCode) + "'"); 10036 return; 10037 } 10038 10039 // Copy the input into the appropriate registers. 10040 if (OpInfo.AssignedRegs.Regs.empty()) { 10041 emitInlineAsmError(Call, 10042 "couldn't allocate input reg for constraint '" + 10043 Twine(OpInfo.ConstraintCode) + "'"); 10044 return; 10045 } 10046 10047 if (DetectWriteToReservedRegister()) 10048 return; 10049 10050 SDLoc dl = getCurSDLoc(); 10051 10052 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10053 &Call); 10054 10055 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10056 0, dl, DAG, AsmNodeOperands); 10057 break; 10058 } 10059 case InlineAsm::isClobber: 10060 // Add the clobbered value to the operand list, so that the register 10061 // allocator is aware that the physreg got clobbered. 10062 if (!OpInfo.AssignedRegs.Regs.empty()) 10063 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10064 false, 0, getCurSDLoc(), DAG, 10065 AsmNodeOperands); 10066 break; 10067 } 10068 } 10069 10070 // Finish up input operands. Set the input chain and add the flag last. 10071 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10072 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10073 10074 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10075 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10076 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10077 Glue = Chain.getValue(1); 10078 10079 // Do additional work to generate outputs. 10080 10081 SmallVector<EVT, 1> ResultVTs; 10082 SmallVector<SDValue, 1> ResultValues; 10083 SmallVector<SDValue, 8> OutChains; 10084 10085 llvm::Type *CallResultType = Call.getType(); 10086 ArrayRef<Type *> ResultTypes; 10087 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10088 ResultTypes = StructResult->elements(); 10089 else if (!CallResultType->isVoidTy()) 10090 ResultTypes = ArrayRef(CallResultType); 10091 10092 auto CurResultType = ResultTypes.begin(); 10093 auto handleRegAssign = [&](SDValue V) { 10094 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10095 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10096 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10097 ++CurResultType; 10098 // If the type of the inline asm call site return value is different but has 10099 // same size as the type of the asm output bitcast it. One example of this 10100 // is for vectors with different width / number of elements. This can 10101 // happen for register classes that can contain multiple different value 10102 // types. The preg or vreg allocated may not have the same VT as was 10103 // expected. 10104 // 10105 // This can also happen for a return value that disagrees with the register 10106 // class it is put in, eg. a double in a general-purpose register on a 10107 // 32-bit machine. 10108 if (ResultVT != V.getValueType() && 10109 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10110 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10111 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10112 V.getValueType().isInteger()) { 10113 // If a result value was tied to an input value, the computed result 10114 // may have a wider width than the expected result. Extract the 10115 // relevant portion. 10116 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10117 } 10118 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10119 ResultVTs.push_back(ResultVT); 10120 ResultValues.push_back(V); 10121 }; 10122 10123 // Deal with output operands. 10124 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10125 if (OpInfo.Type == InlineAsm::isOutput) { 10126 SDValue Val; 10127 // Skip trivial output operands. 10128 if (OpInfo.AssignedRegs.Regs.empty()) 10129 continue; 10130 10131 switch (OpInfo.ConstraintType) { 10132 case TargetLowering::C_Register: 10133 case TargetLowering::C_RegisterClass: 10134 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10135 Chain, &Glue, &Call); 10136 break; 10137 case TargetLowering::C_Immediate: 10138 case TargetLowering::C_Other: 10139 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10140 OpInfo, DAG); 10141 break; 10142 case TargetLowering::C_Memory: 10143 break; // Already handled. 10144 case TargetLowering::C_Address: 10145 break; // Silence warning. 10146 case TargetLowering::C_Unknown: 10147 assert(false && "Unexpected unknown constraint"); 10148 } 10149 10150 // Indirect output manifest as stores. Record output chains. 10151 if (OpInfo.isIndirect) { 10152 const Value *Ptr = OpInfo.CallOperandVal; 10153 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10154 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10155 MachinePointerInfo(Ptr)); 10156 OutChains.push_back(Store); 10157 } else { 10158 // generate CopyFromRegs to associated registers. 10159 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10160 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10161 for (const SDValue &V : Val->op_values()) 10162 handleRegAssign(V); 10163 } else 10164 handleRegAssign(Val); 10165 } 10166 } 10167 } 10168 10169 // Set results. 10170 if (!ResultValues.empty()) { 10171 assert(CurResultType == ResultTypes.end() && 10172 "Mismatch in number of ResultTypes"); 10173 assert(ResultValues.size() == ResultTypes.size() && 10174 "Mismatch in number of output operands in asm result"); 10175 10176 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10177 DAG.getVTList(ResultVTs), ResultValues); 10178 setValue(&Call, V); 10179 } 10180 10181 // Collect store chains. 10182 if (!OutChains.empty()) 10183 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10184 10185 if (EmitEHLabels) { 10186 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10187 } 10188 10189 // Only Update Root if inline assembly has a memory effect. 10190 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10191 EmitEHLabels) 10192 DAG.setRoot(Chain); 10193 } 10194 10195 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10196 const Twine &Message) { 10197 LLVMContext &Ctx = *DAG.getContext(); 10198 Ctx.emitError(&Call, Message); 10199 10200 // Make sure we leave the DAG in a valid state 10201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10202 SmallVector<EVT, 1> ValueVTs; 10203 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10204 10205 if (ValueVTs.empty()) 10206 return; 10207 10208 SmallVector<SDValue, 1> Ops; 10209 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10210 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10211 10212 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10213 } 10214 10215 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10216 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10217 MVT::Other, getRoot(), 10218 getValue(I.getArgOperand(0)), 10219 DAG.getSrcValue(I.getArgOperand(0)))); 10220 } 10221 10222 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10224 const DataLayout &DL = DAG.getDataLayout(); 10225 SDValue V = DAG.getVAArg( 10226 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10227 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10228 DL.getABITypeAlign(I.getType()).value()); 10229 DAG.setRoot(V.getValue(1)); 10230 10231 if (I.getType()->isPointerTy()) 10232 V = DAG.getPtrExtOrTrunc( 10233 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10234 setValue(&I, V); 10235 } 10236 10237 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10238 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10239 MVT::Other, getRoot(), 10240 getValue(I.getArgOperand(0)), 10241 DAG.getSrcValue(I.getArgOperand(0)))); 10242 } 10243 10244 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10245 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10246 MVT::Other, getRoot(), 10247 getValue(I.getArgOperand(0)), 10248 getValue(I.getArgOperand(1)), 10249 DAG.getSrcValue(I.getArgOperand(0)), 10250 DAG.getSrcValue(I.getArgOperand(1)))); 10251 } 10252 10253 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10254 const Instruction &I, 10255 SDValue Op) { 10256 std::optional<ConstantRange> CR = getRange(I); 10257 10258 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10259 return Op; 10260 10261 APInt Lo = CR->getUnsignedMin(); 10262 if (!Lo.isMinValue()) 10263 return Op; 10264 10265 APInt Hi = CR->getUnsignedMax(); 10266 unsigned Bits = std::max(Hi.getActiveBits(), 10267 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10268 10269 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10270 10271 SDLoc SL = getCurSDLoc(); 10272 10273 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10274 DAG.getValueType(SmallVT)); 10275 unsigned NumVals = Op.getNode()->getNumValues(); 10276 if (NumVals == 1) 10277 return ZExt; 10278 10279 SmallVector<SDValue, 4> Ops; 10280 10281 Ops.push_back(ZExt); 10282 for (unsigned I = 1; I != NumVals; ++I) 10283 Ops.push_back(Op.getValue(I)); 10284 10285 return DAG.getMergeValues(Ops, SL); 10286 } 10287 10288 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10289 /// the call being lowered. 10290 /// 10291 /// This is a helper for lowering intrinsics that follow a target calling 10292 /// convention or require stack pointer adjustment. Only a subset of the 10293 /// intrinsic's operands need to participate in the calling convention. 10294 void SelectionDAGBuilder::populateCallLoweringInfo( 10295 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10296 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10297 AttributeSet RetAttrs, bool IsPatchPoint) { 10298 TargetLowering::ArgListTy Args; 10299 Args.reserve(NumArgs); 10300 10301 // Populate the argument list. 10302 // Attributes for args start at offset 1, after the return attribute. 10303 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10304 ArgI != ArgE; ++ArgI) { 10305 const Value *V = Call->getOperand(ArgI); 10306 10307 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10308 10309 TargetLowering::ArgListEntry Entry; 10310 Entry.Node = getValue(V); 10311 Entry.Ty = V->getType(); 10312 Entry.setAttributes(Call, ArgI); 10313 Args.push_back(Entry); 10314 } 10315 10316 CLI.setDebugLoc(getCurSDLoc()) 10317 .setChain(getRoot()) 10318 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10319 RetAttrs) 10320 .setDiscardResult(Call->use_empty()) 10321 .setIsPatchPoint(IsPatchPoint) 10322 .setIsPreallocated( 10323 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10324 } 10325 10326 /// Add a stack map intrinsic call's live variable operands to a stackmap 10327 /// or patchpoint target node's operand list. 10328 /// 10329 /// Constants are converted to TargetConstants purely as an optimization to 10330 /// avoid constant materialization and register allocation. 10331 /// 10332 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10333 /// generate addess computation nodes, and so FinalizeISel can convert the 10334 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10335 /// address materialization and register allocation, but may also be required 10336 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10337 /// alloca in the entry block, then the runtime may assume that the alloca's 10338 /// StackMap location can be read immediately after compilation and that the 10339 /// location is valid at any point during execution (this is similar to the 10340 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10341 /// only available in a register, then the runtime would need to trap when 10342 /// execution reaches the StackMap in order to read the alloca's location. 10343 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10344 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10345 SelectionDAGBuilder &Builder) { 10346 SelectionDAG &DAG = Builder.DAG; 10347 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10348 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10349 10350 // Things on the stack are pointer-typed, meaning that they are already 10351 // legal and can be emitted directly to target nodes. 10352 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10353 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10354 } else { 10355 // Otherwise emit a target independent node to be legalised. 10356 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10357 } 10358 } 10359 } 10360 10361 /// Lower llvm.experimental.stackmap. 10362 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10363 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10364 // [live variables...]) 10365 10366 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10367 10368 SDValue Chain, InGlue, Callee; 10369 SmallVector<SDValue, 32> Ops; 10370 10371 SDLoc DL = getCurSDLoc(); 10372 Callee = getValue(CI.getCalledOperand()); 10373 10374 // The stackmap intrinsic only records the live variables (the arguments 10375 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10376 // intrinsic, this won't be lowered to a function call. This means we don't 10377 // have to worry about calling conventions and target specific lowering code. 10378 // Instead we perform the call lowering right here. 10379 // 10380 // chain, flag = CALLSEQ_START(chain, 0, 0) 10381 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10382 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10383 // 10384 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10385 InGlue = Chain.getValue(1); 10386 10387 // Add the STACKMAP operands, starting with DAG house-keeping. 10388 Ops.push_back(Chain); 10389 Ops.push_back(InGlue); 10390 10391 // Add the <id>, <numShadowBytes> operands. 10392 // 10393 // These do not require legalisation, and can be emitted directly to target 10394 // constant nodes. 10395 SDValue ID = getValue(CI.getArgOperand(0)); 10396 assert(ID.getValueType() == MVT::i64); 10397 SDValue IDConst = 10398 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10399 Ops.push_back(IDConst); 10400 10401 SDValue Shad = getValue(CI.getArgOperand(1)); 10402 assert(Shad.getValueType() == MVT::i32); 10403 SDValue ShadConst = 10404 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10405 Ops.push_back(ShadConst); 10406 10407 // Add the live variables. 10408 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10409 10410 // Create the STACKMAP node. 10411 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10412 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10413 InGlue = Chain.getValue(1); 10414 10415 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10416 10417 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10418 10419 // Set the root to the target-lowered call chain. 10420 DAG.setRoot(Chain); 10421 10422 // Inform the Frame Information that we have a stackmap in this function. 10423 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10424 } 10425 10426 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10427 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10428 const BasicBlock *EHPadBB) { 10429 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10430 // i32 <numBytes>, 10431 // i8* <target>, 10432 // i32 <numArgs>, 10433 // [Args...], 10434 // [live variables...]) 10435 10436 CallingConv::ID CC = CB.getCallingConv(); 10437 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10438 bool HasDef = !CB.getType()->isVoidTy(); 10439 SDLoc dl = getCurSDLoc(); 10440 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10441 10442 // Handle immediate and symbolic callees. 10443 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10444 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10445 /*isTarget=*/true); 10446 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10447 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10448 SDLoc(SymbolicCallee), 10449 SymbolicCallee->getValueType(0)); 10450 10451 // Get the real number of arguments participating in the call <numArgs> 10452 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10453 unsigned NumArgs = NArgVal->getAsZExtVal(); 10454 10455 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10456 // Intrinsics include all meta-operands up to but not including CC. 10457 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10458 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10459 "Not enough arguments provided to the patchpoint intrinsic"); 10460 10461 // For AnyRegCC the arguments are lowered later on manually. 10462 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10463 Type *ReturnTy = 10464 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10465 10466 TargetLowering::CallLoweringInfo CLI(DAG); 10467 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10468 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10469 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10470 10471 SDNode *CallEnd = Result.second.getNode(); 10472 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10473 CallEnd = CallEnd->getOperand(0).getNode(); 10474 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10475 CallEnd = CallEnd->getOperand(0).getNode(); 10476 10477 /// Get a call instruction from the call sequence chain. 10478 /// Tail calls are not allowed. 10479 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10480 "Expected a callseq node."); 10481 SDNode *Call = CallEnd->getOperand(0).getNode(); 10482 bool HasGlue = Call->getGluedNode(); 10483 10484 // Replace the target specific call node with the patchable intrinsic. 10485 SmallVector<SDValue, 8> Ops; 10486 10487 // Push the chain. 10488 Ops.push_back(*(Call->op_begin())); 10489 10490 // Optionally, push the glue (if any). 10491 if (HasGlue) 10492 Ops.push_back(*(Call->op_end() - 1)); 10493 10494 // Push the register mask info. 10495 if (HasGlue) 10496 Ops.push_back(*(Call->op_end() - 2)); 10497 else 10498 Ops.push_back(*(Call->op_end() - 1)); 10499 10500 // Add the <id> and <numBytes> constants. 10501 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10502 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10503 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10504 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10505 10506 // Add the callee. 10507 Ops.push_back(Callee); 10508 10509 // Adjust <numArgs> to account for any arguments that have been passed on the 10510 // stack instead. 10511 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10512 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10513 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10514 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10515 10516 // Add the calling convention 10517 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10518 10519 // Add the arguments we omitted previously. The register allocator should 10520 // place these in any free register. 10521 if (IsAnyRegCC) 10522 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10523 Ops.push_back(getValue(CB.getArgOperand(i))); 10524 10525 // Push the arguments from the call instruction. 10526 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10527 Ops.append(Call->op_begin() + 2, e); 10528 10529 // Push live variables for the stack map. 10530 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10531 10532 SDVTList NodeTys; 10533 if (IsAnyRegCC && HasDef) { 10534 // Create the return types based on the intrinsic definition 10535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10536 SmallVector<EVT, 3> ValueVTs; 10537 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10538 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10539 10540 // There is always a chain and a glue type at the end 10541 ValueVTs.push_back(MVT::Other); 10542 ValueVTs.push_back(MVT::Glue); 10543 NodeTys = DAG.getVTList(ValueVTs); 10544 } else 10545 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10546 10547 // Replace the target specific call node with a PATCHPOINT node. 10548 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10549 10550 // Update the NodeMap. 10551 if (HasDef) { 10552 if (IsAnyRegCC) 10553 setValue(&CB, SDValue(PPV.getNode(), 0)); 10554 else 10555 setValue(&CB, Result.first); 10556 } 10557 10558 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10559 // call sequence. Furthermore the location of the chain and glue can change 10560 // when the AnyReg calling convention is used and the intrinsic returns a 10561 // value. 10562 if (IsAnyRegCC && HasDef) { 10563 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10564 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10565 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10566 } else 10567 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10568 DAG.DeleteNode(Call); 10569 10570 // Inform the Frame Information that we have a patchpoint in this function. 10571 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10572 } 10573 10574 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10575 unsigned Intrinsic) { 10576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10577 SDValue Op1 = getValue(I.getArgOperand(0)); 10578 SDValue Op2; 10579 if (I.arg_size() > 1) 10580 Op2 = getValue(I.getArgOperand(1)); 10581 SDLoc dl = getCurSDLoc(); 10582 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10583 SDValue Res; 10584 SDNodeFlags SDFlags; 10585 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10586 SDFlags.copyFMF(*FPMO); 10587 10588 switch (Intrinsic) { 10589 case Intrinsic::vector_reduce_fadd: 10590 if (SDFlags.hasAllowReassociation()) 10591 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10592 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10593 SDFlags); 10594 else 10595 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10596 break; 10597 case Intrinsic::vector_reduce_fmul: 10598 if (SDFlags.hasAllowReassociation()) 10599 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10600 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10601 SDFlags); 10602 else 10603 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10604 break; 10605 case Intrinsic::vector_reduce_add: 10606 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10607 break; 10608 case Intrinsic::vector_reduce_mul: 10609 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10610 break; 10611 case Intrinsic::vector_reduce_and: 10612 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10613 break; 10614 case Intrinsic::vector_reduce_or: 10615 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10616 break; 10617 case Intrinsic::vector_reduce_xor: 10618 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10619 break; 10620 case Intrinsic::vector_reduce_smax: 10621 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10622 break; 10623 case Intrinsic::vector_reduce_smin: 10624 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10625 break; 10626 case Intrinsic::vector_reduce_umax: 10627 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10628 break; 10629 case Intrinsic::vector_reduce_umin: 10630 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10631 break; 10632 case Intrinsic::vector_reduce_fmax: 10633 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10634 break; 10635 case Intrinsic::vector_reduce_fmin: 10636 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10637 break; 10638 case Intrinsic::vector_reduce_fmaximum: 10639 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10640 break; 10641 case Intrinsic::vector_reduce_fminimum: 10642 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10643 break; 10644 default: 10645 llvm_unreachable("Unhandled vector reduce intrinsic"); 10646 } 10647 setValue(&I, Res); 10648 } 10649 10650 /// Returns an AttributeList representing the attributes applied to the return 10651 /// value of the given call. 10652 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10653 SmallVector<Attribute::AttrKind, 2> Attrs; 10654 if (CLI.RetSExt) 10655 Attrs.push_back(Attribute::SExt); 10656 if (CLI.RetZExt) 10657 Attrs.push_back(Attribute::ZExt); 10658 if (CLI.IsInReg) 10659 Attrs.push_back(Attribute::InReg); 10660 10661 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10662 Attrs); 10663 } 10664 10665 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10666 /// implementation, which just calls LowerCall. 10667 /// FIXME: When all targets are 10668 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10669 std::pair<SDValue, SDValue> 10670 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10671 // Handle the incoming return values from the call. 10672 CLI.Ins.clear(); 10673 Type *OrigRetTy = CLI.RetTy; 10674 SmallVector<EVT, 4> RetTys; 10675 SmallVector<TypeSize, 4> Offsets; 10676 auto &DL = CLI.DAG.getDataLayout(); 10677 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10678 10679 if (CLI.IsPostTypeLegalization) { 10680 // If we are lowering a libcall after legalization, split the return type. 10681 SmallVector<EVT, 4> OldRetTys; 10682 SmallVector<TypeSize, 4> OldOffsets; 10683 RetTys.swap(OldRetTys); 10684 Offsets.swap(OldOffsets); 10685 10686 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10687 EVT RetVT = OldRetTys[i]; 10688 uint64_t Offset = OldOffsets[i]; 10689 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10690 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10691 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10692 RetTys.append(NumRegs, RegisterVT); 10693 for (unsigned j = 0; j != NumRegs; ++j) 10694 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10695 } 10696 } 10697 10698 SmallVector<ISD::OutputArg, 4> Outs; 10699 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10700 10701 bool CanLowerReturn = 10702 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10703 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10704 10705 SDValue DemoteStackSlot; 10706 int DemoteStackIdx = -100; 10707 if (!CanLowerReturn) { 10708 // FIXME: equivalent assert? 10709 // assert(!CS.hasInAllocaArgument() && 10710 // "sret demotion is incompatible with inalloca"); 10711 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10712 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10713 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10714 DemoteStackIdx = 10715 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10716 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10717 DL.getAllocaAddrSpace()); 10718 10719 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10720 ArgListEntry Entry; 10721 Entry.Node = DemoteStackSlot; 10722 Entry.Ty = StackSlotPtrType; 10723 Entry.IsSExt = false; 10724 Entry.IsZExt = false; 10725 Entry.IsInReg = false; 10726 Entry.IsSRet = true; 10727 Entry.IsNest = false; 10728 Entry.IsByVal = false; 10729 Entry.IsByRef = false; 10730 Entry.IsReturned = false; 10731 Entry.IsSwiftSelf = false; 10732 Entry.IsSwiftAsync = false; 10733 Entry.IsSwiftError = false; 10734 Entry.IsCFGuardTarget = false; 10735 Entry.Alignment = Alignment; 10736 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10737 CLI.NumFixedArgs += 1; 10738 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10739 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10740 10741 // sret demotion isn't compatible with tail-calls, since the sret argument 10742 // points into the callers stack frame. 10743 CLI.IsTailCall = false; 10744 } else { 10745 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10746 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10747 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10748 ISD::ArgFlagsTy Flags; 10749 if (NeedsRegBlock) { 10750 Flags.setInConsecutiveRegs(); 10751 if (I == RetTys.size() - 1) 10752 Flags.setInConsecutiveRegsLast(); 10753 } 10754 EVT VT = RetTys[I]; 10755 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10756 CLI.CallConv, VT); 10757 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10758 CLI.CallConv, VT); 10759 for (unsigned i = 0; i != NumRegs; ++i) { 10760 ISD::InputArg MyFlags; 10761 MyFlags.Flags = Flags; 10762 MyFlags.VT = RegisterVT; 10763 MyFlags.ArgVT = VT; 10764 MyFlags.Used = CLI.IsReturnValueUsed; 10765 if (CLI.RetTy->isPointerTy()) { 10766 MyFlags.Flags.setPointer(); 10767 MyFlags.Flags.setPointerAddrSpace( 10768 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10769 } 10770 if (CLI.RetSExt) 10771 MyFlags.Flags.setSExt(); 10772 if (CLI.RetZExt) 10773 MyFlags.Flags.setZExt(); 10774 if (CLI.IsInReg) 10775 MyFlags.Flags.setInReg(); 10776 CLI.Ins.push_back(MyFlags); 10777 } 10778 } 10779 } 10780 10781 // We push in swifterror return as the last element of CLI.Ins. 10782 ArgListTy &Args = CLI.getArgs(); 10783 if (supportSwiftError()) { 10784 for (const ArgListEntry &Arg : Args) { 10785 if (Arg.IsSwiftError) { 10786 ISD::InputArg MyFlags; 10787 MyFlags.VT = getPointerTy(DL); 10788 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10789 MyFlags.Flags.setSwiftError(); 10790 CLI.Ins.push_back(MyFlags); 10791 } 10792 } 10793 } 10794 10795 // Handle all of the outgoing arguments. 10796 CLI.Outs.clear(); 10797 CLI.OutVals.clear(); 10798 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10799 SmallVector<EVT, 4> ValueVTs; 10800 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10801 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10802 Type *FinalType = Args[i].Ty; 10803 if (Args[i].IsByVal) 10804 FinalType = Args[i].IndirectType; 10805 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10806 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10807 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10808 ++Value) { 10809 EVT VT = ValueVTs[Value]; 10810 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10811 SDValue Op = SDValue(Args[i].Node.getNode(), 10812 Args[i].Node.getResNo() + Value); 10813 ISD::ArgFlagsTy Flags; 10814 10815 // Certain targets (such as MIPS), may have a different ABI alignment 10816 // for a type depending on the context. Give the target a chance to 10817 // specify the alignment it wants. 10818 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10819 Flags.setOrigAlign(OriginalAlignment); 10820 10821 if (Args[i].Ty->isPointerTy()) { 10822 Flags.setPointer(); 10823 Flags.setPointerAddrSpace( 10824 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10825 } 10826 if (Args[i].IsZExt) 10827 Flags.setZExt(); 10828 if (Args[i].IsSExt) 10829 Flags.setSExt(); 10830 if (Args[i].IsInReg) { 10831 // If we are using vectorcall calling convention, a structure that is 10832 // passed InReg - is surely an HVA 10833 if (CLI.CallConv == CallingConv::X86_VectorCall && 10834 isa<StructType>(FinalType)) { 10835 // The first value of a structure is marked 10836 if (0 == Value) 10837 Flags.setHvaStart(); 10838 Flags.setHva(); 10839 } 10840 // Set InReg Flag 10841 Flags.setInReg(); 10842 } 10843 if (Args[i].IsSRet) 10844 Flags.setSRet(); 10845 if (Args[i].IsSwiftSelf) 10846 Flags.setSwiftSelf(); 10847 if (Args[i].IsSwiftAsync) 10848 Flags.setSwiftAsync(); 10849 if (Args[i].IsSwiftError) 10850 Flags.setSwiftError(); 10851 if (Args[i].IsCFGuardTarget) 10852 Flags.setCFGuardTarget(); 10853 if (Args[i].IsByVal) 10854 Flags.setByVal(); 10855 if (Args[i].IsByRef) 10856 Flags.setByRef(); 10857 if (Args[i].IsPreallocated) { 10858 Flags.setPreallocated(); 10859 // Set the byval flag for CCAssignFn callbacks that don't know about 10860 // preallocated. This way we can know how many bytes we should've 10861 // allocated and how many bytes a callee cleanup function will pop. If 10862 // we port preallocated to more targets, we'll have to add custom 10863 // preallocated handling in the various CC lowering callbacks. 10864 Flags.setByVal(); 10865 } 10866 if (Args[i].IsInAlloca) { 10867 Flags.setInAlloca(); 10868 // Set the byval flag for CCAssignFn callbacks that don't know about 10869 // inalloca. This way we can know how many bytes we should've allocated 10870 // and how many bytes a callee cleanup function will pop. If we port 10871 // inalloca to more targets, we'll have to add custom inalloca handling 10872 // in the various CC lowering callbacks. 10873 Flags.setByVal(); 10874 } 10875 Align MemAlign; 10876 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10877 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10878 Flags.setByValSize(FrameSize); 10879 10880 // info is not there but there are cases it cannot get right. 10881 if (auto MA = Args[i].Alignment) 10882 MemAlign = *MA; 10883 else 10884 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10885 } else if (auto MA = Args[i].Alignment) { 10886 MemAlign = *MA; 10887 } else { 10888 MemAlign = OriginalAlignment; 10889 } 10890 Flags.setMemAlign(MemAlign); 10891 if (Args[i].IsNest) 10892 Flags.setNest(); 10893 if (NeedsRegBlock) 10894 Flags.setInConsecutiveRegs(); 10895 10896 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10897 CLI.CallConv, VT); 10898 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10899 CLI.CallConv, VT); 10900 SmallVector<SDValue, 4> Parts(NumParts); 10901 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10902 10903 if (Args[i].IsSExt) 10904 ExtendKind = ISD::SIGN_EXTEND; 10905 else if (Args[i].IsZExt) 10906 ExtendKind = ISD::ZERO_EXTEND; 10907 10908 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10909 // for now. 10910 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10911 CanLowerReturn) { 10912 assert((CLI.RetTy == Args[i].Ty || 10913 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10914 CLI.RetTy->getPointerAddressSpace() == 10915 Args[i].Ty->getPointerAddressSpace())) && 10916 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10917 // Before passing 'returned' to the target lowering code, ensure that 10918 // either the register MVT and the actual EVT are the same size or that 10919 // the return value and argument are extended in the same way; in these 10920 // cases it's safe to pass the argument register value unchanged as the 10921 // return register value (although it's at the target's option whether 10922 // to do so) 10923 // TODO: allow code generation to take advantage of partially preserved 10924 // registers rather than clobbering the entire register when the 10925 // parameter extension method is not compatible with the return 10926 // extension method 10927 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10928 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10929 CLI.RetZExt == Args[i].IsZExt)) 10930 Flags.setReturned(); 10931 } 10932 10933 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10934 CLI.CallConv, ExtendKind); 10935 10936 for (unsigned j = 0; j != NumParts; ++j) { 10937 // if it isn't first piece, alignment must be 1 10938 // For scalable vectors the scalable part is currently handled 10939 // by individual targets, so we just use the known minimum size here. 10940 ISD::OutputArg MyFlags( 10941 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10942 i < CLI.NumFixedArgs, i, 10943 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10944 if (NumParts > 1 && j == 0) 10945 MyFlags.Flags.setSplit(); 10946 else if (j != 0) { 10947 MyFlags.Flags.setOrigAlign(Align(1)); 10948 if (j == NumParts - 1) 10949 MyFlags.Flags.setSplitEnd(); 10950 } 10951 10952 CLI.Outs.push_back(MyFlags); 10953 CLI.OutVals.push_back(Parts[j]); 10954 } 10955 10956 if (NeedsRegBlock && Value == NumValues - 1) 10957 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10958 } 10959 } 10960 10961 SmallVector<SDValue, 4> InVals; 10962 CLI.Chain = LowerCall(CLI, InVals); 10963 10964 // Update CLI.InVals to use outside of this function. 10965 CLI.InVals = InVals; 10966 10967 // Verify that the target's LowerCall behaved as expected. 10968 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10969 "LowerCall didn't return a valid chain!"); 10970 assert((!CLI.IsTailCall || InVals.empty()) && 10971 "LowerCall emitted a return value for a tail call!"); 10972 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10973 "LowerCall didn't emit the correct number of values!"); 10974 10975 // For a tail call, the return value is merely live-out and there aren't 10976 // any nodes in the DAG representing it. Return a special value to 10977 // indicate that a tail call has been emitted and no more Instructions 10978 // should be processed in the current block. 10979 if (CLI.IsTailCall) { 10980 CLI.DAG.setRoot(CLI.Chain); 10981 return std::make_pair(SDValue(), SDValue()); 10982 } 10983 10984 #ifndef NDEBUG 10985 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10986 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10987 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10988 "LowerCall emitted a value with the wrong type!"); 10989 } 10990 #endif 10991 10992 SmallVector<SDValue, 4> ReturnValues; 10993 if (!CanLowerReturn) { 10994 // The instruction result is the result of loading from the 10995 // hidden sret parameter. 10996 SmallVector<EVT, 1> PVTs; 10997 Type *PtrRetTy = 10998 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10999 11000 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11001 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11002 EVT PtrVT = PVTs[0]; 11003 11004 unsigned NumValues = RetTys.size(); 11005 ReturnValues.resize(NumValues); 11006 SmallVector<SDValue, 4> Chains(NumValues); 11007 11008 // An aggregate return value cannot wrap around the address space, so 11009 // offsets to its parts don't wrap either. 11010 SDNodeFlags Flags; 11011 Flags.setNoUnsignedWrap(true); 11012 11013 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11014 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11015 for (unsigned i = 0; i < NumValues; ++i) { 11016 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11017 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11018 PtrVT), Flags); 11019 SDValue L = CLI.DAG.getLoad( 11020 RetTys[i], CLI.DL, CLI.Chain, Add, 11021 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11022 DemoteStackIdx, Offsets[i]), 11023 HiddenSRetAlign); 11024 ReturnValues[i] = L; 11025 Chains[i] = L.getValue(1); 11026 } 11027 11028 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11029 } else { 11030 // Collect the legal value parts into potentially illegal values 11031 // that correspond to the original function's return values. 11032 std::optional<ISD::NodeType> AssertOp; 11033 if (CLI.RetSExt) 11034 AssertOp = ISD::AssertSext; 11035 else if (CLI.RetZExt) 11036 AssertOp = ISD::AssertZext; 11037 unsigned CurReg = 0; 11038 for (EVT VT : RetTys) { 11039 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11040 CLI.CallConv, VT); 11041 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11042 CLI.CallConv, VT); 11043 11044 ReturnValues.push_back(getCopyFromParts( 11045 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11046 CLI.Chain, CLI.CallConv, AssertOp)); 11047 CurReg += NumRegs; 11048 } 11049 11050 // For a function returning void, there is no return value. We can't create 11051 // such a node, so we just return a null return value in that case. In 11052 // that case, nothing will actually look at the value. 11053 if (ReturnValues.empty()) 11054 return std::make_pair(SDValue(), CLI.Chain); 11055 } 11056 11057 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11058 CLI.DAG.getVTList(RetTys), ReturnValues); 11059 return std::make_pair(Res, CLI.Chain); 11060 } 11061 11062 /// Places new result values for the node in Results (their number 11063 /// and types must exactly match those of the original return values of 11064 /// the node), or leaves Results empty, which indicates that the node is not 11065 /// to be custom lowered after all. 11066 void TargetLowering::LowerOperationWrapper(SDNode *N, 11067 SmallVectorImpl<SDValue> &Results, 11068 SelectionDAG &DAG) const { 11069 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11070 11071 if (!Res.getNode()) 11072 return; 11073 11074 // If the original node has one result, take the return value from 11075 // LowerOperation as is. It might not be result number 0. 11076 if (N->getNumValues() == 1) { 11077 Results.push_back(Res); 11078 return; 11079 } 11080 11081 // If the original node has multiple results, then the return node should 11082 // have the same number of results. 11083 assert((N->getNumValues() == Res->getNumValues()) && 11084 "Lowering returned the wrong number of results!"); 11085 11086 // Places new result values base on N result number. 11087 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11088 Results.push_back(Res.getValue(I)); 11089 } 11090 11091 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11092 llvm_unreachable("LowerOperation not implemented for this target!"); 11093 } 11094 11095 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11096 unsigned Reg, 11097 ISD::NodeType ExtendType) { 11098 SDValue Op = getNonRegisterValue(V); 11099 assert((Op.getOpcode() != ISD::CopyFromReg || 11100 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11101 "Copy from a reg to the same reg!"); 11102 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11103 11104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11105 // If this is an InlineAsm we have to match the registers required, not the 11106 // notional registers required by the type. 11107 11108 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11109 std::nullopt); // This is not an ABI copy. 11110 SDValue Chain = DAG.getEntryNode(); 11111 11112 if (ExtendType == ISD::ANY_EXTEND) { 11113 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11114 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11115 ExtendType = PreferredExtendIt->second; 11116 } 11117 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11118 PendingExports.push_back(Chain); 11119 } 11120 11121 #include "llvm/CodeGen/SelectionDAGISel.h" 11122 11123 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11124 /// entry block, return true. This includes arguments used by switches, since 11125 /// the switch may expand into multiple basic blocks. 11126 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11127 // With FastISel active, we may be splitting blocks, so force creation 11128 // of virtual registers for all non-dead arguments. 11129 if (FastISel) 11130 return A->use_empty(); 11131 11132 const BasicBlock &Entry = A->getParent()->front(); 11133 for (const User *U : A->users()) 11134 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11135 return false; // Use not in entry block. 11136 11137 return true; 11138 } 11139 11140 using ArgCopyElisionMapTy = 11141 DenseMap<const Argument *, 11142 std::pair<const AllocaInst *, const StoreInst *>>; 11143 11144 /// Scan the entry block of the function in FuncInfo for arguments that look 11145 /// like copies into a local alloca. Record any copied arguments in 11146 /// ArgCopyElisionCandidates. 11147 static void 11148 findArgumentCopyElisionCandidates(const DataLayout &DL, 11149 FunctionLoweringInfo *FuncInfo, 11150 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11151 // Record the state of every static alloca used in the entry block. Argument 11152 // allocas are all used in the entry block, so we need approximately as many 11153 // entries as we have arguments. 11154 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11155 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11156 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11157 StaticAllocas.reserve(NumArgs * 2); 11158 11159 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11160 if (!V) 11161 return nullptr; 11162 V = V->stripPointerCasts(); 11163 const auto *AI = dyn_cast<AllocaInst>(V); 11164 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11165 return nullptr; 11166 auto Iter = StaticAllocas.insert({AI, Unknown}); 11167 return &Iter.first->second; 11168 }; 11169 11170 // Look for stores of arguments to static allocas. Look through bitcasts and 11171 // GEPs to handle type coercions, as long as the alloca is fully initialized 11172 // by the store. Any non-store use of an alloca escapes it and any subsequent 11173 // unanalyzed store might write it. 11174 // FIXME: Handle structs initialized with multiple stores. 11175 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11176 // Look for stores, and handle non-store uses conservatively. 11177 const auto *SI = dyn_cast<StoreInst>(&I); 11178 if (!SI) { 11179 // We will look through cast uses, so ignore them completely. 11180 if (I.isCast()) 11181 continue; 11182 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11183 // to allocas. 11184 if (I.isDebugOrPseudoInst()) 11185 continue; 11186 // This is an unknown instruction. Assume it escapes or writes to all 11187 // static alloca operands. 11188 for (const Use &U : I.operands()) { 11189 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11190 *Info = StaticAllocaInfo::Clobbered; 11191 } 11192 continue; 11193 } 11194 11195 // If the stored value is a static alloca, mark it as escaped. 11196 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11197 *Info = StaticAllocaInfo::Clobbered; 11198 11199 // Check if the destination is a static alloca. 11200 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11201 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11202 if (!Info) 11203 continue; 11204 const AllocaInst *AI = cast<AllocaInst>(Dst); 11205 11206 // Skip allocas that have been initialized or clobbered. 11207 if (*Info != StaticAllocaInfo::Unknown) 11208 continue; 11209 11210 // Check if the stored value is an argument, and that this store fully 11211 // initializes the alloca. 11212 // If the argument type has padding bits we can't directly forward a pointer 11213 // as the upper bits may contain garbage. 11214 // Don't elide copies from the same argument twice. 11215 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11216 const auto *Arg = dyn_cast<Argument>(Val); 11217 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11218 Arg->getType()->isEmptyTy() || 11219 DL.getTypeStoreSize(Arg->getType()) != 11220 DL.getTypeAllocSize(AI->getAllocatedType()) || 11221 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11222 ArgCopyElisionCandidates.count(Arg)) { 11223 *Info = StaticAllocaInfo::Clobbered; 11224 continue; 11225 } 11226 11227 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11228 << '\n'); 11229 11230 // Mark this alloca and store for argument copy elision. 11231 *Info = StaticAllocaInfo::Elidable; 11232 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11233 11234 // Stop scanning if we've seen all arguments. This will happen early in -O0 11235 // builds, which is useful, because -O0 builds have large entry blocks and 11236 // many allocas. 11237 if (ArgCopyElisionCandidates.size() == NumArgs) 11238 break; 11239 } 11240 } 11241 11242 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11243 /// ArgVal is a load from a suitable fixed stack object. 11244 static void tryToElideArgumentCopy( 11245 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11246 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11247 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11248 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11249 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11250 // Check if this is a load from a fixed stack object. 11251 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11252 if (!LNode) 11253 return; 11254 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11255 if (!FINode) 11256 return; 11257 11258 // Check that the fixed stack object is the right size and alignment. 11259 // Look at the alignment that the user wrote on the alloca instead of looking 11260 // at the stack object. 11261 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11262 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11263 const AllocaInst *AI = ArgCopyIter->second.first; 11264 int FixedIndex = FINode->getIndex(); 11265 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11266 int OldIndex = AllocaIndex; 11267 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11268 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11269 LLVM_DEBUG( 11270 dbgs() << " argument copy elision failed due to bad fixed stack " 11271 "object size\n"); 11272 return; 11273 } 11274 Align RequiredAlignment = AI->getAlign(); 11275 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11276 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11277 "greater than stack argument alignment (" 11278 << DebugStr(RequiredAlignment) << " vs " 11279 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11280 return; 11281 } 11282 11283 // Perform the elision. Delete the old stack object and replace its only use 11284 // in the variable info map. Mark the stack object as mutable and aliased. 11285 LLVM_DEBUG({ 11286 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11287 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11288 << '\n'; 11289 }); 11290 MFI.RemoveStackObject(OldIndex); 11291 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11292 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11293 AllocaIndex = FixedIndex; 11294 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11295 for (SDValue ArgVal : ArgVals) 11296 Chains.push_back(ArgVal.getValue(1)); 11297 11298 // Avoid emitting code for the store implementing the copy. 11299 const StoreInst *SI = ArgCopyIter->second.second; 11300 ElidedArgCopyInstrs.insert(SI); 11301 11302 // Check for uses of the argument again so that we can avoid exporting ArgVal 11303 // if it is't used by anything other than the store. 11304 for (const Value *U : Arg.users()) { 11305 if (U != SI) { 11306 ArgHasUses = true; 11307 break; 11308 } 11309 } 11310 } 11311 11312 void SelectionDAGISel::LowerArguments(const Function &F) { 11313 SelectionDAG &DAG = SDB->DAG; 11314 SDLoc dl = SDB->getCurSDLoc(); 11315 const DataLayout &DL = DAG.getDataLayout(); 11316 SmallVector<ISD::InputArg, 16> Ins; 11317 11318 // In Naked functions we aren't going to save any registers. 11319 if (F.hasFnAttribute(Attribute::Naked)) 11320 return; 11321 11322 if (!FuncInfo->CanLowerReturn) { 11323 // Put in an sret pointer parameter before all the other parameters. 11324 SmallVector<EVT, 1> ValueVTs; 11325 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11326 PointerType::get(F.getContext(), 11327 DAG.getDataLayout().getAllocaAddrSpace()), 11328 ValueVTs); 11329 11330 // NOTE: Assuming that a pointer will never break down to more than one VT 11331 // or one register. 11332 ISD::ArgFlagsTy Flags; 11333 Flags.setSRet(); 11334 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11335 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11336 ISD::InputArg::NoArgIndex, 0); 11337 Ins.push_back(RetArg); 11338 } 11339 11340 // Look for stores of arguments to static allocas. Mark such arguments with a 11341 // flag to ask the target to give us the memory location of that argument if 11342 // available. 11343 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11344 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11345 ArgCopyElisionCandidates); 11346 11347 // Set up the incoming argument description vector. 11348 for (const Argument &Arg : F.args()) { 11349 unsigned ArgNo = Arg.getArgNo(); 11350 SmallVector<EVT, 4> ValueVTs; 11351 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11352 bool isArgValueUsed = !Arg.use_empty(); 11353 unsigned PartBase = 0; 11354 Type *FinalType = Arg.getType(); 11355 if (Arg.hasAttribute(Attribute::ByVal)) 11356 FinalType = Arg.getParamByValType(); 11357 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11358 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11359 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11360 Value != NumValues; ++Value) { 11361 EVT VT = ValueVTs[Value]; 11362 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11363 ISD::ArgFlagsTy Flags; 11364 11365 11366 if (Arg.getType()->isPointerTy()) { 11367 Flags.setPointer(); 11368 Flags.setPointerAddrSpace( 11369 cast<PointerType>(Arg.getType())->getAddressSpace()); 11370 } 11371 if (Arg.hasAttribute(Attribute::ZExt)) 11372 Flags.setZExt(); 11373 if (Arg.hasAttribute(Attribute::SExt)) 11374 Flags.setSExt(); 11375 if (Arg.hasAttribute(Attribute::InReg)) { 11376 // If we are using vectorcall calling convention, a structure that is 11377 // passed InReg - is surely an HVA 11378 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11379 isa<StructType>(Arg.getType())) { 11380 // The first value of a structure is marked 11381 if (0 == Value) 11382 Flags.setHvaStart(); 11383 Flags.setHva(); 11384 } 11385 // Set InReg Flag 11386 Flags.setInReg(); 11387 } 11388 if (Arg.hasAttribute(Attribute::StructRet)) 11389 Flags.setSRet(); 11390 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11391 Flags.setSwiftSelf(); 11392 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11393 Flags.setSwiftAsync(); 11394 if (Arg.hasAttribute(Attribute::SwiftError)) 11395 Flags.setSwiftError(); 11396 if (Arg.hasAttribute(Attribute::ByVal)) 11397 Flags.setByVal(); 11398 if (Arg.hasAttribute(Attribute::ByRef)) 11399 Flags.setByRef(); 11400 if (Arg.hasAttribute(Attribute::InAlloca)) { 11401 Flags.setInAlloca(); 11402 // Set the byval flag for CCAssignFn callbacks that don't know about 11403 // inalloca. This way we can know how many bytes we should've allocated 11404 // and how many bytes a callee cleanup function will pop. If we port 11405 // inalloca to more targets, we'll have to add custom inalloca handling 11406 // in the various CC lowering callbacks. 11407 Flags.setByVal(); 11408 } 11409 if (Arg.hasAttribute(Attribute::Preallocated)) { 11410 Flags.setPreallocated(); 11411 // Set the byval flag for CCAssignFn callbacks that don't know about 11412 // preallocated. This way we can know how many bytes we should've 11413 // allocated and how many bytes a callee cleanup function will pop. If 11414 // we port preallocated to more targets, we'll have to add custom 11415 // preallocated handling in the various CC lowering callbacks. 11416 Flags.setByVal(); 11417 } 11418 11419 // Certain targets (such as MIPS), may have a different ABI alignment 11420 // for a type depending on the context. Give the target a chance to 11421 // specify the alignment it wants. 11422 const Align OriginalAlignment( 11423 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11424 Flags.setOrigAlign(OriginalAlignment); 11425 11426 Align MemAlign; 11427 Type *ArgMemTy = nullptr; 11428 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11429 Flags.isByRef()) { 11430 if (!ArgMemTy) 11431 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11432 11433 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11434 11435 // For in-memory arguments, size and alignment should be passed from FE. 11436 // BE will guess if this info is not there but there are cases it cannot 11437 // get right. 11438 if (auto ParamAlign = Arg.getParamStackAlign()) 11439 MemAlign = *ParamAlign; 11440 else if ((ParamAlign = Arg.getParamAlign())) 11441 MemAlign = *ParamAlign; 11442 else 11443 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11444 if (Flags.isByRef()) 11445 Flags.setByRefSize(MemSize); 11446 else 11447 Flags.setByValSize(MemSize); 11448 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11449 MemAlign = *ParamAlign; 11450 } else { 11451 MemAlign = OriginalAlignment; 11452 } 11453 Flags.setMemAlign(MemAlign); 11454 11455 if (Arg.hasAttribute(Attribute::Nest)) 11456 Flags.setNest(); 11457 if (NeedsRegBlock) 11458 Flags.setInConsecutiveRegs(); 11459 if (ArgCopyElisionCandidates.count(&Arg)) 11460 Flags.setCopyElisionCandidate(); 11461 if (Arg.hasAttribute(Attribute::Returned)) 11462 Flags.setReturned(); 11463 11464 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11465 *CurDAG->getContext(), F.getCallingConv(), VT); 11466 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11467 *CurDAG->getContext(), F.getCallingConv(), VT); 11468 for (unsigned i = 0; i != NumRegs; ++i) { 11469 // For scalable vectors, use the minimum size; individual targets 11470 // are responsible for handling scalable vector arguments and 11471 // return values. 11472 ISD::InputArg MyFlags( 11473 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11474 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11475 if (NumRegs > 1 && i == 0) 11476 MyFlags.Flags.setSplit(); 11477 // if it isn't first piece, alignment must be 1 11478 else if (i > 0) { 11479 MyFlags.Flags.setOrigAlign(Align(1)); 11480 if (i == NumRegs - 1) 11481 MyFlags.Flags.setSplitEnd(); 11482 } 11483 Ins.push_back(MyFlags); 11484 } 11485 if (NeedsRegBlock && Value == NumValues - 1) 11486 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11487 PartBase += VT.getStoreSize().getKnownMinValue(); 11488 } 11489 } 11490 11491 // Call the target to set up the argument values. 11492 SmallVector<SDValue, 8> InVals; 11493 SDValue NewRoot = TLI->LowerFormalArguments( 11494 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11495 11496 // Verify that the target's LowerFormalArguments behaved as expected. 11497 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11498 "LowerFormalArguments didn't return a valid chain!"); 11499 assert(InVals.size() == Ins.size() && 11500 "LowerFormalArguments didn't emit the correct number of values!"); 11501 LLVM_DEBUG({ 11502 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11503 assert(InVals[i].getNode() && 11504 "LowerFormalArguments emitted a null value!"); 11505 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11506 "LowerFormalArguments emitted a value with the wrong type!"); 11507 } 11508 }); 11509 11510 // Update the DAG with the new chain value resulting from argument lowering. 11511 DAG.setRoot(NewRoot); 11512 11513 // Set up the argument values. 11514 unsigned i = 0; 11515 if (!FuncInfo->CanLowerReturn) { 11516 // Create a virtual register for the sret pointer, and put in a copy 11517 // from the sret argument into it. 11518 SmallVector<EVT, 1> ValueVTs; 11519 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11520 PointerType::get(F.getContext(), 11521 DAG.getDataLayout().getAllocaAddrSpace()), 11522 ValueVTs); 11523 MVT VT = ValueVTs[0].getSimpleVT(); 11524 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11525 std::optional<ISD::NodeType> AssertOp; 11526 SDValue ArgValue = 11527 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11528 F.getCallingConv(), AssertOp); 11529 11530 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11531 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11532 Register SRetReg = 11533 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11534 FuncInfo->DemoteRegister = SRetReg; 11535 NewRoot = 11536 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11537 DAG.setRoot(NewRoot); 11538 11539 // i indexes lowered arguments. Bump it past the hidden sret argument. 11540 ++i; 11541 } 11542 11543 SmallVector<SDValue, 4> Chains; 11544 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11545 for (const Argument &Arg : F.args()) { 11546 SmallVector<SDValue, 4> ArgValues; 11547 SmallVector<EVT, 4> ValueVTs; 11548 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11549 unsigned NumValues = ValueVTs.size(); 11550 if (NumValues == 0) 11551 continue; 11552 11553 bool ArgHasUses = !Arg.use_empty(); 11554 11555 // Elide the copying store if the target loaded this argument from a 11556 // suitable fixed stack object. 11557 if (Ins[i].Flags.isCopyElisionCandidate()) { 11558 unsigned NumParts = 0; 11559 for (EVT VT : ValueVTs) 11560 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11561 F.getCallingConv(), VT); 11562 11563 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11564 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11565 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11566 } 11567 11568 // If this argument is unused then remember its value. It is used to generate 11569 // debugging information. 11570 bool isSwiftErrorArg = 11571 TLI->supportSwiftError() && 11572 Arg.hasAttribute(Attribute::SwiftError); 11573 if (!ArgHasUses && !isSwiftErrorArg) { 11574 SDB->setUnusedArgValue(&Arg, InVals[i]); 11575 11576 // Also remember any frame index for use in FastISel. 11577 if (FrameIndexSDNode *FI = 11578 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11579 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11580 } 11581 11582 for (unsigned Val = 0; Val != NumValues; ++Val) { 11583 EVT VT = ValueVTs[Val]; 11584 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11585 F.getCallingConv(), VT); 11586 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11587 *CurDAG->getContext(), F.getCallingConv(), VT); 11588 11589 // Even an apparent 'unused' swifterror argument needs to be returned. So 11590 // we do generate a copy for it that can be used on return from the 11591 // function. 11592 if (ArgHasUses || isSwiftErrorArg) { 11593 std::optional<ISD::NodeType> AssertOp; 11594 if (Arg.hasAttribute(Attribute::SExt)) 11595 AssertOp = ISD::AssertSext; 11596 else if (Arg.hasAttribute(Attribute::ZExt)) 11597 AssertOp = ISD::AssertZext; 11598 11599 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11600 PartVT, VT, nullptr, NewRoot, 11601 F.getCallingConv(), AssertOp)); 11602 } 11603 11604 i += NumParts; 11605 } 11606 11607 // We don't need to do anything else for unused arguments. 11608 if (ArgValues.empty()) 11609 continue; 11610 11611 // Note down frame index. 11612 if (FrameIndexSDNode *FI = 11613 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11614 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11615 11616 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11617 SDB->getCurSDLoc()); 11618 11619 SDB->setValue(&Arg, Res); 11620 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11621 // We want to associate the argument with the frame index, among 11622 // involved operands, that correspond to the lowest address. The 11623 // getCopyFromParts function, called earlier, is swapping the order of 11624 // the operands to BUILD_PAIR depending on endianness. The result of 11625 // that swapping is that the least significant bits of the argument will 11626 // be in the first operand of the BUILD_PAIR node, and the most 11627 // significant bits will be in the second operand. 11628 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11629 if (LoadSDNode *LNode = 11630 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11631 if (FrameIndexSDNode *FI = 11632 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11633 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11634 } 11635 11636 // Analyses past this point are naive and don't expect an assertion. 11637 if (Res.getOpcode() == ISD::AssertZext) 11638 Res = Res.getOperand(0); 11639 11640 // Update the SwiftErrorVRegDefMap. 11641 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11642 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11643 if (Register::isVirtualRegister(Reg)) 11644 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11645 Reg); 11646 } 11647 11648 // If this argument is live outside of the entry block, insert a copy from 11649 // wherever we got it to the vreg that other BB's will reference it as. 11650 if (Res.getOpcode() == ISD::CopyFromReg) { 11651 // If we can, though, try to skip creating an unnecessary vreg. 11652 // FIXME: This isn't very clean... it would be nice to make this more 11653 // general. 11654 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11655 if (Register::isVirtualRegister(Reg)) { 11656 FuncInfo->ValueMap[&Arg] = Reg; 11657 continue; 11658 } 11659 } 11660 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11661 FuncInfo->InitializeRegForValue(&Arg); 11662 SDB->CopyToExportRegsIfNeeded(&Arg); 11663 } 11664 } 11665 11666 if (!Chains.empty()) { 11667 Chains.push_back(NewRoot); 11668 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11669 } 11670 11671 DAG.setRoot(NewRoot); 11672 11673 assert(i == InVals.size() && "Argument register count mismatch!"); 11674 11675 // If any argument copy elisions occurred and we have debug info, update the 11676 // stale frame indices used in the dbg.declare variable info table. 11677 if (!ArgCopyElisionFrameIndexMap.empty()) { 11678 for (MachineFunction::VariableDbgInfo &VI : 11679 MF->getInStackSlotVariableDbgInfo()) { 11680 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11681 if (I != ArgCopyElisionFrameIndexMap.end()) 11682 VI.updateStackSlot(I->second); 11683 } 11684 } 11685 11686 // Finally, if the target has anything special to do, allow it to do so. 11687 emitFunctionEntryCode(); 11688 } 11689 11690 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11691 /// ensure constants are generated when needed. Remember the virtual registers 11692 /// that need to be added to the Machine PHI nodes as input. We cannot just 11693 /// directly add them, because expansion might result in multiple MBB's for one 11694 /// BB. As such, the start of the BB might correspond to a different MBB than 11695 /// the end. 11696 void 11697 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11699 11700 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11701 11702 // Check PHI nodes in successors that expect a value to be available from this 11703 // block. 11704 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11705 if (!isa<PHINode>(SuccBB->begin())) continue; 11706 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11707 11708 // If this terminator has multiple identical successors (common for 11709 // switches), only handle each succ once. 11710 if (!SuccsHandled.insert(SuccMBB).second) 11711 continue; 11712 11713 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11714 11715 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11716 // nodes and Machine PHI nodes, but the incoming operands have not been 11717 // emitted yet. 11718 for (const PHINode &PN : SuccBB->phis()) { 11719 // Ignore dead phi's. 11720 if (PN.use_empty()) 11721 continue; 11722 11723 // Skip empty types 11724 if (PN.getType()->isEmptyTy()) 11725 continue; 11726 11727 unsigned Reg; 11728 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11729 11730 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11731 unsigned &RegOut = ConstantsOut[C]; 11732 if (RegOut == 0) { 11733 RegOut = FuncInfo.CreateRegs(C); 11734 // We need to zero/sign extend ConstantInt phi operands to match 11735 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11736 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11737 if (auto *CI = dyn_cast<ConstantInt>(C)) 11738 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11739 : ISD::ZERO_EXTEND; 11740 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11741 } 11742 Reg = RegOut; 11743 } else { 11744 DenseMap<const Value *, Register>::iterator I = 11745 FuncInfo.ValueMap.find(PHIOp); 11746 if (I != FuncInfo.ValueMap.end()) 11747 Reg = I->second; 11748 else { 11749 assert(isa<AllocaInst>(PHIOp) && 11750 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11751 "Didn't codegen value into a register!??"); 11752 Reg = FuncInfo.CreateRegs(PHIOp); 11753 CopyValueToVirtualRegister(PHIOp, Reg); 11754 } 11755 } 11756 11757 // Remember that this register needs to added to the machine PHI node as 11758 // the input for this MBB. 11759 SmallVector<EVT, 4> ValueVTs; 11760 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11761 for (EVT VT : ValueVTs) { 11762 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11763 for (unsigned i = 0; i != NumRegisters; ++i) 11764 FuncInfo.PHINodesToUpdate.push_back( 11765 std::make_pair(&*MBBI++, Reg + i)); 11766 Reg += NumRegisters; 11767 } 11768 } 11769 } 11770 11771 ConstantsOut.clear(); 11772 } 11773 11774 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11775 MachineFunction::iterator I(MBB); 11776 if (++I == FuncInfo.MF->end()) 11777 return nullptr; 11778 return &*I; 11779 } 11780 11781 /// During lowering new call nodes can be created (such as memset, etc.). 11782 /// Those will become new roots of the current DAG, but complications arise 11783 /// when they are tail calls. In such cases, the call lowering will update 11784 /// the root, but the builder still needs to know that a tail call has been 11785 /// lowered in order to avoid generating an additional return. 11786 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11787 // If the node is null, we do have a tail call. 11788 if (MaybeTC.getNode() != nullptr) 11789 DAG.setRoot(MaybeTC); 11790 else 11791 HasTailCall = true; 11792 } 11793 11794 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11795 MachineBasicBlock *SwitchMBB, 11796 MachineBasicBlock *DefaultMBB) { 11797 MachineFunction *CurMF = FuncInfo.MF; 11798 MachineBasicBlock *NextMBB = nullptr; 11799 MachineFunction::iterator BBI(W.MBB); 11800 if (++BBI != FuncInfo.MF->end()) 11801 NextMBB = &*BBI; 11802 11803 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11804 11805 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11806 11807 if (Size == 2 && W.MBB == SwitchMBB) { 11808 // If any two of the cases has the same destination, and if one value 11809 // is the same as the other, but has one bit unset that the other has set, 11810 // use bit manipulation to do two compares at once. For example: 11811 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11812 // TODO: This could be extended to merge any 2 cases in switches with 3 11813 // cases. 11814 // TODO: Handle cases where W.CaseBB != SwitchBB. 11815 CaseCluster &Small = *W.FirstCluster; 11816 CaseCluster &Big = *W.LastCluster; 11817 11818 if (Small.Low == Small.High && Big.Low == Big.High && 11819 Small.MBB == Big.MBB) { 11820 const APInt &SmallValue = Small.Low->getValue(); 11821 const APInt &BigValue = Big.Low->getValue(); 11822 11823 // Check that there is only one bit different. 11824 APInt CommonBit = BigValue ^ SmallValue; 11825 if (CommonBit.isPowerOf2()) { 11826 SDValue CondLHS = getValue(Cond); 11827 EVT VT = CondLHS.getValueType(); 11828 SDLoc DL = getCurSDLoc(); 11829 11830 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11831 DAG.getConstant(CommonBit, DL, VT)); 11832 SDValue Cond = DAG.getSetCC( 11833 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11834 ISD::SETEQ); 11835 11836 // Update successor info. 11837 // Both Small and Big will jump to Small.BB, so we sum up the 11838 // probabilities. 11839 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11840 if (BPI) 11841 addSuccessorWithProb( 11842 SwitchMBB, DefaultMBB, 11843 // The default destination is the first successor in IR. 11844 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11845 else 11846 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11847 11848 // Insert the true branch. 11849 SDValue BrCond = 11850 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11851 DAG.getBasicBlock(Small.MBB)); 11852 // Insert the false branch. 11853 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11854 DAG.getBasicBlock(DefaultMBB)); 11855 11856 DAG.setRoot(BrCond); 11857 return; 11858 } 11859 } 11860 } 11861 11862 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11863 // Here, we order cases by probability so the most likely case will be 11864 // checked first. However, two clusters can have the same probability in 11865 // which case their relative ordering is non-deterministic. So we use Low 11866 // as a tie-breaker as clusters are guaranteed to never overlap. 11867 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11868 [](const CaseCluster &a, const CaseCluster &b) { 11869 return a.Prob != b.Prob ? 11870 a.Prob > b.Prob : 11871 a.Low->getValue().slt(b.Low->getValue()); 11872 }); 11873 11874 // Rearrange the case blocks so that the last one falls through if possible 11875 // without changing the order of probabilities. 11876 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11877 --I; 11878 if (I->Prob > W.LastCluster->Prob) 11879 break; 11880 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11881 std::swap(*I, *W.LastCluster); 11882 break; 11883 } 11884 } 11885 } 11886 11887 // Compute total probability. 11888 BranchProbability DefaultProb = W.DefaultProb; 11889 BranchProbability UnhandledProbs = DefaultProb; 11890 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11891 UnhandledProbs += I->Prob; 11892 11893 MachineBasicBlock *CurMBB = W.MBB; 11894 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11895 bool FallthroughUnreachable = false; 11896 MachineBasicBlock *Fallthrough; 11897 if (I == W.LastCluster) { 11898 // For the last cluster, fall through to the default destination. 11899 Fallthrough = DefaultMBB; 11900 FallthroughUnreachable = isa<UnreachableInst>( 11901 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11902 } else { 11903 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11904 CurMF->insert(BBI, Fallthrough); 11905 // Put Cond in a virtual register to make it available from the new blocks. 11906 ExportFromCurrentBlock(Cond); 11907 } 11908 UnhandledProbs -= I->Prob; 11909 11910 switch (I->Kind) { 11911 case CC_JumpTable: { 11912 // FIXME: Optimize away range check based on pivot comparisons. 11913 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11914 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11915 11916 // The jump block hasn't been inserted yet; insert it here. 11917 MachineBasicBlock *JumpMBB = JT->MBB; 11918 CurMF->insert(BBI, JumpMBB); 11919 11920 auto JumpProb = I->Prob; 11921 auto FallthroughProb = UnhandledProbs; 11922 11923 // If the default statement is a target of the jump table, we evenly 11924 // distribute the default probability to successors of CurMBB. Also 11925 // update the probability on the edge from JumpMBB to Fallthrough. 11926 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11927 SE = JumpMBB->succ_end(); 11928 SI != SE; ++SI) { 11929 if (*SI == DefaultMBB) { 11930 JumpProb += DefaultProb / 2; 11931 FallthroughProb -= DefaultProb / 2; 11932 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11933 JumpMBB->normalizeSuccProbs(); 11934 break; 11935 } 11936 } 11937 11938 // If the default clause is unreachable, propagate that knowledge into 11939 // JTH->FallthroughUnreachable which will use it to suppress the range 11940 // check. 11941 // 11942 // However, don't do this if we're doing branch target enforcement, 11943 // because a table branch _without_ a range check can be a tempting JOP 11944 // gadget - out-of-bounds inputs that are impossible in correct 11945 // execution become possible again if an attacker can influence the 11946 // control flow. So if an attacker doesn't already have a BTI bypass 11947 // available, we don't want them to be able to get one out of this 11948 // table branch. 11949 if (FallthroughUnreachable) { 11950 Function &CurFunc = CurMF->getFunction(); 11951 bool HasBranchTargetEnforcement = false; 11952 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11953 HasBranchTargetEnforcement = 11954 CurFunc.getFnAttribute("branch-target-enforcement") 11955 .getValueAsBool(); 11956 } else { 11957 HasBranchTargetEnforcement = 11958 CurMF->getMMI().getModule()->getModuleFlag( 11959 "branch-target-enforcement"); 11960 } 11961 if (!HasBranchTargetEnforcement) 11962 JTH->FallthroughUnreachable = true; 11963 } 11964 11965 if (!JTH->FallthroughUnreachable) 11966 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11967 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11968 CurMBB->normalizeSuccProbs(); 11969 11970 // The jump table header will be inserted in our current block, do the 11971 // range check, and fall through to our fallthrough block. 11972 JTH->HeaderBB = CurMBB; 11973 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11974 11975 // If we're in the right place, emit the jump table header right now. 11976 if (CurMBB == SwitchMBB) { 11977 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11978 JTH->Emitted = true; 11979 } 11980 break; 11981 } 11982 case CC_BitTests: { 11983 // FIXME: Optimize away range check based on pivot comparisons. 11984 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11985 11986 // The bit test blocks haven't been inserted yet; insert them here. 11987 for (BitTestCase &BTC : BTB->Cases) 11988 CurMF->insert(BBI, BTC.ThisBB); 11989 11990 // Fill in fields of the BitTestBlock. 11991 BTB->Parent = CurMBB; 11992 BTB->Default = Fallthrough; 11993 11994 BTB->DefaultProb = UnhandledProbs; 11995 // If the cases in bit test don't form a contiguous range, we evenly 11996 // distribute the probability on the edge to Fallthrough to two 11997 // successors of CurMBB. 11998 if (!BTB->ContiguousRange) { 11999 BTB->Prob += DefaultProb / 2; 12000 BTB->DefaultProb -= DefaultProb / 2; 12001 } 12002 12003 if (FallthroughUnreachable) 12004 BTB->FallthroughUnreachable = true; 12005 12006 // If we're in the right place, emit the bit test header right now. 12007 if (CurMBB == SwitchMBB) { 12008 visitBitTestHeader(*BTB, SwitchMBB); 12009 BTB->Emitted = true; 12010 } 12011 break; 12012 } 12013 case CC_Range: { 12014 const Value *RHS, *LHS, *MHS; 12015 ISD::CondCode CC; 12016 if (I->Low == I->High) { 12017 // Check Cond == I->Low. 12018 CC = ISD::SETEQ; 12019 LHS = Cond; 12020 RHS=I->Low; 12021 MHS = nullptr; 12022 } else { 12023 // Check I->Low <= Cond <= I->High. 12024 CC = ISD::SETLE; 12025 LHS = I->Low; 12026 MHS = Cond; 12027 RHS = I->High; 12028 } 12029 12030 // If Fallthrough is unreachable, fold away the comparison. 12031 if (FallthroughUnreachable) 12032 CC = ISD::SETTRUE; 12033 12034 // The false probability is the sum of all unhandled cases. 12035 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12036 getCurSDLoc(), I->Prob, UnhandledProbs); 12037 12038 if (CurMBB == SwitchMBB) 12039 visitSwitchCase(CB, SwitchMBB); 12040 else 12041 SL->SwitchCases.push_back(CB); 12042 12043 break; 12044 } 12045 } 12046 CurMBB = Fallthrough; 12047 } 12048 } 12049 12050 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12051 const SwitchWorkListItem &W, 12052 Value *Cond, 12053 MachineBasicBlock *SwitchMBB) { 12054 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12055 "Clusters not sorted?"); 12056 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12057 12058 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12059 SL->computeSplitWorkItemInfo(W); 12060 12061 // Use the first element on the right as pivot since we will make less-than 12062 // comparisons against it. 12063 CaseClusterIt PivotCluster = FirstRight; 12064 assert(PivotCluster > W.FirstCluster); 12065 assert(PivotCluster <= W.LastCluster); 12066 12067 CaseClusterIt FirstLeft = W.FirstCluster; 12068 CaseClusterIt LastRight = W.LastCluster; 12069 12070 const ConstantInt *Pivot = PivotCluster->Low; 12071 12072 // New blocks will be inserted immediately after the current one. 12073 MachineFunction::iterator BBI(W.MBB); 12074 ++BBI; 12075 12076 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12077 // we can branch to its destination directly if it's squeezed exactly in 12078 // between the known lower bound and Pivot - 1. 12079 MachineBasicBlock *LeftMBB; 12080 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12081 FirstLeft->Low == W.GE && 12082 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12083 LeftMBB = FirstLeft->MBB; 12084 } else { 12085 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12086 FuncInfo.MF->insert(BBI, LeftMBB); 12087 WorkList.push_back( 12088 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12089 // Put Cond in a virtual register to make it available from the new blocks. 12090 ExportFromCurrentBlock(Cond); 12091 } 12092 12093 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12094 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12095 // directly if RHS.High equals the current upper bound. 12096 MachineBasicBlock *RightMBB; 12097 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12098 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12099 RightMBB = FirstRight->MBB; 12100 } else { 12101 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12102 FuncInfo.MF->insert(BBI, RightMBB); 12103 WorkList.push_back( 12104 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12105 // Put Cond in a virtual register to make it available from the new blocks. 12106 ExportFromCurrentBlock(Cond); 12107 } 12108 12109 // Create the CaseBlock record that will be used to lower the branch. 12110 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12111 getCurSDLoc(), LeftProb, RightProb); 12112 12113 if (W.MBB == SwitchMBB) 12114 visitSwitchCase(CB, SwitchMBB); 12115 else 12116 SL->SwitchCases.push_back(CB); 12117 } 12118 12119 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12120 // from the swith statement. 12121 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12122 BranchProbability PeeledCaseProb) { 12123 if (PeeledCaseProb == BranchProbability::getOne()) 12124 return BranchProbability::getZero(); 12125 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12126 12127 uint32_t Numerator = CaseProb.getNumerator(); 12128 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12129 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12130 } 12131 12132 // Try to peel the top probability case if it exceeds the threshold. 12133 // Return current MachineBasicBlock for the switch statement if the peeling 12134 // does not occur. 12135 // If the peeling is performed, return the newly created MachineBasicBlock 12136 // for the peeled switch statement. Also update Clusters to remove the peeled 12137 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12138 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12139 const SwitchInst &SI, CaseClusterVector &Clusters, 12140 BranchProbability &PeeledCaseProb) { 12141 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12142 // Don't perform if there is only one cluster or optimizing for size. 12143 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12144 TM.getOptLevel() == CodeGenOptLevel::None || 12145 SwitchMBB->getParent()->getFunction().hasMinSize()) 12146 return SwitchMBB; 12147 12148 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12149 unsigned PeeledCaseIndex = 0; 12150 bool SwitchPeeled = false; 12151 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12152 CaseCluster &CC = Clusters[Index]; 12153 if (CC.Prob < TopCaseProb) 12154 continue; 12155 TopCaseProb = CC.Prob; 12156 PeeledCaseIndex = Index; 12157 SwitchPeeled = true; 12158 } 12159 if (!SwitchPeeled) 12160 return SwitchMBB; 12161 12162 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12163 << TopCaseProb << "\n"); 12164 12165 // Record the MBB for the peeled switch statement. 12166 MachineFunction::iterator BBI(SwitchMBB); 12167 ++BBI; 12168 MachineBasicBlock *PeeledSwitchMBB = 12169 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12170 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12171 12172 ExportFromCurrentBlock(SI.getCondition()); 12173 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12174 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12175 nullptr, nullptr, TopCaseProb.getCompl()}; 12176 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12177 12178 Clusters.erase(PeeledCaseIt); 12179 for (CaseCluster &CC : Clusters) { 12180 LLVM_DEBUG( 12181 dbgs() << "Scale the probablity for one cluster, before scaling: " 12182 << CC.Prob << "\n"); 12183 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12184 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12185 } 12186 PeeledCaseProb = TopCaseProb; 12187 return PeeledSwitchMBB; 12188 } 12189 12190 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12191 // Extract cases from the switch. 12192 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12193 CaseClusterVector Clusters; 12194 Clusters.reserve(SI.getNumCases()); 12195 for (auto I : SI.cases()) { 12196 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12197 const ConstantInt *CaseVal = I.getCaseValue(); 12198 BranchProbability Prob = 12199 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12200 : BranchProbability(1, SI.getNumCases() + 1); 12201 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12202 } 12203 12204 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12205 12206 // Cluster adjacent cases with the same destination. We do this at all 12207 // optimization levels because it's cheap to do and will make codegen faster 12208 // if there are many clusters. 12209 sortAndRangeify(Clusters); 12210 12211 // The branch probablity of the peeled case. 12212 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12213 MachineBasicBlock *PeeledSwitchMBB = 12214 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12215 12216 // If there is only the default destination, jump there directly. 12217 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12218 if (Clusters.empty()) { 12219 assert(PeeledSwitchMBB == SwitchMBB); 12220 SwitchMBB->addSuccessor(DefaultMBB); 12221 if (DefaultMBB != NextBlock(SwitchMBB)) { 12222 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12223 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12224 } 12225 return; 12226 } 12227 12228 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12229 DAG.getBFI()); 12230 SL->findBitTestClusters(Clusters, &SI); 12231 12232 LLVM_DEBUG({ 12233 dbgs() << "Case clusters: "; 12234 for (const CaseCluster &C : Clusters) { 12235 if (C.Kind == CC_JumpTable) 12236 dbgs() << "JT:"; 12237 if (C.Kind == CC_BitTests) 12238 dbgs() << "BT:"; 12239 12240 C.Low->getValue().print(dbgs(), true); 12241 if (C.Low != C.High) { 12242 dbgs() << '-'; 12243 C.High->getValue().print(dbgs(), true); 12244 } 12245 dbgs() << ' '; 12246 } 12247 dbgs() << '\n'; 12248 }); 12249 12250 assert(!Clusters.empty()); 12251 SwitchWorkList WorkList; 12252 CaseClusterIt First = Clusters.begin(); 12253 CaseClusterIt Last = Clusters.end() - 1; 12254 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12255 // Scale the branchprobability for DefaultMBB if the peel occurs and 12256 // DefaultMBB is not replaced. 12257 if (PeeledCaseProb != BranchProbability::getZero() && 12258 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12259 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12260 WorkList.push_back( 12261 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12262 12263 while (!WorkList.empty()) { 12264 SwitchWorkListItem W = WorkList.pop_back_val(); 12265 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12266 12267 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12268 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12269 // For optimized builds, lower large range as a balanced binary tree. 12270 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12271 continue; 12272 } 12273 12274 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12275 } 12276 } 12277 12278 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12280 auto DL = getCurSDLoc(); 12281 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12282 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12283 } 12284 12285 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12286 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12287 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12288 12289 SDLoc DL = getCurSDLoc(); 12290 SDValue V = getValue(I.getOperand(0)); 12291 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12292 12293 if (VT.isScalableVector()) { 12294 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12295 return; 12296 } 12297 12298 // Use VECTOR_SHUFFLE for the fixed-length vector 12299 // to maintain existing behavior. 12300 SmallVector<int, 8> Mask; 12301 unsigned NumElts = VT.getVectorMinNumElements(); 12302 for (unsigned i = 0; i != NumElts; ++i) 12303 Mask.push_back(NumElts - 1 - i); 12304 12305 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12306 } 12307 12308 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12309 auto DL = getCurSDLoc(); 12310 SDValue InVec = getValue(I.getOperand(0)); 12311 EVT OutVT = 12312 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12313 12314 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12315 12316 // ISD Node needs the input vectors split into two equal parts 12317 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12318 DAG.getVectorIdxConstant(0, DL)); 12319 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12320 DAG.getVectorIdxConstant(OutNumElts, DL)); 12321 12322 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12323 // legalisation and combines. 12324 if (OutVT.isFixedLengthVector()) { 12325 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12326 createStrideMask(0, 2, OutNumElts)); 12327 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12328 createStrideMask(1, 2, OutNumElts)); 12329 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12330 setValue(&I, Res); 12331 return; 12332 } 12333 12334 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12335 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12336 setValue(&I, Res); 12337 } 12338 12339 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12340 auto DL = getCurSDLoc(); 12341 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12342 SDValue InVec0 = getValue(I.getOperand(0)); 12343 SDValue InVec1 = getValue(I.getOperand(1)); 12344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12345 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12346 12347 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12348 // legalisation and combines. 12349 if (OutVT.isFixedLengthVector()) { 12350 unsigned NumElts = InVT.getVectorMinNumElements(); 12351 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12352 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12353 createInterleaveMask(NumElts, 2))); 12354 return; 12355 } 12356 12357 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12358 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12359 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12360 Res.getValue(1)); 12361 setValue(&I, Res); 12362 } 12363 12364 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12365 SmallVector<EVT, 4> ValueVTs; 12366 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12367 ValueVTs); 12368 unsigned NumValues = ValueVTs.size(); 12369 if (NumValues == 0) return; 12370 12371 SmallVector<SDValue, 4> Values(NumValues); 12372 SDValue Op = getValue(I.getOperand(0)); 12373 12374 for (unsigned i = 0; i != NumValues; ++i) 12375 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12376 SDValue(Op.getNode(), Op.getResNo() + i)); 12377 12378 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12379 DAG.getVTList(ValueVTs), Values)); 12380 } 12381 12382 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12384 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12385 12386 SDLoc DL = getCurSDLoc(); 12387 SDValue V1 = getValue(I.getOperand(0)); 12388 SDValue V2 = getValue(I.getOperand(1)); 12389 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12390 12391 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12392 if (VT.isScalableVector()) { 12393 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12394 DAG.getVectorIdxConstant(Imm, DL))); 12395 return; 12396 } 12397 12398 unsigned NumElts = VT.getVectorNumElements(); 12399 12400 uint64_t Idx = (NumElts + Imm) % NumElts; 12401 12402 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12403 SmallVector<int, 8> Mask; 12404 for (unsigned i = 0; i < NumElts; ++i) 12405 Mask.push_back(Idx + i); 12406 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12407 } 12408 12409 // Consider the following MIR after SelectionDAG, which produces output in 12410 // phyregs in the first case or virtregs in the second case. 12411 // 12412 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12413 // %5:gr32 = COPY $ebx 12414 // %6:gr32 = COPY $edx 12415 // %1:gr32 = COPY %6:gr32 12416 // %0:gr32 = COPY %5:gr32 12417 // 12418 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12419 // %1:gr32 = COPY %6:gr32 12420 // %0:gr32 = COPY %5:gr32 12421 // 12422 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12423 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12424 // 12425 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12426 // to a single virtreg (such as %0). The remaining outputs monotonically 12427 // increase in virtreg number from there. If a callbr has no outputs, then it 12428 // should not have a corresponding callbr landingpad; in fact, the callbr 12429 // landingpad would not even be able to refer to such a callbr. 12430 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12431 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12432 // There is definitely at least one copy. 12433 assert(MI->getOpcode() == TargetOpcode::COPY && 12434 "start of copy chain MUST be COPY"); 12435 Reg = MI->getOperand(1).getReg(); 12436 MI = MRI.def_begin(Reg)->getParent(); 12437 // There may be an optional second copy. 12438 if (MI->getOpcode() == TargetOpcode::COPY) { 12439 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12440 Reg = MI->getOperand(1).getReg(); 12441 assert(Reg.isPhysical() && "expected COPY of physical register"); 12442 MI = MRI.def_begin(Reg)->getParent(); 12443 } 12444 // The start of the chain must be an INLINEASM_BR. 12445 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12446 "end of copy chain MUST be INLINEASM_BR"); 12447 return Reg; 12448 } 12449 12450 // We must do this walk rather than the simpler 12451 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12452 // otherwise we will end up with copies of virtregs only valid along direct 12453 // edges. 12454 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12455 SmallVector<EVT, 8> ResultVTs; 12456 SmallVector<SDValue, 8> ResultValues; 12457 const auto *CBR = 12458 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12459 12460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12461 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12462 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12463 12464 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12465 SDValue Chain = DAG.getRoot(); 12466 12467 // Re-parse the asm constraints string. 12468 TargetLowering::AsmOperandInfoVector TargetConstraints = 12469 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12470 for (auto &T : TargetConstraints) { 12471 SDISelAsmOperandInfo OpInfo(T); 12472 if (OpInfo.Type != InlineAsm::isOutput) 12473 continue; 12474 12475 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12476 // individual constraint. 12477 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12478 12479 switch (OpInfo.ConstraintType) { 12480 case TargetLowering::C_Register: 12481 case TargetLowering::C_RegisterClass: { 12482 // Fill in OpInfo.AssignedRegs.Regs. 12483 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12484 12485 // getRegistersForValue may produce 1 to many registers based on whether 12486 // the OpInfo.ConstraintVT is legal on the target or not. 12487 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12488 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12489 if (Register::isPhysicalRegister(OriginalDef)) 12490 FuncInfo.MBB->addLiveIn(OriginalDef); 12491 // Update the assigned registers to use the original defs. 12492 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12493 } 12494 12495 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12496 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12497 ResultValues.push_back(V); 12498 ResultVTs.push_back(OpInfo.ConstraintVT); 12499 break; 12500 } 12501 case TargetLowering::C_Other: { 12502 SDValue Flag; 12503 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12504 OpInfo, DAG); 12505 ++InitialDef; 12506 ResultValues.push_back(V); 12507 ResultVTs.push_back(OpInfo.ConstraintVT); 12508 break; 12509 } 12510 default: 12511 break; 12512 } 12513 } 12514 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12515 DAG.getVTList(ResultVTs), ResultValues); 12516 setValue(&I, V); 12517 } 12518