xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 98369178bc695ba5d64314beb62d5ba5c9f14e2e)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
419                          (IntermediateVT.isVector()
420                               ? IntermediateVT.getVectorNumElements() * NumParts
421                               : NumIntermediates));
422     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
423                                                 : ISD::BUILD_VECTOR,
424                       DL, BuiltVectorTy, Ops);
425   }
426 
427   // There is now one part, held in Val.  Correct it to match ValueVT.
428   EVT PartEVT = Val.getValueType();
429 
430   if (PartEVT == ValueVT)
431     return Val;
432 
433   if (PartEVT.isVector()) {
434     // If the element type of the source/dest vectors are the same, but the
435     // parts vector has more elements than the value vector, then we have a
436     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
437     // elements we want.
438     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
439       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
440              "Cannot narrow, it would be a lossy transformation");
441       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
442                          DAG.getVectorIdxConstant(0, DL));
443     }
444 
445     // Vector/Vector bitcast.
446     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
447       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
450       "Cannot handle this kind of promotion");
451     // Promoted vector extract
452     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
453 
454   }
455 
456   // Trivial bitcast if the types are the same size and the destination
457   // vector type is legal.
458   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
459       TLI.isTypeLegal(ValueVT))
460     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461 
462   if (ValueVT.getVectorNumElements() != 1) {
463      // Certain ABIs require that vectors are passed as integers. For vectors
464      // are the same size, this is an obvious bitcast.
465      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
466        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
467      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
468        // Bitcast Val back the original type and extract the corresponding
469        // vector we want.
470        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
471        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
472                                            ValueVT.getVectorElementType(), Elts);
473        Val = DAG.getBitcast(WiderVecType, Val);
474        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
475                           DAG.getVectorIdxConstant(0, DL));
476      }
477 
478      diagnosePossiblyInvalidConstraint(
479          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
480      return DAG.getUNDEF(ValueVT);
481   }
482 
483   // Handle cases such as i8 -> <1 x i1>
484   EVT ValueSVT = ValueVT.getVectorElementType();
485   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
486     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
487       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
488     else
489       Val = ValueVT.isFloatingPoint()
490                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
491                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
492   }
493 
494   return DAG.getBuildVector(ValueVT, DL, Val);
495 }
496 
497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
498                                  SDValue Val, SDValue *Parts, unsigned NumParts,
499                                  MVT PartVT, const Value *V,
500                                  Optional<CallingConv::ID> CallConv);
501 
502 /// getCopyToParts - Create a series of nodes that contain the specified value
503 /// split into legal parts.  If the parts contain more bits than Val, then, for
504 /// integers, ExtendKind can be used to specify how to generate the extra bits.
505 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
506                            SDValue *Parts, unsigned NumParts, MVT PartVT,
507                            const Value *V,
508                            Optional<CallingConv::ID> CallConv = None,
509                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
510   EVT ValueVT = Val.getValueType();
511 
512   // Handle the vector case separately.
513   if (ValueVT.isVector())
514     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
515                                 CallConv);
516 
517   unsigned PartBits = PartVT.getSizeInBits();
518   unsigned OrigNumParts = NumParts;
519   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
520          "Copying to an illegal type!");
521 
522   if (NumParts == 0)
523     return;
524 
525   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
526   EVT PartEVT = PartVT;
527   if (PartEVT == ValueVT) {
528     assert(NumParts == 1 && "No-op copy with multiple parts!");
529     Parts[0] = Val;
530     return;
531   }
532 
533   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
534     // If the parts cover more bits than the value has, promote the value.
535     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
536       assert(NumParts == 1 && "Do not know what to promote to!");
537       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
538     } else {
539       if (ValueVT.isFloatingPoint()) {
540         // FP values need to be bitcast, then extended if they are being put
541         // into a larger container.
542         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
543         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
544       }
545       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
546              ValueVT.isInteger() &&
547              "Unknown mismatch!");
548       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
549       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
550       if (PartVT == MVT::x86mmx)
551         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
552     }
553   } else if (PartBits == ValueVT.getSizeInBits()) {
554     // Different types of the same size.
555     assert(NumParts == 1 && PartEVT != ValueVT);
556     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
558     // If the parts cover less bits than value has, truncate the value.
559     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
560            ValueVT.isInteger() &&
561            "Unknown mismatch!");
562     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
563     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
564     if (PartVT == MVT::x86mmx)
565       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
566   }
567 
568   // The value may have changed - recompute ValueVT.
569   ValueVT = Val.getValueType();
570   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
571          "Failed to tile the value with PartVT!");
572 
573   if (NumParts == 1) {
574     if (PartEVT != ValueVT) {
575       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
576                                         "scalar-to-vector conversion failed");
577       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
578     }
579 
580     Parts[0] = Val;
581     return;
582   }
583 
584   // Expand the value into multiple parts.
585   if (NumParts & (NumParts - 1)) {
586     // The number of parts is not a power of 2.  Split off and copy the tail.
587     assert(PartVT.isInteger() && ValueVT.isInteger() &&
588            "Do not know what to expand to!");
589     unsigned RoundParts = 1 << Log2_32(NumParts);
590     unsigned RoundBits = RoundParts * PartBits;
591     unsigned OddParts = NumParts - RoundParts;
592     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
593       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
594 
595     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
596                    CallConv);
597 
598     if (DAG.getDataLayout().isBigEndian())
599       // The odd parts were reversed by getCopyToParts - unreverse them.
600       std::reverse(Parts + RoundParts, Parts + NumParts);
601 
602     NumParts = RoundParts;
603     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
604     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
605   }
606 
607   // The number of parts is a power of 2.  Repeatedly bisect the value using
608   // EXTRACT_ELEMENT.
609   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
610                          EVT::getIntegerVT(*DAG.getContext(),
611                                            ValueVT.getSizeInBits()),
612                          Val);
613 
614   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
615     for (unsigned i = 0; i < NumParts; i += StepSize) {
616       unsigned ThisBits = StepSize * PartBits / 2;
617       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
618       SDValue &Part0 = Parts[i];
619       SDValue &Part1 = Parts[i+StepSize/2];
620 
621       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
622                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
623       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
625 
626       if (ThisBits == PartBits && ThisVT != PartVT) {
627         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
628         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
629       }
630     }
631   }
632 
633   if (DAG.getDataLayout().isBigEndian())
634     std::reverse(Parts, Parts + OrigNumParts);
635 }
636 
637 static SDValue widenVectorToPartType(SelectionDAG &DAG,
638                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
639   if (!PartVT.isVector())
640     return SDValue();
641 
642   EVT ValueVT = Val.getValueType();
643   unsigned PartNumElts = PartVT.getVectorNumElements();
644   unsigned ValueNumElts = ValueVT.getVectorNumElements();
645   if (PartNumElts > ValueNumElts &&
646       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
647     EVT ElementVT = PartVT.getVectorElementType();
648     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
649     // undef elements.
650     SmallVector<SDValue, 16> Ops;
651     DAG.ExtractVectorElements(Val, Ops);
652     SDValue EltUndef = DAG.getUNDEF(ElementVT);
653     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
654       Ops.push_back(EltUndef);
655 
656     // FIXME: Use CONCAT for 2x -> 4x.
657     return DAG.getBuildVector(PartVT, DL, Ops);
658   }
659 
660   return SDValue();
661 }
662 
663 /// getCopyToPartsVector - Create a series of nodes that contain the specified
664 /// value split into legal parts.
665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
666                                  SDValue Val, SDValue *Parts, unsigned NumParts,
667                                  MVT PartVT, const Value *V,
668                                  Optional<CallingConv::ID> CallConv) {
669   EVT ValueVT = Val.getValueType();
670   assert(ValueVT.isVector() && "Not a vector");
671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
672   const bool IsABIRegCopy = CallConv.hasValue();
673 
674   if (NumParts == 1) {
675     EVT PartEVT = PartVT;
676     if (PartEVT == ValueVT) {
677       // Nothing to do.
678     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
679       // Bitconvert vector->vector case.
680       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
681     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
682       Val = Widened;
683     } else if (PartVT.isVector() &&
684                PartEVT.getVectorElementType().bitsGE(
685                  ValueVT.getVectorElementType()) &&
686                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
687 
688       // Promoted vector extract
689       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
690     } else {
691       if (ValueVT.getVectorNumElements() == 1) {
692         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
693                           DAG.getVectorIdxConstant(0, DL));
694       } else {
695         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
696                "lossy conversion of vector to scalar type");
697         EVT IntermediateType =
698             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
699         Val = DAG.getBitcast(IntermediateType, Val);
700         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
701       }
702     }
703 
704     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
705     Parts[0] = Val;
706     return;
707   }
708 
709   // Handle a multi-element vector.
710   EVT IntermediateVT;
711   MVT RegisterVT;
712   unsigned NumIntermediates;
713   unsigned NumRegs;
714   if (IsABIRegCopy) {
715     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
716         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
717         NumIntermediates, RegisterVT);
718   } else {
719     NumRegs =
720         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
721                                    NumIntermediates, RegisterVT);
722   }
723 
724   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
725   NumParts = NumRegs; // Silence a compiler warning.
726   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
727 
728   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
729     IntermediateVT.getVectorNumElements() : 1;
730 
731   // Convert the vector to the appropriate type if necessary.
732   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
733 
734   EVT BuiltVectorTy = EVT::getVectorVT(
735       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
736   if (ValueVT != BuiltVectorTy) {
737     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
738       Val = Widened;
739 
740     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
741   }
742 
743   // Split the vector into intermediate operands.
744   SmallVector<SDValue, 8> Ops(NumIntermediates);
745   for (unsigned i = 0; i != NumIntermediates; ++i) {
746     if (IntermediateVT.isVector()) {
747       Ops[i] =
748           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
749                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
750     } else {
751       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
752                            DAG.getVectorIdxConstant(i, DL));
753     }
754   }
755 
756   // Split the intermediate operands into legal parts.
757   if (NumParts == NumIntermediates) {
758     // If the register was not expanded, promote or copy the value,
759     // as appropriate.
760     for (unsigned i = 0; i != NumParts; ++i)
761       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
762   } else if (NumParts > 0) {
763     // If the intermediate type was expanded, split each the value into
764     // legal parts.
765     assert(NumIntermediates != 0 && "division by zero");
766     assert(NumParts % NumIntermediates == 0 &&
767            "Must expand into a divisible number of parts!");
768     unsigned Factor = NumParts / NumIntermediates;
769     for (unsigned i = 0; i != NumIntermediates; ++i)
770       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
771                      CallConv);
772   }
773 }
774 
775 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
776                            EVT valuevt, Optional<CallingConv::ID> CC)
777     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
778       RegCount(1, regs.size()), CallConv(CC) {}
779 
780 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
781                            const DataLayout &DL, unsigned Reg, Type *Ty,
782                            Optional<CallingConv::ID> CC) {
783   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
784 
785   CallConv = CC;
786 
787   for (EVT ValueVT : ValueVTs) {
788     unsigned NumRegs =
789         isABIMangled()
790             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
791             : TLI.getNumRegisters(Context, ValueVT);
792     MVT RegisterVT =
793         isABIMangled()
794             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
795             : TLI.getRegisterType(Context, ValueVT);
796     for (unsigned i = 0; i != NumRegs; ++i)
797       Regs.push_back(Reg + i);
798     RegVTs.push_back(RegisterVT);
799     RegCount.push_back(NumRegs);
800     Reg += NumRegs;
801   }
802 }
803 
804 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
805                                       FunctionLoweringInfo &FuncInfo,
806                                       const SDLoc &dl, SDValue &Chain,
807                                       SDValue *Flag, const Value *V) const {
808   // A Value with type {} or [0 x %t] needs no registers.
809   if (ValueVTs.empty())
810     return SDValue();
811 
812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
813 
814   // Assemble the legal parts into the final values.
815   SmallVector<SDValue, 4> Values(ValueVTs.size());
816   SmallVector<SDValue, 8> Parts;
817   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
818     // Copy the legal parts from the registers.
819     EVT ValueVT = ValueVTs[Value];
820     unsigned NumRegs = RegCount[Value];
821     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
822                                           *DAG.getContext(),
823                                           CallConv.getValue(), RegVTs[Value])
824                                     : RegVTs[Value];
825 
826     Parts.resize(NumRegs);
827     for (unsigned i = 0; i != NumRegs; ++i) {
828       SDValue P;
829       if (!Flag) {
830         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
831       } else {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
833         *Flag = P.getValue(2);
834       }
835 
836       Chain = P.getValue(1);
837       Parts[i] = P;
838 
839       // If the source register was virtual and if we know something about it,
840       // add an assert node.
841       if (!Register::isVirtualRegister(Regs[Part + i]) ||
842           !RegisterVT.isInteger())
843         continue;
844 
845       const FunctionLoweringInfo::LiveOutInfo *LOI =
846         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
847       if (!LOI)
848         continue;
849 
850       unsigned RegSize = RegisterVT.getScalarSizeInBits();
851       unsigned NumSignBits = LOI->NumSignBits;
852       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
853 
854       if (NumZeroBits == RegSize) {
855         // The current value is a zero.
856         // Explicitly express that as it would be easier for
857         // optimizations to kick in.
858         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
859         continue;
860       }
861 
862       // FIXME: We capture more information than the dag can represent.  For
863       // now, just use the tightest assertzext/assertsext possible.
864       bool isSExt;
865       EVT FromVT(MVT::Other);
866       if (NumZeroBits) {
867         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
868         isSExt = false;
869       } else if (NumSignBits > 1) {
870         FromVT =
871             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
872         isSExt = true;
873       } else {
874         continue;
875       }
876       // Add an assertion node.
877       assert(FromVT != MVT::Other);
878       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
879                              RegisterVT, P, DAG.getValueType(FromVT));
880     }
881 
882     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
883                                      RegisterVT, ValueVT, V, CallConv);
884     Part += NumRegs;
885     Parts.clear();
886   }
887 
888   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
889 }
890 
891 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
892                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
893                                  const Value *V,
894                                  ISD::NodeType PreferredExtendType) const {
895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
896   ISD::NodeType ExtendKind = PreferredExtendType;
897 
898   // Get the list of the values's legal parts.
899   unsigned NumRegs = Regs.size();
900   SmallVector<SDValue, 8> Parts(NumRegs);
901   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
902     unsigned NumParts = RegCount[Value];
903 
904     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
905                                           *DAG.getContext(),
906                                           CallConv.getValue(), RegVTs[Value])
907                                     : RegVTs[Value];
908 
909     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
910       ExtendKind = ISD::ZERO_EXTEND;
911 
912     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
913                    NumParts, RegisterVT, V, CallConv, ExtendKind);
914     Part += NumParts;
915   }
916 
917   // Copy the parts into the registers.
918   SmallVector<SDValue, 8> Chains(NumRegs);
919   for (unsigned i = 0; i != NumRegs; ++i) {
920     SDValue Part;
921     if (!Flag) {
922       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
923     } else {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
925       *Flag = Part.getValue(1);
926     }
927 
928     Chains[i] = Part.getValue(0);
929   }
930 
931   if (NumRegs == 1 || Flag)
932     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
933     // flagged to it. That is the CopyToReg nodes and the user are considered
934     // a single scheduling unit. If we create a TokenFactor and return it as
935     // chain, then the TokenFactor is both a predecessor (operand) of the
936     // user as well as a successor (the TF operands are flagged to the user).
937     // c1, f1 = CopyToReg
938     // c2, f2 = CopyToReg
939     // c3     = TokenFactor c1, c2
940     // ...
941     //        = op c3, ..., f2
942     Chain = Chains[NumRegs-1];
943   else
944     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
945 }
946 
947 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
948                                         unsigned MatchingIdx, const SDLoc &dl,
949                                         SelectionDAG &DAG,
950                                         std::vector<SDValue> &Ops) const {
951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
952 
953   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
954   if (HasMatching)
955     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
956   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
957     // Put the register class of the virtual registers in the flag word.  That
958     // way, later passes can recompute register class constraints for inline
959     // assembly as well as normal instructions.
960     // Don't do this for tied operands that can use the regclass information
961     // from the def.
962     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
963     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
964     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
965   }
966 
967   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
968   Ops.push_back(Res);
969 
970   if (Code == InlineAsm::Kind_Clobber) {
971     // Clobbers should always have a 1:1 mapping with registers, and may
972     // reference registers that have illegal (e.g. vector) types. Hence, we
973     // shouldn't try to apply any sort of splitting logic to them.
974     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
975            "No 1:1 mapping from clobbers to regs?");
976     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
977     (void)SP;
978     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
979       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
980       assert(
981           (Regs[I] != SP ||
982            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
983           "If we clobbered the stack pointer, MFI should know about it.");
984     }
985     return;
986   }
987 
988   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
989     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
990     MVT RegisterVT = RegVTs[Value];
991     for (unsigned i = 0; i != NumRegs; ++i) {
992       assert(Reg < Regs.size() && "Mismatch in # registers expected");
993       unsigned TheReg = Regs[Reg++];
994       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
995     }
996   }
997 }
998 
999 SmallVector<std::pair<unsigned, unsigned>, 4>
1000 RegsForValue::getRegsAndSizes() const {
1001   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1002   unsigned I = 0;
1003   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1004     unsigned RegCount = std::get<0>(CountAndVT);
1005     MVT RegisterVT = std::get<1>(CountAndVT);
1006     unsigned RegisterSize = RegisterVT.getSizeInBits();
1007     for (unsigned E = I + RegCount; I != E; ++I)
1008       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1009   }
1010   return OutVec;
1011 }
1012 
1013 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1014                                const TargetLibraryInfo *li) {
1015   AA = aa;
1016   GFI = gfi;
1017   LibInfo = li;
1018   DL = &DAG.getDataLayout();
1019   Context = DAG.getContext();
1020   LPadToCallSiteMap.clear();
1021   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1022 }
1023 
1024 void SelectionDAGBuilder::clear() {
1025   NodeMap.clear();
1026   UnusedArgNodeMap.clear();
1027   PendingLoads.clear();
1028   PendingExports.clear();
1029   PendingConstrainedFP.clear();
1030   PendingConstrainedFPStrict.clear();
1031   CurInst = nullptr;
1032   HasTailCall = false;
1033   SDNodeOrder = LowestSDNodeOrder;
1034   StatepointLowering.clear();
1035 }
1036 
1037 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1038   DanglingDebugInfoMap.clear();
1039 }
1040 
1041 // Update DAG root to include dependencies on Pending chains.
1042 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (Pending.empty())
1046     return Root;
1047 
1048   // Add current root to PendingChains, unless we already indirectly
1049   // depend on it.
1050   if (Root.getOpcode() != ISD::EntryToken) {
1051     unsigned i = 0, e = Pending.size();
1052     for (; i != e; ++i) {
1053       assert(Pending[i].getNode()->getNumOperands() > 1);
1054       if (Pending[i].getNode()->getOperand(0) == Root)
1055         break;  // Don't add the root if we already indirectly depend on it.
1056     }
1057 
1058     if (i == e)
1059       Pending.push_back(Root);
1060   }
1061 
1062   if (Pending.size() == 1)
1063     Root = Pending[0];
1064   else
1065     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1066 
1067   DAG.setRoot(Root);
1068   Pending.clear();
1069   return Root;
1070 }
1071 
1072 SDValue SelectionDAGBuilder::getMemoryRoot() {
1073   return updateRoot(PendingLoads);
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getRoot() {
1077   // Chain up all pending constrained intrinsics together with all
1078   // pending loads, by simply appending them to PendingLoads and
1079   // then calling getMemoryRoot().
1080   PendingLoads.reserve(PendingLoads.size() +
1081                        PendingConstrainedFP.size() +
1082                        PendingConstrainedFPStrict.size());
1083   PendingLoads.append(PendingConstrainedFP.begin(),
1084                       PendingConstrainedFP.end());
1085   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1086                       PendingConstrainedFPStrict.end());
1087   PendingConstrainedFP.clear();
1088   PendingConstrainedFPStrict.clear();
1089   return getMemoryRoot();
1090 }
1091 
1092 SDValue SelectionDAGBuilder::getControlRoot() {
1093   // We need to emit pending fpexcept.strict constrained intrinsics,
1094   // so append them to the PendingExports list.
1095   PendingExports.append(PendingConstrainedFPStrict.begin(),
1096                         PendingConstrainedFPStrict.end());
1097   PendingConstrainedFPStrict.clear();
1098   return updateRoot(PendingExports);
1099 }
1100 
1101 void SelectionDAGBuilder::visit(const Instruction &I) {
1102   // Set up outgoing PHI node register values before emitting the terminator.
1103   if (I.isTerminator()) {
1104     HandlePHINodesInSuccessorBlocks(I.getParent());
1105   }
1106 
1107   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1108   if (!isa<DbgInfoIntrinsic>(I))
1109     ++SDNodeOrder;
1110 
1111   CurInst = &I;
1112 
1113   visit(I.getOpcode(), I);
1114 
1115   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1116     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1117     // maps to this instruction.
1118     // TODO: We could handle all flags (nsw, etc) here.
1119     // TODO: If an IR instruction maps to >1 node, only the final node will have
1120     //       flags set.
1121     if (SDNode *Node = getNodeForIRValue(&I)) {
1122       SDNodeFlags IncomingFlags;
1123       IncomingFlags.copyFMF(*FPMO);
1124       if (!Node->getFlags().isDefined())
1125         Node->setFlags(IncomingFlags);
1126       else
1127         Node->intersectFlagsWith(IncomingFlags);
1128     }
1129   }
1130   // Constrained FP intrinsics with fpexcept.ignore should also get
1131   // the NoFPExcept flag.
1132   if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I))
1133     if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore)
1134       if (SDNode *Node = getNodeForIRValue(&I)) {
1135         SDNodeFlags Flags = Node->getFlags();
1136         Flags.setNoFPExcept(true);
1137         Node->setFlags(Flags);
1138       }
1139 
1140   if (!I.isTerminator() && !HasTailCall &&
1141       !isStatepoint(&I)) // statepoints handle their exports internally
1142     CopyToExportRegsIfNeeded(&I);
1143 
1144   CurInst = nullptr;
1145 }
1146 
1147 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1148   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1149 }
1150 
1151 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1152   // Note: this doesn't use InstVisitor, because it has to work with
1153   // ConstantExpr's in addition to instructions.
1154   switch (Opcode) {
1155   default: llvm_unreachable("Unknown instruction type encountered!");
1156     // Build the switch statement using the Instruction.def file.
1157 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1158     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1159 #include "llvm/IR/Instruction.def"
1160   }
1161 }
1162 
1163 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1164                                                 const DIExpression *Expr) {
1165   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1166     const DbgValueInst *DI = DDI.getDI();
1167     DIVariable *DanglingVariable = DI->getVariable();
1168     DIExpression *DanglingExpr = DI->getExpression();
1169     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1170       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1171       return true;
1172     }
1173     return false;
1174   };
1175 
1176   for (auto &DDIMI : DanglingDebugInfoMap) {
1177     DanglingDebugInfoVector &DDIV = DDIMI.second;
1178 
1179     // If debug info is to be dropped, run it through final checks to see
1180     // whether it can be salvaged.
1181     for (auto &DDI : DDIV)
1182       if (isMatchingDbgValue(DDI))
1183         salvageUnresolvedDbgValue(DDI);
1184 
1185     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1186   }
1187 }
1188 
1189 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1190 // generate the debug data structures now that we've seen its definition.
1191 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1192                                                    SDValue Val) {
1193   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1194   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1195     return;
1196 
1197   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1198   for (auto &DDI : DDIV) {
1199     const DbgValueInst *DI = DDI.getDI();
1200     assert(DI && "Ill-formed DanglingDebugInfo");
1201     DebugLoc dl = DDI.getdl();
1202     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1203     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1204     DILocalVariable *Variable = DI->getVariable();
1205     DIExpression *Expr = DI->getExpression();
1206     assert(Variable->isValidLocationForIntrinsic(dl) &&
1207            "Expected inlined-at fields to agree");
1208     SDDbgValue *SDV;
1209     if (Val.getNode()) {
1210       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1211       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1212       // we couldn't resolve it directly when examining the DbgValue intrinsic
1213       // in the first place we should not be more successful here). Unless we
1214       // have some test case that prove this to be correct we should avoid
1215       // calling EmitFuncArgumentDbgValue here.
1216       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1217         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1218                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1219         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1220         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1221         // inserted after the definition of Val when emitting the instructions
1222         // after ISel. An alternative could be to teach
1223         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1224         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1225                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1226                    << ValSDNodeOrder << "\n");
1227         SDV = getDbgValue(Val, Variable, Expr, dl,
1228                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1229         DAG.AddDbgValue(SDV, Val.getNode(), false);
1230       } else
1231         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1232                           << "in EmitFuncArgumentDbgValue\n");
1233     } else {
1234       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1235       auto Undef =
1236           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1237       auto SDV =
1238           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1239       DAG.AddDbgValue(SDV, nullptr, false);
1240     }
1241   }
1242   DDIV.clear();
1243 }
1244 
1245 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1246   Value *V = DDI.getDI()->getValue();
1247   DILocalVariable *Var = DDI.getDI()->getVariable();
1248   DIExpression *Expr = DDI.getDI()->getExpression();
1249   DebugLoc DL = DDI.getdl();
1250   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1251   unsigned SDOrder = DDI.getSDNodeOrder();
1252 
1253   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1254   // that DW_OP_stack_value is desired.
1255   assert(isa<DbgValueInst>(DDI.getDI()));
1256   bool StackValue = true;
1257 
1258   // Can this Value can be encoded without any further work?
1259   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1260     return;
1261 
1262   // Attempt to salvage back through as many instructions as possible. Bail if
1263   // a non-instruction is seen, such as a constant expression or global
1264   // variable. FIXME: Further work could recover those too.
1265   while (isa<Instruction>(V)) {
1266     Instruction &VAsInst = *cast<Instruction>(V);
1267     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1268 
1269     // If we cannot salvage any further, and haven't yet found a suitable debug
1270     // expression, bail out.
1271     if (!NewExpr)
1272       break;
1273 
1274     // New value and expr now represent this debuginfo.
1275     V = VAsInst.getOperand(0);
1276     Expr = NewExpr;
1277 
1278     // Some kind of simplification occurred: check whether the operand of the
1279     // salvaged debug expression can be encoded in this DAG.
1280     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1281       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1282                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1283       return;
1284     }
1285   }
1286 
1287   // This was the final opportunity to salvage this debug information, and it
1288   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1289   // any earlier variable location.
1290   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1291   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1292   DAG.AddDbgValue(SDV, nullptr, false);
1293 
1294   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1295                     << "\n");
1296   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1297                     << "\n");
1298 }
1299 
1300 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1301                                            DIExpression *Expr, DebugLoc dl,
1302                                            DebugLoc InstDL, unsigned Order) {
1303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1304   SDDbgValue *SDV;
1305   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1306       isa<ConstantPointerNull>(V)) {
1307     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1308     DAG.AddDbgValue(SDV, nullptr, false);
1309     return true;
1310   }
1311 
1312   // If the Value is a frame index, we can create a FrameIndex debug value
1313   // without relying on the DAG at all.
1314   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1315     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1316     if (SI != FuncInfo.StaticAllocaMap.end()) {
1317       auto SDV =
1318           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1319                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1320       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1321       // is still available even if the SDNode gets optimized out.
1322       DAG.AddDbgValue(SDV, nullptr, false);
1323       return true;
1324     }
1325   }
1326 
1327   // Do not use getValue() in here; we don't want to generate code at
1328   // this point if it hasn't been done yet.
1329   SDValue N = NodeMap[V];
1330   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1331     N = UnusedArgNodeMap[V];
1332   if (N.getNode()) {
1333     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1334       return true;
1335     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1336     DAG.AddDbgValue(SDV, N.getNode(), false);
1337     return true;
1338   }
1339 
1340   // Special rules apply for the first dbg.values of parameter variables in a
1341   // function. Identify them by the fact they reference Argument Values, that
1342   // they're parameters, and they are parameters of the current function. We
1343   // need to let them dangle until they get an SDNode.
1344   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1345                        !InstDL.getInlinedAt();
1346   if (!IsParamOfFunc) {
1347     // The value is not used in this block yet (or it would have an SDNode).
1348     // We still want the value to appear for the user if possible -- if it has
1349     // an associated VReg, we can refer to that instead.
1350     auto VMI = FuncInfo.ValueMap.find(V);
1351     if (VMI != FuncInfo.ValueMap.end()) {
1352       unsigned Reg = VMI->second;
1353       // If this is a PHI node, it may be split up into several MI PHI nodes
1354       // (in FunctionLoweringInfo::set).
1355       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1356                        V->getType(), None);
1357       if (RFV.occupiesMultipleRegs()) {
1358         unsigned Offset = 0;
1359         unsigned BitsToDescribe = 0;
1360         if (auto VarSize = Var->getSizeInBits())
1361           BitsToDescribe = *VarSize;
1362         if (auto Fragment = Expr->getFragmentInfo())
1363           BitsToDescribe = Fragment->SizeInBits;
1364         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1365           unsigned RegisterSize = RegAndSize.second;
1366           // Bail out if all bits are described already.
1367           if (Offset >= BitsToDescribe)
1368             break;
1369           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1370               ? BitsToDescribe - Offset
1371               : RegisterSize;
1372           auto FragmentExpr = DIExpression::createFragmentExpression(
1373               Expr, Offset, FragmentSize);
1374           if (!FragmentExpr)
1375               continue;
1376           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1377                                     false, dl, SDNodeOrder);
1378           DAG.AddDbgValue(SDV, nullptr, false);
1379           Offset += RegisterSize;
1380         }
1381       } else {
1382         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1383         DAG.AddDbgValue(SDV, nullptr, false);
1384       }
1385       return true;
1386     }
1387   }
1388 
1389   return false;
1390 }
1391 
1392 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1393   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1394   for (auto &Pair : DanglingDebugInfoMap)
1395     for (auto &DDI : Pair.second)
1396       salvageUnresolvedDbgValue(DDI);
1397   clearDanglingDebugInfo();
1398 }
1399 
1400 /// getCopyFromRegs - If there was virtual register allocated for the value V
1401 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1402 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1403   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1404   SDValue Result;
1405 
1406   if (It != FuncInfo.ValueMap.end()) {
1407     unsigned InReg = It->second;
1408 
1409     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1410                      DAG.getDataLayout(), InReg, Ty,
1411                      None); // This is not an ABI copy.
1412     SDValue Chain = DAG.getEntryNode();
1413     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1414                                  V);
1415     resolveDanglingDebugInfo(V, Result);
1416   }
1417 
1418   return Result;
1419 }
1420 
1421 /// getValue - Return an SDValue for the given Value.
1422 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1423   // If we already have an SDValue for this value, use it. It's important
1424   // to do this first, so that we don't create a CopyFromReg if we already
1425   // have a regular SDValue.
1426   SDValue &N = NodeMap[V];
1427   if (N.getNode()) return N;
1428 
1429   // If there's a virtual register allocated and initialized for this
1430   // value, use it.
1431   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1432     return copyFromReg;
1433 
1434   // Otherwise create a new SDValue and remember it.
1435   SDValue Val = getValueImpl(V);
1436   NodeMap[V] = Val;
1437   resolveDanglingDebugInfo(V, Val);
1438   return Val;
1439 }
1440 
1441 // Return true if SDValue exists for the given Value
1442 bool SelectionDAGBuilder::findValue(const Value *V) const {
1443   return (NodeMap.find(V) != NodeMap.end()) ||
1444     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1445 }
1446 
1447 /// getNonRegisterValue - Return an SDValue for the given Value, but
1448 /// don't look in FuncInfo.ValueMap for a virtual register.
1449 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1450   // If we already have an SDValue for this value, use it.
1451   SDValue &N = NodeMap[V];
1452   if (N.getNode()) {
1453     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1454       // Remove the debug location from the node as the node is about to be used
1455       // in a location which may differ from the original debug location.  This
1456       // is relevant to Constant and ConstantFP nodes because they can appear
1457       // as constant expressions inside PHI nodes.
1458       N->setDebugLoc(DebugLoc());
1459     }
1460     return N;
1461   }
1462 
1463   // Otherwise create a new SDValue and remember it.
1464   SDValue Val = getValueImpl(V);
1465   NodeMap[V] = Val;
1466   resolveDanglingDebugInfo(V, Val);
1467   return Val;
1468 }
1469 
1470 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1471 /// Create an SDValue for the given value.
1472 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1474 
1475   if (const Constant *C = dyn_cast<Constant>(V)) {
1476     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1477 
1478     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1479       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1480 
1481     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1482       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1483 
1484     if (isa<ConstantPointerNull>(C)) {
1485       unsigned AS = V->getType()->getPointerAddressSpace();
1486       return DAG.getConstant(0, getCurSDLoc(),
1487                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1488     }
1489 
1490     if (match(C, m_VScale(DAG.getDataLayout())))
1491       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1492 
1493     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1494       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1495 
1496     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1497       return DAG.getUNDEF(VT);
1498 
1499     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1500       visit(CE->getOpcode(), *CE);
1501       SDValue N1 = NodeMap[V];
1502       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1503       return N1;
1504     }
1505 
1506     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1507       SmallVector<SDValue, 4> Constants;
1508       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1509            OI != OE; ++OI) {
1510         SDNode *Val = getValue(*OI).getNode();
1511         // If the operand is an empty aggregate, there are no values.
1512         if (!Val) continue;
1513         // Add each leaf value from the operand to the Constants list
1514         // to form a flattened list of all the values.
1515         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1516           Constants.push_back(SDValue(Val, i));
1517       }
1518 
1519       return DAG.getMergeValues(Constants, getCurSDLoc());
1520     }
1521 
1522     if (const ConstantDataSequential *CDS =
1523           dyn_cast<ConstantDataSequential>(C)) {
1524       SmallVector<SDValue, 4> Ops;
1525       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1526         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1527         // Add each leaf value from the operand to the Constants list
1528         // to form a flattened list of all the values.
1529         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1530           Ops.push_back(SDValue(Val, i));
1531       }
1532 
1533       if (isa<ArrayType>(CDS->getType()))
1534         return DAG.getMergeValues(Ops, getCurSDLoc());
1535       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1536     }
1537 
1538     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1539       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1540              "Unknown struct or array constant!");
1541 
1542       SmallVector<EVT, 4> ValueVTs;
1543       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1544       unsigned NumElts = ValueVTs.size();
1545       if (NumElts == 0)
1546         return SDValue(); // empty struct
1547       SmallVector<SDValue, 4> Constants(NumElts);
1548       for (unsigned i = 0; i != NumElts; ++i) {
1549         EVT EltVT = ValueVTs[i];
1550         if (isa<UndefValue>(C))
1551           Constants[i] = DAG.getUNDEF(EltVT);
1552         else if (EltVT.isFloatingPoint())
1553           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1554         else
1555           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1556       }
1557 
1558       return DAG.getMergeValues(Constants, getCurSDLoc());
1559     }
1560 
1561     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1562       return DAG.getBlockAddress(BA, VT);
1563 
1564     VectorType *VecTy = cast<VectorType>(V->getType());
1565     unsigned NumElements = VecTy->getNumElements();
1566 
1567     // Now that we know the number and type of the elements, get that number of
1568     // elements into the Ops array based on what kind of constant it is.
1569     SmallVector<SDValue, 16> Ops;
1570     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1571       for (unsigned i = 0; i != NumElements; ++i)
1572         Ops.push_back(getValue(CV->getOperand(i)));
1573     } else {
1574       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1575       EVT EltVT =
1576           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1577 
1578       SDValue Op;
1579       if (EltVT.isFloatingPoint())
1580         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1581       else
1582         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1583       Ops.assign(NumElements, Op);
1584     }
1585 
1586     // Create a BUILD_VECTOR node.
1587     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1588   }
1589 
1590   // If this is a static alloca, generate it as the frameindex instead of
1591   // computation.
1592   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1593     DenseMap<const AllocaInst*, int>::iterator SI =
1594       FuncInfo.StaticAllocaMap.find(AI);
1595     if (SI != FuncInfo.StaticAllocaMap.end())
1596       return DAG.getFrameIndex(SI->second,
1597                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1598   }
1599 
1600   // If this is an instruction which fast-isel has deferred, select it now.
1601   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1602     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1603 
1604     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1605                      Inst->getType(), getABIRegCopyCC(V));
1606     SDValue Chain = DAG.getEntryNode();
1607     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1608   }
1609 
1610   llvm_unreachable("Can't get register for value!");
1611 }
1612 
1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1614   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1615   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1616   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1617   bool IsSEH = isAsynchronousEHPersonality(Pers);
1618   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1619   if (!IsSEH)
1620     CatchPadMBB->setIsEHScopeEntry();
1621   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1622   if (IsMSVCCXX || IsCoreCLR)
1623     CatchPadMBB->setIsEHFuncletEntry();
1624 }
1625 
1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1627   // Update machine-CFG edge.
1628   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1629   FuncInfo.MBB->addSuccessor(TargetMBB);
1630 
1631   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1632   bool IsSEH = isAsynchronousEHPersonality(Pers);
1633   if (IsSEH) {
1634     // If this is not a fall-through branch or optimizations are switched off,
1635     // emit the branch.
1636     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1637         TM.getOptLevel() == CodeGenOpt::None)
1638       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1639                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1640     return;
1641   }
1642 
1643   // Figure out the funclet membership for the catchret's successor.
1644   // This will be used by the FuncletLayout pass to determine how to order the
1645   // BB's.
1646   // A 'catchret' returns to the outer scope's color.
1647   Value *ParentPad = I.getCatchSwitchParentPad();
1648   const BasicBlock *SuccessorColor;
1649   if (isa<ConstantTokenNone>(ParentPad))
1650     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1651   else
1652     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1653   assert(SuccessorColor && "No parent funclet for catchret!");
1654   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1655   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1656 
1657   // Create the terminator node.
1658   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1659                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1660                             DAG.getBasicBlock(SuccessorColorMBB));
1661   DAG.setRoot(Ret);
1662 }
1663 
1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1665   // Don't emit any special code for the cleanuppad instruction. It just marks
1666   // the start of an EH scope/funclet.
1667   FuncInfo.MBB->setIsEHScopeEntry();
1668   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1669   if (Pers != EHPersonality::Wasm_CXX) {
1670     FuncInfo.MBB->setIsEHFuncletEntry();
1671     FuncInfo.MBB->setIsCleanupFuncletEntry();
1672   }
1673 }
1674 
1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1676 // the control flow always stops at the single catch pad, as it does for a
1677 // cleanup pad. In case the exception caught is not of the types the catch pad
1678 // catches, it will be rethrown by a rethrow.
1679 static void findWasmUnwindDestinations(
1680     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1681     BranchProbability Prob,
1682     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1683         &UnwindDests) {
1684   while (EHPadBB) {
1685     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1686     if (isa<CleanupPadInst>(Pad)) {
1687       // Stop on cleanup pads.
1688       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1689       UnwindDests.back().first->setIsEHScopeEntry();
1690       break;
1691     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1692       // Add the catchpad handlers to the possible destinations. We don't
1693       // continue to the unwind destination of the catchswitch for wasm.
1694       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1695         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1696         UnwindDests.back().first->setIsEHScopeEntry();
1697       }
1698       break;
1699     } else {
1700       continue;
1701     }
1702   }
1703 }
1704 
1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1706 /// many places it could ultimately go. In the IR, we have a single unwind
1707 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1708 /// This function skips over imaginary basic blocks that hold catchswitch
1709 /// instructions, and finds all the "real" machine
1710 /// basic block destinations. As those destinations may not be successors of
1711 /// EHPadBB, here we also calculate the edge probability to those destinations.
1712 /// The passed-in Prob is the edge probability to EHPadBB.
1713 static void findUnwindDestinations(
1714     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1715     BranchProbability Prob,
1716     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1717         &UnwindDests) {
1718   EHPersonality Personality =
1719     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1720   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1721   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1722   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1723   bool IsSEH = isAsynchronousEHPersonality(Personality);
1724 
1725   if (IsWasmCXX) {
1726     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1727     assert(UnwindDests.size() <= 1 &&
1728            "There should be at most one unwind destination for wasm");
1729     return;
1730   }
1731 
1732   while (EHPadBB) {
1733     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1734     BasicBlock *NewEHPadBB = nullptr;
1735     if (isa<LandingPadInst>(Pad)) {
1736       // Stop on landingpads. They are not funclets.
1737       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1738       break;
1739     } else if (isa<CleanupPadInst>(Pad)) {
1740       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1741       // personalities.
1742       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1743       UnwindDests.back().first->setIsEHScopeEntry();
1744       UnwindDests.back().first->setIsEHFuncletEntry();
1745       break;
1746     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1747       // Add the catchpad handlers to the possible destinations.
1748       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1749         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1750         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1751         if (IsMSVCCXX || IsCoreCLR)
1752           UnwindDests.back().first->setIsEHFuncletEntry();
1753         if (!IsSEH)
1754           UnwindDests.back().first->setIsEHScopeEntry();
1755       }
1756       NewEHPadBB = CatchSwitch->getUnwindDest();
1757     } else {
1758       continue;
1759     }
1760 
1761     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1762     if (BPI && NewEHPadBB)
1763       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1764     EHPadBB = NewEHPadBB;
1765   }
1766 }
1767 
1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1769   // Update successor info.
1770   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1771   auto UnwindDest = I.getUnwindDest();
1772   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1773   BranchProbability UnwindDestProb =
1774       (BPI && UnwindDest)
1775           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1776           : BranchProbability::getZero();
1777   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1778   for (auto &UnwindDest : UnwindDests) {
1779     UnwindDest.first->setIsEHPad();
1780     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1781   }
1782   FuncInfo.MBB->normalizeSuccProbs();
1783 
1784   // Create the terminator node.
1785   SDValue Ret =
1786       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1787   DAG.setRoot(Ret);
1788 }
1789 
1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1791   report_fatal_error("visitCatchSwitch not yet implemented!");
1792 }
1793 
1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1796   auto &DL = DAG.getDataLayout();
1797   SDValue Chain = getControlRoot();
1798   SmallVector<ISD::OutputArg, 8> Outs;
1799   SmallVector<SDValue, 8> OutVals;
1800 
1801   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1802   // lower
1803   //
1804   //   %val = call <ty> @llvm.experimental.deoptimize()
1805   //   ret <ty> %val
1806   //
1807   // differently.
1808   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1809     LowerDeoptimizingReturn();
1810     return;
1811   }
1812 
1813   if (!FuncInfo.CanLowerReturn) {
1814     unsigned DemoteReg = FuncInfo.DemoteRegister;
1815     const Function *F = I.getParent()->getParent();
1816 
1817     // Emit a store of the return value through the virtual register.
1818     // Leave Outs empty so that LowerReturn won't try to load return
1819     // registers the usual way.
1820     SmallVector<EVT, 1> PtrValueVTs;
1821     ComputeValueVTs(TLI, DL,
1822                     F->getReturnType()->getPointerTo(
1823                         DAG.getDataLayout().getAllocaAddrSpace()),
1824                     PtrValueVTs);
1825 
1826     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1827                                         DemoteReg, PtrValueVTs[0]);
1828     SDValue RetOp = getValue(I.getOperand(0));
1829 
1830     SmallVector<EVT, 4> ValueVTs, MemVTs;
1831     SmallVector<uint64_t, 4> Offsets;
1832     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1833                     &Offsets);
1834     unsigned NumValues = ValueVTs.size();
1835 
1836     SmallVector<SDValue, 4> Chains(NumValues);
1837     for (unsigned i = 0; i != NumValues; ++i) {
1838       // An aggregate return value cannot wrap around the address space, so
1839       // offsets to its parts don't wrap either.
1840       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1841 
1842       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1843       if (MemVTs[i] != ValueVTs[i])
1844         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1845       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1846           // FIXME: better loc info would be nice.
1847           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1848     }
1849 
1850     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1851                         MVT::Other, Chains);
1852   } else if (I.getNumOperands() != 0) {
1853     SmallVector<EVT, 4> ValueVTs;
1854     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1855     unsigned NumValues = ValueVTs.size();
1856     if (NumValues) {
1857       SDValue RetOp = getValue(I.getOperand(0));
1858 
1859       const Function *F = I.getParent()->getParent();
1860 
1861       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1862           I.getOperand(0)->getType(), F->getCallingConv(),
1863           /*IsVarArg*/ false);
1864 
1865       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1866       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1867                                           Attribute::SExt))
1868         ExtendKind = ISD::SIGN_EXTEND;
1869       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1870                                                Attribute::ZExt))
1871         ExtendKind = ISD::ZERO_EXTEND;
1872 
1873       LLVMContext &Context = F->getContext();
1874       bool RetInReg = F->getAttributes().hasAttribute(
1875           AttributeList::ReturnIndex, Attribute::InReg);
1876 
1877       for (unsigned j = 0; j != NumValues; ++j) {
1878         EVT VT = ValueVTs[j];
1879 
1880         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1881           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1882 
1883         CallingConv::ID CC = F->getCallingConv();
1884 
1885         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1886         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1887         SmallVector<SDValue, 4> Parts(NumParts);
1888         getCopyToParts(DAG, getCurSDLoc(),
1889                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1890                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1891 
1892         // 'inreg' on function refers to return value
1893         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1894         if (RetInReg)
1895           Flags.setInReg();
1896 
1897         if (I.getOperand(0)->getType()->isPointerTy()) {
1898           Flags.setPointer();
1899           Flags.setPointerAddrSpace(
1900               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1901         }
1902 
1903         if (NeedsRegBlock) {
1904           Flags.setInConsecutiveRegs();
1905           if (j == NumValues - 1)
1906             Flags.setInConsecutiveRegsLast();
1907         }
1908 
1909         // Propagate extension type if any
1910         if (ExtendKind == ISD::SIGN_EXTEND)
1911           Flags.setSExt();
1912         else if (ExtendKind == ISD::ZERO_EXTEND)
1913           Flags.setZExt();
1914 
1915         for (unsigned i = 0; i < NumParts; ++i) {
1916           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1917                                         VT, /*isfixed=*/true, 0, 0));
1918           OutVals.push_back(Parts[i]);
1919         }
1920       }
1921     }
1922   }
1923 
1924   // Push in swifterror virtual register as the last element of Outs. This makes
1925   // sure swifterror virtual register will be returned in the swifterror
1926   // physical register.
1927   const Function *F = I.getParent()->getParent();
1928   if (TLI.supportSwiftError() &&
1929       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1930     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1931     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1932     Flags.setSwiftError();
1933     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1934                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1935                                   true /*isfixed*/, 1 /*origidx*/,
1936                                   0 /*partOffs*/));
1937     // Create SDNode for the swifterror virtual register.
1938     OutVals.push_back(
1939         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1940                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1941                         EVT(TLI.getPointerTy(DL))));
1942   }
1943 
1944   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1945   CallingConv::ID CallConv =
1946     DAG.getMachineFunction().getFunction().getCallingConv();
1947   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1948       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1949 
1950   // Verify that the target's LowerReturn behaved as expected.
1951   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1952          "LowerReturn didn't return a valid chain!");
1953 
1954   // Update the DAG with the new chain value resulting from return lowering.
1955   DAG.setRoot(Chain);
1956 }
1957 
1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1959 /// created for it, emit nodes to copy the value into the virtual
1960 /// registers.
1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1962   // Skip empty types
1963   if (V->getType()->isEmptyTy())
1964     return;
1965 
1966   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1967   if (VMI != FuncInfo.ValueMap.end()) {
1968     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1969     CopyValueToVirtualRegister(V, VMI->second);
1970   }
1971 }
1972 
1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1974 /// the current basic block, add it to ValueMap now so that we'll get a
1975 /// CopyTo/FromReg.
1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1977   // No need to export constants.
1978   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1979 
1980   // Already exported?
1981   if (FuncInfo.isExportedInst(V)) return;
1982 
1983   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1984   CopyValueToVirtualRegister(V, Reg);
1985 }
1986 
1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1988                                                      const BasicBlock *FromBB) {
1989   // The operands of the setcc have to be in this block.  We don't know
1990   // how to export them from some other block.
1991   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1992     // Can export from current BB.
1993     if (VI->getParent() == FromBB)
1994       return true;
1995 
1996     // Is already exported, noop.
1997     return FuncInfo.isExportedInst(V);
1998   }
1999 
2000   // If this is an argument, we can export it if the BB is the entry block or
2001   // if it is already exported.
2002   if (isa<Argument>(V)) {
2003     if (FromBB == &FromBB->getParent()->getEntryBlock())
2004       return true;
2005 
2006     // Otherwise, can only export this if it is already exported.
2007     return FuncInfo.isExportedInst(V);
2008   }
2009 
2010   // Otherwise, constants can always be exported.
2011   return true;
2012 }
2013 
2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2015 BranchProbability
2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2017                                         const MachineBasicBlock *Dst) const {
2018   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2019   const BasicBlock *SrcBB = Src->getBasicBlock();
2020   const BasicBlock *DstBB = Dst->getBasicBlock();
2021   if (!BPI) {
2022     // If BPI is not available, set the default probability as 1 / N, where N is
2023     // the number of successors.
2024     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2025     return BranchProbability(1, SuccSize);
2026   }
2027   return BPI->getEdgeProbability(SrcBB, DstBB);
2028 }
2029 
2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2031                                                MachineBasicBlock *Dst,
2032                                                BranchProbability Prob) {
2033   if (!FuncInfo.BPI)
2034     Src->addSuccessorWithoutProb(Dst);
2035   else {
2036     if (Prob.isUnknown())
2037       Prob = getEdgeProbability(Src, Dst);
2038     Src->addSuccessor(Dst, Prob);
2039   }
2040 }
2041 
2042 static bool InBlock(const Value *V, const BasicBlock *BB) {
2043   if (const Instruction *I = dyn_cast<Instruction>(V))
2044     return I->getParent() == BB;
2045   return true;
2046 }
2047 
2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2049 /// This function emits a branch and is used at the leaves of an OR or an
2050 /// AND operator tree.
2051 void
2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2053                                                   MachineBasicBlock *TBB,
2054                                                   MachineBasicBlock *FBB,
2055                                                   MachineBasicBlock *CurBB,
2056                                                   MachineBasicBlock *SwitchBB,
2057                                                   BranchProbability TProb,
2058                                                   BranchProbability FProb,
2059                                                   bool InvertCond) {
2060   const BasicBlock *BB = CurBB->getBasicBlock();
2061 
2062   // If the leaf of the tree is a comparison, merge the condition into
2063   // the caseblock.
2064   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2065     // The operands of the cmp have to be in this block.  We don't know
2066     // how to export them from some other block.  If this is the first block
2067     // of the sequence, no exporting is needed.
2068     if (CurBB == SwitchBB ||
2069         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2070          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2071       ISD::CondCode Condition;
2072       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2073         ICmpInst::Predicate Pred =
2074             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2075         Condition = getICmpCondCode(Pred);
2076       } else {
2077         const FCmpInst *FC = cast<FCmpInst>(Cond);
2078         FCmpInst::Predicate Pred =
2079             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2080         Condition = getFCmpCondCode(Pred);
2081         if (TM.Options.NoNaNsFPMath)
2082           Condition = getFCmpCodeWithoutNaN(Condition);
2083       }
2084 
2085       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2086                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2087       SL->SwitchCases.push_back(CB);
2088       return;
2089     }
2090   }
2091 
2092   // Create a CaseBlock record representing this branch.
2093   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2094   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2095                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2096   SL->SwitchCases.push_back(CB);
2097 }
2098 
2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2100                                                MachineBasicBlock *TBB,
2101                                                MachineBasicBlock *FBB,
2102                                                MachineBasicBlock *CurBB,
2103                                                MachineBasicBlock *SwitchBB,
2104                                                Instruction::BinaryOps Opc,
2105                                                BranchProbability TProb,
2106                                                BranchProbability FProb,
2107                                                bool InvertCond) {
2108   // Skip over not part of the tree and remember to invert op and operands at
2109   // next level.
2110   Value *NotCond;
2111   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2112       InBlock(NotCond, CurBB->getBasicBlock())) {
2113     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2114                          !InvertCond);
2115     return;
2116   }
2117 
2118   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2119   // Compute the effective opcode for Cond, taking into account whether it needs
2120   // to be inverted, e.g.
2121   //   and (not (or A, B)), C
2122   // gets lowered as
2123   //   and (and (not A, not B), C)
2124   unsigned BOpc = 0;
2125   if (BOp) {
2126     BOpc = BOp->getOpcode();
2127     if (InvertCond) {
2128       if (BOpc == Instruction::And)
2129         BOpc = Instruction::Or;
2130       else if (BOpc == Instruction::Or)
2131         BOpc = Instruction::And;
2132     }
2133   }
2134 
2135   // If this node is not part of the or/and tree, emit it as a branch.
2136   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2137       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2138       BOp->getParent() != CurBB->getBasicBlock() ||
2139       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2140       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2141     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2142                                  TProb, FProb, InvertCond);
2143     return;
2144   }
2145 
2146   //  Create TmpBB after CurBB.
2147   MachineFunction::iterator BBI(CurBB);
2148   MachineFunction &MF = DAG.getMachineFunction();
2149   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2150   CurBB->getParent()->insert(++BBI, TmpBB);
2151 
2152   if (Opc == Instruction::Or) {
2153     // Codegen X | Y as:
2154     // BB1:
2155     //   jmp_if_X TBB
2156     //   jmp TmpBB
2157     // TmpBB:
2158     //   jmp_if_Y TBB
2159     //   jmp FBB
2160     //
2161 
2162     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2163     // The requirement is that
2164     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2165     //     = TrueProb for original BB.
2166     // Assuming the original probabilities are A and B, one choice is to set
2167     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2168     // A/(1+B) and 2B/(1+B). This choice assumes that
2169     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2170     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2171     // TmpBB, but the math is more complicated.
2172 
2173     auto NewTrueProb = TProb / 2;
2174     auto NewFalseProb = TProb / 2 + FProb;
2175     // Emit the LHS condition.
2176     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2177                          NewTrueProb, NewFalseProb, InvertCond);
2178 
2179     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2180     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2181     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2182     // Emit the RHS condition into TmpBB.
2183     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2184                          Probs[0], Probs[1], InvertCond);
2185   } else {
2186     assert(Opc == Instruction::And && "Unknown merge op!");
2187     // Codegen X & Y as:
2188     // BB1:
2189     //   jmp_if_X TmpBB
2190     //   jmp FBB
2191     // TmpBB:
2192     //   jmp_if_Y TBB
2193     //   jmp FBB
2194     //
2195     //  This requires creation of TmpBB after CurBB.
2196 
2197     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2198     // The requirement is that
2199     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2200     //     = FalseProb for original BB.
2201     // Assuming the original probabilities are A and B, one choice is to set
2202     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2203     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2204     // TrueProb for BB1 * FalseProb for TmpBB.
2205 
2206     auto NewTrueProb = TProb + FProb / 2;
2207     auto NewFalseProb = FProb / 2;
2208     // Emit the LHS condition.
2209     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2210                          NewTrueProb, NewFalseProb, InvertCond);
2211 
2212     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2213     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2214     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2215     // Emit the RHS condition into TmpBB.
2216     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2217                          Probs[0], Probs[1], InvertCond);
2218   }
2219 }
2220 
2221 /// If the set of cases should be emitted as a series of branches, return true.
2222 /// If we should emit this as a bunch of and/or'd together conditions, return
2223 /// false.
2224 bool
2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2226   if (Cases.size() != 2) return true;
2227 
2228   // If this is two comparisons of the same values or'd or and'd together, they
2229   // will get folded into a single comparison, so don't emit two blocks.
2230   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2231        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2232       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2233        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2234     return false;
2235   }
2236 
2237   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2238   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2239   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2240       Cases[0].CC == Cases[1].CC &&
2241       isa<Constant>(Cases[0].CmpRHS) &&
2242       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2243     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2244       return false;
2245     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2246       return false;
2247   }
2248 
2249   return true;
2250 }
2251 
2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2253   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2254 
2255   // Update machine-CFG edges.
2256   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2257 
2258   if (I.isUnconditional()) {
2259     // Update machine-CFG edges.
2260     BrMBB->addSuccessor(Succ0MBB);
2261 
2262     // If this is not a fall-through branch or optimizations are switched off,
2263     // emit the branch.
2264     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2265       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2266                               MVT::Other, getControlRoot(),
2267                               DAG.getBasicBlock(Succ0MBB)));
2268 
2269     return;
2270   }
2271 
2272   // If this condition is one of the special cases we handle, do special stuff
2273   // now.
2274   const Value *CondVal = I.getCondition();
2275   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2276 
2277   // If this is a series of conditions that are or'd or and'd together, emit
2278   // this as a sequence of branches instead of setcc's with and/or operations.
2279   // As long as jumps are not expensive, this should improve performance.
2280   // For example, instead of something like:
2281   //     cmp A, B
2282   //     C = seteq
2283   //     cmp D, E
2284   //     F = setle
2285   //     or C, F
2286   //     jnz foo
2287   // Emit:
2288   //     cmp A, B
2289   //     je foo
2290   //     cmp D, E
2291   //     jle foo
2292   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2293     Instruction::BinaryOps Opcode = BOp->getOpcode();
2294     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2295         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2296         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2297       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2298                            Opcode,
2299                            getEdgeProbability(BrMBB, Succ0MBB),
2300                            getEdgeProbability(BrMBB, Succ1MBB),
2301                            /*InvertCond=*/false);
2302       // If the compares in later blocks need to use values not currently
2303       // exported from this block, export them now.  This block should always
2304       // be the first entry.
2305       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2306 
2307       // Allow some cases to be rejected.
2308       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2309         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2310           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2311           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2312         }
2313 
2314         // Emit the branch for this block.
2315         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2316         SL->SwitchCases.erase(SL->SwitchCases.begin());
2317         return;
2318       }
2319 
2320       // Okay, we decided not to do this, remove any inserted MBB's and clear
2321       // SwitchCases.
2322       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2323         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2324 
2325       SL->SwitchCases.clear();
2326     }
2327   }
2328 
2329   // Create a CaseBlock record representing this branch.
2330   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2331                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2332 
2333   // Use visitSwitchCase to actually insert the fast branch sequence for this
2334   // cond branch.
2335   visitSwitchCase(CB, BrMBB);
2336 }
2337 
2338 /// visitSwitchCase - Emits the necessary code to represent a single node in
2339 /// the binary search tree resulting from lowering a switch instruction.
2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2341                                           MachineBasicBlock *SwitchBB) {
2342   SDValue Cond;
2343   SDValue CondLHS = getValue(CB.CmpLHS);
2344   SDLoc dl = CB.DL;
2345 
2346   if (CB.CC == ISD::SETTRUE) {
2347     // Branch or fall through to TrueBB.
2348     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2349     SwitchBB->normalizeSuccProbs();
2350     if (CB.TrueBB != NextBlock(SwitchBB)) {
2351       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2352                               DAG.getBasicBlock(CB.TrueBB)));
2353     }
2354     return;
2355   }
2356 
2357   auto &TLI = DAG.getTargetLoweringInfo();
2358   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2359 
2360   // Build the setcc now.
2361   if (!CB.CmpMHS) {
2362     // Fold "(X == true)" to X and "(X == false)" to !X to
2363     // handle common cases produced by branch lowering.
2364     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2365         CB.CC == ISD::SETEQ)
2366       Cond = CondLHS;
2367     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2368              CB.CC == ISD::SETEQ) {
2369       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2370       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2371     } else {
2372       SDValue CondRHS = getValue(CB.CmpRHS);
2373 
2374       // If a pointer's DAG type is larger than its memory type then the DAG
2375       // values are zero-extended. This breaks signed comparisons so truncate
2376       // back to the underlying type before doing the compare.
2377       if (CondLHS.getValueType() != MemVT) {
2378         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2379         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2380       }
2381       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2382     }
2383   } else {
2384     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2385 
2386     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2387     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2388 
2389     SDValue CmpOp = getValue(CB.CmpMHS);
2390     EVT VT = CmpOp.getValueType();
2391 
2392     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2393       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2394                           ISD::SETLE);
2395     } else {
2396       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2397                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2398       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2399                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2400     }
2401   }
2402 
2403   // Update successor info
2404   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2405   // TrueBB and FalseBB are always different unless the incoming IR is
2406   // degenerate. This only happens when running llc on weird IR.
2407   if (CB.TrueBB != CB.FalseBB)
2408     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2409   SwitchBB->normalizeSuccProbs();
2410 
2411   // If the lhs block is the next block, invert the condition so that we can
2412   // fall through to the lhs instead of the rhs block.
2413   if (CB.TrueBB == NextBlock(SwitchBB)) {
2414     std::swap(CB.TrueBB, CB.FalseBB);
2415     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2416     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2417   }
2418 
2419   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2420                                MVT::Other, getControlRoot(), Cond,
2421                                DAG.getBasicBlock(CB.TrueBB));
2422 
2423   // Insert the false branch. Do this even if it's a fall through branch,
2424   // this makes it easier to do DAG optimizations which require inverting
2425   // the branch condition.
2426   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2427                        DAG.getBasicBlock(CB.FalseBB));
2428 
2429   DAG.setRoot(BrCond);
2430 }
2431 
2432 /// visitJumpTable - Emit JumpTable node in the current MBB
2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2434   // Emit the code for the jump table
2435   assert(JT.Reg != -1U && "Should lower JT Header first!");
2436   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2437   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2438                                      JT.Reg, PTy);
2439   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2440   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2441                                     MVT::Other, Index.getValue(1),
2442                                     Table, Index);
2443   DAG.setRoot(BrJumpTable);
2444 }
2445 
2446 /// visitJumpTableHeader - This function emits necessary code to produce index
2447 /// in the JumpTable from switch case.
2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2449                                                JumpTableHeader &JTH,
2450                                                MachineBasicBlock *SwitchBB) {
2451   SDLoc dl = getCurSDLoc();
2452 
2453   // Subtract the lowest switch case value from the value being switched on.
2454   SDValue SwitchOp = getValue(JTH.SValue);
2455   EVT VT = SwitchOp.getValueType();
2456   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2457                             DAG.getConstant(JTH.First, dl, VT));
2458 
2459   // The SDNode we just created, which holds the value being switched on minus
2460   // the smallest case value, needs to be copied to a virtual register so it
2461   // can be used as an index into the jump table in a subsequent basic block.
2462   // This value may be smaller or larger than the target's pointer type, and
2463   // therefore require extension or truncating.
2464   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2465   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2466 
2467   unsigned JumpTableReg =
2468       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2469   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2470                                     JumpTableReg, SwitchOp);
2471   JT.Reg = JumpTableReg;
2472 
2473   if (!JTH.OmitRangeCheck) {
2474     // Emit the range check for the jump table, and branch to the default block
2475     // for the switch statement if the value being switched on exceeds the
2476     // largest case in the switch.
2477     SDValue CMP = DAG.getSetCC(
2478         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2479                                    Sub.getValueType()),
2480         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2481 
2482     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2483                                  MVT::Other, CopyTo, CMP,
2484                                  DAG.getBasicBlock(JT.Default));
2485 
2486     // Avoid emitting unnecessary branches to the next block.
2487     if (JT.MBB != NextBlock(SwitchBB))
2488       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2489                            DAG.getBasicBlock(JT.MBB));
2490 
2491     DAG.setRoot(BrCond);
2492   } else {
2493     // Avoid emitting unnecessary branches to the next block.
2494     if (JT.MBB != NextBlock(SwitchBB))
2495       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2496                               DAG.getBasicBlock(JT.MBB)));
2497     else
2498       DAG.setRoot(CopyTo);
2499   }
2500 }
2501 
2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2503 /// variable if there exists one.
2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2505                                  SDValue &Chain) {
2506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2509   MachineFunction &MF = DAG.getMachineFunction();
2510   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2511   MachineSDNode *Node =
2512       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2513   if (Global) {
2514     MachinePointerInfo MPInfo(Global);
2515     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2516                  MachineMemOperand::MODereferenceable;
2517     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2518         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2519     DAG.setNodeMemRefs(Node, {MemRef});
2520   }
2521   if (PtrTy != PtrMemTy)
2522     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2523   return SDValue(Node, 0);
2524 }
2525 
2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2527 /// tail spliced into a stack protector check success bb.
2528 ///
2529 /// For a high level explanation of how this fits into the stack protector
2530 /// generation see the comment on the declaration of class
2531 /// StackProtectorDescriptor.
2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2533                                                   MachineBasicBlock *ParentBB) {
2534 
2535   // First create the loads to the guard/stack slot for the comparison.
2536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2537   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2538   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2539 
2540   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2541   int FI = MFI.getStackProtectorIndex();
2542 
2543   SDValue Guard;
2544   SDLoc dl = getCurSDLoc();
2545   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2546   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2547   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2548 
2549   // Generate code to load the content of the guard slot.
2550   SDValue GuardVal = DAG.getLoad(
2551       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2552       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2553       MachineMemOperand::MOVolatile);
2554 
2555   if (TLI.useStackGuardXorFP())
2556     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2557 
2558   // Retrieve guard check function, nullptr if instrumentation is inlined.
2559   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2560     // The target provides a guard check function to validate the guard value.
2561     // Generate a call to that function with the content of the guard slot as
2562     // argument.
2563     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2564     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2565 
2566     TargetLowering::ArgListTy Args;
2567     TargetLowering::ArgListEntry Entry;
2568     Entry.Node = GuardVal;
2569     Entry.Ty = FnTy->getParamType(0);
2570     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2571       Entry.IsInReg = true;
2572     Args.push_back(Entry);
2573 
2574     TargetLowering::CallLoweringInfo CLI(DAG);
2575     CLI.setDebugLoc(getCurSDLoc())
2576         .setChain(DAG.getEntryNode())
2577         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2578                    getValue(GuardCheckFn), std::move(Args));
2579 
2580     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2581     DAG.setRoot(Result.second);
2582     return;
2583   }
2584 
2585   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2586   // Otherwise, emit a volatile load to retrieve the stack guard value.
2587   SDValue Chain = DAG.getEntryNode();
2588   if (TLI.useLoadStackGuardNode()) {
2589     Guard = getLoadStackGuard(DAG, dl, Chain);
2590   } else {
2591     const Value *IRGuard = TLI.getSDagStackGuard(M);
2592     SDValue GuardPtr = getValue(IRGuard);
2593 
2594     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2595                         MachinePointerInfo(IRGuard, 0), Align,
2596                         MachineMemOperand::MOVolatile);
2597   }
2598 
2599   // Perform the comparison via a getsetcc.
2600   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2601                                                         *DAG.getContext(),
2602                                                         Guard.getValueType()),
2603                              Guard, GuardVal, ISD::SETNE);
2604 
2605   // If the guard/stackslot do not equal, branch to failure MBB.
2606   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2607                                MVT::Other, GuardVal.getOperand(0),
2608                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2609   // Otherwise branch to success MBB.
2610   SDValue Br = DAG.getNode(ISD::BR, dl,
2611                            MVT::Other, BrCond,
2612                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2613 
2614   DAG.setRoot(Br);
2615 }
2616 
2617 /// Codegen the failure basic block for a stack protector check.
2618 ///
2619 /// A failure stack protector machine basic block consists simply of a call to
2620 /// __stack_chk_fail().
2621 ///
2622 /// For a high level explanation of how this fits into the stack protector
2623 /// generation see the comment on the declaration of class
2624 /// StackProtectorDescriptor.
2625 void
2626 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2628   TargetLowering::MakeLibCallOptions CallOptions;
2629   CallOptions.setDiscardResult(true);
2630   SDValue Chain =
2631       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2632                       None, CallOptions, getCurSDLoc()).second;
2633   // On PS4, the "return address" must still be within the calling function,
2634   // even if it's at the very end, so emit an explicit TRAP here.
2635   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2636   if (TM.getTargetTriple().isPS4CPU())
2637     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2638 
2639   DAG.setRoot(Chain);
2640 }
2641 
2642 /// visitBitTestHeader - This function emits necessary code to produce value
2643 /// suitable for "bit tests"
2644 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2645                                              MachineBasicBlock *SwitchBB) {
2646   SDLoc dl = getCurSDLoc();
2647 
2648   // Subtract the minimum value.
2649   SDValue SwitchOp = getValue(B.SValue);
2650   EVT VT = SwitchOp.getValueType();
2651   SDValue RangeSub =
2652       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2653 
2654   // Determine the type of the test operands.
2655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2656   bool UsePtrType = false;
2657   if (!TLI.isTypeLegal(VT)) {
2658     UsePtrType = true;
2659   } else {
2660     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2661       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2662         // Switch table case range are encoded into series of masks.
2663         // Just use pointer type, it's guaranteed to fit.
2664         UsePtrType = true;
2665         break;
2666       }
2667   }
2668   SDValue Sub = RangeSub;
2669   if (UsePtrType) {
2670     VT = TLI.getPointerTy(DAG.getDataLayout());
2671     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2672   }
2673 
2674   B.RegVT = VT.getSimpleVT();
2675   B.Reg = FuncInfo.CreateReg(B.RegVT);
2676   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2677 
2678   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2679 
2680   if (!B.OmitRangeCheck)
2681     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2682   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2683   SwitchBB->normalizeSuccProbs();
2684 
2685   SDValue Root = CopyTo;
2686   if (!B.OmitRangeCheck) {
2687     // Conditional branch to the default block.
2688     SDValue RangeCmp = DAG.getSetCC(dl,
2689         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2690                                RangeSub.getValueType()),
2691         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2692         ISD::SETUGT);
2693 
2694     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2695                        DAG.getBasicBlock(B.Default));
2696   }
2697 
2698   // Avoid emitting unnecessary branches to the next block.
2699   if (MBB != NextBlock(SwitchBB))
2700     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2701 
2702   DAG.setRoot(Root);
2703 }
2704 
2705 /// visitBitTestCase - this function produces one "bit test"
2706 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2707                                            MachineBasicBlock* NextMBB,
2708                                            BranchProbability BranchProbToNext,
2709                                            unsigned Reg,
2710                                            BitTestCase &B,
2711                                            MachineBasicBlock *SwitchBB) {
2712   SDLoc dl = getCurSDLoc();
2713   MVT VT = BB.RegVT;
2714   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2715   SDValue Cmp;
2716   unsigned PopCount = countPopulation(B.Mask);
2717   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2718   if (PopCount == 1) {
2719     // Testing for a single bit; just compare the shift count with what it
2720     // would need to be to shift a 1 bit in that position.
2721     Cmp = DAG.getSetCC(
2722         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2723         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2724         ISD::SETEQ);
2725   } else if (PopCount == BB.Range) {
2726     // There is only one zero bit in the range, test for it directly.
2727     Cmp = DAG.getSetCC(
2728         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2729         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2730         ISD::SETNE);
2731   } else {
2732     // Make desired shift
2733     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2734                                     DAG.getConstant(1, dl, VT), ShiftOp);
2735 
2736     // Emit bit tests and jumps
2737     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2738                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2739     Cmp = DAG.getSetCC(
2740         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2741         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2742   }
2743 
2744   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2745   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2746   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2747   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2748   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2749   // one as they are relative probabilities (and thus work more like weights),
2750   // and hence we need to normalize them to let the sum of them become one.
2751   SwitchBB->normalizeSuccProbs();
2752 
2753   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2754                               MVT::Other, getControlRoot(),
2755                               Cmp, DAG.getBasicBlock(B.TargetBB));
2756 
2757   // Avoid emitting unnecessary branches to the next block.
2758   if (NextMBB != NextBlock(SwitchBB))
2759     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2760                         DAG.getBasicBlock(NextMBB));
2761 
2762   DAG.setRoot(BrAnd);
2763 }
2764 
2765 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2766   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2767 
2768   // Retrieve successors. Look through artificial IR level blocks like
2769   // catchswitch for successors.
2770   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2771   const BasicBlock *EHPadBB = I.getSuccessor(1);
2772 
2773   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2774   // have to do anything here to lower funclet bundles.
2775   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2776                                         LLVMContext::OB_funclet,
2777                                         LLVMContext::OB_cfguardtarget}) &&
2778          "Cannot lower invokes with arbitrary operand bundles yet!");
2779 
2780   const Value *Callee(I.getCalledValue());
2781   const Function *Fn = dyn_cast<Function>(Callee);
2782   if (isa<InlineAsm>(Callee))
2783     visitInlineAsm(&I);
2784   else if (Fn && Fn->isIntrinsic()) {
2785     switch (Fn->getIntrinsicID()) {
2786     default:
2787       llvm_unreachable("Cannot invoke this intrinsic");
2788     case Intrinsic::donothing:
2789       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2790       break;
2791     case Intrinsic::experimental_patchpoint_void:
2792     case Intrinsic::experimental_patchpoint_i64:
2793       visitPatchpoint(&I, EHPadBB);
2794       break;
2795     case Intrinsic::experimental_gc_statepoint:
2796       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2797       break;
2798     case Intrinsic::wasm_rethrow_in_catch: {
2799       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2800       // special because it can be invoked, so we manually lower it to a DAG
2801       // node here.
2802       SmallVector<SDValue, 8> Ops;
2803       Ops.push_back(getRoot()); // inchain
2804       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2805       Ops.push_back(
2806           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2807                                 TLI.getPointerTy(DAG.getDataLayout())));
2808       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2809       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2810       break;
2811     }
2812     }
2813   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2814     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2815     // Eventually we will support lowering the @llvm.experimental.deoptimize
2816     // intrinsic, and right now there are no plans to support other intrinsics
2817     // with deopt state.
2818     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2819   } else {
2820     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2821   }
2822 
2823   // If the value of the invoke is used outside of its defining block, make it
2824   // available as a virtual register.
2825   // We already took care of the exported value for the statepoint instruction
2826   // during call to the LowerStatepoint.
2827   if (!isStatepoint(I)) {
2828     CopyToExportRegsIfNeeded(&I);
2829   }
2830 
2831   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2832   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2833   BranchProbability EHPadBBProb =
2834       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2835           : BranchProbability::getZero();
2836   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2837 
2838   // Update successor info.
2839   addSuccessorWithProb(InvokeMBB, Return);
2840   for (auto &UnwindDest : UnwindDests) {
2841     UnwindDest.first->setIsEHPad();
2842     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2843   }
2844   InvokeMBB->normalizeSuccProbs();
2845 
2846   // Drop into normal successor.
2847   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2848                           DAG.getBasicBlock(Return)));
2849 }
2850 
2851 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2852   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2853 
2854   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2855   // have to do anything here to lower funclet bundles.
2856   assert(!I.hasOperandBundlesOtherThan(
2857              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2858          "Cannot lower callbrs with arbitrary operand bundles yet!");
2859 
2860   assert(isa<InlineAsm>(I.getCalledValue()) &&
2861          "Only know how to handle inlineasm callbr");
2862   visitInlineAsm(&I);
2863   CopyToExportRegsIfNeeded(&I);
2864 
2865   // Retrieve successors.
2866   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2867   Return->setInlineAsmBrDefaultTarget();
2868 
2869   // Update successor info.
2870   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2871   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2872     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2873     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2874     CallBrMBB->addInlineAsmBrIndirectTarget(Target);
2875   }
2876   CallBrMBB->normalizeSuccProbs();
2877 
2878   // Drop into default successor.
2879   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2880                           MVT::Other, getControlRoot(),
2881                           DAG.getBasicBlock(Return)));
2882 }
2883 
2884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2885   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2886 }
2887 
2888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2889   assert(FuncInfo.MBB->isEHPad() &&
2890          "Call to landingpad not in landing pad!");
2891 
2892   // If there aren't registers to copy the values into (e.g., during SjLj
2893   // exceptions), then don't bother to create these DAG nodes.
2894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2895   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2896   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2897       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2898     return;
2899 
2900   // If landingpad's return type is token type, we don't create DAG nodes
2901   // for its exception pointer and selector value. The extraction of exception
2902   // pointer or selector value from token type landingpads is not currently
2903   // supported.
2904   if (LP.getType()->isTokenTy())
2905     return;
2906 
2907   SmallVector<EVT, 2> ValueVTs;
2908   SDLoc dl = getCurSDLoc();
2909   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2910   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2911 
2912   // Get the two live-in registers as SDValues. The physregs have already been
2913   // copied into virtual registers.
2914   SDValue Ops[2];
2915   if (FuncInfo.ExceptionPointerVirtReg) {
2916     Ops[0] = DAG.getZExtOrTrunc(
2917         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2918                            FuncInfo.ExceptionPointerVirtReg,
2919                            TLI.getPointerTy(DAG.getDataLayout())),
2920         dl, ValueVTs[0]);
2921   } else {
2922     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2923   }
2924   Ops[1] = DAG.getZExtOrTrunc(
2925       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2926                          FuncInfo.ExceptionSelectorVirtReg,
2927                          TLI.getPointerTy(DAG.getDataLayout())),
2928       dl, ValueVTs[1]);
2929 
2930   // Merge into one.
2931   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2932                             DAG.getVTList(ValueVTs), Ops);
2933   setValue(&LP, Res);
2934 }
2935 
2936 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2937                                            MachineBasicBlock *Last) {
2938   // Update JTCases.
2939   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2940     if (SL->JTCases[i].first.HeaderBB == First)
2941       SL->JTCases[i].first.HeaderBB = Last;
2942 
2943   // Update BitTestCases.
2944   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2945     if (SL->BitTestCases[i].Parent == First)
2946       SL->BitTestCases[i].Parent = Last;
2947 }
2948 
2949 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2950   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2951 
2952   // Update machine-CFG edges with unique successors.
2953   SmallSet<BasicBlock*, 32> Done;
2954   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2955     BasicBlock *BB = I.getSuccessor(i);
2956     bool Inserted = Done.insert(BB).second;
2957     if (!Inserted)
2958         continue;
2959 
2960     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2961     addSuccessorWithProb(IndirectBrMBB, Succ);
2962   }
2963   IndirectBrMBB->normalizeSuccProbs();
2964 
2965   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2966                           MVT::Other, getControlRoot(),
2967                           getValue(I.getAddress())));
2968 }
2969 
2970 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2971   if (!DAG.getTarget().Options.TrapUnreachable)
2972     return;
2973 
2974   // We may be able to ignore unreachable behind a noreturn call.
2975   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2976     const BasicBlock &BB = *I.getParent();
2977     if (&I != &BB.front()) {
2978       BasicBlock::const_iterator PredI =
2979         std::prev(BasicBlock::const_iterator(&I));
2980       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2981         if (Call->doesNotReturn())
2982           return;
2983       }
2984     }
2985   }
2986 
2987   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2988 }
2989 
2990 void SelectionDAGBuilder::visitFSub(const User &I) {
2991   // -0.0 - X --> fneg
2992   Type *Ty = I.getType();
2993   if (isa<Constant>(I.getOperand(0)) &&
2994       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2995     SDValue Op2 = getValue(I.getOperand(1));
2996     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2997                              Op2.getValueType(), Op2));
2998     return;
2999   }
3000 
3001   visitBinary(I, ISD::FSUB);
3002 }
3003 
3004 /// Checks if the given instruction performs a vector reduction, in which case
3005 /// we have the freedom to alter the elements in the result as long as the
3006 /// reduction of them stays unchanged.
3007 static bool isVectorReductionOp(const User *I) {
3008   const Instruction *Inst = dyn_cast<Instruction>(I);
3009   if (!Inst || !Inst->getType()->isVectorTy())
3010     return false;
3011 
3012   auto OpCode = Inst->getOpcode();
3013   switch (OpCode) {
3014   case Instruction::Add:
3015   case Instruction::Mul:
3016   case Instruction::And:
3017   case Instruction::Or:
3018   case Instruction::Xor:
3019     break;
3020   case Instruction::FAdd:
3021   case Instruction::FMul:
3022     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3023       if (FPOp->getFastMathFlags().isFast())
3024         break;
3025     LLVM_FALLTHROUGH;
3026   default:
3027     return false;
3028   }
3029 
3030   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3031   // Ensure the reduction size is a power of 2.
3032   if (!isPowerOf2_32(ElemNum))
3033     return false;
3034 
3035   unsigned ElemNumToReduce = ElemNum;
3036 
3037   // Do DFS search on the def-use chain from the given instruction. We only
3038   // allow four kinds of operations during the search until we reach the
3039   // instruction that extracts the first element from the vector:
3040   //
3041   //   1. The reduction operation of the same opcode as the given instruction.
3042   //
3043   //   2. PHI node.
3044   //
3045   //   3. ShuffleVector instruction together with a reduction operation that
3046   //      does a partial reduction.
3047   //
3048   //   4. ExtractElement that extracts the first element from the vector, and we
3049   //      stop searching the def-use chain here.
3050   //
3051   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3052   // from 1-3 to the stack to continue the DFS. The given instruction is not
3053   // a reduction operation if we meet any other instructions other than those
3054   // listed above.
3055 
3056   SmallVector<const User *, 16> UsersToVisit{Inst};
3057   SmallPtrSet<const User *, 16> Visited;
3058   bool ReduxExtracted = false;
3059 
3060   while (!UsersToVisit.empty()) {
3061     auto User = UsersToVisit.back();
3062     UsersToVisit.pop_back();
3063     if (!Visited.insert(User).second)
3064       continue;
3065 
3066     for (const auto *U : User->users()) {
3067       auto Inst = dyn_cast<Instruction>(U);
3068       if (!Inst)
3069         return false;
3070 
3071       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3072         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3073           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3074             return false;
3075         UsersToVisit.push_back(U);
3076       } else if (const ShuffleVectorInst *ShufInst =
3077                      dyn_cast<ShuffleVectorInst>(U)) {
3078         // Detect the following pattern: A ShuffleVector instruction together
3079         // with a reduction that do partial reduction on the first and second
3080         // ElemNumToReduce / 2 elements, and store the result in
3081         // ElemNumToReduce / 2 elements in another vector.
3082 
3083         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3084         if (ResultElements < ElemNum)
3085           return false;
3086 
3087         if (ElemNumToReduce == 1)
3088           return false;
3089         if (!isa<UndefValue>(U->getOperand(1)))
3090           return false;
3091         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3092           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3093             return false;
3094         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3095           if (ShufInst->getMaskValue(i) != -1)
3096             return false;
3097 
3098         // There is only one user of this ShuffleVector instruction, which
3099         // must be a reduction operation.
3100         if (!U->hasOneUse())
3101           return false;
3102 
3103         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3104         if (!U2 || U2->getOpcode() != OpCode)
3105           return false;
3106 
3107         // Check operands of the reduction operation.
3108         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3109             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3110           UsersToVisit.push_back(U2);
3111           ElemNumToReduce /= 2;
3112         } else
3113           return false;
3114       } else if (isa<ExtractElementInst>(U)) {
3115         // At this moment we should have reduced all elements in the vector.
3116         if (ElemNumToReduce != 1)
3117           return false;
3118 
3119         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3120         if (!Val || !Val->isZero())
3121           return false;
3122 
3123         ReduxExtracted = true;
3124       } else
3125         return false;
3126     }
3127   }
3128   return ReduxExtracted;
3129 }
3130 
3131 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3132   SDNodeFlags Flags;
3133 
3134   SDValue Op = getValue(I.getOperand(0));
3135   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3136                                     Op, Flags);
3137   setValue(&I, UnNodeValue);
3138 }
3139 
3140 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3141   SDNodeFlags Flags;
3142   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3143     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3144     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3145   }
3146   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3147     Flags.setExact(ExactOp->isExact());
3148   }
3149   if (isVectorReductionOp(&I)) {
3150     Flags.setVectorReduction(true);
3151     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3152 
3153     // If no flags are set we will propagate the incoming flags, if any flags
3154     // are set, we will intersect them with the incoming flag and so we need to
3155     // copy the FMF flags here.
3156     if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
3157       Flags.copyFMF(*FPOp);
3158     }
3159   }
3160 
3161   SDValue Op1 = getValue(I.getOperand(0));
3162   SDValue Op2 = getValue(I.getOperand(1));
3163   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3164                                      Op1, Op2, Flags);
3165   setValue(&I, BinNodeValue);
3166 }
3167 
3168 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3169   SDValue Op1 = getValue(I.getOperand(0));
3170   SDValue Op2 = getValue(I.getOperand(1));
3171 
3172   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3173       Op1.getValueType(), DAG.getDataLayout());
3174 
3175   // Coerce the shift amount to the right type if we can.
3176   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3177     unsigned ShiftSize = ShiftTy.getSizeInBits();
3178     unsigned Op2Size = Op2.getValueSizeInBits();
3179     SDLoc DL = getCurSDLoc();
3180 
3181     // If the operand is smaller than the shift count type, promote it.
3182     if (ShiftSize > Op2Size)
3183       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3184 
3185     // If the operand is larger than the shift count type but the shift
3186     // count type has enough bits to represent any shift value, truncate
3187     // it now. This is a common case and it exposes the truncate to
3188     // optimization early.
3189     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3190       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3191     // Otherwise we'll need to temporarily settle for some other convenient
3192     // type.  Type legalization will make adjustments once the shiftee is split.
3193     else
3194       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3195   }
3196 
3197   bool nuw = false;
3198   bool nsw = false;
3199   bool exact = false;
3200 
3201   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3202 
3203     if (const OverflowingBinaryOperator *OFBinOp =
3204             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3205       nuw = OFBinOp->hasNoUnsignedWrap();
3206       nsw = OFBinOp->hasNoSignedWrap();
3207     }
3208     if (const PossiblyExactOperator *ExactOp =
3209             dyn_cast<const PossiblyExactOperator>(&I))
3210       exact = ExactOp->isExact();
3211   }
3212   SDNodeFlags Flags;
3213   Flags.setExact(exact);
3214   Flags.setNoSignedWrap(nsw);
3215   Flags.setNoUnsignedWrap(nuw);
3216   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3217                             Flags);
3218   setValue(&I, Res);
3219 }
3220 
3221 void SelectionDAGBuilder::visitSDiv(const User &I) {
3222   SDValue Op1 = getValue(I.getOperand(0));
3223   SDValue Op2 = getValue(I.getOperand(1));
3224 
3225   SDNodeFlags Flags;
3226   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3227                  cast<PossiblyExactOperator>(&I)->isExact());
3228   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3229                            Op2, Flags));
3230 }
3231 
3232 void SelectionDAGBuilder::visitICmp(const User &I) {
3233   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3234   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3235     predicate = IC->getPredicate();
3236   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3237     predicate = ICmpInst::Predicate(IC->getPredicate());
3238   SDValue Op1 = getValue(I.getOperand(0));
3239   SDValue Op2 = getValue(I.getOperand(1));
3240   ISD::CondCode Opcode = getICmpCondCode(predicate);
3241 
3242   auto &TLI = DAG.getTargetLoweringInfo();
3243   EVT MemVT =
3244       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3245 
3246   // If a pointer's DAG type is larger than its memory type then the DAG values
3247   // are zero-extended. This breaks signed comparisons so truncate back to the
3248   // underlying type before doing the compare.
3249   if (Op1.getValueType() != MemVT) {
3250     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3251     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3252   }
3253 
3254   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3255                                                         I.getType());
3256   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3257 }
3258 
3259 void SelectionDAGBuilder::visitFCmp(const User &I) {
3260   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3261   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3262     predicate = FC->getPredicate();
3263   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3264     predicate = FCmpInst::Predicate(FC->getPredicate());
3265   SDValue Op1 = getValue(I.getOperand(0));
3266   SDValue Op2 = getValue(I.getOperand(1));
3267 
3268   ISD::CondCode Condition = getFCmpCondCode(predicate);
3269   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3270   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3271     Condition = getFCmpCodeWithoutNaN(Condition);
3272 
3273   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3274                                                         I.getType());
3275   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3276 }
3277 
3278 // Check if the condition of the select has one use or two users that are both
3279 // selects with the same condition.
3280 static bool hasOnlySelectUsers(const Value *Cond) {
3281   return llvm::all_of(Cond->users(), [](const Value *V) {
3282     return isa<SelectInst>(V);
3283   });
3284 }
3285 
3286 void SelectionDAGBuilder::visitSelect(const User &I) {
3287   SmallVector<EVT, 4> ValueVTs;
3288   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3289                   ValueVTs);
3290   unsigned NumValues = ValueVTs.size();
3291   if (NumValues == 0) return;
3292 
3293   SmallVector<SDValue, 4> Values(NumValues);
3294   SDValue Cond     = getValue(I.getOperand(0));
3295   SDValue LHSVal   = getValue(I.getOperand(1));
3296   SDValue RHSVal   = getValue(I.getOperand(2));
3297   SmallVector<SDValue, 1> BaseOps(1, Cond);
3298   ISD::NodeType OpCode =
3299       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3300 
3301   bool IsUnaryAbs = false;
3302 
3303   // Min/max matching is only viable if all output VTs are the same.
3304   if (is_splat(ValueVTs)) {
3305     EVT VT = ValueVTs[0];
3306     LLVMContext &Ctx = *DAG.getContext();
3307     auto &TLI = DAG.getTargetLoweringInfo();
3308 
3309     // We care about the legality of the operation after it has been type
3310     // legalized.
3311     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3312       VT = TLI.getTypeToTransformTo(Ctx, VT);
3313 
3314     // If the vselect is legal, assume we want to leave this as a vector setcc +
3315     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3316     // min/max is legal on the scalar type.
3317     bool UseScalarMinMax = VT.isVector() &&
3318       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3319 
3320     Value *LHS, *RHS;
3321     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3322     ISD::NodeType Opc = ISD::DELETED_NODE;
3323     switch (SPR.Flavor) {
3324     case SPF_UMAX:    Opc = ISD::UMAX; break;
3325     case SPF_UMIN:    Opc = ISD::UMIN; break;
3326     case SPF_SMAX:    Opc = ISD::SMAX; break;
3327     case SPF_SMIN:    Opc = ISD::SMIN; break;
3328     case SPF_FMINNUM:
3329       switch (SPR.NaNBehavior) {
3330       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3331       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3332       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3333       case SPNB_RETURNS_ANY: {
3334         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3335           Opc = ISD::FMINNUM;
3336         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3337           Opc = ISD::FMINIMUM;
3338         else if (UseScalarMinMax)
3339           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3340             ISD::FMINNUM : ISD::FMINIMUM;
3341         break;
3342       }
3343       }
3344       break;
3345     case SPF_FMAXNUM:
3346       switch (SPR.NaNBehavior) {
3347       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3348       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3349       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3350       case SPNB_RETURNS_ANY:
3351 
3352         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3353           Opc = ISD::FMAXNUM;
3354         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3355           Opc = ISD::FMAXIMUM;
3356         else if (UseScalarMinMax)
3357           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3358             ISD::FMAXNUM : ISD::FMAXIMUM;
3359         break;
3360       }
3361       break;
3362     case SPF_ABS:
3363       IsUnaryAbs = true;
3364       Opc = ISD::ABS;
3365       break;
3366     case SPF_NABS:
3367       // TODO: we need to produce sub(0, abs(X)).
3368     default: break;
3369     }
3370 
3371     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3372         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3373          (UseScalarMinMax &&
3374           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3375         // If the underlying comparison instruction is used by any other
3376         // instruction, the consumed instructions won't be destroyed, so it is
3377         // not profitable to convert to a min/max.
3378         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3379       OpCode = Opc;
3380       LHSVal = getValue(LHS);
3381       RHSVal = getValue(RHS);
3382       BaseOps.clear();
3383     }
3384 
3385     if (IsUnaryAbs) {
3386       OpCode = Opc;
3387       LHSVal = getValue(LHS);
3388       BaseOps.clear();
3389     }
3390   }
3391 
3392   if (IsUnaryAbs) {
3393     for (unsigned i = 0; i != NumValues; ++i) {
3394       Values[i] =
3395           DAG.getNode(OpCode, getCurSDLoc(),
3396                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3397                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3398     }
3399   } else {
3400     for (unsigned i = 0; i != NumValues; ++i) {
3401       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3402       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3403       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3404       Values[i] = DAG.getNode(
3405           OpCode, getCurSDLoc(),
3406           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3407     }
3408   }
3409 
3410   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3411                            DAG.getVTList(ValueVTs), Values));
3412 }
3413 
3414 void SelectionDAGBuilder::visitTrunc(const User &I) {
3415   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3416   SDValue N = getValue(I.getOperand(0));
3417   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3418                                                         I.getType());
3419   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3420 }
3421 
3422 void SelectionDAGBuilder::visitZExt(const User &I) {
3423   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3424   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3425   SDValue N = getValue(I.getOperand(0));
3426   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3427                                                         I.getType());
3428   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3429 }
3430 
3431 void SelectionDAGBuilder::visitSExt(const User &I) {
3432   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3433   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3434   SDValue N = getValue(I.getOperand(0));
3435   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3436                                                         I.getType());
3437   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3438 }
3439 
3440 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3441   // FPTrunc is never a no-op cast, no need to check
3442   SDValue N = getValue(I.getOperand(0));
3443   SDLoc dl = getCurSDLoc();
3444   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3445   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3446   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3447                            DAG.getTargetConstant(
3448                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3449 }
3450 
3451 void SelectionDAGBuilder::visitFPExt(const User &I) {
3452   // FPExt is never a no-op cast, no need to check
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3460   // FPToUI is never a no-op cast, no need to check
3461   SDValue N = getValue(I.getOperand(0));
3462   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3463                                                         I.getType());
3464   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3465 }
3466 
3467 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3468   // FPToSI is never a no-op cast, no need to check
3469   SDValue N = getValue(I.getOperand(0));
3470   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3471                                                         I.getType());
3472   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3473 }
3474 
3475 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3476   // UIToFP is never a no-op cast, no need to check
3477   SDValue N = getValue(I.getOperand(0));
3478   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3479                                                         I.getType());
3480   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3481 }
3482 
3483 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3484   // SIToFP is never a no-op cast, no need to check
3485   SDValue N = getValue(I.getOperand(0));
3486   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3487                                                         I.getType());
3488   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3489 }
3490 
3491 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3492   // What to do depends on the size of the integer and the size of the pointer.
3493   // We can either truncate, zero extend, or no-op, accordingly.
3494   SDValue N = getValue(I.getOperand(0));
3495   auto &TLI = DAG.getTargetLoweringInfo();
3496   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3497                                                         I.getType());
3498   EVT PtrMemVT =
3499       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3500   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3501   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3502   setValue(&I, N);
3503 }
3504 
3505 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3506   // What to do depends on the size of the integer and the size of the pointer.
3507   // We can either truncate, zero extend, or no-op, accordingly.
3508   SDValue N = getValue(I.getOperand(0));
3509   auto &TLI = DAG.getTargetLoweringInfo();
3510   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3511   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3512   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3513   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3514   setValue(&I, N);
3515 }
3516 
3517 void SelectionDAGBuilder::visitBitCast(const User &I) {
3518   SDValue N = getValue(I.getOperand(0));
3519   SDLoc dl = getCurSDLoc();
3520   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3521                                                         I.getType());
3522 
3523   // BitCast assures us that source and destination are the same size so this is
3524   // either a BITCAST or a no-op.
3525   if (DestVT != N.getValueType())
3526     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3527                              DestVT, N)); // convert types.
3528   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3529   // might fold any kind of constant expression to an integer constant and that
3530   // is not what we are looking for. Only recognize a bitcast of a genuine
3531   // constant integer as an opaque constant.
3532   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3533     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3534                                  /*isOpaque*/true));
3535   else
3536     setValue(&I, N);            // noop cast.
3537 }
3538 
3539 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3540   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3541   const Value *SV = I.getOperand(0);
3542   SDValue N = getValue(SV);
3543   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3544 
3545   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3546   unsigned DestAS = I.getType()->getPointerAddressSpace();
3547 
3548   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3549     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3550 
3551   setValue(&I, N);
3552 }
3553 
3554 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3556   SDValue InVec = getValue(I.getOperand(0));
3557   SDValue InVal = getValue(I.getOperand(1));
3558   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3559                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3560   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3561                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3562                            InVec, InVal, InIdx));
3563 }
3564 
3565 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3566   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3567   SDValue InVec = getValue(I.getOperand(0));
3568   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3569                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3570   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3571                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3572                            InVec, InIdx));
3573 }
3574 
3575 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3576   SDValue Src1 = getValue(I.getOperand(0));
3577   SDValue Src2 = getValue(I.getOperand(1));
3578   Constant *MaskV = cast<Constant>(I.getOperand(2));
3579   SDLoc DL = getCurSDLoc();
3580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3581   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3582   EVT SrcVT = Src1.getValueType();
3583   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3584 
3585   if (MaskV->isNullValue() && VT.isScalableVector()) {
3586     // Canonical splat form of first element of first input vector.
3587     SDValue FirstElt =
3588         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3589                     DAG.getVectorIdxConstant(0, DL));
3590     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3591     return;
3592   }
3593 
3594   // For now, we only handle splats for scalable vectors.
3595   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3596   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3597   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3598 
3599   SmallVector<int, 8> Mask;
3600   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3601   unsigned MaskNumElts = Mask.size();
3602 
3603   if (SrcNumElts == MaskNumElts) {
3604     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3605     return;
3606   }
3607 
3608   // Normalize the shuffle vector since mask and vector length don't match.
3609   if (SrcNumElts < MaskNumElts) {
3610     // Mask is longer than the source vectors. We can use concatenate vector to
3611     // make the mask and vectors lengths match.
3612 
3613     if (MaskNumElts % SrcNumElts == 0) {
3614       // Mask length is a multiple of the source vector length.
3615       // Check if the shuffle is some kind of concatenation of the input
3616       // vectors.
3617       unsigned NumConcat = MaskNumElts / SrcNumElts;
3618       bool IsConcat = true;
3619       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3620       for (unsigned i = 0; i != MaskNumElts; ++i) {
3621         int Idx = Mask[i];
3622         if (Idx < 0)
3623           continue;
3624         // Ensure the indices in each SrcVT sized piece are sequential and that
3625         // the same source is used for the whole piece.
3626         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3627             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3628              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3629           IsConcat = false;
3630           break;
3631         }
3632         // Remember which source this index came from.
3633         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3634       }
3635 
3636       // The shuffle is concatenating multiple vectors together. Just emit
3637       // a CONCAT_VECTORS operation.
3638       if (IsConcat) {
3639         SmallVector<SDValue, 8> ConcatOps;
3640         for (auto Src : ConcatSrcs) {
3641           if (Src < 0)
3642             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3643           else if (Src == 0)
3644             ConcatOps.push_back(Src1);
3645           else
3646             ConcatOps.push_back(Src2);
3647         }
3648         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3649         return;
3650       }
3651     }
3652 
3653     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3654     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3655     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3656                                     PaddedMaskNumElts);
3657 
3658     // Pad both vectors with undefs to make them the same length as the mask.
3659     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3660 
3661     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3662     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3663     MOps1[0] = Src1;
3664     MOps2[0] = Src2;
3665 
3666     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3667     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3668 
3669     // Readjust mask for new input vector length.
3670     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3671     for (unsigned i = 0; i != MaskNumElts; ++i) {
3672       int Idx = Mask[i];
3673       if (Idx >= (int)SrcNumElts)
3674         Idx -= SrcNumElts - PaddedMaskNumElts;
3675       MappedOps[i] = Idx;
3676     }
3677 
3678     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3679 
3680     // If the concatenated vector was padded, extract a subvector with the
3681     // correct number of elements.
3682     if (MaskNumElts != PaddedMaskNumElts)
3683       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3684                            DAG.getVectorIdxConstant(0, DL));
3685 
3686     setValue(&I, Result);
3687     return;
3688   }
3689 
3690   if (SrcNumElts > MaskNumElts) {
3691     // Analyze the access pattern of the vector to see if we can extract
3692     // two subvectors and do the shuffle.
3693     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3694     bool CanExtract = true;
3695     for (int Idx : Mask) {
3696       unsigned Input = 0;
3697       if (Idx < 0)
3698         continue;
3699 
3700       if (Idx >= (int)SrcNumElts) {
3701         Input = 1;
3702         Idx -= SrcNumElts;
3703       }
3704 
3705       // If all the indices come from the same MaskNumElts sized portion of
3706       // the sources we can use extract. Also make sure the extract wouldn't
3707       // extract past the end of the source.
3708       int NewStartIdx = alignDown(Idx, MaskNumElts);
3709       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3710           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3711         CanExtract = false;
3712       // Make sure we always update StartIdx as we use it to track if all
3713       // elements are undef.
3714       StartIdx[Input] = NewStartIdx;
3715     }
3716 
3717     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3718       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3719       return;
3720     }
3721     if (CanExtract) {
3722       // Extract appropriate subvector and generate a vector shuffle
3723       for (unsigned Input = 0; Input < 2; ++Input) {
3724         SDValue &Src = Input == 0 ? Src1 : Src2;
3725         if (StartIdx[Input] < 0)
3726           Src = DAG.getUNDEF(VT);
3727         else {
3728           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3729                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3730         }
3731       }
3732 
3733       // Calculate new mask.
3734       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3735       for (int &Idx : MappedOps) {
3736         if (Idx >= (int)SrcNumElts)
3737           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3738         else if (Idx >= 0)
3739           Idx -= StartIdx[0];
3740       }
3741 
3742       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3743       return;
3744     }
3745   }
3746 
3747   // We can't use either concat vectors or extract subvectors so fall back to
3748   // replacing the shuffle with extract and build vector.
3749   // to insert and build vector.
3750   EVT EltVT = VT.getVectorElementType();
3751   SmallVector<SDValue,8> Ops;
3752   for (int Idx : Mask) {
3753     SDValue Res;
3754 
3755     if (Idx < 0) {
3756       Res = DAG.getUNDEF(EltVT);
3757     } else {
3758       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3759       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3760 
3761       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3762                         DAG.getVectorIdxConstant(Idx, DL));
3763     }
3764 
3765     Ops.push_back(Res);
3766   }
3767 
3768   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3769 }
3770 
3771 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3772   ArrayRef<unsigned> Indices;
3773   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3774     Indices = IV->getIndices();
3775   else
3776     Indices = cast<ConstantExpr>(&I)->getIndices();
3777 
3778   const Value *Op0 = I.getOperand(0);
3779   const Value *Op1 = I.getOperand(1);
3780   Type *AggTy = I.getType();
3781   Type *ValTy = Op1->getType();
3782   bool IntoUndef = isa<UndefValue>(Op0);
3783   bool FromUndef = isa<UndefValue>(Op1);
3784 
3785   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3786 
3787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3788   SmallVector<EVT, 4> AggValueVTs;
3789   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3790   SmallVector<EVT, 4> ValValueVTs;
3791   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3792 
3793   unsigned NumAggValues = AggValueVTs.size();
3794   unsigned NumValValues = ValValueVTs.size();
3795   SmallVector<SDValue, 4> Values(NumAggValues);
3796 
3797   // Ignore an insertvalue that produces an empty object
3798   if (!NumAggValues) {
3799     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3800     return;
3801   }
3802 
3803   SDValue Agg = getValue(Op0);
3804   unsigned i = 0;
3805   // Copy the beginning value(s) from the original aggregate.
3806   for (; i != LinearIndex; ++i)
3807     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3808                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3809   // Copy values from the inserted value(s).
3810   if (NumValValues) {
3811     SDValue Val = getValue(Op1);
3812     for (; i != LinearIndex + NumValValues; ++i)
3813       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3814                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3815   }
3816   // Copy remaining value(s) from the original aggregate.
3817   for (; i != NumAggValues; ++i)
3818     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3819                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3820 
3821   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3822                            DAG.getVTList(AggValueVTs), Values));
3823 }
3824 
3825 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3826   ArrayRef<unsigned> Indices;
3827   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3828     Indices = EV->getIndices();
3829   else
3830     Indices = cast<ConstantExpr>(&I)->getIndices();
3831 
3832   const Value *Op0 = I.getOperand(0);
3833   Type *AggTy = Op0->getType();
3834   Type *ValTy = I.getType();
3835   bool OutOfUndef = isa<UndefValue>(Op0);
3836 
3837   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3838 
3839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3840   SmallVector<EVT, 4> ValValueVTs;
3841   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3842 
3843   unsigned NumValValues = ValValueVTs.size();
3844 
3845   // Ignore a extractvalue that produces an empty object
3846   if (!NumValValues) {
3847     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3848     return;
3849   }
3850 
3851   SmallVector<SDValue, 4> Values(NumValValues);
3852 
3853   SDValue Agg = getValue(Op0);
3854   // Copy out the selected value(s).
3855   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3856     Values[i - LinearIndex] =
3857       OutOfUndef ?
3858         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3859         SDValue(Agg.getNode(), Agg.getResNo() + i);
3860 
3861   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3862                            DAG.getVTList(ValValueVTs), Values));
3863 }
3864 
3865 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3866   Value *Op0 = I.getOperand(0);
3867   // Note that the pointer operand may be a vector of pointers. Take the scalar
3868   // element which holds a pointer.
3869   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3870   SDValue N = getValue(Op0);
3871   SDLoc dl = getCurSDLoc();
3872   auto &TLI = DAG.getTargetLoweringInfo();
3873   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3874   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3875 
3876   // Normalize Vector GEP - all scalar operands should be converted to the
3877   // splat vector.
3878   bool IsVectorGEP = I.getType()->isVectorTy();
3879   ElementCount VectorElementCount = IsVectorGEP ?
3880     I.getType()->getVectorElementCount() : ElementCount(0, false);
3881 
3882   if (IsVectorGEP && !N.getValueType().isVector()) {
3883     LLVMContext &Context = *DAG.getContext();
3884     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3885     if (VectorElementCount.Scalable)
3886       N = DAG.getSplatVector(VT, dl, N);
3887     else
3888       N = DAG.getSplatBuildVector(VT, dl, N);
3889   }
3890 
3891   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3892        GTI != E; ++GTI) {
3893     const Value *Idx = GTI.getOperand();
3894     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3895       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3896       if (Field) {
3897         // N = N + Offset
3898         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3899 
3900         // In an inbounds GEP with an offset that is nonnegative even when
3901         // interpreted as signed, assume there is no unsigned overflow.
3902         SDNodeFlags Flags;
3903         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3904           Flags.setNoUnsignedWrap(true);
3905 
3906         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3907                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3908       }
3909     } else {
3910       // IdxSize is the width of the arithmetic according to IR semantics.
3911       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3912       // (and fix up the result later).
3913       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3914       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3915       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3916       // We intentionally mask away the high bits here; ElementSize may not
3917       // fit in IdxTy.
3918       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3919       bool ElementScalable = ElementSize.isScalable();
3920 
3921       // If this is a scalar constant or a splat vector of constants,
3922       // handle it quickly.
3923       const auto *C = dyn_cast<Constant>(Idx);
3924       if (C && isa<VectorType>(C->getType()))
3925         C = C->getSplatValue();
3926 
3927       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3928       if (CI && CI->isZero())
3929         continue;
3930       if (CI && !ElementScalable) {
3931         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3932         LLVMContext &Context = *DAG.getContext();
3933         SDValue OffsVal;
3934         if (IsVectorGEP)
3935           OffsVal = DAG.getConstant(
3936               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3937         else
3938           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3939 
3940         // In an inbounds GEP with an offset that is nonnegative even when
3941         // interpreted as signed, assume there is no unsigned overflow.
3942         SDNodeFlags Flags;
3943         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3944           Flags.setNoUnsignedWrap(true);
3945 
3946         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3947 
3948         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3949         continue;
3950       }
3951 
3952       // N = N + Idx * ElementMul;
3953       SDValue IdxN = getValue(Idx);
3954 
3955       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3956         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3957                                   VectorElementCount);
3958         if (VectorElementCount.Scalable)
3959           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3960         else
3961           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3962       }
3963 
3964       // If the index is smaller or larger than intptr_t, truncate or extend
3965       // it.
3966       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3967 
3968       if (ElementScalable) {
3969         EVT VScaleTy = N.getValueType().getScalarType();
3970         SDValue VScale = DAG.getNode(
3971             ISD::VSCALE, dl, VScaleTy,
3972             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3973         if (IsVectorGEP)
3974           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3975         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3976       } else {
3977         // If this is a multiply by a power of two, turn it into a shl
3978         // immediately.  This is a very common case.
3979         if (ElementMul != 1) {
3980           if (ElementMul.isPowerOf2()) {
3981             unsigned Amt = ElementMul.logBase2();
3982             IdxN = DAG.getNode(ISD::SHL, dl,
3983                                N.getValueType(), IdxN,
3984                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3985           } else {
3986             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3987                                             IdxN.getValueType());
3988             IdxN = DAG.getNode(ISD::MUL, dl,
3989                                N.getValueType(), IdxN, Scale);
3990           }
3991         }
3992       }
3993 
3994       N = DAG.getNode(ISD::ADD, dl,
3995                       N.getValueType(), N, IdxN);
3996     }
3997   }
3998 
3999   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4000     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4001 
4002   setValue(&I, N);
4003 }
4004 
4005 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4006   // If this is a fixed sized alloca in the entry block of the function,
4007   // allocate it statically on the stack.
4008   if (FuncInfo.StaticAllocaMap.count(&I))
4009     return;   // getValue will auto-populate this.
4010 
4011   SDLoc dl = getCurSDLoc();
4012   Type *Ty = I.getAllocatedType();
4013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4014   auto &DL = DAG.getDataLayout();
4015   uint64_t TySize = DL.getTypeAllocSize(Ty);
4016   unsigned Align =
4017       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
4018 
4019   SDValue AllocSize = getValue(I.getArraySize());
4020 
4021   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4022   if (AllocSize.getValueType() != IntPtr)
4023     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4024 
4025   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4026                           AllocSize,
4027                           DAG.getConstant(TySize, dl, IntPtr));
4028 
4029   // Handle alignment.  If the requested alignment is less than or equal to
4030   // the stack alignment, ignore it.  If the size is greater than or equal to
4031   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4032   unsigned StackAlign =
4033       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
4034   if (Align <= StackAlign)
4035     Align = 0;
4036 
4037   // Round the size of the allocation up to the stack alignment size
4038   // by add SA-1 to the size. This doesn't overflow because we're computing
4039   // an address inside an alloca.
4040   SDNodeFlags Flags;
4041   Flags.setNoUnsignedWrap(true);
4042   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4043                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
4044 
4045   // Mask out the low bits for alignment purposes.
4046   AllocSize =
4047       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4048                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4049 
4050   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4051   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4052   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4053   setValue(&I, DSA);
4054   DAG.setRoot(DSA.getValue(1));
4055 
4056   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4057 }
4058 
4059 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4060   if (I.isAtomic())
4061     return visitAtomicLoad(I);
4062 
4063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4064   const Value *SV = I.getOperand(0);
4065   if (TLI.supportSwiftError()) {
4066     // Swifterror values can come from either a function parameter with
4067     // swifterror attribute or an alloca with swifterror attribute.
4068     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4069       if (Arg->hasSwiftErrorAttr())
4070         return visitLoadFromSwiftError(I);
4071     }
4072 
4073     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4074       if (Alloca->isSwiftError())
4075         return visitLoadFromSwiftError(I);
4076     }
4077   }
4078 
4079   SDValue Ptr = getValue(SV);
4080 
4081   Type *Ty = I.getType();
4082   unsigned Alignment = I.getAlignment();
4083 
4084   AAMDNodes AAInfo;
4085   I.getAAMetadata(AAInfo);
4086   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4087 
4088   SmallVector<EVT, 4> ValueVTs, MemVTs;
4089   SmallVector<uint64_t, 4> Offsets;
4090   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4091   unsigned NumValues = ValueVTs.size();
4092   if (NumValues == 0)
4093     return;
4094 
4095   bool isVolatile = I.isVolatile();
4096 
4097   SDValue Root;
4098   bool ConstantMemory = false;
4099   if (isVolatile)
4100     // Serialize volatile loads with other side effects.
4101     Root = getRoot();
4102   else if (NumValues > MaxParallelChains)
4103     Root = getMemoryRoot();
4104   else if (AA &&
4105            AA->pointsToConstantMemory(MemoryLocation(
4106                SV,
4107                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4108                AAInfo))) {
4109     // Do not serialize (non-volatile) loads of constant memory with anything.
4110     Root = DAG.getEntryNode();
4111     ConstantMemory = true;
4112   } else {
4113     // Do not serialize non-volatile loads against each other.
4114     Root = DAG.getRoot();
4115   }
4116 
4117   SDLoc dl = getCurSDLoc();
4118 
4119   if (isVolatile)
4120     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4121 
4122   // An aggregate load cannot wrap around the address space, so offsets to its
4123   // parts don't wrap either.
4124   SDNodeFlags Flags;
4125   Flags.setNoUnsignedWrap(true);
4126 
4127   SmallVector<SDValue, 4> Values(NumValues);
4128   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4129   EVT PtrVT = Ptr.getValueType();
4130 
4131   MachineMemOperand::Flags MMOFlags
4132     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4133 
4134   unsigned ChainI = 0;
4135   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4136     // Serializing loads here may result in excessive register pressure, and
4137     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4138     // could recover a bit by hoisting nodes upward in the chain by recognizing
4139     // they are side-effect free or do not alias. The optimizer should really
4140     // avoid this case by converting large object/array copies to llvm.memcpy
4141     // (MaxParallelChains should always remain as failsafe).
4142     if (ChainI == MaxParallelChains) {
4143       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4144       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4145                                   makeArrayRef(Chains.data(), ChainI));
4146       Root = Chain;
4147       ChainI = 0;
4148     }
4149     SDValue A = DAG.getNode(ISD::ADD, dl,
4150                             PtrVT, Ptr,
4151                             DAG.getConstant(Offsets[i], dl, PtrVT),
4152                             Flags);
4153 
4154     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4155                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4156                             MMOFlags, AAInfo, Ranges);
4157     Chains[ChainI] = L.getValue(1);
4158 
4159     if (MemVTs[i] != ValueVTs[i])
4160       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4161 
4162     Values[i] = L;
4163   }
4164 
4165   if (!ConstantMemory) {
4166     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4167                                 makeArrayRef(Chains.data(), ChainI));
4168     if (isVolatile)
4169       DAG.setRoot(Chain);
4170     else
4171       PendingLoads.push_back(Chain);
4172   }
4173 
4174   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4175                            DAG.getVTList(ValueVTs), Values));
4176 }
4177 
4178 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4179   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4180          "call visitStoreToSwiftError when backend supports swifterror");
4181 
4182   SmallVector<EVT, 4> ValueVTs;
4183   SmallVector<uint64_t, 4> Offsets;
4184   const Value *SrcV = I.getOperand(0);
4185   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4186                   SrcV->getType(), ValueVTs, &Offsets);
4187   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4188          "expect a single EVT for swifterror");
4189 
4190   SDValue Src = getValue(SrcV);
4191   // Create a virtual register, then update the virtual register.
4192   Register VReg =
4193       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4194   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4195   // Chain can be getRoot or getControlRoot.
4196   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4197                                       SDValue(Src.getNode(), Src.getResNo()));
4198   DAG.setRoot(CopyNode);
4199 }
4200 
4201 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4202   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4203          "call visitLoadFromSwiftError when backend supports swifterror");
4204 
4205   assert(!I.isVolatile() &&
4206          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4207          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4208          "Support volatile, non temporal, invariant for load_from_swift_error");
4209 
4210   const Value *SV = I.getOperand(0);
4211   Type *Ty = I.getType();
4212   AAMDNodes AAInfo;
4213   I.getAAMetadata(AAInfo);
4214   assert(
4215       (!AA ||
4216        !AA->pointsToConstantMemory(MemoryLocation(
4217            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4218            AAInfo))) &&
4219       "load_from_swift_error should not be constant memory");
4220 
4221   SmallVector<EVT, 4> ValueVTs;
4222   SmallVector<uint64_t, 4> Offsets;
4223   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4224                   ValueVTs, &Offsets);
4225   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4226          "expect a single EVT for swifterror");
4227 
4228   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4229   SDValue L = DAG.getCopyFromReg(
4230       getRoot(), getCurSDLoc(),
4231       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4232 
4233   setValue(&I, L);
4234 }
4235 
4236 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4237   if (I.isAtomic())
4238     return visitAtomicStore(I);
4239 
4240   const Value *SrcV = I.getOperand(0);
4241   const Value *PtrV = I.getOperand(1);
4242 
4243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4244   if (TLI.supportSwiftError()) {
4245     // Swifterror values can come from either a function parameter with
4246     // swifterror attribute or an alloca with swifterror attribute.
4247     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4248       if (Arg->hasSwiftErrorAttr())
4249         return visitStoreToSwiftError(I);
4250     }
4251 
4252     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4253       if (Alloca->isSwiftError())
4254         return visitStoreToSwiftError(I);
4255     }
4256   }
4257 
4258   SmallVector<EVT, 4> ValueVTs, MemVTs;
4259   SmallVector<uint64_t, 4> Offsets;
4260   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4261                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4262   unsigned NumValues = ValueVTs.size();
4263   if (NumValues == 0)
4264     return;
4265 
4266   // Get the lowered operands. Note that we do this after
4267   // checking if NumResults is zero, because with zero results
4268   // the operands won't have values in the map.
4269   SDValue Src = getValue(SrcV);
4270   SDValue Ptr = getValue(PtrV);
4271 
4272   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4273   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4274   SDLoc dl = getCurSDLoc();
4275   unsigned Alignment = I.getAlignment();
4276   AAMDNodes AAInfo;
4277   I.getAAMetadata(AAInfo);
4278 
4279   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4280 
4281   // An aggregate load cannot wrap around the address space, so offsets to its
4282   // parts don't wrap either.
4283   SDNodeFlags Flags;
4284   Flags.setNoUnsignedWrap(true);
4285 
4286   unsigned ChainI = 0;
4287   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4288     // See visitLoad comments.
4289     if (ChainI == MaxParallelChains) {
4290       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4291                                   makeArrayRef(Chains.data(), ChainI));
4292       Root = Chain;
4293       ChainI = 0;
4294     }
4295     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4296     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4297     if (MemVTs[i] != ValueVTs[i])
4298       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4299     SDValue St =
4300         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4301                      Alignment, MMOFlags, AAInfo);
4302     Chains[ChainI] = St;
4303   }
4304 
4305   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4306                                   makeArrayRef(Chains.data(), ChainI));
4307   DAG.setRoot(StoreNode);
4308 }
4309 
4310 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4311                                            bool IsCompressing) {
4312   SDLoc sdl = getCurSDLoc();
4313 
4314   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4315                            unsigned& Alignment) {
4316     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4317     Src0 = I.getArgOperand(0);
4318     Ptr = I.getArgOperand(1);
4319     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4320     Mask = I.getArgOperand(3);
4321   };
4322   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4323                            unsigned& Alignment) {
4324     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4325     Src0 = I.getArgOperand(0);
4326     Ptr = I.getArgOperand(1);
4327     Mask = I.getArgOperand(2);
4328     Alignment = 0;
4329   };
4330 
4331   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4332   unsigned Alignment;
4333   if (IsCompressing)
4334     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4335   else
4336     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4337 
4338   SDValue Ptr = getValue(PtrOperand);
4339   SDValue Src0 = getValue(Src0Operand);
4340   SDValue Mask = getValue(MaskOperand);
4341   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4342 
4343   EVT VT = Src0.getValueType();
4344   if (!Alignment)
4345     Alignment = DAG.getEVTAlignment(VT);
4346 
4347   AAMDNodes AAInfo;
4348   I.getAAMetadata(AAInfo);
4349 
4350   MachineMemOperand *MMO =
4351     DAG.getMachineFunction().
4352     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4353                           MachineMemOperand::MOStore,
4354                           // TODO: Make MachineMemOperands aware of scalable
4355                           // vectors.
4356                           VT.getStoreSize().getKnownMinSize(),
4357                           Alignment, AAInfo);
4358   SDValue StoreNode =
4359       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4360                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4361   DAG.setRoot(StoreNode);
4362   setValue(&I, StoreNode);
4363 }
4364 
4365 // Get a uniform base for the Gather/Scatter intrinsic.
4366 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4367 // We try to represent it as a base pointer + vector of indices.
4368 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4369 // The first operand of the GEP may be a single pointer or a vector of pointers
4370 // Example:
4371 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4372 //  or
4373 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4374 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4375 //
4376 // When the first GEP operand is a single pointer - it is the uniform base we
4377 // are looking for. If first operand of the GEP is a splat vector - we
4378 // extract the splat value and use it as a uniform base.
4379 // In all other cases the function returns 'false'.
4380 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4381                            ISD::MemIndexType &IndexType, SDValue &Scale,
4382                            SelectionDAGBuilder *SDB) {
4383   SelectionDAG& DAG = SDB->DAG;
4384   LLVMContext &Context = *DAG.getContext();
4385 
4386   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4387   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4388   if (!GEP)
4389     return false;
4390 
4391   const Value *BasePtr = GEP->getPointerOperand();
4392   if (BasePtr->getType()->isVectorTy()) {
4393     BasePtr = getSplatValue(BasePtr);
4394     if (!BasePtr)
4395       return false;
4396   }
4397 
4398   unsigned FinalIndex = GEP->getNumOperands() - 1;
4399   Value *IndexVal = GEP->getOperand(FinalIndex);
4400   gep_type_iterator GTI = gep_type_begin(*GEP);
4401 
4402   // Ensure all the other indices are 0.
4403   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4404     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4405     if (!C)
4406       return false;
4407     if (isa<VectorType>(C->getType()))
4408       C = C->getSplatValue();
4409     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4410     if (!CI || !CI->isZero())
4411       return false;
4412   }
4413 
4414   // The operands of the GEP may be defined in another basic block.
4415   // In this case we'll not find nodes for the operands.
4416   if (!SDB->findValue(BasePtr))
4417     return false;
4418   Constant *C = dyn_cast<Constant>(IndexVal);
4419   if (!C && !SDB->findValue(IndexVal))
4420     return false;
4421 
4422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4423   const DataLayout &DL = DAG.getDataLayout();
4424   StructType *STy = GTI.getStructTypeOrNull();
4425 
4426   if (STy) {
4427     const StructLayout *SL = DL.getStructLayout(STy);
4428     unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue();
4429     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4430     Index = DAG.getConstant(SL->getElementOffset(Field),
4431                             SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4432   } else {
4433     Scale = DAG.getTargetConstant(
4434                 DL.getTypeAllocSize(GEP->getResultElementType()),
4435                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4436     Index = SDB->getValue(IndexVal);
4437   }
4438   Base = SDB->getValue(BasePtr);
4439   IndexType = ISD::SIGNED_SCALED;
4440 
4441   if (STy || !Index.getValueType().isVector()) {
4442     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4443     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4444     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4445   }
4446   return true;
4447 }
4448 
4449 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4450   SDLoc sdl = getCurSDLoc();
4451 
4452   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4453   const Value *Ptr = I.getArgOperand(1);
4454   SDValue Src0 = getValue(I.getArgOperand(0));
4455   SDValue Mask = getValue(I.getArgOperand(3));
4456   EVT VT = Src0.getValueType();
4457   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4458   if (!Alignment)
4459     Alignment = DAG.getEVTAlignment(VT);
4460   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4461 
4462   AAMDNodes AAInfo;
4463   I.getAAMetadata(AAInfo);
4464 
4465   SDValue Base;
4466   SDValue Index;
4467   ISD::MemIndexType IndexType;
4468   SDValue Scale;
4469   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4470 
4471   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4472   MachineMemOperand *MMO = DAG.getMachineFunction().
4473     getMachineMemOperand(MachinePointerInfo(AS),
4474                          MachineMemOperand::MOStore,
4475                          // TODO: Make MachineMemOperands aware of scalable
4476                          // vectors.
4477                          MemoryLocation::UnknownSize,
4478                          Alignment, AAInfo);
4479   if (!UniformBase) {
4480     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4481     Index = getValue(Ptr);
4482     IndexType = ISD::SIGNED_SCALED;
4483     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4484   }
4485   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4486   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4487                                          Ops, MMO, IndexType);
4488   DAG.setRoot(Scatter);
4489   setValue(&I, Scatter);
4490 }
4491 
4492 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4493   SDLoc sdl = getCurSDLoc();
4494 
4495   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4496                            unsigned& Alignment) {
4497     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4498     Ptr = I.getArgOperand(0);
4499     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4500     Mask = I.getArgOperand(2);
4501     Src0 = I.getArgOperand(3);
4502   };
4503   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4504                            unsigned& Alignment) {
4505     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4506     Ptr = I.getArgOperand(0);
4507     Alignment = 0;
4508     Mask = I.getArgOperand(1);
4509     Src0 = I.getArgOperand(2);
4510   };
4511 
4512   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4513   unsigned Alignment;
4514   if (IsExpanding)
4515     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4516   else
4517     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4518 
4519   SDValue Ptr = getValue(PtrOperand);
4520   SDValue Src0 = getValue(Src0Operand);
4521   SDValue Mask = getValue(MaskOperand);
4522   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4523 
4524   EVT VT = Src0.getValueType();
4525   if (!Alignment)
4526     Alignment = DAG.getEVTAlignment(VT);
4527 
4528   AAMDNodes AAInfo;
4529   I.getAAMetadata(AAInfo);
4530   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4531 
4532   // Do not serialize masked loads of constant memory with anything.
4533   MemoryLocation ML;
4534   if (VT.isScalableVector())
4535     ML = MemoryLocation(PtrOperand);
4536   else
4537     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4538                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4539                            AAInfo);
4540   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4541 
4542   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4543 
4544   MachineMemOperand *MMO =
4545     DAG.getMachineFunction().
4546     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4547                           MachineMemOperand::MOLoad,
4548                           // TODO: Make MachineMemOperands aware of scalable
4549                           // vectors.
4550                           VT.getStoreSize().getKnownMinSize(),
4551                           Alignment, AAInfo, Ranges);
4552 
4553   SDValue Load =
4554       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4555                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4556   if (AddToChain)
4557     PendingLoads.push_back(Load.getValue(1));
4558   setValue(&I, Load);
4559 }
4560 
4561 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4562   SDLoc sdl = getCurSDLoc();
4563 
4564   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4565   const Value *Ptr = I.getArgOperand(0);
4566   SDValue Src0 = getValue(I.getArgOperand(3));
4567   SDValue Mask = getValue(I.getArgOperand(2));
4568 
4569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4570   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4571   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4572   if (!Alignment)
4573     Alignment = DAG.getEVTAlignment(VT);
4574 
4575   AAMDNodes AAInfo;
4576   I.getAAMetadata(AAInfo);
4577   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4578 
4579   SDValue Root = DAG.getRoot();
4580   SDValue Base;
4581   SDValue Index;
4582   ISD::MemIndexType IndexType;
4583   SDValue Scale;
4584   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4585   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4586   MachineMemOperand *MMO =
4587     DAG.getMachineFunction().
4588     getMachineMemOperand(MachinePointerInfo(AS),
4589                          MachineMemOperand::MOLoad,
4590                          // TODO: Make MachineMemOperands aware of scalable
4591                          // vectors.
4592                          MemoryLocation::UnknownSize,
4593                          Alignment, AAInfo, Ranges);
4594 
4595   if (!UniformBase) {
4596     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4597     Index = getValue(Ptr);
4598     IndexType = ISD::SIGNED_SCALED;
4599     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4600   }
4601   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4602   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4603                                        Ops, MMO, IndexType);
4604 
4605   PendingLoads.push_back(Gather.getValue(1));
4606   setValue(&I, Gather);
4607 }
4608 
4609 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4610   SDLoc dl = getCurSDLoc();
4611   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4612   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4613   SyncScope::ID SSID = I.getSyncScopeID();
4614 
4615   SDValue InChain = getRoot();
4616 
4617   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4618   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4619 
4620   auto Alignment = DAG.getEVTAlignment(MemVT);
4621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4622   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4623 
4624   MachineFunction &MF = DAG.getMachineFunction();
4625   MachineMemOperand *MMO =
4626     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4627                             Flags, MemVT.getStoreSize(), Alignment,
4628                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4629                             FailureOrdering);
4630 
4631   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4632                                    dl, MemVT, VTs, InChain,
4633                                    getValue(I.getPointerOperand()),
4634                                    getValue(I.getCompareOperand()),
4635                                    getValue(I.getNewValOperand()), MMO);
4636 
4637   SDValue OutChain = L.getValue(2);
4638 
4639   setValue(&I, L);
4640   DAG.setRoot(OutChain);
4641 }
4642 
4643 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4644   SDLoc dl = getCurSDLoc();
4645   ISD::NodeType NT;
4646   switch (I.getOperation()) {
4647   default: llvm_unreachable("Unknown atomicrmw operation");
4648   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4649   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4650   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4651   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4652   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4653   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4654   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4655   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4656   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4657   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4658   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4659   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4660   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4661   }
4662   AtomicOrdering Ordering = I.getOrdering();
4663   SyncScope::ID SSID = I.getSyncScopeID();
4664 
4665   SDValue InChain = getRoot();
4666 
4667   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4668   auto Alignment = DAG.getEVTAlignment(MemVT);
4669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4670   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4671 
4672   MachineFunction &MF = DAG.getMachineFunction();
4673   MachineMemOperand *MMO =
4674     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4675                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4676                             nullptr, SSID, Ordering);
4677 
4678   SDValue L =
4679     DAG.getAtomic(NT, dl, MemVT, InChain,
4680                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4681                   MMO);
4682 
4683   SDValue OutChain = L.getValue(1);
4684 
4685   setValue(&I, L);
4686   DAG.setRoot(OutChain);
4687 }
4688 
4689 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4690   SDLoc dl = getCurSDLoc();
4691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4692   SDValue Ops[3];
4693   Ops[0] = getRoot();
4694   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4695                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4696   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4697                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4698   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4699 }
4700 
4701 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4702   SDLoc dl = getCurSDLoc();
4703   AtomicOrdering Order = I.getOrdering();
4704   SyncScope::ID SSID = I.getSyncScopeID();
4705 
4706   SDValue InChain = getRoot();
4707 
4708   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4709   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4710   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4711 
4712   if (!TLI.supportsUnalignedAtomics() &&
4713       I.getAlignment() < MemVT.getSizeInBits() / 8)
4714     report_fatal_error("Cannot generate unaligned atomic load");
4715 
4716   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4717 
4718   MachineMemOperand *MMO =
4719       DAG.getMachineFunction().
4720       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4721                            Flags, MemVT.getStoreSize(),
4722                            I.getAlignment() ? I.getAlignment() :
4723                                               DAG.getEVTAlignment(MemVT),
4724                            AAMDNodes(), nullptr, SSID, Order);
4725 
4726   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4727 
4728   SDValue Ptr = getValue(I.getPointerOperand());
4729 
4730   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4731     // TODO: Once this is better exercised by tests, it should be merged with
4732     // the normal path for loads to prevent future divergence.
4733     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4734     if (MemVT != VT)
4735       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4736 
4737     setValue(&I, L);
4738     SDValue OutChain = L.getValue(1);
4739     if (!I.isUnordered())
4740       DAG.setRoot(OutChain);
4741     else
4742       PendingLoads.push_back(OutChain);
4743     return;
4744   }
4745 
4746   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4747                             Ptr, MMO);
4748 
4749   SDValue OutChain = L.getValue(1);
4750   if (MemVT != VT)
4751     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4752 
4753   setValue(&I, L);
4754   DAG.setRoot(OutChain);
4755 }
4756 
4757 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4758   SDLoc dl = getCurSDLoc();
4759 
4760   AtomicOrdering Ordering = I.getOrdering();
4761   SyncScope::ID SSID = I.getSyncScopeID();
4762 
4763   SDValue InChain = getRoot();
4764 
4765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4766   EVT MemVT =
4767       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4768 
4769   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4770     report_fatal_error("Cannot generate unaligned atomic store");
4771 
4772   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4773 
4774   MachineFunction &MF = DAG.getMachineFunction();
4775   MachineMemOperand *MMO =
4776     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4777                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4778                             nullptr, SSID, Ordering);
4779 
4780   SDValue Val = getValue(I.getValueOperand());
4781   if (Val.getValueType() != MemVT)
4782     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4783   SDValue Ptr = getValue(I.getPointerOperand());
4784 
4785   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4786     // TODO: Once this is better exercised by tests, it should be merged with
4787     // the normal path for stores to prevent future divergence.
4788     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4789     DAG.setRoot(S);
4790     return;
4791   }
4792   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4793                                    Ptr, Val, MMO);
4794 
4795 
4796   DAG.setRoot(OutChain);
4797 }
4798 
4799 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4800 /// node.
4801 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4802                                                unsigned Intrinsic) {
4803   // Ignore the callsite's attributes. A specific call site may be marked with
4804   // readnone, but the lowering code will expect the chain based on the
4805   // definition.
4806   const Function *F = I.getCalledFunction();
4807   bool HasChain = !F->doesNotAccessMemory();
4808   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4809 
4810   // Build the operand list.
4811   SmallVector<SDValue, 8> Ops;
4812   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4813     if (OnlyLoad) {
4814       // We don't need to serialize loads against other loads.
4815       Ops.push_back(DAG.getRoot());
4816     } else {
4817       Ops.push_back(getRoot());
4818     }
4819   }
4820 
4821   // Info is set by getTgtMemInstrinsic
4822   TargetLowering::IntrinsicInfo Info;
4823   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4824   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4825                                                DAG.getMachineFunction(),
4826                                                Intrinsic);
4827 
4828   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4829   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4830       Info.opc == ISD::INTRINSIC_W_CHAIN)
4831     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4832                                         TLI.getPointerTy(DAG.getDataLayout())));
4833 
4834   // Add all operands of the call to the operand list.
4835   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4836     const Value *Arg = I.getArgOperand(i);
4837     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4838       Ops.push_back(getValue(Arg));
4839       continue;
4840     }
4841 
4842     // Use TargetConstant instead of a regular constant for immarg.
4843     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4844     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4845       assert(CI->getBitWidth() <= 64 &&
4846              "large intrinsic immediates not handled");
4847       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4848     } else {
4849       Ops.push_back(
4850           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4851     }
4852   }
4853 
4854   SmallVector<EVT, 4> ValueVTs;
4855   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4856 
4857   if (HasChain)
4858     ValueVTs.push_back(MVT::Other);
4859 
4860   SDVTList VTs = DAG.getVTList(ValueVTs);
4861 
4862   // Create the node.
4863   SDValue Result;
4864   if (IsTgtIntrinsic) {
4865     // This is target intrinsic that touches memory
4866     AAMDNodes AAInfo;
4867     I.getAAMetadata(AAInfo);
4868     Result = DAG.getMemIntrinsicNode(
4869         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4870         MachinePointerInfo(Info.ptrVal, Info.offset),
4871         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4872   } else if (!HasChain) {
4873     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4874   } else if (!I.getType()->isVoidTy()) {
4875     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4876   } else {
4877     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4878   }
4879 
4880   if (HasChain) {
4881     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4882     if (OnlyLoad)
4883       PendingLoads.push_back(Chain);
4884     else
4885       DAG.setRoot(Chain);
4886   }
4887 
4888   if (!I.getType()->isVoidTy()) {
4889     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4890       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4891       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4892     } else
4893       Result = lowerRangeToAssertZExt(DAG, I, Result);
4894 
4895     setValue(&I, Result);
4896   }
4897 }
4898 
4899 /// GetSignificand - Get the significand and build it into a floating-point
4900 /// number with exponent of 1:
4901 ///
4902 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4903 ///
4904 /// where Op is the hexadecimal representation of floating point value.
4905 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4906   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4907                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4908   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4909                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4910   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4911 }
4912 
4913 /// GetExponent - Get the exponent:
4914 ///
4915 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4916 ///
4917 /// where Op is the hexadecimal representation of floating point value.
4918 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4919                            const TargetLowering &TLI, const SDLoc &dl) {
4920   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4921                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4922   SDValue t1 = DAG.getNode(
4923       ISD::SRL, dl, MVT::i32, t0,
4924       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4925   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4926                            DAG.getConstant(127, dl, MVT::i32));
4927   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4928 }
4929 
4930 /// getF32Constant - Get 32-bit floating point constant.
4931 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4932                               const SDLoc &dl) {
4933   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4934                            MVT::f32);
4935 }
4936 
4937 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4938                                        SelectionDAG &DAG) {
4939   // TODO: What fast-math-flags should be set on the floating-point nodes?
4940 
4941   //   IntegerPartOfX = ((int32_t)(t0);
4942   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4943 
4944   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4945   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4946   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4947 
4948   //   IntegerPartOfX <<= 23;
4949   IntegerPartOfX = DAG.getNode(
4950       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4951       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4952                                   DAG.getDataLayout())));
4953 
4954   SDValue TwoToFractionalPartOfX;
4955   if (LimitFloatPrecision <= 6) {
4956     // For floating-point precision of 6:
4957     //
4958     //   TwoToFractionalPartOfX =
4959     //     0.997535578f +
4960     //       (0.735607626f + 0.252464424f * x) * x;
4961     //
4962     // error 0.0144103317, which is 6 bits
4963     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4964                              getF32Constant(DAG, 0x3e814304, dl));
4965     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4966                              getF32Constant(DAG, 0x3f3c50c8, dl));
4967     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4968     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4969                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4970   } else if (LimitFloatPrecision <= 12) {
4971     // For floating-point precision of 12:
4972     //
4973     //   TwoToFractionalPartOfX =
4974     //     0.999892986f +
4975     //       (0.696457318f +
4976     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4977     //
4978     // error 0.000107046256, which is 13 to 14 bits
4979     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4980                              getF32Constant(DAG, 0x3da235e3, dl));
4981     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4982                              getF32Constant(DAG, 0x3e65b8f3, dl));
4983     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4984     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4985                              getF32Constant(DAG, 0x3f324b07, dl));
4986     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4987     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4988                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4989   } else { // LimitFloatPrecision <= 18
4990     // For floating-point precision of 18:
4991     //
4992     //   TwoToFractionalPartOfX =
4993     //     0.999999982f +
4994     //       (0.693148872f +
4995     //         (0.240227044f +
4996     //           (0.554906021e-1f +
4997     //             (0.961591928e-2f +
4998     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4999     // error 2.47208000*10^(-7), which is better than 18 bits
5000     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5001                              getF32Constant(DAG, 0x3924b03e, dl));
5002     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5003                              getF32Constant(DAG, 0x3ab24b87, dl));
5004     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5005     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5006                              getF32Constant(DAG, 0x3c1d8c17, dl));
5007     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5008     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5009                              getF32Constant(DAG, 0x3d634a1d, dl));
5010     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5011     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5012                              getF32Constant(DAG, 0x3e75fe14, dl));
5013     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5014     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5015                               getF32Constant(DAG, 0x3f317234, dl));
5016     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5017     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5018                                          getF32Constant(DAG, 0x3f800000, dl));
5019   }
5020 
5021   // Add the exponent into the result in integer domain.
5022   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5023   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5024                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5025 }
5026 
5027 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5028 /// limited-precision mode.
5029 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5030                          const TargetLowering &TLI) {
5031   if (Op.getValueType() == MVT::f32 &&
5032       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5033 
5034     // Put the exponent in the right bit position for later addition to the
5035     // final result:
5036     //
5037     // t0 = Op * log2(e)
5038 
5039     // TODO: What fast-math-flags should be set here?
5040     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5041                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5042     return getLimitedPrecisionExp2(t0, dl, DAG);
5043   }
5044 
5045   // No special expansion.
5046   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5047 }
5048 
5049 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5050 /// limited-precision mode.
5051 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5052                          const TargetLowering &TLI) {
5053   // TODO: What fast-math-flags should be set on the floating-point nodes?
5054 
5055   if (Op.getValueType() == MVT::f32 &&
5056       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5057     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5058 
5059     // Scale the exponent by log(2).
5060     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5061     SDValue LogOfExponent =
5062         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5063                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5064 
5065     // Get the significand and build it into a floating-point number with
5066     // exponent of 1.
5067     SDValue X = GetSignificand(DAG, Op1, dl);
5068 
5069     SDValue LogOfMantissa;
5070     if (LimitFloatPrecision <= 6) {
5071       // For floating-point precision of 6:
5072       //
5073       //   LogofMantissa =
5074       //     -1.1609546f +
5075       //       (1.4034025f - 0.23903021f * x) * x;
5076       //
5077       // error 0.0034276066, which is better than 8 bits
5078       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5079                                getF32Constant(DAG, 0xbe74c456, dl));
5080       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5081                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5082       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5083       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5084                                   getF32Constant(DAG, 0x3f949a29, dl));
5085     } else if (LimitFloatPrecision <= 12) {
5086       // For floating-point precision of 12:
5087       //
5088       //   LogOfMantissa =
5089       //     -1.7417939f +
5090       //       (2.8212026f +
5091       //         (-1.4699568f +
5092       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5093       //
5094       // error 0.000061011436, which is 14 bits
5095       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5096                                getF32Constant(DAG, 0xbd67b6d6, dl));
5097       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5098                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5099       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5100       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5101                                getF32Constant(DAG, 0x3fbc278b, dl));
5102       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5103       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5104                                getF32Constant(DAG, 0x40348e95, dl));
5105       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5106       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5107                                   getF32Constant(DAG, 0x3fdef31a, dl));
5108     } else { // LimitFloatPrecision <= 18
5109       // For floating-point precision of 18:
5110       //
5111       //   LogOfMantissa =
5112       //     -2.1072184f +
5113       //       (4.2372794f +
5114       //         (-3.7029485f +
5115       //           (2.2781945f +
5116       //             (-0.87823314f +
5117       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5118       //
5119       // error 0.0000023660568, which is better than 18 bits
5120       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5121                                getF32Constant(DAG, 0xbc91e5ac, dl));
5122       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5123                                getF32Constant(DAG, 0x3e4350aa, dl));
5124       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5125       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5126                                getF32Constant(DAG, 0x3f60d3e3, dl));
5127       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5128       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5129                                getF32Constant(DAG, 0x4011cdf0, dl));
5130       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5131       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5132                                getF32Constant(DAG, 0x406cfd1c, dl));
5133       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5134       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5135                                getF32Constant(DAG, 0x408797cb, dl));
5136       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5137       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5138                                   getF32Constant(DAG, 0x4006dcab, dl));
5139     }
5140 
5141     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5142   }
5143 
5144   // No special expansion.
5145   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5146 }
5147 
5148 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5149 /// limited-precision mode.
5150 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5151                           const TargetLowering &TLI) {
5152   // TODO: What fast-math-flags should be set on the floating-point nodes?
5153 
5154   if (Op.getValueType() == MVT::f32 &&
5155       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5156     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5157 
5158     // Get the exponent.
5159     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5160 
5161     // Get the significand and build it into a floating-point number with
5162     // exponent of 1.
5163     SDValue X = GetSignificand(DAG, Op1, dl);
5164 
5165     // Different possible minimax approximations of significand in
5166     // floating-point for various degrees of accuracy over [1,2].
5167     SDValue Log2ofMantissa;
5168     if (LimitFloatPrecision <= 6) {
5169       // For floating-point precision of 6:
5170       //
5171       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5172       //
5173       // error 0.0049451742, which is more than 7 bits
5174       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5175                                getF32Constant(DAG, 0xbeb08fe0, dl));
5176       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5177                                getF32Constant(DAG, 0x40019463, dl));
5178       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5179       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5180                                    getF32Constant(DAG, 0x3fd6633d, dl));
5181     } else if (LimitFloatPrecision <= 12) {
5182       // For floating-point precision of 12:
5183       //
5184       //   Log2ofMantissa =
5185       //     -2.51285454f +
5186       //       (4.07009056f +
5187       //         (-2.12067489f +
5188       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5189       //
5190       // error 0.0000876136000, which is better than 13 bits
5191       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5192                                getF32Constant(DAG, 0xbda7262e, dl));
5193       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5194                                getF32Constant(DAG, 0x3f25280b, dl));
5195       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5196       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5197                                getF32Constant(DAG, 0x4007b923, dl));
5198       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5199       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5200                                getF32Constant(DAG, 0x40823e2f, dl));
5201       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5202       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5203                                    getF32Constant(DAG, 0x4020d29c, dl));
5204     } else { // LimitFloatPrecision <= 18
5205       // For floating-point precision of 18:
5206       //
5207       //   Log2ofMantissa =
5208       //     -3.0400495f +
5209       //       (6.1129976f +
5210       //         (-5.3420409f +
5211       //           (3.2865683f +
5212       //             (-1.2669343f +
5213       //               (0.27515199f -
5214       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5215       //
5216       // error 0.0000018516, which is better than 18 bits
5217       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5218                                getF32Constant(DAG, 0xbcd2769e, dl));
5219       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5220                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5221       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5222       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5223                                getF32Constant(DAG, 0x3fa22ae7, dl));
5224       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5225       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5226                                getF32Constant(DAG, 0x40525723, dl));
5227       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5228       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5229                                getF32Constant(DAG, 0x40aaf200, dl));
5230       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5231       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5232                                getF32Constant(DAG, 0x40c39dad, dl));
5233       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5234       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5235                                    getF32Constant(DAG, 0x4042902c, dl));
5236     }
5237 
5238     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5239   }
5240 
5241   // No special expansion.
5242   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5243 }
5244 
5245 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5246 /// limited-precision mode.
5247 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5248                            const TargetLowering &TLI) {
5249   // TODO: What fast-math-flags should be set on the floating-point nodes?
5250 
5251   if (Op.getValueType() == MVT::f32 &&
5252       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5253     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5254 
5255     // Scale the exponent by log10(2) [0.30102999f].
5256     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5257     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5258                                         getF32Constant(DAG, 0x3e9a209a, dl));
5259 
5260     // Get the significand and build it into a floating-point number with
5261     // exponent of 1.
5262     SDValue X = GetSignificand(DAG, Op1, dl);
5263 
5264     SDValue Log10ofMantissa;
5265     if (LimitFloatPrecision <= 6) {
5266       // For floating-point precision of 6:
5267       //
5268       //   Log10ofMantissa =
5269       //     -0.50419619f +
5270       //       (0.60948995f - 0.10380950f * x) * x;
5271       //
5272       // error 0.0014886165, which is 6 bits
5273       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5274                                getF32Constant(DAG, 0xbdd49a13, dl));
5275       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5276                                getF32Constant(DAG, 0x3f1c0789, dl));
5277       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5278       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5279                                     getF32Constant(DAG, 0x3f011300, dl));
5280     } else if (LimitFloatPrecision <= 12) {
5281       // For floating-point precision of 12:
5282       //
5283       //   Log10ofMantissa =
5284       //     -0.64831180f +
5285       //       (0.91751397f +
5286       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5287       //
5288       // error 0.00019228036, which is better than 12 bits
5289       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5290                                getF32Constant(DAG, 0x3d431f31, dl));
5291       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5292                                getF32Constant(DAG, 0x3ea21fb2, dl));
5293       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5294       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5295                                getF32Constant(DAG, 0x3f6ae232, dl));
5296       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5297       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5298                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5299     } else { // LimitFloatPrecision <= 18
5300       // For floating-point precision of 18:
5301       //
5302       //   Log10ofMantissa =
5303       //     -0.84299375f +
5304       //       (1.5327582f +
5305       //         (-1.0688956f +
5306       //           (0.49102474f +
5307       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5308       //
5309       // error 0.0000037995730, which is better than 18 bits
5310       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5311                                getF32Constant(DAG, 0x3c5d51ce, dl));
5312       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5313                                getF32Constant(DAG, 0x3e00685a, dl));
5314       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5315       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5316                                getF32Constant(DAG, 0x3efb6798, dl));
5317       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5318       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5319                                getF32Constant(DAG, 0x3f88d192, dl));
5320       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5321       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5322                                getF32Constant(DAG, 0x3fc4316c, dl));
5323       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5324       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5325                                     getF32Constant(DAG, 0x3f57ce70, dl));
5326     }
5327 
5328     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5329   }
5330 
5331   // No special expansion.
5332   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5333 }
5334 
5335 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5336 /// limited-precision mode.
5337 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5338                           const TargetLowering &TLI) {
5339   if (Op.getValueType() == MVT::f32 &&
5340       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5341     return getLimitedPrecisionExp2(Op, dl, DAG);
5342 
5343   // No special expansion.
5344   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5345 }
5346 
5347 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5348 /// limited-precision mode with x == 10.0f.
5349 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5350                          SelectionDAG &DAG, const TargetLowering &TLI) {
5351   bool IsExp10 = false;
5352   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5353       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5354     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5355       APFloat Ten(10.0f);
5356       IsExp10 = LHSC->isExactlyValue(Ten);
5357     }
5358   }
5359 
5360   // TODO: What fast-math-flags should be set on the FMUL node?
5361   if (IsExp10) {
5362     // Put the exponent in the right bit position for later addition to the
5363     // final result:
5364     //
5365     //   #define LOG2OF10 3.3219281f
5366     //   t0 = Op * LOG2OF10;
5367     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5368                              getF32Constant(DAG, 0x40549a78, dl));
5369     return getLimitedPrecisionExp2(t0, dl, DAG);
5370   }
5371 
5372   // No special expansion.
5373   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5374 }
5375 
5376 /// ExpandPowI - Expand a llvm.powi intrinsic.
5377 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5378                           SelectionDAG &DAG) {
5379   // If RHS is a constant, we can expand this out to a multiplication tree,
5380   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5381   // optimizing for size, we only want to do this if the expansion would produce
5382   // a small number of multiplies, otherwise we do the full expansion.
5383   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5384     // Get the exponent as a positive value.
5385     unsigned Val = RHSC->getSExtValue();
5386     if ((int)Val < 0) Val = -Val;
5387 
5388     // powi(x, 0) -> 1.0
5389     if (Val == 0)
5390       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5391 
5392     bool OptForSize = DAG.shouldOptForSize();
5393     if (!OptForSize ||
5394         // If optimizing for size, don't insert too many multiplies.
5395         // This inserts up to 5 multiplies.
5396         countPopulation(Val) + Log2_32(Val) < 7) {
5397       // We use the simple binary decomposition method to generate the multiply
5398       // sequence.  There are more optimal ways to do this (for example,
5399       // powi(x,15) generates one more multiply than it should), but this has
5400       // the benefit of being both really simple and much better than a libcall.
5401       SDValue Res;  // Logically starts equal to 1.0
5402       SDValue CurSquare = LHS;
5403       // TODO: Intrinsics should have fast-math-flags that propagate to these
5404       // nodes.
5405       while (Val) {
5406         if (Val & 1) {
5407           if (Res.getNode())
5408             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5409           else
5410             Res = CurSquare;  // 1.0*CurSquare.
5411         }
5412 
5413         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5414                                 CurSquare, CurSquare);
5415         Val >>= 1;
5416       }
5417 
5418       // If the original was negative, invert the result, producing 1/(x*x*x).
5419       if (RHSC->getSExtValue() < 0)
5420         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5421                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5422       return Res;
5423     }
5424   }
5425 
5426   // Otherwise, expand to a libcall.
5427   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5428 }
5429 
5430 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5431                             SDValue LHS, SDValue RHS, SDValue Scale,
5432                             SelectionDAG &DAG, const TargetLowering &TLI) {
5433   EVT VT = LHS.getValueType();
5434   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5435   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5436   LLVMContext &Ctx = *DAG.getContext();
5437 
5438   // If the type is legal but the operation isn't, this node might survive all
5439   // the way to operation legalization. If we end up there and we do not have
5440   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5441   // node.
5442 
5443   // Coax the legalizer into expanding the node during type legalization instead
5444   // by bumping the size by one bit. This will force it to Promote, enabling the
5445   // early expansion and avoiding the need to expand later.
5446 
5447   // We don't have to do this if Scale is 0; that can always be expanded, unless
5448   // it's a saturating signed operation. Those can experience true integer
5449   // division overflow, a case which we must avoid.
5450 
5451   // FIXME: We wouldn't have to do this (or any of the early
5452   // expansion/promotion) if it was possible to expand a libcall of an
5453   // illegal type during operation legalization. But it's not, so things
5454   // get a bit hacky.
5455   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5456   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5457       (TLI.isTypeLegal(VT) ||
5458        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5459     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5460         Opcode, VT, ScaleInt);
5461     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5462       EVT PromVT;
5463       if (VT.isScalarInteger())
5464         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5465       else if (VT.isVector()) {
5466         PromVT = VT.getVectorElementType();
5467         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5468         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5469       } else
5470         llvm_unreachable("Wrong VT for DIVFIX?");
5471       if (Signed) {
5472         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5473         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5474       } else {
5475         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5476         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5477       }
5478       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5479       // For saturating operations, we need to shift up the LHS to get the
5480       // proper saturation width, and then shift down again afterwards.
5481       if (Saturating)
5482         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5483                           DAG.getConstant(1, DL, ShiftTy));
5484       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5485       if (Saturating)
5486         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5487                           DAG.getConstant(1, DL, ShiftTy));
5488       return DAG.getZExtOrTrunc(Res, DL, VT);
5489     }
5490   }
5491 
5492   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5493 }
5494 
5495 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5496 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5497 static void
5498 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5499                      const SDValue &N) {
5500   switch (N.getOpcode()) {
5501   case ISD::CopyFromReg: {
5502     SDValue Op = N.getOperand(1);
5503     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5504                       Op.getValueType().getSizeInBits());
5505     return;
5506   }
5507   case ISD::BITCAST:
5508   case ISD::AssertZext:
5509   case ISD::AssertSext:
5510   case ISD::TRUNCATE:
5511     getUnderlyingArgRegs(Regs, N.getOperand(0));
5512     return;
5513   case ISD::BUILD_PAIR:
5514   case ISD::BUILD_VECTOR:
5515   case ISD::CONCAT_VECTORS:
5516     for (SDValue Op : N->op_values())
5517       getUnderlyingArgRegs(Regs, Op);
5518     return;
5519   default:
5520     return;
5521   }
5522 }
5523 
5524 /// If the DbgValueInst is a dbg_value of a function argument, create the
5525 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5526 /// instruction selection, they will be inserted to the entry BB.
5527 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5528     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5529     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5530   const Argument *Arg = dyn_cast<Argument>(V);
5531   if (!Arg)
5532     return false;
5533 
5534   if (!IsDbgDeclare) {
5535     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5536     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5537     // the entry block.
5538     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5539     if (!IsInEntryBlock)
5540       return false;
5541 
5542     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5543     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5544     // variable that also is a param.
5545     //
5546     // Although, if we are at the top of the entry block already, we can still
5547     // emit using ArgDbgValue. This might catch some situations when the
5548     // dbg.value refers to an argument that isn't used in the entry block, so
5549     // any CopyToReg node would be optimized out and the only way to express
5550     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5551     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5552     // we should only emit as ArgDbgValue if the Variable is an argument to the
5553     // current function, and the dbg.value intrinsic is found in the entry
5554     // block.
5555     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5556         !DL->getInlinedAt();
5557     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5558     if (!IsInPrologue && !VariableIsFunctionInputArg)
5559       return false;
5560 
5561     // Here we assume that a function argument on IR level only can be used to
5562     // describe one input parameter on source level. If we for example have
5563     // source code like this
5564     //
5565     //    struct A { long x, y; };
5566     //    void foo(struct A a, long b) {
5567     //      ...
5568     //      b = a.x;
5569     //      ...
5570     //    }
5571     //
5572     // and IR like this
5573     //
5574     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5575     //  entry:
5576     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5577     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5578     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5579     //    ...
5580     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5581     //    ...
5582     //
5583     // then the last dbg.value is describing a parameter "b" using a value that
5584     // is an argument. But since we already has used %a1 to describe a parameter
5585     // we should not handle that last dbg.value here (that would result in an
5586     // incorrect hoisting of the DBG_VALUE to the function entry).
5587     // Notice that we allow one dbg.value per IR level argument, to accommodate
5588     // for the situation with fragments above.
5589     if (VariableIsFunctionInputArg) {
5590       unsigned ArgNo = Arg->getArgNo();
5591       if (ArgNo >= FuncInfo.DescribedArgs.size())
5592         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5593       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5594         return false;
5595       FuncInfo.DescribedArgs.set(ArgNo);
5596     }
5597   }
5598 
5599   MachineFunction &MF = DAG.getMachineFunction();
5600   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5601 
5602   bool IsIndirect = false;
5603   Optional<MachineOperand> Op;
5604   // Some arguments' frame index is recorded during argument lowering.
5605   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5606   if (FI != std::numeric_limits<int>::max())
5607     Op = MachineOperand::CreateFI(FI);
5608 
5609   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5610   if (!Op && N.getNode()) {
5611     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5612     Register Reg;
5613     if (ArgRegsAndSizes.size() == 1)
5614       Reg = ArgRegsAndSizes.front().first;
5615 
5616     if (Reg && Reg.isVirtual()) {
5617       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5618       Register PR = RegInfo.getLiveInPhysReg(Reg);
5619       if (PR)
5620         Reg = PR;
5621     }
5622     if (Reg) {
5623       Op = MachineOperand::CreateReg(Reg, false);
5624       IsIndirect = IsDbgDeclare;
5625     }
5626   }
5627 
5628   if (!Op && N.getNode()) {
5629     // Check if frame index is available.
5630     SDValue LCandidate = peekThroughBitcasts(N);
5631     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5632       if (FrameIndexSDNode *FINode =
5633           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5634         Op = MachineOperand::CreateFI(FINode->getIndex());
5635   }
5636 
5637   if (!Op) {
5638     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5639     auto splitMultiRegDbgValue
5640       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5641       unsigned Offset = 0;
5642       for (auto RegAndSize : SplitRegs) {
5643         // If the expression is already a fragment, the current register
5644         // offset+size might extend beyond the fragment. In this case, only
5645         // the register bits that are inside the fragment are relevant.
5646         int RegFragmentSizeInBits = RegAndSize.second;
5647         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5648           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5649           // The register is entirely outside the expression fragment,
5650           // so is irrelevant for debug info.
5651           if (Offset >= ExprFragmentSizeInBits)
5652             break;
5653           // The register is partially outside the expression fragment, only
5654           // the low bits within the fragment are relevant for debug info.
5655           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5656             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5657           }
5658         }
5659 
5660         auto FragmentExpr = DIExpression::createFragmentExpression(
5661             Expr, Offset, RegFragmentSizeInBits);
5662         Offset += RegAndSize.second;
5663         // If a valid fragment expression cannot be created, the variable's
5664         // correct value cannot be determined and so it is set as Undef.
5665         if (!FragmentExpr) {
5666           SDDbgValue *SDV = DAG.getConstantDbgValue(
5667               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5668           DAG.AddDbgValue(SDV, nullptr, false);
5669           continue;
5670         }
5671         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5672         FuncInfo.ArgDbgValues.push_back(
5673           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5674                   RegAndSize.first, Variable, *FragmentExpr));
5675       }
5676     };
5677 
5678     // Check if ValueMap has reg number.
5679     DenseMap<const Value *, unsigned>::const_iterator
5680       VMI = FuncInfo.ValueMap.find(V);
5681     if (VMI != FuncInfo.ValueMap.end()) {
5682       const auto &TLI = DAG.getTargetLoweringInfo();
5683       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5684                        V->getType(), getABIRegCopyCC(V));
5685       if (RFV.occupiesMultipleRegs()) {
5686         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5687         return true;
5688       }
5689 
5690       Op = MachineOperand::CreateReg(VMI->second, false);
5691       IsIndirect = IsDbgDeclare;
5692     } else if (ArgRegsAndSizes.size() > 1) {
5693       // This was split due to the calling convention, and no virtual register
5694       // mapping exists for the value.
5695       splitMultiRegDbgValue(ArgRegsAndSizes);
5696       return true;
5697     }
5698   }
5699 
5700   if (!Op)
5701     return false;
5702 
5703   assert(Variable->isValidLocationForIntrinsic(DL) &&
5704          "Expected inlined-at fields to agree");
5705   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5706   FuncInfo.ArgDbgValues.push_back(
5707       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5708               *Op, Variable, Expr));
5709 
5710   return true;
5711 }
5712 
5713 /// Return the appropriate SDDbgValue based on N.
5714 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5715                                              DILocalVariable *Variable,
5716                                              DIExpression *Expr,
5717                                              const DebugLoc &dl,
5718                                              unsigned DbgSDNodeOrder) {
5719   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5720     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5721     // stack slot locations.
5722     //
5723     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5724     // debug values here after optimization:
5725     //
5726     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5727     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5728     //
5729     // Both describe the direct values of their associated variables.
5730     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5731                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5732   }
5733   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5734                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5735 }
5736 
5737 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5738   switch (Intrinsic) {
5739   case Intrinsic::smul_fix:
5740     return ISD::SMULFIX;
5741   case Intrinsic::umul_fix:
5742     return ISD::UMULFIX;
5743   case Intrinsic::smul_fix_sat:
5744     return ISD::SMULFIXSAT;
5745   case Intrinsic::umul_fix_sat:
5746     return ISD::UMULFIXSAT;
5747   case Intrinsic::sdiv_fix:
5748     return ISD::SDIVFIX;
5749   case Intrinsic::udiv_fix:
5750     return ISD::UDIVFIX;
5751   case Intrinsic::sdiv_fix_sat:
5752     return ISD::SDIVFIXSAT;
5753   case Intrinsic::udiv_fix_sat:
5754     return ISD::UDIVFIXSAT;
5755   default:
5756     llvm_unreachable("Unhandled fixed point intrinsic");
5757   }
5758 }
5759 
5760 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5761                                            const char *FunctionName) {
5762   assert(FunctionName && "FunctionName must not be nullptr");
5763   SDValue Callee = DAG.getExternalSymbol(
5764       FunctionName,
5765       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5766   LowerCallTo(&I, Callee, I.isTailCall());
5767 }
5768 
5769 /// Lower the call to the specified intrinsic function.
5770 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5771                                              unsigned Intrinsic) {
5772   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5773   SDLoc sdl = getCurSDLoc();
5774   DebugLoc dl = getCurDebugLoc();
5775   SDValue Res;
5776 
5777   switch (Intrinsic) {
5778   default:
5779     // By default, turn this into a target intrinsic node.
5780     visitTargetIntrinsic(I, Intrinsic);
5781     return;
5782   case Intrinsic::vscale: {
5783     match(&I, m_VScale(DAG.getDataLayout()));
5784     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5785     setValue(&I,
5786              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5787     return;
5788   }
5789   case Intrinsic::vastart:  visitVAStart(I); return;
5790   case Intrinsic::vaend:    visitVAEnd(I); return;
5791   case Intrinsic::vacopy:   visitVACopy(I); return;
5792   case Intrinsic::returnaddress:
5793     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5794                              TLI.getPointerTy(DAG.getDataLayout()),
5795                              getValue(I.getArgOperand(0))));
5796     return;
5797   case Intrinsic::addressofreturnaddress:
5798     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5799                              TLI.getPointerTy(DAG.getDataLayout())));
5800     return;
5801   case Intrinsic::sponentry:
5802     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5803                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5804     return;
5805   case Intrinsic::frameaddress:
5806     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5807                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5808                              getValue(I.getArgOperand(0))));
5809     return;
5810   case Intrinsic::read_register: {
5811     Value *Reg = I.getArgOperand(0);
5812     SDValue Chain = getRoot();
5813     SDValue RegName =
5814         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5815     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5816     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5817       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5818     setValue(&I, Res);
5819     DAG.setRoot(Res.getValue(1));
5820     return;
5821   }
5822   case Intrinsic::write_register: {
5823     Value *Reg = I.getArgOperand(0);
5824     Value *RegValue = I.getArgOperand(1);
5825     SDValue Chain = getRoot();
5826     SDValue RegName =
5827         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5828     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5829                             RegName, getValue(RegValue)));
5830     return;
5831   }
5832   case Intrinsic::memcpy: {
5833     const auto &MCI = cast<MemCpyInst>(I);
5834     SDValue Op1 = getValue(I.getArgOperand(0));
5835     SDValue Op2 = getValue(I.getArgOperand(1));
5836     SDValue Op3 = getValue(I.getArgOperand(2));
5837     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5838     Align DstAlign = MCI.getDestAlign().valueOrOne();
5839     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5840     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5841     bool isVol = MCI.isVolatile();
5842     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5843     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5844     // node.
5845     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5846     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5847                                /* AlwaysInline */ false, isTC,
5848                                MachinePointerInfo(I.getArgOperand(0)),
5849                                MachinePointerInfo(I.getArgOperand(1)));
5850     updateDAGForMaybeTailCall(MC);
5851     return;
5852   }
5853   case Intrinsic::memcpy_inline: {
5854     const auto &MCI = cast<MemCpyInlineInst>(I);
5855     SDValue Dst = getValue(I.getArgOperand(0));
5856     SDValue Src = getValue(I.getArgOperand(1));
5857     SDValue Size = getValue(I.getArgOperand(2));
5858     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5859     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5860     Align DstAlign = MCI.getDestAlign().valueOrOne();
5861     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5862     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5863     bool isVol = MCI.isVolatile();
5864     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5865     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5866     // node.
5867     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5868                                /* AlwaysInline */ true, isTC,
5869                                MachinePointerInfo(I.getArgOperand(0)),
5870                                MachinePointerInfo(I.getArgOperand(1)));
5871     updateDAGForMaybeTailCall(MC);
5872     return;
5873   }
5874   case Intrinsic::memset: {
5875     const auto &MSI = cast<MemSetInst>(I);
5876     SDValue Op1 = getValue(I.getArgOperand(0));
5877     SDValue Op2 = getValue(I.getArgOperand(1));
5878     SDValue Op3 = getValue(I.getArgOperand(2));
5879     // @llvm.memset defines 0 and 1 to both mean no alignment.
5880     Align Alignment = MSI.getDestAlign().valueOrOne();
5881     bool isVol = MSI.isVolatile();
5882     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5883     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5884     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5885                                MachinePointerInfo(I.getArgOperand(0)));
5886     updateDAGForMaybeTailCall(MS);
5887     return;
5888   }
5889   case Intrinsic::memmove: {
5890     const auto &MMI = cast<MemMoveInst>(I);
5891     SDValue Op1 = getValue(I.getArgOperand(0));
5892     SDValue Op2 = getValue(I.getArgOperand(1));
5893     SDValue Op3 = getValue(I.getArgOperand(2));
5894     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5895     Align DstAlign = MMI.getDestAlign().valueOrOne();
5896     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5897     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5898     bool isVol = MMI.isVolatile();
5899     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5900     // FIXME: Support passing different dest/src alignments to the memmove DAG
5901     // node.
5902     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5903     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5904                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5905                                 MachinePointerInfo(I.getArgOperand(1)));
5906     updateDAGForMaybeTailCall(MM);
5907     return;
5908   }
5909   case Intrinsic::memcpy_element_unordered_atomic: {
5910     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5911     SDValue Dst = getValue(MI.getRawDest());
5912     SDValue Src = getValue(MI.getRawSource());
5913     SDValue Length = getValue(MI.getLength());
5914 
5915     unsigned DstAlign = MI.getDestAlignment();
5916     unsigned SrcAlign = MI.getSourceAlignment();
5917     Type *LengthTy = MI.getLength()->getType();
5918     unsigned ElemSz = MI.getElementSizeInBytes();
5919     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5920     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5921                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5922                                      MachinePointerInfo(MI.getRawDest()),
5923                                      MachinePointerInfo(MI.getRawSource()));
5924     updateDAGForMaybeTailCall(MC);
5925     return;
5926   }
5927   case Intrinsic::memmove_element_unordered_atomic: {
5928     auto &MI = cast<AtomicMemMoveInst>(I);
5929     SDValue Dst = getValue(MI.getRawDest());
5930     SDValue Src = getValue(MI.getRawSource());
5931     SDValue Length = getValue(MI.getLength());
5932 
5933     unsigned DstAlign = MI.getDestAlignment();
5934     unsigned SrcAlign = MI.getSourceAlignment();
5935     Type *LengthTy = MI.getLength()->getType();
5936     unsigned ElemSz = MI.getElementSizeInBytes();
5937     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5938     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5939                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5940                                       MachinePointerInfo(MI.getRawDest()),
5941                                       MachinePointerInfo(MI.getRawSource()));
5942     updateDAGForMaybeTailCall(MC);
5943     return;
5944   }
5945   case Intrinsic::memset_element_unordered_atomic: {
5946     auto &MI = cast<AtomicMemSetInst>(I);
5947     SDValue Dst = getValue(MI.getRawDest());
5948     SDValue Val = getValue(MI.getValue());
5949     SDValue Length = getValue(MI.getLength());
5950 
5951     unsigned DstAlign = MI.getDestAlignment();
5952     Type *LengthTy = MI.getLength()->getType();
5953     unsigned ElemSz = MI.getElementSizeInBytes();
5954     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5955     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5956                                      LengthTy, ElemSz, isTC,
5957                                      MachinePointerInfo(MI.getRawDest()));
5958     updateDAGForMaybeTailCall(MC);
5959     return;
5960   }
5961   case Intrinsic::dbg_addr:
5962   case Intrinsic::dbg_declare: {
5963     const auto &DI = cast<DbgVariableIntrinsic>(I);
5964     DILocalVariable *Variable = DI.getVariable();
5965     DIExpression *Expression = DI.getExpression();
5966     dropDanglingDebugInfo(Variable, Expression);
5967     assert(Variable && "Missing variable");
5968     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5969                       << "\n");
5970     // Check if address has undef value.
5971     const Value *Address = DI.getVariableLocation();
5972     if (!Address || isa<UndefValue>(Address) ||
5973         (Address->use_empty() && !isa<Argument>(Address))) {
5974       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5975                         << " (bad/undef/unused-arg address)\n");
5976       return;
5977     }
5978 
5979     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5980 
5981     // Check if this variable can be described by a frame index, typically
5982     // either as a static alloca or a byval parameter.
5983     int FI = std::numeric_limits<int>::max();
5984     if (const auto *AI =
5985             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5986       if (AI->isStaticAlloca()) {
5987         auto I = FuncInfo.StaticAllocaMap.find(AI);
5988         if (I != FuncInfo.StaticAllocaMap.end())
5989           FI = I->second;
5990       }
5991     } else if (const auto *Arg = dyn_cast<Argument>(
5992                    Address->stripInBoundsConstantOffsets())) {
5993       FI = FuncInfo.getArgumentFrameIndex(Arg);
5994     }
5995 
5996     // llvm.dbg.addr is control dependent and always generates indirect
5997     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5998     // the MachineFunction variable table.
5999     if (FI != std::numeric_limits<int>::max()) {
6000       if (Intrinsic == Intrinsic::dbg_addr) {
6001         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6002             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
6003         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
6004       } else {
6005         LLVM_DEBUG(dbgs() << "Skipping " << DI
6006                           << " (variable info stashed in MF side table)\n");
6007       }
6008       return;
6009     }
6010 
6011     SDValue &N = NodeMap[Address];
6012     if (!N.getNode() && isa<Argument>(Address))
6013       // Check unused arguments map.
6014       N = UnusedArgNodeMap[Address];
6015     SDDbgValue *SDV;
6016     if (N.getNode()) {
6017       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6018         Address = BCI->getOperand(0);
6019       // Parameters are handled specially.
6020       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6021       if (isParameter && FINode) {
6022         // Byval parameter. We have a frame index at this point.
6023         SDV =
6024             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6025                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6026       } else if (isa<Argument>(Address)) {
6027         // Address is an argument, so try to emit its dbg value using
6028         // virtual register info from the FuncInfo.ValueMap.
6029         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6030         return;
6031       } else {
6032         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6033                               true, dl, SDNodeOrder);
6034       }
6035       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
6036     } else {
6037       // If Address is an argument then try to emit its dbg value using
6038       // virtual register info from the FuncInfo.ValueMap.
6039       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6040                                     N)) {
6041         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6042                           << " (could not emit func-arg dbg_value)\n");
6043       }
6044     }
6045     return;
6046   }
6047   case Intrinsic::dbg_label: {
6048     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6049     DILabel *Label = DI.getLabel();
6050     assert(Label && "Missing label");
6051 
6052     SDDbgLabel *SDV;
6053     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6054     DAG.AddDbgLabel(SDV);
6055     return;
6056   }
6057   case Intrinsic::dbg_value: {
6058     const DbgValueInst &DI = cast<DbgValueInst>(I);
6059     assert(DI.getVariable() && "Missing variable");
6060 
6061     DILocalVariable *Variable = DI.getVariable();
6062     DIExpression *Expression = DI.getExpression();
6063     dropDanglingDebugInfo(Variable, Expression);
6064     const Value *V = DI.getValue();
6065     if (!V)
6066       return;
6067 
6068     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
6069         SDNodeOrder))
6070       return;
6071 
6072     // TODO: Dangling debug info will eventually either be resolved or produce
6073     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
6074     // between the original dbg.value location and its resolved DBG_VALUE, which
6075     // we should ideally fill with an extra Undef DBG_VALUE.
6076 
6077     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
6078     return;
6079   }
6080 
6081   case Intrinsic::eh_typeid_for: {
6082     // Find the type id for the given typeinfo.
6083     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6084     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6085     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6086     setValue(&I, Res);
6087     return;
6088   }
6089 
6090   case Intrinsic::eh_return_i32:
6091   case Intrinsic::eh_return_i64:
6092     DAG.getMachineFunction().setCallsEHReturn(true);
6093     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6094                             MVT::Other,
6095                             getControlRoot(),
6096                             getValue(I.getArgOperand(0)),
6097                             getValue(I.getArgOperand(1))));
6098     return;
6099   case Intrinsic::eh_unwind_init:
6100     DAG.getMachineFunction().setCallsUnwindInit(true);
6101     return;
6102   case Intrinsic::eh_dwarf_cfa:
6103     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6104                              TLI.getPointerTy(DAG.getDataLayout()),
6105                              getValue(I.getArgOperand(0))));
6106     return;
6107   case Intrinsic::eh_sjlj_callsite: {
6108     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6109     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6110     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6111     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6112 
6113     MMI.setCurrentCallSite(CI->getZExtValue());
6114     return;
6115   }
6116   case Intrinsic::eh_sjlj_functioncontext: {
6117     // Get and store the index of the function context.
6118     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6119     AllocaInst *FnCtx =
6120       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6121     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6122     MFI.setFunctionContextIndex(FI);
6123     return;
6124   }
6125   case Intrinsic::eh_sjlj_setjmp: {
6126     SDValue Ops[2];
6127     Ops[0] = getRoot();
6128     Ops[1] = getValue(I.getArgOperand(0));
6129     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6130                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6131     setValue(&I, Op.getValue(0));
6132     DAG.setRoot(Op.getValue(1));
6133     return;
6134   }
6135   case Intrinsic::eh_sjlj_longjmp:
6136     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6137                             getRoot(), getValue(I.getArgOperand(0))));
6138     return;
6139   case Intrinsic::eh_sjlj_setup_dispatch:
6140     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6141                             getRoot()));
6142     return;
6143   case Intrinsic::masked_gather:
6144     visitMaskedGather(I);
6145     return;
6146   case Intrinsic::masked_load:
6147     visitMaskedLoad(I);
6148     return;
6149   case Intrinsic::masked_scatter:
6150     visitMaskedScatter(I);
6151     return;
6152   case Intrinsic::masked_store:
6153     visitMaskedStore(I);
6154     return;
6155   case Intrinsic::masked_expandload:
6156     visitMaskedLoad(I, true /* IsExpanding */);
6157     return;
6158   case Intrinsic::masked_compressstore:
6159     visitMaskedStore(I, true /* IsCompressing */);
6160     return;
6161   case Intrinsic::powi:
6162     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6163                             getValue(I.getArgOperand(1)), DAG));
6164     return;
6165   case Intrinsic::log:
6166     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6167     return;
6168   case Intrinsic::log2:
6169     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6170     return;
6171   case Intrinsic::log10:
6172     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6173     return;
6174   case Intrinsic::exp:
6175     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6176     return;
6177   case Intrinsic::exp2:
6178     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6179     return;
6180   case Intrinsic::pow:
6181     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6182                            getValue(I.getArgOperand(1)), DAG, TLI));
6183     return;
6184   case Intrinsic::sqrt:
6185   case Intrinsic::fabs:
6186   case Intrinsic::sin:
6187   case Intrinsic::cos:
6188   case Intrinsic::floor:
6189   case Intrinsic::ceil:
6190   case Intrinsic::trunc:
6191   case Intrinsic::rint:
6192   case Intrinsic::nearbyint:
6193   case Intrinsic::round:
6194   case Intrinsic::canonicalize: {
6195     unsigned Opcode;
6196     switch (Intrinsic) {
6197     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6198     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6199     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6200     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6201     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6202     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6203     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6204     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6205     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6206     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6207     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6208     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6209     }
6210 
6211     setValue(&I, DAG.getNode(Opcode, sdl,
6212                              getValue(I.getArgOperand(0)).getValueType(),
6213                              getValue(I.getArgOperand(0))));
6214     return;
6215   }
6216   case Intrinsic::lround:
6217   case Intrinsic::llround:
6218   case Intrinsic::lrint:
6219   case Intrinsic::llrint: {
6220     unsigned Opcode;
6221     switch (Intrinsic) {
6222     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6223     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6224     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6225     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6226     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6227     }
6228 
6229     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6230     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6231                              getValue(I.getArgOperand(0))));
6232     return;
6233   }
6234   case Intrinsic::minnum:
6235     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6236                              getValue(I.getArgOperand(0)).getValueType(),
6237                              getValue(I.getArgOperand(0)),
6238                              getValue(I.getArgOperand(1))));
6239     return;
6240   case Intrinsic::maxnum:
6241     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6242                              getValue(I.getArgOperand(0)).getValueType(),
6243                              getValue(I.getArgOperand(0)),
6244                              getValue(I.getArgOperand(1))));
6245     return;
6246   case Intrinsic::minimum:
6247     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6248                              getValue(I.getArgOperand(0)).getValueType(),
6249                              getValue(I.getArgOperand(0)),
6250                              getValue(I.getArgOperand(1))));
6251     return;
6252   case Intrinsic::maximum:
6253     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6254                              getValue(I.getArgOperand(0)).getValueType(),
6255                              getValue(I.getArgOperand(0)),
6256                              getValue(I.getArgOperand(1))));
6257     return;
6258   case Intrinsic::copysign:
6259     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6260                              getValue(I.getArgOperand(0)).getValueType(),
6261                              getValue(I.getArgOperand(0)),
6262                              getValue(I.getArgOperand(1))));
6263     return;
6264   case Intrinsic::fma:
6265     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6266                              getValue(I.getArgOperand(0)).getValueType(),
6267                              getValue(I.getArgOperand(0)),
6268                              getValue(I.getArgOperand(1)),
6269                              getValue(I.getArgOperand(2))));
6270     return;
6271 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6272   case Intrinsic::INTRINSIC:
6273 #include "llvm/IR/ConstrainedOps.def"
6274     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6275     return;
6276   case Intrinsic::fmuladd: {
6277     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6278     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6279         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6280       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6281                                getValue(I.getArgOperand(0)).getValueType(),
6282                                getValue(I.getArgOperand(0)),
6283                                getValue(I.getArgOperand(1)),
6284                                getValue(I.getArgOperand(2))));
6285     } else {
6286       // TODO: Intrinsic calls should have fast-math-flags.
6287       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6288                                 getValue(I.getArgOperand(0)).getValueType(),
6289                                 getValue(I.getArgOperand(0)),
6290                                 getValue(I.getArgOperand(1)));
6291       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6292                                 getValue(I.getArgOperand(0)).getValueType(),
6293                                 Mul,
6294                                 getValue(I.getArgOperand(2)));
6295       setValue(&I, Add);
6296     }
6297     return;
6298   }
6299   case Intrinsic::convert_to_fp16:
6300     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6301                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6302                                          getValue(I.getArgOperand(0)),
6303                                          DAG.getTargetConstant(0, sdl,
6304                                                                MVT::i32))));
6305     return;
6306   case Intrinsic::convert_from_fp16:
6307     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6308                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6309                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6310                                          getValue(I.getArgOperand(0)))));
6311     return;
6312   case Intrinsic::pcmarker: {
6313     SDValue Tmp = getValue(I.getArgOperand(0));
6314     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6315     return;
6316   }
6317   case Intrinsic::readcyclecounter: {
6318     SDValue Op = getRoot();
6319     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6320                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6321     setValue(&I, Res);
6322     DAG.setRoot(Res.getValue(1));
6323     return;
6324   }
6325   case Intrinsic::bitreverse:
6326     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6327                              getValue(I.getArgOperand(0)).getValueType(),
6328                              getValue(I.getArgOperand(0))));
6329     return;
6330   case Intrinsic::bswap:
6331     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6332                              getValue(I.getArgOperand(0)).getValueType(),
6333                              getValue(I.getArgOperand(0))));
6334     return;
6335   case Intrinsic::cttz: {
6336     SDValue Arg = getValue(I.getArgOperand(0));
6337     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6338     EVT Ty = Arg.getValueType();
6339     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6340                              sdl, Ty, Arg));
6341     return;
6342   }
6343   case Intrinsic::ctlz: {
6344     SDValue Arg = getValue(I.getArgOperand(0));
6345     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6346     EVT Ty = Arg.getValueType();
6347     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6348                              sdl, Ty, Arg));
6349     return;
6350   }
6351   case Intrinsic::ctpop: {
6352     SDValue Arg = getValue(I.getArgOperand(0));
6353     EVT Ty = Arg.getValueType();
6354     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6355     return;
6356   }
6357   case Intrinsic::fshl:
6358   case Intrinsic::fshr: {
6359     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6360     SDValue X = getValue(I.getArgOperand(0));
6361     SDValue Y = getValue(I.getArgOperand(1));
6362     SDValue Z = getValue(I.getArgOperand(2));
6363     EVT VT = X.getValueType();
6364     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6365     SDValue Zero = DAG.getConstant(0, sdl, VT);
6366     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6367 
6368     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6369     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6370       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6371       return;
6372     }
6373 
6374     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6375     // avoid the select that is necessary in the general case to filter out
6376     // the 0-shift possibility that leads to UB.
6377     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6378       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6379       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6380         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6381         return;
6382       }
6383 
6384       // Some targets only rotate one way. Try the opposite direction.
6385       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6386       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6387         // Negate the shift amount because it is safe to ignore the high bits.
6388         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6389         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6390         return;
6391       }
6392 
6393       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6394       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6395       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6396       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6397       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6398       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6399       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6400       return;
6401     }
6402 
6403     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6404     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6405     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6406     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6407     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6408     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6409 
6410     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6411     // and that is undefined. We must compare and select to avoid UB.
6412     EVT CCVT = MVT::i1;
6413     if (VT.isVector())
6414       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6415 
6416     // For fshl, 0-shift returns the 1st arg (X).
6417     // For fshr, 0-shift returns the 2nd arg (Y).
6418     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6419     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6420     return;
6421   }
6422   case Intrinsic::sadd_sat: {
6423     SDValue Op1 = getValue(I.getArgOperand(0));
6424     SDValue Op2 = getValue(I.getArgOperand(1));
6425     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6426     return;
6427   }
6428   case Intrinsic::uadd_sat: {
6429     SDValue Op1 = getValue(I.getArgOperand(0));
6430     SDValue Op2 = getValue(I.getArgOperand(1));
6431     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6432     return;
6433   }
6434   case Intrinsic::ssub_sat: {
6435     SDValue Op1 = getValue(I.getArgOperand(0));
6436     SDValue Op2 = getValue(I.getArgOperand(1));
6437     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6438     return;
6439   }
6440   case Intrinsic::usub_sat: {
6441     SDValue Op1 = getValue(I.getArgOperand(0));
6442     SDValue Op2 = getValue(I.getArgOperand(1));
6443     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6444     return;
6445   }
6446   case Intrinsic::smul_fix:
6447   case Intrinsic::umul_fix:
6448   case Intrinsic::smul_fix_sat:
6449   case Intrinsic::umul_fix_sat: {
6450     SDValue Op1 = getValue(I.getArgOperand(0));
6451     SDValue Op2 = getValue(I.getArgOperand(1));
6452     SDValue Op3 = getValue(I.getArgOperand(2));
6453     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6454                              Op1.getValueType(), Op1, Op2, Op3));
6455     return;
6456   }
6457   case Intrinsic::sdiv_fix:
6458   case Intrinsic::udiv_fix:
6459   case Intrinsic::sdiv_fix_sat:
6460   case Intrinsic::udiv_fix_sat: {
6461     SDValue Op1 = getValue(I.getArgOperand(0));
6462     SDValue Op2 = getValue(I.getArgOperand(1));
6463     SDValue Op3 = getValue(I.getArgOperand(2));
6464     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6465                               Op1, Op2, Op3, DAG, TLI));
6466     return;
6467   }
6468   case Intrinsic::stacksave: {
6469     SDValue Op = getRoot();
6470     Res = DAG.getNode(
6471         ISD::STACKSAVE, sdl,
6472         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6473     setValue(&I, Res);
6474     DAG.setRoot(Res.getValue(1));
6475     return;
6476   }
6477   case Intrinsic::stackrestore:
6478     Res = getValue(I.getArgOperand(0));
6479     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6480     return;
6481   case Intrinsic::get_dynamic_area_offset: {
6482     SDValue Op = getRoot();
6483     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6484     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6485     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6486     // target.
6487     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6488       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6489                          " intrinsic!");
6490     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6491                       Op);
6492     DAG.setRoot(Op);
6493     setValue(&I, Res);
6494     return;
6495   }
6496   case Intrinsic::stackguard: {
6497     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6498     MachineFunction &MF = DAG.getMachineFunction();
6499     const Module &M = *MF.getFunction().getParent();
6500     SDValue Chain = getRoot();
6501     if (TLI.useLoadStackGuardNode()) {
6502       Res = getLoadStackGuard(DAG, sdl, Chain);
6503     } else {
6504       const Value *Global = TLI.getSDagStackGuard(M);
6505       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6506       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6507                         MachinePointerInfo(Global, 0), Align,
6508                         MachineMemOperand::MOVolatile);
6509     }
6510     if (TLI.useStackGuardXorFP())
6511       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6512     DAG.setRoot(Chain);
6513     setValue(&I, Res);
6514     return;
6515   }
6516   case Intrinsic::stackprotector: {
6517     // Emit code into the DAG to store the stack guard onto the stack.
6518     MachineFunction &MF = DAG.getMachineFunction();
6519     MachineFrameInfo &MFI = MF.getFrameInfo();
6520     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6521     SDValue Src, Chain = getRoot();
6522 
6523     if (TLI.useLoadStackGuardNode())
6524       Src = getLoadStackGuard(DAG, sdl, Chain);
6525     else
6526       Src = getValue(I.getArgOperand(0));   // The guard's value.
6527 
6528     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6529 
6530     int FI = FuncInfo.StaticAllocaMap[Slot];
6531     MFI.setStackProtectorIndex(FI);
6532 
6533     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6534 
6535     // Store the stack protector onto the stack.
6536     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6537                                                  DAG.getMachineFunction(), FI),
6538                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6539     setValue(&I, Res);
6540     DAG.setRoot(Res);
6541     return;
6542   }
6543   case Intrinsic::objectsize:
6544     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6545 
6546   case Intrinsic::is_constant:
6547     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6548 
6549   case Intrinsic::annotation:
6550   case Intrinsic::ptr_annotation:
6551   case Intrinsic::launder_invariant_group:
6552   case Intrinsic::strip_invariant_group:
6553     // Drop the intrinsic, but forward the value
6554     setValue(&I, getValue(I.getOperand(0)));
6555     return;
6556   case Intrinsic::assume:
6557   case Intrinsic::var_annotation:
6558   case Intrinsic::sideeffect:
6559     // Discard annotate attributes, assumptions, and artificial side-effects.
6560     return;
6561 
6562   case Intrinsic::codeview_annotation: {
6563     // Emit a label associated with this metadata.
6564     MachineFunction &MF = DAG.getMachineFunction();
6565     MCSymbol *Label =
6566         MF.getMMI().getContext().createTempSymbol("annotation", true);
6567     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6568     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6569     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6570     DAG.setRoot(Res);
6571     return;
6572   }
6573 
6574   case Intrinsic::init_trampoline: {
6575     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6576 
6577     SDValue Ops[6];
6578     Ops[0] = getRoot();
6579     Ops[1] = getValue(I.getArgOperand(0));
6580     Ops[2] = getValue(I.getArgOperand(1));
6581     Ops[3] = getValue(I.getArgOperand(2));
6582     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6583     Ops[5] = DAG.getSrcValue(F);
6584 
6585     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6586 
6587     DAG.setRoot(Res);
6588     return;
6589   }
6590   case Intrinsic::adjust_trampoline:
6591     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6592                              TLI.getPointerTy(DAG.getDataLayout()),
6593                              getValue(I.getArgOperand(0))));
6594     return;
6595   case Intrinsic::gcroot: {
6596     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6597            "only valid in functions with gc specified, enforced by Verifier");
6598     assert(GFI && "implied by previous");
6599     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6600     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6601 
6602     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6603     GFI->addStackRoot(FI->getIndex(), TypeMap);
6604     return;
6605   }
6606   case Intrinsic::gcread:
6607   case Intrinsic::gcwrite:
6608     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6609   case Intrinsic::flt_rounds:
6610     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6611     setValue(&I, Res);
6612     DAG.setRoot(Res.getValue(1));
6613     return;
6614 
6615   case Intrinsic::expect:
6616     // Just replace __builtin_expect(exp, c) with EXP.
6617     setValue(&I, getValue(I.getArgOperand(0)));
6618     return;
6619 
6620   case Intrinsic::debugtrap:
6621   case Intrinsic::trap: {
6622     StringRef TrapFuncName =
6623         I.getAttributes()
6624             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6625             .getValueAsString();
6626     if (TrapFuncName.empty()) {
6627       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6628         ISD::TRAP : ISD::DEBUGTRAP;
6629       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6630       return;
6631     }
6632     TargetLowering::ArgListTy Args;
6633 
6634     TargetLowering::CallLoweringInfo CLI(DAG);
6635     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6636         CallingConv::C, I.getType(),
6637         DAG.getExternalSymbol(TrapFuncName.data(),
6638                               TLI.getPointerTy(DAG.getDataLayout())),
6639         std::move(Args));
6640 
6641     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6642     DAG.setRoot(Result.second);
6643     return;
6644   }
6645 
6646   case Intrinsic::uadd_with_overflow:
6647   case Intrinsic::sadd_with_overflow:
6648   case Intrinsic::usub_with_overflow:
6649   case Intrinsic::ssub_with_overflow:
6650   case Intrinsic::umul_with_overflow:
6651   case Intrinsic::smul_with_overflow: {
6652     ISD::NodeType Op;
6653     switch (Intrinsic) {
6654     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6655     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6656     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6657     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6658     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6659     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6660     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6661     }
6662     SDValue Op1 = getValue(I.getArgOperand(0));
6663     SDValue Op2 = getValue(I.getArgOperand(1));
6664 
6665     EVT ResultVT = Op1.getValueType();
6666     EVT OverflowVT = MVT::i1;
6667     if (ResultVT.isVector())
6668       OverflowVT = EVT::getVectorVT(
6669           *Context, OverflowVT, ResultVT.getVectorNumElements());
6670 
6671     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6672     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6673     return;
6674   }
6675   case Intrinsic::prefetch: {
6676     SDValue Ops[5];
6677     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6678     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6679     Ops[0] = DAG.getRoot();
6680     Ops[1] = getValue(I.getArgOperand(0));
6681     Ops[2] = getValue(I.getArgOperand(1));
6682     Ops[3] = getValue(I.getArgOperand(2));
6683     Ops[4] = getValue(I.getArgOperand(3));
6684     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6685                                              DAG.getVTList(MVT::Other), Ops,
6686                                              EVT::getIntegerVT(*Context, 8),
6687                                              MachinePointerInfo(I.getArgOperand(0)),
6688                                              0, /* align */
6689                                              Flags);
6690 
6691     // Chain the prefetch in parallell with any pending loads, to stay out of
6692     // the way of later optimizations.
6693     PendingLoads.push_back(Result);
6694     Result = getRoot();
6695     DAG.setRoot(Result);
6696     return;
6697   }
6698   case Intrinsic::lifetime_start:
6699   case Intrinsic::lifetime_end: {
6700     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6701     // Stack coloring is not enabled in O0, discard region information.
6702     if (TM.getOptLevel() == CodeGenOpt::None)
6703       return;
6704 
6705     const int64_t ObjectSize =
6706         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6707     Value *const ObjectPtr = I.getArgOperand(1);
6708     SmallVector<const Value *, 4> Allocas;
6709     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6710 
6711     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6712            E = Allocas.end(); Object != E; ++Object) {
6713       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6714 
6715       // Could not find an Alloca.
6716       if (!LifetimeObject)
6717         continue;
6718 
6719       // First check that the Alloca is static, otherwise it won't have a
6720       // valid frame index.
6721       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6722       if (SI == FuncInfo.StaticAllocaMap.end())
6723         return;
6724 
6725       const int FrameIndex = SI->second;
6726       int64_t Offset;
6727       if (GetPointerBaseWithConstantOffset(
6728               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6729         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6730       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6731                                 Offset);
6732       DAG.setRoot(Res);
6733     }
6734     return;
6735   }
6736   case Intrinsic::invariant_start:
6737     // Discard region information.
6738     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6739     return;
6740   case Intrinsic::invariant_end:
6741     // Discard region information.
6742     return;
6743   case Intrinsic::clear_cache:
6744     /// FunctionName may be null.
6745     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6746       lowerCallToExternalSymbol(I, FunctionName);
6747     return;
6748   case Intrinsic::donothing:
6749     // ignore
6750     return;
6751   case Intrinsic::experimental_stackmap:
6752     visitStackmap(I);
6753     return;
6754   case Intrinsic::experimental_patchpoint_void:
6755   case Intrinsic::experimental_patchpoint_i64:
6756     visitPatchpoint(&I);
6757     return;
6758   case Intrinsic::experimental_gc_statepoint:
6759     LowerStatepoint(ImmutableStatepoint(&I));
6760     return;
6761   case Intrinsic::experimental_gc_result:
6762     visitGCResult(cast<GCResultInst>(I));
6763     return;
6764   case Intrinsic::experimental_gc_relocate:
6765     visitGCRelocate(cast<GCRelocateInst>(I));
6766     return;
6767   case Intrinsic::instrprof_increment:
6768     llvm_unreachable("instrprof failed to lower an increment");
6769   case Intrinsic::instrprof_value_profile:
6770     llvm_unreachable("instrprof failed to lower a value profiling call");
6771   case Intrinsic::localescape: {
6772     MachineFunction &MF = DAG.getMachineFunction();
6773     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6774 
6775     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6776     // is the same on all targets.
6777     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6778       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6779       if (isa<ConstantPointerNull>(Arg))
6780         continue; // Skip null pointers. They represent a hole in index space.
6781       AllocaInst *Slot = cast<AllocaInst>(Arg);
6782       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6783              "can only escape static allocas");
6784       int FI = FuncInfo.StaticAllocaMap[Slot];
6785       MCSymbol *FrameAllocSym =
6786           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6787               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6788       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6789               TII->get(TargetOpcode::LOCAL_ESCAPE))
6790           .addSym(FrameAllocSym)
6791           .addFrameIndex(FI);
6792     }
6793 
6794     return;
6795   }
6796 
6797   case Intrinsic::localrecover: {
6798     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6799     MachineFunction &MF = DAG.getMachineFunction();
6800     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6801 
6802     // Get the symbol that defines the frame offset.
6803     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6804     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6805     unsigned IdxVal =
6806         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6807     MCSymbol *FrameAllocSym =
6808         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6809             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6810 
6811     // Create a MCSymbol for the label to avoid any target lowering
6812     // that would make this PC relative.
6813     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6814     SDValue OffsetVal =
6815         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6816 
6817     // Add the offset to the FP.
6818     Value *FP = I.getArgOperand(1);
6819     SDValue FPVal = getValue(FP);
6820     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6821     setValue(&I, Add);
6822 
6823     return;
6824   }
6825 
6826   case Intrinsic::eh_exceptionpointer:
6827   case Intrinsic::eh_exceptioncode: {
6828     // Get the exception pointer vreg, copy from it, and resize it to fit.
6829     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6830     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6831     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6832     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6833     SDValue N =
6834         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6835     if (Intrinsic == Intrinsic::eh_exceptioncode)
6836       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6837     setValue(&I, N);
6838     return;
6839   }
6840   case Intrinsic::xray_customevent: {
6841     // Here we want to make sure that the intrinsic behaves as if it has a
6842     // specific calling convention, and only for x86_64.
6843     // FIXME: Support other platforms later.
6844     const auto &Triple = DAG.getTarget().getTargetTriple();
6845     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6846       return;
6847 
6848     SDLoc DL = getCurSDLoc();
6849     SmallVector<SDValue, 8> Ops;
6850 
6851     // We want to say that we always want the arguments in registers.
6852     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6853     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6854     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6855     SDValue Chain = getRoot();
6856     Ops.push_back(LogEntryVal);
6857     Ops.push_back(StrSizeVal);
6858     Ops.push_back(Chain);
6859 
6860     // We need to enforce the calling convention for the callsite, so that
6861     // argument ordering is enforced correctly, and that register allocation can
6862     // see that some registers may be assumed clobbered and have to preserve
6863     // them across calls to the intrinsic.
6864     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6865                                            DL, NodeTys, Ops);
6866     SDValue patchableNode = SDValue(MN, 0);
6867     DAG.setRoot(patchableNode);
6868     setValue(&I, patchableNode);
6869     return;
6870   }
6871   case Intrinsic::xray_typedevent: {
6872     // Here we want to make sure that the intrinsic behaves as if it has a
6873     // specific calling convention, and only for x86_64.
6874     // FIXME: Support other platforms later.
6875     const auto &Triple = DAG.getTarget().getTargetTriple();
6876     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6877       return;
6878 
6879     SDLoc DL = getCurSDLoc();
6880     SmallVector<SDValue, 8> Ops;
6881 
6882     // We want to say that we always want the arguments in registers.
6883     // It's unclear to me how manipulating the selection DAG here forces callers
6884     // to provide arguments in registers instead of on the stack.
6885     SDValue LogTypeId = getValue(I.getArgOperand(0));
6886     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6887     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6888     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6889     SDValue Chain = getRoot();
6890     Ops.push_back(LogTypeId);
6891     Ops.push_back(LogEntryVal);
6892     Ops.push_back(StrSizeVal);
6893     Ops.push_back(Chain);
6894 
6895     // We need to enforce the calling convention for the callsite, so that
6896     // argument ordering is enforced correctly, and that register allocation can
6897     // see that some registers may be assumed clobbered and have to preserve
6898     // them across calls to the intrinsic.
6899     MachineSDNode *MN = DAG.getMachineNode(
6900         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6901     SDValue patchableNode = SDValue(MN, 0);
6902     DAG.setRoot(patchableNode);
6903     setValue(&I, patchableNode);
6904     return;
6905   }
6906   case Intrinsic::experimental_deoptimize:
6907     LowerDeoptimizeCall(&I);
6908     return;
6909 
6910   case Intrinsic::experimental_vector_reduce_v2_fadd:
6911   case Intrinsic::experimental_vector_reduce_v2_fmul:
6912   case Intrinsic::experimental_vector_reduce_add:
6913   case Intrinsic::experimental_vector_reduce_mul:
6914   case Intrinsic::experimental_vector_reduce_and:
6915   case Intrinsic::experimental_vector_reduce_or:
6916   case Intrinsic::experimental_vector_reduce_xor:
6917   case Intrinsic::experimental_vector_reduce_smax:
6918   case Intrinsic::experimental_vector_reduce_smin:
6919   case Intrinsic::experimental_vector_reduce_umax:
6920   case Intrinsic::experimental_vector_reduce_umin:
6921   case Intrinsic::experimental_vector_reduce_fmax:
6922   case Intrinsic::experimental_vector_reduce_fmin:
6923     visitVectorReduce(I, Intrinsic);
6924     return;
6925 
6926   case Intrinsic::icall_branch_funnel: {
6927     SmallVector<SDValue, 16> Ops;
6928     Ops.push_back(getValue(I.getArgOperand(0)));
6929 
6930     int64_t Offset;
6931     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6932         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6933     if (!Base)
6934       report_fatal_error(
6935           "llvm.icall.branch.funnel operand must be a GlobalValue");
6936     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6937 
6938     struct BranchFunnelTarget {
6939       int64_t Offset;
6940       SDValue Target;
6941     };
6942     SmallVector<BranchFunnelTarget, 8> Targets;
6943 
6944     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6945       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6946           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6947       if (ElemBase != Base)
6948         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6949                            "to the same GlobalValue");
6950 
6951       SDValue Val = getValue(I.getArgOperand(Op + 1));
6952       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6953       if (!GA)
6954         report_fatal_error(
6955             "llvm.icall.branch.funnel operand must be a GlobalValue");
6956       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6957                                      GA->getGlobal(), getCurSDLoc(),
6958                                      Val.getValueType(), GA->getOffset())});
6959     }
6960     llvm::sort(Targets,
6961                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6962                  return T1.Offset < T2.Offset;
6963                });
6964 
6965     for (auto &T : Targets) {
6966       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6967       Ops.push_back(T.Target);
6968     }
6969 
6970     Ops.push_back(DAG.getRoot()); // Chain
6971     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6972                                  getCurSDLoc(), MVT::Other, Ops),
6973               0);
6974     DAG.setRoot(N);
6975     setValue(&I, N);
6976     HasTailCall = true;
6977     return;
6978   }
6979 
6980   case Intrinsic::wasm_landingpad_index:
6981     // Information this intrinsic contained has been transferred to
6982     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6983     // delete it now.
6984     return;
6985 
6986   case Intrinsic::aarch64_settag:
6987   case Intrinsic::aarch64_settag_zero: {
6988     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6989     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6990     SDValue Val = TSI.EmitTargetCodeForSetTag(
6991         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6992         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6993         ZeroMemory);
6994     DAG.setRoot(Val);
6995     setValue(&I, Val);
6996     return;
6997   }
6998   case Intrinsic::ptrmask: {
6999     SDValue Ptr = getValue(I.getOperand(0));
7000     SDValue Const = getValue(I.getOperand(1));
7001 
7002     EVT DestVT =
7003         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7004 
7005     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
7006                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
7007     return;
7008   }
7009   }
7010 }
7011 
7012 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7013     const ConstrainedFPIntrinsic &FPI) {
7014   SDLoc sdl = getCurSDLoc();
7015 
7016   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7017   SmallVector<EVT, 4> ValueVTs;
7018   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7019   ValueVTs.push_back(MVT::Other); // Out chain
7020 
7021   // We do not need to serialize constrained FP intrinsics against
7022   // each other or against (nonvolatile) loads, so they can be
7023   // chained like loads.
7024   SDValue Chain = DAG.getRoot();
7025   SmallVector<SDValue, 4> Opers;
7026   Opers.push_back(Chain);
7027   if (FPI.isUnaryOp()) {
7028     Opers.push_back(getValue(FPI.getArgOperand(0)));
7029   } else if (FPI.isTernaryOp()) {
7030     Opers.push_back(getValue(FPI.getArgOperand(0)));
7031     Opers.push_back(getValue(FPI.getArgOperand(1)));
7032     Opers.push_back(getValue(FPI.getArgOperand(2)));
7033   } else {
7034     Opers.push_back(getValue(FPI.getArgOperand(0)));
7035     Opers.push_back(getValue(FPI.getArgOperand(1)));
7036   }
7037 
7038   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7039     assert(Result.getNode()->getNumValues() == 2);
7040 
7041     // Push node to the appropriate list so that future instructions can be
7042     // chained up correctly.
7043     SDValue OutChain = Result.getValue(1);
7044     switch (EB) {
7045     case fp::ExceptionBehavior::ebIgnore:
7046       // The only reason why ebIgnore nodes still need to be chained is that
7047       // they might depend on the current rounding mode, and therefore must
7048       // not be moved across instruction that may change that mode.
7049       LLVM_FALLTHROUGH;
7050     case fp::ExceptionBehavior::ebMayTrap:
7051       // These must not be moved across calls or instructions that may change
7052       // floating-point exception masks.
7053       PendingConstrainedFP.push_back(OutChain);
7054       break;
7055     case fp::ExceptionBehavior::ebStrict:
7056       // These must not be moved across calls or instructions that may change
7057       // floating-point exception masks or read floating-point exception flags.
7058       // In addition, they cannot be optimized out even if unused.
7059       PendingConstrainedFPStrict.push_back(OutChain);
7060       break;
7061     }
7062   };
7063 
7064   SDVTList VTs = DAG.getVTList(ValueVTs);
7065   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7066 
7067   unsigned Opcode;
7068   switch (FPI.getIntrinsicID()) {
7069   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7070 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7071   case Intrinsic::INTRINSIC:                                                   \
7072     Opcode = ISD::STRICT_##DAGN;                                               \
7073     break;
7074 #include "llvm/IR/ConstrainedOps.def"
7075   case Intrinsic::experimental_constrained_fmuladd: {
7076     Opcode = ISD::STRICT_FMA;
7077     // Break fmuladd into fmul and fadd.
7078     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7079         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7080                                         ValueVTs[0])) {
7081       Opers.pop_back();
7082       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers);
7083       pushOutChain(Mul, EB);
7084       Opcode = ISD::STRICT_FADD;
7085       Opers.clear();
7086       Opers.push_back(Mul.getValue(1));
7087       Opers.push_back(Mul.getValue(0));
7088       Opers.push_back(getValue(FPI.getArgOperand(2)));
7089     }
7090     break;
7091   }
7092   }
7093 
7094   // A few strict DAG nodes carry additional operands that are not
7095   // set up by the default code above.
7096   switch (Opcode) {
7097   default: break;
7098   case ISD::STRICT_FP_ROUND:
7099     Opers.push_back(
7100         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7101     break;
7102   case ISD::STRICT_FSETCC:
7103   case ISD::STRICT_FSETCCS: {
7104     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7105     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7106     break;
7107   }
7108   }
7109 
7110   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers);
7111   pushOutChain(Result, EB);
7112 
7113   SDValue FPResult = Result.getValue(0);
7114   setValue(&FPI, FPResult);
7115 }
7116 
7117 std::pair<SDValue, SDValue>
7118 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7119                                     const BasicBlock *EHPadBB) {
7120   MachineFunction &MF = DAG.getMachineFunction();
7121   MachineModuleInfo &MMI = MF.getMMI();
7122   MCSymbol *BeginLabel = nullptr;
7123 
7124   if (EHPadBB) {
7125     // Insert a label before the invoke call to mark the try range.  This can be
7126     // used to detect deletion of the invoke via the MachineModuleInfo.
7127     BeginLabel = MMI.getContext().createTempSymbol();
7128 
7129     // For SjLj, keep track of which landing pads go with which invokes
7130     // so as to maintain the ordering of pads in the LSDA.
7131     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7132     if (CallSiteIndex) {
7133       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7134       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7135 
7136       // Now that the call site is handled, stop tracking it.
7137       MMI.setCurrentCallSite(0);
7138     }
7139 
7140     // Both PendingLoads and PendingExports must be flushed here;
7141     // this call might not return.
7142     (void)getRoot();
7143     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7144 
7145     CLI.setChain(getRoot());
7146   }
7147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7148   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7149 
7150   assert((CLI.IsTailCall || Result.second.getNode()) &&
7151          "Non-null chain expected with non-tail call!");
7152   assert((Result.second.getNode() || !Result.first.getNode()) &&
7153          "Null value expected with tail call!");
7154 
7155   if (!Result.second.getNode()) {
7156     // As a special case, a null chain means that a tail call has been emitted
7157     // and the DAG root is already updated.
7158     HasTailCall = true;
7159 
7160     // Since there's no actual continuation from this block, nothing can be
7161     // relying on us setting vregs for them.
7162     PendingExports.clear();
7163   } else {
7164     DAG.setRoot(Result.second);
7165   }
7166 
7167   if (EHPadBB) {
7168     // Insert a label at the end of the invoke call to mark the try range.  This
7169     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7170     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7171     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7172 
7173     // Inform MachineModuleInfo of range.
7174     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7175     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7176     // actually use outlined funclets and their LSDA info style.
7177     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7178       assert(CLI.CS);
7179       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7180       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7181                                 BeginLabel, EndLabel);
7182     } else if (!isScopedEHPersonality(Pers)) {
7183       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7184     }
7185   }
7186 
7187   return Result;
7188 }
7189 
7190 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7191                                       bool isTailCall,
7192                                       const BasicBlock *EHPadBB) {
7193   auto &DL = DAG.getDataLayout();
7194   FunctionType *FTy = CS.getFunctionType();
7195   Type *RetTy = CS.getType();
7196 
7197   TargetLowering::ArgListTy Args;
7198   Args.reserve(CS.arg_size());
7199 
7200   const Value *SwiftErrorVal = nullptr;
7201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7202 
7203   if (isTailCall) {
7204     // Avoid emitting tail calls in functions with the disable-tail-calls
7205     // attribute.
7206     auto *Caller = CS.getInstruction()->getParent()->getParent();
7207     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7208         "true")
7209       isTailCall = false;
7210 
7211     // We can't tail call inside a function with a swifterror argument. Lowering
7212     // does not support this yet. It would have to move into the swifterror
7213     // register before the call.
7214     if (TLI.supportSwiftError() &&
7215         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7216       isTailCall = false;
7217   }
7218 
7219   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7220        i != e; ++i) {
7221     TargetLowering::ArgListEntry Entry;
7222     const Value *V = *i;
7223 
7224     // Skip empty types
7225     if (V->getType()->isEmptyTy())
7226       continue;
7227 
7228     SDValue ArgNode = getValue(V);
7229     Entry.Node = ArgNode; Entry.Ty = V->getType();
7230 
7231     Entry.setAttributes(&CS, i - CS.arg_begin());
7232 
7233     // Use swifterror virtual register as input to the call.
7234     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7235       SwiftErrorVal = V;
7236       // We find the virtual register for the actual swifterror argument.
7237       // Instead of using the Value, we use the virtual register instead.
7238       Entry.Node = DAG.getRegister(
7239           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7240           EVT(TLI.getPointerTy(DL)));
7241     }
7242 
7243     Args.push_back(Entry);
7244 
7245     // If we have an explicit sret argument that is an Instruction, (i.e., it
7246     // might point to function-local memory), we can't meaningfully tail-call.
7247     if (Entry.IsSRet && isa<Instruction>(V))
7248       isTailCall = false;
7249   }
7250 
7251   // If call site has a cfguardtarget operand bundle, create and add an
7252   // additional ArgListEntry.
7253   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7254     TargetLowering::ArgListEntry Entry;
7255     Value *V = Bundle->Inputs[0];
7256     SDValue ArgNode = getValue(V);
7257     Entry.Node = ArgNode;
7258     Entry.Ty = V->getType();
7259     Entry.IsCFGuardTarget = true;
7260     Args.push_back(Entry);
7261   }
7262 
7263   // Check if target-independent constraints permit a tail call here.
7264   // Target-dependent constraints are checked within TLI->LowerCallTo.
7265   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7266     isTailCall = false;
7267 
7268   // Disable tail calls if there is an swifterror argument. Targets have not
7269   // been updated to support tail calls.
7270   if (TLI.supportSwiftError() && SwiftErrorVal)
7271     isTailCall = false;
7272 
7273   TargetLowering::CallLoweringInfo CLI(DAG);
7274   CLI.setDebugLoc(getCurSDLoc())
7275       .setChain(getRoot())
7276       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7277       .setTailCall(isTailCall)
7278       .setConvergent(CS.isConvergent());
7279   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7280 
7281   if (Result.first.getNode()) {
7282     const Instruction *Inst = CS.getInstruction();
7283     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7284     setValue(Inst, Result.first);
7285   }
7286 
7287   // The last element of CLI.InVals has the SDValue for swifterror return.
7288   // Here we copy it to a virtual register and update SwiftErrorMap for
7289   // book-keeping.
7290   if (SwiftErrorVal && TLI.supportSwiftError()) {
7291     // Get the last element of InVals.
7292     SDValue Src = CLI.InVals.back();
7293     Register VReg = SwiftError.getOrCreateVRegDefAt(
7294         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7295     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7296     DAG.setRoot(CopyNode);
7297   }
7298 }
7299 
7300 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7301                              SelectionDAGBuilder &Builder) {
7302   // Check to see if this load can be trivially constant folded, e.g. if the
7303   // input is from a string literal.
7304   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7305     // Cast pointer to the type we really want to load.
7306     Type *LoadTy =
7307         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7308     if (LoadVT.isVector())
7309       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7310 
7311     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7312                                          PointerType::getUnqual(LoadTy));
7313 
7314     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7315             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7316       return Builder.getValue(LoadCst);
7317   }
7318 
7319   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7320   // still constant memory, the input chain can be the entry node.
7321   SDValue Root;
7322   bool ConstantMemory = false;
7323 
7324   // Do not serialize (non-volatile) loads of constant memory with anything.
7325   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7326     Root = Builder.DAG.getEntryNode();
7327     ConstantMemory = true;
7328   } else {
7329     // Do not serialize non-volatile loads against each other.
7330     Root = Builder.DAG.getRoot();
7331   }
7332 
7333   SDValue Ptr = Builder.getValue(PtrVal);
7334   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7335                                         Ptr, MachinePointerInfo(PtrVal),
7336                                         /* Alignment = */ 1);
7337 
7338   if (!ConstantMemory)
7339     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7340   return LoadVal;
7341 }
7342 
7343 /// Record the value for an instruction that produces an integer result,
7344 /// converting the type where necessary.
7345 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7346                                                   SDValue Value,
7347                                                   bool IsSigned) {
7348   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7349                                                     I.getType(), true);
7350   if (IsSigned)
7351     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7352   else
7353     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7354   setValue(&I, Value);
7355 }
7356 
7357 /// See if we can lower a memcmp call into an optimized form. If so, return
7358 /// true and lower it. Otherwise return false, and it will be lowered like a
7359 /// normal call.
7360 /// The caller already checked that \p I calls the appropriate LibFunc with a
7361 /// correct prototype.
7362 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7363   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7364   const Value *Size = I.getArgOperand(2);
7365   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7366   if (CSize && CSize->getZExtValue() == 0) {
7367     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7368                                                           I.getType(), true);
7369     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7370     return true;
7371   }
7372 
7373   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7374   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7375       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7376       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7377   if (Res.first.getNode()) {
7378     processIntegerCallValue(I, Res.first, true);
7379     PendingLoads.push_back(Res.second);
7380     return true;
7381   }
7382 
7383   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7384   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7385   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7386     return false;
7387 
7388   // If the target has a fast compare for the given size, it will return a
7389   // preferred load type for that size. Require that the load VT is legal and
7390   // that the target supports unaligned loads of that type. Otherwise, return
7391   // INVALID.
7392   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7393     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7394     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7395     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7396       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7397       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7398       // TODO: Check alignment of src and dest ptrs.
7399       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7400       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7401       if (!TLI.isTypeLegal(LVT) ||
7402           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7403           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7404         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7405     }
7406 
7407     return LVT;
7408   };
7409 
7410   // This turns into unaligned loads. We only do this if the target natively
7411   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7412   // we'll only produce a small number of byte loads.
7413   MVT LoadVT;
7414   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7415   switch (NumBitsToCompare) {
7416   default:
7417     return false;
7418   case 16:
7419     LoadVT = MVT::i16;
7420     break;
7421   case 32:
7422     LoadVT = MVT::i32;
7423     break;
7424   case 64:
7425   case 128:
7426   case 256:
7427     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7428     break;
7429   }
7430 
7431   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7432     return false;
7433 
7434   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7435   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7436 
7437   // Bitcast to a wide integer type if the loads are vectors.
7438   if (LoadVT.isVector()) {
7439     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7440     LoadL = DAG.getBitcast(CmpVT, LoadL);
7441     LoadR = DAG.getBitcast(CmpVT, LoadR);
7442   }
7443 
7444   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7445   processIntegerCallValue(I, Cmp, false);
7446   return true;
7447 }
7448 
7449 /// See if we can lower a memchr call into an optimized form. If so, return
7450 /// true and lower it. Otherwise return false, and it will be lowered like a
7451 /// normal call.
7452 /// The caller already checked that \p I calls the appropriate LibFunc with a
7453 /// correct prototype.
7454 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7455   const Value *Src = I.getArgOperand(0);
7456   const Value *Char = I.getArgOperand(1);
7457   const Value *Length = I.getArgOperand(2);
7458 
7459   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7460   std::pair<SDValue, SDValue> Res =
7461     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7462                                 getValue(Src), getValue(Char), getValue(Length),
7463                                 MachinePointerInfo(Src));
7464   if (Res.first.getNode()) {
7465     setValue(&I, Res.first);
7466     PendingLoads.push_back(Res.second);
7467     return true;
7468   }
7469 
7470   return false;
7471 }
7472 
7473 /// See if we can lower a mempcpy call into an optimized form. If so, return
7474 /// true and lower it. Otherwise return false, and it will be lowered like a
7475 /// normal call.
7476 /// The caller already checked that \p I calls the appropriate LibFunc with a
7477 /// correct prototype.
7478 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7479   SDValue Dst = getValue(I.getArgOperand(0));
7480   SDValue Src = getValue(I.getArgOperand(1));
7481   SDValue Size = getValue(I.getArgOperand(2));
7482 
7483   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7484   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7485   // DAG::getMemcpy needs Alignment to be defined.
7486   Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign));
7487 
7488   bool isVol = false;
7489   SDLoc sdl = getCurSDLoc();
7490 
7491   // In the mempcpy context we need to pass in a false value for isTailCall
7492   // because the return pointer needs to be adjusted by the size of
7493   // the copied memory.
7494   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7495   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7496                              /*isTailCall=*/false,
7497                              MachinePointerInfo(I.getArgOperand(0)),
7498                              MachinePointerInfo(I.getArgOperand(1)));
7499   assert(MC.getNode() != nullptr &&
7500          "** memcpy should not be lowered as TailCall in mempcpy context **");
7501   DAG.setRoot(MC);
7502 
7503   // Check if Size needs to be truncated or extended.
7504   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7505 
7506   // Adjust return pointer to point just past the last dst byte.
7507   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7508                                     Dst, Size);
7509   setValue(&I, DstPlusSize);
7510   return true;
7511 }
7512 
7513 /// See if we can lower a strcpy call into an optimized form.  If so, return
7514 /// true and lower it, otherwise return false and it will be lowered like a
7515 /// normal call.
7516 /// The caller already checked that \p I calls the appropriate LibFunc with a
7517 /// correct prototype.
7518 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7519   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7520 
7521   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7522   std::pair<SDValue, SDValue> Res =
7523     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7524                                 getValue(Arg0), getValue(Arg1),
7525                                 MachinePointerInfo(Arg0),
7526                                 MachinePointerInfo(Arg1), isStpcpy);
7527   if (Res.first.getNode()) {
7528     setValue(&I, Res.first);
7529     DAG.setRoot(Res.second);
7530     return true;
7531   }
7532 
7533   return false;
7534 }
7535 
7536 /// See if we can lower a strcmp call into an optimized form.  If so, return
7537 /// true and lower it, otherwise return false and it will be lowered like a
7538 /// normal call.
7539 /// The caller already checked that \p I calls the appropriate LibFunc with a
7540 /// correct prototype.
7541 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7542   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7543 
7544   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7545   std::pair<SDValue, SDValue> Res =
7546     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7547                                 getValue(Arg0), getValue(Arg1),
7548                                 MachinePointerInfo(Arg0),
7549                                 MachinePointerInfo(Arg1));
7550   if (Res.first.getNode()) {
7551     processIntegerCallValue(I, Res.first, true);
7552     PendingLoads.push_back(Res.second);
7553     return true;
7554   }
7555 
7556   return false;
7557 }
7558 
7559 /// See if we can lower a strlen call into an optimized form.  If so, return
7560 /// true and lower it, otherwise return false and it will be lowered like a
7561 /// normal call.
7562 /// The caller already checked that \p I calls the appropriate LibFunc with a
7563 /// correct prototype.
7564 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7565   const Value *Arg0 = I.getArgOperand(0);
7566 
7567   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7568   std::pair<SDValue, SDValue> Res =
7569     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7570                                 getValue(Arg0), MachinePointerInfo(Arg0));
7571   if (Res.first.getNode()) {
7572     processIntegerCallValue(I, Res.first, false);
7573     PendingLoads.push_back(Res.second);
7574     return true;
7575   }
7576 
7577   return false;
7578 }
7579 
7580 /// See if we can lower a strnlen call into an optimized form.  If so, return
7581 /// true and lower it, otherwise return false and it will be lowered like a
7582 /// normal call.
7583 /// The caller already checked that \p I calls the appropriate LibFunc with a
7584 /// correct prototype.
7585 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7586   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7587 
7588   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7589   std::pair<SDValue, SDValue> Res =
7590     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7591                                  getValue(Arg0), getValue(Arg1),
7592                                  MachinePointerInfo(Arg0));
7593   if (Res.first.getNode()) {
7594     processIntegerCallValue(I, Res.first, false);
7595     PendingLoads.push_back(Res.second);
7596     return true;
7597   }
7598 
7599   return false;
7600 }
7601 
7602 /// See if we can lower a unary floating-point operation into an SDNode with
7603 /// the specified Opcode.  If so, return true and lower it, otherwise return
7604 /// false and it will be lowered like a normal call.
7605 /// The caller already checked that \p I calls the appropriate LibFunc with a
7606 /// correct prototype.
7607 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7608                                               unsigned Opcode) {
7609   // We already checked this call's prototype; verify it doesn't modify errno.
7610   if (!I.onlyReadsMemory())
7611     return false;
7612 
7613   SDValue Tmp = getValue(I.getArgOperand(0));
7614   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7615   return true;
7616 }
7617 
7618 /// See if we can lower a binary floating-point operation into an SDNode with
7619 /// the specified Opcode. If so, return true and lower it. Otherwise return
7620 /// false, and it will be lowered like a normal call.
7621 /// The caller already checked that \p I calls the appropriate LibFunc with a
7622 /// correct prototype.
7623 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7624                                                unsigned Opcode) {
7625   // We already checked this call's prototype; verify it doesn't modify errno.
7626   if (!I.onlyReadsMemory())
7627     return false;
7628 
7629   SDValue Tmp0 = getValue(I.getArgOperand(0));
7630   SDValue Tmp1 = getValue(I.getArgOperand(1));
7631   EVT VT = Tmp0.getValueType();
7632   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7633   return true;
7634 }
7635 
7636 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7637   // Handle inline assembly differently.
7638   if (isa<InlineAsm>(I.getCalledValue())) {
7639     visitInlineAsm(&I);
7640     return;
7641   }
7642 
7643   if (Function *F = I.getCalledFunction()) {
7644     if (F->isDeclaration()) {
7645       // Is this an LLVM intrinsic or a target-specific intrinsic?
7646       unsigned IID = F->getIntrinsicID();
7647       if (!IID)
7648         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7649           IID = II->getIntrinsicID(F);
7650 
7651       if (IID) {
7652         visitIntrinsicCall(I, IID);
7653         return;
7654       }
7655     }
7656 
7657     // Check for well-known libc/libm calls.  If the function is internal, it
7658     // can't be a library call.  Don't do the check if marked as nobuiltin for
7659     // some reason or the call site requires strict floating point semantics.
7660     LibFunc Func;
7661     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7662         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7663         LibInfo->hasOptimizedCodeGen(Func)) {
7664       switch (Func) {
7665       default: break;
7666       case LibFunc_copysign:
7667       case LibFunc_copysignf:
7668       case LibFunc_copysignl:
7669         // We already checked this call's prototype; verify it doesn't modify
7670         // errno.
7671         if (I.onlyReadsMemory()) {
7672           SDValue LHS = getValue(I.getArgOperand(0));
7673           SDValue RHS = getValue(I.getArgOperand(1));
7674           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7675                                    LHS.getValueType(), LHS, RHS));
7676           return;
7677         }
7678         break;
7679       case LibFunc_fabs:
7680       case LibFunc_fabsf:
7681       case LibFunc_fabsl:
7682         if (visitUnaryFloatCall(I, ISD::FABS))
7683           return;
7684         break;
7685       case LibFunc_fmin:
7686       case LibFunc_fminf:
7687       case LibFunc_fminl:
7688         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7689           return;
7690         break;
7691       case LibFunc_fmax:
7692       case LibFunc_fmaxf:
7693       case LibFunc_fmaxl:
7694         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7695           return;
7696         break;
7697       case LibFunc_sin:
7698       case LibFunc_sinf:
7699       case LibFunc_sinl:
7700         if (visitUnaryFloatCall(I, ISD::FSIN))
7701           return;
7702         break;
7703       case LibFunc_cos:
7704       case LibFunc_cosf:
7705       case LibFunc_cosl:
7706         if (visitUnaryFloatCall(I, ISD::FCOS))
7707           return;
7708         break;
7709       case LibFunc_sqrt:
7710       case LibFunc_sqrtf:
7711       case LibFunc_sqrtl:
7712       case LibFunc_sqrt_finite:
7713       case LibFunc_sqrtf_finite:
7714       case LibFunc_sqrtl_finite:
7715         if (visitUnaryFloatCall(I, ISD::FSQRT))
7716           return;
7717         break;
7718       case LibFunc_floor:
7719       case LibFunc_floorf:
7720       case LibFunc_floorl:
7721         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7722           return;
7723         break;
7724       case LibFunc_nearbyint:
7725       case LibFunc_nearbyintf:
7726       case LibFunc_nearbyintl:
7727         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7728           return;
7729         break;
7730       case LibFunc_ceil:
7731       case LibFunc_ceilf:
7732       case LibFunc_ceill:
7733         if (visitUnaryFloatCall(I, ISD::FCEIL))
7734           return;
7735         break;
7736       case LibFunc_rint:
7737       case LibFunc_rintf:
7738       case LibFunc_rintl:
7739         if (visitUnaryFloatCall(I, ISD::FRINT))
7740           return;
7741         break;
7742       case LibFunc_round:
7743       case LibFunc_roundf:
7744       case LibFunc_roundl:
7745         if (visitUnaryFloatCall(I, ISD::FROUND))
7746           return;
7747         break;
7748       case LibFunc_trunc:
7749       case LibFunc_truncf:
7750       case LibFunc_truncl:
7751         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7752           return;
7753         break;
7754       case LibFunc_log2:
7755       case LibFunc_log2f:
7756       case LibFunc_log2l:
7757         if (visitUnaryFloatCall(I, ISD::FLOG2))
7758           return;
7759         break;
7760       case LibFunc_exp2:
7761       case LibFunc_exp2f:
7762       case LibFunc_exp2l:
7763         if (visitUnaryFloatCall(I, ISD::FEXP2))
7764           return;
7765         break;
7766       case LibFunc_memcmp:
7767         if (visitMemCmpCall(I))
7768           return;
7769         break;
7770       case LibFunc_mempcpy:
7771         if (visitMemPCpyCall(I))
7772           return;
7773         break;
7774       case LibFunc_memchr:
7775         if (visitMemChrCall(I))
7776           return;
7777         break;
7778       case LibFunc_strcpy:
7779         if (visitStrCpyCall(I, false))
7780           return;
7781         break;
7782       case LibFunc_stpcpy:
7783         if (visitStrCpyCall(I, true))
7784           return;
7785         break;
7786       case LibFunc_strcmp:
7787         if (visitStrCmpCall(I))
7788           return;
7789         break;
7790       case LibFunc_strlen:
7791         if (visitStrLenCall(I))
7792           return;
7793         break;
7794       case LibFunc_strnlen:
7795         if (visitStrNLenCall(I))
7796           return;
7797         break;
7798       }
7799     }
7800   }
7801 
7802   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7803   // have to do anything here to lower funclet bundles.
7804   // CFGuardTarget bundles are lowered in LowerCallTo.
7805   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7806                                         LLVMContext::OB_funclet,
7807                                         LLVMContext::OB_cfguardtarget}) &&
7808          "Cannot lower calls with arbitrary operand bundles!");
7809 
7810   SDValue Callee = getValue(I.getCalledValue());
7811 
7812   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7813     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7814   else
7815     // Check if we can potentially perform a tail call. More detailed checking
7816     // is be done within LowerCallTo, after more information about the call is
7817     // known.
7818     LowerCallTo(&I, Callee, I.isTailCall());
7819 }
7820 
7821 namespace {
7822 
7823 /// AsmOperandInfo - This contains information for each constraint that we are
7824 /// lowering.
7825 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7826 public:
7827   /// CallOperand - If this is the result output operand or a clobber
7828   /// this is null, otherwise it is the incoming operand to the CallInst.
7829   /// This gets modified as the asm is processed.
7830   SDValue CallOperand;
7831 
7832   /// AssignedRegs - If this is a register or register class operand, this
7833   /// contains the set of register corresponding to the operand.
7834   RegsForValue AssignedRegs;
7835 
7836   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7837     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7838   }
7839 
7840   /// Whether or not this operand accesses memory
7841   bool hasMemory(const TargetLowering &TLI) const {
7842     // Indirect operand accesses access memory.
7843     if (isIndirect)
7844       return true;
7845 
7846     for (const auto &Code : Codes)
7847       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7848         return true;
7849 
7850     return false;
7851   }
7852 
7853   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7854   /// corresponds to.  If there is no Value* for this operand, it returns
7855   /// MVT::Other.
7856   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7857                            const DataLayout &DL) const {
7858     if (!CallOperandVal) return MVT::Other;
7859 
7860     if (isa<BasicBlock>(CallOperandVal))
7861       return TLI.getPointerTy(DL);
7862 
7863     llvm::Type *OpTy = CallOperandVal->getType();
7864 
7865     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7866     // If this is an indirect operand, the operand is a pointer to the
7867     // accessed type.
7868     if (isIndirect) {
7869       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7870       if (!PtrTy)
7871         report_fatal_error("Indirect operand for inline asm not a pointer!");
7872       OpTy = PtrTy->getElementType();
7873     }
7874 
7875     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7876     if (StructType *STy = dyn_cast<StructType>(OpTy))
7877       if (STy->getNumElements() == 1)
7878         OpTy = STy->getElementType(0);
7879 
7880     // If OpTy is not a single value, it may be a struct/union that we
7881     // can tile with integers.
7882     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7883       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7884       switch (BitSize) {
7885       default: break;
7886       case 1:
7887       case 8:
7888       case 16:
7889       case 32:
7890       case 64:
7891       case 128:
7892         OpTy = IntegerType::get(Context, BitSize);
7893         break;
7894       }
7895     }
7896 
7897     return TLI.getValueType(DL, OpTy, true);
7898   }
7899 };
7900 
7901 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7902 
7903 } // end anonymous namespace
7904 
7905 /// Make sure that the output operand \p OpInfo and its corresponding input
7906 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7907 /// out).
7908 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7909                                SDISelAsmOperandInfo &MatchingOpInfo,
7910                                SelectionDAG &DAG) {
7911   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7912     return;
7913 
7914   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7915   const auto &TLI = DAG.getTargetLoweringInfo();
7916 
7917   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7918       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7919                                        OpInfo.ConstraintVT);
7920   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7921       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7922                                        MatchingOpInfo.ConstraintVT);
7923   if ((OpInfo.ConstraintVT.isInteger() !=
7924        MatchingOpInfo.ConstraintVT.isInteger()) ||
7925       (MatchRC.second != InputRC.second)) {
7926     // FIXME: error out in a more elegant fashion
7927     report_fatal_error("Unsupported asm: input constraint"
7928                        " with a matching output constraint of"
7929                        " incompatible type!");
7930   }
7931   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7932 }
7933 
7934 /// Get a direct memory input to behave well as an indirect operand.
7935 /// This may introduce stores, hence the need for a \p Chain.
7936 /// \return The (possibly updated) chain.
7937 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7938                                         SDISelAsmOperandInfo &OpInfo,
7939                                         SelectionDAG &DAG) {
7940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7941 
7942   // If we don't have an indirect input, put it in the constpool if we can,
7943   // otherwise spill it to a stack slot.
7944   // TODO: This isn't quite right. We need to handle these according to
7945   // the addressing mode that the constraint wants. Also, this may take
7946   // an additional register for the computation and we don't want that
7947   // either.
7948 
7949   // If the operand is a float, integer, or vector constant, spill to a
7950   // constant pool entry to get its address.
7951   const Value *OpVal = OpInfo.CallOperandVal;
7952   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7953       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7954     OpInfo.CallOperand = DAG.getConstantPool(
7955         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7956     return Chain;
7957   }
7958 
7959   // Otherwise, create a stack slot and emit a store to it before the asm.
7960   Type *Ty = OpVal->getType();
7961   auto &DL = DAG.getDataLayout();
7962   uint64_t TySize = DL.getTypeAllocSize(Ty);
7963   unsigned Align = DL.getPrefTypeAlignment(Ty);
7964   MachineFunction &MF = DAG.getMachineFunction();
7965   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7966   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7967   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7968                             MachinePointerInfo::getFixedStack(MF, SSFI),
7969                             TLI.getMemValueType(DL, Ty));
7970   OpInfo.CallOperand = StackSlot;
7971 
7972   return Chain;
7973 }
7974 
7975 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7976 /// specified operand.  We prefer to assign virtual registers, to allow the
7977 /// register allocator to handle the assignment process.  However, if the asm
7978 /// uses features that we can't model on machineinstrs, we have SDISel do the
7979 /// allocation.  This produces generally horrible, but correct, code.
7980 ///
7981 ///   OpInfo describes the operand
7982 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7983 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7984                                  SDISelAsmOperandInfo &OpInfo,
7985                                  SDISelAsmOperandInfo &RefOpInfo) {
7986   LLVMContext &Context = *DAG.getContext();
7987   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7988 
7989   MachineFunction &MF = DAG.getMachineFunction();
7990   SmallVector<unsigned, 4> Regs;
7991   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7992 
7993   // No work to do for memory operations.
7994   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7995     return;
7996 
7997   // If this is a constraint for a single physreg, or a constraint for a
7998   // register class, find it.
7999   unsigned AssignedReg;
8000   const TargetRegisterClass *RC;
8001   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8002       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8003   // RC is unset only on failure. Return immediately.
8004   if (!RC)
8005     return;
8006 
8007   // Get the actual register value type.  This is important, because the user
8008   // may have asked for (e.g.) the AX register in i32 type.  We need to
8009   // remember that AX is actually i16 to get the right extension.
8010   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8011 
8012   if (OpInfo.ConstraintVT != MVT::Other) {
8013     // If this is an FP operand in an integer register (or visa versa), or more
8014     // generally if the operand value disagrees with the register class we plan
8015     // to stick it in, fix the operand type.
8016     //
8017     // If this is an input value, the bitcast to the new type is done now.
8018     // Bitcast for output value is done at the end of visitInlineAsm().
8019     if ((OpInfo.Type == InlineAsm::isOutput ||
8020          OpInfo.Type == InlineAsm::isInput) &&
8021         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8022       // Try to convert to the first EVT that the reg class contains.  If the
8023       // types are identical size, use a bitcast to convert (e.g. two differing
8024       // vector types).  Note: output bitcast is done at the end of
8025       // visitInlineAsm().
8026       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8027         // Exclude indirect inputs while they are unsupported because the code
8028         // to perform the load is missing and thus OpInfo.CallOperand still
8029         // refers to the input address rather than the pointed-to value.
8030         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8031           OpInfo.CallOperand =
8032               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8033         OpInfo.ConstraintVT = RegVT;
8034         // If the operand is an FP value and we want it in integer registers,
8035         // use the corresponding integer type. This turns an f64 value into
8036         // i64, which can be passed with two i32 values on a 32-bit machine.
8037       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8038         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8039         if (OpInfo.Type == InlineAsm::isInput)
8040           OpInfo.CallOperand =
8041               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8042         OpInfo.ConstraintVT = VT;
8043       }
8044     }
8045   }
8046 
8047   // No need to allocate a matching input constraint since the constraint it's
8048   // matching to has already been allocated.
8049   if (OpInfo.isMatchingInputConstraint())
8050     return;
8051 
8052   EVT ValueVT = OpInfo.ConstraintVT;
8053   if (OpInfo.ConstraintVT == MVT::Other)
8054     ValueVT = RegVT;
8055 
8056   // Initialize NumRegs.
8057   unsigned NumRegs = 1;
8058   if (OpInfo.ConstraintVT != MVT::Other)
8059     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8060 
8061   // If this is a constraint for a specific physical register, like {r17},
8062   // assign it now.
8063 
8064   // If this associated to a specific register, initialize iterator to correct
8065   // place. If virtual, make sure we have enough registers
8066 
8067   // Initialize iterator if necessary
8068   TargetRegisterClass::iterator I = RC->begin();
8069   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8070 
8071   // Do not check for single registers.
8072   if (AssignedReg) {
8073       for (; *I != AssignedReg; ++I)
8074         assert(I != RC->end() && "AssignedReg should be member of RC");
8075   }
8076 
8077   for (; NumRegs; --NumRegs, ++I) {
8078     assert(I != RC->end() && "Ran out of registers to allocate!");
8079     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8080     Regs.push_back(R);
8081   }
8082 
8083   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8084 }
8085 
8086 static unsigned
8087 findMatchingInlineAsmOperand(unsigned OperandNo,
8088                              const std::vector<SDValue> &AsmNodeOperands) {
8089   // Scan until we find the definition we already emitted of this operand.
8090   unsigned CurOp = InlineAsm::Op_FirstOperand;
8091   for (; OperandNo; --OperandNo) {
8092     // Advance to the next operand.
8093     unsigned OpFlag =
8094         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8095     assert((InlineAsm::isRegDefKind(OpFlag) ||
8096             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8097             InlineAsm::isMemKind(OpFlag)) &&
8098            "Skipped past definitions?");
8099     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8100   }
8101   return CurOp;
8102 }
8103 
8104 namespace {
8105 
8106 class ExtraFlags {
8107   unsigned Flags = 0;
8108 
8109 public:
8110   explicit ExtraFlags(ImmutableCallSite CS) {
8111     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8112     if (IA->hasSideEffects())
8113       Flags |= InlineAsm::Extra_HasSideEffects;
8114     if (IA->isAlignStack())
8115       Flags |= InlineAsm::Extra_IsAlignStack;
8116     if (CS.isConvergent())
8117       Flags |= InlineAsm::Extra_IsConvergent;
8118     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8119   }
8120 
8121   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8122     // Ideally, we would only check against memory constraints.  However, the
8123     // meaning of an Other constraint can be target-specific and we can't easily
8124     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8125     // for Other constraints as well.
8126     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8127         OpInfo.ConstraintType == TargetLowering::C_Other) {
8128       if (OpInfo.Type == InlineAsm::isInput)
8129         Flags |= InlineAsm::Extra_MayLoad;
8130       else if (OpInfo.Type == InlineAsm::isOutput)
8131         Flags |= InlineAsm::Extra_MayStore;
8132       else if (OpInfo.Type == InlineAsm::isClobber)
8133         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8134     }
8135   }
8136 
8137   unsigned get() const { return Flags; }
8138 };
8139 
8140 } // end anonymous namespace
8141 
8142 /// visitInlineAsm - Handle a call to an InlineAsm object.
8143 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8144   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8145 
8146   /// ConstraintOperands - Information about all of the constraints.
8147   SDISelAsmOperandInfoVector ConstraintOperands;
8148 
8149   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8150   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8151       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8152 
8153   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8154   // AsmDialect, MayLoad, MayStore).
8155   bool HasSideEffect = IA->hasSideEffects();
8156   ExtraFlags ExtraInfo(CS);
8157 
8158   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8159   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8160   unsigned NumMatchingOps = 0;
8161   for (auto &T : TargetConstraints) {
8162     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8163     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8164 
8165     // Compute the value type for each operand.
8166     if (OpInfo.Type == InlineAsm::isInput ||
8167         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8168       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8169 
8170       // Process the call argument. BasicBlocks are labels, currently appearing
8171       // only in asm's.
8172       const Instruction *I = CS.getInstruction();
8173       if (isa<CallBrInst>(I) &&
8174           ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() -
8175                         cast<CallBrInst>(I)->getNumIndirectDests() -
8176                         NumMatchingOps) &&
8177           (NumMatchingOps == 0 ||
8178            ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() -
8179                         NumMatchingOps))) {
8180         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8181         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8182         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8183       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8184         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8185       } else {
8186         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8187       }
8188 
8189       OpInfo.ConstraintVT =
8190           OpInfo
8191               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8192               .getSimpleVT();
8193     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8194       // The return value of the call is this value.  As such, there is no
8195       // corresponding argument.
8196       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8197       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8198         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8199             DAG.getDataLayout(), STy->getElementType(ResNo));
8200       } else {
8201         assert(ResNo == 0 && "Asm only has one result!");
8202         OpInfo.ConstraintVT =
8203             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8204       }
8205       ++ResNo;
8206     } else {
8207       OpInfo.ConstraintVT = MVT::Other;
8208     }
8209 
8210     if (OpInfo.hasMatchingInput())
8211       ++NumMatchingOps;
8212 
8213     if (!HasSideEffect)
8214       HasSideEffect = OpInfo.hasMemory(TLI);
8215 
8216     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8217     // FIXME: Could we compute this on OpInfo rather than T?
8218 
8219     // Compute the constraint code and ConstraintType to use.
8220     TLI.ComputeConstraintToUse(T, SDValue());
8221 
8222     if (T.ConstraintType == TargetLowering::C_Immediate &&
8223         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8224       // We've delayed emitting a diagnostic like the "n" constraint because
8225       // inlining could cause an integer showing up.
8226       return emitInlineAsmError(
8227           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8228                   "integer constant expression");
8229 
8230     ExtraInfo.update(T);
8231   }
8232 
8233 
8234   // We won't need to flush pending loads if this asm doesn't touch
8235   // memory and is nonvolatile.
8236   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8237 
8238   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8239   if (IsCallBr) {
8240     // If this is a callbr we need to flush pending exports since inlineasm_br
8241     // is a terminator. We need to do this before nodes are glued to
8242     // the inlineasm_br node.
8243     Chain = getControlRoot();
8244   }
8245 
8246   // Second pass over the constraints: compute which constraint option to use.
8247   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8248     // If this is an output operand with a matching input operand, look up the
8249     // matching input. If their types mismatch, e.g. one is an integer, the
8250     // other is floating point, or their sizes are different, flag it as an
8251     // error.
8252     if (OpInfo.hasMatchingInput()) {
8253       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8254       patchMatchingInput(OpInfo, Input, DAG);
8255     }
8256 
8257     // Compute the constraint code and ConstraintType to use.
8258     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8259 
8260     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8261         OpInfo.Type == InlineAsm::isClobber)
8262       continue;
8263 
8264     // If this is a memory input, and if the operand is not indirect, do what we
8265     // need to provide an address for the memory input.
8266     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8267         !OpInfo.isIndirect) {
8268       assert((OpInfo.isMultipleAlternative ||
8269               (OpInfo.Type == InlineAsm::isInput)) &&
8270              "Can only indirectify direct input operands!");
8271 
8272       // Memory operands really want the address of the value.
8273       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8274 
8275       // There is no longer a Value* corresponding to this operand.
8276       OpInfo.CallOperandVal = nullptr;
8277 
8278       // It is now an indirect operand.
8279       OpInfo.isIndirect = true;
8280     }
8281 
8282   }
8283 
8284   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8285   std::vector<SDValue> AsmNodeOperands;
8286   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8287   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8288       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8289 
8290   // If we have a !srcloc metadata node associated with it, we want to attach
8291   // this to the ultimately generated inline asm machineinstr.  To do this, we
8292   // pass in the third operand as this (potentially null) inline asm MDNode.
8293   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8294   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8295 
8296   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8297   // bits as operand 3.
8298   AsmNodeOperands.push_back(DAG.getTargetConstant(
8299       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8300 
8301   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8302   // this, assign virtual and physical registers for inputs and otput.
8303   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8304     // Assign Registers.
8305     SDISelAsmOperandInfo &RefOpInfo =
8306         OpInfo.isMatchingInputConstraint()
8307             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8308             : OpInfo;
8309     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8310 
8311     switch (OpInfo.Type) {
8312     case InlineAsm::isOutput:
8313       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8314         unsigned ConstraintID =
8315             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8316         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8317                "Failed to convert memory constraint code to constraint id.");
8318 
8319         // Add information to the INLINEASM node to know about this output.
8320         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8321         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8322         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8323                                                         MVT::i32));
8324         AsmNodeOperands.push_back(OpInfo.CallOperand);
8325       } else {
8326         // Otherwise, this outputs to a register (directly for C_Register /
8327         // C_RegisterClass, and a target-defined fashion for
8328         // C_Immediate/C_Other). Find a register that we can use.
8329         if (OpInfo.AssignedRegs.Regs.empty()) {
8330           emitInlineAsmError(
8331               CS, "couldn't allocate output register for constraint '" +
8332                       Twine(OpInfo.ConstraintCode) + "'");
8333           return;
8334         }
8335 
8336         // Add information to the INLINEASM node to know that this register is
8337         // set.
8338         OpInfo.AssignedRegs.AddInlineAsmOperands(
8339             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8340                                   : InlineAsm::Kind_RegDef,
8341             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8342       }
8343       break;
8344 
8345     case InlineAsm::isInput: {
8346       SDValue InOperandVal = OpInfo.CallOperand;
8347 
8348       if (OpInfo.isMatchingInputConstraint()) {
8349         // If this is required to match an output register we have already set,
8350         // just use its register.
8351         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8352                                                   AsmNodeOperands);
8353         unsigned OpFlag =
8354           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8355         if (InlineAsm::isRegDefKind(OpFlag) ||
8356             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8357           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8358           if (OpInfo.isIndirect) {
8359             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8360             emitInlineAsmError(CS, "inline asm not supported yet:"
8361                                    " don't know how to handle tied "
8362                                    "indirect register inputs");
8363             return;
8364           }
8365 
8366           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8367           SmallVector<unsigned, 4> Regs;
8368 
8369           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8370             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8371             MachineRegisterInfo &RegInfo =
8372                 DAG.getMachineFunction().getRegInfo();
8373             for (unsigned i = 0; i != NumRegs; ++i)
8374               Regs.push_back(RegInfo.createVirtualRegister(RC));
8375           } else {
8376             emitInlineAsmError(CS, "inline asm error: This value type register "
8377                                    "class is not natively supported!");
8378             return;
8379           }
8380 
8381           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8382 
8383           SDLoc dl = getCurSDLoc();
8384           // Use the produced MatchedRegs object to
8385           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8386                                     CS.getInstruction());
8387           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8388                                            true, OpInfo.getMatchedOperand(), dl,
8389                                            DAG, AsmNodeOperands);
8390           break;
8391         }
8392 
8393         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8394         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8395                "Unexpected number of operands");
8396         // Add information to the INLINEASM node to know about this input.
8397         // See InlineAsm.h isUseOperandTiedToDef.
8398         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8399         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8400                                                     OpInfo.getMatchedOperand());
8401         AsmNodeOperands.push_back(DAG.getTargetConstant(
8402             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8403         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8404         break;
8405       }
8406 
8407       // Treat indirect 'X' constraint as memory.
8408       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8409           OpInfo.isIndirect)
8410         OpInfo.ConstraintType = TargetLowering::C_Memory;
8411 
8412       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8413           OpInfo.ConstraintType == TargetLowering::C_Other) {
8414         std::vector<SDValue> Ops;
8415         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8416                                           Ops, DAG);
8417         if (Ops.empty()) {
8418           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8419             if (isa<ConstantSDNode>(InOperandVal)) {
8420               emitInlineAsmError(CS, "value out of range for constraint '" +
8421                                  Twine(OpInfo.ConstraintCode) + "'");
8422               return;
8423             }
8424 
8425           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8426                                      Twine(OpInfo.ConstraintCode) + "'");
8427           return;
8428         }
8429 
8430         // Add information to the INLINEASM node to know about this input.
8431         unsigned ResOpType =
8432           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8433         AsmNodeOperands.push_back(DAG.getTargetConstant(
8434             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8435         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8436         break;
8437       }
8438 
8439       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8440         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8441         assert(InOperandVal.getValueType() ==
8442                    TLI.getPointerTy(DAG.getDataLayout()) &&
8443                "Memory operands expect pointer values");
8444 
8445         unsigned ConstraintID =
8446             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8447         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8448                "Failed to convert memory constraint code to constraint id.");
8449 
8450         // Add information to the INLINEASM node to know about this input.
8451         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8452         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8453         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8454                                                         getCurSDLoc(),
8455                                                         MVT::i32));
8456         AsmNodeOperands.push_back(InOperandVal);
8457         break;
8458       }
8459 
8460       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8461               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8462              "Unknown constraint type!");
8463 
8464       // TODO: Support this.
8465       if (OpInfo.isIndirect) {
8466         emitInlineAsmError(
8467             CS, "Don't know how to handle indirect register inputs yet "
8468                 "for constraint '" +
8469                     Twine(OpInfo.ConstraintCode) + "'");
8470         return;
8471       }
8472 
8473       // Copy the input into the appropriate registers.
8474       if (OpInfo.AssignedRegs.Regs.empty()) {
8475         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8476                                    Twine(OpInfo.ConstraintCode) + "'");
8477         return;
8478       }
8479 
8480       SDLoc dl = getCurSDLoc();
8481 
8482       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8483                                         Chain, &Flag, CS.getInstruction());
8484 
8485       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8486                                                dl, DAG, AsmNodeOperands);
8487       break;
8488     }
8489     case InlineAsm::isClobber:
8490       // Add the clobbered value to the operand list, so that the register
8491       // allocator is aware that the physreg got clobbered.
8492       if (!OpInfo.AssignedRegs.Regs.empty())
8493         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8494                                                  false, 0, getCurSDLoc(), DAG,
8495                                                  AsmNodeOperands);
8496       break;
8497     }
8498   }
8499 
8500   // Finish up input operands.  Set the input chain and add the flag last.
8501   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8502   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8503 
8504   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8505   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8506                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8507   Flag = Chain.getValue(1);
8508 
8509   // Do additional work to generate outputs.
8510 
8511   SmallVector<EVT, 1> ResultVTs;
8512   SmallVector<SDValue, 1> ResultValues;
8513   SmallVector<SDValue, 8> OutChains;
8514 
8515   llvm::Type *CSResultType = CS.getType();
8516   ArrayRef<Type *> ResultTypes;
8517   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8518     ResultTypes = StructResult->elements();
8519   else if (!CSResultType->isVoidTy())
8520     ResultTypes = makeArrayRef(CSResultType);
8521 
8522   auto CurResultType = ResultTypes.begin();
8523   auto handleRegAssign = [&](SDValue V) {
8524     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8525     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8526     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8527     ++CurResultType;
8528     // If the type of the inline asm call site return value is different but has
8529     // same size as the type of the asm output bitcast it.  One example of this
8530     // is for vectors with different width / number of elements.  This can
8531     // happen for register classes that can contain multiple different value
8532     // types.  The preg or vreg allocated may not have the same VT as was
8533     // expected.
8534     //
8535     // This can also happen for a return value that disagrees with the register
8536     // class it is put in, eg. a double in a general-purpose register on a
8537     // 32-bit machine.
8538     if (ResultVT != V.getValueType() &&
8539         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8540       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8541     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8542              V.getValueType().isInteger()) {
8543       // If a result value was tied to an input value, the computed result
8544       // may have a wider width than the expected result.  Extract the
8545       // relevant portion.
8546       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8547     }
8548     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8549     ResultVTs.push_back(ResultVT);
8550     ResultValues.push_back(V);
8551   };
8552 
8553   // Deal with output operands.
8554   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8555     if (OpInfo.Type == InlineAsm::isOutput) {
8556       SDValue Val;
8557       // Skip trivial output operands.
8558       if (OpInfo.AssignedRegs.Regs.empty())
8559         continue;
8560 
8561       switch (OpInfo.ConstraintType) {
8562       case TargetLowering::C_Register:
8563       case TargetLowering::C_RegisterClass:
8564         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8565             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8566         break;
8567       case TargetLowering::C_Immediate:
8568       case TargetLowering::C_Other:
8569         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8570                                               OpInfo, DAG);
8571         break;
8572       case TargetLowering::C_Memory:
8573         break; // Already handled.
8574       case TargetLowering::C_Unknown:
8575         assert(false && "Unexpected unknown constraint");
8576       }
8577 
8578       // Indirect output manifest as stores. Record output chains.
8579       if (OpInfo.isIndirect) {
8580         const Value *Ptr = OpInfo.CallOperandVal;
8581         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8582         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8583                                      MachinePointerInfo(Ptr));
8584         OutChains.push_back(Store);
8585       } else {
8586         // generate CopyFromRegs to associated registers.
8587         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8588         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8589           for (const SDValue &V : Val->op_values())
8590             handleRegAssign(V);
8591         } else
8592           handleRegAssign(Val);
8593       }
8594     }
8595   }
8596 
8597   // Set results.
8598   if (!ResultValues.empty()) {
8599     assert(CurResultType == ResultTypes.end() &&
8600            "Mismatch in number of ResultTypes");
8601     assert(ResultValues.size() == ResultTypes.size() &&
8602            "Mismatch in number of output operands in asm result");
8603 
8604     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8605                             DAG.getVTList(ResultVTs), ResultValues);
8606     setValue(CS.getInstruction(), V);
8607   }
8608 
8609   // Collect store chains.
8610   if (!OutChains.empty())
8611     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8612 
8613   // Only Update Root if inline assembly has a memory effect.
8614   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8615     DAG.setRoot(Chain);
8616 }
8617 
8618 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8619                                              const Twine &Message) {
8620   LLVMContext &Ctx = *DAG.getContext();
8621   Ctx.emitError(CS.getInstruction(), Message);
8622 
8623   // Make sure we leave the DAG in a valid state
8624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8625   SmallVector<EVT, 1> ValueVTs;
8626   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8627 
8628   if (ValueVTs.empty())
8629     return;
8630 
8631   SmallVector<SDValue, 1> Ops;
8632   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8633     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8634 
8635   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8636 }
8637 
8638 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8639   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8640                           MVT::Other, getRoot(),
8641                           getValue(I.getArgOperand(0)),
8642                           DAG.getSrcValue(I.getArgOperand(0))));
8643 }
8644 
8645 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8647   const DataLayout &DL = DAG.getDataLayout();
8648   SDValue V = DAG.getVAArg(
8649       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8650       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8651       DL.getABITypeAlignment(I.getType()));
8652   DAG.setRoot(V.getValue(1));
8653 
8654   if (I.getType()->isPointerTy())
8655     V = DAG.getPtrExtOrTrunc(
8656         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8657   setValue(&I, V);
8658 }
8659 
8660 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8661   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8662                           MVT::Other, getRoot(),
8663                           getValue(I.getArgOperand(0)),
8664                           DAG.getSrcValue(I.getArgOperand(0))));
8665 }
8666 
8667 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8668   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8669                           MVT::Other, getRoot(),
8670                           getValue(I.getArgOperand(0)),
8671                           getValue(I.getArgOperand(1)),
8672                           DAG.getSrcValue(I.getArgOperand(0)),
8673                           DAG.getSrcValue(I.getArgOperand(1))));
8674 }
8675 
8676 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8677                                                     const Instruction &I,
8678                                                     SDValue Op) {
8679   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8680   if (!Range)
8681     return Op;
8682 
8683   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8684   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8685     return Op;
8686 
8687   APInt Lo = CR.getUnsignedMin();
8688   if (!Lo.isMinValue())
8689     return Op;
8690 
8691   APInt Hi = CR.getUnsignedMax();
8692   unsigned Bits = std::max(Hi.getActiveBits(),
8693                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8694 
8695   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8696 
8697   SDLoc SL = getCurSDLoc();
8698 
8699   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8700                              DAG.getValueType(SmallVT));
8701   unsigned NumVals = Op.getNode()->getNumValues();
8702   if (NumVals == 1)
8703     return ZExt;
8704 
8705   SmallVector<SDValue, 4> Ops;
8706 
8707   Ops.push_back(ZExt);
8708   for (unsigned I = 1; I != NumVals; ++I)
8709     Ops.push_back(Op.getValue(I));
8710 
8711   return DAG.getMergeValues(Ops, SL);
8712 }
8713 
8714 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8715 /// the call being lowered.
8716 ///
8717 /// This is a helper for lowering intrinsics that follow a target calling
8718 /// convention or require stack pointer adjustment. Only a subset of the
8719 /// intrinsic's operands need to participate in the calling convention.
8720 void SelectionDAGBuilder::populateCallLoweringInfo(
8721     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8722     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8723     bool IsPatchPoint) {
8724   TargetLowering::ArgListTy Args;
8725   Args.reserve(NumArgs);
8726 
8727   // Populate the argument list.
8728   // Attributes for args start at offset 1, after the return attribute.
8729   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8730        ArgI != ArgE; ++ArgI) {
8731     const Value *V = Call->getOperand(ArgI);
8732 
8733     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8734 
8735     TargetLowering::ArgListEntry Entry;
8736     Entry.Node = getValue(V);
8737     Entry.Ty = V->getType();
8738     Entry.setAttributes(Call, ArgI);
8739     Args.push_back(Entry);
8740   }
8741 
8742   CLI.setDebugLoc(getCurSDLoc())
8743       .setChain(getRoot())
8744       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8745       .setDiscardResult(Call->use_empty())
8746       .setIsPatchPoint(IsPatchPoint);
8747 }
8748 
8749 /// Add a stack map intrinsic call's live variable operands to a stackmap
8750 /// or patchpoint target node's operand list.
8751 ///
8752 /// Constants are converted to TargetConstants purely as an optimization to
8753 /// avoid constant materialization and register allocation.
8754 ///
8755 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8756 /// generate addess computation nodes, and so FinalizeISel can convert the
8757 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8758 /// address materialization and register allocation, but may also be required
8759 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8760 /// alloca in the entry block, then the runtime may assume that the alloca's
8761 /// StackMap location can be read immediately after compilation and that the
8762 /// location is valid at any point during execution (this is similar to the
8763 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8764 /// only available in a register, then the runtime would need to trap when
8765 /// execution reaches the StackMap in order to read the alloca's location.
8766 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8767                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8768                                 SelectionDAGBuilder &Builder) {
8769   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8770     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8771     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8772       Ops.push_back(
8773         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8774       Ops.push_back(
8775         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8776     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8777       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8778       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8779           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8780     } else
8781       Ops.push_back(OpVal);
8782   }
8783 }
8784 
8785 /// Lower llvm.experimental.stackmap directly to its target opcode.
8786 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8787   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8788   //                                  [live variables...])
8789 
8790   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8791 
8792   SDValue Chain, InFlag, Callee, NullPtr;
8793   SmallVector<SDValue, 32> Ops;
8794 
8795   SDLoc DL = getCurSDLoc();
8796   Callee = getValue(CI.getCalledValue());
8797   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8798 
8799   // The stackmap intrinsic only records the live variables (the arguments
8800   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8801   // intrinsic, this won't be lowered to a function call. This means we don't
8802   // have to worry about calling conventions and target specific lowering code.
8803   // Instead we perform the call lowering right here.
8804   //
8805   // chain, flag = CALLSEQ_START(chain, 0, 0)
8806   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8807   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8808   //
8809   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8810   InFlag = Chain.getValue(1);
8811 
8812   // Add the <id> and <numBytes> constants.
8813   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8814   Ops.push_back(DAG.getTargetConstant(
8815                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8816   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8817   Ops.push_back(DAG.getTargetConstant(
8818                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8819                   MVT::i32));
8820 
8821   // Push live variables for the stack map.
8822   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8823 
8824   // We are not pushing any register mask info here on the operands list,
8825   // because the stackmap doesn't clobber anything.
8826 
8827   // Push the chain and the glue flag.
8828   Ops.push_back(Chain);
8829   Ops.push_back(InFlag);
8830 
8831   // Create the STACKMAP node.
8832   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8833   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8834   Chain = SDValue(SM, 0);
8835   InFlag = Chain.getValue(1);
8836 
8837   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8838 
8839   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8840 
8841   // Set the root to the target-lowered call chain.
8842   DAG.setRoot(Chain);
8843 
8844   // Inform the Frame Information that we have a stackmap in this function.
8845   FuncInfo.MF->getFrameInfo().setHasStackMap();
8846 }
8847 
8848 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8849 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8850                                           const BasicBlock *EHPadBB) {
8851   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8852   //                                                 i32 <numBytes>,
8853   //                                                 i8* <target>,
8854   //                                                 i32 <numArgs>,
8855   //                                                 [Args...],
8856   //                                                 [live variables...])
8857 
8858   CallingConv::ID CC = CS.getCallingConv();
8859   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8860   bool HasDef = !CS->getType()->isVoidTy();
8861   SDLoc dl = getCurSDLoc();
8862   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8863 
8864   // Handle immediate and symbolic callees.
8865   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8866     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8867                                    /*isTarget=*/true);
8868   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8869     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8870                                          SDLoc(SymbolicCallee),
8871                                          SymbolicCallee->getValueType(0));
8872 
8873   // Get the real number of arguments participating in the call <numArgs>
8874   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8875   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8876 
8877   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8878   // Intrinsics include all meta-operands up to but not including CC.
8879   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8880   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8881          "Not enough arguments provided to the patchpoint intrinsic");
8882 
8883   // For AnyRegCC the arguments are lowered later on manually.
8884   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8885   Type *ReturnTy =
8886     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8887 
8888   TargetLowering::CallLoweringInfo CLI(DAG);
8889   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8890                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8891   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8892 
8893   SDNode *CallEnd = Result.second.getNode();
8894   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8895     CallEnd = CallEnd->getOperand(0).getNode();
8896 
8897   /// Get a call instruction from the call sequence chain.
8898   /// Tail calls are not allowed.
8899   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8900          "Expected a callseq node.");
8901   SDNode *Call = CallEnd->getOperand(0).getNode();
8902   bool HasGlue = Call->getGluedNode();
8903 
8904   // Replace the target specific call node with the patchable intrinsic.
8905   SmallVector<SDValue, 8> Ops;
8906 
8907   // Add the <id> and <numBytes> constants.
8908   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8909   Ops.push_back(DAG.getTargetConstant(
8910                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8911   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8912   Ops.push_back(DAG.getTargetConstant(
8913                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8914                   MVT::i32));
8915 
8916   // Add the callee.
8917   Ops.push_back(Callee);
8918 
8919   // Adjust <numArgs> to account for any arguments that have been passed on the
8920   // stack instead.
8921   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8922   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8923   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8924   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8925 
8926   // Add the calling convention
8927   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8928 
8929   // Add the arguments we omitted previously. The register allocator should
8930   // place these in any free register.
8931   if (IsAnyRegCC)
8932     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8933       Ops.push_back(getValue(CS.getArgument(i)));
8934 
8935   // Push the arguments from the call instruction up to the register mask.
8936   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8937   Ops.append(Call->op_begin() + 2, e);
8938 
8939   // Push live variables for the stack map.
8940   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8941 
8942   // Push the register mask info.
8943   if (HasGlue)
8944     Ops.push_back(*(Call->op_end()-2));
8945   else
8946     Ops.push_back(*(Call->op_end()-1));
8947 
8948   // Push the chain (this is originally the first operand of the call, but
8949   // becomes now the last or second to last operand).
8950   Ops.push_back(*(Call->op_begin()));
8951 
8952   // Push the glue flag (last operand).
8953   if (HasGlue)
8954     Ops.push_back(*(Call->op_end()-1));
8955 
8956   SDVTList NodeTys;
8957   if (IsAnyRegCC && HasDef) {
8958     // Create the return types based on the intrinsic definition
8959     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8960     SmallVector<EVT, 3> ValueVTs;
8961     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8962     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8963 
8964     // There is always a chain and a glue type at the end
8965     ValueVTs.push_back(MVT::Other);
8966     ValueVTs.push_back(MVT::Glue);
8967     NodeTys = DAG.getVTList(ValueVTs);
8968   } else
8969     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8970 
8971   // Replace the target specific call node with a PATCHPOINT node.
8972   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8973                                          dl, NodeTys, Ops);
8974 
8975   // Update the NodeMap.
8976   if (HasDef) {
8977     if (IsAnyRegCC)
8978       setValue(CS.getInstruction(), SDValue(MN, 0));
8979     else
8980       setValue(CS.getInstruction(), Result.first);
8981   }
8982 
8983   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8984   // call sequence. Furthermore the location of the chain and glue can change
8985   // when the AnyReg calling convention is used and the intrinsic returns a
8986   // value.
8987   if (IsAnyRegCC && HasDef) {
8988     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8989     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8990     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8991   } else
8992     DAG.ReplaceAllUsesWith(Call, MN);
8993   DAG.DeleteNode(Call);
8994 
8995   // Inform the Frame Information that we have a patchpoint in this function.
8996   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8997 }
8998 
8999 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9000                                             unsigned Intrinsic) {
9001   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9002   SDValue Op1 = getValue(I.getArgOperand(0));
9003   SDValue Op2;
9004   if (I.getNumArgOperands() > 1)
9005     Op2 = getValue(I.getArgOperand(1));
9006   SDLoc dl = getCurSDLoc();
9007   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9008   SDValue Res;
9009   FastMathFlags FMF;
9010   if (isa<FPMathOperator>(I))
9011     FMF = I.getFastMathFlags();
9012 
9013   switch (Intrinsic) {
9014   case Intrinsic::experimental_vector_reduce_v2_fadd:
9015     if (FMF.allowReassoc())
9016       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9017                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
9018     else
9019       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
9020     break;
9021   case Intrinsic::experimental_vector_reduce_v2_fmul:
9022     if (FMF.allowReassoc())
9023       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9024                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
9025     else
9026       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
9027     break;
9028   case Intrinsic::experimental_vector_reduce_add:
9029     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9030     break;
9031   case Intrinsic::experimental_vector_reduce_mul:
9032     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9033     break;
9034   case Intrinsic::experimental_vector_reduce_and:
9035     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9036     break;
9037   case Intrinsic::experimental_vector_reduce_or:
9038     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9039     break;
9040   case Intrinsic::experimental_vector_reduce_xor:
9041     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9042     break;
9043   case Intrinsic::experimental_vector_reduce_smax:
9044     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9045     break;
9046   case Intrinsic::experimental_vector_reduce_smin:
9047     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9048     break;
9049   case Intrinsic::experimental_vector_reduce_umax:
9050     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9051     break;
9052   case Intrinsic::experimental_vector_reduce_umin:
9053     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9054     break;
9055   case Intrinsic::experimental_vector_reduce_fmax:
9056     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9057     break;
9058   case Intrinsic::experimental_vector_reduce_fmin:
9059     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9060     break;
9061   default:
9062     llvm_unreachable("Unhandled vector reduce intrinsic");
9063   }
9064   setValue(&I, Res);
9065 }
9066 
9067 /// Returns an AttributeList representing the attributes applied to the return
9068 /// value of the given call.
9069 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9070   SmallVector<Attribute::AttrKind, 2> Attrs;
9071   if (CLI.RetSExt)
9072     Attrs.push_back(Attribute::SExt);
9073   if (CLI.RetZExt)
9074     Attrs.push_back(Attribute::ZExt);
9075   if (CLI.IsInReg)
9076     Attrs.push_back(Attribute::InReg);
9077 
9078   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9079                             Attrs);
9080 }
9081 
9082 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9083 /// implementation, which just calls LowerCall.
9084 /// FIXME: When all targets are
9085 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9086 std::pair<SDValue, SDValue>
9087 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9088   // Handle the incoming return values from the call.
9089   CLI.Ins.clear();
9090   Type *OrigRetTy = CLI.RetTy;
9091   SmallVector<EVT, 4> RetTys;
9092   SmallVector<uint64_t, 4> Offsets;
9093   auto &DL = CLI.DAG.getDataLayout();
9094   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9095 
9096   if (CLI.IsPostTypeLegalization) {
9097     // If we are lowering a libcall after legalization, split the return type.
9098     SmallVector<EVT, 4> OldRetTys;
9099     SmallVector<uint64_t, 4> OldOffsets;
9100     RetTys.swap(OldRetTys);
9101     Offsets.swap(OldOffsets);
9102 
9103     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9104       EVT RetVT = OldRetTys[i];
9105       uint64_t Offset = OldOffsets[i];
9106       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9107       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9108       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9109       RetTys.append(NumRegs, RegisterVT);
9110       for (unsigned j = 0; j != NumRegs; ++j)
9111         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9112     }
9113   }
9114 
9115   SmallVector<ISD::OutputArg, 4> Outs;
9116   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9117 
9118   bool CanLowerReturn =
9119       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9120                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9121 
9122   SDValue DemoteStackSlot;
9123   int DemoteStackIdx = -100;
9124   if (!CanLowerReturn) {
9125     // FIXME: equivalent assert?
9126     // assert(!CS.hasInAllocaArgument() &&
9127     //        "sret demotion is incompatible with inalloca");
9128     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9129     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9130     MachineFunction &MF = CLI.DAG.getMachineFunction();
9131     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9132     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9133                                               DL.getAllocaAddrSpace());
9134 
9135     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9136     ArgListEntry Entry;
9137     Entry.Node = DemoteStackSlot;
9138     Entry.Ty = StackSlotPtrType;
9139     Entry.IsSExt = false;
9140     Entry.IsZExt = false;
9141     Entry.IsInReg = false;
9142     Entry.IsSRet = true;
9143     Entry.IsNest = false;
9144     Entry.IsByVal = false;
9145     Entry.IsReturned = false;
9146     Entry.IsSwiftSelf = false;
9147     Entry.IsSwiftError = false;
9148     Entry.IsCFGuardTarget = false;
9149     Entry.Alignment = Align;
9150     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9151     CLI.NumFixedArgs += 1;
9152     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9153 
9154     // sret demotion isn't compatible with tail-calls, since the sret argument
9155     // points into the callers stack frame.
9156     CLI.IsTailCall = false;
9157   } else {
9158     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9159         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9160     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9161       ISD::ArgFlagsTy Flags;
9162       if (NeedsRegBlock) {
9163         Flags.setInConsecutiveRegs();
9164         if (I == RetTys.size() - 1)
9165           Flags.setInConsecutiveRegsLast();
9166       }
9167       EVT VT = RetTys[I];
9168       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9169                                                      CLI.CallConv, VT);
9170       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9171                                                        CLI.CallConv, VT);
9172       for (unsigned i = 0; i != NumRegs; ++i) {
9173         ISD::InputArg MyFlags;
9174         MyFlags.Flags = Flags;
9175         MyFlags.VT = RegisterVT;
9176         MyFlags.ArgVT = VT;
9177         MyFlags.Used = CLI.IsReturnValueUsed;
9178         if (CLI.RetTy->isPointerTy()) {
9179           MyFlags.Flags.setPointer();
9180           MyFlags.Flags.setPointerAddrSpace(
9181               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9182         }
9183         if (CLI.RetSExt)
9184           MyFlags.Flags.setSExt();
9185         if (CLI.RetZExt)
9186           MyFlags.Flags.setZExt();
9187         if (CLI.IsInReg)
9188           MyFlags.Flags.setInReg();
9189         CLI.Ins.push_back(MyFlags);
9190       }
9191     }
9192   }
9193 
9194   // We push in swifterror return as the last element of CLI.Ins.
9195   ArgListTy &Args = CLI.getArgs();
9196   if (supportSwiftError()) {
9197     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9198       if (Args[i].IsSwiftError) {
9199         ISD::InputArg MyFlags;
9200         MyFlags.VT = getPointerTy(DL);
9201         MyFlags.ArgVT = EVT(getPointerTy(DL));
9202         MyFlags.Flags.setSwiftError();
9203         CLI.Ins.push_back(MyFlags);
9204       }
9205     }
9206   }
9207 
9208   // Handle all of the outgoing arguments.
9209   CLI.Outs.clear();
9210   CLI.OutVals.clear();
9211   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9212     SmallVector<EVT, 4> ValueVTs;
9213     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9214     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9215     Type *FinalType = Args[i].Ty;
9216     if (Args[i].IsByVal)
9217       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9218     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9219         FinalType, CLI.CallConv, CLI.IsVarArg);
9220     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9221          ++Value) {
9222       EVT VT = ValueVTs[Value];
9223       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9224       SDValue Op = SDValue(Args[i].Node.getNode(),
9225                            Args[i].Node.getResNo() + Value);
9226       ISD::ArgFlagsTy Flags;
9227 
9228       // Certain targets (such as MIPS), may have a different ABI alignment
9229       // for a type depending on the context. Give the target a chance to
9230       // specify the alignment it wants.
9231       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9232 
9233       if (Args[i].Ty->isPointerTy()) {
9234         Flags.setPointer();
9235         Flags.setPointerAddrSpace(
9236             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9237       }
9238       if (Args[i].IsZExt)
9239         Flags.setZExt();
9240       if (Args[i].IsSExt)
9241         Flags.setSExt();
9242       if (Args[i].IsInReg) {
9243         // If we are using vectorcall calling convention, a structure that is
9244         // passed InReg - is surely an HVA
9245         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9246             isa<StructType>(FinalType)) {
9247           // The first value of a structure is marked
9248           if (0 == Value)
9249             Flags.setHvaStart();
9250           Flags.setHva();
9251         }
9252         // Set InReg Flag
9253         Flags.setInReg();
9254       }
9255       if (Args[i].IsSRet)
9256         Flags.setSRet();
9257       if (Args[i].IsSwiftSelf)
9258         Flags.setSwiftSelf();
9259       if (Args[i].IsSwiftError)
9260         Flags.setSwiftError();
9261       if (Args[i].IsCFGuardTarget)
9262         Flags.setCFGuardTarget();
9263       if (Args[i].IsByVal)
9264         Flags.setByVal();
9265       if (Args[i].IsInAlloca) {
9266         Flags.setInAlloca();
9267         // Set the byval flag for CCAssignFn callbacks that don't know about
9268         // inalloca.  This way we can know how many bytes we should've allocated
9269         // and how many bytes a callee cleanup function will pop.  If we port
9270         // inalloca to more targets, we'll have to add custom inalloca handling
9271         // in the various CC lowering callbacks.
9272         Flags.setByVal();
9273       }
9274       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9275         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9276         Type *ElementTy = Ty->getElementType();
9277 
9278         unsigned FrameSize = DL.getTypeAllocSize(
9279             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9280         Flags.setByValSize(FrameSize);
9281 
9282         // info is not there but there are cases it cannot get right.
9283         unsigned FrameAlign;
9284         if (Args[i].Alignment)
9285           FrameAlign = Args[i].Alignment;
9286         else
9287           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9288         Flags.setByValAlign(Align(FrameAlign));
9289       }
9290       if (Args[i].IsNest)
9291         Flags.setNest();
9292       if (NeedsRegBlock)
9293         Flags.setInConsecutiveRegs();
9294       Flags.setOrigAlign(OriginalAlignment);
9295 
9296       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9297                                                  CLI.CallConv, VT);
9298       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9299                                                         CLI.CallConv, VT);
9300       SmallVector<SDValue, 4> Parts(NumParts);
9301       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9302 
9303       if (Args[i].IsSExt)
9304         ExtendKind = ISD::SIGN_EXTEND;
9305       else if (Args[i].IsZExt)
9306         ExtendKind = ISD::ZERO_EXTEND;
9307 
9308       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9309       // for now.
9310       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9311           CanLowerReturn) {
9312         assert((CLI.RetTy == Args[i].Ty ||
9313                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9314                  CLI.RetTy->getPointerAddressSpace() ==
9315                      Args[i].Ty->getPointerAddressSpace())) &&
9316                RetTys.size() == NumValues && "unexpected use of 'returned'");
9317         // Before passing 'returned' to the target lowering code, ensure that
9318         // either the register MVT and the actual EVT are the same size or that
9319         // the return value and argument are extended in the same way; in these
9320         // cases it's safe to pass the argument register value unchanged as the
9321         // return register value (although it's at the target's option whether
9322         // to do so)
9323         // TODO: allow code generation to take advantage of partially preserved
9324         // registers rather than clobbering the entire register when the
9325         // parameter extension method is not compatible with the return
9326         // extension method
9327         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9328             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9329              CLI.RetZExt == Args[i].IsZExt))
9330           Flags.setReturned();
9331       }
9332 
9333       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9334                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9335 
9336       for (unsigned j = 0; j != NumParts; ++j) {
9337         // if it isn't first piece, alignment must be 1
9338         // For scalable vectors the scalable part is currently handled
9339         // by individual targets, so we just use the known minimum size here.
9340         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9341                     i < CLI.NumFixedArgs, i,
9342                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9343         if (NumParts > 1 && j == 0)
9344           MyFlags.Flags.setSplit();
9345         else if (j != 0) {
9346           MyFlags.Flags.setOrigAlign(Align(1));
9347           if (j == NumParts - 1)
9348             MyFlags.Flags.setSplitEnd();
9349         }
9350 
9351         CLI.Outs.push_back(MyFlags);
9352         CLI.OutVals.push_back(Parts[j]);
9353       }
9354 
9355       if (NeedsRegBlock && Value == NumValues - 1)
9356         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9357     }
9358   }
9359 
9360   SmallVector<SDValue, 4> InVals;
9361   CLI.Chain = LowerCall(CLI, InVals);
9362 
9363   // Update CLI.InVals to use outside of this function.
9364   CLI.InVals = InVals;
9365 
9366   // Verify that the target's LowerCall behaved as expected.
9367   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9368          "LowerCall didn't return a valid chain!");
9369   assert((!CLI.IsTailCall || InVals.empty()) &&
9370          "LowerCall emitted a return value for a tail call!");
9371   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9372          "LowerCall didn't emit the correct number of values!");
9373 
9374   // For a tail call, the return value is merely live-out and there aren't
9375   // any nodes in the DAG representing it. Return a special value to
9376   // indicate that a tail call has been emitted and no more Instructions
9377   // should be processed in the current block.
9378   if (CLI.IsTailCall) {
9379     CLI.DAG.setRoot(CLI.Chain);
9380     return std::make_pair(SDValue(), SDValue());
9381   }
9382 
9383 #ifndef NDEBUG
9384   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9385     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9386     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9387            "LowerCall emitted a value with the wrong type!");
9388   }
9389 #endif
9390 
9391   SmallVector<SDValue, 4> ReturnValues;
9392   if (!CanLowerReturn) {
9393     // The instruction result is the result of loading from the
9394     // hidden sret parameter.
9395     SmallVector<EVT, 1> PVTs;
9396     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9397 
9398     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9399     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9400     EVT PtrVT = PVTs[0];
9401 
9402     unsigned NumValues = RetTys.size();
9403     ReturnValues.resize(NumValues);
9404     SmallVector<SDValue, 4> Chains(NumValues);
9405 
9406     // An aggregate return value cannot wrap around the address space, so
9407     // offsets to its parts don't wrap either.
9408     SDNodeFlags Flags;
9409     Flags.setNoUnsignedWrap(true);
9410 
9411     for (unsigned i = 0; i < NumValues; ++i) {
9412       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9413                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9414                                                         PtrVT), Flags);
9415       SDValue L = CLI.DAG.getLoad(
9416           RetTys[i], CLI.DL, CLI.Chain, Add,
9417           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9418                                             DemoteStackIdx, Offsets[i]),
9419           /* Alignment = */ 1);
9420       ReturnValues[i] = L;
9421       Chains[i] = L.getValue(1);
9422     }
9423 
9424     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9425   } else {
9426     // Collect the legal value parts into potentially illegal values
9427     // that correspond to the original function's return values.
9428     Optional<ISD::NodeType> AssertOp;
9429     if (CLI.RetSExt)
9430       AssertOp = ISD::AssertSext;
9431     else if (CLI.RetZExt)
9432       AssertOp = ISD::AssertZext;
9433     unsigned CurReg = 0;
9434     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9435       EVT VT = RetTys[I];
9436       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9437                                                      CLI.CallConv, VT);
9438       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9439                                                        CLI.CallConv, VT);
9440 
9441       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9442                                               NumRegs, RegisterVT, VT, nullptr,
9443                                               CLI.CallConv, AssertOp));
9444       CurReg += NumRegs;
9445     }
9446 
9447     // For a function returning void, there is no return value. We can't create
9448     // such a node, so we just return a null return value in that case. In
9449     // that case, nothing will actually look at the value.
9450     if (ReturnValues.empty())
9451       return std::make_pair(SDValue(), CLI.Chain);
9452   }
9453 
9454   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9455                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9456   return std::make_pair(Res, CLI.Chain);
9457 }
9458 
9459 void TargetLowering::LowerOperationWrapper(SDNode *N,
9460                                            SmallVectorImpl<SDValue> &Results,
9461                                            SelectionDAG &DAG) const {
9462   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9463     Results.push_back(Res);
9464 }
9465 
9466 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9467   llvm_unreachable("LowerOperation not implemented for this target!");
9468 }
9469 
9470 void
9471 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9472   SDValue Op = getNonRegisterValue(V);
9473   assert((Op.getOpcode() != ISD::CopyFromReg ||
9474           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9475          "Copy from a reg to the same reg!");
9476   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9477 
9478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9479   // If this is an InlineAsm we have to match the registers required, not the
9480   // notional registers required by the type.
9481 
9482   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9483                    None); // This is not an ABI copy.
9484   SDValue Chain = DAG.getEntryNode();
9485 
9486   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9487                               FuncInfo.PreferredExtendType.end())
9488                                  ? ISD::ANY_EXTEND
9489                                  : FuncInfo.PreferredExtendType[V];
9490   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9491   PendingExports.push_back(Chain);
9492 }
9493 
9494 #include "llvm/CodeGen/SelectionDAGISel.h"
9495 
9496 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9497 /// entry block, return true.  This includes arguments used by switches, since
9498 /// the switch may expand into multiple basic blocks.
9499 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9500   // With FastISel active, we may be splitting blocks, so force creation
9501   // of virtual registers for all non-dead arguments.
9502   if (FastISel)
9503     return A->use_empty();
9504 
9505   const BasicBlock &Entry = A->getParent()->front();
9506   for (const User *U : A->users())
9507     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9508       return false;  // Use not in entry block.
9509 
9510   return true;
9511 }
9512 
9513 using ArgCopyElisionMapTy =
9514     DenseMap<const Argument *,
9515              std::pair<const AllocaInst *, const StoreInst *>>;
9516 
9517 /// Scan the entry block of the function in FuncInfo for arguments that look
9518 /// like copies into a local alloca. Record any copied arguments in
9519 /// ArgCopyElisionCandidates.
9520 static void
9521 findArgumentCopyElisionCandidates(const DataLayout &DL,
9522                                   FunctionLoweringInfo *FuncInfo,
9523                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9524   // Record the state of every static alloca used in the entry block. Argument
9525   // allocas are all used in the entry block, so we need approximately as many
9526   // entries as we have arguments.
9527   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9528   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9529   unsigned NumArgs = FuncInfo->Fn->arg_size();
9530   StaticAllocas.reserve(NumArgs * 2);
9531 
9532   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9533     if (!V)
9534       return nullptr;
9535     V = V->stripPointerCasts();
9536     const auto *AI = dyn_cast<AllocaInst>(V);
9537     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9538       return nullptr;
9539     auto Iter = StaticAllocas.insert({AI, Unknown});
9540     return &Iter.first->second;
9541   };
9542 
9543   // Look for stores of arguments to static allocas. Look through bitcasts and
9544   // GEPs to handle type coercions, as long as the alloca is fully initialized
9545   // by the store. Any non-store use of an alloca escapes it and any subsequent
9546   // unanalyzed store might write it.
9547   // FIXME: Handle structs initialized with multiple stores.
9548   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9549     // Look for stores, and handle non-store uses conservatively.
9550     const auto *SI = dyn_cast<StoreInst>(&I);
9551     if (!SI) {
9552       // We will look through cast uses, so ignore them completely.
9553       if (I.isCast())
9554         continue;
9555       // Ignore debug info intrinsics, they don't escape or store to allocas.
9556       if (isa<DbgInfoIntrinsic>(I))
9557         continue;
9558       // This is an unknown instruction. Assume it escapes or writes to all
9559       // static alloca operands.
9560       for (const Use &U : I.operands()) {
9561         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9562           *Info = StaticAllocaInfo::Clobbered;
9563       }
9564       continue;
9565     }
9566 
9567     // If the stored value is a static alloca, mark it as escaped.
9568     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9569       *Info = StaticAllocaInfo::Clobbered;
9570 
9571     // Check if the destination is a static alloca.
9572     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9573     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9574     if (!Info)
9575       continue;
9576     const AllocaInst *AI = cast<AllocaInst>(Dst);
9577 
9578     // Skip allocas that have been initialized or clobbered.
9579     if (*Info != StaticAllocaInfo::Unknown)
9580       continue;
9581 
9582     // Check if the stored value is an argument, and that this store fully
9583     // initializes the alloca. Don't elide copies from the same argument twice.
9584     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9585     const auto *Arg = dyn_cast<Argument>(Val);
9586     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9587         Arg->getType()->isEmptyTy() ||
9588         DL.getTypeStoreSize(Arg->getType()) !=
9589             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9590         ArgCopyElisionCandidates.count(Arg)) {
9591       *Info = StaticAllocaInfo::Clobbered;
9592       continue;
9593     }
9594 
9595     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9596                       << '\n');
9597 
9598     // Mark this alloca and store for argument copy elision.
9599     *Info = StaticAllocaInfo::Elidable;
9600     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9601 
9602     // Stop scanning if we've seen all arguments. This will happen early in -O0
9603     // builds, which is useful, because -O0 builds have large entry blocks and
9604     // many allocas.
9605     if (ArgCopyElisionCandidates.size() == NumArgs)
9606       break;
9607   }
9608 }
9609 
9610 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9611 /// ArgVal is a load from a suitable fixed stack object.
9612 static void tryToElideArgumentCopy(
9613     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9614     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9615     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9616     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9617     SDValue ArgVal, bool &ArgHasUses) {
9618   // Check if this is a load from a fixed stack object.
9619   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9620   if (!LNode)
9621     return;
9622   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9623   if (!FINode)
9624     return;
9625 
9626   // Check that the fixed stack object is the right size and alignment.
9627   // Look at the alignment that the user wrote on the alloca instead of looking
9628   // at the stack object.
9629   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9630   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9631   const AllocaInst *AI = ArgCopyIter->second.first;
9632   int FixedIndex = FINode->getIndex();
9633   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9634   int OldIndex = AllocaIndex;
9635   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9636   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9637     LLVM_DEBUG(
9638         dbgs() << "  argument copy elision failed due to bad fixed stack "
9639                   "object size\n");
9640     return;
9641   }
9642   unsigned RequiredAlignment = AI->getAlignment();
9643   if (!RequiredAlignment) {
9644     RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9645         AI->getAllocatedType());
9646   }
9647   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9648     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9649                          "greater than stack argument alignment ("
9650                       << RequiredAlignment << " vs "
9651                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9652     return;
9653   }
9654 
9655   // Perform the elision. Delete the old stack object and replace its only use
9656   // in the variable info map. Mark the stack object as mutable.
9657   LLVM_DEBUG({
9658     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9659            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9660            << '\n';
9661   });
9662   MFI.RemoveStackObject(OldIndex);
9663   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9664   AllocaIndex = FixedIndex;
9665   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9666   Chains.push_back(ArgVal.getValue(1));
9667 
9668   // Avoid emitting code for the store implementing the copy.
9669   const StoreInst *SI = ArgCopyIter->second.second;
9670   ElidedArgCopyInstrs.insert(SI);
9671 
9672   // Check for uses of the argument again so that we can avoid exporting ArgVal
9673   // if it is't used by anything other than the store.
9674   for (const Value *U : Arg.users()) {
9675     if (U != SI) {
9676       ArgHasUses = true;
9677       break;
9678     }
9679   }
9680 }
9681 
9682 void SelectionDAGISel::LowerArguments(const Function &F) {
9683   SelectionDAG &DAG = SDB->DAG;
9684   SDLoc dl = SDB->getCurSDLoc();
9685   const DataLayout &DL = DAG.getDataLayout();
9686   SmallVector<ISD::InputArg, 16> Ins;
9687 
9688   if (!FuncInfo->CanLowerReturn) {
9689     // Put in an sret pointer parameter before all the other parameters.
9690     SmallVector<EVT, 1> ValueVTs;
9691     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9692                     F.getReturnType()->getPointerTo(
9693                         DAG.getDataLayout().getAllocaAddrSpace()),
9694                     ValueVTs);
9695 
9696     // NOTE: Assuming that a pointer will never break down to more than one VT
9697     // or one register.
9698     ISD::ArgFlagsTy Flags;
9699     Flags.setSRet();
9700     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9701     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9702                          ISD::InputArg::NoArgIndex, 0);
9703     Ins.push_back(RetArg);
9704   }
9705 
9706   // Look for stores of arguments to static allocas. Mark such arguments with a
9707   // flag to ask the target to give us the memory location of that argument if
9708   // available.
9709   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9710   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9711                                     ArgCopyElisionCandidates);
9712 
9713   // Set up the incoming argument description vector.
9714   for (const Argument &Arg : F.args()) {
9715     unsigned ArgNo = Arg.getArgNo();
9716     SmallVector<EVT, 4> ValueVTs;
9717     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9718     bool isArgValueUsed = !Arg.use_empty();
9719     unsigned PartBase = 0;
9720     Type *FinalType = Arg.getType();
9721     if (Arg.hasAttribute(Attribute::ByVal))
9722       FinalType = Arg.getParamByValType();
9723     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9724         FinalType, F.getCallingConv(), F.isVarArg());
9725     for (unsigned Value = 0, NumValues = ValueVTs.size();
9726          Value != NumValues; ++Value) {
9727       EVT VT = ValueVTs[Value];
9728       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9729       ISD::ArgFlagsTy Flags;
9730 
9731       // Certain targets (such as MIPS), may have a different ABI alignment
9732       // for a type depending on the context. Give the target a chance to
9733       // specify the alignment it wants.
9734       const Align OriginalAlignment(
9735           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9736 
9737       if (Arg.getType()->isPointerTy()) {
9738         Flags.setPointer();
9739         Flags.setPointerAddrSpace(
9740             cast<PointerType>(Arg.getType())->getAddressSpace());
9741       }
9742       if (Arg.hasAttribute(Attribute::ZExt))
9743         Flags.setZExt();
9744       if (Arg.hasAttribute(Attribute::SExt))
9745         Flags.setSExt();
9746       if (Arg.hasAttribute(Attribute::InReg)) {
9747         // If we are using vectorcall calling convention, a structure that is
9748         // passed InReg - is surely an HVA
9749         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9750             isa<StructType>(Arg.getType())) {
9751           // The first value of a structure is marked
9752           if (0 == Value)
9753             Flags.setHvaStart();
9754           Flags.setHva();
9755         }
9756         // Set InReg Flag
9757         Flags.setInReg();
9758       }
9759       if (Arg.hasAttribute(Attribute::StructRet))
9760         Flags.setSRet();
9761       if (Arg.hasAttribute(Attribute::SwiftSelf))
9762         Flags.setSwiftSelf();
9763       if (Arg.hasAttribute(Attribute::SwiftError))
9764         Flags.setSwiftError();
9765       if (Arg.hasAttribute(Attribute::ByVal))
9766         Flags.setByVal();
9767       if (Arg.hasAttribute(Attribute::InAlloca)) {
9768         Flags.setInAlloca();
9769         // Set the byval flag for CCAssignFn callbacks that don't know about
9770         // inalloca.  This way we can know how many bytes we should've allocated
9771         // and how many bytes a callee cleanup function will pop.  If we port
9772         // inalloca to more targets, we'll have to add custom inalloca handling
9773         // in the various CC lowering callbacks.
9774         Flags.setByVal();
9775       }
9776       if (F.getCallingConv() == CallingConv::X86_INTR) {
9777         // IA Interrupt passes frame (1st parameter) by value in the stack.
9778         if (ArgNo == 0)
9779           Flags.setByVal();
9780       }
9781       if (Flags.isByVal() || Flags.isInAlloca()) {
9782         Type *ElementTy = Arg.getParamByValType();
9783 
9784         // For ByVal, size and alignment should be passed from FE.  BE will
9785         // guess if this info is not there but there are cases it cannot get
9786         // right.
9787         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9788         Flags.setByValSize(FrameSize);
9789 
9790         unsigned FrameAlign;
9791         if (Arg.getParamAlignment())
9792           FrameAlign = Arg.getParamAlignment();
9793         else
9794           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9795         Flags.setByValAlign(Align(FrameAlign));
9796       }
9797       if (Arg.hasAttribute(Attribute::Nest))
9798         Flags.setNest();
9799       if (NeedsRegBlock)
9800         Flags.setInConsecutiveRegs();
9801       Flags.setOrigAlign(OriginalAlignment);
9802       if (ArgCopyElisionCandidates.count(&Arg))
9803         Flags.setCopyElisionCandidate();
9804       if (Arg.hasAttribute(Attribute::Returned))
9805         Flags.setReturned();
9806 
9807       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9808           *CurDAG->getContext(), F.getCallingConv(), VT);
9809       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9810           *CurDAG->getContext(), F.getCallingConv(), VT);
9811       for (unsigned i = 0; i != NumRegs; ++i) {
9812         // For scalable vectors, use the minimum size; individual targets
9813         // are responsible for handling scalable vector arguments and
9814         // return values.
9815         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9816                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9817         if (NumRegs > 1 && i == 0)
9818           MyFlags.Flags.setSplit();
9819         // if it isn't first piece, alignment must be 1
9820         else if (i > 0) {
9821           MyFlags.Flags.setOrigAlign(Align(1));
9822           if (i == NumRegs - 1)
9823             MyFlags.Flags.setSplitEnd();
9824         }
9825         Ins.push_back(MyFlags);
9826       }
9827       if (NeedsRegBlock && Value == NumValues - 1)
9828         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9829       PartBase += VT.getStoreSize().getKnownMinSize();
9830     }
9831   }
9832 
9833   // Call the target to set up the argument values.
9834   SmallVector<SDValue, 8> InVals;
9835   SDValue NewRoot = TLI->LowerFormalArguments(
9836       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9837 
9838   // Verify that the target's LowerFormalArguments behaved as expected.
9839   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9840          "LowerFormalArguments didn't return a valid chain!");
9841   assert(InVals.size() == Ins.size() &&
9842          "LowerFormalArguments didn't emit the correct number of values!");
9843   LLVM_DEBUG({
9844     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9845       assert(InVals[i].getNode() &&
9846              "LowerFormalArguments emitted a null value!");
9847       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9848              "LowerFormalArguments emitted a value with the wrong type!");
9849     }
9850   });
9851 
9852   // Update the DAG with the new chain value resulting from argument lowering.
9853   DAG.setRoot(NewRoot);
9854 
9855   // Set up the argument values.
9856   unsigned i = 0;
9857   if (!FuncInfo->CanLowerReturn) {
9858     // Create a virtual register for the sret pointer, and put in a copy
9859     // from the sret argument into it.
9860     SmallVector<EVT, 1> ValueVTs;
9861     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9862                     F.getReturnType()->getPointerTo(
9863                         DAG.getDataLayout().getAllocaAddrSpace()),
9864                     ValueVTs);
9865     MVT VT = ValueVTs[0].getSimpleVT();
9866     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9867     Optional<ISD::NodeType> AssertOp = None;
9868     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9869                                         nullptr, F.getCallingConv(), AssertOp);
9870 
9871     MachineFunction& MF = SDB->DAG.getMachineFunction();
9872     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9873     Register SRetReg =
9874         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9875     FuncInfo->DemoteRegister = SRetReg;
9876     NewRoot =
9877         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9878     DAG.setRoot(NewRoot);
9879 
9880     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9881     ++i;
9882   }
9883 
9884   SmallVector<SDValue, 4> Chains;
9885   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9886   for (const Argument &Arg : F.args()) {
9887     SmallVector<SDValue, 4> ArgValues;
9888     SmallVector<EVT, 4> ValueVTs;
9889     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9890     unsigned NumValues = ValueVTs.size();
9891     if (NumValues == 0)
9892       continue;
9893 
9894     bool ArgHasUses = !Arg.use_empty();
9895 
9896     // Elide the copying store if the target loaded this argument from a
9897     // suitable fixed stack object.
9898     if (Ins[i].Flags.isCopyElisionCandidate()) {
9899       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9900                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9901                              InVals[i], ArgHasUses);
9902     }
9903 
9904     // If this argument is unused then remember its value. It is used to generate
9905     // debugging information.
9906     bool isSwiftErrorArg =
9907         TLI->supportSwiftError() &&
9908         Arg.hasAttribute(Attribute::SwiftError);
9909     if (!ArgHasUses && !isSwiftErrorArg) {
9910       SDB->setUnusedArgValue(&Arg, InVals[i]);
9911 
9912       // Also remember any frame index for use in FastISel.
9913       if (FrameIndexSDNode *FI =
9914           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9915         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9916     }
9917 
9918     for (unsigned Val = 0; Val != NumValues; ++Val) {
9919       EVT VT = ValueVTs[Val];
9920       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9921                                                       F.getCallingConv(), VT);
9922       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9923           *CurDAG->getContext(), F.getCallingConv(), VT);
9924 
9925       // Even an apparent 'unused' swifterror argument needs to be returned. So
9926       // we do generate a copy for it that can be used on return from the
9927       // function.
9928       if (ArgHasUses || isSwiftErrorArg) {
9929         Optional<ISD::NodeType> AssertOp;
9930         if (Arg.hasAttribute(Attribute::SExt))
9931           AssertOp = ISD::AssertSext;
9932         else if (Arg.hasAttribute(Attribute::ZExt))
9933           AssertOp = ISD::AssertZext;
9934 
9935         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9936                                              PartVT, VT, nullptr,
9937                                              F.getCallingConv(), AssertOp));
9938       }
9939 
9940       i += NumParts;
9941     }
9942 
9943     // We don't need to do anything else for unused arguments.
9944     if (ArgValues.empty())
9945       continue;
9946 
9947     // Note down frame index.
9948     if (FrameIndexSDNode *FI =
9949         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9950       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9951 
9952     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9953                                      SDB->getCurSDLoc());
9954 
9955     SDB->setValue(&Arg, Res);
9956     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9957       // We want to associate the argument with the frame index, among
9958       // involved operands, that correspond to the lowest address. The
9959       // getCopyFromParts function, called earlier, is swapping the order of
9960       // the operands to BUILD_PAIR depending on endianness. The result of
9961       // that swapping is that the least significant bits of the argument will
9962       // be in the first operand of the BUILD_PAIR node, and the most
9963       // significant bits will be in the second operand.
9964       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9965       if (LoadSDNode *LNode =
9966           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9967         if (FrameIndexSDNode *FI =
9968             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9969           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9970     }
9971 
9972     // Analyses past this point are naive and don't expect an assertion.
9973     if (Res.getOpcode() == ISD::AssertZext)
9974       Res = Res.getOperand(0);
9975 
9976     // Update the SwiftErrorVRegDefMap.
9977     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9978       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9979       if (Register::isVirtualRegister(Reg))
9980         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9981                                    Reg);
9982     }
9983 
9984     // If this argument is live outside of the entry block, insert a copy from
9985     // wherever we got it to the vreg that other BB's will reference it as.
9986     if (Res.getOpcode() == ISD::CopyFromReg) {
9987       // If we can, though, try to skip creating an unnecessary vreg.
9988       // FIXME: This isn't very clean... it would be nice to make this more
9989       // general.
9990       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9991       if (Register::isVirtualRegister(Reg)) {
9992         FuncInfo->ValueMap[&Arg] = Reg;
9993         continue;
9994       }
9995     }
9996     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9997       FuncInfo->InitializeRegForValue(&Arg);
9998       SDB->CopyToExportRegsIfNeeded(&Arg);
9999     }
10000   }
10001 
10002   if (!Chains.empty()) {
10003     Chains.push_back(NewRoot);
10004     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10005   }
10006 
10007   DAG.setRoot(NewRoot);
10008 
10009   assert(i == InVals.size() && "Argument register count mismatch!");
10010 
10011   // If any argument copy elisions occurred and we have debug info, update the
10012   // stale frame indices used in the dbg.declare variable info table.
10013   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10014   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10015     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10016       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10017       if (I != ArgCopyElisionFrameIndexMap.end())
10018         VI.Slot = I->second;
10019     }
10020   }
10021 
10022   // Finally, if the target has anything special to do, allow it to do so.
10023   emitFunctionEntryCode();
10024 }
10025 
10026 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10027 /// ensure constants are generated when needed.  Remember the virtual registers
10028 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10029 /// directly add them, because expansion might result in multiple MBB's for one
10030 /// BB.  As such, the start of the BB might correspond to a different MBB than
10031 /// the end.
10032 void
10033 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10034   const Instruction *TI = LLVMBB->getTerminator();
10035 
10036   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10037 
10038   // Check PHI nodes in successors that expect a value to be available from this
10039   // block.
10040   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10041     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10042     if (!isa<PHINode>(SuccBB->begin())) continue;
10043     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10044 
10045     // If this terminator has multiple identical successors (common for
10046     // switches), only handle each succ once.
10047     if (!SuccsHandled.insert(SuccMBB).second)
10048       continue;
10049 
10050     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10051 
10052     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10053     // nodes and Machine PHI nodes, but the incoming operands have not been
10054     // emitted yet.
10055     for (const PHINode &PN : SuccBB->phis()) {
10056       // Ignore dead phi's.
10057       if (PN.use_empty())
10058         continue;
10059 
10060       // Skip empty types
10061       if (PN.getType()->isEmptyTy())
10062         continue;
10063 
10064       unsigned Reg;
10065       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10066 
10067       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10068         unsigned &RegOut = ConstantsOut[C];
10069         if (RegOut == 0) {
10070           RegOut = FuncInfo.CreateRegs(C);
10071           CopyValueToVirtualRegister(C, RegOut);
10072         }
10073         Reg = RegOut;
10074       } else {
10075         DenseMap<const Value *, unsigned>::iterator I =
10076           FuncInfo.ValueMap.find(PHIOp);
10077         if (I != FuncInfo.ValueMap.end())
10078           Reg = I->second;
10079         else {
10080           assert(isa<AllocaInst>(PHIOp) &&
10081                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10082                  "Didn't codegen value into a register!??");
10083           Reg = FuncInfo.CreateRegs(PHIOp);
10084           CopyValueToVirtualRegister(PHIOp, Reg);
10085         }
10086       }
10087 
10088       // Remember that this register needs to added to the machine PHI node as
10089       // the input for this MBB.
10090       SmallVector<EVT, 4> ValueVTs;
10091       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10092       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10093       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10094         EVT VT = ValueVTs[vti];
10095         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10096         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10097           FuncInfo.PHINodesToUpdate.push_back(
10098               std::make_pair(&*MBBI++, Reg + i));
10099         Reg += NumRegisters;
10100       }
10101     }
10102   }
10103 
10104   ConstantsOut.clear();
10105 }
10106 
10107 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10108 /// is 0.
10109 MachineBasicBlock *
10110 SelectionDAGBuilder::StackProtectorDescriptor::
10111 AddSuccessorMBB(const BasicBlock *BB,
10112                 MachineBasicBlock *ParentMBB,
10113                 bool IsLikely,
10114                 MachineBasicBlock *SuccMBB) {
10115   // If SuccBB has not been created yet, create it.
10116   if (!SuccMBB) {
10117     MachineFunction *MF = ParentMBB->getParent();
10118     MachineFunction::iterator BBI(ParentMBB);
10119     SuccMBB = MF->CreateMachineBasicBlock(BB);
10120     MF->insert(++BBI, SuccMBB);
10121   }
10122   // Add it as a successor of ParentMBB.
10123   ParentMBB->addSuccessor(
10124       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10125   return SuccMBB;
10126 }
10127 
10128 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10129   MachineFunction::iterator I(MBB);
10130   if (++I == FuncInfo.MF->end())
10131     return nullptr;
10132   return &*I;
10133 }
10134 
10135 /// During lowering new call nodes can be created (such as memset, etc.).
10136 /// Those will become new roots of the current DAG, but complications arise
10137 /// when they are tail calls. In such cases, the call lowering will update
10138 /// the root, but the builder still needs to know that a tail call has been
10139 /// lowered in order to avoid generating an additional return.
10140 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10141   // If the node is null, we do have a tail call.
10142   if (MaybeTC.getNode() != nullptr)
10143     DAG.setRoot(MaybeTC);
10144   else
10145     HasTailCall = true;
10146 }
10147 
10148 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10149                                         MachineBasicBlock *SwitchMBB,
10150                                         MachineBasicBlock *DefaultMBB) {
10151   MachineFunction *CurMF = FuncInfo.MF;
10152   MachineBasicBlock *NextMBB = nullptr;
10153   MachineFunction::iterator BBI(W.MBB);
10154   if (++BBI != FuncInfo.MF->end())
10155     NextMBB = &*BBI;
10156 
10157   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10158 
10159   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10160 
10161   if (Size == 2 && W.MBB == SwitchMBB) {
10162     // If any two of the cases has the same destination, and if one value
10163     // is the same as the other, but has one bit unset that the other has set,
10164     // use bit manipulation to do two compares at once.  For example:
10165     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10166     // TODO: This could be extended to merge any 2 cases in switches with 3
10167     // cases.
10168     // TODO: Handle cases where W.CaseBB != SwitchBB.
10169     CaseCluster &Small = *W.FirstCluster;
10170     CaseCluster &Big = *W.LastCluster;
10171 
10172     if (Small.Low == Small.High && Big.Low == Big.High &&
10173         Small.MBB == Big.MBB) {
10174       const APInt &SmallValue = Small.Low->getValue();
10175       const APInt &BigValue = Big.Low->getValue();
10176 
10177       // Check that there is only one bit different.
10178       APInt CommonBit = BigValue ^ SmallValue;
10179       if (CommonBit.isPowerOf2()) {
10180         SDValue CondLHS = getValue(Cond);
10181         EVT VT = CondLHS.getValueType();
10182         SDLoc DL = getCurSDLoc();
10183 
10184         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10185                                  DAG.getConstant(CommonBit, DL, VT));
10186         SDValue Cond = DAG.getSetCC(
10187             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10188             ISD::SETEQ);
10189 
10190         // Update successor info.
10191         // Both Small and Big will jump to Small.BB, so we sum up the
10192         // probabilities.
10193         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10194         if (BPI)
10195           addSuccessorWithProb(
10196               SwitchMBB, DefaultMBB,
10197               // The default destination is the first successor in IR.
10198               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10199         else
10200           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10201 
10202         // Insert the true branch.
10203         SDValue BrCond =
10204             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10205                         DAG.getBasicBlock(Small.MBB));
10206         // Insert the false branch.
10207         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10208                              DAG.getBasicBlock(DefaultMBB));
10209 
10210         DAG.setRoot(BrCond);
10211         return;
10212       }
10213     }
10214   }
10215 
10216   if (TM.getOptLevel() != CodeGenOpt::None) {
10217     // Here, we order cases by probability so the most likely case will be
10218     // checked first. However, two clusters can have the same probability in
10219     // which case their relative ordering is non-deterministic. So we use Low
10220     // as a tie-breaker as clusters are guaranteed to never overlap.
10221     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10222                [](const CaseCluster &a, const CaseCluster &b) {
10223       return a.Prob != b.Prob ?
10224              a.Prob > b.Prob :
10225              a.Low->getValue().slt(b.Low->getValue());
10226     });
10227 
10228     // Rearrange the case blocks so that the last one falls through if possible
10229     // without changing the order of probabilities.
10230     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10231       --I;
10232       if (I->Prob > W.LastCluster->Prob)
10233         break;
10234       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10235         std::swap(*I, *W.LastCluster);
10236         break;
10237       }
10238     }
10239   }
10240 
10241   // Compute total probability.
10242   BranchProbability DefaultProb = W.DefaultProb;
10243   BranchProbability UnhandledProbs = DefaultProb;
10244   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10245     UnhandledProbs += I->Prob;
10246 
10247   MachineBasicBlock *CurMBB = W.MBB;
10248   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10249     bool FallthroughUnreachable = false;
10250     MachineBasicBlock *Fallthrough;
10251     if (I == W.LastCluster) {
10252       // For the last cluster, fall through to the default destination.
10253       Fallthrough = DefaultMBB;
10254       FallthroughUnreachable = isa<UnreachableInst>(
10255           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10256     } else {
10257       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10258       CurMF->insert(BBI, Fallthrough);
10259       // Put Cond in a virtual register to make it available from the new blocks.
10260       ExportFromCurrentBlock(Cond);
10261     }
10262     UnhandledProbs -= I->Prob;
10263 
10264     switch (I->Kind) {
10265       case CC_JumpTable: {
10266         // FIXME: Optimize away range check based on pivot comparisons.
10267         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10268         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10269 
10270         // The jump block hasn't been inserted yet; insert it here.
10271         MachineBasicBlock *JumpMBB = JT->MBB;
10272         CurMF->insert(BBI, JumpMBB);
10273 
10274         auto JumpProb = I->Prob;
10275         auto FallthroughProb = UnhandledProbs;
10276 
10277         // If the default statement is a target of the jump table, we evenly
10278         // distribute the default probability to successors of CurMBB. Also
10279         // update the probability on the edge from JumpMBB to Fallthrough.
10280         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10281                                               SE = JumpMBB->succ_end();
10282              SI != SE; ++SI) {
10283           if (*SI == DefaultMBB) {
10284             JumpProb += DefaultProb / 2;
10285             FallthroughProb -= DefaultProb / 2;
10286             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10287             JumpMBB->normalizeSuccProbs();
10288             break;
10289           }
10290         }
10291 
10292         if (FallthroughUnreachable) {
10293           // Skip the range check if the fallthrough block is unreachable.
10294           JTH->OmitRangeCheck = true;
10295         }
10296 
10297         if (!JTH->OmitRangeCheck)
10298           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10299         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10300         CurMBB->normalizeSuccProbs();
10301 
10302         // The jump table header will be inserted in our current block, do the
10303         // range check, and fall through to our fallthrough block.
10304         JTH->HeaderBB = CurMBB;
10305         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10306 
10307         // If we're in the right place, emit the jump table header right now.
10308         if (CurMBB == SwitchMBB) {
10309           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10310           JTH->Emitted = true;
10311         }
10312         break;
10313       }
10314       case CC_BitTests: {
10315         // FIXME: Optimize away range check based on pivot comparisons.
10316         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10317 
10318         // The bit test blocks haven't been inserted yet; insert them here.
10319         for (BitTestCase &BTC : BTB->Cases)
10320           CurMF->insert(BBI, BTC.ThisBB);
10321 
10322         // Fill in fields of the BitTestBlock.
10323         BTB->Parent = CurMBB;
10324         BTB->Default = Fallthrough;
10325 
10326         BTB->DefaultProb = UnhandledProbs;
10327         // If the cases in bit test don't form a contiguous range, we evenly
10328         // distribute the probability on the edge to Fallthrough to two
10329         // successors of CurMBB.
10330         if (!BTB->ContiguousRange) {
10331           BTB->Prob += DefaultProb / 2;
10332           BTB->DefaultProb -= DefaultProb / 2;
10333         }
10334 
10335         if (FallthroughUnreachable) {
10336           // Skip the range check if the fallthrough block is unreachable.
10337           BTB->OmitRangeCheck = true;
10338         }
10339 
10340         // If we're in the right place, emit the bit test header right now.
10341         if (CurMBB == SwitchMBB) {
10342           visitBitTestHeader(*BTB, SwitchMBB);
10343           BTB->Emitted = true;
10344         }
10345         break;
10346       }
10347       case CC_Range: {
10348         const Value *RHS, *LHS, *MHS;
10349         ISD::CondCode CC;
10350         if (I->Low == I->High) {
10351           // Check Cond == I->Low.
10352           CC = ISD::SETEQ;
10353           LHS = Cond;
10354           RHS=I->Low;
10355           MHS = nullptr;
10356         } else {
10357           // Check I->Low <= Cond <= I->High.
10358           CC = ISD::SETLE;
10359           LHS = I->Low;
10360           MHS = Cond;
10361           RHS = I->High;
10362         }
10363 
10364         // If Fallthrough is unreachable, fold away the comparison.
10365         if (FallthroughUnreachable)
10366           CC = ISD::SETTRUE;
10367 
10368         // The false probability is the sum of all unhandled cases.
10369         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10370                      getCurSDLoc(), I->Prob, UnhandledProbs);
10371 
10372         if (CurMBB == SwitchMBB)
10373           visitSwitchCase(CB, SwitchMBB);
10374         else
10375           SL->SwitchCases.push_back(CB);
10376 
10377         break;
10378       }
10379     }
10380     CurMBB = Fallthrough;
10381   }
10382 }
10383 
10384 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10385                                               CaseClusterIt First,
10386                                               CaseClusterIt Last) {
10387   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10388     if (X.Prob != CC.Prob)
10389       return X.Prob > CC.Prob;
10390 
10391     // Ties are broken by comparing the case value.
10392     return X.Low->getValue().slt(CC.Low->getValue());
10393   });
10394 }
10395 
10396 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10397                                         const SwitchWorkListItem &W,
10398                                         Value *Cond,
10399                                         MachineBasicBlock *SwitchMBB) {
10400   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10401          "Clusters not sorted?");
10402 
10403   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10404 
10405   // Balance the tree based on branch probabilities to create a near-optimal (in
10406   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10407   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10408   CaseClusterIt LastLeft = W.FirstCluster;
10409   CaseClusterIt FirstRight = W.LastCluster;
10410   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10411   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10412 
10413   // Move LastLeft and FirstRight towards each other from opposite directions to
10414   // find a partitioning of the clusters which balances the probability on both
10415   // sides. If LeftProb and RightProb are equal, alternate which side is
10416   // taken to ensure 0-probability nodes are distributed evenly.
10417   unsigned I = 0;
10418   while (LastLeft + 1 < FirstRight) {
10419     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10420       LeftProb += (++LastLeft)->Prob;
10421     else
10422       RightProb += (--FirstRight)->Prob;
10423     I++;
10424   }
10425 
10426   while (true) {
10427     // Our binary search tree differs from a typical BST in that ours can have up
10428     // to three values in each leaf. The pivot selection above doesn't take that
10429     // into account, which means the tree might require more nodes and be less
10430     // efficient. We compensate for this here.
10431 
10432     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10433     unsigned NumRight = W.LastCluster - FirstRight + 1;
10434 
10435     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10436       // If one side has less than 3 clusters, and the other has more than 3,
10437       // consider taking a cluster from the other side.
10438 
10439       if (NumLeft < NumRight) {
10440         // Consider moving the first cluster on the right to the left side.
10441         CaseCluster &CC = *FirstRight;
10442         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10443         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10444         if (LeftSideRank <= RightSideRank) {
10445           // Moving the cluster to the left does not demote it.
10446           ++LastLeft;
10447           ++FirstRight;
10448           continue;
10449         }
10450       } else {
10451         assert(NumRight < NumLeft);
10452         // Consider moving the last element on the left to the right side.
10453         CaseCluster &CC = *LastLeft;
10454         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10455         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10456         if (RightSideRank <= LeftSideRank) {
10457           // Moving the cluster to the right does not demot it.
10458           --LastLeft;
10459           --FirstRight;
10460           continue;
10461         }
10462       }
10463     }
10464     break;
10465   }
10466 
10467   assert(LastLeft + 1 == FirstRight);
10468   assert(LastLeft >= W.FirstCluster);
10469   assert(FirstRight <= W.LastCluster);
10470 
10471   // Use the first element on the right as pivot since we will make less-than
10472   // comparisons against it.
10473   CaseClusterIt PivotCluster = FirstRight;
10474   assert(PivotCluster > W.FirstCluster);
10475   assert(PivotCluster <= W.LastCluster);
10476 
10477   CaseClusterIt FirstLeft = W.FirstCluster;
10478   CaseClusterIt LastRight = W.LastCluster;
10479 
10480   const ConstantInt *Pivot = PivotCluster->Low;
10481 
10482   // New blocks will be inserted immediately after the current one.
10483   MachineFunction::iterator BBI(W.MBB);
10484   ++BBI;
10485 
10486   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10487   // we can branch to its destination directly if it's squeezed exactly in
10488   // between the known lower bound and Pivot - 1.
10489   MachineBasicBlock *LeftMBB;
10490   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10491       FirstLeft->Low == W.GE &&
10492       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10493     LeftMBB = FirstLeft->MBB;
10494   } else {
10495     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10496     FuncInfo.MF->insert(BBI, LeftMBB);
10497     WorkList.push_back(
10498         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10499     // Put Cond in a virtual register to make it available from the new blocks.
10500     ExportFromCurrentBlock(Cond);
10501   }
10502 
10503   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10504   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10505   // directly if RHS.High equals the current upper bound.
10506   MachineBasicBlock *RightMBB;
10507   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10508       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10509     RightMBB = FirstRight->MBB;
10510   } else {
10511     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10512     FuncInfo.MF->insert(BBI, RightMBB);
10513     WorkList.push_back(
10514         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10515     // Put Cond in a virtual register to make it available from the new blocks.
10516     ExportFromCurrentBlock(Cond);
10517   }
10518 
10519   // Create the CaseBlock record that will be used to lower the branch.
10520   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10521                getCurSDLoc(), LeftProb, RightProb);
10522 
10523   if (W.MBB == SwitchMBB)
10524     visitSwitchCase(CB, SwitchMBB);
10525   else
10526     SL->SwitchCases.push_back(CB);
10527 }
10528 
10529 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10530 // from the swith statement.
10531 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10532                                             BranchProbability PeeledCaseProb) {
10533   if (PeeledCaseProb == BranchProbability::getOne())
10534     return BranchProbability::getZero();
10535   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10536 
10537   uint32_t Numerator = CaseProb.getNumerator();
10538   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10539   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10540 }
10541 
10542 // Try to peel the top probability case if it exceeds the threshold.
10543 // Return current MachineBasicBlock for the switch statement if the peeling
10544 // does not occur.
10545 // If the peeling is performed, return the newly created MachineBasicBlock
10546 // for the peeled switch statement. Also update Clusters to remove the peeled
10547 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10548 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10549     const SwitchInst &SI, CaseClusterVector &Clusters,
10550     BranchProbability &PeeledCaseProb) {
10551   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10552   // Don't perform if there is only one cluster or optimizing for size.
10553   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10554       TM.getOptLevel() == CodeGenOpt::None ||
10555       SwitchMBB->getParent()->getFunction().hasMinSize())
10556     return SwitchMBB;
10557 
10558   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10559   unsigned PeeledCaseIndex = 0;
10560   bool SwitchPeeled = false;
10561   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10562     CaseCluster &CC = Clusters[Index];
10563     if (CC.Prob < TopCaseProb)
10564       continue;
10565     TopCaseProb = CC.Prob;
10566     PeeledCaseIndex = Index;
10567     SwitchPeeled = true;
10568   }
10569   if (!SwitchPeeled)
10570     return SwitchMBB;
10571 
10572   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10573                     << TopCaseProb << "\n");
10574 
10575   // Record the MBB for the peeled switch statement.
10576   MachineFunction::iterator BBI(SwitchMBB);
10577   ++BBI;
10578   MachineBasicBlock *PeeledSwitchMBB =
10579       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10580   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10581 
10582   ExportFromCurrentBlock(SI.getCondition());
10583   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10584   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10585                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10586   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10587 
10588   Clusters.erase(PeeledCaseIt);
10589   for (CaseCluster &CC : Clusters) {
10590     LLVM_DEBUG(
10591         dbgs() << "Scale the probablity for one cluster, before scaling: "
10592                << CC.Prob << "\n");
10593     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10594     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10595   }
10596   PeeledCaseProb = TopCaseProb;
10597   return PeeledSwitchMBB;
10598 }
10599 
10600 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10601   // Extract cases from the switch.
10602   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10603   CaseClusterVector Clusters;
10604   Clusters.reserve(SI.getNumCases());
10605   for (auto I : SI.cases()) {
10606     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10607     const ConstantInt *CaseVal = I.getCaseValue();
10608     BranchProbability Prob =
10609         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10610             : BranchProbability(1, SI.getNumCases() + 1);
10611     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10612   }
10613 
10614   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10615 
10616   // Cluster adjacent cases with the same destination. We do this at all
10617   // optimization levels because it's cheap to do and will make codegen faster
10618   // if there are many clusters.
10619   sortAndRangeify(Clusters);
10620 
10621   // The branch probablity of the peeled case.
10622   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10623   MachineBasicBlock *PeeledSwitchMBB =
10624       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10625 
10626   // If there is only the default destination, jump there directly.
10627   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10628   if (Clusters.empty()) {
10629     assert(PeeledSwitchMBB == SwitchMBB);
10630     SwitchMBB->addSuccessor(DefaultMBB);
10631     if (DefaultMBB != NextBlock(SwitchMBB)) {
10632       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10633                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10634     }
10635     return;
10636   }
10637 
10638   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10639   SL->findBitTestClusters(Clusters, &SI);
10640 
10641   LLVM_DEBUG({
10642     dbgs() << "Case clusters: ";
10643     for (const CaseCluster &C : Clusters) {
10644       if (C.Kind == CC_JumpTable)
10645         dbgs() << "JT:";
10646       if (C.Kind == CC_BitTests)
10647         dbgs() << "BT:";
10648 
10649       C.Low->getValue().print(dbgs(), true);
10650       if (C.Low != C.High) {
10651         dbgs() << '-';
10652         C.High->getValue().print(dbgs(), true);
10653       }
10654       dbgs() << ' ';
10655     }
10656     dbgs() << '\n';
10657   });
10658 
10659   assert(!Clusters.empty());
10660   SwitchWorkList WorkList;
10661   CaseClusterIt First = Clusters.begin();
10662   CaseClusterIt Last = Clusters.end() - 1;
10663   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10664   // Scale the branchprobability for DefaultMBB if the peel occurs and
10665   // DefaultMBB is not replaced.
10666   if (PeeledCaseProb != BranchProbability::getZero() &&
10667       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10668     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10669   WorkList.push_back(
10670       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10671 
10672   while (!WorkList.empty()) {
10673     SwitchWorkListItem W = WorkList.back();
10674     WorkList.pop_back();
10675     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10676 
10677     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10678         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10679       // For optimized builds, lower large range as a balanced binary tree.
10680       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10681       continue;
10682     }
10683 
10684     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10685   }
10686 }
10687 
10688 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10689   SDValue N = getValue(I.getOperand(0));
10690   setValue(&I, N);
10691 }
10692