xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 97d4f7c19414cd8d7f74417ae759a62da90bf98d)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts =
219           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
326   // then truncating.
327   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
328       ValueVT.bitsLT(PartEVT)) {
329     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
330     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
331   }
332 
333   report_fatal_error("Unknown mismatch in getCopyFromParts!");
334 }
335 
336 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
337                                               const Twine &ErrMsg) {
338   const Instruction *I = dyn_cast_or_null<Instruction>(V);
339   if (!V)
340     return Ctx.emitError(ErrMsg);
341 
342   const char *AsmError = ", possible invalid constraint for vector type";
343   if (const CallInst *CI = dyn_cast<CallInst>(I))
344     if (isa<InlineAsm>(CI->getCalledValue()))
345       return Ctx.emitError(I, ErrMsg + AsmError);
346 
347   return Ctx.emitError(I, ErrMsg);
348 }
349 
350 /// getCopyFromPartsVector - Create a value that contains the specified legal
351 /// parts combined into the value they represent.  If the parts combine to a
352 /// type larger than ValueVT then AssertOp can be used to specify whether the
353 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
354 /// ValueVT (ISD::AssertSext).
355 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
356                                       const SDValue *Parts, unsigned NumParts,
357                                       MVT PartVT, EVT ValueVT, const Value *V,
358                                       Optional<CallingConv::ID> CallConv) {
359   assert(ValueVT.isVector() && "Not a vector value");
360   assert(NumParts > 0 && "No parts to assemble!");
361   const bool IsABIRegCopy = CallConv.hasValue();
362 
363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
364   SDValue Val = Parts[0];
365 
366   // Handle a multi-element vector.
367   if (NumParts > 1) {
368     EVT IntermediateVT;
369     MVT RegisterVT;
370     unsigned NumIntermediates;
371     unsigned NumRegs;
372 
373     if (IsABIRegCopy) {
374       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
375           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
376           NumIntermediates, RegisterVT);
377     } else {
378       NumRegs =
379           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
380                                      NumIntermediates, RegisterVT);
381     }
382 
383     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
384     NumParts = NumRegs; // Silence a compiler warning.
385     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
386     assert(RegisterVT.getSizeInBits() ==
387            Parts[0].getSimpleValueType().getSizeInBits() &&
388            "Part type sizes don't match!");
389 
390     // Assemble the parts into intermediate operands.
391     SmallVector<SDValue, 8> Ops(NumIntermediates);
392     if (NumIntermediates == NumParts) {
393       // If the register was not expanded, truncate or copy the value,
394       // as appropriate.
395       for (unsigned i = 0; i != NumParts; ++i)
396         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
397                                   PartVT, IntermediateVT, V);
398     } else if (NumParts > 0) {
399       // If the intermediate type was expanded, build the intermediate
400       // operands from the parts.
401       assert(NumParts % NumIntermediates == 0 &&
402              "Must expand into a divisible number of parts!");
403       unsigned Factor = NumParts / NumIntermediates;
404       for (unsigned i = 0; i != NumIntermediates; ++i)
405         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
406                                   PartVT, IntermediateVT, V);
407     }
408 
409     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
410     // intermediate operands.
411     EVT BuiltVectorTy =
412         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
413                          (IntermediateVT.isVector()
414                               ? IntermediateVT.getVectorNumElements() * NumParts
415                               : NumIntermediates));
416     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
417                                                 : ISD::BUILD_VECTOR,
418                       DL, BuiltVectorTy, Ops);
419   }
420 
421   // There is now one part, held in Val.  Correct it to match ValueVT.
422   EVT PartEVT = Val.getValueType();
423 
424   if (PartEVT == ValueVT)
425     return Val;
426 
427   if (PartEVT.isVector()) {
428     // If the element type of the source/dest vectors are the same, but the
429     // parts vector has more elements than the value vector, then we have a
430     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
431     // elements we want.
432     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
433       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
434              "Cannot narrow, it would be a lossy transformation");
435       return DAG.getNode(
436           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
437           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
438     }
439 
440     // Vector/Vector bitcast.
441     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443 
444     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
445       "Cannot handle this kind of promotion");
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 
449   }
450 
451   // Trivial bitcast if the types are the same size and the destination
452   // vector type is legal.
453   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
454       TLI.isTypeLegal(ValueVT))
455     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
456 
457   if (ValueVT.getVectorNumElements() != 1) {
458      // Certain ABIs require that vectors are passed as integers. For vectors
459      // are the same size, this is an obvious bitcast.
460      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
461        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
463        // Bitcast Val back the original type and extract the corresponding
464        // vector we want.
465        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
466        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
467                                            ValueVT.getVectorElementType(), Elts);
468        Val = DAG.getBitcast(WiderVecType, Val);
469        return DAG.getNode(
470            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
471            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
472      }
473 
474      diagnosePossiblyInvalidConstraint(
475          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
476      return DAG.getUNDEF(ValueVT);
477   }
478 
479   // Handle cases such as i8 -> <1 x i1>
480   EVT ValueSVT = ValueVT.getVectorElementType();
481   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
482     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
483                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
484 
485   return DAG.getBuildVector(ValueVT, DL, Val);
486 }
487 
488 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
489                                  SDValue Val, SDValue *Parts, unsigned NumParts,
490                                  MVT PartVT, const Value *V,
491                                  Optional<CallingConv::ID> CallConv);
492 
493 /// getCopyToParts - Create a series of nodes that contain the specified value
494 /// split into legal parts.  If the parts contain more bits than Val, then, for
495 /// integers, ExtendKind can be used to specify how to generate the extra bits.
496 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
497                            SDValue *Parts, unsigned NumParts, MVT PartVT,
498                            const Value *V,
499                            Optional<CallingConv::ID> CallConv = None,
500                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
501   EVT ValueVT = Val.getValueType();
502 
503   // Handle the vector case separately.
504   if (ValueVT.isVector())
505     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
506                                 CallConv);
507 
508   unsigned PartBits = PartVT.getSizeInBits();
509   unsigned OrigNumParts = NumParts;
510   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
511          "Copying to an illegal type!");
512 
513   if (NumParts == 0)
514     return;
515 
516   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
517   EVT PartEVT = PartVT;
518   if (PartEVT == ValueVT) {
519     assert(NumParts == 1 && "No-op copy with multiple parts!");
520     Parts[0] = Val;
521     return;
522   }
523 
524   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
525     // If the parts cover more bits than the value has, promote the value.
526     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
527       assert(NumParts == 1 && "Do not know what to promote to!");
528       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
529     } else {
530       if (ValueVT.isFloatingPoint()) {
531         // FP values need to be bitcast, then extended if they are being put
532         // into a larger container.
533         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
534         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
535       }
536       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
537              ValueVT.isInteger() &&
538              "Unknown mismatch!");
539       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
540       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
541       if (PartVT == MVT::x86mmx)
542         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
543     }
544   } else if (PartBits == ValueVT.getSizeInBits()) {
545     // Different types of the same size.
546     assert(NumParts == 1 && PartEVT != ValueVT);
547     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
549     // If the parts cover less bits than value has, truncate the value.
550     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551            ValueVT.isInteger() &&
552            "Unknown mismatch!");
553     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
555     if (PartVT == MVT::x86mmx)
556       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557   }
558 
559   // The value may have changed - recompute ValueVT.
560   ValueVT = Val.getValueType();
561   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
562          "Failed to tile the value with PartVT!");
563 
564   if (NumParts == 1) {
565     if (PartEVT != ValueVT) {
566       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
567                                         "scalar-to-vector conversion failed");
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569     }
570 
571     Parts[0] = Val;
572     return;
573   }
574 
575   // Expand the value into multiple parts.
576   if (NumParts & (NumParts - 1)) {
577     // The number of parts is not a power of 2.  Split off and copy the tail.
578     assert(PartVT.isInteger() && ValueVT.isInteger() &&
579            "Do not know what to expand to!");
580     unsigned RoundParts = 1 << Log2_32(NumParts);
581     unsigned RoundBits = RoundParts * PartBits;
582     unsigned OddParts = NumParts - RoundParts;
583     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
584       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
585 
586     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
587                    CallConv);
588 
589     if (DAG.getDataLayout().isBigEndian())
590       // The odd parts were reversed by getCopyToParts - unreverse them.
591       std::reverse(Parts + RoundParts, Parts + NumParts);
592 
593     NumParts = RoundParts;
594     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
595     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
596   }
597 
598   // The number of parts is a power of 2.  Repeatedly bisect the value using
599   // EXTRACT_ELEMENT.
600   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
601                          EVT::getIntegerVT(*DAG.getContext(),
602                                            ValueVT.getSizeInBits()),
603                          Val);
604 
605   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
606     for (unsigned i = 0; i < NumParts; i += StepSize) {
607       unsigned ThisBits = StepSize * PartBits / 2;
608       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
609       SDValue &Part0 = Parts[i];
610       SDValue &Part1 = Parts[i+StepSize/2];
611 
612       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
613                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
614       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
616 
617       if (ThisBits == PartBits && ThisVT != PartVT) {
618         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
619         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
620       }
621     }
622   }
623 
624   if (DAG.getDataLayout().isBigEndian())
625     std::reverse(Parts, Parts + OrigNumParts);
626 }
627 
628 static SDValue widenVectorToPartType(SelectionDAG &DAG,
629                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
630   if (!PartVT.isVector())
631     return SDValue();
632 
633   EVT ValueVT = Val.getValueType();
634   unsigned PartNumElts = PartVT.getVectorNumElements();
635   unsigned ValueNumElts = ValueVT.getVectorNumElements();
636   if (PartNumElts > ValueNumElts &&
637       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
638     EVT ElementVT = PartVT.getVectorElementType();
639     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
640     // undef elements.
641     SmallVector<SDValue, 16> Ops;
642     DAG.ExtractVectorElements(Val, Ops);
643     SDValue EltUndef = DAG.getUNDEF(ElementVT);
644     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
645       Ops.push_back(EltUndef);
646 
647     // FIXME: Use CONCAT for 2x -> 4x.
648     return DAG.getBuildVector(PartVT, DL, Ops);
649   }
650 
651   return SDValue();
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  Optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.hasValue();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                  ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else {
682       if (ValueVT.getVectorNumElements() == 1) {
683         Val = DAG.getNode(
684             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
685             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
686       } else {
687         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
688                "lossy conversion of vector to scalar type");
689         EVT IntermediateType =
690             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
691         Val = DAG.getBitcast(IntermediateType, Val);
692         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
693       }
694     }
695 
696     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
697     Parts[0] = Val;
698     return;
699   }
700 
701   // Handle a multi-element vector.
702   EVT IntermediateVT;
703   MVT RegisterVT;
704   unsigned NumIntermediates;
705   unsigned NumRegs;
706   if (IsABIRegCopy) {
707     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
708         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
709         NumIntermediates, RegisterVT);
710   } else {
711     NumRegs =
712         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
713                                    NumIntermediates, RegisterVT);
714   }
715 
716   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
717   NumParts = NumRegs; // Silence a compiler warning.
718   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
719 
720   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
721     IntermediateVT.getVectorNumElements() : 1;
722 
723   // Convert the vector to the appropiate type if necessary.
724   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
725 
726   EVT BuiltVectorTy = EVT::getVectorVT(
727       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
728   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
729   if (ValueVT != BuiltVectorTy) {
730     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
731       Val = Widened;
732 
733     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
734   }
735 
736   // Split the vector into intermediate operands.
737   SmallVector<SDValue, 8> Ops(NumIntermediates);
738   for (unsigned i = 0; i != NumIntermediates; ++i) {
739     if (IntermediateVT.isVector()) {
740       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
741                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
742     } else {
743       Ops[i] = DAG.getNode(
744           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
745           DAG.getConstant(i, DL, IdxVT));
746     }
747   }
748 
749   // Split the intermediate operands into legal parts.
750   if (NumParts == NumIntermediates) {
751     // If the register was not expanded, promote or copy the value,
752     // as appropriate.
753     for (unsigned i = 0; i != NumParts; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
755   } else if (NumParts > 0) {
756     // If the intermediate type was expanded, split each the value into
757     // legal parts.
758     assert(NumIntermediates != 0 && "division by zero");
759     assert(NumParts % NumIntermediates == 0 &&
760            "Must expand into a divisible number of parts!");
761     unsigned Factor = NumParts / NumIntermediates;
762     for (unsigned i = 0; i != NumIntermediates; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
764                      CallConv);
765   }
766 }
767 
768 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
769                            EVT valuevt, Optional<CallingConv::ID> CC)
770     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
771       RegCount(1, regs.size()), CallConv(CC) {}
772 
773 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
774                            const DataLayout &DL, unsigned Reg, Type *Ty,
775                            Optional<CallingConv::ID> CC) {
776   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
777 
778   CallConv = CC;
779 
780   for (EVT ValueVT : ValueVTs) {
781     unsigned NumRegs =
782         isABIMangled()
783             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
784             : TLI.getNumRegisters(Context, ValueVT);
785     MVT RegisterVT =
786         isABIMangled()
787             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
788             : TLI.getRegisterType(Context, ValueVT);
789     for (unsigned i = 0; i != NumRegs; ++i)
790       Regs.push_back(Reg + i);
791     RegVTs.push_back(RegisterVT);
792     RegCount.push_back(NumRegs);
793     Reg += NumRegs;
794   }
795 }
796 
797 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
798                                       FunctionLoweringInfo &FuncInfo,
799                                       const SDLoc &dl, SDValue &Chain,
800                                       SDValue *Flag, const Value *V) const {
801   // A Value with type {} or [0 x %t] needs no registers.
802   if (ValueVTs.empty())
803     return SDValue();
804 
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   // Assemble the legal parts into the final values.
808   SmallVector<SDValue, 4> Values(ValueVTs.size());
809   SmallVector<SDValue, 8> Parts;
810   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
811     // Copy the legal parts from the registers.
812     EVT ValueVT = ValueVTs[Value];
813     unsigned NumRegs = RegCount[Value];
814     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
815                                           *DAG.getContext(),
816                                           CallConv.getValue(), RegVTs[Value])
817                                     : RegVTs[Value];
818 
819     Parts.resize(NumRegs);
820     for (unsigned i = 0; i != NumRegs; ++i) {
821       SDValue P;
822       if (!Flag) {
823         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
824       } else {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
826         *Flag = P.getValue(2);
827       }
828 
829       Chain = P.getValue(1);
830       Parts[i] = P;
831 
832       // If the source register was virtual and if we know something about it,
833       // add an assert node.
834       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
835           !RegisterVT.isInteger())
836         continue;
837 
838       const FunctionLoweringInfo::LiveOutInfo *LOI =
839         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
840       if (!LOI)
841         continue;
842 
843       unsigned RegSize = RegisterVT.getScalarSizeInBits();
844       unsigned NumSignBits = LOI->NumSignBits;
845       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
846 
847       if (NumZeroBits == RegSize) {
848         // The current value is a zero.
849         // Explicitly express that as it would be easier for
850         // optimizations to kick in.
851         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
852         continue;
853       }
854 
855       // FIXME: We capture more information than the dag can represent.  For
856       // now, just use the tightest assertzext/assertsext possible.
857       bool isSExt;
858       EVT FromVT(MVT::Other);
859       if (NumZeroBits) {
860         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
861         isSExt = false;
862       } else if (NumSignBits > 1) {
863         FromVT =
864             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
865         isSExt = true;
866       } else {
867         continue;
868       }
869       // Add an assertion node.
870       assert(FromVT != MVT::Other);
871       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
872                              RegisterVT, P, DAG.getValueType(FromVT));
873     }
874 
875     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
876                                      RegisterVT, ValueVT, V, CallConv);
877     Part += NumRegs;
878     Parts.clear();
879   }
880 
881   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
882 }
883 
884 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
885                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
886                                  const Value *V,
887                                  ISD::NodeType PreferredExtendType) const {
888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
889   ISD::NodeType ExtendKind = PreferredExtendType;
890 
891   // Get the list of the values's legal parts.
892   unsigned NumRegs = Regs.size();
893   SmallVector<SDValue, 8> Parts(NumRegs);
894   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
895     unsigned NumParts = RegCount[Value];
896 
897     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
898                                           *DAG.getContext(),
899                                           CallConv.getValue(), RegVTs[Value])
900                                     : RegVTs[Value];
901 
902     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
903       ExtendKind = ISD::ZERO_EXTEND;
904 
905     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
906                    NumParts, RegisterVT, V, CallConv, ExtendKind);
907     Part += NumParts;
908   }
909 
910   // Copy the parts into the registers.
911   SmallVector<SDValue, 8> Chains(NumRegs);
912   for (unsigned i = 0; i != NumRegs; ++i) {
913     SDValue Part;
914     if (!Flag) {
915       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
916     } else {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
918       *Flag = Part.getValue(1);
919     }
920 
921     Chains[i] = Part.getValue(0);
922   }
923 
924   if (NumRegs == 1 || Flag)
925     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
926     // flagged to it. That is the CopyToReg nodes and the user are considered
927     // a single scheduling unit. If we create a TokenFactor and return it as
928     // chain, then the TokenFactor is both a predecessor (operand) of the
929     // user as well as a successor (the TF operands are flagged to the user).
930     // c1, f1 = CopyToReg
931     // c2, f2 = CopyToReg
932     // c3     = TokenFactor c1, c2
933     // ...
934     //        = op c3, ..., f2
935     Chain = Chains[NumRegs-1];
936   else
937     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
938 }
939 
940 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
941                                         unsigned MatchingIdx, const SDLoc &dl,
942                                         SelectionDAG &DAG,
943                                         std::vector<SDValue> &Ops) const {
944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
945 
946   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
947   if (HasMatching)
948     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
949   else if (!Regs.empty() &&
950            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
951     // Put the register class of the virtual registers in the flag word.  That
952     // way, later passes can recompute register class constraints for inline
953     // assembly as well as normal instructions.
954     // Don't do this for tied operands that can use the regclass information
955     // from the def.
956     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
957     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
958     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
959   }
960 
961   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
962   Ops.push_back(Res);
963 
964   if (Code == InlineAsm::Kind_Clobber) {
965     // Clobbers should always have a 1:1 mapping with registers, and may
966     // reference registers that have illegal (e.g. vector) types. Hence, we
967     // shouldn't try to apply any sort of splitting logic to them.
968     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
969            "No 1:1 mapping from clobbers to regs?");
970     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
971     (void)SP;
972     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
973       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
974       assert(
975           (Regs[I] != SP ||
976            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
977           "If we clobbered the stack pointer, MFI should know about it.");
978     }
979     return;
980   }
981 
982   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
983     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
984     MVT RegisterVT = RegVTs[Value];
985     for (unsigned i = 0; i != NumRegs; ++i) {
986       assert(Reg < Regs.size() && "Mismatch in # registers expected");
987       unsigned TheReg = Regs[Reg++];
988       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
989     }
990   }
991 }
992 
993 SmallVector<std::pair<unsigned, unsigned>, 4>
994 RegsForValue::getRegsAndSizes() const {
995   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
996   unsigned I = 0;
997   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
998     unsigned RegCount = std::get<0>(CountAndVT);
999     MVT RegisterVT = std::get<1>(CountAndVT);
1000     unsigned RegisterSize = RegisterVT.getSizeInBits();
1001     for (unsigned E = I + RegCount; I != E; ++I)
1002       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1003   }
1004   return OutVec;
1005 }
1006 
1007 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1008                                const TargetLibraryInfo *li) {
1009   AA = aa;
1010   GFI = gfi;
1011   LibInfo = li;
1012   DL = &DAG.getDataLayout();
1013   Context = DAG.getContext();
1014   LPadToCallSiteMap.clear();
1015 }
1016 
1017 void SelectionDAGBuilder::clear() {
1018   NodeMap.clear();
1019   UnusedArgNodeMap.clear();
1020   PendingLoads.clear();
1021   PendingExports.clear();
1022   CurInst = nullptr;
1023   HasTailCall = false;
1024   SDNodeOrder = LowestSDNodeOrder;
1025   StatepointLowering.clear();
1026 }
1027 
1028 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1029   DanglingDebugInfoMap.clear();
1030 }
1031 
1032 SDValue SelectionDAGBuilder::getRoot() {
1033   if (PendingLoads.empty())
1034     return DAG.getRoot();
1035 
1036   if (PendingLoads.size() == 1) {
1037     SDValue Root = PendingLoads[0];
1038     DAG.setRoot(Root);
1039     PendingLoads.clear();
1040     return Root;
1041   }
1042 
1043   // Otherwise, we have to make a token factor node.
1044   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1045   PendingLoads.clear();
1046   DAG.setRoot(Root);
1047   return Root;
1048 }
1049 
1050 SDValue SelectionDAGBuilder::getControlRoot() {
1051   SDValue Root = DAG.getRoot();
1052 
1053   if (PendingExports.empty())
1054     return Root;
1055 
1056   // Turn all of the CopyToReg chains into one factored node.
1057   if (Root.getOpcode() != ISD::EntryToken) {
1058     unsigned i = 0, e = PendingExports.size();
1059     for (; i != e; ++i) {
1060       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1061       if (PendingExports[i].getNode()->getOperand(0) == Root)
1062         break;  // Don't add the root if we already indirectly depend on it.
1063     }
1064 
1065     if (i == e)
1066       PendingExports.push_back(Root);
1067   }
1068 
1069   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1070                      PendingExports);
1071   PendingExports.clear();
1072   DAG.setRoot(Root);
1073   return Root;
1074 }
1075 
1076 void SelectionDAGBuilder::visit(const Instruction &I) {
1077   // Set up outgoing PHI node register values before emitting the terminator.
1078   if (I.isTerminator()) {
1079     HandlePHINodesInSuccessorBlocks(I.getParent());
1080   }
1081 
1082   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1083   if (!isa<DbgInfoIntrinsic>(I))
1084     ++SDNodeOrder;
1085 
1086   CurInst = &I;
1087 
1088   visit(I.getOpcode(), I);
1089 
1090   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1091     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1092     // maps to this instruction.
1093     // TODO: We could handle all flags (nsw, etc) here.
1094     // TODO: If an IR instruction maps to >1 node, only the final node will have
1095     //       flags set.
1096     if (SDNode *Node = getNodeForIRValue(&I)) {
1097       SDNodeFlags IncomingFlags;
1098       IncomingFlags.copyFMF(*FPMO);
1099       if (!Node->getFlags().isDefined())
1100         Node->setFlags(IncomingFlags);
1101       else
1102         Node->intersectFlagsWith(IncomingFlags);
1103     }
1104   }
1105 
1106   if (!I.isTerminator() && !HasTailCall &&
1107       !isStatepoint(&I)) // statepoints handle their exports internally
1108     CopyToExportRegsIfNeeded(&I);
1109 
1110   CurInst = nullptr;
1111 }
1112 
1113 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1114   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1115 }
1116 
1117 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1118   // Note: this doesn't use InstVisitor, because it has to work with
1119   // ConstantExpr's in addition to instructions.
1120   switch (Opcode) {
1121   default: llvm_unreachable("Unknown instruction type encountered!");
1122     // Build the switch statement using the Instruction.def file.
1123 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1124     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1125 #include "llvm/IR/Instruction.def"
1126   }
1127 }
1128 
1129 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1130                                                 const DIExpression *Expr) {
1131   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1132     const DbgValueInst *DI = DDI.getDI();
1133     DIVariable *DanglingVariable = DI->getVariable();
1134     DIExpression *DanglingExpr = DI->getExpression();
1135     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1136       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1137       return true;
1138     }
1139     return false;
1140   };
1141 
1142   for (auto &DDIMI : DanglingDebugInfoMap) {
1143     DanglingDebugInfoVector &DDIV = DDIMI.second;
1144 
1145     // If debug info is to be dropped, run it through final checks to see
1146     // whether it can be salvaged.
1147     for (auto &DDI : DDIV)
1148       if (isMatchingDbgValue(DDI))
1149         salvageUnresolvedDbgValue(DDI);
1150 
1151     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1152   }
1153 }
1154 
1155 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1156 // generate the debug data structures now that we've seen its definition.
1157 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1158                                                    SDValue Val) {
1159   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1160   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1161     return;
1162 
1163   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1164   for (auto &DDI : DDIV) {
1165     const DbgValueInst *DI = DDI.getDI();
1166     assert(DI && "Ill-formed DanglingDebugInfo");
1167     DebugLoc dl = DDI.getdl();
1168     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1169     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1170     DILocalVariable *Variable = DI->getVariable();
1171     DIExpression *Expr = DI->getExpression();
1172     assert(Variable->isValidLocationForIntrinsic(dl) &&
1173            "Expected inlined-at fields to agree");
1174     SDDbgValue *SDV;
1175     if (Val.getNode()) {
1176       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1177       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1178       // we couldn't resolve it directly when examining the DbgValue intrinsic
1179       // in the first place we should not be more successful here). Unless we
1180       // have some test case that prove this to be correct we should avoid
1181       // calling EmitFuncArgumentDbgValue here.
1182       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1183         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1184                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1185         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1186         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1187         // inserted after the definition of Val when emitting the instructions
1188         // after ISel. An alternative could be to teach
1189         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1190         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1191                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1192                    << ValSDNodeOrder << "\n");
1193         SDV = getDbgValue(Val, Variable, Expr, dl,
1194                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1195         DAG.AddDbgValue(SDV, Val.getNode(), false);
1196       } else
1197         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1198                           << "in EmitFuncArgumentDbgValue\n");
1199     } else {
1200       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1201       auto Undef =
1202           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1203       auto SDV =
1204           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1205       DAG.AddDbgValue(SDV, nullptr, false);
1206     }
1207   }
1208   DDIV.clear();
1209 }
1210 
1211 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1212   Value *V = DDI.getDI()->getValue();
1213   DILocalVariable *Var = DDI.getDI()->getVariable();
1214   DIExpression *Expr = DDI.getDI()->getExpression();
1215   DebugLoc DL = DDI.getdl();
1216   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1217   unsigned SDOrder = DDI.getSDNodeOrder();
1218 
1219   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1220   // that DW_OP_stack_value is desired.
1221   assert(isa<DbgValueInst>(DDI.getDI()));
1222   bool StackValue = true;
1223 
1224   // Can this Value can be encoded without any further work?
1225   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1226     return;
1227 
1228   // Attempt to salvage back through as many instructions as possible. Bail if
1229   // a non-instruction is seen, such as a constant expression or global
1230   // variable. FIXME: Further work could recover those too.
1231   while (isa<Instruction>(V)) {
1232     Instruction &VAsInst = *cast<Instruction>(V);
1233     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1234 
1235     // If we cannot salvage any further, and haven't yet found a suitable debug
1236     // expression, bail out.
1237     if (!NewExpr)
1238       break;
1239 
1240     // New value and expr now represent this debuginfo.
1241     V = VAsInst.getOperand(0);
1242     Expr = NewExpr;
1243 
1244     // Some kind of simplification occurred: check whether the operand of the
1245     // salvaged debug expression can be encoded in this DAG.
1246     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1247       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1248                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1249       return;
1250     }
1251   }
1252 
1253   // This was the final opportunity to salvage this debug information, and it
1254   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1255   // any earlier variable location.
1256   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1257   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1258   DAG.AddDbgValue(SDV, nullptr, false);
1259 
1260   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1261                     << "\n");
1262   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1263                     << "\n");
1264 }
1265 
1266 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1267                                            DIExpression *Expr, DebugLoc dl,
1268                                            DebugLoc InstDL, unsigned Order) {
1269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1270   SDDbgValue *SDV;
1271   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1272       isa<ConstantPointerNull>(V)) {
1273     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1274     DAG.AddDbgValue(SDV, nullptr, false);
1275     return true;
1276   }
1277 
1278   // If the Value is a frame index, we can create a FrameIndex debug value
1279   // without relying on the DAG at all.
1280   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1281     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1282     if (SI != FuncInfo.StaticAllocaMap.end()) {
1283       auto SDV =
1284           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1285                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1286       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1287       // is still available even if the SDNode gets optimized out.
1288       DAG.AddDbgValue(SDV, nullptr, false);
1289       return true;
1290     }
1291   }
1292 
1293   // Do not use getValue() in here; we don't want to generate code at
1294   // this point if it hasn't been done yet.
1295   SDValue N = NodeMap[V];
1296   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1297     N = UnusedArgNodeMap[V];
1298   if (N.getNode()) {
1299     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1300       return true;
1301     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1302     DAG.AddDbgValue(SDV, N.getNode(), false);
1303     return true;
1304   }
1305 
1306   // Special rules apply for the first dbg.values of parameter variables in a
1307   // function. Identify them by the fact they reference Argument Values, that
1308   // they're parameters, and they are parameters of the current function. We
1309   // need to let them dangle until they get an SDNode.
1310   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1311                        !InstDL.getInlinedAt();
1312   if (!IsParamOfFunc) {
1313     // The value is not used in this block yet (or it would have an SDNode).
1314     // We still want the value to appear for the user if possible -- if it has
1315     // an associated VReg, we can refer to that instead.
1316     auto VMI = FuncInfo.ValueMap.find(V);
1317     if (VMI != FuncInfo.ValueMap.end()) {
1318       unsigned Reg = VMI->second;
1319       // If this is a PHI node, it may be split up into several MI PHI nodes
1320       // (in FunctionLoweringInfo::set).
1321       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1322                        V->getType(), None);
1323       if (RFV.occupiesMultipleRegs()) {
1324         unsigned Offset = 0;
1325         unsigned BitsToDescribe = 0;
1326         if (auto VarSize = Var->getSizeInBits())
1327           BitsToDescribe = *VarSize;
1328         if (auto Fragment = Expr->getFragmentInfo())
1329           BitsToDescribe = Fragment->SizeInBits;
1330         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1331           unsigned RegisterSize = RegAndSize.second;
1332           // Bail out if all bits are described already.
1333           if (Offset >= BitsToDescribe)
1334             break;
1335           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1336               ? BitsToDescribe - Offset
1337               : RegisterSize;
1338           auto FragmentExpr = DIExpression::createFragmentExpression(
1339               Expr, Offset, FragmentSize);
1340           if (!FragmentExpr)
1341               continue;
1342           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1343                                     false, dl, SDNodeOrder);
1344           DAG.AddDbgValue(SDV, nullptr, false);
1345           Offset += RegisterSize;
1346         }
1347       } else {
1348         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1349         DAG.AddDbgValue(SDV, nullptr, false);
1350       }
1351       return true;
1352     }
1353   }
1354 
1355   return false;
1356 }
1357 
1358 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1359   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1360   for (auto &Pair : DanglingDebugInfoMap)
1361     for (auto &DDI : Pair.second)
1362       salvageUnresolvedDbgValue(DDI);
1363   clearDanglingDebugInfo();
1364 }
1365 
1366 /// getCopyFromRegs - If there was virtual register allocated for the value V
1367 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1368 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1369   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1370   SDValue Result;
1371 
1372   if (It != FuncInfo.ValueMap.end()) {
1373     unsigned InReg = It->second;
1374 
1375     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1376                      DAG.getDataLayout(), InReg, Ty,
1377                      None); // This is not an ABI copy.
1378     SDValue Chain = DAG.getEntryNode();
1379     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1380                                  V);
1381     resolveDanglingDebugInfo(V, Result);
1382   }
1383 
1384   return Result;
1385 }
1386 
1387 /// getValue - Return an SDValue for the given Value.
1388 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1389   // If we already have an SDValue for this value, use it. It's important
1390   // to do this first, so that we don't create a CopyFromReg if we already
1391   // have a regular SDValue.
1392   SDValue &N = NodeMap[V];
1393   if (N.getNode()) return N;
1394 
1395   // If there's a virtual register allocated and initialized for this
1396   // value, use it.
1397   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1398     return copyFromReg;
1399 
1400   // Otherwise create a new SDValue and remember it.
1401   SDValue Val = getValueImpl(V);
1402   NodeMap[V] = Val;
1403   resolveDanglingDebugInfo(V, Val);
1404   return Val;
1405 }
1406 
1407 // Return true if SDValue exists for the given Value
1408 bool SelectionDAGBuilder::findValue(const Value *V) const {
1409   return (NodeMap.find(V) != NodeMap.end()) ||
1410     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1411 }
1412 
1413 /// getNonRegisterValue - Return an SDValue for the given Value, but
1414 /// don't look in FuncInfo.ValueMap for a virtual register.
1415 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1416   // If we already have an SDValue for this value, use it.
1417   SDValue &N = NodeMap[V];
1418   if (N.getNode()) {
1419     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1420       // Remove the debug location from the node as the node is about to be used
1421       // in a location which may differ from the original debug location.  This
1422       // is relevant to Constant and ConstantFP nodes because they can appear
1423       // as constant expressions inside PHI nodes.
1424       N->setDebugLoc(DebugLoc());
1425     }
1426     return N;
1427   }
1428 
1429   // Otherwise create a new SDValue and remember it.
1430   SDValue Val = getValueImpl(V);
1431   NodeMap[V] = Val;
1432   resolveDanglingDebugInfo(V, Val);
1433   return Val;
1434 }
1435 
1436 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1437 /// Create an SDValue for the given value.
1438 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1440 
1441   if (const Constant *C = dyn_cast<Constant>(V)) {
1442     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1443 
1444     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1445       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1446 
1447     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1448       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1449 
1450     if (isa<ConstantPointerNull>(C)) {
1451       unsigned AS = V->getType()->getPointerAddressSpace();
1452       return DAG.getConstant(0, getCurSDLoc(),
1453                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1454     }
1455 
1456     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1457       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1458 
1459     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1460       return DAG.getUNDEF(VT);
1461 
1462     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1463       visit(CE->getOpcode(), *CE);
1464       SDValue N1 = NodeMap[V];
1465       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1466       return N1;
1467     }
1468 
1469     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1470       SmallVector<SDValue, 4> Constants;
1471       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1472            OI != OE; ++OI) {
1473         SDNode *Val = getValue(*OI).getNode();
1474         // If the operand is an empty aggregate, there are no values.
1475         if (!Val) continue;
1476         // Add each leaf value from the operand to the Constants list
1477         // to form a flattened list of all the values.
1478         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1479           Constants.push_back(SDValue(Val, i));
1480       }
1481 
1482       return DAG.getMergeValues(Constants, getCurSDLoc());
1483     }
1484 
1485     if (const ConstantDataSequential *CDS =
1486           dyn_cast<ConstantDataSequential>(C)) {
1487       SmallVector<SDValue, 4> Ops;
1488       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1489         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1490         // Add each leaf value from the operand to the Constants list
1491         // to form a flattened list of all the values.
1492         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1493           Ops.push_back(SDValue(Val, i));
1494       }
1495 
1496       if (isa<ArrayType>(CDS->getType()))
1497         return DAG.getMergeValues(Ops, getCurSDLoc());
1498       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1499     }
1500 
1501     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1502       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1503              "Unknown struct or array constant!");
1504 
1505       SmallVector<EVT, 4> ValueVTs;
1506       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1507       unsigned NumElts = ValueVTs.size();
1508       if (NumElts == 0)
1509         return SDValue(); // empty struct
1510       SmallVector<SDValue, 4> Constants(NumElts);
1511       for (unsigned i = 0; i != NumElts; ++i) {
1512         EVT EltVT = ValueVTs[i];
1513         if (isa<UndefValue>(C))
1514           Constants[i] = DAG.getUNDEF(EltVT);
1515         else if (EltVT.isFloatingPoint())
1516           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1517         else
1518           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1519       }
1520 
1521       return DAG.getMergeValues(Constants, getCurSDLoc());
1522     }
1523 
1524     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1525       return DAG.getBlockAddress(BA, VT);
1526 
1527     VectorType *VecTy = cast<VectorType>(V->getType());
1528     unsigned NumElements = VecTy->getNumElements();
1529 
1530     // Now that we know the number and type of the elements, get that number of
1531     // elements into the Ops array based on what kind of constant it is.
1532     SmallVector<SDValue, 16> Ops;
1533     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1534       for (unsigned i = 0; i != NumElements; ++i)
1535         Ops.push_back(getValue(CV->getOperand(i)));
1536     } else {
1537       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1538       EVT EltVT =
1539           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1540 
1541       SDValue Op;
1542       if (EltVT.isFloatingPoint())
1543         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1544       else
1545         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1546       Ops.assign(NumElements, Op);
1547     }
1548 
1549     // Create a BUILD_VECTOR node.
1550     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1551   }
1552 
1553   // If this is a static alloca, generate it as the frameindex instead of
1554   // computation.
1555   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1556     DenseMap<const AllocaInst*, int>::iterator SI =
1557       FuncInfo.StaticAllocaMap.find(AI);
1558     if (SI != FuncInfo.StaticAllocaMap.end())
1559       return DAG.getFrameIndex(SI->second,
1560                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1561   }
1562 
1563   // If this is an instruction which fast-isel has deferred, select it now.
1564   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1565     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1566 
1567     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1568                      Inst->getType(), getABIRegCopyCC(V));
1569     SDValue Chain = DAG.getEntryNode();
1570     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1571   }
1572 
1573   llvm_unreachable("Can't get register for value!");
1574 }
1575 
1576 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1577   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1578   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1579   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1580   bool IsSEH = isAsynchronousEHPersonality(Pers);
1581   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1582   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1583   if (!IsSEH)
1584     CatchPadMBB->setIsEHScopeEntry();
1585   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1586   if (IsMSVCCXX || IsCoreCLR)
1587     CatchPadMBB->setIsEHFuncletEntry();
1588   // Wasm does not need catchpads anymore
1589   if (!IsWasmCXX)
1590     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1591                             getControlRoot()));
1592 }
1593 
1594 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1595   // Update machine-CFG edge.
1596   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1597   FuncInfo.MBB->addSuccessor(TargetMBB);
1598 
1599   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1600   bool IsSEH = isAsynchronousEHPersonality(Pers);
1601   if (IsSEH) {
1602     // If this is not a fall-through branch or optimizations are switched off,
1603     // emit the branch.
1604     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1605         TM.getOptLevel() == CodeGenOpt::None)
1606       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1607                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1608     return;
1609   }
1610 
1611   // Figure out the funclet membership for the catchret's successor.
1612   // This will be used by the FuncletLayout pass to determine how to order the
1613   // BB's.
1614   // A 'catchret' returns to the outer scope's color.
1615   Value *ParentPad = I.getCatchSwitchParentPad();
1616   const BasicBlock *SuccessorColor;
1617   if (isa<ConstantTokenNone>(ParentPad))
1618     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1619   else
1620     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1621   assert(SuccessorColor && "No parent funclet for catchret!");
1622   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1623   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1624 
1625   // Create the terminator node.
1626   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1627                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1628                             DAG.getBasicBlock(SuccessorColorMBB));
1629   DAG.setRoot(Ret);
1630 }
1631 
1632 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1633   // Don't emit any special code for the cleanuppad instruction. It just marks
1634   // the start of an EH scope/funclet.
1635   FuncInfo.MBB->setIsEHScopeEntry();
1636   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1637   if (Pers != EHPersonality::Wasm_CXX) {
1638     FuncInfo.MBB->setIsEHFuncletEntry();
1639     FuncInfo.MBB->setIsCleanupFuncletEntry();
1640   }
1641 }
1642 
1643 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1644 // the control flow always stops at the single catch pad, as it does for a
1645 // cleanup pad. In case the exception caught is not of the types the catch pad
1646 // catches, it will be rethrown by a rethrow.
1647 static void findWasmUnwindDestinations(
1648     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1649     BranchProbability Prob,
1650     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1651         &UnwindDests) {
1652   while (EHPadBB) {
1653     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1654     if (isa<CleanupPadInst>(Pad)) {
1655       // Stop on cleanup pads.
1656       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1657       UnwindDests.back().first->setIsEHScopeEntry();
1658       break;
1659     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1660       // Add the catchpad handlers to the possible destinations. We don't
1661       // continue to the unwind destination of the catchswitch for wasm.
1662       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1663         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1664         UnwindDests.back().first->setIsEHScopeEntry();
1665       }
1666       break;
1667     } else {
1668       continue;
1669     }
1670   }
1671 }
1672 
1673 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1674 /// many places it could ultimately go. In the IR, we have a single unwind
1675 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1676 /// This function skips over imaginary basic blocks that hold catchswitch
1677 /// instructions, and finds all the "real" machine
1678 /// basic block destinations. As those destinations may not be successors of
1679 /// EHPadBB, here we also calculate the edge probability to those destinations.
1680 /// The passed-in Prob is the edge probability to EHPadBB.
1681 static void findUnwindDestinations(
1682     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1683     BranchProbability Prob,
1684     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1685         &UnwindDests) {
1686   EHPersonality Personality =
1687     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1688   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1689   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1690   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1691   bool IsSEH = isAsynchronousEHPersonality(Personality);
1692 
1693   if (IsWasmCXX) {
1694     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1695     assert(UnwindDests.size() <= 1 &&
1696            "There should be at most one unwind destination for wasm");
1697     return;
1698   }
1699 
1700   while (EHPadBB) {
1701     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1702     BasicBlock *NewEHPadBB = nullptr;
1703     if (isa<LandingPadInst>(Pad)) {
1704       // Stop on landingpads. They are not funclets.
1705       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1706       break;
1707     } else if (isa<CleanupPadInst>(Pad)) {
1708       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1709       // personalities.
1710       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1711       UnwindDests.back().first->setIsEHScopeEntry();
1712       UnwindDests.back().first->setIsEHFuncletEntry();
1713       break;
1714     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1715       // Add the catchpad handlers to the possible destinations.
1716       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1717         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1718         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1719         if (IsMSVCCXX || IsCoreCLR)
1720           UnwindDests.back().first->setIsEHFuncletEntry();
1721         if (!IsSEH)
1722           UnwindDests.back().first->setIsEHScopeEntry();
1723       }
1724       NewEHPadBB = CatchSwitch->getUnwindDest();
1725     } else {
1726       continue;
1727     }
1728 
1729     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1730     if (BPI && NewEHPadBB)
1731       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1732     EHPadBB = NewEHPadBB;
1733   }
1734 }
1735 
1736 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1737   // Update successor info.
1738   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1739   auto UnwindDest = I.getUnwindDest();
1740   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1741   BranchProbability UnwindDestProb =
1742       (BPI && UnwindDest)
1743           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1744           : BranchProbability::getZero();
1745   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1746   for (auto &UnwindDest : UnwindDests) {
1747     UnwindDest.first->setIsEHPad();
1748     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1749   }
1750   FuncInfo.MBB->normalizeSuccProbs();
1751 
1752   // Create the terminator node.
1753   SDValue Ret =
1754       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1755   DAG.setRoot(Ret);
1756 }
1757 
1758 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1759   report_fatal_error("visitCatchSwitch not yet implemented!");
1760 }
1761 
1762 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1764   auto &DL = DAG.getDataLayout();
1765   SDValue Chain = getControlRoot();
1766   SmallVector<ISD::OutputArg, 8> Outs;
1767   SmallVector<SDValue, 8> OutVals;
1768 
1769   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1770   // lower
1771   //
1772   //   %val = call <ty> @llvm.experimental.deoptimize()
1773   //   ret <ty> %val
1774   //
1775   // differently.
1776   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1777     LowerDeoptimizingReturn();
1778     return;
1779   }
1780 
1781   if (!FuncInfo.CanLowerReturn) {
1782     unsigned DemoteReg = FuncInfo.DemoteRegister;
1783     const Function *F = I.getParent()->getParent();
1784 
1785     // Emit a store of the return value through the virtual register.
1786     // Leave Outs empty so that LowerReturn won't try to load return
1787     // registers the usual way.
1788     SmallVector<EVT, 1> PtrValueVTs;
1789     ComputeValueVTs(TLI, DL,
1790                     F->getReturnType()->getPointerTo(
1791                         DAG.getDataLayout().getAllocaAddrSpace()),
1792                     PtrValueVTs);
1793 
1794     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1795                                         DemoteReg, PtrValueVTs[0]);
1796     SDValue RetOp = getValue(I.getOperand(0));
1797 
1798     SmallVector<EVT, 4> ValueVTs, MemVTs;
1799     SmallVector<uint64_t, 4> Offsets;
1800     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1801                     &Offsets);
1802     unsigned NumValues = ValueVTs.size();
1803 
1804     SmallVector<SDValue, 4> Chains(NumValues);
1805     for (unsigned i = 0; i != NumValues; ++i) {
1806       // An aggregate return value cannot wrap around the address space, so
1807       // offsets to its parts don't wrap either.
1808       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1809 
1810       SDValue Val = RetOp.getValue(i);
1811       if (MemVTs[i] != ValueVTs[i])
1812         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1813       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1814           // FIXME: better loc info would be nice.
1815           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1816     }
1817 
1818     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1819                         MVT::Other, Chains);
1820   } else if (I.getNumOperands() != 0) {
1821     SmallVector<EVT, 4> ValueVTs;
1822     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1823     unsigned NumValues = ValueVTs.size();
1824     if (NumValues) {
1825       SDValue RetOp = getValue(I.getOperand(0));
1826 
1827       const Function *F = I.getParent()->getParent();
1828 
1829       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1830           I.getOperand(0)->getType(), F->getCallingConv(),
1831           /*IsVarArg*/ false);
1832 
1833       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1834       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1835                                           Attribute::SExt))
1836         ExtendKind = ISD::SIGN_EXTEND;
1837       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1838                                                Attribute::ZExt))
1839         ExtendKind = ISD::ZERO_EXTEND;
1840 
1841       LLVMContext &Context = F->getContext();
1842       bool RetInReg = F->getAttributes().hasAttribute(
1843           AttributeList::ReturnIndex, Attribute::InReg);
1844 
1845       for (unsigned j = 0; j != NumValues; ++j) {
1846         EVT VT = ValueVTs[j];
1847 
1848         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1849           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1850 
1851         CallingConv::ID CC = F->getCallingConv();
1852 
1853         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1854         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1855         SmallVector<SDValue, 4> Parts(NumParts);
1856         getCopyToParts(DAG, getCurSDLoc(),
1857                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1858                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1859 
1860         // 'inreg' on function refers to return value
1861         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1862         if (RetInReg)
1863           Flags.setInReg();
1864 
1865         if (I.getOperand(0)->getType()->isPointerTy()) {
1866           Flags.setPointer();
1867           Flags.setPointerAddrSpace(
1868               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1869         }
1870 
1871         if (NeedsRegBlock) {
1872           Flags.setInConsecutiveRegs();
1873           if (j == NumValues - 1)
1874             Flags.setInConsecutiveRegsLast();
1875         }
1876 
1877         // Propagate extension type if any
1878         if (ExtendKind == ISD::SIGN_EXTEND)
1879           Flags.setSExt();
1880         else if (ExtendKind == ISD::ZERO_EXTEND)
1881           Flags.setZExt();
1882 
1883         for (unsigned i = 0; i < NumParts; ++i) {
1884           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1885                                         VT, /*isfixed=*/true, 0, 0));
1886           OutVals.push_back(Parts[i]);
1887         }
1888       }
1889     }
1890   }
1891 
1892   // Push in swifterror virtual register as the last element of Outs. This makes
1893   // sure swifterror virtual register will be returned in the swifterror
1894   // physical register.
1895   const Function *F = I.getParent()->getParent();
1896   if (TLI.supportSwiftError() &&
1897       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1898     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1899     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1900     Flags.setSwiftError();
1901     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1902                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1903                                   true /*isfixed*/, 1 /*origidx*/,
1904                                   0 /*partOffs*/));
1905     // Create SDNode for the swifterror virtual register.
1906     OutVals.push_back(
1907         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1908                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1909                         EVT(TLI.getPointerTy(DL))));
1910   }
1911 
1912   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1913   CallingConv::ID CallConv =
1914     DAG.getMachineFunction().getFunction().getCallingConv();
1915   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1916       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1917 
1918   // Verify that the target's LowerReturn behaved as expected.
1919   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1920          "LowerReturn didn't return a valid chain!");
1921 
1922   // Update the DAG with the new chain value resulting from return lowering.
1923   DAG.setRoot(Chain);
1924 }
1925 
1926 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1927 /// created for it, emit nodes to copy the value into the virtual
1928 /// registers.
1929 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1930   // Skip empty types
1931   if (V->getType()->isEmptyTy())
1932     return;
1933 
1934   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1935   if (VMI != FuncInfo.ValueMap.end()) {
1936     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1937     CopyValueToVirtualRegister(V, VMI->second);
1938   }
1939 }
1940 
1941 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1942 /// the current basic block, add it to ValueMap now so that we'll get a
1943 /// CopyTo/FromReg.
1944 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1945   // No need to export constants.
1946   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1947 
1948   // Already exported?
1949   if (FuncInfo.isExportedInst(V)) return;
1950 
1951   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1952   CopyValueToVirtualRegister(V, Reg);
1953 }
1954 
1955 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1956                                                      const BasicBlock *FromBB) {
1957   // The operands of the setcc have to be in this block.  We don't know
1958   // how to export them from some other block.
1959   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1960     // Can export from current BB.
1961     if (VI->getParent() == FromBB)
1962       return true;
1963 
1964     // Is already exported, noop.
1965     return FuncInfo.isExportedInst(V);
1966   }
1967 
1968   // If this is an argument, we can export it if the BB is the entry block or
1969   // if it is already exported.
1970   if (isa<Argument>(V)) {
1971     if (FromBB == &FromBB->getParent()->getEntryBlock())
1972       return true;
1973 
1974     // Otherwise, can only export this if it is already exported.
1975     return FuncInfo.isExportedInst(V);
1976   }
1977 
1978   // Otherwise, constants can always be exported.
1979   return true;
1980 }
1981 
1982 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1983 BranchProbability
1984 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1985                                         const MachineBasicBlock *Dst) const {
1986   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1987   const BasicBlock *SrcBB = Src->getBasicBlock();
1988   const BasicBlock *DstBB = Dst->getBasicBlock();
1989   if (!BPI) {
1990     // If BPI is not available, set the default probability as 1 / N, where N is
1991     // the number of successors.
1992     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1993     return BranchProbability(1, SuccSize);
1994   }
1995   return BPI->getEdgeProbability(SrcBB, DstBB);
1996 }
1997 
1998 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1999                                                MachineBasicBlock *Dst,
2000                                                BranchProbability Prob) {
2001   if (!FuncInfo.BPI)
2002     Src->addSuccessorWithoutProb(Dst);
2003   else {
2004     if (Prob.isUnknown())
2005       Prob = getEdgeProbability(Src, Dst);
2006     Src->addSuccessor(Dst, Prob);
2007   }
2008 }
2009 
2010 static bool InBlock(const Value *V, const BasicBlock *BB) {
2011   if (const Instruction *I = dyn_cast<Instruction>(V))
2012     return I->getParent() == BB;
2013   return true;
2014 }
2015 
2016 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2017 /// This function emits a branch and is used at the leaves of an OR or an
2018 /// AND operator tree.
2019 void
2020 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2021                                                   MachineBasicBlock *TBB,
2022                                                   MachineBasicBlock *FBB,
2023                                                   MachineBasicBlock *CurBB,
2024                                                   MachineBasicBlock *SwitchBB,
2025                                                   BranchProbability TProb,
2026                                                   BranchProbability FProb,
2027                                                   bool InvertCond) {
2028   const BasicBlock *BB = CurBB->getBasicBlock();
2029 
2030   // If the leaf of the tree is a comparison, merge the condition into
2031   // the caseblock.
2032   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2033     // The operands of the cmp have to be in this block.  We don't know
2034     // how to export them from some other block.  If this is the first block
2035     // of the sequence, no exporting is needed.
2036     if (CurBB == SwitchBB ||
2037         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2038          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2039       ISD::CondCode Condition;
2040       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2041         ICmpInst::Predicate Pred =
2042             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2043         Condition = getICmpCondCode(Pred);
2044       } else {
2045         const FCmpInst *FC = cast<FCmpInst>(Cond);
2046         FCmpInst::Predicate Pred =
2047             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2048         Condition = getFCmpCondCode(Pred);
2049         if (TM.Options.NoNaNsFPMath)
2050           Condition = getFCmpCodeWithoutNaN(Condition);
2051       }
2052 
2053       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2054                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2055       SwitchCases.push_back(CB);
2056       return;
2057     }
2058   }
2059 
2060   // Create a CaseBlock record representing this branch.
2061   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2062   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2063                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2064   SwitchCases.push_back(CB);
2065 }
2066 
2067 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2068                                                MachineBasicBlock *TBB,
2069                                                MachineBasicBlock *FBB,
2070                                                MachineBasicBlock *CurBB,
2071                                                MachineBasicBlock *SwitchBB,
2072                                                Instruction::BinaryOps Opc,
2073                                                BranchProbability TProb,
2074                                                BranchProbability FProb,
2075                                                bool InvertCond) {
2076   // Skip over not part of the tree and remember to invert op and operands at
2077   // next level.
2078   Value *NotCond;
2079   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2080       InBlock(NotCond, CurBB->getBasicBlock())) {
2081     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2082                          !InvertCond);
2083     return;
2084   }
2085 
2086   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2087   // Compute the effective opcode for Cond, taking into account whether it needs
2088   // to be inverted, e.g.
2089   //   and (not (or A, B)), C
2090   // gets lowered as
2091   //   and (and (not A, not B), C)
2092   unsigned BOpc = 0;
2093   if (BOp) {
2094     BOpc = BOp->getOpcode();
2095     if (InvertCond) {
2096       if (BOpc == Instruction::And)
2097         BOpc = Instruction::Or;
2098       else if (BOpc == Instruction::Or)
2099         BOpc = Instruction::And;
2100     }
2101   }
2102 
2103   // If this node is not part of the or/and tree, emit it as a branch.
2104   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2105       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2106       BOp->getParent() != CurBB->getBasicBlock() ||
2107       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2108       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2109     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2110                                  TProb, FProb, InvertCond);
2111     return;
2112   }
2113 
2114   //  Create TmpBB after CurBB.
2115   MachineFunction::iterator BBI(CurBB);
2116   MachineFunction &MF = DAG.getMachineFunction();
2117   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2118   CurBB->getParent()->insert(++BBI, TmpBB);
2119 
2120   if (Opc == Instruction::Or) {
2121     // Codegen X | Y as:
2122     // BB1:
2123     //   jmp_if_X TBB
2124     //   jmp TmpBB
2125     // TmpBB:
2126     //   jmp_if_Y TBB
2127     //   jmp FBB
2128     //
2129 
2130     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2131     // The requirement is that
2132     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2133     //     = TrueProb for original BB.
2134     // Assuming the original probabilities are A and B, one choice is to set
2135     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2136     // A/(1+B) and 2B/(1+B). This choice assumes that
2137     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2138     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2139     // TmpBB, but the math is more complicated.
2140 
2141     auto NewTrueProb = TProb / 2;
2142     auto NewFalseProb = TProb / 2 + FProb;
2143     // Emit the LHS condition.
2144     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2145                          NewTrueProb, NewFalseProb, InvertCond);
2146 
2147     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2148     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2149     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2150     // Emit the RHS condition into TmpBB.
2151     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2152                          Probs[0], Probs[1], InvertCond);
2153   } else {
2154     assert(Opc == Instruction::And && "Unknown merge op!");
2155     // Codegen X & Y as:
2156     // BB1:
2157     //   jmp_if_X TmpBB
2158     //   jmp FBB
2159     // TmpBB:
2160     //   jmp_if_Y TBB
2161     //   jmp FBB
2162     //
2163     //  This requires creation of TmpBB after CurBB.
2164 
2165     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2166     // The requirement is that
2167     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2168     //     = FalseProb for original BB.
2169     // Assuming the original probabilities are A and B, one choice is to set
2170     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2171     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2172     // TrueProb for BB1 * FalseProb for TmpBB.
2173 
2174     auto NewTrueProb = TProb + FProb / 2;
2175     auto NewFalseProb = FProb / 2;
2176     // Emit the LHS condition.
2177     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2178                          NewTrueProb, NewFalseProb, InvertCond);
2179 
2180     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2181     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2182     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2183     // Emit the RHS condition into TmpBB.
2184     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2185                          Probs[0], Probs[1], InvertCond);
2186   }
2187 }
2188 
2189 /// If the set of cases should be emitted as a series of branches, return true.
2190 /// If we should emit this as a bunch of and/or'd together conditions, return
2191 /// false.
2192 bool
2193 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2194   if (Cases.size() != 2) return true;
2195 
2196   // If this is two comparisons of the same values or'd or and'd together, they
2197   // will get folded into a single comparison, so don't emit two blocks.
2198   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2199        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2200       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2202     return false;
2203   }
2204 
2205   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2206   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2207   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2208       Cases[0].CC == Cases[1].CC &&
2209       isa<Constant>(Cases[0].CmpRHS) &&
2210       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2211     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2212       return false;
2213     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2214       return false;
2215   }
2216 
2217   return true;
2218 }
2219 
2220 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2221   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2222 
2223   // Update machine-CFG edges.
2224   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2225 
2226   if (I.isUnconditional()) {
2227     // Update machine-CFG edges.
2228     BrMBB->addSuccessor(Succ0MBB);
2229 
2230     // If this is not a fall-through branch or optimizations are switched off,
2231     // emit the branch.
2232     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2233       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2234                               MVT::Other, getControlRoot(),
2235                               DAG.getBasicBlock(Succ0MBB)));
2236 
2237     return;
2238   }
2239 
2240   // If this condition is one of the special cases we handle, do special stuff
2241   // now.
2242   const Value *CondVal = I.getCondition();
2243   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2244 
2245   // If this is a series of conditions that are or'd or and'd together, emit
2246   // this as a sequence of branches instead of setcc's with and/or operations.
2247   // As long as jumps are not expensive, this should improve performance.
2248   // For example, instead of something like:
2249   //     cmp A, B
2250   //     C = seteq
2251   //     cmp D, E
2252   //     F = setle
2253   //     or C, F
2254   //     jnz foo
2255   // Emit:
2256   //     cmp A, B
2257   //     je foo
2258   //     cmp D, E
2259   //     jle foo
2260   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2261     Instruction::BinaryOps Opcode = BOp->getOpcode();
2262     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2263         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2264         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2265       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2266                            Opcode,
2267                            getEdgeProbability(BrMBB, Succ0MBB),
2268                            getEdgeProbability(BrMBB, Succ1MBB),
2269                            /*InvertCond=*/false);
2270       // If the compares in later blocks need to use values not currently
2271       // exported from this block, export them now.  This block should always
2272       // be the first entry.
2273       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2274 
2275       // Allow some cases to be rejected.
2276       if (ShouldEmitAsBranches(SwitchCases)) {
2277         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2278           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2279           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2280         }
2281 
2282         // Emit the branch for this block.
2283         visitSwitchCase(SwitchCases[0], BrMBB);
2284         SwitchCases.erase(SwitchCases.begin());
2285         return;
2286       }
2287 
2288       // Okay, we decided not to do this, remove any inserted MBB's and clear
2289       // SwitchCases.
2290       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2291         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2292 
2293       SwitchCases.clear();
2294     }
2295   }
2296 
2297   // Create a CaseBlock record representing this branch.
2298   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2299                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2300 
2301   // Use visitSwitchCase to actually insert the fast branch sequence for this
2302   // cond branch.
2303   visitSwitchCase(CB, BrMBB);
2304 }
2305 
2306 /// visitSwitchCase - Emits the necessary code to represent a single node in
2307 /// the binary search tree resulting from lowering a switch instruction.
2308 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2309                                           MachineBasicBlock *SwitchBB) {
2310   SDValue Cond;
2311   SDValue CondLHS = getValue(CB.CmpLHS);
2312   SDLoc dl = CB.DL;
2313 
2314   if (CB.CC == ISD::SETTRUE) {
2315     // Branch or fall through to TrueBB.
2316     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2317     SwitchBB->normalizeSuccProbs();
2318     if (CB.TrueBB != NextBlock(SwitchBB)) {
2319       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2320                               DAG.getBasicBlock(CB.TrueBB)));
2321     }
2322     return;
2323   }
2324 
2325   auto &TLI = DAG.getTargetLoweringInfo();
2326   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2327 
2328   // Build the setcc now.
2329   if (!CB.CmpMHS) {
2330     // Fold "(X == true)" to X and "(X == false)" to !X to
2331     // handle common cases produced by branch lowering.
2332     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2333         CB.CC == ISD::SETEQ)
2334       Cond = CondLHS;
2335     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2336              CB.CC == ISD::SETEQ) {
2337       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2338       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2339     } else {
2340       SDValue CondRHS = getValue(CB.CmpRHS);
2341 
2342       // If a pointer's DAG type is larger than its memory type then the DAG
2343       // values are zero-extended. This breaks signed comparisons so truncate
2344       // back to the underlying type before doing the compare.
2345       if (CondLHS.getValueType() != MemVT) {
2346         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2347         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2348       }
2349       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2350     }
2351   } else {
2352     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2353 
2354     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2355     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2356 
2357     SDValue CmpOp = getValue(CB.CmpMHS);
2358     EVT VT = CmpOp.getValueType();
2359 
2360     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2361       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2362                           ISD::SETLE);
2363     } else {
2364       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2365                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2366       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2367                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2368     }
2369   }
2370 
2371   // Update successor info
2372   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2373   // TrueBB and FalseBB are always different unless the incoming IR is
2374   // degenerate. This only happens when running llc on weird IR.
2375   if (CB.TrueBB != CB.FalseBB)
2376     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2377   SwitchBB->normalizeSuccProbs();
2378 
2379   // If the lhs block is the next block, invert the condition so that we can
2380   // fall through to the lhs instead of the rhs block.
2381   if (CB.TrueBB == NextBlock(SwitchBB)) {
2382     std::swap(CB.TrueBB, CB.FalseBB);
2383     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2384     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2385   }
2386 
2387   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2388                                MVT::Other, getControlRoot(), Cond,
2389                                DAG.getBasicBlock(CB.TrueBB));
2390 
2391   // Insert the false branch. Do this even if it's a fall through branch,
2392   // this makes it easier to do DAG optimizations which require inverting
2393   // the branch condition.
2394   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2395                        DAG.getBasicBlock(CB.FalseBB));
2396 
2397   DAG.setRoot(BrCond);
2398 }
2399 
2400 /// visitJumpTable - Emit JumpTable node in the current MBB
2401 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2402   // Emit the code for the jump table
2403   assert(JT.Reg != -1U && "Should lower JT Header first!");
2404   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2405   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2406                                      JT.Reg, PTy);
2407   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2408   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2409                                     MVT::Other, Index.getValue(1),
2410                                     Table, Index);
2411   DAG.setRoot(BrJumpTable);
2412 }
2413 
2414 /// visitJumpTableHeader - This function emits necessary code to produce index
2415 /// in the JumpTable from switch case.
2416 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2417                                                JumpTableHeader &JTH,
2418                                                MachineBasicBlock *SwitchBB) {
2419   SDLoc dl = getCurSDLoc();
2420 
2421   // Subtract the lowest switch case value from the value being switched on.
2422   SDValue SwitchOp = getValue(JTH.SValue);
2423   EVT VT = SwitchOp.getValueType();
2424   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2425                             DAG.getConstant(JTH.First, dl, VT));
2426 
2427   // The SDNode we just created, which holds the value being switched on minus
2428   // the smallest case value, needs to be copied to a virtual register so it
2429   // can be used as an index into the jump table in a subsequent basic block.
2430   // This value may be smaller or larger than the target's pointer type, and
2431   // therefore require extension or truncating.
2432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2433   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2434 
2435   unsigned JumpTableReg =
2436       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2437   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2438                                     JumpTableReg, SwitchOp);
2439   JT.Reg = JumpTableReg;
2440 
2441   if (!JTH.OmitRangeCheck) {
2442     // Emit the range check for the jump table, and branch to the default block
2443     // for the switch statement if the value being switched on exceeds the
2444     // largest case in the switch.
2445     SDValue CMP = DAG.getSetCC(
2446         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2447                                    Sub.getValueType()),
2448         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2449 
2450     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2451                                  MVT::Other, CopyTo, CMP,
2452                                  DAG.getBasicBlock(JT.Default));
2453 
2454     // Avoid emitting unnecessary branches to the next block.
2455     if (JT.MBB != NextBlock(SwitchBB))
2456       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2457                            DAG.getBasicBlock(JT.MBB));
2458 
2459     DAG.setRoot(BrCond);
2460   } else {
2461     // Avoid emitting unnecessary branches to the next block.
2462     if (JT.MBB != NextBlock(SwitchBB))
2463       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2464                               DAG.getBasicBlock(JT.MBB)));
2465     else
2466       DAG.setRoot(CopyTo);
2467   }
2468 }
2469 
2470 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2471 /// variable if there exists one.
2472 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2473                                  SDValue &Chain) {
2474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2475   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2476   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2477   MachineFunction &MF = DAG.getMachineFunction();
2478   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2479   MachineSDNode *Node =
2480       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2481   if (Global) {
2482     MachinePointerInfo MPInfo(Global);
2483     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2484                  MachineMemOperand::MODereferenceable;
2485     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2486         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2487     DAG.setNodeMemRefs(Node, {MemRef});
2488   }
2489   if (PtrTy != PtrMemTy)
2490     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2491   return SDValue(Node, 0);
2492 }
2493 
2494 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2495 /// tail spliced into a stack protector check success bb.
2496 ///
2497 /// For a high level explanation of how this fits into the stack protector
2498 /// generation see the comment on the declaration of class
2499 /// StackProtectorDescriptor.
2500 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2501                                                   MachineBasicBlock *ParentBB) {
2502 
2503   // First create the loads to the guard/stack slot for the comparison.
2504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2505   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2506   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2507 
2508   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2509   int FI = MFI.getStackProtectorIndex();
2510 
2511   SDValue Guard;
2512   SDLoc dl = getCurSDLoc();
2513   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2514   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2515   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2516 
2517   // Generate code to load the content of the guard slot.
2518   SDValue GuardVal = DAG.getLoad(
2519       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2520       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2521       MachineMemOperand::MOVolatile);
2522 
2523   if (TLI.useStackGuardXorFP())
2524     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2525 
2526   // Retrieve guard check function, nullptr if instrumentation is inlined.
2527   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2528     // The target provides a guard check function to validate the guard value.
2529     // Generate a call to that function with the content of the guard slot as
2530     // argument.
2531     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2532     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2533 
2534     TargetLowering::ArgListTy Args;
2535     TargetLowering::ArgListEntry Entry;
2536     Entry.Node = GuardVal;
2537     Entry.Ty = FnTy->getParamType(0);
2538     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2539       Entry.IsInReg = true;
2540     Args.push_back(Entry);
2541 
2542     TargetLowering::CallLoweringInfo CLI(DAG);
2543     CLI.setDebugLoc(getCurSDLoc())
2544         .setChain(DAG.getEntryNode())
2545         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2546                    getValue(GuardCheckFn), std::move(Args));
2547 
2548     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2549     DAG.setRoot(Result.second);
2550     return;
2551   }
2552 
2553   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2554   // Otherwise, emit a volatile load to retrieve the stack guard value.
2555   SDValue Chain = DAG.getEntryNode();
2556   if (TLI.useLoadStackGuardNode()) {
2557     Guard = getLoadStackGuard(DAG, dl, Chain);
2558   } else {
2559     const Value *IRGuard = TLI.getSDagStackGuard(M);
2560     SDValue GuardPtr = getValue(IRGuard);
2561 
2562     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2563                         MachinePointerInfo(IRGuard, 0), Align,
2564                         MachineMemOperand::MOVolatile);
2565   }
2566 
2567   // Perform the comparison via a subtract/getsetcc.
2568   EVT VT = Guard.getValueType();
2569   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2570 
2571   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2572                                                         *DAG.getContext(),
2573                                                         Sub.getValueType()),
2574                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2575 
2576   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2577   // branch to failure MBB.
2578   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2579                                MVT::Other, GuardVal.getOperand(0),
2580                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2581   // Otherwise branch to success MBB.
2582   SDValue Br = DAG.getNode(ISD::BR, dl,
2583                            MVT::Other, BrCond,
2584                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2585 
2586   DAG.setRoot(Br);
2587 }
2588 
2589 /// Codegen the failure basic block for a stack protector check.
2590 ///
2591 /// A failure stack protector machine basic block consists simply of a call to
2592 /// __stack_chk_fail().
2593 ///
2594 /// For a high level explanation of how this fits into the stack protector
2595 /// generation see the comment on the declaration of class
2596 /// StackProtectorDescriptor.
2597 void
2598 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2600   SDValue Chain =
2601       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2602                       None, false, getCurSDLoc(), false, false).second;
2603   // On PS4, the "return address" must still be within the calling function,
2604   // even if it's at the very end, so emit an explicit TRAP here.
2605   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2606   if (TM.getTargetTriple().isPS4CPU())
2607     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2608 
2609   DAG.setRoot(Chain);
2610 }
2611 
2612 /// visitBitTestHeader - This function emits necessary code to produce value
2613 /// suitable for "bit tests"
2614 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2615                                              MachineBasicBlock *SwitchBB) {
2616   SDLoc dl = getCurSDLoc();
2617 
2618   // Subtract the minimum value
2619   SDValue SwitchOp = getValue(B.SValue);
2620   EVT VT = SwitchOp.getValueType();
2621   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2622                             DAG.getConstant(B.First, dl, VT));
2623 
2624   // Check range
2625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2626   SDValue RangeCmp = DAG.getSetCC(
2627       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2628                                  Sub.getValueType()),
2629       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2630 
2631   // Determine the type of the test operands.
2632   bool UsePtrType = false;
2633   if (!TLI.isTypeLegal(VT))
2634     UsePtrType = true;
2635   else {
2636     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2637       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2638         // Switch table case range are encoded into series of masks.
2639         // Just use pointer type, it's guaranteed to fit.
2640         UsePtrType = true;
2641         break;
2642       }
2643   }
2644   if (UsePtrType) {
2645     VT = TLI.getPointerTy(DAG.getDataLayout());
2646     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2647   }
2648 
2649   B.RegVT = VT.getSimpleVT();
2650   B.Reg = FuncInfo.CreateReg(B.RegVT);
2651   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2652 
2653   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2654 
2655   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657   SwitchBB->normalizeSuccProbs();
2658 
2659   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2660                                 MVT::Other, CopyTo, RangeCmp,
2661                                 DAG.getBasicBlock(B.Default));
2662 
2663   // Avoid emitting unnecessary branches to the next block.
2664   if (MBB != NextBlock(SwitchBB))
2665     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2666                           DAG.getBasicBlock(MBB));
2667 
2668   DAG.setRoot(BrRange);
2669 }
2670 
2671 /// visitBitTestCase - this function produces one "bit test"
2672 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2673                                            MachineBasicBlock* NextMBB,
2674                                            BranchProbability BranchProbToNext,
2675                                            unsigned Reg,
2676                                            BitTestCase &B,
2677                                            MachineBasicBlock *SwitchBB) {
2678   SDLoc dl = getCurSDLoc();
2679   MVT VT = BB.RegVT;
2680   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2681   SDValue Cmp;
2682   unsigned PopCount = countPopulation(B.Mask);
2683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2684   if (PopCount == 1) {
2685     // Testing for a single bit; just compare the shift count with what it
2686     // would need to be to shift a 1 bit in that position.
2687     Cmp = DAG.getSetCC(
2688         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2689         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2690         ISD::SETEQ);
2691   } else if (PopCount == BB.Range) {
2692     // There is only one zero bit in the range, test for it directly.
2693     Cmp = DAG.getSetCC(
2694         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2695         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2696         ISD::SETNE);
2697   } else {
2698     // Make desired shift
2699     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2700                                     DAG.getConstant(1, dl, VT), ShiftOp);
2701 
2702     // Emit bit tests and jumps
2703     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2704                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2705     Cmp = DAG.getSetCC(
2706         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2707         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2708   }
2709 
2710   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2711   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2712   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2713   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2714   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2715   // one as they are relative probabilities (and thus work more like weights),
2716   // and hence we need to normalize them to let the sum of them become one.
2717   SwitchBB->normalizeSuccProbs();
2718 
2719   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2720                               MVT::Other, getControlRoot(),
2721                               Cmp, DAG.getBasicBlock(B.TargetBB));
2722 
2723   // Avoid emitting unnecessary branches to the next block.
2724   if (NextMBB != NextBlock(SwitchBB))
2725     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2726                         DAG.getBasicBlock(NextMBB));
2727 
2728   DAG.setRoot(BrAnd);
2729 }
2730 
2731 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2732   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2733 
2734   // Retrieve successors. Look through artificial IR level blocks like
2735   // catchswitch for successors.
2736   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2737   const BasicBlock *EHPadBB = I.getSuccessor(1);
2738 
2739   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2740   // have to do anything here to lower funclet bundles.
2741   assert(!I.hasOperandBundlesOtherThan(
2742              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2743          "Cannot lower invokes with arbitrary operand bundles yet!");
2744 
2745   const Value *Callee(I.getCalledValue());
2746   const Function *Fn = dyn_cast<Function>(Callee);
2747   if (isa<InlineAsm>(Callee))
2748     visitInlineAsm(&I);
2749   else if (Fn && Fn->isIntrinsic()) {
2750     switch (Fn->getIntrinsicID()) {
2751     default:
2752       llvm_unreachable("Cannot invoke this intrinsic");
2753     case Intrinsic::donothing:
2754       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2755       break;
2756     case Intrinsic::experimental_patchpoint_void:
2757     case Intrinsic::experimental_patchpoint_i64:
2758       visitPatchpoint(&I, EHPadBB);
2759       break;
2760     case Intrinsic::experimental_gc_statepoint:
2761       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2762       break;
2763     case Intrinsic::wasm_rethrow_in_catch: {
2764       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2765       // special because it can be invoked, so we manually lower it to a DAG
2766       // node here.
2767       SmallVector<SDValue, 8> Ops;
2768       Ops.push_back(getRoot()); // inchain
2769       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2770       Ops.push_back(
2771           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2772                                 TLI.getPointerTy(DAG.getDataLayout())));
2773       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2774       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2775       break;
2776     }
2777     }
2778   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2779     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2780     // Eventually we will support lowering the @llvm.experimental.deoptimize
2781     // intrinsic, and right now there are no plans to support other intrinsics
2782     // with deopt state.
2783     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2784   } else {
2785     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2786   }
2787 
2788   // If the value of the invoke is used outside of its defining block, make it
2789   // available as a virtual register.
2790   // We already took care of the exported value for the statepoint instruction
2791   // during call to the LowerStatepoint.
2792   if (!isStatepoint(I)) {
2793     CopyToExportRegsIfNeeded(&I);
2794   }
2795 
2796   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2797   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2798   BranchProbability EHPadBBProb =
2799       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2800           : BranchProbability::getZero();
2801   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2802 
2803   // Update successor info.
2804   addSuccessorWithProb(InvokeMBB, Return);
2805   for (auto &UnwindDest : UnwindDests) {
2806     UnwindDest.first->setIsEHPad();
2807     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2808   }
2809   InvokeMBB->normalizeSuccProbs();
2810 
2811   // Drop into normal successor.
2812   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2813                           DAG.getBasicBlock(Return)));
2814 }
2815 
2816 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2817   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2818 
2819   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2820   // have to do anything here to lower funclet bundles.
2821   assert(!I.hasOperandBundlesOtherThan(
2822              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2823          "Cannot lower callbrs with arbitrary operand bundles yet!");
2824 
2825   assert(isa<InlineAsm>(I.getCalledValue()) &&
2826          "Only know how to handle inlineasm callbr");
2827   visitInlineAsm(&I);
2828 
2829   // Retrieve successors.
2830   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2831 
2832   // Update successor info.
2833   addSuccessorWithProb(CallBrMBB, Return);
2834   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2835     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2836     addSuccessorWithProb(CallBrMBB, Target);
2837   }
2838   CallBrMBB->normalizeSuccProbs();
2839 
2840   // Drop into default successor.
2841   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2842                           MVT::Other, getControlRoot(),
2843                           DAG.getBasicBlock(Return)));
2844 }
2845 
2846 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2847   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2848 }
2849 
2850 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2851   assert(FuncInfo.MBB->isEHPad() &&
2852          "Call to landingpad not in landing pad!");
2853 
2854   // If there aren't registers to copy the values into (e.g., during SjLj
2855   // exceptions), then don't bother to create these DAG nodes.
2856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2857   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2858   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2859       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2860     return;
2861 
2862   // If landingpad's return type is token type, we don't create DAG nodes
2863   // for its exception pointer and selector value. The extraction of exception
2864   // pointer or selector value from token type landingpads is not currently
2865   // supported.
2866   if (LP.getType()->isTokenTy())
2867     return;
2868 
2869   SmallVector<EVT, 2> ValueVTs;
2870   SDLoc dl = getCurSDLoc();
2871   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2872   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2873 
2874   // Get the two live-in registers as SDValues. The physregs have already been
2875   // copied into virtual registers.
2876   SDValue Ops[2];
2877   if (FuncInfo.ExceptionPointerVirtReg) {
2878     Ops[0] = DAG.getZExtOrTrunc(
2879         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2880                            FuncInfo.ExceptionPointerVirtReg,
2881                            TLI.getPointerTy(DAG.getDataLayout())),
2882         dl, ValueVTs[0]);
2883   } else {
2884     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2885   }
2886   Ops[1] = DAG.getZExtOrTrunc(
2887       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2888                          FuncInfo.ExceptionSelectorVirtReg,
2889                          TLI.getPointerTy(DAG.getDataLayout())),
2890       dl, ValueVTs[1]);
2891 
2892   // Merge into one.
2893   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2894                             DAG.getVTList(ValueVTs), Ops);
2895   setValue(&LP, Res);
2896 }
2897 
2898 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2899 #ifndef NDEBUG
2900   for (const CaseCluster &CC : Clusters)
2901     assert(CC.Low == CC.High && "Input clusters must be single-case");
2902 #endif
2903 
2904   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2905     return a.Low->getValue().slt(b.Low->getValue());
2906   });
2907 
2908   // Merge adjacent clusters with the same destination.
2909   const unsigned N = Clusters.size();
2910   unsigned DstIndex = 0;
2911   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2912     CaseCluster &CC = Clusters[SrcIndex];
2913     const ConstantInt *CaseVal = CC.Low;
2914     MachineBasicBlock *Succ = CC.MBB;
2915 
2916     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2917         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2918       // If this case has the same successor and is a neighbour, merge it into
2919       // the previous cluster.
2920       Clusters[DstIndex - 1].High = CaseVal;
2921       Clusters[DstIndex - 1].Prob += CC.Prob;
2922     } else {
2923       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2924                    sizeof(Clusters[SrcIndex]));
2925     }
2926   }
2927   Clusters.resize(DstIndex);
2928 }
2929 
2930 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2931                                            MachineBasicBlock *Last) {
2932   // Update JTCases.
2933   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2934     if (JTCases[i].first.HeaderBB == First)
2935       JTCases[i].first.HeaderBB = Last;
2936 
2937   // Update BitTestCases.
2938   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2939     if (BitTestCases[i].Parent == First)
2940       BitTestCases[i].Parent = Last;
2941 }
2942 
2943 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2944   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2945 
2946   // Update machine-CFG edges with unique successors.
2947   SmallSet<BasicBlock*, 32> Done;
2948   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2949     BasicBlock *BB = I.getSuccessor(i);
2950     bool Inserted = Done.insert(BB).second;
2951     if (!Inserted)
2952         continue;
2953 
2954     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2955     addSuccessorWithProb(IndirectBrMBB, Succ);
2956   }
2957   IndirectBrMBB->normalizeSuccProbs();
2958 
2959   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2960                           MVT::Other, getControlRoot(),
2961                           getValue(I.getAddress())));
2962 }
2963 
2964 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2965   if (!DAG.getTarget().Options.TrapUnreachable)
2966     return;
2967 
2968   // We may be able to ignore unreachable behind a noreturn call.
2969   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2970     const BasicBlock &BB = *I.getParent();
2971     if (&I != &BB.front()) {
2972       BasicBlock::const_iterator PredI =
2973         std::prev(BasicBlock::const_iterator(&I));
2974       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2975         if (Call->doesNotReturn())
2976           return;
2977       }
2978     }
2979   }
2980 
2981   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2982 }
2983 
2984 void SelectionDAGBuilder::visitFSub(const User &I) {
2985   // -0.0 - X --> fneg
2986   Type *Ty = I.getType();
2987   if (isa<Constant>(I.getOperand(0)) &&
2988       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2989     SDValue Op2 = getValue(I.getOperand(1));
2990     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2991                              Op2.getValueType(), Op2));
2992     return;
2993   }
2994 
2995   visitBinary(I, ISD::FSUB);
2996 }
2997 
2998 /// Checks if the given instruction performs a vector reduction, in which case
2999 /// we have the freedom to alter the elements in the result as long as the
3000 /// reduction of them stays unchanged.
3001 static bool isVectorReductionOp(const User *I) {
3002   const Instruction *Inst = dyn_cast<Instruction>(I);
3003   if (!Inst || !Inst->getType()->isVectorTy())
3004     return false;
3005 
3006   auto OpCode = Inst->getOpcode();
3007   switch (OpCode) {
3008   case Instruction::Add:
3009   case Instruction::Mul:
3010   case Instruction::And:
3011   case Instruction::Or:
3012   case Instruction::Xor:
3013     break;
3014   case Instruction::FAdd:
3015   case Instruction::FMul:
3016     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3017       if (FPOp->getFastMathFlags().isFast())
3018         break;
3019     LLVM_FALLTHROUGH;
3020   default:
3021     return false;
3022   }
3023 
3024   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3025   // Ensure the reduction size is a power of 2.
3026   if (!isPowerOf2_32(ElemNum))
3027     return false;
3028 
3029   unsigned ElemNumToReduce = ElemNum;
3030 
3031   // Do DFS search on the def-use chain from the given instruction. We only
3032   // allow four kinds of operations during the search until we reach the
3033   // instruction that extracts the first element from the vector:
3034   //
3035   //   1. The reduction operation of the same opcode as the given instruction.
3036   //
3037   //   2. PHI node.
3038   //
3039   //   3. ShuffleVector instruction together with a reduction operation that
3040   //      does a partial reduction.
3041   //
3042   //   4. ExtractElement that extracts the first element from the vector, and we
3043   //      stop searching the def-use chain here.
3044   //
3045   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3046   // from 1-3 to the stack to continue the DFS. The given instruction is not
3047   // a reduction operation if we meet any other instructions other than those
3048   // listed above.
3049 
3050   SmallVector<const User *, 16> UsersToVisit{Inst};
3051   SmallPtrSet<const User *, 16> Visited;
3052   bool ReduxExtracted = false;
3053 
3054   while (!UsersToVisit.empty()) {
3055     auto User = UsersToVisit.back();
3056     UsersToVisit.pop_back();
3057     if (!Visited.insert(User).second)
3058       continue;
3059 
3060     for (const auto &U : User->users()) {
3061       auto Inst = dyn_cast<Instruction>(U);
3062       if (!Inst)
3063         return false;
3064 
3065       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3066         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3067           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3068             return false;
3069         UsersToVisit.push_back(U);
3070       } else if (const ShuffleVectorInst *ShufInst =
3071                      dyn_cast<ShuffleVectorInst>(U)) {
3072         // Detect the following pattern: A ShuffleVector instruction together
3073         // with a reduction that do partial reduction on the first and second
3074         // ElemNumToReduce / 2 elements, and store the result in
3075         // ElemNumToReduce / 2 elements in another vector.
3076 
3077         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3078         if (ResultElements < ElemNum)
3079           return false;
3080 
3081         if (ElemNumToReduce == 1)
3082           return false;
3083         if (!isa<UndefValue>(U->getOperand(1)))
3084           return false;
3085         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3086           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3087             return false;
3088         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3089           if (ShufInst->getMaskValue(i) != -1)
3090             return false;
3091 
3092         // There is only one user of this ShuffleVector instruction, which
3093         // must be a reduction operation.
3094         if (!U->hasOneUse())
3095           return false;
3096 
3097         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3098         if (!U2 || U2->getOpcode() != OpCode)
3099           return false;
3100 
3101         // Check operands of the reduction operation.
3102         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3103             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3104           UsersToVisit.push_back(U2);
3105           ElemNumToReduce /= 2;
3106         } else
3107           return false;
3108       } else if (isa<ExtractElementInst>(U)) {
3109         // At this moment we should have reduced all elements in the vector.
3110         if (ElemNumToReduce != 1)
3111           return false;
3112 
3113         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3114         if (!Val || !Val->isZero())
3115           return false;
3116 
3117         ReduxExtracted = true;
3118       } else
3119         return false;
3120     }
3121   }
3122   return ReduxExtracted;
3123 }
3124 
3125 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3126   SDNodeFlags Flags;
3127 
3128   SDValue Op = getValue(I.getOperand(0));
3129   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3130                                     Op, Flags);
3131   setValue(&I, UnNodeValue);
3132 }
3133 
3134 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3135   SDNodeFlags Flags;
3136   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3137     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3138     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3139   }
3140   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3141     Flags.setExact(ExactOp->isExact());
3142   }
3143   if (isVectorReductionOp(&I)) {
3144     Flags.setVectorReduction(true);
3145     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3146   }
3147 
3148   SDValue Op1 = getValue(I.getOperand(0));
3149   SDValue Op2 = getValue(I.getOperand(1));
3150   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3151                                      Op1, Op2, Flags);
3152   setValue(&I, BinNodeValue);
3153 }
3154 
3155 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3156   SDValue Op1 = getValue(I.getOperand(0));
3157   SDValue Op2 = getValue(I.getOperand(1));
3158 
3159   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3160       Op1.getValueType(), DAG.getDataLayout());
3161 
3162   // Coerce the shift amount to the right type if we can.
3163   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3164     unsigned ShiftSize = ShiftTy.getSizeInBits();
3165     unsigned Op2Size = Op2.getValueSizeInBits();
3166     SDLoc DL = getCurSDLoc();
3167 
3168     // If the operand is smaller than the shift count type, promote it.
3169     if (ShiftSize > Op2Size)
3170       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3171 
3172     // If the operand is larger than the shift count type but the shift
3173     // count type has enough bits to represent any shift value, truncate
3174     // it now. This is a common case and it exposes the truncate to
3175     // optimization early.
3176     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3177       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3178     // Otherwise we'll need to temporarily settle for some other convenient
3179     // type.  Type legalization will make adjustments once the shiftee is split.
3180     else
3181       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3182   }
3183 
3184   bool nuw = false;
3185   bool nsw = false;
3186   bool exact = false;
3187 
3188   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3189 
3190     if (const OverflowingBinaryOperator *OFBinOp =
3191             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3192       nuw = OFBinOp->hasNoUnsignedWrap();
3193       nsw = OFBinOp->hasNoSignedWrap();
3194     }
3195     if (const PossiblyExactOperator *ExactOp =
3196             dyn_cast<const PossiblyExactOperator>(&I))
3197       exact = ExactOp->isExact();
3198   }
3199   SDNodeFlags Flags;
3200   Flags.setExact(exact);
3201   Flags.setNoSignedWrap(nsw);
3202   Flags.setNoUnsignedWrap(nuw);
3203   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3204                             Flags);
3205   setValue(&I, Res);
3206 }
3207 
3208 void SelectionDAGBuilder::visitSDiv(const User &I) {
3209   SDValue Op1 = getValue(I.getOperand(0));
3210   SDValue Op2 = getValue(I.getOperand(1));
3211 
3212   SDNodeFlags Flags;
3213   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3214                  cast<PossiblyExactOperator>(&I)->isExact());
3215   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3216                            Op2, Flags));
3217 }
3218 
3219 void SelectionDAGBuilder::visitICmp(const User &I) {
3220   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3221   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3222     predicate = IC->getPredicate();
3223   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3224     predicate = ICmpInst::Predicate(IC->getPredicate());
3225   SDValue Op1 = getValue(I.getOperand(0));
3226   SDValue Op2 = getValue(I.getOperand(1));
3227   ISD::CondCode Opcode = getICmpCondCode(predicate);
3228 
3229   auto &TLI = DAG.getTargetLoweringInfo();
3230   EVT MemVT =
3231       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3232 
3233   // If a pointer's DAG type is larger than its memory type then the DAG values
3234   // are zero-extended. This breaks signed comparisons so truncate back to the
3235   // underlying type before doing the compare.
3236   if (Op1.getValueType() != MemVT) {
3237     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3238     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3239   }
3240 
3241   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3242                                                         I.getType());
3243   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3244 }
3245 
3246 void SelectionDAGBuilder::visitFCmp(const User &I) {
3247   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3248   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3249     predicate = FC->getPredicate();
3250   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3251     predicate = FCmpInst::Predicate(FC->getPredicate());
3252   SDValue Op1 = getValue(I.getOperand(0));
3253   SDValue Op2 = getValue(I.getOperand(1));
3254 
3255   ISD::CondCode Condition = getFCmpCondCode(predicate);
3256   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3257   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3258     Condition = getFCmpCodeWithoutNaN(Condition);
3259 
3260   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3261                                                         I.getType());
3262   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3263 }
3264 
3265 // Check if the condition of the select has one use or two users that are both
3266 // selects with the same condition.
3267 static bool hasOnlySelectUsers(const Value *Cond) {
3268   return llvm::all_of(Cond->users(), [](const Value *V) {
3269     return isa<SelectInst>(V);
3270   });
3271 }
3272 
3273 void SelectionDAGBuilder::visitSelect(const User &I) {
3274   SmallVector<EVT, 4> ValueVTs;
3275   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3276                   ValueVTs);
3277   unsigned NumValues = ValueVTs.size();
3278   if (NumValues == 0) return;
3279 
3280   SmallVector<SDValue, 4> Values(NumValues);
3281   SDValue Cond     = getValue(I.getOperand(0));
3282   SDValue LHSVal   = getValue(I.getOperand(1));
3283   SDValue RHSVal   = getValue(I.getOperand(2));
3284   auto BaseOps = {Cond};
3285   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3286     ISD::VSELECT : ISD::SELECT;
3287 
3288   bool IsUnaryAbs = false;
3289 
3290   // Min/max matching is only viable if all output VTs are the same.
3291   if (is_splat(ValueVTs)) {
3292     EVT VT = ValueVTs[0];
3293     LLVMContext &Ctx = *DAG.getContext();
3294     auto &TLI = DAG.getTargetLoweringInfo();
3295 
3296     // We care about the legality of the operation after it has been type
3297     // legalized.
3298     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3299            VT != TLI.getTypeToTransformTo(Ctx, VT))
3300       VT = TLI.getTypeToTransformTo(Ctx, VT);
3301 
3302     // If the vselect is legal, assume we want to leave this as a vector setcc +
3303     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3304     // min/max is legal on the scalar type.
3305     bool UseScalarMinMax = VT.isVector() &&
3306       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3307 
3308     Value *LHS, *RHS;
3309     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3310     ISD::NodeType Opc = ISD::DELETED_NODE;
3311     switch (SPR.Flavor) {
3312     case SPF_UMAX:    Opc = ISD::UMAX; break;
3313     case SPF_UMIN:    Opc = ISD::UMIN; break;
3314     case SPF_SMAX:    Opc = ISD::SMAX; break;
3315     case SPF_SMIN:    Opc = ISD::SMIN; break;
3316     case SPF_FMINNUM:
3317       switch (SPR.NaNBehavior) {
3318       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3319       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3320       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3321       case SPNB_RETURNS_ANY: {
3322         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3323           Opc = ISD::FMINNUM;
3324         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3325           Opc = ISD::FMINIMUM;
3326         else if (UseScalarMinMax)
3327           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3328             ISD::FMINNUM : ISD::FMINIMUM;
3329         break;
3330       }
3331       }
3332       break;
3333     case SPF_FMAXNUM:
3334       switch (SPR.NaNBehavior) {
3335       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3336       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3337       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3338       case SPNB_RETURNS_ANY:
3339 
3340         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3341           Opc = ISD::FMAXNUM;
3342         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3343           Opc = ISD::FMAXIMUM;
3344         else if (UseScalarMinMax)
3345           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3346             ISD::FMAXNUM : ISD::FMAXIMUM;
3347         break;
3348       }
3349       break;
3350     case SPF_ABS:
3351       IsUnaryAbs = true;
3352       Opc = ISD::ABS;
3353       break;
3354     case SPF_NABS:
3355       // TODO: we need to produce sub(0, abs(X)).
3356     default: break;
3357     }
3358 
3359     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3360         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3361          (UseScalarMinMax &&
3362           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3363         // If the underlying comparison instruction is used by any other
3364         // instruction, the consumed instructions won't be destroyed, so it is
3365         // not profitable to convert to a min/max.
3366         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3367       OpCode = Opc;
3368       LHSVal = getValue(LHS);
3369       RHSVal = getValue(RHS);
3370       BaseOps = {};
3371     }
3372 
3373     if (IsUnaryAbs) {
3374       OpCode = Opc;
3375       LHSVal = getValue(LHS);
3376       BaseOps = {};
3377     }
3378   }
3379 
3380   if (IsUnaryAbs) {
3381     for (unsigned i = 0; i != NumValues; ++i) {
3382       Values[i] =
3383           DAG.getNode(OpCode, getCurSDLoc(),
3384                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3385                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3386     }
3387   } else {
3388     for (unsigned i = 0; i != NumValues; ++i) {
3389       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3390       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3391       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3392       Values[i] = DAG.getNode(
3393           OpCode, getCurSDLoc(),
3394           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3395     }
3396   }
3397 
3398   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3399                            DAG.getVTList(ValueVTs), Values));
3400 }
3401 
3402 void SelectionDAGBuilder::visitTrunc(const User &I) {
3403   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3404   SDValue N = getValue(I.getOperand(0));
3405   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3406                                                         I.getType());
3407   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3408 }
3409 
3410 void SelectionDAGBuilder::visitZExt(const User &I) {
3411   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3412   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3413   SDValue N = getValue(I.getOperand(0));
3414   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3415                                                         I.getType());
3416   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3417 }
3418 
3419 void SelectionDAGBuilder::visitSExt(const User &I) {
3420   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3421   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3422   SDValue N = getValue(I.getOperand(0));
3423   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3424                                                         I.getType());
3425   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3426 }
3427 
3428 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3429   // FPTrunc is never a no-op cast, no need to check
3430   SDValue N = getValue(I.getOperand(0));
3431   SDLoc dl = getCurSDLoc();
3432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3433   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3434   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3435                            DAG.getTargetConstant(
3436                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3437 }
3438 
3439 void SelectionDAGBuilder::visitFPExt(const User &I) {
3440   // FPExt is never a no-op cast, no need to check
3441   SDValue N = getValue(I.getOperand(0));
3442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443                                                         I.getType());
3444   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3445 }
3446 
3447 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3448   // FPToUI is never a no-op cast, no need to check
3449   SDValue N = getValue(I.getOperand(0));
3450   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3451                                                         I.getType());
3452   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3453 }
3454 
3455 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3456   // FPToSI is never a no-op cast, no need to check
3457   SDValue N = getValue(I.getOperand(0));
3458   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459                                                         I.getType());
3460   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3461 }
3462 
3463 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3464   // UIToFP is never a no-op cast, no need to check
3465   SDValue N = getValue(I.getOperand(0));
3466   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3467                                                         I.getType());
3468   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3469 }
3470 
3471 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3472   // SIToFP is never a no-op cast, no need to check
3473   SDValue N = getValue(I.getOperand(0));
3474   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3475                                                         I.getType());
3476   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3477 }
3478 
3479 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3480   // What to do depends on the size of the integer and the size of the pointer.
3481   // We can either truncate, zero extend, or no-op, accordingly.
3482   SDValue N = getValue(I.getOperand(0));
3483   auto &TLI = DAG.getTargetLoweringInfo();
3484   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3485                                                         I.getType());
3486   EVT PtrMemVT =
3487       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3488   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3494   // What to do depends on the size of the integer and the size of the pointer.
3495   // We can either truncate, zero extend, or no-op, accordingly.
3496   SDValue N = getValue(I.getOperand(0));
3497   auto &TLI = DAG.getTargetLoweringInfo();
3498   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3499   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3500   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3501   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3502   setValue(&I, N);
3503 }
3504 
3505 void SelectionDAGBuilder::visitBitCast(const User &I) {
3506   SDValue N = getValue(I.getOperand(0));
3507   SDLoc dl = getCurSDLoc();
3508   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3509                                                         I.getType());
3510 
3511   // BitCast assures us that source and destination are the same size so this is
3512   // either a BITCAST or a no-op.
3513   if (DestVT != N.getValueType())
3514     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3515                              DestVT, N)); // convert types.
3516   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3517   // might fold any kind of constant expression to an integer constant and that
3518   // is not what we are looking for. Only recognize a bitcast of a genuine
3519   // constant integer as an opaque constant.
3520   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3521     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3522                                  /*isOpaque*/true));
3523   else
3524     setValue(&I, N);            // noop cast.
3525 }
3526 
3527 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3529   const Value *SV = I.getOperand(0);
3530   SDValue N = getValue(SV);
3531   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3532 
3533   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3534   unsigned DestAS = I.getType()->getPointerAddressSpace();
3535 
3536   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3537     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3538 
3539   setValue(&I, N);
3540 }
3541 
3542 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   SDValue InVec = getValue(I.getOperand(0));
3545   SDValue InVal = getValue(I.getOperand(1));
3546   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3547                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3548   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3549                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3550                            InVec, InVal, InIdx));
3551 }
3552 
3553 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3554   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3555   SDValue InVec = getValue(I.getOperand(0));
3556   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3557                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3558   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3559                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3560                            InVec, InIdx));
3561 }
3562 
3563 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3564   SDValue Src1 = getValue(I.getOperand(0));
3565   SDValue Src2 = getValue(I.getOperand(1));
3566   SDLoc DL = getCurSDLoc();
3567 
3568   SmallVector<int, 8> Mask;
3569   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3570   unsigned MaskNumElts = Mask.size();
3571 
3572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3573   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3574   EVT SrcVT = Src1.getValueType();
3575   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3576 
3577   if (SrcNumElts == MaskNumElts) {
3578     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3579     return;
3580   }
3581 
3582   // Normalize the shuffle vector since mask and vector length don't match.
3583   if (SrcNumElts < MaskNumElts) {
3584     // Mask is longer than the source vectors. We can use concatenate vector to
3585     // make the mask and vectors lengths match.
3586 
3587     if (MaskNumElts % SrcNumElts == 0) {
3588       // Mask length is a multiple of the source vector length.
3589       // Check if the shuffle is some kind of concatenation of the input
3590       // vectors.
3591       unsigned NumConcat = MaskNumElts / SrcNumElts;
3592       bool IsConcat = true;
3593       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3594       for (unsigned i = 0; i != MaskNumElts; ++i) {
3595         int Idx = Mask[i];
3596         if (Idx < 0)
3597           continue;
3598         // Ensure the indices in each SrcVT sized piece are sequential and that
3599         // the same source is used for the whole piece.
3600         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3601             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3602              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3603           IsConcat = false;
3604           break;
3605         }
3606         // Remember which source this index came from.
3607         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3608       }
3609 
3610       // The shuffle is concatenating multiple vectors together. Just emit
3611       // a CONCAT_VECTORS operation.
3612       if (IsConcat) {
3613         SmallVector<SDValue, 8> ConcatOps;
3614         for (auto Src : ConcatSrcs) {
3615           if (Src < 0)
3616             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3617           else if (Src == 0)
3618             ConcatOps.push_back(Src1);
3619           else
3620             ConcatOps.push_back(Src2);
3621         }
3622         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3623         return;
3624       }
3625     }
3626 
3627     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3628     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3629     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3630                                     PaddedMaskNumElts);
3631 
3632     // Pad both vectors with undefs to make them the same length as the mask.
3633     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3634 
3635     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3636     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3637     MOps1[0] = Src1;
3638     MOps2[0] = Src2;
3639 
3640     Src1 = Src1.isUndef()
3641                ? DAG.getUNDEF(PaddedVT)
3642                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3643     Src2 = Src2.isUndef()
3644                ? DAG.getUNDEF(PaddedVT)
3645                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3646 
3647     // Readjust mask for new input vector length.
3648     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3649     for (unsigned i = 0; i != MaskNumElts; ++i) {
3650       int Idx = Mask[i];
3651       if (Idx >= (int)SrcNumElts)
3652         Idx -= SrcNumElts - PaddedMaskNumElts;
3653       MappedOps[i] = Idx;
3654     }
3655 
3656     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3657 
3658     // If the concatenated vector was padded, extract a subvector with the
3659     // correct number of elements.
3660     if (MaskNumElts != PaddedMaskNumElts)
3661       Result = DAG.getNode(
3662           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3663           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3664 
3665     setValue(&I, Result);
3666     return;
3667   }
3668 
3669   if (SrcNumElts > MaskNumElts) {
3670     // Analyze the access pattern of the vector to see if we can extract
3671     // two subvectors and do the shuffle.
3672     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3673     bool CanExtract = true;
3674     for (int Idx : Mask) {
3675       unsigned Input = 0;
3676       if (Idx < 0)
3677         continue;
3678 
3679       if (Idx >= (int)SrcNumElts) {
3680         Input = 1;
3681         Idx -= SrcNumElts;
3682       }
3683 
3684       // If all the indices come from the same MaskNumElts sized portion of
3685       // the sources we can use extract. Also make sure the extract wouldn't
3686       // extract past the end of the source.
3687       int NewStartIdx = alignDown(Idx, MaskNumElts);
3688       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3689           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3690         CanExtract = false;
3691       // Make sure we always update StartIdx as we use it to track if all
3692       // elements are undef.
3693       StartIdx[Input] = NewStartIdx;
3694     }
3695 
3696     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3697       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3698       return;
3699     }
3700     if (CanExtract) {
3701       // Extract appropriate subvector and generate a vector shuffle
3702       for (unsigned Input = 0; Input < 2; ++Input) {
3703         SDValue &Src = Input == 0 ? Src1 : Src2;
3704         if (StartIdx[Input] < 0)
3705           Src = DAG.getUNDEF(VT);
3706         else {
3707           Src = DAG.getNode(
3708               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3709               DAG.getConstant(StartIdx[Input], DL,
3710                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3711         }
3712       }
3713 
3714       // Calculate new mask.
3715       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3716       for (int &Idx : MappedOps) {
3717         if (Idx >= (int)SrcNumElts)
3718           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3719         else if (Idx >= 0)
3720           Idx -= StartIdx[0];
3721       }
3722 
3723       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3724       return;
3725     }
3726   }
3727 
3728   // We can't use either concat vectors or extract subvectors so fall back to
3729   // replacing the shuffle with extract and build vector.
3730   // to insert and build vector.
3731   EVT EltVT = VT.getVectorElementType();
3732   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3733   SmallVector<SDValue,8> Ops;
3734   for (int Idx : Mask) {
3735     SDValue Res;
3736 
3737     if (Idx < 0) {
3738       Res = DAG.getUNDEF(EltVT);
3739     } else {
3740       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3741       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3742 
3743       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3744                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3745     }
3746 
3747     Ops.push_back(Res);
3748   }
3749 
3750   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3751 }
3752 
3753 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3754   ArrayRef<unsigned> Indices;
3755   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3756     Indices = IV->getIndices();
3757   else
3758     Indices = cast<ConstantExpr>(&I)->getIndices();
3759 
3760   const Value *Op0 = I.getOperand(0);
3761   const Value *Op1 = I.getOperand(1);
3762   Type *AggTy = I.getType();
3763   Type *ValTy = Op1->getType();
3764   bool IntoUndef = isa<UndefValue>(Op0);
3765   bool FromUndef = isa<UndefValue>(Op1);
3766 
3767   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3768 
3769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3770   SmallVector<EVT, 4> AggValueVTs;
3771   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3772   SmallVector<EVT, 4> ValValueVTs;
3773   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3774 
3775   unsigned NumAggValues = AggValueVTs.size();
3776   unsigned NumValValues = ValValueVTs.size();
3777   SmallVector<SDValue, 4> Values(NumAggValues);
3778 
3779   // Ignore an insertvalue that produces an empty object
3780   if (!NumAggValues) {
3781     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3782     return;
3783   }
3784 
3785   SDValue Agg = getValue(Op0);
3786   unsigned i = 0;
3787   // Copy the beginning value(s) from the original aggregate.
3788   for (; i != LinearIndex; ++i)
3789     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3790                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3791   // Copy values from the inserted value(s).
3792   if (NumValValues) {
3793     SDValue Val = getValue(Op1);
3794     for (; i != LinearIndex + NumValValues; ++i)
3795       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3796                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3797   }
3798   // Copy remaining value(s) from the original aggregate.
3799   for (; i != NumAggValues; ++i)
3800     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3801                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3802 
3803   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3804                            DAG.getVTList(AggValueVTs), Values));
3805 }
3806 
3807 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3808   ArrayRef<unsigned> Indices;
3809   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3810     Indices = EV->getIndices();
3811   else
3812     Indices = cast<ConstantExpr>(&I)->getIndices();
3813 
3814   const Value *Op0 = I.getOperand(0);
3815   Type *AggTy = Op0->getType();
3816   Type *ValTy = I.getType();
3817   bool OutOfUndef = isa<UndefValue>(Op0);
3818 
3819   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3820 
3821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3822   SmallVector<EVT, 4> ValValueVTs;
3823   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3824 
3825   unsigned NumValValues = ValValueVTs.size();
3826 
3827   // Ignore a extractvalue that produces an empty object
3828   if (!NumValValues) {
3829     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3830     return;
3831   }
3832 
3833   SmallVector<SDValue, 4> Values(NumValValues);
3834 
3835   SDValue Agg = getValue(Op0);
3836   // Copy out the selected value(s).
3837   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3838     Values[i - LinearIndex] =
3839       OutOfUndef ?
3840         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3841         SDValue(Agg.getNode(), Agg.getResNo() + i);
3842 
3843   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3844                            DAG.getVTList(ValValueVTs), Values));
3845 }
3846 
3847 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3848   Value *Op0 = I.getOperand(0);
3849   // Note that the pointer operand may be a vector of pointers. Take the scalar
3850   // element which holds a pointer.
3851   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3852   SDValue N = getValue(Op0);
3853   SDLoc dl = getCurSDLoc();
3854   auto &TLI = DAG.getTargetLoweringInfo();
3855   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3856   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3857 
3858   // Normalize Vector GEP - all scalar operands should be converted to the
3859   // splat vector.
3860   unsigned VectorWidth = I.getType()->isVectorTy() ?
3861     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3862 
3863   if (VectorWidth && !N.getValueType().isVector()) {
3864     LLVMContext &Context = *DAG.getContext();
3865     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3866     N = DAG.getSplatBuildVector(VT, dl, N);
3867   }
3868 
3869   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3870        GTI != E; ++GTI) {
3871     const Value *Idx = GTI.getOperand();
3872     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3873       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3874       if (Field) {
3875         // N = N + Offset
3876         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3877 
3878         // In an inbounds GEP with an offset that is nonnegative even when
3879         // interpreted as signed, assume there is no unsigned overflow.
3880         SDNodeFlags Flags;
3881         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3882           Flags.setNoUnsignedWrap(true);
3883 
3884         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3885                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3886       }
3887     } else {
3888       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3889       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3890       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3891 
3892       // If this is a scalar constant or a splat vector of constants,
3893       // handle it quickly.
3894       const auto *CI = dyn_cast<ConstantInt>(Idx);
3895       if (!CI && isa<ConstantDataVector>(Idx) &&
3896           cast<ConstantDataVector>(Idx)->getSplatValue())
3897         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3898 
3899       if (CI) {
3900         if (CI->isZero())
3901           continue;
3902         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3903         LLVMContext &Context = *DAG.getContext();
3904         SDValue OffsVal = VectorWidth ?
3905           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3906           DAG.getConstant(Offs, dl, IdxTy);
3907 
3908         // In an inbouds GEP with an offset that is nonnegative even when
3909         // interpreted as signed, assume there is no unsigned overflow.
3910         SDNodeFlags Flags;
3911         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3912           Flags.setNoUnsignedWrap(true);
3913 
3914         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3915 
3916         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3917         continue;
3918       }
3919 
3920       // N = N + Idx * ElementSize;
3921       SDValue IdxN = getValue(Idx);
3922 
3923       if (!IdxN.getValueType().isVector() && VectorWidth) {
3924         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3925         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3926       }
3927 
3928       // If the index is smaller or larger than intptr_t, truncate or extend
3929       // it.
3930       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3931 
3932       // If this is a multiply by a power of two, turn it into a shl
3933       // immediately.  This is a very common case.
3934       if (ElementSize != 1) {
3935         if (ElementSize.isPowerOf2()) {
3936           unsigned Amt = ElementSize.logBase2();
3937           IdxN = DAG.getNode(ISD::SHL, dl,
3938                              N.getValueType(), IdxN,
3939                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3940         } else {
3941           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3942                                           IdxN.getValueType());
3943           IdxN = DAG.getNode(ISD::MUL, dl,
3944                              N.getValueType(), IdxN, Scale);
3945         }
3946       }
3947 
3948       N = DAG.getNode(ISD::ADD, dl,
3949                       N.getValueType(), N, IdxN);
3950     }
3951   }
3952 
3953   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3954     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3955 
3956   setValue(&I, N);
3957 }
3958 
3959 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3960   // If this is a fixed sized alloca in the entry block of the function,
3961   // allocate it statically on the stack.
3962   if (FuncInfo.StaticAllocaMap.count(&I))
3963     return;   // getValue will auto-populate this.
3964 
3965   SDLoc dl = getCurSDLoc();
3966   Type *Ty = I.getAllocatedType();
3967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3968   auto &DL = DAG.getDataLayout();
3969   uint64_t TySize = DL.getTypeAllocSize(Ty);
3970   unsigned Align =
3971       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3972 
3973   SDValue AllocSize = getValue(I.getArraySize());
3974 
3975   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3976   if (AllocSize.getValueType() != IntPtr)
3977     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3978 
3979   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3980                           AllocSize,
3981                           DAG.getConstant(TySize, dl, IntPtr));
3982 
3983   // Handle alignment.  If the requested alignment is less than or equal to
3984   // the stack alignment, ignore it.  If the size is greater than or equal to
3985   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3986   unsigned StackAlign =
3987       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3988   if (Align <= StackAlign)
3989     Align = 0;
3990 
3991   // Round the size of the allocation up to the stack alignment size
3992   // by add SA-1 to the size. This doesn't overflow because we're computing
3993   // an address inside an alloca.
3994   SDNodeFlags Flags;
3995   Flags.setNoUnsignedWrap(true);
3996   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3997                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3998 
3999   // Mask out the low bits for alignment purposes.
4000   AllocSize =
4001       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4002                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4003 
4004   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4005   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4006   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4007   setValue(&I, DSA);
4008   DAG.setRoot(DSA.getValue(1));
4009 
4010   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4011 }
4012 
4013 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4014   if (I.isAtomic())
4015     return visitAtomicLoad(I);
4016 
4017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4018   const Value *SV = I.getOperand(0);
4019   if (TLI.supportSwiftError()) {
4020     // Swifterror values can come from either a function parameter with
4021     // swifterror attribute or an alloca with swifterror attribute.
4022     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4023       if (Arg->hasSwiftErrorAttr())
4024         return visitLoadFromSwiftError(I);
4025     }
4026 
4027     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4028       if (Alloca->isSwiftError())
4029         return visitLoadFromSwiftError(I);
4030     }
4031   }
4032 
4033   SDValue Ptr = getValue(SV);
4034 
4035   Type *Ty = I.getType();
4036 
4037   bool isVolatile = I.isVolatile();
4038   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
4039   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
4040   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
4041   unsigned Alignment = I.getAlignment();
4042 
4043   AAMDNodes AAInfo;
4044   I.getAAMetadata(AAInfo);
4045   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4046 
4047   SmallVector<EVT, 4> ValueVTs, MemVTs;
4048   SmallVector<uint64_t, 4> Offsets;
4049   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4050   unsigned NumValues = ValueVTs.size();
4051   if (NumValues == 0)
4052     return;
4053 
4054   SDValue Root;
4055   bool ConstantMemory = false;
4056   if (isVolatile || NumValues > MaxParallelChains)
4057     // Serialize volatile loads with other side effects.
4058     Root = getRoot();
4059   else if (AA &&
4060            AA->pointsToConstantMemory(MemoryLocation(
4061                SV,
4062                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4063                AAInfo))) {
4064     // Do not serialize (non-volatile) loads of constant memory with anything.
4065     Root = DAG.getEntryNode();
4066     ConstantMemory = true;
4067   } else {
4068     // Do not serialize non-volatile loads against each other.
4069     Root = DAG.getRoot();
4070   }
4071 
4072   SDLoc dl = getCurSDLoc();
4073 
4074   if (isVolatile)
4075     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4076 
4077   // An aggregate load cannot wrap around the address space, so offsets to its
4078   // parts don't wrap either.
4079   SDNodeFlags Flags;
4080   Flags.setNoUnsignedWrap(true);
4081 
4082   SmallVector<SDValue, 4> Values(NumValues);
4083   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4084   EVT PtrVT = Ptr.getValueType();
4085   unsigned ChainI = 0;
4086   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4087     // Serializing loads here may result in excessive register pressure, and
4088     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4089     // could recover a bit by hoisting nodes upward in the chain by recognizing
4090     // they are side-effect free or do not alias. The optimizer should really
4091     // avoid this case by converting large object/array copies to llvm.memcpy
4092     // (MaxParallelChains should always remain as failsafe).
4093     if (ChainI == MaxParallelChains) {
4094       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4095       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4096                                   makeArrayRef(Chains.data(), ChainI));
4097       Root = Chain;
4098       ChainI = 0;
4099     }
4100     SDValue A = DAG.getNode(ISD::ADD, dl,
4101                             PtrVT, Ptr,
4102                             DAG.getConstant(Offsets[i], dl, PtrVT),
4103                             Flags);
4104     auto MMOFlags = MachineMemOperand::MONone;
4105     if (isVolatile)
4106       MMOFlags |= MachineMemOperand::MOVolatile;
4107     if (isNonTemporal)
4108       MMOFlags |= MachineMemOperand::MONonTemporal;
4109     if (isInvariant)
4110       MMOFlags |= MachineMemOperand::MOInvariant;
4111     if (isDereferenceable)
4112       MMOFlags |= MachineMemOperand::MODereferenceable;
4113     MMOFlags |= TLI.getMMOFlags(I);
4114 
4115     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4116                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4117                             MMOFlags, AAInfo, Ranges);
4118     Chains[ChainI] = L.getValue(1);
4119 
4120     if (MemVTs[i] != ValueVTs[i])
4121       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4122 
4123     Values[i] = L;
4124   }
4125 
4126   if (!ConstantMemory) {
4127     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4128                                 makeArrayRef(Chains.data(), ChainI));
4129     if (isVolatile)
4130       DAG.setRoot(Chain);
4131     else
4132       PendingLoads.push_back(Chain);
4133   }
4134 
4135   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4136                            DAG.getVTList(ValueVTs), Values));
4137 }
4138 
4139 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4140   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4141          "call visitStoreToSwiftError when backend supports swifterror");
4142 
4143   SmallVector<EVT, 4> ValueVTs;
4144   SmallVector<uint64_t, 4> Offsets;
4145   const Value *SrcV = I.getOperand(0);
4146   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4147                   SrcV->getType(), ValueVTs, &Offsets);
4148   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4149          "expect a single EVT for swifterror");
4150 
4151   SDValue Src = getValue(SrcV);
4152   // Create a virtual register, then update the virtual register.
4153   unsigned VReg; bool CreatedVReg;
4154   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4155   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4156   // Chain can be getRoot or getControlRoot.
4157   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4158                                       SDValue(Src.getNode(), Src.getResNo()));
4159   DAG.setRoot(CopyNode);
4160   if (CreatedVReg)
4161     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4162 }
4163 
4164 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4165   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4166          "call visitLoadFromSwiftError when backend supports swifterror");
4167 
4168   assert(!I.isVolatile() &&
4169          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4170          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4171          "Support volatile, non temporal, invariant for load_from_swift_error");
4172 
4173   const Value *SV = I.getOperand(0);
4174   Type *Ty = I.getType();
4175   AAMDNodes AAInfo;
4176   I.getAAMetadata(AAInfo);
4177   assert(
4178       (!AA ||
4179        !AA->pointsToConstantMemory(MemoryLocation(
4180            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4181            AAInfo))) &&
4182       "load_from_swift_error should not be constant memory");
4183 
4184   SmallVector<EVT, 4> ValueVTs;
4185   SmallVector<uint64_t, 4> Offsets;
4186   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4187                   ValueVTs, &Offsets);
4188   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4189          "expect a single EVT for swifterror");
4190 
4191   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4192   SDValue L = DAG.getCopyFromReg(
4193       getRoot(), getCurSDLoc(),
4194       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4195       ValueVTs[0]);
4196 
4197   setValue(&I, L);
4198 }
4199 
4200 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4201   if (I.isAtomic())
4202     return visitAtomicStore(I);
4203 
4204   const Value *SrcV = I.getOperand(0);
4205   const Value *PtrV = I.getOperand(1);
4206 
4207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4208   if (TLI.supportSwiftError()) {
4209     // Swifterror values can come from either a function parameter with
4210     // swifterror attribute or an alloca with swifterror attribute.
4211     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4212       if (Arg->hasSwiftErrorAttr())
4213         return visitStoreToSwiftError(I);
4214     }
4215 
4216     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4217       if (Alloca->isSwiftError())
4218         return visitStoreToSwiftError(I);
4219     }
4220   }
4221 
4222   SmallVector<EVT, 4> ValueVTs, MemVTs;
4223   SmallVector<uint64_t, 4> Offsets;
4224   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4225                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4226   unsigned NumValues = ValueVTs.size();
4227   if (NumValues == 0)
4228     return;
4229 
4230   // Get the lowered operands. Note that we do this after
4231   // checking if NumResults is zero, because with zero results
4232   // the operands won't have values in the map.
4233   SDValue Src = getValue(SrcV);
4234   SDValue Ptr = getValue(PtrV);
4235 
4236   SDValue Root = getRoot();
4237   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4238   SDLoc dl = getCurSDLoc();
4239   EVT PtrVT = Ptr.getValueType();
4240   unsigned Alignment = I.getAlignment();
4241   AAMDNodes AAInfo;
4242   I.getAAMetadata(AAInfo);
4243 
4244   auto MMOFlags = MachineMemOperand::MONone;
4245   if (I.isVolatile())
4246     MMOFlags |= MachineMemOperand::MOVolatile;
4247   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4248     MMOFlags |= MachineMemOperand::MONonTemporal;
4249   MMOFlags |= TLI.getMMOFlags(I);
4250 
4251   // An aggregate load cannot wrap around the address space, so offsets to its
4252   // parts don't wrap either.
4253   SDNodeFlags Flags;
4254   Flags.setNoUnsignedWrap(true);
4255 
4256   unsigned ChainI = 0;
4257   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4258     // See visitLoad comments.
4259     if (ChainI == MaxParallelChains) {
4260       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4261                                   makeArrayRef(Chains.data(), ChainI));
4262       Root = Chain;
4263       ChainI = 0;
4264     }
4265     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4266                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4267     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4268     if (MemVTs[i] != ValueVTs[i])
4269       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4270     SDValue St =
4271         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4272                      Alignment, MMOFlags, AAInfo);
4273     Chains[ChainI] = St;
4274   }
4275 
4276   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4277                                   makeArrayRef(Chains.data(), ChainI));
4278   DAG.setRoot(StoreNode);
4279 }
4280 
4281 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4282                                            bool IsCompressing) {
4283   SDLoc sdl = getCurSDLoc();
4284 
4285   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4286                            unsigned& Alignment) {
4287     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4288     Src0 = I.getArgOperand(0);
4289     Ptr = I.getArgOperand(1);
4290     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4291     Mask = I.getArgOperand(3);
4292   };
4293   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4294                            unsigned& Alignment) {
4295     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4296     Src0 = I.getArgOperand(0);
4297     Ptr = I.getArgOperand(1);
4298     Mask = I.getArgOperand(2);
4299     Alignment = 0;
4300   };
4301 
4302   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4303   unsigned Alignment;
4304   if (IsCompressing)
4305     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4306   else
4307     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4308 
4309   SDValue Ptr = getValue(PtrOperand);
4310   SDValue Src0 = getValue(Src0Operand);
4311   SDValue Mask = getValue(MaskOperand);
4312 
4313   EVT VT = Src0.getValueType();
4314   if (!Alignment)
4315     Alignment = DAG.getEVTAlignment(VT);
4316 
4317   AAMDNodes AAInfo;
4318   I.getAAMetadata(AAInfo);
4319 
4320   MachineMemOperand *MMO =
4321     DAG.getMachineFunction().
4322     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4323                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4324                           Alignment, AAInfo);
4325   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4326                                          MMO, false /* Truncating */,
4327                                          IsCompressing);
4328   DAG.setRoot(StoreNode);
4329   setValue(&I, StoreNode);
4330 }
4331 
4332 // Get a uniform base for the Gather/Scatter intrinsic.
4333 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4334 // We try to represent it as a base pointer + vector of indices.
4335 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4336 // The first operand of the GEP may be a single pointer or a vector of pointers
4337 // Example:
4338 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4339 //  or
4340 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4341 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4342 //
4343 // When the first GEP operand is a single pointer - it is the uniform base we
4344 // are looking for. If first operand of the GEP is a splat vector - we
4345 // extract the splat value and use it as a uniform base.
4346 // In all other cases the function returns 'false'.
4347 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4348                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4349   SelectionDAG& DAG = SDB->DAG;
4350   LLVMContext &Context = *DAG.getContext();
4351 
4352   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4353   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4354   if (!GEP)
4355     return false;
4356 
4357   const Value *GEPPtr = GEP->getPointerOperand();
4358   if (!GEPPtr->getType()->isVectorTy())
4359     Ptr = GEPPtr;
4360   else if (!(Ptr = getSplatValue(GEPPtr)))
4361     return false;
4362 
4363   unsigned FinalIndex = GEP->getNumOperands() - 1;
4364   Value *IndexVal = GEP->getOperand(FinalIndex);
4365 
4366   // Ensure all the other indices are 0.
4367   for (unsigned i = 1; i < FinalIndex; ++i) {
4368     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4369     if (!C || !C->isZero())
4370       return false;
4371   }
4372 
4373   // The operands of the GEP may be defined in another basic block.
4374   // In this case we'll not find nodes for the operands.
4375   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4376     return false;
4377 
4378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4379   const DataLayout &DL = DAG.getDataLayout();
4380   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4381                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4382   Base = SDB->getValue(Ptr);
4383   Index = SDB->getValue(IndexVal);
4384 
4385   if (!Index.getValueType().isVector()) {
4386     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4387     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4388     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4389   }
4390   return true;
4391 }
4392 
4393 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4394   SDLoc sdl = getCurSDLoc();
4395 
4396   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4397   const Value *Ptr = I.getArgOperand(1);
4398   SDValue Src0 = getValue(I.getArgOperand(0));
4399   SDValue Mask = getValue(I.getArgOperand(3));
4400   EVT VT = Src0.getValueType();
4401   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4402   if (!Alignment)
4403     Alignment = DAG.getEVTAlignment(VT);
4404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4405 
4406   AAMDNodes AAInfo;
4407   I.getAAMetadata(AAInfo);
4408 
4409   SDValue Base;
4410   SDValue Index;
4411   SDValue Scale;
4412   const Value *BasePtr = Ptr;
4413   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4414 
4415   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4416   MachineMemOperand *MMO = DAG.getMachineFunction().
4417     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4418                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4419                          Alignment, AAInfo);
4420   if (!UniformBase) {
4421     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4422     Index = getValue(Ptr);
4423     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4424   }
4425   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4426   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4427                                          Ops, MMO);
4428   DAG.setRoot(Scatter);
4429   setValue(&I, Scatter);
4430 }
4431 
4432 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4433   SDLoc sdl = getCurSDLoc();
4434 
4435   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4436                            unsigned& Alignment) {
4437     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4438     Ptr = I.getArgOperand(0);
4439     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4440     Mask = I.getArgOperand(2);
4441     Src0 = I.getArgOperand(3);
4442   };
4443   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4444                            unsigned& Alignment) {
4445     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4446     Ptr = I.getArgOperand(0);
4447     Alignment = 0;
4448     Mask = I.getArgOperand(1);
4449     Src0 = I.getArgOperand(2);
4450   };
4451 
4452   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4453   unsigned Alignment;
4454   if (IsExpanding)
4455     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4456   else
4457     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4458 
4459   SDValue Ptr = getValue(PtrOperand);
4460   SDValue Src0 = getValue(Src0Operand);
4461   SDValue Mask = getValue(MaskOperand);
4462 
4463   EVT VT = Src0.getValueType();
4464   if (!Alignment)
4465     Alignment = DAG.getEVTAlignment(VT);
4466 
4467   AAMDNodes AAInfo;
4468   I.getAAMetadata(AAInfo);
4469   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4470 
4471   // Do not serialize masked loads of constant memory with anything.
4472   bool AddToChain =
4473       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4474                  PtrOperand,
4475                  LocationSize::precise(
4476                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4477                  AAInfo));
4478   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4479 
4480   MachineMemOperand *MMO =
4481     DAG.getMachineFunction().
4482     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4483                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4484                           Alignment, AAInfo, Ranges);
4485 
4486   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4487                                    ISD::NON_EXTLOAD, IsExpanding);
4488   if (AddToChain)
4489     PendingLoads.push_back(Load.getValue(1));
4490   setValue(&I, Load);
4491 }
4492 
4493 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4494   SDLoc sdl = getCurSDLoc();
4495 
4496   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4497   const Value *Ptr = I.getArgOperand(0);
4498   SDValue Src0 = getValue(I.getArgOperand(3));
4499   SDValue Mask = getValue(I.getArgOperand(2));
4500 
4501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4502   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4503   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4504   if (!Alignment)
4505     Alignment = DAG.getEVTAlignment(VT);
4506 
4507   AAMDNodes AAInfo;
4508   I.getAAMetadata(AAInfo);
4509   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4510 
4511   SDValue Root = DAG.getRoot();
4512   SDValue Base;
4513   SDValue Index;
4514   SDValue Scale;
4515   const Value *BasePtr = Ptr;
4516   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4517   bool ConstantMemory = false;
4518   if (UniformBase && AA &&
4519       AA->pointsToConstantMemory(
4520           MemoryLocation(BasePtr,
4521                          LocationSize::precise(
4522                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4523                          AAInfo))) {
4524     // Do not serialize (non-volatile) loads of constant memory with anything.
4525     Root = DAG.getEntryNode();
4526     ConstantMemory = true;
4527   }
4528 
4529   MachineMemOperand *MMO =
4530     DAG.getMachineFunction().
4531     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4532                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4533                          Alignment, AAInfo, Ranges);
4534 
4535   if (!UniformBase) {
4536     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4537     Index = getValue(Ptr);
4538     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4539   }
4540   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4541   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4542                                        Ops, MMO);
4543 
4544   SDValue OutChain = Gather.getValue(1);
4545   if (!ConstantMemory)
4546     PendingLoads.push_back(OutChain);
4547   setValue(&I, Gather);
4548 }
4549 
4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4551   SDLoc dl = getCurSDLoc();
4552   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4553   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4554   SyncScope::ID SSID = I.getSyncScopeID();
4555 
4556   SDValue InChain = getRoot();
4557 
4558   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4559   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4560 
4561   auto Alignment = DAG.getEVTAlignment(MemVT);
4562 
4563   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4564   if (I.isVolatile())
4565     Flags |= MachineMemOperand::MOVolatile;
4566   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4567 
4568   MachineFunction &MF = DAG.getMachineFunction();
4569   MachineMemOperand *MMO =
4570     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4571                             Flags, MemVT.getStoreSize(), Alignment,
4572                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4573                             FailureOrdering);
4574 
4575   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4576                                    dl, MemVT, VTs, InChain,
4577                                    getValue(I.getPointerOperand()),
4578                                    getValue(I.getCompareOperand()),
4579                                    getValue(I.getNewValOperand()), MMO);
4580 
4581   SDValue OutChain = L.getValue(2);
4582 
4583   setValue(&I, L);
4584   DAG.setRoot(OutChain);
4585 }
4586 
4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4588   SDLoc dl = getCurSDLoc();
4589   ISD::NodeType NT;
4590   switch (I.getOperation()) {
4591   default: llvm_unreachable("Unknown atomicrmw operation");
4592   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4593   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4594   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4595   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4596   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4597   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4598   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4599   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4600   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4601   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4602   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4603   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4604   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4605   }
4606   AtomicOrdering Ordering = I.getOrdering();
4607   SyncScope::ID SSID = I.getSyncScopeID();
4608 
4609   SDValue InChain = getRoot();
4610 
4611   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4612   auto Alignment = DAG.getEVTAlignment(MemVT);
4613 
4614   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4615   if (I.isVolatile())
4616     Flags |= MachineMemOperand::MOVolatile;
4617   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4618 
4619   MachineFunction &MF = DAG.getMachineFunction();
4620   MachineMemOperand *MMO =
4621     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4622                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4623                             nullptr, SSID, Ordering);
4624 
4625   SDValue L =
4626     DAG.getAtomic(NT, dl, MemVT, InChain,
4627                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4628                   MMO);
4629 
4630   SDValue OutChain = L.getValue(1);
4631 
4632   setValue(&I, L);
4633   DAG.setRoot(OutChain);
4634 }
4635 
4636 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4637   SDLoc dl = getCurSDLoc();
4638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4639   SDValue Ops[3];
4640   Ops[0] = getRoot();
4641   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4642                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4643   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4644                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4645   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4646 }
4647 
4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4649   SDLoc dl = getCurSDLoc();
4650   AtomicOrdering Order = I.getOrdering();
4651   SyncScope::ID SSID = I.getSyncScopeID();
4652 
4653   SDValue InChain = getRoot();
4654 
4655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4656   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4657   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4658 
4659   if (!TLI.supportsUnalignedAtomics() &&
4660       I.getAlignment() < MemVT.getSizeInBits() / 8)
4661     report_fatal_error("Cannot generate unaligned atomic load");
4662 
4663   auto Flags = MachineMemOperand::MOLoad;
4664   if (I.isVolatile())
4665     Flags |= MachineMemOperand::MOVolatile;
4666   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4667     Flags |= MachineMemOperand::MOInvariant;
4668   if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout()))
4669     Flags |= MachineMemOperand::MODereferenceable;
4670 
4671   Flags |= TLI.getMMOFlags(I);
4672 
4673   MachineMemOperand *MMO =
4674       DAG.getMachineFunction().
4675       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4676                            Flags, MemVT.getStoreSize(),
4677                            I.getAlignment() ? I.getAlignment() :
4678                                               DAG.getEVTAlignment(MemVT),
4679                            AAMDNodes(), nullptr, SSID, Order);
4680 
4681   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4682   SDValue L =
4683       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4684                     getValue(I.getPointerOperand()), MMO);
4685 
4686   SDValue OutChain = L.getValue(1);
4687   if (MemVT != VT)
4688     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4689 
4690   setValue(&I, L);
4691   DAG.setRoot(OutChain);
4692 }
4693 
4694 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4695   SDLoc dl = getCurSDLoc();
4696 
4697   AtomicOrdering Ordering = I.getOrdering();
4698   SyncScope::ID SSID = I.getSyncScopeID();
4699 
4700   SDValue InChain = getRoot();
4701 
4702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4703   EVT MemVT =
4704       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4705 
4706   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4707     report_fatal_error("Cannot generate unaligned atomic store");
4708 
4709   auto Flags = MachineMemOperand::MOStore;
4710   if (I.isVolatile())
4711     Flags |= MachineMemOperand::MOVolatile;
4712   Flags |= TLI.getMMOFlags(I);
4713 
4714   MachineFunction &MF = DAG.getMachineFunction();
4715   MachineMemOperand *MMO =
4716     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4717                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4718                             nullptr, SSID, Ordering);
4719 
4720   SDValue Val = getValue(I.getValueOperand());
4721   if (Val.getValueType() != MemVT)
4722     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4723 
4724   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4725                                    getValue(I.getPointerOperand()), Val, MMO);
4726 
4727 
4728   DAG.setRoot(OutChain);
4729 }
4730 
4731 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4732 /// node.
4733 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4734                                                unsigned Intrinsic) {
4735   // Ignore the callsite's attributes. A specific call site may be marked with
4736   // readnone, but the lowering code will expect the chain based on the
4737   // definition.
4738   const Function *F = I.getCalledFunction();
4739   bool HasChain = !F->doesNotAccessMemory();
4740   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4741 
4742   // Build the operand list.
4743   SmallVector<SDValue, 8> Ops;
4744   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4745     if (OnlyLoad) {
4746       // We don't need to serialize loads against other loads.
4747       Ops.push_back(DAG.getRoot());
4748     } else {
4749       Ops.push_back(getRoot());
4750     }
4751   }
4752 
4753   // Info is set by getTgtMemInstrinsic
4754   TargetLowering::IntrinsicInfo Info;
4755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4756   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4757                                                DAG.getMachineFunction(),
4758                                                Intrinsic);
4759 
4760   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4761   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4762       Info.opc == ISD::INTRINSIC_W_CHAIN)
4763     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4764                                         TLI.getPointerTy(DAG.getDataLayout())));
4765 
4766   // Add all operands of the call to the operand list.
4767   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4768     SDValue Op = getValue(I.getArgOperand(i));
4769     Ops.push_back(Op);
4770   }
4771 
4772   SmallVector<EVT, 4> ValueVTs;
4773   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4774 
4775   if (HasChain)
4776     ValueVTs.push_back(MVT::Other);
4777 
4778   SDVTList VTs = DAG.getVTList(ValueVTs);
4779 
4780   // Create the node.
4781   SDValue Result;
4782   if (IsTgtIntrinsic) {
4783     // This is target intrinsic that touches memory
4784     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4785       Ops, Info.memVT,
4786       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4787       Info.flags, Info.size);
4788   } else if (!HasChain) {
4789     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4790   } else if (!I.getType()->isVoidTy()) {
4791     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4792   } else {
4793     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4794   }
4795 
4796   if (HasChain) {
4797     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4798     if (OnlyLoad)
4799       PendingLoads.push_back(Chain);
4800     else
4801       DAG.setRoot(Chain);
4802   }
4803 
4804   if (!I.getType()->isVoidTy()) {
4805     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4806       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4807       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4808     } else
4809       Result = lowerRangeToAssertZExt(DAG, I, Result);
4810 
4811     setValue(&I, Result);
4812   }
4813 }
4814 
4815 /// GetSignificand - Get the significand and build it into a floating-point
4816 /// number with exponent of 1:
4817 ///
4818 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4819 ///
4820 /// where Op is the hexadecimal representation of floating point value.
4821 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4822   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4823                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4824   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4825                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4826   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4827 }
4828 
4829 /// GetExponent - Get the exponent:
4830 ///
4831 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4832 ///
4833 /// where Op is the hexadecimal representation of floating point value.
4834 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4835                            const TargetLowering &TLI, const SDLoc &dl) {
4836   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4837                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4838   SDValue t1 = DAG.getNode(
4839       ISD::SRL, dl, MVT::i32, t0,
4840       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4841   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4842                            DAG.getConstant(127, dl, MVT::i32));
4843   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4844 }
4845 
4846 /// getF32Constant - Get 32-bit floating point constant.
4847 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4848                               const SDLoc &dl) {
4849   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4850                            MVT::f32);
4851 }
4852 
4853 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4854                                        SelectionDAG &DAG) {
4855   // TODO: What fast-math-flags should be set on the floating-point nodes?
4856 
4857   //   IntegerPartOfX = ((int32_t)(t0);
4858   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4859 
4860   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4861   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4862   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4863 
4864   //   IntegerPartOfX <<= 23;
4865   IntegerPartOfX = DAG.getNode(
4866       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4867       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4868                                   DAG.getDataLayout())));
4869 
4870   SDValue TwoToFractionalPartOfX;
4871   if (LimitFloatPrecision <= 6) {
4872     // For floating-point precision of 6:
4873     //
4874     //   TwoToFractionalPartOfX =
4875     //     0.997535578f +
4876     //       (0.735607626f + 0.252464424f * x) * x;
4877     //
4878     // error 0.0144103317, which is 6 bits
4879     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4880                              getF32Constant(DAG, 0x3e814304, dl));
4881     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4882                              getF32Constant(DAG, 0x3f3c50c8, dl));
4883     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4884     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4885                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4886   } else if (LimitFloatPrecision <= 12) {
4887     // For floating-point precision of 12:
4888     //
4889     //   TwoToFractionalPartOfX =
4890     //     0.999892986f +
4891     //       (0.696457318f +
4892     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4893     //
4894     // error 0.000107046256, which is 13 to 14 bits
4895     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4896                              getF32Constant(DAG, 0x3da235e3, dl));
4897     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4898                              getF32Constant(DAG, 0x3e65b8f3, dl));
4899     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4900     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4901                              getF32Constant(DAG, 0x3f324b07, dl));
4902     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4903     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4904                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4905   } else { // LimitFloatPrecision <= 18
4906     // For floating-point precision of 18:
4907     //
4908     //   TwoToFractionalPartOfX =
4909     //     0.999999982f +
4910     //       (0.693148872f +
4911     //         (0.240227044f +
4912     //           (0.554906021e-1f +
4913     //             (0.961591928e-2f +
4914     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4915     // error 2.47208000*10^(-7), which is better than 18 bits
4916     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4917                              getF32Constant(DAG, 0x3924b03e, dl));
4918     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4919                              getF32Constant(DAG, 0x3ab24b87, dl));
4920     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4921     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4922                              getF32Constant(DAG, 0x3c1d8c17, dl));
4923     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4924     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4925                              getF32Constant(DAG, 0x3d634a1d, dl));
4926     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4927     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4928                              getF32Constant(DAG, 0x3e75fe14, dl));
4929     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4930     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4931                               getF32Constant(DAG, 0x3f317234, dl));
4932     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4933     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4934                                          getF32Constant(DAG, 0x3f800000, dl));
4935   }
4936 
4937   // Add the exponent into the result in integer domain.
4938   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4939   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4940                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4941 }
4942 
4943 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4944 /// limited-precision mode.
4945 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4946                          const TargetLowering &TLI) {
4947   if (Op.getValueType() == MVT::f32 &&
4948       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4949 
4950     // Put the exponent in the right bit position for later addition to the
4951     // final result:
4952     //
4953     //   #define LOG2OFe 1.4426950f
4954     //   t0 = Op * LOG2OFe
4955 
4956     // TODO: What fast-math-flags should be set here?
4957     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4958                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4959     return getLimitedPrecisionExp2(t0, dl, DAG);
4960   }
4961 
4962   // No special expansion.
4963   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4964 }
4965 
4966 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4967 /// limited-precision mode.
4968 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4969                          const TargetLowering &TLI) {
4970   // TODO: What fast-math-flags should be set on the floating-point nodes?
4971 
4972   if (Op.getValueType() == MVT::f32 &&
4973       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4974     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4975 
4976     // Scale the exponent by log(2) [0.69314718f].
4977     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4978     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4979                                         getF32Constant(DAG, 0x3f317218, dl));
4980 
4981     // Get the significand and build it into a floating-point number with
4982     // exponent of 1.
4983     SDValue X = GetSignificand(DAG, Op1, dl);
4984 
4985     SDValue LogOfMantissa;
4986     if (LimitFloatPrecision <= 6) {
4987       // For floating-point precision of 6:
4988       //
4989       //   LogofMantissa =
4990       //     -1.1609546f +
4991       //       (1.4034025f - 0.23903021f * x) * x;
4992       //
4993       // error 0.0034276066, which is better than 8 bits
4994       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4995                                getF32Constant(DAG, 0xbe74c456, dl));
4996       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4997                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4998       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4999       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5000                                   getF32Constant(DAG, 0x3f949a29, dl));
5001     } else if (LimitFloatPrecision <= 12) {
5002       // For floating-point precision of 12:
5003       //
5004       //   LogOfMantissa =
5005       //     -1.7417939f +
5006       //       (2.8212026f +
5007       //         (-1.4699568f +
5008       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5009       //
5010       // error 0.000061011436, which is 14 bits
5011       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5012                                getF32Constant(DAG, 0xbd67b6d6, dl));
5013       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5014                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5015       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5016       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5017                                getF32Constant(DAG, 0x3fbc278b, dl));
5018       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5019       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5020                                getF32Constant(DAG, 0x40348e95, dl));
5021       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5022       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5023                                   getF32Constant(DAG, 0x3fdef31a, dl));
5024     } else { // LimitFloatPrecision <= 18
5025       // For floating-point precision of 18:
5026       //
5027       //   LogOfMantissa =
5028       //     -2.1072184f +
5029       //       (4.2372794f +
5030       //         (-3.7029485f +
5031       //           (2.2781945f +
5032       //             (-0.87823314f +
5033       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5034       //
5035       // error 0.0000023660568, which is better than 18 bits
5036       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5037                                getF32Constant(DAG, 0xbc91e5ac, dl));
5038       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5039                                getF32Constant(DAG, 0x3e4350aa, dl));
5040       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5041       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5042                                getF32Constant(DAG, 0x3f60d3e3, dl));
5043       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5044       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5045                                getF32Constant(DAG, 0x4011cdf0, dl));
5046       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5047       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5048                                getF32Constant(DAG, 0x406cfd1c, dl));
5049       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5050       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5051                                getF32Constant(DAG, 0x408797cb, dl));
5052       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5053       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5054                                   getF32Constant(DAG, 0x4006dcab, dl));
5055     }
5056 
5057     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5058   }
5059 
5060   // No special expansion.
5061   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5062 }
5063 
5064 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5065 /// limited-precision mode.
5066 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5067                           const TargetLowering &TLI) {
5068   // TODO: What fast-math-flags should be set on the floating-point nodes?
5069 
5070   if (Op.getValueType() == MVT::f32 &&
5071       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5072     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5073 
5074     // Get the exponent.
5075     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5076 
5077     // Get the significand and build it into a floating-point number with
5078     // exponent of 1.
5079     SDValue X = GetSignificand(DAG, Op1, dl);
5080 
5081     // Different possible minimax approximations of significand in
5082     // floating-point for various degrees of accuracy over [1,2].
5083     SDValue Log2ofMantissa;
5084     if (LimitFloatPrecision <= 6) {
5085       // For floating-point precision of 6:
5086       //
5087       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5088       //
5089       // error 0.0049451742, which is more than 7 bits
5090       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5091                                getF32Constant(DAG, 0xbeb08fe0, dl));
5092       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5093                                getF32Constant(DAG, 0x40019463, dl));
5094       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5095       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5096                                    getF32Constant(DAG, 0x3fd6633d, dl));
5097     } else if (LimitFloatPrecision <= 12) {
5098       // For floating-point precision of 12:
5099       //
5100       //   Log2ofMantissa =
5101       //     -2.51285454f +
5102       //       (4.07009056f +
5103       //         (-2.12067489f +
5104       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5105       //
5106       // error 0.0000876136000, which is better than 13 bits
5107       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5108                                getF32Constant(DAG, 0xbda7262e, dl));
5109       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5110                                getF32Constant(DAG, 0x3f25280b, dl));
5111       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5112       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5113                                getF32Constant(DAG, 0x4007b923, dl));
5114       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5115       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5116                                getF32Constant(DAG, 0x40823e2f, dl));
5117       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5118       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5119                                    getF32Constant(DAG, 0x4020d29c, dl));
5120     } else { // LimitFloatPrecision <= 18
5121       // For floating-point precision of 18:
5122       //
5123       //   Log2ofMantissa =
5124       //     -3.0400495f +
5125       //       (6.1129976f +
5126       //         (-5.3420409f +
5127       //           (3.2865683f +
5128       //             (-1.2669343f +
5129       //               (0.27515199f -
5130       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5131       //
5132       // error 0.0000018516, which is better than 18 bits
5133       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5134                                getF32Constant(DAG, 0xbcd2769e, dl));
5135       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5136                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5137       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5138       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5139                                getF32Constant(DAG, 0x3fa22ae7, dl));
5140       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5141       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5142                                getF32Constant(DAG, 0x40525723, dl));
5143       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5144       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5145                                getF32Constant(DAG, 0x40aaf200, dl));
5146       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5147       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5148                                getF32Constant(DAG, 0x40c39dad, dl));
5149       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5150       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5151                                    getF32Constant(DAG, 0x4042902c, dl));
5152     }
5153 
5154     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5155   }
5156 
5157   // No special expansion.
5158   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5159 }
5160 
5161 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5162 /// limited-precision mode.
5163 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5164                            const TargetLowering &TLI) {
5165   // TODO: What fast-math-flags should be set on the floating-point nodes?
5166 
5167   if (Op.getValueType() == MVT::f32 &&
5168       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5169     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5170 
5171     // Scale the exponent by log10(2) [0.30102999f].
5172     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5173     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5174                                         getF32Constant(DAG, 0x3e9a209a, dl));
5175 
5176     // Get the significand and build it into a floating-point number with
5177     // exponent of 1.
5178     SDValue X = GetSignificand(DAG, Op1, dl);
5179 
5180     SDValue Log10ofMantissa;
5181     if (LimitFloatPrecision <= 6) {
5182       // For floating-point precision of 6:
5183       //
5184       //   Log10ofMantissa =
5185       //     -0.50419619f +
5186       //       (0.60948995f - 0.10380950f * x) * x;
5187       //
5188       // error 0.0014886165, which is 6 bits
5189       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5190                                getF32Constant(DAG, 0xbdd49a13, dl));
5191       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5192                                getF32Constant(DAG, 0x3f1c0789, dl));
5193       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5194       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5195                                     getF32Constant(DAG, 0x3f011300, dl));
5196     } else if (LimitFloatPrecision <= 12) {
5197       // For floating-point precision of 12:
5198       //
5199       //   Log10ofMantissa =
5200       //     -0.64831180f +
5201       //       (0.91751397f +
5202       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5203       //
5204       // error 0.00019228036, which is better than 12 bits
5205       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5206                                getF32Constant(DAG, 0x3d431f31, dl));
5207       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5208                                getF32Constant(DAG, 0x3ea21fb2, dl));
5209       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5210       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5211                                getF32Constant(DAG, 0x3f6ae232, dl));
5212       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5213       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5214                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5215     } else { // LimitFloatPrecision <= 18
5216       // For floating-point precision of 18:
5217       //
5218       //   Log10ofMantissa =
5219       //     -0.84299375f +
5220       //       (1.5327582f +
5221       //         (-1.0688956f +
5222       //           (0.49102474f +
5223       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5224       //
5225       // error 0.0000037995730, which is better than 18 bits
5226       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5227                                getF32Constant(DAG, 0x3c5d51ce, dl));
5228       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5229                                getF32Constant(DAG, 0x3e00685a, dl));
5230       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5231       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5232                                getF32Constant(DAG, 0x3efb6798, dl));
5233       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5234       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5235                                getF32Constant(DAG, 0x3f88d192, dl));
5236       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5237       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5238                                getF32Constant(DAG, 0x3fc4316c, dl));
5239       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5240       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5241                                     getF32Constant(DAG, 0x3f57ce70, dl));
5242     }
5243 
5244     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5245   }
5246 
5247   // No special expansion.
5248   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5249 }
5250 
5251 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5252 /// limited-precision mode.
5253 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5254                           const TargetLowering &TLI) {
5255   if (Op.getValueType() == MVT::f32 &&
5256       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5257     return getLimitedPrecisionExp2(Op, dl, DAG);
5258 
5259   // No special expansion.
5260   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5261 }
5262 
5263 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5264 /// limited-precision mode with x == 10.0f.
5265 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5266                          SelectionDAG &DAG, const TargetLowering &TLI) {
5267   bool IsExp10 = false;
5268   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5269       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5270     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5271       APFloat Ten(10.0f);
5272       IsExp10 = LHSC->isExactlyValue(Ten);
5273     }
5274   }
5275 
5276   // TODO: What fast-math-flags should be set on the FMUL node?
5277   if (IsExp10) {
5278     // Put the exponent in the right bit position for later addition to the
5279     // final result:
5280     //
5281     //   #define LOG2OF10 3.3219281f
5282     //   t0 = Op * LOG2OF10;
5283     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5284                              getF32Constant(DAG, 0x40549a78, dl));
5285     return getLimitedPrecisionExp2(t0, dl, DAG);
5286   }
5287 
5288   // No special expansion.
5289   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5290 }
5291 
5292 /// ExpandPowI - Expand a llvm.powi intrinsic.
5293 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5294                           SelectionDAG &DAG) {
5295   // If RHS is a constant, we can expand this out to a multiplication tree,
5296   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5297   // optimizing for size, we only want to do this if the expansion would produce
5298   // a small number of multiplies, otherwise we do the full expansion.
5299   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5300     // Get the exponent as a positive value.
5301     unsigned Val = RHSC->getSExtValue();
5302     if ((int)Val < 0) Val = -Val;
5303 
5304     // powi(x, 0) -> 1.0
5305     if (Val == 0)
5306       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5307 
5308     const Function &F = DAG.getMachineFunction().getFunction();
5309     if (!F.hasOptSize() ||
5310         // If optimizing for size, don't insert too many multiplies.
5311         // This inserts up to 5 multiplies.
5312         countPopulation(Val) + Log2_32(Val) < 7) {
5313       // We use the simple binary decomposition method to generate the multiply
5314       // sequence.  There are more optimal ways to do this (for example,
5315       // powi(x,15) generates one more multiply than it should), but this has
5316       // the benefit of being both really simple and much better than a libcall.
5317       SDValue Res;  // Logically starts equal to 1.0
5318       SDValue CurSquare = LHS;
5319       // TODO: Intrinsics should have fast-math-flags that propagate to these
5320       // nodes.
5321       while (Val) {
5322         if (Val & 1) {
5323           if (Res.getNode())
5324             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5325           else
5326             Res = CurSquare;  // 1.0*CurSquare.
5327         }
5328 
5329         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5330                                 CurSquare, CurSquare);
5331         Val >>= 1;
5332       }
5333 
5334       // If the original was negative, invert the result, producing 1/(x*x*x).
5335       if (RHSC->getSExtValue() < 0)
5336         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5337                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5338       return Res;
5339     }
5340   }
5341 
5342   // Otherwise, expand to a libcall.
5343   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5344 }
5345 
5346 // getUnderlyingArgReg - Find underlying register used for a truncated or
5347 // bitcasted argument.
5348 static unsigned getUnderlyingArgReg(const SDValue &N) {
5349   switch (N.getOpcode()) {
5350   case ISD::CopyFromReg:
5351     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5352   case ISD::BITCAST:
5353   case ISD::AssertZext:
5354   case ISD::AssertSext:
5355   case ISD::TRUNCATE:
5356     return getUnderlyingArgReg(N.getOperand(0));
5357   default:
5358     return 0;
5359   }
5360 }
5361 
5362 /// If the DbgValueInst is a dbg_value of a function argument, create the
5363 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5364 /// instruction selection, they will be inserted to the entry BB.
5365 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5366     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5367     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5368   const Argument *Arg = dyn_cast<Argument>(V);
5369   if (!Arg)
5370     return false;
5371 
5372   if (!IsDbgDeclare) {
5373     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5374     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5375     // the entry block.
5376     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5377     if (!IsInEntryBlock)
5378       return false;
5379 
5380     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5381     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5382     // variable that also is a param.
5383     //
5384     // Although, if we are at the top of the entry block already, we can still
5385     // emit using ArgDbgValue. This might catch some situations when the
5386     // dbg.value refers to an argument that isn't used in the entry block, so
5387     // any CopyToReg node would be optimized out and the only way to express
5388     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5389     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5390     // we should only emit as ArgDbgValue if the Variable is an argument to the
5391     // current function, and the dbg.value intrinsic is found in the entry
5392     // block.
5393     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5394         !DL->getInlinedAt();
5395     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5396     if (!IsInPrologue && !VariableIsFunctionInputArg)
5397       return false;
5398 
5399     // Here we assume that a function argument on IR level only can be used to
5400     // describe one input parameter on source level. If we for example have
5401     // source code like this
5402     //
5403     //    struct A { long x, y; };
5404     //    void foo(struct A a, long b) {
5405     //      ...
5406     //      b = a.x;
5407     //      ...
5408     //    }
5409     //
5410     // and IR like this
5411     //
5412     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5413     //  entry:
5414     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5415     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5416     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5417     //    ...
5418     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5419     //    ...
5420     //
5421     // then the last dbg.value is describing a parameter "b" using a value that
5422     // is an argument. But since we already has used %a1 to describe a parameter
5423     // we should not handle that last dbg.value here (that would result in an
5424     // incorrect hoisting of the DBG_VALUE to the function entry).
5425     // Notice that we allow one dbg.value per IR level argument, to accomodate
5426     // for the situation with fragments above.
5427     if (VariableIsFunctionInputArg) {
5428       unsigned ArgNo = Arg->getArgNo();
5429       if (ArgNo >= FuncInfo.DescribedArgs.size())
5430         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5431       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5432         return false;
5433       FuncInfo.DescribedArgs.set(ArgNo);
5434     }
5435   }
5436 
5437   MachineFunction &MF = DAG.getMachineFunction();
5438   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5439 
5440   bool IsIndirect = false;
5441   Optional<MachineOperand> Op;
5442   // Some arguments' frame index is recorded during argument lowering.
5443   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5444   if (FI != std::numeric_limits<int>::max())
5445     Op = MachineOperand::CreateFI(FI);
5446 
5447   if (!Op && N.getNode()) {
5448     unsigned Reg = getUnderlyingArgReg(N);
5449     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5450       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5451       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5452       if (PR)
5453         Reg = PR;
5454     }
5455     if (Reg) {
5456       Op = MachineOperand::CreateReg(Reg, false);
5457       IsIndirect = IsDbgDeclare;
5458     }
5459   }
5460 
5461   if (!Op && N.getNode()) {
5462     // Check if frame index is available.
5463     SDValue LCandidate = peekThroughBitcasts(N);
5464     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5465       if (FrameIndexSDNode *FINode =
5466           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5467         Op = MachineOperand::CreateFI(FINode->getIndex());
5468   }
5469 
5470   if (!Op) {
5471     // Check if ValueMap has reg number.
5472     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5473     if (VMI != FuncInfo.ValueMap.end()) {
5474       const auto &TLI = DAG.getTargetLoweringInfo();
5475       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5476                        V->getType(), getABIRegCopyCC(V));
5477       if (RFV.occupiesMultipleRegs()) {
5478         unsigned Offset = 0;
5479         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5480           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5481           auto FragmentExpr = DIExpression::createFragmentExpression(
5482               Expr, Offset, RegAndSize.second);
5483           if (!FragmentExpr)
5484             continue;
5485           FuncInfo.ArgDbgValues.push_back(
5486               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5487                       Op->getReg(), Variable, *FragmentExpr));
5488           Offset += RegAndSize.second;
5489         }
5490         return true;
5491       }
5492       Op = MachineOperand::CreateReg(VMI->second, false);
5493       IsIndirect = IsDbgDeclare;
5494     }
5495   }
5496 
5497   if (!Op)
5498     return false;
5499 
5500   assert(Variable->isValidLocationForIntrinsic(DL) &&
5501          "Expected inlined-at fields to agree");
5502   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5503   FuncInfo.ArgDbgValues.push_back(
5504       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5505               *Op, Variable, Expr));
5506 
5507   return true;
5508 }
5509 
5510 /// Return the appropriate SDDbgValue based on N.
5511 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5512                                              DILocalVariable *Variable,
5513                                              DIExpression *Expr,
5514                                              const DebugLoc &dl,
5515                                              unsigned DbgSDNodeOrder) {
5516   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5517     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5518     // stack slot locations.
5519     //
5520     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5521     // debug values here after optimization:
5522     //
5523     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5524     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5525     //
5526     // Both describe the direct values of their associated variables.
5527     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5528                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5529   }
5530   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5531                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5532 }
5533 
5534 // VisualStudio defines setjmp as _setjmp
5535 #if defined(_MSC_VER) && defined(setjmp) && \
5536                          !defined(setjmp_undefined_for_msvc)
5537 #  pragma push_macro("setjmp")
5538 #  undef setjmp
5539 #  define setjmp_undefined_for_msvc
5540 #endif
5541 
5542 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5543   switch (Intrinsic) {
5544   case Intrinsic::smul_fix:
5545     return ISD::SMULFIX;
5546   case Intrinsic::umul_fix:
5547     return ISD::UMULFIX;
5548   default:
5549     llvm_unreachable("Unhandled fixed point intrinsic");
5550   }
5551 }
5552 
5553 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5554                                            const char *FunctionName) {
5555   assert(FunctionName && "FunctionName must not be nullptr");
5556   SDValue Callee = DAG.getExternalSymbol(
5557       FunctionName,
5558       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5559   LowerCallTo(&I, Callee, I.isTailCall());
5560 }
5561 
5562 /// Lower the call to the specified intrinsic function.
5563 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5564                                              unsigned Intrinsic) {
5565   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5566   SDLoc sdl = getCurSDLoc();
5567   DebugLoc dl = getCurDebugLoc();
5568   SDValue Res;
5569 
5570   switch (Intrinsic) {
5571   default:
5572     // By default, turn this into a target intrinsic node.
5573     visitTargetIntrinsic(I, Intrinsic);
5574     return;
5575   case Intrinsic::vastart:  visitVAStart(I); return;
5576   case Intrinsic::vaend:    visitVAEnd(I); return;
5577   case Intrinsic::vacopy:   visitVACopy(I); return;
5578   case Intrinsic::returnaddress:
5579     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5580                              TLI.getPointerTy(DAG.getDataLayout()),
5581                              getValue(I.getArgOperand(0))));
5582     return;
5583   case Intrinsic::addressofreturnaddress:
5584     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5585                              TLI.getPointerTy(DAG.getDataLayout())));
5586     return;
5587   case Intrinsic::sponentry:
5588     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5589                              TLI.getPointerTy(DAG.getDataLayout())));
5590     return;
5591   case Intrinsic::frameaddress:
5592     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5593                              TLI.getPointerTy(DAG.getDataLayout()),
5594                              getValue(I.getArgOperand(0))));
5595     return;
5596   case Intrinsic::read_register: {
5597     Value *Reg = I.getArgOperand(0);
5598     SDValue Chain = getRoot();
5599     SDValue RegName =
5600         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5601     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5602     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5603       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5604     setValue(&I, Res);
5605     DAG.setRoot(Res.getValue(1));
5606     return;
5607   }
5608   case Intrinsic::write_register: {
5609     Value *Reg = I.getArgOperand(0);
5610     Value *RegValue = I.getArgOperand(1);
5611     SDValue Chain = getRoot();
5612     SDValue RegName =
5613         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5614     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5615                             RegName, getValue(RegValue)));
5616     return;
5617   }
5618   case Intrinsic::setjmp:
5619     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5620     return;
5621   case Intrinsic::longjmp:
5622     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5623     return;
5624   case Intrinsic::memcpy: {
5625     const auto &MCI = cast<MemCpyInst>(I);
5626     SDValue Op1 = getValue(I.getArgOperand(0));
5627     SDValue Op2 = getValue(I.getArgOperand(1));
5628     SDValue Op3 = getValue(I.getArgOperand(2));
5629     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5630     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5631     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5632     unsigned Align = MinAlign(DstAlign, SrcAlign);
5633     bool isVol = MCI.isVolatile();
5634     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5635     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5636     // node.
5637     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5638                                false, isTC,
5639                                MachinePointerInfo(I.getArgOperand(0)),
5640                                MachinePointerInfo(I.getArgOperand(1)));
5641     updateDAGForMaybeTailCall(MC);
5642     return;
5643   }
5644   case Intrinsic::memset: {
5645     const auto &MSI = cast<MemSetInst>(I);
5646     SDValue Op1 = getValue(I.getArgOperand(0));
5647     SDValue Op2 = getValue(I.getArgOperand(1));
5648     SDValue Op3 = getValue(I.getArgOperand(2));
5649     // @llvm.memset defines 0 and 1 to both mean no alignment.
5650     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5651     bool isVol = MSI.isVolatile();
5652     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5653     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5654                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5655     updateDAGForMaybeTailCall(MS);
5656     return;
5657   }
5658   case Intrinsic::memmove: {
5659     const auto &MMI = cast<MemMoveInst>(I);
5660     SDValue Op1 = getValue(I.getArgOperand(0));
5661     SDValue Op2 = getValue(I.getArgOperand(1));
5662     SDValue Op3 = getValue(I.getArgOperand(2));
5663     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5664     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5665     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5666     unsigned Align = MinAlign(DstAlign, SrcAlign);
5667     bool isVol = MMI.isVolatile();
5668     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5669     // FIXME: Support passing different dest/src alignments to the memmove DAG
5670     // node.
5671     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5672                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5673                                 MachinePointerInfo(I.getArgOperand(1)));
5674     updateDAGForMaybeTailCall(MM);
5675     return;
5676   }
5677   case Intrinsic::memcpy_element_unordered_atomic: {
5678     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5679     SDValue Dst = getValue(MI.getRawDest());
5680     SDValue Src = getValue(MI.getRawSource());
5681     SDValue Length = getValue(MI.getLength());
5682 
5683     unsigned DstAlign = MI.getDestAlignment();
5684     unsigned SrcAlign = MI.getSourceAlignment();
5685     Type *LengthTy = MI.getLength()->getType();
5686     unsigned ElemSz = MI.getElementSizeInBytes();
5687     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5688     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5689                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5690                                      MachinePointerInfo(MI.getRawDest()),
5691                                      MachinePointerInfo(MI.getRawSource()));
5692     updateDAGForMaybeTailCall(MC);
5693     return;
5694   }
5695   case Intrinsic::memmove_element_unordered_atomic: {
5696     auto &MI = cast<AtomicMemMoveInst>(I);
5697     SDValue Dst = getValue(MI.getRawDest());
5698     SDValue Src = getValue(MI.getRawSource());
5699     SDValue Length = getValue(MI.getLength());
5700 
5701     unsigned DstAlign = MI.getDestAlignment();
5702     unsigned SrcAlign = MI.getSourceAlignment();
5703     Type *LengthTy = MI.getLength()->getType();
5704     unsigned ElemSz = MI.getElementSizeInBytes();
5705     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5706     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5707                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5708                                       MachinePointerInfo(MI.getRawDest()),
5709                                       MachinePointerInfo(MI.getRawSource()));
5710     updateDAGForMaybeTailCall(MC);
5711     return;
5712   }
5713   case Intrinsic::memset_element_unordered_atomic: {
5714     auto &MI = cast<AtomicMemSetInst>(I);
5715     SDValue Dst = getValue(MI.getRawDest());
5716     SDValue Val = getValue(MI.getValue());
5717     SDValue Length = getValue(MI.getLength());
5718 
5719     unsigned DstAlign = MI.getDestAlignment();
5720     Type *LengthTy = MI.getLength()->getType();
5721     unsigned ElemSz = MI.getElementSizeInBytes();
5722     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5723     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5724                                      LengthTy, ElemSz, isTC,
5725                                      MachinePointerInfo(MI.getRawDest()));
5726     updateDAGForMaybeTailCall(MC);
5727     return;
5728   }
5729   case Intrinsic::dbg_addr:
5730   case Intrinsic::dbg_declare: {
5731     const auto &DI = cast<DbgVariableIntrinsic>(I);
5732     DILocalVariable *Variable = DI.getVariable();
5733     DIExpression *Expression = DI.getExpression();
5734     dropDanglingDebugInfo(Variable, Expression);
5735     assert(Variable && "Missing variable");
5736 
5737     // Check if address has undef value.
5738     const Value *Address = DI.getVariableLocation();
5739     if (!Address || isa<UndefValue>(Address) ||
5740         (Address->use_empty() && !isa<Argument>(Address))) {
5741       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5742       return;
5743     }
5744 
5745     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5746 
5747     // Check if this variable can be described by a frame index, typically
5748     // either as a static alloca or a byval parameter.
5749     int FI = std::numeric_limits<int>::max();
5750     if (const auto *AI =
5751             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5752       if (AI->isStaticAlloca()) {
5753         auto I = FuncInfo.StaticAllocaMap.find(AI);
5754         if (I != FuncInfo.StaticAllocaMap.end())
5755           FI = I->second;
5756       }
5757     } else if (const auto *Arg = dyn_cast<Argument>(
5758                    Address->stripInBoundsConstantOffsets())) {
5759       FI = FuncInfo.getArgumentFrameIndex(Arg);
5760     }
5761 
5762     // llvm.dbg.addr is control dependent and always generates indirect
5763     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5764     // the MachineFunction variable table.
5765     if (FI != std::numeric_limits<int>::max()) {
5766       if (Intrinsic == Intrinsic::dbg_addr) {
5767         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5768             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5769         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5770       }
5771       return;
5772     }
5773 
5774     SDValue &N = NodeMap[Address];
5775     if (!N.getNode() && isa<Argument>(Address))
5776       // Check unused arguments map.
5777       N = UnusedArgNodeMap[Address];
5778     SDDbgValue *SDV;
5779     if (N.getNode()) {
5780       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5781         Address = BCI->getOperand(0);
5782       // Parameters are handled specially.
5783       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5784       if (isParameter && FINode) {
5785         // Byval parameter. We have a frame index at this point.
5786         SDV =
5787             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5788                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5789       } else if (isa<Argument>(Address)) {
5790         // Address is an argument, so try to emit its dbg value using
5791         // virtual register info from the FuncInfo.ValueMap.
5792         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5793         return;
5794       } else {
5795         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5796                               true, dl, SDNodeOrder);
5797       }
5798       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5799     } else {
5800       // If Address is an argument then try to emit its dbg value using
5801       // virtual register info from the FuncInfo.ValueMap.
5802       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5803                                     N)) {
5804         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5805       }
5806     }
5807     return;
5808   }
5809   case Intrinsic::dbg_label: {
5810     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5811     DILabel *Label = DI.getLabel();
5812     assert(Label && "Missing label");
5813 
5814     SDDbgLabel *SDV;
5815     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5816     DAG.AddDbgLabel(SDV);
5817     return;
5818   }
5819   case Intrinsic::dbg_value: {
5820     const DbgValueInst &DI = cast<DbgValueInst>(I);
5821     assert(DI.getVariable() && "Missing variable");
5822 
5823     DILocalVariable *Variable = DI.getVariable();
5824     DIExpression *Expression = DI.getExpression();
5825     dropDanglingDebugInfo(Variable, Expression);
5826     const Value *V = DI.getValue();
5827     if (!V)
5828       return;
5829 
5830     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5831         SDNodeOrder))
5832       return;
5833 
5834     // TODO: Dangling debug info will eventually either be resolved or produce
5835     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5836     // between the original dbg.value location and its resolved DBG_VALUE, which
5837     // we should ideally fill with an extra Undef DBG_VALUE.
5838 
5839     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5840     return;
5841   }
5842 
5843   case Intrinsic::eh_typeid_for: {
5844     // Find the type id for the given typeinfo.
5845     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5846     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5847     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5848     setValue(&I, Res);
5849     return;
5850   }
5851 
5852   case Intrinsic::eh_return_i32:
5853   case Intrinsic::eh_return_i64:
5854     DAG.getMachineFunction().setCallsEHReturn(true);
5855     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5856                             MVT::Other,
5857                             getControlRoot(),
5858                             getValue(I.getArgOperand(0)),
5859                             getValue(I.getArgOperand(1))));
5860     return;
5861   case Intrinsic::eh_unwind_init:
5862     DAG.getMachineFunction().setCallsUnwindInit(true);
5863     return;
5864   case Intrinsic::eh_dwarf_cfa:
5865     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5866                              TLI.getPointerTy(DAG.getDataLayout()),
5867                              getValue(I.getArgOperand(0))));
5868     return;
5869   case Intrinsic::eh_sjlj_callsite: {
5870     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5871     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5872     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5873     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5874 
5875     MMI.setCurrentCallSite(CI->getZExtValue());
5876     return;
5877   }
5878   case Intrinsic::eh_sjlj_functioncontext: {
5879     // Get and store the index of the function context.
5880     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5881     AllocaInst *FnCtx =
5882       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5883     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5884     MFI.setFunctionContextIndex(FI);
5885     return;
5886   }
5887   case Intrinsic::eh_sjlj_setjmp: {
5888     SDValue Ops[2];
5889     Ops[0] = getRoot();
5890     Ops[1] = getValue(I.getArgOperand(0));
5891     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5892                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5893     setValue(&I, Op.getValue(0));
5894     DAG.setRoot(Op.getValue(1));
5895     return;
5896   }
5897   case Intrinsic::eh_sjlj_longjmp:
5898     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5899                             getRoot(), getValue(I.getArgOperand(0))));
5900     return;
5901   case Intrinsic::eh_sjlj_setup_dispatch:
5902     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5903                             getRoot()));
5904     return;
5905   case Intrinsic::masked_gather:
5906     visitMaskedGather(I);
5907     return;
5908   case Intrinsic::masked_load:
5909     visitMaskedLoad(I);
5910     return;
5911   case Intrinsic::masked_scatter:
5912     visitMaskedScatter(I);
5913     return;
5914   case Intrinsic::masked_store:
5915     visitMaskedStore(I);
5916     return;
5917   case Intrinsic::masked_expandload:
5918     visitMaskedLoad(I, true /* IsExpanding */);
5919     return;
5920   case Intrinsic::masked_compressstore:
5921     visitMaskedStore(I, true /* IsCompressing */);
5922     return;
5923   case Intrinsic::x86_mmx_pslli_w:
5924   case Intrinsic::x86_mmx_pslli_d:
5925   case Intrinsic::x86_mmx_pslli_q:
5926   case Intrinsic::x86_mmx_psrli_w:
5927   case Intrinsic::x86_mmx_psrli_d:
5928   case Intrinsic::x86_mmx_psrli_q:
5929   case Intrinsic::x86_mmx_psrai_w:
5930   case Intrinsic::x86_mmx_psrai_d: {
5931     SDValue ShAmt = getValue(I.getArgOperand(1));
5932     if (isa<ConstantSDNode>(ShAmt)) {
5933       visitTargetIntrinsic(I, Intrinsic);
5934       return;
5935     }
5936     unsigned NewIntrinsic = 0;
5937     EVT ShAmtVT = MVT::v2i32;
5938     switch (Intrinsic) {
5939     case Intrinsic::x86_mmx_pslli_w:
5940       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5941       break;
5942     case Intrinsic::x86_mmx_pslli_d:
5943       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5944       break;
5945     case Intrinsic::x86_mmx_pslli_q:
5946       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5947       break;
5948     case Intrinsic::x86_mmx_psrli_w:
5949       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5950       break;
5951     case Intrinsic::x86_mmx_psrli_d:
5952       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5953       break;
5954     case Intrinsic::x86_mmx_psrli_q:
5955       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5956       break;
5957     case Intrinsic::x86_mmx_psrai_w:
5958       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5959       break;
5960     case Intrinsic::x86_mmx_psrai_d:
5961       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5962       break;
5963     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5964     }
5965 
5966     // The vector shift intrinsics with scalars uses 32b shift amounts but
5967     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5968     // to be zero.
5969     // We must do this early because v2i32 is not a legal type.
5970     SDValue ShOps[2];
5971     ShOps[0] = ShAmt;
5972     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5973     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5974     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5975     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5976     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5977                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5978                        getValue(I.getArgOperand(0)), ShAmt);
5979     setValue(&I, Res);
5980     return;
5981   }
5982   case Intrinsic::powi:
5983     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5984                             getValue(I.getArgOperand(1)), DAG));
5985     return;
5986   case Intrinsic::log:
5987     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5988     return;
5989   case Intrinsic::log2:
5990     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5991     return;
5992   case Intrinsic::log10:
5993     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5994     return;
5995   case Intrinsic::exp:
5996     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5997     return;
5998   case Intrinsic::exp2:
5999     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6000     return;
6001   case Intrinsic::pow:
6002     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6003                            getValue(I.getArgOperand(1)), DAG, TLI));
6004     return;
6005   case Intrinsic::sqrt:
6006   case Intrinsic::fabs:
6007   case Intrinsic::sin:
6008   case Intrinsic::cos:
6009   case Intrinsic::floor:
6010   case Intrinsic::ceil:
6011   case Intrinsic::trunc:
6012   case Intrinsic::rint:
6013   case Intrinsic::nearbyint:
6014   case Intrinsic::round:
6015   case Intrinsic::canonicalize: {
6016     unsigned Opcode;
6017     switch (Intrinsic) {
6018     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6019     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6020     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6021     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6022     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6023     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6024     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6025     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6026     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6027     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6028     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6029     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6030     }
6031 
6032     setValue(&I, DAG.getNode(Opcode, sdl,
6033                              getValue(I.getArgOperand(0)).getValueType(),
6034                              getValue(I.getArgOperand(0))));
6035     return;
6036   }
6037   case Intrinsic::lround:
6038   case Intrinsic::llround: {
6039     unsigned Opcode;
6040     switch (Intrinsic) {
6041     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6042     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6043     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6044     }
6045 
6046     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6047     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6048                              getValue(I.getArgOperand(0))));
6049     return;
6050   }
6051   case Intrinsic::minnum: {
6052     auto VT = getValue(I.getArgOperand(0)).getValueType();
6053     unsigned Opc =
6054         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
6055             ? ISD::FMINIMUM
6056             : ISD::FMINNUM;
6057     setValue(&I, DAG.getNode(Opc, sdl, VT,
6058                              getValue(I.getArgOperand(0)),
6059                              getValue(I.getArgOperand(1))));
6060     return;
6061   }
6062   case Intrinsic::maxnum: {
6063     auto VT = getValue(I.getArgOperand(0)).getValueType();
6064     unsigned Opc =
6065         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
6066             ? ISD::FMAXIMUM
6067             : ISD::FMAXNUM;
6068     setValue(&I, DAG.getNode(Opc, sdl, VT,
6069                              getValue(I.getArgOperand(0)),
6070                              getValue(I.getArgOperand(1))));
6071     return;
6072   }
6073   case Intrinsic::minimum:
6074     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6075                              getValue(I.getArgOperand(0)).getValueType(),
6076                              getValue(I.getArgOperand(0)),
6077                              getValue(I.getArgOperand(1))));
6078     return;
6079   case Intrinsic::maximum:
6080     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6081                              getValue(I.getArgOperand(0)).getValueType(),
6082                              getValue(I.getArgOperand(0)),
6083                              getValue(I.getArgOperand(1))));
6084     return;
6085   case Intrinsic::copysign:
6086     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6087                              getValue(I.getArgOperand(0)).getValueType(),
6088                              getValue(I.getArgOperand(0)),
6089                              getValue(I.getArgOperand(1))));
6090     return;
6091   case Intrinsic::fma:
6092     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6093                              getValue(I.getArgOperand(0)).getValueType(),
6094                              getValue(I.getArgOperand(0)),
6095                              getValue(I.getArgOperand(1)),
6096                              getValue(I.getArgOperand(2))));
6097     return;
6098   case Intrinsic::experimental_constrained_fadd:
6099   case Intrinsic::experimental_constrained_fsub:
6100   case Intrinsic::experimental_constrained_fmul:
6101   case Intrinsic::experimental_constrained_fdiv:
6102   case Intrinsic::experimental_constrained_frem:
6103   case Intrinsic::experimental_constrained_fma:
6104   case Intrinsic::experimental_constrained_fptrunc:
6105   case Intrinsic::experimental_constrained_fpext:
6106   case Intrinsic::experimental_constrained_sqrt:
6107   case Intrinsic::experimental_constrained_pow:
6108   case Intrinsic::experimental_constrained_powi:
6109   case Intrinsic::experimental_constrained_sin:
6110   case Intrinsic::experimental_constrained_cos:
6111   case Intrinsic::experimental_constrained_exp:
6112   case Intrinsic::experimental_constrained_exp2:
6113   case Intrinsic::experimental_constrained_log:
6114   case Intrinsic::experimental_constrained_log10:
6115   case Intrinsic::experimental_constrained_log2:
6116   case Intrinsic::experimental_constrained_rint:
6117   case Intrinsic::experimental_constrained_nearbyint:
6118   case Intrinsic::experimental_constrained_maxnum:
6119   case Intrinsic::experimental_constrained_minnum:
6120   case Intrinsic::experimental_constrained_ceil:
6121   case Intrinsic::experimental_constrained_floor:
6122   case Intrinsic::experimental_constrained_round:
6123   case Intrinsic::experimental_constrained_trunc:
6124     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6125     return;
6126   case Intrinsic::fmuladd: {
6127     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6128     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6129         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6130       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6131                                getValue(I.getArgOperand(0)).getValueType(),
6132                                getValue(I.getArgOperand(0)),
6133                                getValue(I.getArgOperand(1)),
6134                                getValue(I.getArgOperand(2))));
6135     } else {
6136       // TODO: Intrinsic calls should have fast-math-flags.
6137       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6138                                 getValue(I.getArgOperand(0)).getValueType(),
6139                                 getValue(I.getArgOperand(0)),
6140                                 getValue(I.getArgOperand(1)));
6141       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6142                                 getValue(I.getArgOperand(0)).getValueType(),
6143                                 Mul,
6144                                 getValue(I.getArgOperand(2)));
6145       setValue(&I, Add);
6146     }
6147     return;
6148   }
6149   case Intrinsic::convert_to_fp16:
6150     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6151                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6152                                          getValue(I.getArgOperand(0)),
6153                                          DAG.getTargetConstant(0, sdl,
6154                                                                MVT::i32))));
6155     return;
6156   case Intrinsic::convert_from_fp16:
6157     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6158                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6159                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6160                                          getValue(I.getArgOperand(0)))));
6161     return;
6162   case Intrinsic::pcmarker: {
6163     SDValue Tmp = getValue(I.getArgOperand(0));
6164     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6165     return;
6166   }
6167   case Intrinsic::readcyclecounter: {
6168     SDValue Op = getRoot();
6169     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6170                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6171     setValue(&I, Res);
6172     DAG.setRoot(Res.getValue(1));
6173     return;
6174   }
6175   case Intrinsic::bitreverse:
6176     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6177                              getValue(I.getArgOperand(0)).getValueType(),
6178                              getValue(I.getArgOperand(0))));
6179     return;
6180   case Intrinsic::bswap:
6181     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6182                              getValue(I.getArgOperand(0)).getValueType(),
6183                              getValue(I.getArgOperand(0))));
6184     return;
6185   case Intrinsic::cttz: {
6186     SDValue Arg = getValue(I.getArgOperand(0));
6187     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6188     EVT Ty = Arg.getValueType();
6189     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6190                              sdl, Ty, Arg));
6191     return;
6192   }
6193   case Intrinsic::ctlz: {
6194     SDValue Arg = getValue(I.getArgOperand(0));
6195     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6196     EVT Ty = Arg.getValueType();
6197     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6198                              sdl, Ty, Arg));
6199     return;
6200   }
6201   case Intrinsic::ctpop: {
6202     SDValue Arg = getValue(I.getArgOperand(0));
6203     EVT Ty = Arg.getValueType();
6204     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6205     return;
6206   }
6207   case Intrinsic::fshl:
6208   case Intrinsic::fshr: {
6209     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6210     SDValue X = getValue(I.getArgOperand(0));
6211     SDValue Y = getValue(I.getArgOperand(1));
6212     SDValue Z = getValue(I.getArgOperand(2));
6213     EVT VT = X.getValueType();
6214     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6215     SDValue Zero = DAG.getConstant(0, sdl, VT);
6216     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6217 
6218     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6219     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6220       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6221       return;
6222     }
6223 
6224     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6225     // avoid the select that is necessary in the general case to filter out
6226     // the 0-shift possibility that leads to UB.
6227     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6228       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6229       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6230         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6231         return;
6232       }
6233 
6234       // Some targets only rotate one way. Try the opposite direction.
6235       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6236       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6237         // Negate the shift amount because it is safe to ignore the high bits.
6238         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6239         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6240         return;
6241       }
6242 
6243       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6244       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6245       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6246       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6247       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6248       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6249       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6250       return;
6251     }
6252 
6253     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6254     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6255     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6256     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6257     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6258     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6259 
6260     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6261     // and that is undefined. We must compare and select to avoid UB.
6262     EVT CCVT = MVT::i1;
6263     if (VT.isVector())
6264       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6265 
6266     // For fshl, 0-shift returns the 1st arg (X).
6267     // For fshr, 0-shift returns the 2nd arg (Y).
6268     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6269     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6270     return;
6271   }
6272   case Intrinsic::sadd_sat: {
6273     SDValue Op1 = getValue(I.getArgOperand(0));
6274     SDValue Op2 = getValue(I.getArgOperand(1));
6275     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6276     return;
6277   }
6278   case Intrinsic::uadd_sat: {
6279     SDValue Op1 = getValue(I.getArgOperand(0));
6280     SDValue Op2 = getValue(I.getArgOperand(1));
6281     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6282     return;
6283   }
6284   case Intrinsic::ssub_sat: {
6285     SDValue Op1 = getValue(I.getArgOperand(0));
6286     SDValue Op2 = getValue(I.getArgOperand(1));
6287     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6288     return;
6289   }
6290   case Intrinsic::usub_sat: {
6291     SDValue Op1 = getValue(I.getArgOperand(0));
6292     SDValue Op2 = getValue(I.getArgOperand(1));
6293     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6294     return;
6295   }
6296   case Intrinsic::smul_fix:
6297   case Intrinsic::umul_fix: {
6298     SDValue Op1 = getValue(I.getArgOperand(0));
6299     SDValue Op2 = getValue(I.getArgOperand(1));
6300     SDValue Op3 = getValue(I.getArgOperand(2));
6301     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6302                              Op1.getValueType(), Op1, Op2, Op3));
6303     return;
6304   }
6305   case Intrinsic::stacksave: {
6306     SDValue Op = getRoot();
6307     Res = DAG.getNode(
6308         ISD::STACKSAVE, sdl,
6309         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6310     setValue(&I, Res);
6311     DAG.setRoot(Res.getValue(1));
6312     return;
6313   }
6314   case Intrinsic::stackrestore:
6315     Res = getValue(I.getArgOperand(0));
6316     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6317     return;
6318   case Intrinsic::get_dynamic_area_offset: {
6319     SDValue Op = getRoot();
6320     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6321     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6322     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6323     // target.
6324     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6325       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6326                          " intrinsic!");
6327     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6328                       Op);
6329     DAG.setRoot(Op);
6330     setValue(&I, Res);
6331     return;
6332   }
6333   case Intrinsic::stackguard: {
6334     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6335     MachineFunction &MF = DAG.getMachineFunction();
6336     const Module &M = *MF.getFunction().getParent();
6337     SDValue Chain = getRoot();
6338     if (TLI.useLoadStackGuardNode()) {
6339       Res = getLoadStackGuard(DAG, sdl, Chain);
6340     } else {
6341       const Value *Global = TLI.getSDagStackGuard(M);
6342       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6343       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6344                         MachinePointerInfo(Global, 0), Align,
6345                         MachineMemOperand::MOVolatile);
6346     }
6347     if (TLI.useStackGuardXorFP())
6348       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6349     DAG.setRoot(Chain);
6350     setValue(&I, Res);
6351     return;
6352   }
6353   case Intrinsic::stackprotector: {
6354     // Emit code into the DAG to store the stack guard onto the stack.
6355     MachineFunction &MF = DAG.getMachineFunction();
6356     MachineFrameInfo &MFI = MF.getFrameInfo();
6357     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6358     SDValue Src, Chain = getRoot();
6359 
6360     if (TLI.useLoadStackGuardNode())
6361       Src = getLoadStackGuard(DAG, sdl, Chain);
6362     else
6363       Src = getValue(I.getArgOperand(0));   // The guard's value.
6364 
6365     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6366 
6367     int FI = FuncInfo.StaticAllocaMap[Slot];
6368     MFI.setStackProtectorIndex(FI);
6369 
6370     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6371 
6372     // Store the stack protector onto the stack.
6373     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6374                                                  DAG.getMachineFunction(), FI),
6375                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6376     setValue(&I, Res);
6377     DAG.setRoot(Res);
6378     return;
6379   }
6380   case Intrinsic::objectsize: {
6381     // If we don't know by now, we're never going to know.
6382     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6383 
6384     assert(CI && "Non-constant type in __builtin_object_size?");
6385 
6386     SDValue Arg = getValue(I.getCalledValue());
6387     EVT Ty = Arg.getValueType();
6388 
6389     if (CI->isZero())
6390       Res = DAG.getConstant(-1ULL, sdl, Ty);
6391     else
6392       Res = DAG.getConstant(0, sdl, Ty);
6393 
6394     setValue(&I, Res);
6395     return;
6396   }
6397 
6398   case Intrinsic::is_constant:
6399     // If this wasn't constant-folded away by now, then it's not a
6400     // constant.
6401     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6402     return;
6403 
6404   case Intrinsic::annotation:
6405   case Intrinsic::ptr_annotation:
6406   case Intrinsic::launder_invariant_group:
6407   case Intrinsic::strip_invariant_group:
6408     // Drop the intrinsic, but forward the value
6409     setValue(&I, getValue(I.getOperand(0)));
6410     return;
6411   case Intrinsic::assume:
6412   case Intrinsic::var_annotation:
6413   case Intrinsic::sideeffect:
6414     // Discard annotate attributes, assumptions, and artificial side-effects.
6415     return;
6416 
6417   case Intrinsic::codeview_annotation: {
6418     // Emit a label associated with this metadata.
6419     MachineFunction &MF = DAG.getMachineFunction();
6420     MCSymbol *Label =
6421         MF.getMMI().getContext().createTempSymbol("annotation", true);
6422     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6423     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6424     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6425     DAG.setRoot(Res);
6426     return;
6427   }
6428 
6429   case Intrinsic::init_trampoline: {
6430     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6431 
6432     SDValue Ops[6];
6433     Ops[0] = getRoot();
6434     Ops[1] = getValue(I.getArgOperand(0));
6435     Ops[2] = getValue(I.getArgOperand(1));
6436     Ops[3] = getValue(I.getArgOperand(2));
6437     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6438     Ops[5] = DAG.getSrcValue(F);
6439 
6440     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6441 
6442     DAG.setRoot(Res);
6443     return;
6444   }
6445   case Intrinsic::adjust_trampoline:
6446     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6447                              TLI.getPointerTy(DAG.getDataLayout()),
6448                              getValue(I.getArgOperand(0))));
6449     return;
6450   case Intrinsic::gcroot: {
6451     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6452            "only valid in functions with gc specified, enforced by Verifier");
6453     assert(GFI && "implied by previous");
6454     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6455     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6456 
6457     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6458     GFI->addStackRoot(FI->getIndex(), TypeMap);
6459     return;
6460   }
6461   case Intrinsic::gcread:
6462   case Intrinsic::gcwrite:
6463     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6464   case Intrinsic::flt_rounds:
6465     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6466     return;
6467 
6468   case Intrinsic::expect:
6469     // Just replace __builtin_expect(exp, c) with EXP.
6470     setValue(&I, getValue(I.getArgOperand(0)));
6471     return;
6472 
6473   case Intrinsic::debugtrap:
6474   case Intrinsic::trap: {
6475     StringRef TrapFuncName =
6476         I.getAttributes()
6477             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6478             .getValueAsString();
6479     if (TrapFuncName.empty()) {
6480       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6481         ISD::TRAP : ISD::DEBUGTRAP;
6482       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6483       return;
6484     }
6485     TargetLowering::ArgListTy Args;
6486 
6487     TargetLowering::CallLoweringInfo CLI(DAG);
6488     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6489         CallingConv::C, I.getType(),
6490         DAG.getExternalSymbol(TrapFuncName.data(),
6491                               TLI.getPointerTy(DAG.getDataLayout())),
6492         std::move(Args));
6493 
6494     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6495     DAG.setRoot(Result.second);
6496     return;
6497   }
6498 
6499   case Intrinsic::uadd_with_overflow:
6500   case Intrinsic::sadd_with_overflow:
6501   case Intrinsic::usub_with_overflow:
6502   case Intrinsic::ssub_with_overflow:
6503   case Intrinsic::umul_with_overflow:
6504   case Intrinsic::smul_with_overflow: {
6505     ISD::NodeType Op;
6506     switch (Intrinsic) {
6507     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6508     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6509     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6510     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6511     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6512     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6513     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6514     }
6515     SDValue Op1 = getValue(I.getArgOperand(0));
6516     SDValue Op2 = getValue(I.getArgOperand(1));
6517 
6518     EVT ResultVT = Op1.getValueType();
6519     EVT OverflowVT = MVT::i1;
6520     if (ResultVT.isVector())
6521       OverflowVT = EVT::getVectorVT(
6522           *Context, OverflowVT, ResultVT.getVectorNumElements());
6523 
6524     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6525     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6526     return;
6527   }
6528   case Intrinsic::prefetch: {
6529     SDValue Ops[5];
6530     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6531     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6532     Ops[0] = DAG.getRoot();
6533     Ops[1] = getValue(I.getArgOperand(0));
6534     Ops[2] = getValue(I.getArgOperand(1));
6535     Ops[3] = getValue(I.getArgOperand(2));
6536     Ops[4] = getValue(I.getArgOperand(3));
6537     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6538                                              DAG.getVTList(MVT::Other), Ops,
6539                                              EVT::getIntegerVT(*Context, 8),
6540                                              MachinePointerInfo(I.getArgOperand(0)),
6541                                              0, /* align */
6542                                              Flags);
6543 
6544     // Chain the prefetch in parallell with any pending loads, to stay out of
6545     // the way of later optimizations.
6546     PendingLoads.push_back(Result);
6547     Result = getRoot();
6548     DAG.setRoot(Result);
6549     return;
6550   }
6551   case Intrinsic::lifetime_start:
6552   case Intrinsic::lifetime_end: {
6553     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6554     // Stack coloring is not enabled in O0, discard region information.
6555     if (TM.getOptLevel() == CodeGenOpt::None)
6556       return;
6557 
6558     const int64_t ObjectSize =
6559         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6560     Value *const ObjectPtr = I.getArgOperand(1);
6561     SmallVector<const Value *, 4> Allocas;
6562     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6563 
6564     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6565            E = Allocas.end(); Object != E; ++Object) {
6566       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6567 
6568       // Could not find an Alloca.
6569       if (!LifetimeObject)
6570         continue;
6571 
6572       // First check that the Alloca is static, otherwise it won't have a
6573       // valid frame index.
6574       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6575       if (SI == FuncInfo.StaticAllocaMap.end())
6576         return;
6577 
6578       const int FrameIndex = SI->second;
6579       int64_t Offset;
6580       if (GetPointerBaseWithConstantOffset(
6581               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6582         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6583       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6584                                 Offset);
6585       DAG.setRoot(Res);
6586     }
6587     return;
6588   }
6589   case Intrinsic::invariant_start:
6590     // Discard region information.
6591     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6592     return;
6593   case Intrinsic::invariant_end:
6594     // Discard region information.
6595     return;
6596   case Intrinsic::clear_cache:
6597     /// FunctionName may be null.
6598     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6599       lowerCallToExternalSymbol(I, FunctionName);
6600     return;
6601   case Intrinsic::donothing:
6602     // ignore
6603     return;
6604   case Intrinsic::experimental_stackmap:
6605     visitStackmap(I);
6606     return;
6607   case Intrinsic::experimental_patchpoint_void:
6608   case Intrinsic::experimental_patchpoint_i64:
6609     visitPatchpoint(&I);
6610     return;
6611   case Intrinsic::experimental_gc_statepoint:
6612     LowerStatepoint(ImmutableStatepoint(&I));
6613     return;
6614   case Intrinsic::experimental_gc_result:
6615     visitGCResult(cast<GCResultInst>(I));
6616     return;
6617   case Intrinsic::experimental_gc_relocate:
6618     visitGCRelocate(cast<GCRelocateInst>(I));
6619     return;
6620   case Intrinsic::instrprof_increment:
6621     llvm_unreachable("instrprof failed to lower an increment");
6622   case Intrinsic::instrprof_value_profile:
6623     llvm_unreachable("instrprof failed to lower a value profiling call");
6624   case Intrinsic::localescape: {
6625     MachineFunction &MF = DAG.getMachineFunction();
6626     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6627 
6628     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6629     // is the same on all targets.
6630     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6631       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6632       if (isa<ConstantPointerNull>(Arg))
6633         continue; // Skip null pointers. They represent a hole in index space.
6634       AllocaInst *Slot = cast<AllocaInst>(Arg);
6635       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6636              "can only escape static allocas");
6637       int FI = FuncInfo.StaticAllocaMap[Slot];
6638       MCSymbol *FrameAllocSym =
6639           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6640               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6641       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6642               TII->get(TargetOpcode::LOCAL_ESCAPE))
6643           .addSym(FrameAllocSym)
6644           .addFrameIndex(FI);
6645     }
6646 
6647     return;
6648   }
6649 
6650   case Intrinsic::localrecover: {
6651     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6652     MachineFunction &MF = DAG.getMachineFunction();
6653     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6654 
6655     // Get the symbol that defines the frame offset.
6656     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6657     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6658     unsigned IdxVal =
6659         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6660     MCSymbol *FrameAllocSym =
6661         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6662             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6663 
6664     // Create a MCSymbol for the label to avoid any target lowering
6665     // that would make this PC relative.
6666     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6667     SDValue OffsetVal =
6668         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6669 
6670     // Add the offset to the FP.
6671     Value *FP = I.getArgOperand(1);
6672     SDValue FPVal = getValue(FP);
6673     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6674     setValue(&I, Add);
6675 
6676     return;
6677   }
6678 
6679   case Intrinsic::eh_exceptionpointer:
6680   case Intrinsic::eh_exceptioncode: {
6681     // Get the exception pointer vreg, copy from it, and resize it to fit.
6682     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6683     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6684     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6685     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6686     SDValue N =
6687         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6688     if (Intrinsic == Intrinsic::eh_exceptioncode)
6689       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6690     setValue(&I, N);
6691     return;
6692   }
6693   case Intrinsic::xray_customevent: {
6694     // Here we want to make sure that the intrinsic behaves as if it has a
6695     // specific calling convention, and only for x86_64.
6696     // FIXME: Support other platforms later.
6697     const auto &Triple = DAG.getTarget().getTargetTriple();
6698     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6699       return;
6700 
6701     SDLoc DL = getCurSDLoc();
6702     SmallVector<SDValue, 8> Ops;
6703 
6704     // We want to say that we always want the arguments in registers.
6705     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6706     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6707     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6708     SDValue Chain = getRoot();
6709     Ops.push_back(LogEntryVal);
6710     Ops.push_back(StrSizeVal);
6711     Ops.push_back(Chain);
6712 
6713     // We need to enforce the calling convention for the callsite, so that
6714     // argument ordering is enforced correctly, and that register allocation can
6715     // see that some registers may be assumed clobbered and have to preserve
6716     // them across calls to the intrinsic.
6717     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6718                                            DL, NodeTys, Ops);
6719     SDValue patchableNode = SDValue(MN, 0);
6720     DAG.setRoot(patchableNode);
6721     setValue(&I, patchableNode);
6722     return;
6723   }
6724   case Intrinsic::xray_typedevent: {
6725     // Here we want to make sure that the intrinsic behaves as if it has a
6726     // specific calling convention, and only for x86_64.
6727     // FIXME: Support other platforms later.
6728     const auto &Triple = DAG.getTarget().getTargetTriple();
6729     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6730       return;
6731 
6732     SDLoc DL = getCurSDLoc();
6733     SmallVector<SDValue, 8> Ops;
6734 
6735     // We want to say that we always want the arguments in registers.
6736     // It's unclear to me how manipulating the selection DAG here forces callers
6737     // to provide arguments in registers instead of on the stack.
6738     SDValue LogTypeId = getValue(I.getArgOperand(0));
6739     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6740     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6741     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6742     SDValue Chain = getRoot();
6743     Ops.push_back(LogTypeId);
6744     Ops.push_back(LogEntryVal);
6745     Ops.push_back(StrSizeVal);
6746     Ops.push_back(Chain);
6747 
6748     // We need to enforce the calling convention for the callsite, so that
6749     // argument ordering is enforced correctly, and that register allocation can
6750     // see that some registers may be assumed clobbered and have to preserve
6751     // them across calls to the intrinsic.
6752     MachineSDNode *MN = DAG.getMachineNode(
6753         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6754     SDValue patchableNode = SDValue(MN, 0);
6755     DAG.setRoot(patchableNode);
6756     setValue(&I, patchableNode);
6757     return;
6758   }
6759   case Intrinsic::experimental_deoptimize:
6760     LowerDeoptimizeCall(&I);
6761     return;
6762 
6763   case Intrinsic::experimental_vector_reduce_fadd:
6764   case Intrinsic::experimental_vector_reduce_fmul:
6765   case Intrinsic::experimental_vector_reduce_add:
6766   case Intrinsic::experimental_vector_reduce_mul:
6767   case Intrinsic::experimental_vector_reduce_and:
6768   case Intrinsic::experimental_vector_reduce_or:
6769   case Intrinsic::experimental_vector_reduce_xor:
6770   case Intrinsic::experimental_vector_reduce_smax:
6771   case Intrinsic::experimental_vector_reduce_smin:
6772   case Intrinsic::experimental_vector_reduce_umax:
6773   case Intrinsic::experimental_vector_reduce_umin:
6774   case Intrinsic::experimental_vector_reduce_fmax:
6775   case Intrinsic::experimental_vector_reduce_fmin:
6776     visitVectorReduce(I, Intrinsic);
6777     return;
6778 
6779   case Intrinsic::icall_branch_funnel: {
6780     SmallVector<SDValue, 16> Ops;
6781     Ops.push_back(DAG.getRoot());
6782     Ops.push_back(getValue(I.getArgOperand(0)));
6783 
6784     int64_t Offset;
6785     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6786         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6787     if (!Base)
6788       report_fatal_error(
6789           "llvm.icall.branch.funnel operand must be a GlobalValue");
6790     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6791 
6792     struct BranchFunnelTarget {
6793       int64_t Offset;
6794       SDValue Target;
6795     };
6796     SmallVector<BranchFunnelTarget, 8> Targets;
6797 
6798     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6799       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6800           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6801       if (ElemBase != Base)
6802         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6803                            "to the same GlobalValue");
6804 
6805       SDValue Val = getValue(I.getArgOperand(Op + 1));
6806       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6807       if (!GA)
6808         report_fatal_error(
6809             "llvm.icall.branch.funnel operand must be a GlobalValue");
6810       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6811                                      GA->getGlobal(), getCurSDLoc(),
6812                                      Val.getValueType(), GA->getOffset())});
6813     }
6814     llvm::sort(Targets,
6815                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6816                  return T1.Offset < T2.Offset;
6817                });
6818 
6819     for (auto &T : Targets) {
6820       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6821       Ops.push_back(T.Target);
6822     }
6823 
6824     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6825                                  getCurSDLoc(), MVT::Other, Ops),
6826               0);
6827     DAG.setRoot(N);
6828     setValue(&I, N);
6829     HasTailCall = true;
6830     return;
6831   }
6832 
6833   case Intrinsic::wasm_landingpad_index:
6834     // Information this intrinsic contained has been transferred to
6835     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6836     // delete it now.
6837     return;
6838   }
6839 }
6840 
6841 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6842     const ConstrainedFPIntrinsic &FPI) {
6843   SDLoc sdl = getCurSDLoc();
6844   unsigned Opcode;
6845   switch (FPI.getIntrinsicID()) {
6846   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6847   case Intrinsic::experimental_constrained_fadd:
6848     Opcode = ISD::STRICT_FADD;
6849     break;
6850   case Intrinsic::experimental_constrained_fsub:
6851     Opcode = ISD::STRICT_FSUB;
6852     break;
6853   case Intrinsic::experimental_constrained_fmul:
6854     Opcode = ISD::STRICT_FMUL;
6855     break;
6856   case Intrinsic::experimental_constrained_fdiv:
6857     Opcode = ISD::STRICT_FDIV;
6858     break;
6859   case Intrinsic::experimental_constrained_frem:
6860     Opcode = ISD::STRICT_FREM;
6861     break;
6862   case Intrinsic::experimental_constrained_fma:
6863     Opcode = ISD::STRICT_FMA;
6864     break;
6865   case Intrinsic::experimental_constrained_fptrunc:
6866     Opcode = ISD::STRICT_FP_ROUND;
6867     break;
6868   case Intrinsic::experimental_constrained_fpext:
6869     Opcode = ISD::STRICT_FP_EXTEND;
6870     break;
6871   case Intrinsic::experimental_constrained_sqrt:
6872     Opcode = ISD::STRICT_FSQRT;
6873     break;
6874   case Intrinsic::experimental_constrained_pow:
6875     Opcode = ISD::STRICT_FPOW;
6876     break;
6877   case Intrinsic::experimental_constrained_powi:
6878     Opcode = ISD::STRICT_FPOWI;
6879     break;
6880   case Intrinsic::experimental_constrained_sin:
6881     Opcode = ISD::STRICT_FSIN;
6882     break;
6883   case Intrinsic::experimental_constrained_cos:
6884     Opcode = ISD::STRICT_FCOS;
6885     break;
6886   case Intrinsic::experimental_constrained_exp:
6887     Opcode = ISD::STRICT_FEXP;
6888     break;
6889   case Intrinsic::experimental_constrained_exp2:
6890     Opcode = ISD::STRICT_FEXP2;
6891     break;
6892   case Intrinsic::experimental_constrained_log:
6893     Opcode = ISD::STRICT_FLOG;
6894     break;
6895   case Intrinsic::experimental_constrained_log10:
6896     Opcode = ISD::STRICT_FLOG10;
6897     break;
6898   case Intrinsic::experimental_constrained_log2:
6899     Opcode = ISD::STRICT_FLOG2;
6900     break;
6901   case Intrinsic::experimental_constrained_rint:
6902     Opcode = ISD::STRICT_FRINT;
6903     break;
6904   case Intrinsic::experimental_constrained_nearbyint:
6905     Opcode = ISD::STRICT_FNEARBYINT;
6906     break;
6907   case Intrinsic::experimental_constrained_maxnum:
6908     Opcode = ISD::STRICT_FMAXNUM;
6909     break;
6910   case Intrinsic::experimental_constrained_minnum:
6911     Opcode = ISD::STRICT_FMINNUM;
6912     break;
6913   case Intrinsic::experimental_constrained_ceil:
6914     Opcode = ISD::STRICT_FCEIL;
6915     break;
6916   case Intrinsic::experimental_constrained_floor:
6917     Opcode = ISD::STRICT_FFLOOR;
6918     break;
6919   case Intrinsic::experimental_constrained_round:
6920     Opcode = ISD::STRICT_FROUND;
6921     break;
6922   case Intrinsic::experimental_constrained_trunc:
6923     Opcode = ISD::STRICT_FTRUNC;
6924     break;
6925   }
6926   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6927   SDValue Chain = getRoot();
6928   SmallVector<EVT, 4> ValueVTs;
6929   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6930   ValueVTs.push_back(MVT::Other); // Out chain
6931 
6932   SDVTList VTs = DAG.getVTList(ValueVTs);
6933   SDValue Result;
6934   if (Opcode == ISD::STRICT_FP_ROUND)
6935     Result = DAG.getNode(Opcode, sdl, VTs,
6936                           { Chain, getValue(FPI.getArgOperand(0)),
6937                                DAG.getTargetConstant(0, sdl,
6938                                TLI.getPointerTy(DAG.getDataLayout())) });
6939   else if (FPI.isUnaryOp())
6940     Result = DAG.getNode(Opcode, sdl, VTs,
6941                          { Chain, getValue(FPI.getArgOperand(0)) });
6942   else if (FPI.isTernaryOp())
6943     Result = DAG.getNode(Opcode, sdl, VTs,
6944                          { Chain, getValue(FPI.getArgOperand(0)),
6945                                   getValue(FPI.getArgOperand(1)),
6946                                   getValue(FPI.getArgOperand(2)) });
6947   else
6948     Result = DAG.getNode(Opcode, sdl, VTs,
6949                          { Chain, getValue(FPI.getArgOperand(0)),
6950                            getValue(FPI.getArgOperand(1))  });
6951 
6952   assert(Result.getNode()->getNumValues() == 2);
6953   SDValue OutChain = Result.getValue(1);
6954   DAG.setRoot(OutChain);
6955   SDValue FPResult = Result.getValue(0);
6956   setValue(&FPI, FPResult);
6957 }
6958 
6959 std::pair<SDValue, SDValue>
6960 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6961                                     const BasicBlock *EHPadBB) {
6962   MachineFunction &MF = DAG.getMachineFunction();
6963   MachineModuleInfo &MMI = MF.getMMI();
6964   MCSymbol *BeginLabel = nullptr;
6965 
6966   if (EHPadBB) {
6967     // Insert a label before the invoke call to mark the try range.  This can be
6968     // used to detect deletion of the invoke via the MachineModuleInfo.
6969     BeginLabel = MMI.getContext().createTempSymbol();
6970 
6971     // For SjLj, keep track of which landing pads go with which invokes
6972     // so as to maintain the ordering of pads in the LSDA.
6973     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6974     if (CallSiteIndex) {
6975       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6976       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6977 
6978       // Now that the call site is handled, stop tracking it.
6979       MMI.setCurrentCallSite(0);
6980     }
6981 
6982     // Both PendingLoads and PendingExports must be flushed here;
6983     // this call might not return.
6984     (void)getRoot();
6985     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6986 
6987     CLI.setChain(getRoot());
6988   }
6989   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6990   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6991 
6992   assert((CLI.IsTailCall || Result.second.getNode()) &&
6993          "Non-null chain expected with non-tail call!");
6994   assert((Result.second.getNode() || !Result.first.getNode()) &&
6995          "Null value expected with tail call!");
6996 
6997   if (!Result.second.getNode()) {
6998     // As a special case, a null chain means that a tail call has been emitted
6999     // and the DAG root is already updated.
7000     HasTailCall = true;
7001 
7002     // Since there's no actual continuation from this block, nothing can be
7003     // relying on us setting vregs for them.
7004     PendingExports.clear();
7005   } else {
7006     DAG.setRoot(Result.second);
7007   }
7008 
7009   if (EHPadBB) {
7010     // Insert a label at the end of the invoke call to mark the try range.  This
7011     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7012     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7013     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7014 
7015     // Inform MachineModuleInfo of range.
7016     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7017     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7018     // actually use outlined funclets and their LSDA info style.
7019     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7020       assert(CLI.CS);
7021       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7022       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7023                                 BeginLabel, EndLabel);
7024     } else if (!isScopedEHPersonality(Pers)) {
7025       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7026     }
7027   }
7028 
7029   return Result;
7030 }
7031 
7032 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7033                                       bool isTailCall,
7034                                       const BasicBlock *EHPadBB) {
7035   auto &DL = DAG.getDataLayout();
7036   FunctionType *FTy = CS.getFunctionType();
7037   Type *RetTy = CS.getType();
7038 
7039   TargetLowering::ArgListTy Args;
7040   Args.reserve(CS.arg_size());
7041 
7042   const Value *SwiftErrorVal = nullptr;
7043   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7044 
7045   // We can't tail call inside a function with a swifterror argument. Lowering
7046   // does not support this yet. It would have to move into the swifterror
7047   // register before the call.
7048   auto *Caller = CS.getInstruction()->getParent()->getParent();
7049   if (TLI.supportSwiftError() &&
7050       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7051     isTailCall = false;
7052 
7053   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7054        i != e; ++i) {
7055     TargetLowering::ArgListEntry Entry;
7056     const Value *V = *i;
7057 
7058     // Skip empty types
7059     if (V->getType()->isEmptyTy())
7060       continue;
7061 
7062     SDValue ArgNode = getValue(V);
7063     Entry.Node = ArgNode; Entry.Ty = V->getType();
7064 
7065     Entry.setAttributes(&CS, i - CS.arg_begin());
7066 
7067     // Use swifterror virtual register as input to the call.
7068     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7069       SwiftErrorVal = V;
7070       // We find the virtual register for the actual swifterror argument.
7071       // Instead of using the Value, we use the virtual register instead.
7072       Entry.Node = DAG.getRegister(FuncInfo
7073                                        .getOrCreateSwiftErrorVRegUseAt(
7074                                            CS.getInstruction(), FuncInfo.MBB, V)
7075                                        .first,
7076                                    EVT(TLI.getPointerTy(DL)));
7077     }
7078 
7079     Args.push_back(Entry);
7080 
7081     // If we have an explicit sret argument that is an Instruction, (i.e., it
7082     // might point to function-local memory), we can't meaningfully tail-call.
7083     if (Entry.IsSRet && isa<Instruction>(V))
7084       isTailCall = false;
7085   }
7086 
7087   // Check if target-independent constraints permit a tail call here.
7088   // Target-dependent constraints are checked within TLI->LowerCallTo.
7089   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7090     isTailCall = false;
7091 
7092   // Disable tail calls if there is an swifterror argument. Targets have not
7093   // been updated to support tail calls.
7094   if (TLI.supportSwiftError() && SwiftErrorVal)
7095     isTailCall = false;
7096 
7097   TargetLowering::CallLoweringInfo CLI(DAG);
7098   CLI.setDebugLoc(getCurSDLoc())
7099       .setChain(getRoot())
7100       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7101       .setTailCall(isTailCall)
7102       .setConvergent(CS.isConvergent());
7103   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7104 
7105   if (Result.first.getNode()) {
7106     const Instruction *Inst = CS.getInstruction();
7107     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7108     setValue(Inst, Result.first);
7109   }
7110 
7111   // The last element of CLI.InVals has the SDValue for swifterror return.
7112   // Here we copy it to a virtual register and update SwiftErrorMap for
7113   // book-keeping.
7114   if (SwiftErrorVal && TLI.supportSwiftError()) {
7115     // Get the last element of InVals.
7116     SDValue Src = CLI.InVals.back();
7117     unsigned VReg; bool CreatedVReg;
7118     std::tie(VReg, CreatedVReg) =
7119         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
7120     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7121     // We update the virtual register for the actual swifterror argument.
7122     if (CreatedVReg)
7123       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
7124     DAG.setRoot(CopyNode);
7125   }
7126 }
7127 
7128 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7129                              SelectionDAGBuilder &Builder) {
7130   // Check to see if this load can be trivially constant folded, e.g. if the
7131   // input is from a string literal.
7132   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7133     // Cast pointer to the type we really want to load.
7134     Type *LoadTy =
7135         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7136     if (LoadVT.isVector())
7137       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7138 
7139     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7140                                          PointerType::getUnqual(LoadTy));
7141 
7142     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7143             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7144       return Builder.getValue(LoadCst);
7145   }
7146 
7147   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7148   // still constant memory, the input chain can be the entry node.
7149   SDValue Root;
7150   bool ConstantMemory = false;
7151 
7152   // Do not serialize (non-volatile) loads of constant memory with anything.
7153   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7154     Root = Builder.DAG.getEntryNode();
7155     ConstantMemory = true;
7156   } else {
7157     // Do not serialize non-volatile loads against each other.
7158     Root = Builder.DAG.getRoot();
7159   }
7160 
7161   SDValue Ptr = Builder.getValue(PtrVal);
7162   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7163                                         Ptr, MachinePointerInfo(PtrVal),
7164                                         /* Alignment = */ 1);
7165 
7166   if (!ConstantMemory)
7167     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7168   return LoadVal;
7169 }
7170 
7171 /// Record the value for an instruction that produces an integer result,
7172 /// converting the type where necessary.
7173 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7174                                                   SDValue Value,
7175                                                   bool IsSigned) {
7176   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7177                                                     I.getType(), true);
7178   if (IsSigned)
7179     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7180   else
7181     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7182   setValue(&I, Value);
7183 }
7184 
7185 /// See if we can lower a memcmp call into an optimized form. If so, return
7186 /// true and lower it. Otherwise return false, and it will be lowered like a
7187 /// normal call.
7188 /// The caller already checked that \p I calls the appropriate LibFunc with a
7189 /// correct prototype.
7190 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7191   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7192   const Value *Size = I.getArgOperand(2);
7193   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7194   if (CSize && CSize->getZExtValue() == 0) {
7195     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7196                                                           I.getType(), true);
7197     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7198     return true;
7199   }
7200 
7201   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7202   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7203       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7204       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7205   if (Res.first.getNode()) {
7206     processIntegerCallValue(I, Res.first, true);
7207     PendingLoads.push_back(Res.second);
7208     return true;
7209   }
7210 
7211   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7212   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7213   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7214     return false;
7215 
7216   // If the target has a fast compare for the given size, it will return a
7217   // preferred load type for that size. Require that the load VT is legal and
7218   // that the target supports unaligned loads of that type. Otherwise, return
7219   // INVALID.
7220   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7221     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7222     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7223     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7224       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7225       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7226       // TODO: Check alignment of src and dest ptrs.
7227       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7228       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7229       if (!TLI.isTypeLegal(LVT) ||
7230           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7231           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7232         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7233     }
7234 
7235     return LVT;
7236   };
7237 
7238   // This turns into unaligned loads. We only do this if the target natively
7239   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7240   // we'll only produce a small number of byte loads.
7241   MVT LoadVT;
7242   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7243   switch (NumBitsToCompare) {
7244   default:
7245     return false;
7246   case 16:
7247     LoadVT = MVT::i16;
7248     break;
7249   case 32:
7250     LoadVT = MVT::i32;
7251     break;
7252   case 64:
7253   case 128:
7254   case 256:
7255     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7256     break;
7257   }
7258 
7259   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7260     return false;
7261 
7262   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7263   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7264 
7265   // Bitcast to a wide integer type if the loads are vectors.
7266   if (LoadVT.isVector()) {
7267     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7268     LoadL = DAG.getBitcast(CmpVT, LoadL);
7269     LoadR = DAG.getBitcast(CmpVT, LoadR);
7270   }
7271 
7272   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7273   processIntegerCallValue(I, Cmp, false);
7274   return true;
7275 }
7276 
7277 /// See if we can lower a memchr call into an optimized form. If so, return
7278 /// true and lower it. Otherwise return false, and it will be lowered like a
7279 /// normal call.
7280 /// The caller already checked that \p I calls the appropriate LibFunc with a
7281 /// correct prototype.
7282 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7283   const Value *Src = I.getArgOperand(0);
7284   const Value *Char = I.getArgOperand(1);
7285   const Value *Length = I.getArgOperand(2);
7286 
7287   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7288   std::pair<SDValue, SDValue> Res =
7289     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7290                                 getValue(Src), getValue(Char), getValue(Length),
7291                                 MachinePointerInfo(Src));
7292   if (Res.first.getNode()) {
7293     setValue(&I, Res.first);
7294     PendingLoads.push_back(Res.second);
7295     return true;
7296   }
7297 
7298   return false;
7299 }
7300 
7301 /// See if we can lower a mempcpy call into an optimized form. If so, return
7302 /// true and lower it. Otherwise return false, and it will be lowered like a
7303 /// normal call.
7304 /// The caller already checked that \p I calls the appropriate LibFunc with a
7305 /// correct prototype.
7306 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7307   SDValue Dst = getValue(I.getArgOperand(0));
7308   SDValue Src = getValue(I.getArgOperand(1));
7309   SDValue Size = getValue(I.getArgOperand(2));
7310 
7311   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7312   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7313   unsigned Align = std::min(DstAlign, SrcAlign);
7314   if (Align == 0) // Alignment of one or both could not be inferred.
7315     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7316 
7317   bool isVol = false;
7318   SDLoc sdl = getCurSDLoc();
7319 
7320   // In the mempcpy context we need to pass in a false value for isTailCall
7321   // because the return pointer needs to be adjusted by the size of
7322   // the copied memory.
7323   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7324                              false, /*isTailCall=*/false,
7325                              MachinePointerInfo(I.getArgOperand(0)),
7326                              MachinePointerInfo(I.getArgOperand(1)));
7327   assert(MC.getNode() != nullptr &&
7328          "** memcpy should not be lowered as TailCall in mempcpy context **");
7329   DAG.setRoot(MC);
7330 
7331   // Check if Size needs to be truncated or extended.
7332   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7333 
7334   // Adjust return pointer to point just past the last dst byte.
7335   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7336                                     Dst, Size);
7337   setValue(&I, DstPlusSize);
7338   return true;
7339 }
7340 
7341 /// See if we can lower a strcpy call into an optimized form.  If so, return
7342 /// true and lower it, otherwise return false and it will be lowered like a
7343 /// normal call.
7344 /// The caller already checked that \p I calls the appropriate LibFunc with a
7345 /// correct prototype.
7346 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7347   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7348 
7349   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7350   std::pair<SDValue, SDValue> Res =
7351     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7352                                 getValue(Arg0), getValue(Arg1),
7353                                 MachinePointerInfo(Arg0),
7354                                 MachinePointerInfo(Arg1), isStpcpy);
7355   if (Res.first.getNode()) {
7356     setValue(&I, Res.first);
7357     DAG.setRoot(Res.second);
7358     return true;
7359   }
7360 
7361   return false;
7362 }
7363 
7364 /// See if we can lower a strcmp call into an optimized form.  If so, return
7365 /// true and lower it, otherwise return false and it will be lowered like a
7366 /// normal call.
7367 /// The caller already checked that \p I calls the appropriate LibFunc with a
7368 /// correct prototype.
7369 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7370   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7371 
7372   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7373   std::pair<SDValue, SDValue> Res =
7374     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7375                                 getValue(Arg0), getValue(Arg1),
7376                                 MachinePointerInfo(Arg0),
7377                                 MachinePointerInfo(Arg1));
7378   if (Res.first.getNode()) {
7379     processIntegerCallValue(I, Res.first, true);
7380     PendingLoads.push_back(Res.second);
7381     return true;
7382   }
7383 
7384   return false;
7385 }
7386 
7387 /// See if we can lower a strlen call into an optimized form.  If so, return
7388 /// true and lower it, otherwise return false and it will be lowered like a
7389 /// normal call.
7390 /// The caller already checked that \p I calls the appropriate LibFunc with a
7391 /// correct prototype.
7392 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7393   const Value *Arg0 = I.getArgOperand(0);
7394 
7395   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7396   std::pair<SDValue, SDValue> Res =
7397     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7398                                 getValue(Arg0), MachinePointerInfo(Arg0));
7399   if (Res.first.getNode()) {
7400     processIntegerCallValue(I, Res.first, false);
7401     PendingLoads.push_back(Res.second);
7402     return true;
7403   }
7404 
7405   return false;
7406 }
7407 
7408 /// See if we can lower a strnlen call into an optimized form.  If so, return
7409 /// true and lower it, otherwise return false and it will be lowered like a
7410 /// normal call.
7411 /// The caller already checked that \p I calls the appropriate LibFunc with a
7412 /// correct prototype.
7413 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7414   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7415 
7416   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7417   std::pair<SDValue, SDValue> Res =
7418     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7419                                  getValue(Arg0), getValue(Arg1),
7420                                  MachinePointerInfo(Arg0));
7421   if (Res.first.getNode()) {
7422     processIntegerCallValue(I, Res.first, false);
7423     PendingLoads.push_back(Res.second);
7424     return true;
7425   }
7426 
7427   return false;
7428 }
7429 
7430 /// See if we can lower a unary floating-point operation into an SDNode with
7431 /// the specified Opcode.  If so, return true and lower it, otherwise return
7432 /// false and it will be lowered like a normal call.
7433 /// The caller already checked that \p I calls the appropriate LibFunc with a
7434 /// correct prototype.
7435 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7436                                               unsigned Opcode) {
7437   // We already checked this call's prototype; verify it doesn't modify errno.
7438   if (!I.onlyReadsMemory())
7439     return false;
7440 
7441   SDValue Tmp = getValue(I.getArgOperand(0));
7442   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7443   return true;
7444 }
7445 
7446 /// See if we can lower a binary floating-point operation into an SDNode with
7447 /// the specified Opcode. If so, return true and lower it. Otherwise return
7448 /// false, and it will be lowered like a normal call.
7449 /// The caller already checked that \p I calls the appropriate LibFunc with a
7450 /// correct prototype.
7451 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7452                                                unsigned Opcode) {
7453   // We already checked this call's prototype; verify it doesn't modify errno.
7454   if (!I.onlyReadsMemory())
7455     return false;
7456 
7457   SDValue Tmp0 = getValue(I.getArgOperand(0));
7458   SDValue Tmp1 = getValue(I.getArgOperand(1));
7459   EVT VT = Tmp0.getValueType();
7460   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7461   return true;
7462 }
7463 
7464 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7465   // Handle inline assembly differently.
7466   if (isa<InlineAsm>(I.getCalledValue())) {
7467     visitInlineAsm(&I);
7468     return;
7469   }
7470 
7471   if (Function *F = I.getCalledFunction()) {
7472     if (F->isDeclaration()) {
7473       // Is this an LLVM intrinsic or a target-specific intrinsic?
7474       unsigned IID = F->getIntrinsicID();
7475       if (!IID)
7476         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7477           IID = II->getIntrinsicID(F);
7478 
7479       if (IID) {
7480         visitIntrinsicCall(I, IID);
7481         return;
7482       }
7483     }
7484 
7485     // Check for well-known libc/libm calls.  If the function is internal, it
7486     // can't be a library call.  Don't do the check if marked as nobuiltin for
7487     // some reason or the call site requires strict floating point semantics.
7488     LibFunc Func;
7489     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7490         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7491         LibInfo->hasOptimizedCodeGen(Func)) {
7492       switch (Func) {
7493       default: break;
7494       case LibFunc_copysign:
7495       case LibFunc_copysignf:
7496       case LibFunc_copysignl:
7497         // We already checked this call's prototype; verify it doesn't modify
7498         // errno.
7499         if (I.onlyReadsMemory()) {
7500           SDValue LHS = getValue(I.getArgOperand(0));
7501           SDValue RHS = getValue(I.getArgOperand(1));
7502           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7503                                    LHS.getValueType(), LHS, RHS));
7504           return;
7505         }
7506         break;
7507       case LibFunc_fabs:
7508       case LibFunc_fabsf:
7509       case LibFunc_fabsl:
7510         if (visitUnaryFloatCall(I, ISD::FABS))
7511           return;
7512         break;
7513       case LibFunc_fmin:
7514       case LibFunc_fminf:
7515       case LibFunc_fminl:
7516         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7517           return;
7518         break;
7519       case LibFunc_fmax:
7520       case LibFunc_fmaxf:
7521       case LibFunc_fmaxl:
7522         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7523           return;
7524         break;
7525       case LibFunc_sin:
7526       case LibFunc_sinf:
7527       case LibFunc_sinl:
7528         if (visitUnaryFloatCall(I, ISD::FSIN))
7529           return;
7530         break;
7531       case LibFunc_cos:
7532       case LibFunc_cosf:
7533       case LibFunc_cosl:
7534         if (visitUnaryFloatCall(I, ISD::FCOS))
7535           return;
7536         break;
7537       case LibFunc_sqrt:
7538       case LibFunc_sqrtf:
7539       case LibFunc_sqrtl:
7540       case LibFunc_sqrt_finite:
7541       case LibFunc_sqrtf_finite:
7542       case LibFunc_sqrtl_finite:
7543         if (visitUnaryFloatCall(I, ISD::FSQRT))
7544           return;
7545         break;
7546       case LibFunc_floor:
7547       case LibFunc_floorf:
7548       case LibFunc_floorl:
7549         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7550           return;
7551         break;
7552       case LibFunc_nearbyint:
7553       case LibFunc_nearbyintf:
7554       case LibFunc_nearbyintl:
7555         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7556           return;
7557         break;
7558       case LibFunc_ceil:
7559       case LibFunc_ceilf:
7560       case LibFunc_ceill:
7561         if (visitUnaryFloatCall(I, ISD::FCEIL))
7562           return;
7563         break;
7564       case LibFunc_rint:
7565       case LibFunc_rintf:
7566       case LibFunc_rintl:
7567         if (visitUnaryFloatCall(I, ISD::FRINT))
7568           return;
7569         break;
7570       case LibFunc_round:
7571       case LibFunc_roundf:
7572       case LibFunc_roundl:
7573         if (visitUnaryFloatCall(I, ISD::FROUND))
7574           return;
7575         break;
7576       case LibFunc_trunc:
7577       case LibFunc_truncf:
7578       case LibFunc_truncl:
7579         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7580           return;
7581         break;
7582       case LibFunc_log2:
7583       case LibFunc_log2f:
7584       case LibFunc_log2l:
7585         if (visitUnaryFloatCall(I, ISD::FLOG2))
7586           return;
7587         break;
7588       case LibFunc_exp2:
7589       case LibFunc_exp2f:
7590       case LibFunc_exp2l:
7591         if (visitUnaryFloatCall(I, ISD::FEXP2))
7592           return;
7593         break;
7594       case LibFunc_memcmp:
7595         if (visitMemCmpCall(I))
7596           return;
7597         break;
7598       case LibFunc_mempcpy:
7599         if (visitMemPCpyCall(I))
7600           return;
7601         break;
7602       case LibFunc_memchr:
7603         if (visitMemChrCall(I))
7604           return;
7605         break;
7606       case LibFunc_strcpy:
7607         if (visitStrCpyCall(I, false))
7608           return;
7609         break;
7610       case LibFunc_stpcpy:
7611         if (visitStrCpyCall(I, true))
7612           return;
7613         break;
7614       case LibFunc_strcmp:
7615         if (visitStrCmpCall(I))
7616           return;
7617         break;
7618       case LibFunc_strlen:
7619         if (visitStrLenCall(I))
7620           return;
7621         break;
7622       case LibFunc_strnlen:
7623         if (visitStrNLenCall(I))
7624           return;
7625         break;
7626       }
7627     }
7628   }
7629 
7630   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7631   // have to do anything here to lower funclet bundles.
7632   assert(!I.hasOperandBundlesOtherThan(
7633              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7634          "Cannot lower calls with arbitrary operand bundles!");
7635 
7636   SDValue Callee = getValue(I.getCalledValue());
7637 
7638   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7639     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7640   else
7641     // Check if we can potentially perform a tail call. More detailed checking
7642     // is be done within LowerCallTo, after more information about the call is
7643     // known.
7644     LowerCallTo(&I, Callee, I.isTailCall());
7645 }
7646 
7647 namespace {
7648 
7649 /// AsmOperandInfo - This contains information for each constraint that we are
7650 /// lowering.
7651 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7652 public:
7653   /// CallOperand - If this is the result output operand or a clobber
7654   /// this is null, otherwise it is the incoming operand to the CallInst.
7655   /// This gets modified as the asm is processed.
7656   SDValue CallOperand;
7657 
7658   /// AssignedRegs - If this is a register or register class operand, this
7659   /// contains the set of register corresponding to the operand.
7660   RegsForValue AssignedRegs;
7661 
7662   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7663     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7664   }
7665 
7666   /// Whether or not this operand accesses memory
7667   bool hasMemory(const TargetLowering &TLI) const {
7668     // Indirect operand accesses access memory.
7669     if (isIndirect)
7670       return true;
7671 
7672     for (const auto &Code : Codes)
7673       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7674         return true;
7675 
7676     return false;
7677   }
7678 
7679   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7680   /// corresponds to.  If there is no Value* for this operand, it returns
7681   /// MVT::Other.
7682   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7683                            const DataLayout &DL) const {
7684     if (!CallOperandVal) return MVT::Other;
7685 
7686     if (isa<BasicBlock>(CallOperandVal))
7687       return TLI.getPointerTy(DL);
7688 
7689     llvm::Type *OpTy = CallOperandVal->getType();
7690 
7691     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7692     // If this is an indirect operand, the operand is a pointer to the
7693     // accessed type.
7694     if (isIndirect) {
7695       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7696       if (!PtrTy)
7697         report_fatal_error("Indirect operand for inline asm not a pointer!");
7698       OpTy = PtrTy->getElementType();
7699     }
7700 
7701     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7702     if (StructType *STy = dyn_cast<StructType>(OpTy))
7703       if (STy->getNumElements() == 1)
7704         OpTy = STy->getElementType(0);
7705 
7706     // If OpTy is not a single value, it may be a struct/union that we
7707     // can tile with integers.
7708     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7709       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7710       switch (BitSize) {
7711       default: break;
7712       case 1:
7713       case 8:
7714       case 16:
7715       case 32:
7716       case 64:
7717       case 128:
7718         OpTy = IntegerType::get(Context, BitSize);
7719         break;
7720       }
7721     }
7722 
7723     return TLI.getValueType(DL, OpTy, true);
7724   }
7725 };
7726 
7727 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7728 
7729 } // end anonymous namespace
7730 
7731 /// Make sure that the output operand \p OpInfo and its corresponding input
7732 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7733 /// out).
7734 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7735                                SDISelAsmOperandInfo &MatchingOpInfo,
7736                                SelectionDAG &DAG) {
7737   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7738     return;
7739 
7740   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7741   const auto &TLI = DAG.getTargetLoweringInfo();
7742 
7743   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7744       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7745                                        OpInfo.ConstraintVT);
7746   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7747       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7748                                        MatchingOpInfo.ConstraintVT);
7749   if ((OpInfo.ConstraintVT.isInteger() !=
7750        MatchingOpInfo.ConstraintVT.isInteger()) ||
7751       (MatchRC.second != InputRC.second)) {
7752     // FIXME: error out in a more elegant fashion
7753     report_fatal_error("Unsupported asm: input constraint"
7754                        " with a matching output constraint of"
7755                        " incompatible type!");
7756   }
7757   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7758 }
7759 
7760 /// Get a direct memory input to behave well as an indirect operand.
7761 /// This may introduce stores, hence the need for a \p Chain.
7762 /// \return The (possibly updated) chain.
7763 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7764                                         SDISelAsmOperandInfo &OpInfo,
7765                                         SelectionDAG &DAG) {
7766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7767 
7768   // If we don't have an indirect input, put it in the constpool if we can,
7769   // otherwise spill it to a stack slot.
7770   // TODO: This isn't quite right. We need to handle these according to
7771   // the addressing mode that the constraint wants. Also, this may take
7772   // an additional register for the computation and we don't want that
7773   // either.
7774 
7775   // If the operand is a float, integer, or vector constant, spill to a
7776   // constant pool entry to get its address.
7777   const Value *OpVal = OpInfo.CallOperandVal;
7778   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7779       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7780     OpInfo.CallOperand = DAG.getConstantPool(
7781         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7782     return Chain;
7783   }
7784 
7785   // Otherwise, create a stack slot and emit a store to it before the asm.
7786   Type *Ty = OpVal->getType();
7787   auto &DL = DAG.getDataLayout();
7788   uint64_t TySize = DL.getTypeAllocSize(Ty);
7789   unsigned Align = DL.getPrefTypeAlignment(Ty);
7790   MachineFunction &MF = DAG.getMachineFunction();
7791   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7792   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7793   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7794                             MachinePointerInfo::getFixedStack(MF, SSFI),
7795                             TLI.getMemValueType(DL, Ty));
7796   OpInfo.CallOperand = StackSlot;
7797 
7798   return Chain;
7799 }
7800 
7801 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7802 /// specified operand.  We prefer to assign virtual registers, to allow the
7803 /// register allocator to handle the assignment process.  However, if the asm
7804 /// uses features that we can't model on machineinstrs, we have SDISel do the
7805 /// allocation.  This produces generally horrible, but correct, code.
7806 ///
7807 ///   OpInfo describes the operand
7808 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7809 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7810                                  SDISelAsmOperandInfo &OpInfo,
7811                                  SDISelAsmOperandInfo &RefOpInfo) {
7812   LLVMContext &Context = *DAG.getContext();
7813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7814 
7815   MachineFunction &MF = DAG.getMachineFunction();
7816   SmallVector<unsigned, 4> Regs;
7817   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7818 
7819   // No work to do for memory operations.
7820   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7821     return;
7822 
7823   // If this is a constraint for a single physreg, or a constraint for a
7824   // register class, find it.
7825   unsigned AssignedReg;
7826   const TargetRegisterClass *RC;
7827   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7828       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7829   // RC is unset only on failure. Return immediately.
7830   if (!RC)
7831     return;
7832 
7833   // Get the actual register value type.  This is important, because the user
7834   // may have asked for (e.g.) the AX register in i32 type.  We need to
7835   // remember that AX is actually i16 to get the right extension.
7836   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7837 
7838   if (OpInfo.ConstraintVT != MVT::Other) {
7839     // If this is an FP operand in an integer register (or visa versa), or more
7840     // generally if the operand value disagrees with the register class we plan
7841     // to stick it in, fix the operand type.
7842     //
7843     // If this is an input value, the bitcast to the new type is done now.
7844     // Bitcast for output value is done at the end of visitInlineAsm().
7845     if ((OpInfo.Type == InlineAsm::isOutput ||
7846          OpInfo.Type == InlineAsm::isInput) &&
7847         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7848       // Try to convert to the first EVT that the reg class contains.  If the
7849       // types are identical size, use a bitcast to convert (e.g. two differing
7850       // vector types).  Note: output bitcast is done at the end of
7851       // visitInlineAsm().
7852       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7853         // Exclude indirect inputs while they are unsupported because the code
7854         // to perform the load is missing and thus OpInfo.CallOperand still
7855         // refers to the input address rather than the pointed-to value.
7856         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7857           OpInfo.CallOperand =
7858               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7859         OpInfo.ConstraintVT = RegVT;
7860         // If the operand is an FP value and we want it in integer registers,
7861         // use the corresponding integer type. This turns an f64 value into
7862         // i64, which can be passed with two i32 values on a 32-bit machine.
7863       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7864         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7865         if (OpInfo.Type == InlineAsm::isInput)
7866           OpInfo.CallOperand =
7867               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7868         OpInfo.ConstraintVT = VT;
7869       }
7870     }
7871   }
7872 
7873   // No need to allocate a matching input constraint since the constraint it's
7874   // matching to has already been allocated.
7875   if (OpInfo.isMatchingInputConstraint())
7876     return;
7877 
7878   EVT ValueVT = OpInfo.ConstraintVT;
7879   if (OpInfo.ConstraintVT == MVT::Other)
7880     ValueVT = RegVT;
7881 
7882   // Initialize NumRegs.
7883   unsigned NumRegs = 1;
7884   if (OpInfo.ConstraintVT != MVT::Other)
7885     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7886 
7887   // If this is a constraint for a specific physical register, like {r17},
7888   // assign it now.
7889 
7890   // If this associated to a specific register, initialize iterator to correct
7891   // place. If virtual, make sure we have enough registers
7892 
7893   // Initialize iterator if necessary
7894   TargetRegisterClass::iterator I = RC->begin();
7895   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7896 
7897   // Do not check for single registers.
7898   if (AssignedReg) {
7899       for (; *I != AssignedReg; ++I)
7900         assert(I != RC->end() && "AssignedReg should be member of RC");
7901   }
7902 
7903   for (; NumRegs; --NumRegs, ++I) {
7904     assert(I != RC->end() && "Ran out of registers to allocate!");
7905     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7906     Regs.push_back(R);
7907   }
7908 
7909   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7910 }
7911 
7912 static unsigned
7913 findMatchingInlineAsmOperand(unsigned OperandNo,
7914                              const std::vector<SDValue> &AsmNodeOperands) {
7915   // Scan until we find the definition we already emitted of this operand.
7916   unsigned CurOp = InlineAsm::Op_FirstOperand;
7917   for (; OperandNo; --OperandNo) {
7918     // Advance to the next operand.
7919     unsigned OpFlag =
7920         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7921     assert((InlineAsm::isRegDefKind(OpFlag) ||
7922             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7923             InlineAsm::isMemKind(OpFlag)) &&
7924            "Skipped past definitions?");
7925     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7926   }
7927   return CurOp;
7928 }
7929 
7930 namespace {
7931 
7932 class ExtraFlags {
7933   unsigned Flags = 0;
7934 
7935 public:
7936   explicit ExtraFlags(ImmutableCallSite CS) {
7937     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7938     if (IA->hasSideEffects())
7939       Flags |= InlineAsm::Extra_HasSideEffects;
7940     if (IA->isAlignStack())
7941       Flags |= InlineAsm::Extra_IsAlignStack;
7942     if (CS.isConvergent())
7943       Flags |= InlineAsm::Extra_IsConvergent;
7944     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7945   }
7946 
7947   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7948     // Ideally, we would only check against memory constraints.  However, the
7949     // meaning of an Other constraint can be target-specific and we can't easily
7950     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7951     // for Other constraints as well.
7952     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7953         OpInfo.ConstraintType == TargetLowering::C_Other) {
7954       if (OpInfo.Type == InlineAsm::isInput)
7955         Flags |= InlineAsm::Extra_MayLoad;
7956       else if (OpInfo.Type == InlineAsm::isOutput)
7957         Flags |= InlineAsm::Extra_MayStore;
7958       else if (OpInfo.Type == InlineAsm::isClobber)
7959         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7960     }
7961   }
7962 
7963   unsigned get() const { return Flags; }
7964 };
7965 
7966 } // end anonymous namespace
7967 
7968 /// visitInlineAsm - Handle a call to an InlineAsm object.
7969 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7970   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7971 
7972   /// ConstraintOperands - Information about all of the constraints.
7973   SDISelAsmOperandInfoVector ConstraintOperands;
7974 
7975   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7976   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7977       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7978 
7979   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7980   // AsmDialect, MayLoad, MayStore).
7981   bool HasSideEffect = IA->hasSideEffects();
7982   ExtraFlags ExtraInfo(CS);
7983 
7984   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7985   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7986   for (auto &T : TargetConstraints) {
7987     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7988     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7989 
7990     // Compute the value type for each operand.
7991     if (OpInfo.Type == InlineAsm::isInput ||
7992         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7993       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7994 
7995       // Process the call argument. BasicBlocks are labels, currently appearing
7996       // only in asm's.
7997       const Instruction *I = CS.getInstruction();
7998       if (isa<CallBrInst>(I) &&
7999           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8000                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8001         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8002         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8003         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8004       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8005         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8006       } else {
8007         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8008       }
8009 
8010       OpInfo.ConstraintVT =
8011           OpInfo
8012               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8013               .getSimpleVT();
8014     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8015       // The return value of the call is this value.  As such, there is no
8016       // corresponding argument.
8017       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8018       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8019         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8020             DAG.getDataLayout(), STy->getElementType(ResNo));
8021       } else {
8022         assert(ResNo == 0 && "Asm only has one result!");
8023         OpInfo.ConstraintVT =
8024             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8025       }
8026       ++ResNo;
8027     } else {
8028       OpInfo.ConstraintVT = MVT::Other;
8029     }
8030 
8031     if (!HasSideEffect)
8032       HasSideEffect = OpInfo.hasMemory(TLI);
8033 
8034     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8035     // FIXME: Could we compute this on OpInfo rather than T?
8036 
8037     // Compute the constraint code and ConstraintType to use.
8038     TLI.ComputeConstraintToUse(T, SDValue());
8039 
8040     ExtraInfo.update(T);
8041   }
8042 
8043 
8044   // We won't need to flush pending loads if this asm doesn't touch
8045   // memory and is nonvolatile.
8046   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8047 
8048   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8049   if (IsCallBr) {
8050     // If this is a callbr we need to flush pending exports since inlineasm_br
8051     // is a terminator. We need to do this before nodes are glued to
8052     // the inlineasm_br node.
8053     Chain = getControlRoot();
8054   }
8055 
8056   // Second pass over the constraints: compute which constraint option to use.
8057   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8058     // If this is an output operand with a matching input operand, look up the
8059     // matching input. If their types mismatch, e.g. one is an integer, the
8060     // other is floating point, or their sizes are different, flag it as an
8061     // error.
8062     if (OpInfo.hasMatchingInput()) {
8063       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8064       patchMatchingInput(OpInfo, Input, DAG);
8065     }
8066 
8067     // Compute the constraint code and ConstraintType to use.
8068     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8069 
8070     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8071         OpInfo.Type == InlineAsm::isClobber)
8072       continue;
8073 
8074     // If this is a memory input, and if the operand is not indirect, do what we
8075     // need to provide an address for the memory input.
8076     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8077         !OpInfo.isIndirect) {
8078       assert((OpInfo.isMultipleAlternative ||
8079               (OpInfo.Type == InlineAsm::isInput)) &&
8080              "Can only indirectify direct input operands!");
8081 
8082       // Memory operands really want the address of the value.
8083       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8084 
8085       // There is no longer a Value* corresponding to this operand.
8086       OpInfo.CallOperandVal = nullptr;
8087 
8088       // It is now an indirect operand.
8089       OpInfo.isIndirect = true;
8090     }
8091 
8092   }
8093 
8094   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8095   std::vector<SDValue> AsmNodeOperands;
8096   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8097   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8098       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8099 
8100   // If we have a !srcloc metadata node associated with it, we want to attach
8101   // this to the ultimately generated inline asm machineinstr.  To do this, we
8102   // pass in the third operand as this (potentially null) inline asm MDNode.
8103   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8104   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8105 
8106   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8107   // bits as operand 3.
8108   AsmNodeOperands.push_back(DAG.getTargetConstant(
8109       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8110 
8111   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8112   // this, assign virtual and physical registers for inputs and otput.
8113   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8114     // Assign Registers.
8115     SDISelAsmOperandInfo &RefOpInfo =
8116         OpInfo.isMatchingInputConstraint()
8117             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8118             : OpInfo;
8119     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8120 
8121     switch (OpInfo.Type) {
8122     case InlineAsm::isOutput:
8123       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8124           (OpInfo.ConstraintType == TargetLowering::C_Other &&
8125            OpInfo.isIndirect)) {
8126         unsigned ConstraintID =
8127             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8128         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8129                "Failed to convert memory constraint code to constraint id.");
8130 
8131         // Add information to the INLINEASM node to know about this output.
8132         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8133         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8134         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8135                                                         MVT::i32));
8136         AsmNodeOperands.push_back(OpInfo.CallOperand);
8137         break;
8138       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
8139                   !OpInfo.isIndirect) ||
8140                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8141                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8142         // Otherwise, this outputs to a register (directly for C_Register /
8143         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8144         // register that we can use.
8145         if (OpInfo.AssignedRegs.Regs.empty()) {
8146           emitInlineAsmError(
8147               CS, "couldn't allocate output register for constraint '" +
8148                       Twine(OpInfo.ConstraintCode) + "'");
8149           return;
8150         }
8151 
8152         // Add information to the INLINEASM node to know that this register is
8153         // set.
8154         OpInfo.AssignedRegs.AddInlineAsmOperands(
8155             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8156                                   : InlineAsm::Kind_RegDef,
8157             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8158       }
8159       break;
8160 
8161     case InlineAsm::isInput: {
8162       SDValue InOperandVal = OpInfo.CallOperand;
8163 
8164       if (OpInfo.isMatchingInputConstraint()) {
8165         // If this is required to match an output register we have already set,
8166         // just use its register.
8167         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8168                                                   AsmNodeOperands);
8169         unsigned OpFlag =
8170           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8171         if (InlineAsm::isRegDefKind(OpFlag) ||
8172             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8173           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8174           if (OpInfo.isIndirect) {
8175             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8176             emitInlineAsmError(CS, "inline asm not supported yet:"
8177                                    " don't know how to handle tied "
8178                                    "indirect register inputs");
8179             return;
8180           }
8181 
8182           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8183           SmallVector<unsigned, 4> Regs;
8184 
8185           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8186             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8187             MachineRegisterInfo &RegInfo =
8188                 DAG.getMachineFunction().getRegInfo();
8189             for (unsigned i = 0; i != NumRegs; ++i)
8190               Regs.push_back(RegInfo.createVirtualRegister(RC));
8191           } else {
8192             emitInlineAsmError(CS, "inline asm error: This value type register "
8193                                    "class is not natively supported!");
8194             return;
8195           }
8196 
8197           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8198 
8199           SDLoc dl = getCurSDLoc();
8200           // Use the produced MatchedRegs object to
8201           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8202                                     CS.getInstruction());
8203           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8204                                            true, OpInfo.getMatchedOperand(), dl,
8205                                            DAG, AsmNodeOperands);
8206           break;
8207         }
8208 
8209         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8210         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8211                "Unexpected number of operands");
8212         // Add information to the INLINEASM node to know about this input.
8213         // See InlineAsm.h isUseOperandTiedToDef.
8214         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8215         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8216                                                     OpInfo.getMatchedOperand());
8217         AsmNodeOperands.push_back(DAG.getTargetConstant(
8218             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8219         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8220         break;
8221       }
8222 
8223       // Treat indirect 'X' constraint as memory.
8224       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8225           OpInfo.isIndirect)
8226         OpInfo.ConstraintType = TargetLowering::C_Memory;
8227 
8228       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8229         std::vector<SDValue> Ops;
8230         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8231                                           Ops, DAG);
8232         if (Ops.empty()) {
8233           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8234                                      Twine(OpInfo.ConstraintCode) + "'");
8235           return;
8236         }
8237 
8238         // Add information to the INLINEASM node to know about this input.
8239         unsigned ResOpType =
8240           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8241         AsmNodeOperands.push_back(DAG.getTargetConstant(
8242             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8243         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8244         break;
8245       }
8246 
8247       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8248         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8249         assert(InOperandVal.getValueType() ==
8250                    TLI.getPointerTy(DAG.getDataLayout()) &&
8251                "Memory operands expect pointer values");
8252 
8253         unsigned ConstraintID =
8254             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8255         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8256                "Failed to convert memory constraint code to constraint id.");
8257 
8258         // Add information to the INLINEASM node to know about this input.
8259         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8260         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8261         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8262                                                         getCurSDLoc(),
8263                                                         MVT::i32));
8264         AsmNodeOperands.push_back(InOperandVal);
8265         break;
8266       }
8267 
8268       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8269               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8270              "Unknown constraint type!");
8271 
8272       // TODO: Support this.
8273       if (OpInfo.isIndirect) {
8274         emitInlineAsmError(
8275             CS, "Don't know how to handle indirect register inputs yet "
8276                 "for constraint '" +
8277                     Twine(OpInfo.ConstraintCode) + "'");
8278         return;
8279       }
8280 
8281       // Copy the input into the appropriate registers.
8282       if (OpInfo.AssignedRegs.Regs.empty()) {
8283         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8284                                    Twine(OpInfo.ConstraintCode) + "'");
8285         return;
8286       }
8287 
8288       SDLoc dl = getCurSDLoc();
8289 
8290       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8291                                         Chain, &Flag, CS.getInstruction());
8292 
8293       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8294                                                dl, DAG, AsmNodeOperands);
8295       break;
8296     }
8297     case InlineAsm::isClobber:
8298       // Add the clobbered value to the operand list, so that the register
8299       // allocator is aware that the physreg got clobbered.
8300       if (!OpInfo.AssignedRegs.Regs.empty())
8301         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8302                                                  false, 0, getCurSDLoc(), DAG,
8303                                                  AsmNodeOperands);
8304       break;
8305     }
8306   }
8307 
8308   // Finish up input operands.  Set the input chain and add the flag last.
8309   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8310   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8311 
8312   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8313   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8314                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8315   Flag = Chain.getValue(1);
8316 
8317   // Do additional work to generate outputs.
8318 
8319   SmallVector<EVT, 1> ResultVTs;
8320   SmallVector<SDValue, 1> ResultValues;
8321   SmallVector<SDValue, 8> OutChains;
8322 
8323   llvm::Type *CSResultType = CS.getType();
8324   ArrayRef<Type *> ResultTypes;
8325   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8326     ResultTypes = StructResult->elements();
8327   else if (!CSResultType->isVoidTy())
8328     ResultTypes = makeArrayRef(CSResultType);
8329 
8330   auto CurResultType = ResultTypes.begin();
8331   auto handleRegAssign = [&](SDValue V) {
8332     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8333     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8334     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8335     ++CurResultType;
8336     // If the type of the inline asm call site return value is different but has
8337     // same size as the type of the asm output bitcast it.  One example of this
8338     // is for vectors with different width / number of elements.  This can
8339     // happen for register classes that can contain multiple different value
8340     // types.  The preg or vreg allocated may not have the same VT as was
8341     // expected.
8342     //
8343     // This can also happen for a return value that disagrees with the register
8344     // class it is put in, eg. a double in a general-purpose register on a
8345     // 32-bit machine.
8346     if (ResultVT != V.getValueType() &&
8347         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8348       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8349     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8350              V.getValueType().isInteger()) {
8351       // If a result value was tied to an input value, the computed result
8352       // may have a wider width than the expected result.  Extract the
8353       // relevant portion.
8354       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8355     }
8356     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8357     ResultVTs.push_back(ResultVT);
8358     ResultValues.push_back(V);
8359   };
8360 
8361   // Deal with output operands.
8362   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8363     if (OpInfo.Type == InlineAsm::isOutput) {
8364       SDValue Val;
8365       // Skip trivial output operands.
8366       if (OpInfo.AssignedRegs.Regs.empty())
8367         continue;
8368 
8369       switch (OpInfo.ConstraintType) {
8370       case TargetLowering::C_Register:
8371       case TargetLowering::C_RegisterClass:
8372         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8373             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8374         break;
8375       case TargetLowering::C_Other:
8376         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8377                                               OpInfo, DAG);
8378         break;
8379       case TargetLowering::C_Memory:
8380         break; // Already handled.
8381       case TargetLowering::C_Unknown:
8382         assert(false && "Unexpected unknown constraint");
8383       }
8384 
8385       // Indirect output manifest as stores. Record output chains.
8386       if (OpInfo.isIndirect) {
8387         const Value *Ptr = OpInfo.CallOperandVal;
8388         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8389         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8390                                      MachinePointerInfo(Ptr));
8391         OutChains.push_back(Store);
8392       } else {
8393         // generate CopyFromRegs to associated registers.
8394         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8395         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8396           for (const SDValue &V : Val->op_values())
8397             handleRegAssign(V);
8398         } else
8399           handleRegAssign(Val);
8400       }
8401     }
8402   }
8403 
8404   // Set results.
8405   if (!ResultValues.empty()) {
8406     assert(CurResultType == ResultTypes.end() &&
8407            "Mismatch in number of ResultTypes");
8408     assert(ResultValues.size() == ResultTypes.size() &&
8409            "Mismatch in number of output operands in asm result");
8410 
8411     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8412                             DAG.getVTList(ResultVTs), ResultValues);
8413     setValue(CS.getInstruction(), V);
8414   }
8415 
8416   // Collect store chains.
8417   if (!OutChains.empty())
8418     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8419 
8420   // Only Update Root if inline assembly has a memory effect.
8421   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8422     DAG.setRoot(Chain);
8423 }
8424 
8425 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8426                                              const Twine &Message) {
8427   LLVMContext &Ctx = *DAG.getContext();
8428   Ctx.emitError(CS.getInstruction(), Message);
8429 
8430   // Make sure we leave the DAG in a valid state
8431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8432   SmallVector<EVT, 1> ValueVTs;
8433   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8434 
8435   if (ValueVTs.empty())
8436     return;
8437 
8438   SmallVector<SDValue, 1> Ops;
8439   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8440     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8441 
8442   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8443 }
8444 
8445 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8446   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8447                           MVT::Other, getRoot(),
8448                           getValue(I.getArgOperand(0)),
8449                           DAG.getSrcValue(I.getArgOperand(0))));
8450 }
8451 
8452 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8453   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8454   const DataLayout &DL = DAG.getDataLayout();
8455   SDValue V = DAG.getVAArg(
8456       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8457       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8458       DL.getABITypeAlignment(I.getType()));
8459   DAG.setRoot(V.getValue(1));
8460 
8461   if (I.getType()->isPointerTy())
8462     V = DAG.getPtrExtOrTrunc(
8463         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8464   setValue(&I, V);
8465 }
8466 
8467 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8468   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8469                           MVT::Other, getRoot(),
8470                           getValue(I.getArgOperand(0)),
8471                           DAG.getSrcValue(I.getArgOperand(0))));
8472 }
8473 
8474 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8475   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8476                           MVT::Other, getRoot(),
8477                           getValue(I.getArgOperand(0)),
8478                           getValue(I.getArgOperand(1)),
8479                           DAG.getSrcValue(I.getArgOperand(0)),
8480                           DAG.getSrcValue(I.getArgOperand(1))));
8481 }
8482 
8483 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8484                                                     const Instruction &I,
8485                                                     SDValue Op) {
8486   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8487   if (!Range)
8488     return Op;
8489 
8490   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8491   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8492     return Op;
8493 
8494   APInt Lo = CR.getUnsignedMin();
8495   if (!Lo.isMinValue())
8496     return Op;
8497 
8498   APInt Hi = CR.getUnsignedMax();
8499   unsigned Bits = std::max(Hi.getActiveBits(),
8500                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8501 
8502   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8503 
8504   SDLoc SL = getCurSDLoc();
8505 
8506   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8507                              DAG.getValueType(SmallVT));
8508   unsigned NumVals = Op.getNode()->getNumValues();
8509   if (NumVals == 1)
8510     return ZExt;
8511 
8512   SmallVector<SDValue, 4> Ops;
8513 
8514   Ops.push_back(ZExt);
8515   for (unsigned I = 1; I != NumVals; ++I)
8516     Ops.push_back(Op.getValue(I));
8517 
8518   return DAG.getMergeValues(Ops, SL);
8519 }
8520 
8521 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8522 /// the call being lowered.
8523 ///
8524 /// This is a helper for lowering intrinsics that follow a target calling
8525 /// convention or require stack pointer adjustment. Only a subset of the
8526 /// intrinsic's operands need to participate in the calling convention.
8527 void SelectionDAGBuilder::populateCallLoweringInfo(
8528     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8529     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8530     bool IsPatchPoint) {
8531   TargetLowering::ArgListTy Args;
8532   Args.reserve(NumArgs);
8533 
8534   // Populate the argument list.
8535   // Attributes for args start at offset 1, after the return attribute.
8536   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8537        ArgI != ArgE; ++ArgI) {
8538     const Value *V = Call->getOperand(ArgI);
8539 
8540     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8541 
8542     TargetLowering::ArgListEntry Entry;
8543     Entry.Node = getValue(V);
8544     Entry.Ty = V->getType();
8545     Entry.setAttributes(Call, ArgI);
8546     Args.push_back(Entry);
8547   }
8548 
8549   CLI.setDebugLoc(getCurSDLoc())
8550       .setChain(getRoot())
8551       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8552       .setDiscardResult(Call->use_empty())
8553       .setIsPatchPoint(IsPatchPoint);
8554 }
8555 
8556 /// Add a stack map intrinsic call's live variable operands to a stackmap
8557 /// or patchpoint target node's operand list.
8558 ///
8559 /// Constants are converted to TargetConstants purely as an optimization to
8560 /// avoid constant materialization and register allocation.
8561 ///
8562 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8563 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8564 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8565 /// address materialization and register allocation, but may also be required
8566 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8567 /// alloca in the entry block, then the runtime may assume that the alloca's
8568 /// StackMap location can be read immediately after compilation and that the
8569 /// location is valid at any point during execution (this is similar to the
8570 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8571 /// only available in a register, then the runtime would need to trap when
8572 /// execution reaches the StackMap in order to read the alloca's location.
8573 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8574                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8575                                 SelectionDAGBuilder &Builder) {
8576   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8577     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8578     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8579       Ops.push_back(
8580         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8581       Ops.push_back(
8582         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8583     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8584       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8585       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8586           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8587     } else
8588       Ops.push_back(OpVal);
8589   }
8590 }
8591 
8592 /// Lower llvm.experimental.stackmap directly to its target opcode.
8593 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8594   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8595   //                                  [live variables...])
8596 
8597   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8598 
8599   SDValue Chain, InFlag, Callee, NullPtr;
8600   SmallVector<SDValue, 32> Ops;
8601 
8602   SDLoc DL = getCurSDLoc();
8603   Callee = getValue(CI.getCalledValue());
8604   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8605 
8606   // The stackmap intrinsic only records the live variables (the arguemnts
8607   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8608   // intrinsic, this won't be lowered to a function call. This means we don't
8609   // have to worry about calling conventions and target specific lowering code.
8610   // Instead we perform the call lowering right here.
8611   //
8612   // chain, flag = CALLSEQ_START(chain, 0, 0)
8613   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8614   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8615   //
8616   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8617   InFlag = Chain.getValue(1);
8618 
8619   // Add the <id> and <numBytes> constants.
8620   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8621   Ops.push_back(DAG.getTargetConstant(
8622                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8623   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8624   Ops.push_back(DAG.getTargetConstant(
8625                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8626                   MVT::i32));
8627 
8628   // Push live variables for the stack map.
8629   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8630 
8631   // We are not pushing any register mask info here on the operands list,
8632   // because the stackmap doesn't clobber anything.
8633 
8634   // Push the chain and the glue flag.
8635   Ops.push_back(Chain);
8636   Ops.push_back(InFlag);
8637 
8638   // Create the STACKMAP node.
8639   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8640   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8641   Chain = SDValue(SM, 0);
8642   InFlag = Chain.getValue(1);
8643 
8644   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8645 
8646   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8647 
8648   // Set the root to the target-lowered call chain.
8649   DAG.setRoot(Chain);
8650 
8651   // Inform the Frame Information that we have a stackmap in this function.
8652   FuncInfo.MF->getFrameInfo().setHasStackMap();
8653 }
8654 
8655 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8656 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8657                                           const BasicBlock *EHPadBB) {
8658   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8659   //                                                 i32 <numBytes>,
8660   //                                                 i8* <target>,
8661   //                                                 i32 <numArgs>,
8662   //                                                 [Args...],
8663   //                                                 [live variables...])
8664 
8665   CallingConv::ID CC = CS.getCallingConv();
8666   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8667   bool HasDef = !CS->getType()->isVoidTy();
8668   SDLoc dl = getCurSDLoc();
8669   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8670 
8671   // Handle immediate and symbolic callees.
8672   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8673     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8674                                    /*isTarget=*/true);
8675   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8676     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8677                                          SDLoc(SymbolicCallee),
8678                                          SymbolicCallee->getValueType(0));
8679 
8680   // Get the real number of arguments participating in the call <numArgs>
8681   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8682   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8683 
8684   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8685   // Intrinsics include all meta-operands up to but not including CC.
8686   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8687   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8688          "Not enough arguments provided to the patchpoint intrinsic");
8689 
8690   // For AnyRegCC the arguments are lowered later on manually.
8691   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8692   Type *ReturnTy =
8693     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8694 
8695   TargetLowering::CallLoweringInfo CLI(DAG);
8696   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8697                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8698   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8699 
8700   SDNode *CallEnd = Result.second.getNode();
8701   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8702     CallEnd = CallEnd->getOperand(0).getNode();
8703 
8704   /// Get a call instruction from the call sequence chain.
8705   /// Tail calls are not allowed.
8706   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8707          "Expected a callseq node.");
8708   SDNode *Call = CallEnd->getOperand(0).getNode();
8709   bool HasGlue = Call->getGluedNode();
8710 
8711   // Replace the target specific call node with the patchable intrinsic.
8712   SmallVector<SDValue, 8> Ops;
8713 
8714   // Add the <id> and <numBytes> constants.
8715   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8716   Ops.push_back(DAG.getTargetConstant(
8717                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8718   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8719   Ops.push_back(DAG.getTargetConstant(
8720                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8721                   MVT::i32));
8722 
8723   // Add the callee.
8724   Ops.push_back(Callee);
8725 
8726   // Adjust <numArgs> to account for any arguments that have been passed on the
8727   // stack instead.
8728   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8729   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8730   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8731   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8732 
8733   // Add the calling convention
8734   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8735 
8736   // Add the arguments we omitted previously. The register allocator should
8737   // place these in any free register.
8738   if (IsAnyRegCC)
8739     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8740       Ops.push_back(getValue(CS.getArgument(i)));
8741 
8742   // Push the arguments from the call instruction up to the register mask.
8743   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8744   Ops.append(Call->op_begin() + 2, e);
8745 
8746   // Push live variables for the stack map.
8747   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8748 
8749   // Push the register mask info.
8750   if (HasGlue)
8751     Ops.push_back(*(Call->op_end()-2));
8752   else
8753     Ops.push_back(*(Call->op_end()-1));
8754 
8755   // Push the chain (this is originally the first operand of the call, but
8756   // becomes now the last or second to last operand).
8757   Ops.push_back(*(Call->op_begin()));
8758 
8759   // Push the glue flag (last operand).
8760   if (HasGlue)
8761     Ops.push_back(*(Call->op_end()-1));
8762 
8763   SDVTList NodeTys;
8764   if (IsAnyRegCC && HasDef) {
8765     // Create the return types based on the intrinsic definition
8766     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8767     SmallVector<EVT, 3> ValueVTs;
8768     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8769     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8770 
8771     // There is always a chain and a glue type at the end
8772     ValueVTs.push_back(MVT::Other);
8773     ValueVTs.push_back(MVT::Glue);
8774     NodeTys = DAG.getVTList(ValueVTs);
8775   } else
8776     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8777 
8778   // Replace the target specific call node with a PATCHPOINT node.
8779   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8780                                          dl, NodeTys, Ops);
8781 
8782   // Update the NodeMap.
8783   if (HasDef) {
8784     if (IsAnyRegCC)
8785       setValue(CS.getInstruction(), SDValue(MN, 0));
8786     else
8787       setValue(CS.getInstruction(), Result.first);
8788   }
8789 
8790   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8791   // call sequence. Furthermore the location of the chain and glue can change
8792   // when the AnyReg calling convention is used and the intrinsic returns a
8793   // value.
8794   if (IsAnyRegCC && HasDef) {
8795     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8796     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8797     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8798   } else
8799     DAG.ReplaceAllUsesWith(Call, MN);
8800   DAG.DeleteNode(Call);
8801 
8802   // Inform the Frame Information that we have a patchpoint in this function.
8803   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8804 }
8805 
8806 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8807                                             unsigned Intrinsic) {
8808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8809   SDValue Op1 = getValue(I.getArgOperand(0));
8810   SDValue Op2;
8811   if (I.getNumArgOperands() > 1)
8812     Op2 = getValue(I.getArgOperand(1));
8813   SDLoc dl = getCurSDLoc();
8814   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8815   SDValue Res;
8816   FastMathFlags FMF;
8817   if (isa<FPMathOperator>(I))
8818     FMF = I.getFastMathFlags();
8819 
8820   switch (Intrinsic) {
8821   case Intrinsic::experimental_vector_reduce_fadd:
8822     if (FMF.isFast())
8823       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8824     else
8825       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8826     break;
8827   case Intrinsic::experimental_vector_reduce_fmul:
8828     if (FMF.isFast())
8829       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8830     else
8831       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8832     break;
8833   case Intrinsic::experimental_vector_reduce_add:
8834     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8835     break;
8836   case Intrinsic::experimental_vector_reduce_mul:
8837     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8838     break;
8839   case Intrinsic::experimental_vector_reduce_and:
8840     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8841     break;
8842   case Intrinsic::experimental_vector_reduce_or:
8843     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8844     break;
8845   case Intrinsic::experimental_vector_reduce_xor:
8846     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8847     break;
8848   case Intrinsic::experimental_vector_reduce_smax:
8849     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8850     break;
8851   case Intrinsic::experimental_vector_reduce_smin:
8852     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8853     break;
8854   case Intrinsic::experimental_vector_reduce_umax:
8855     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8856     break;
8857   case Intrinsic::experimental_vector_reduce_umin:
8858     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8859     break;
8860   case Intrinsic::experimental_vector_reduce_fmax:
8861     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8862     break;
8863   case Intrinsic::experimental_vector_reduce_fmin:
8864     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8865     break;
8866   default:
8867     llvm_unreachable("Unhandled vector reduce intrinsic");
8868   }
8869   setValue(&I, Res);
8870 }
8871 
8872 /// Returns an AttributeList representing the attributes applied to the return
8873 /// value of the given call.
8874 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8875   SmallVector<Attribute::AttrKind, 2> Attrs;
8876   if (CLI.RetSExt)
8877     Attrs.push_back(Attribute::SExt);
8878   if (CLI.RetZExt)
8879     Attrs.push_back(Attribute::ZExt);
8880   if (CLI.IsInReg)
8881     Attrs.push_back(Attribute::InReg);
8882 
8883   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8884                             Attrs);
8885 }
8886 
8887 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8888 /// implementation, which just calls LowerCall.
8889 /// FIXME: When all targets are
8890 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8891 std::pair<SDValue, SDValue>
8892 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8893   // Handle the incoming return values from the call.
8894   CLI.Ins.clear();
8895   Type *OrigRetTy = CLI.RetTy;
8896   SmallVector<EVT, 4> RetTys;
8897   SmallVector<uint64_t, 4> Offsets;
8898   auto &DL = CLI.DAG.getDataLayout();
8899   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8900 
8901   if (CLI.IsPostTypeLegalization) {
8902     // If we are lowering a libcall after legalization, split the return type.
8903     SmallVector<EVT, 4> OldRetTys;
8904     SmallVector<uint64_t, 4> OldOffsets;
8905     RetTys.swap(OldRetTys);
8906     Offsets.swap(OldOffsets);
8907 
8908     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8909       EVT RetVT = OldRetTys[i];
8910       uint64_t Offset = OldOffsets[i];
8911       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8912       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8913       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8914       RetTys.append(NumRegs, RegisterVT);
8915       for (unsigned j = 0; j != NumRegs; ++j)
8916         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8917     }
8918   }
8919 
8920   SmallVector<ISD::OutputArg, 4> Outs;
8921   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8922 
8923   bool CanLowerReturn =
8924       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8925                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8926 
8927   SDValue DemoteStackSlot;
8928   int DemoteStackIdx = -100;
8929   if (!CanLowerReturn) {
8930     // FIXME: equivalent assert?
8931     // assert(!CS.hasInAllocaArgument() &&
8932     //        "sret demotion is incompatible with inalloca");
8933     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8934     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8935     MachineFunction &MF = CLI.DAG.getMachineFunction();
8936     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8937     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8938                                               DL.getAllocaAddrSpace());
8939 
8940     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8941     ArgListEntry Entry;
8942     Entry.Node = DemoteStackSlot;
8943     Entry.Ty = StackSlotPtrType;
8944     Entry.IsSExt = false;
8945     Entry.IsZExt = false;
8946     Entry.IsInReg = false;
8947     Entry.IsSRet = true;
8948     Entry.IsNest = false;
8949     Entry.IsByVal = false;
8950     Entry.IsReturned = false;
8951     Entry.IsSwiftSelf = false;
8952     Entry.IsSwiftError = false;
8953     Entry.Alignment = Align;
8954     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8955     CLI.NumFixedArgs += 1;
8956     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8957 
8958     // sret demotion isn't compatible with tail-calls, since the sret argument
8959     // points into the callers stack frame.
8960     CLI.IsTailCall = false;
8961   } else {
8962     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8963         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
8964     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8965       ISD::ArgFlagsTy Flags;
8966       if (NeedsRegBlock) {
8967         Flags.setInConsecutiveRegs();
8968         if (I == RetTys.size() - 1)
8969           Flags.setInConsecutiveRegsLast();
8970       }
8971       EVT VT = RetTys[I];
8972       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8973                                                      CLI.CallConv, VT);
8974       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8975                                                        CLI.CallConv, VT);
8976       for (unsigned i = 0; i != NumRegs; ++i) {
8977         ISD::InputArg MyFlags;
8978         MyFlags.Flags = Flags;
8979         MyFlags.VT = RegisterVT;
8980         MyFlags.ArgVT = VT;
8981         MyFlags.Used = CLI.IsReturnValueUsed;
8982         if (CLI.RetTy->isPointerTy()) {
8983           MyFlags.Flags.setPointer();
8984           MyFlags.Flags.setPointerAddrSpace(
8985               cast<PointerType>(CLI.RetTy)->getAddressSpace());
8986         }
8987         if (CLI.RetSExt)
8988           MyFlags.Flags.setSExt();
8989         if (CLI.RetZExt)
8990           MyFlags.Flags.setZExt();
8991         if (CLI.IsInReg)
8992           MyFlags.Flags.setInReg();
8993         CLI.Ins.push_back(MyFlags);
8994       }
8995     }
8996   }
8997 
8998   // We push in swifterror return as the last element of CLI.Ins.
8999   ArgListTy &Args = CLI.getArgs();
9000   if (supportSwiftError()) {
9001     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9002       if (Args[i].IsSwiftError) {
9003         ISD::InputArg MyFlags;
9004         MyFlags.VT = getPointerTy(DL);
9005         MyFlags.ArgVT = EVT(getPointerTy(DL));
9006         MyFlags.Flags.setSwiftError();
9007         CLI.Ins.push_back(MyFlags);
9008       }
9009     }
9010   }
9011 
9012   // Handle all of the outgoing arguments.
9013   CLI.Outs.clear();
9014   CLI.OutVals.clear();
9015   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9016     SmallVector<EVT, 4> ValueVTs;
9017     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9018     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9019     Type *FinalType = Args[i].Ty;
9020     if (Args[i].IsByVal)
9021       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9022     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9023         FinalType, CLI.CallConv, CLI.IsVarArg);
9024     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9025          ++Value) {
9026       EVT VT = ValueVTs[Value];
9027       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9028       SDValue Op = SDValue(Args[i].Node.getNode(),
9029                            Args[i].Node.getResNo() + Value);
9030       ISD::ArgFlagsTy Flags;
9031 
9032       // Certain targets (such as MIPS), may have a different ABI alignment
9033       // for a type depending on the context. Give the target a chance to
9034       // specify the alignment it wants.
9035       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
9036 
9037       if (Args[i].Ty->isPointerTy()) {
9038         Flags.setPointer();
9039         Flags.setPointerAddrSpace(
9040             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9041       }
9042       if (Args[i].IsZExt)
9043         Flags.setZExt();
9044       if (Args[i].IsSExt)
9045         Flags.setSExt();
9046       if (Args[i].IsInReg) {
9047         // If we are using vectorcall calling convention, a structure that is
9048         // passed InReg - is surely an HVA
9049         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9050             isa<StructType>(FinalType)) {
9051           // The first value of a structure is marked
9052           if (0 == Value)
9053             Flags.setHvaStart();
9054           Flags.setHva();
9055         }
9056         // Set InReg Flag
9057         Flags.setInReg();
9058       }
9059       if (Args[i].IsSRet)
9060         Flags.setSRet();
9061       if (Args[i].IsSwiftSelf)
9062         Flags.setSwiftSelf();
9063       if (Args[i].IsSwiftError)
9064         Flags.setSwiftError();
9065       if (Args[i].IsByVal)
9066         Flags.setByVal();
9067       if (Args[i].IsInAlloca) {
9068         Flags.setInAlloca();
9069         // Set the byval flag for CCAssignFn callbacks that don't know about
9070         // inalloca.  This way we can know how many bytes we should've allocated
9071         // and how many bytes a callee cleanup function will pop.  If we port
9072         // inalloca to more targets, we'll have to add custom inalloca handling
9073         // in the various CC lowering callbacks.
9074         Flags.setByVal();
9075       }
9076       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9077         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9078         Type *ElementTy = Ty->getElementType();
9079         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9080         // For ByVal, alignment should come from FE.  BE will guess if this
9081         // info is not there but there are cases it cannot get right.
9082         unsigned FrameAlign;
9083         if (Args[i].Alignment)
9084           FrameAlign = Args[i].Alignment;
9085         else
9086           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9087         Flags.setByValAlign(FrameAlign);
9088       }
9089       if (Args[i].IsNest)
9090         Flags.setNest();
9091       if (NeedsRegBlock)
9092         Flags.setInConsecutiveRegs();
9093       Flags.setOrigAlign(OriginalAlignment);
9094 
9095       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9096                                                  CLI.CallConv, VT);
9097       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9098                                                         CLI.CallConv, VT);
9099       SmallVector<SDValue, 4> Parts(NumParts);
9100       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9101 
9102       if (Args[i].IsSExt)
9103         ExtendKind = ISD::SIGN_EXTEND;
9104       else if (Args[i].IsZExt)
9105         ExtendKind = ISD::ZERO_EXTEND;
9106 
9107       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9108       // for now.
9109       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9110           CanLowerReturn) {
9111         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
9112                "unexpected use of 'returned'");
9113         // Before passing 'returned' to the target lowering code, ensure that
9114         // either the register MVT and the actual EVT are the same size or that
9115         // the return value and argument are extended in the same way; in these
9116         // cases it's safe to pass the argument register value unchanged as the
9117         // return register value (although it's at the target's option whether
9118         // to do so)
9119         // TODO: allow code generation to take advantage of partially preserved
9120         // registers rather than clobbering the entire register when the
9121         // parameter extension method is not compatible with the return
9122         // extension method
9123         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9124             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9125              CLI.RetZExt == Args[i].IsZExt))
9126           Flags.setReturned();
9127       }
9128 
9129       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9130                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9131 
9132       for (unsigned j = 0; j != NumParts; ++j) {
9133         // if it isn't first piece, alignment must be 1
9134         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9135                                i < CLI.NumFixedArgs,
9136                                i, j*Parts[j].getValueType().getStoreSize());
9137         if (NumParts > 1 && j == 0)
9138           MyFlags.Flags.setSplit();
9139         else if (j != 0) {
9140           MyFlags.Flags.setOrigAlign(1);
9141           if (j == NumParts - 1)
9142             MyFlags.Flags.setSplitEnd();
9143         }
9144 
9145         CLI.Outs.push_back(MyFlags);
9146         CLI.OutVals.push_back(Parts[j]);
9147       }
9148 
9149       if (NeedsRegBlock && Value == NumValues - 1)
9150         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9151     }
9152   }
9153 
9154   SmallVector<SDValue, 4> InVals;
9155   CLI.Chain = LowerCall(CLI, InVals);
9156 
9157   // Update CLI.InVals to use outside of this function.
9158   CLI.InVals = InVals;
9159 
9160   // Verify that the target's LowerCall behaved as expected.
9161   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9162          "LowerCall didn't return a valid chain!");
9163   assert((!CLI.IsTailCall || InVals.empty()) &&
9164          "LowerCall emitted a return value for a tail call!");
9165   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9166          "LowerCall didn't emit the correct number of values!");
9167 
9168   // For a tail call, the return value is merely live-out and there aren't
9169   // any nodes in the DAG representing it. Return a special value to
9170   // indicate that a tail call has been emitted and no more Instructions
9171   // should be processed in the current block.
9172   if (CLI.IsTailCall) {
9173     CLI.DAG.setRoot(CLI.Chain);
9174     return std::make_pair(SDValue(), SDValue());
9175   }
9176 
9177 #ifndef NDEBUG
9178   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9179     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9180     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9181            "LowerCall emitted a value with the wrong type!");
9182   }
9183 #endif
9184 
9185   SmallVector<SDValue, 4> ReturnValues;
9186   if (!CanLowerReturn) {
9187     // The instruction result is the result of loading from the
9188     // hidden sret parameter.
9189     SmallVector<EVT, 1> PVTs;
9190     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9191 
9192     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9193     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9194     EVT PtrVT = PVTs[0];
9195 
9196     unsigned NumValues = RetTys.size();
9197     ReturnValues.resize(NumValues);
9198     SmallVector<SDValue, 4> Chains(NumValues);
9199 
9200     // An aggregate return value cannot wrap around the address space, so
9201     // offsets to its parts don't wrap either.
9202     SDNodeFlags Flags;
9203     Flags.setNoUnsignedWrap(true);
9204 
9205     for (unsigned i = 0; i < NumValues; ++i) {
9206       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9207                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9208                                                         PtrVT), Flags);
9209       SDValue L = CLI.DAG.getLoad(
9210           RetTys[i], CLI.DL, CLI.Chain, Add,
9211           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9212                                             DemoteStackIdx, Offsets[i]),
9213           /* Alignment = */ 1);
9214       ReturnValues[i] = L;
9215       Chains[i] = L.getValue(1);
9216     }
9217 
9218     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9219   } else {
9220     // Collect the legal value parts into potentially illegal values
9221     // that correspond to the original function's return values.
9222     Optional<ISD::NodeType> AssertOp;
9223     if (CLI.RetSExt)
9224       AssertOp = ISD::AssertSext;
9225     else if (CLI.RetZExt)
9226       AssertOp = ISD::AssertZext;
9227     unsigned CurReg = 0;
9228     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9229       EVT VT = RetTys[I];
9230       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9231                                                      CLI.CallConv, VT);
9232       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9233                                                        CLI.CallConv, VT);
9234 
9235       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9236                                               NumRegs, RegisterVT, VT, nullptr,
9237                                               CLI.CallConv, AssertOp));
9238       CurReg += NumRegs;
9239     }
9240 
9241     // For a function returning void, there is no return value. We can't create
9242     // such a node, so we just return a null return value in that case. In
9243     // that case, nothing will actually look at the value.
9244     if (ReturnValues.empty())
9245       return std::make_pair(SDValue(), CLI.Chain);
9246   }
9247 
9248   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9249                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9250   return std::make_pair(Res, CLI.Chain);
9251 }
9252 
9253 void TargetLowering::LowerOperationWrapper(SDNode *N,
9254                                            SmallVectorImpl<SDValue> &Results,
9255                                            SelectionDAG &DAG) const {
9256   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9257     Results.push_back(Res);
9258 }
9259 
9260 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9261   llvm_unreachable("LowerOperation not implemented for this target!");
9262 }
9263 
9264 void
9265 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9266   SDValue Op = getNonRegisterValue(V);
9267   assert((Op.getOpcode() != ISD::CopyFromReg ||
9268           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9269          "Copy from a reg to the same reg!");
9270   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9271 
9272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9273   // If this is an InlineAsm we have to match the registers required, not the
9274   // notional registers required by the type.
9275 
9276   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9277                    None); // This is not an ABI copy.
9278   SDValue Chain = DAG.getEntryNode();
9279 
9280   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9281                               FuncInfo.PreferredExtendType.end())
9282                                  ? ISD::ANY_EXTEND
9283                                  : FuncInfo.PreferredExtendType[V];
9284   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9285   PendingExports.push_back(Chain);
9286 }
9287 
9288 #include "llvm/CodeGen/SelectionDAGISel.h"
9289 
9290 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9291 /// entry block, return true.  This includes arguments used by switches, since
9292 /// the switch may expand into multiple basic blocks.
9293 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9294   // With FastISel active, we may be splitting blocks, so force creation
9295   // of virtual registers for all non-dead arguments.
9296   if (FastISel)
9297     return A->use_empty();
9298 
9299   const BasicBlock &Entry = A->getParent()->front();
9300   for (const User *U : A->users())
9301     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9302       return false;  // Use not in entry block.
9303 
9304   return true;
9305 }
9306 
9307 using ArgCopyElisionMapTy =
9308     DenseMap<const Argument *,
9309              std::pair<const AllocaInst *, const StoreInst *>>;
9310 
9311 /// Scan the entry block of the function in FuncInfo for arguments that look
9312 /// like copies into a local alloca. Record any copied arguments in
9313 /// ArgCopyElisionCandidates.
9314 static void
9315 findArgumentCopyElisionCandidates(const DataLayout &DL,
9316                                   FunctionLoweringInfo *FuncInfo,
9317                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9318   // Record the state of every static alloca used in the entry block. Argument
9319   // allocas are all used in the entry block, so we need approximately as many
9320   // entries as we have arguments.
9321   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9322   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9323   unsigned NumArgs = FuncInfo->Fn->arg_size();
9324   StaticAllocas.reserve(NumArgs * 2);
9325 
9326   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9327     if (!V)
9328       return nullptr;
9329     V = V->stripPointerCasts();
9330     const auto *AI = dyn_cast<AllocaInst>(V);
9331     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9332       return nullptr;
9333     auto Iter = StaticAllocas.insert({AI, Unknown});
9334     return &Iter.first->second;
9335   };
9336 
9337   // Look for stores of arguments to static allocas. Look through bitcasts and
9338   // GEPs to handle type coercions, as long as the alloca is fully initialized
9339   // by the store. Any non-store use of an alloca escapes it and any subsequent
9340   // unanalyzed store might write it.
9341   // FIXME: Handle structs initialized with multiple stores.
9342   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9343     // Look for stores, and handle non-store uses conservatively.
9344     const auto *SI = dyn_cast<StoreInst>(&I);
9345     if (!SI) {
9346       // We will look through cast uses, so ignore them completely.
9347       if (I.isCast())
9348         continue;
9349       // Ignore debug info intrinsics, they don't escape or store to allocas.
9350       if (isa<DbgInfoIntrinsic>(I))
9351         continue;
9352       // This is an unknown instruction. Assume it escapes or writes to all
9353       // static alloca operands.
9354       for (const Use &U : I.operands()) {
9355         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9356           *Info = StaticAllocaInfo::Clobbered;
9357       }
9358       continue;
9359     }
9360 
9361     // If the stored value is a static alloca, mark it as escaped.
9362     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9363       *Info = StaticAllocaInfo::Clobbered;
9364 
9365     // Check if the destination is a static alloca.
9366     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9367     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9368     if (!Info)
9369       continue;
9370     const AllocaInst *AI = cast<AllocaInst>(Dst);
9371 
9372     // Skip allocas that have been initialized or clobbered.
9373     if (*Info != StaticAllocaInfo::Unknown)
9374       continue;
9375 
9376     // Check if the stored value is an argument, and that this store fully
9377     // initializes the alloca. Don't elide copies from the same argument twice.
9378     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9379     const auto *Arg = dyn_cast<Argument>(Val);
9380     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9381         Arg->getType()->isEmptyTy() ||
9382         DL.getTypeStoreSize(Arg->getType()) !=
9383             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9384         ArgCopyElisionCandidates.count(Arg)) {
9385       *Info = StaticAllocaInfo::Clobbered;
9386       continue;
9387     }
9388 
9389     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9390                       << '\n');
9391 
9392     // Mark this alloca and store for argument copy elision.
9393     *Info = StaticAllocaInfo::Elidable;
9394     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9395 
9396     // Stop scanning if we've seen all arguments. This will happen early in -O0
9397     // builds, which is useful, because -O0 builds have large entry blocks and
9398     // many allocas.
9399     if (ArgCopyElisionCandidates.size() == NumArgs)
9400       break;
9401   }
9402 }
9403 
9404 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9405 /// ArgVal is a load from a suitable fixed stack object.
9406 static void tryToElideArgumentCopy(
9407     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9408     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9409     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9410     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9411     SDValue ArgVal, bool &ArgHasUses) {
9412   // Check if this is a load from a fixed stack object.
9413   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9414   if (!LNode)
9415     return;
9416   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9417   if (!FINode)
9418     return;
9419 
9420   // Check that the fixed stack object is the right size and alignment.
9421   // Look at the alignment that the user wrote on the alloca instead of looking
9422   // at the stack object.
9423   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9424   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9425   const AllocaInst *AI = ArgCopyIter->second.first;
9426   int FixedIndex = FINode->getIndex();
9427   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9428   int OldIndex = AllocaIndex;
9429   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9430   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9431     LLVM_DEBUG(
9432         dbgs() << "  argument copy elision failed due to bad fixed stack "
9433                   "object size\n");
9434     return;
9435   }
9436   unsigned RequiredAlignment = AI->getAlignment();
9437   if (!RequiredAlignment) {
9438     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9439         AI->getAllocatedType());
9440   }
9441   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9442     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9443                          "greater than stack argument alignment ("
9444                       << RequiredAlignment << " vs "
9445                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9446     return;
9447   }
9448 
9449   // Perform the elision. Delete the old stack object and replace its only use
9450   // in the variable info map. Mark the stack object as mutable.
9451   LLVM_DEBUG({
9452     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9453            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9454            << '\n';
9455   });
9456   MFI.RemoveStackObject(OldIndex);
9457   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9458   AllocaIndex = FixedIndex;
9459   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9460   Chains.push_back(ArgVal.getValue(1));
9461 
9462   // Avoid emitting code for the store implementing the copy.
9463   const StoreInst *SI = ArgCopyIter->second.second;
9464   ElidedArgCopyInstrs.insert(SI);
9465 
9466   // Check for uses of the argument again so that we can avoid exporting ArgVal
9467   // if it is't used by anything other than the store.
9468   for (const Value *U : Arg.users()) {
9469     if (U != SI) {
9470       ArgHasUses = true;
9471       break;
9472     }
9473   }
9474 }
9475 
9476 void SelectionDAGISel::LowerArguments(const Function &F) {
9477   SelectionDAG &DAG = SDB->DAG;
9478   SDLoc dl = SDB->getCurSDLoc();
9479   const DataLayout &DL = DAG.getDataLayout();
9480   SmallVector<ISD::InputArg, 16> Ins;
9481 
9482   if (!FuncInfo->CanLowerReturn) {
9483     // Put in an sret pointer parameter before all the other parameters.
9484     SmallVector<EVT, 1> ValueVTs;
9485     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9486                     F.getReturnType()->getPointerTo(
9487                         DAG.getDataLayout().getAllocaAddrSpace()),
9488                     ValueVTs);
9489 
9490     // NOTE: Assuming that a pointer will never break down to more than one VT
9491     // or one register.
9492     ISD::ArgFlagsTy Flags;
9493     Flags.setSRet();
9494     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9495     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9496                          ISD::InputArg::NoArgIndex, 0);
9497     Ins.push_back(RetArg);
9498   }
9499 
9500   // Look for stores of arguments to static allocas. Mark such arguments with a
9501   // flag to ask the target to give us the memory location of that argument if
9502   // available.
9503   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9504   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9505 
9506   // Set up the incoming argument description vector.
9507   for (const Argument &Arg : F.args()) {
9508     unsigned ArgNo = Arg.getArgNo();
9509     SmallVector<EVT, 4> ValueVTs;
9510     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9511     bool isArgValueUsed = !Arg.use_empty();
9512     unsigned PartBase = 0;
9513     Type *FinalType = Arg.getType();
9514     if (Arg.hasAttribute(Attribute::ByVal))
9515       FinalType = cast<PointerType>(FinalType)->getElementType();
9516     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9517         FinalType, F.getCallingConv(), F.isVarArg());
9518     for (unsigned Value = 0, NumValues = ValueVTs.size();
9519          Value != NumValues; ++Value) {
9520       EVT VT = ValueVTs[Value];
9521       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9522       ISD::ArgFlagsTy Flags;
9523 
9524       // Certain targets (such as MIPS), may have a different ABI alignment
9525       // for a type depending on the context. Give the target a chance to
9526       // specify the alignment it wants.
9527       unsigned OriginalAlignment =
9528           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9529 
9530       if (Arg.getType()->isPointerTy()) {
9531         Flags.setPointer();
9532         Flags.setPointerAddrSpace(
9533             cast<PointerType>(Arg.getType())->getAddressSpace());
9534       }
9535       if (Arg.hasAttribute(Attribute::ZExt))
9536         Flags.setZExt();
9537       if (Arg.hasAttribute(Attribute::SExt))
9538         Flags.setSExt();
9539       if (Arg.hasAttribute(Attribute::InReg)) {
9540         // If we are using vectorcall calling convention, a structure that is
9541         // passed InReg - is surely an HVA
9542         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9543             isa<StructType>(Arg.getType())) {
9544           // The first value of a structure is marked
9545           if (0 == Value)
9546             Flags.setHvaStart();
9547           Flags.setHva();
9548         }
9549         // Set InReg Flag
9550         Flags.setInReg();
9551       }
9552       if (Arg.hasAttribute(Attribute::StructRet))
9553         Flags.setSRet();
9554       if (Arg.hasAttribute(Attribute::SwiftSelf))
9555         Flags.setSwiftSelf();
9556       if (Arg.hasAttribute(Attribute::SwiftError))
9557         Flags.setSwiftError();
9558       if (Arg.hasAttribute(Attribute::ByVal))
9559         Flags.setByVal();
9560       if (Arg.hasAttribute(Attribute::InAlloca)) {
9561         Flags.setInAlloca();
9562         // Set the byval flag for CCAssignFn callbacks that don't know about
9563         // inalloca.  This way we can know how many bytes we should've allocated
9564         // and how many bytes a callee cleanup function will pop.  If we port
9565         // inalloca to more targets, we'll have to add custom inalloca handling
9566         // in the various CC lowering callbacks.
9567         Flags.setByVal();
9568       }
9569       if (F.getCallingConv() == CallingConv::X86_INTR) {
9570         // IA Interrupt passes frame (1st parameter) by value in the stack.
9571         if (ArgNo == 0)
9572           Flags.setByVal();
9573       }
9574       if (Flags.isByVal() || Flags.isInAlloca()) {
9575         PointerType *Ty = cast<PointerType>(Arg.getType());
9576         Type *ElementTy = Ty->getElementType();
9577         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9578         // For ByVal, alignment should be passed from FE.  BE will guess if
9579         // this info is not there but there are cases it cannot get right.
9580         unsigned FrameAlign;
9581         if (Arg.getParamAlignment())
9582           FrameAlign = Arg.getParamAlignment();
9583         else
9584           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9585         Flags.setByValAlign(FrameAlign);
9586       }
9587       if (Arg.hasAttribute(Attribute::Nest))
9588         Flags.setNest();
9589       if (NeedsRegBlock)
9590         Flags.setInConsecutiveRegs();
9591       Flags.setOrigAlign(OriginalAlignment);
9592       if (ArgCopyElisionCandidates.count(&Arg))
9593         Flags.setCopyElisionCandidate();
9594 
9595       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9596           *CurDAG->getContext(), F.getCallingConv(), VT);
9597       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9598           *CurDAG->getContext(), F.getCallingConv(), VT);
9599       for (unsigned i = 0; i != NumRegs; ++i) {
9600         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9601                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9602         if (NumRegs > 1 && i == 0)
9603           MyFlags.Flags.setSplit();
9604         // if it isn't first piece, alignment must be 1
9605         else if (i > 0) {
9606           MyFlags.Flags.setOrigAlign(1);
9607           if (i == NumRegs - 1)
9608             MyFlags.Flags.setSplitEnd();
9609         }
9610         Ins.push_back(MyFlags);
9611       }
9612       if (NeedsRegBlock && Value == NumValues - 1)
9613         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9614       PartBase += VT.getStoreSize();
9615     }
9616   }
9617 
9618   // Call the target to set up the argument values.
9619   SmallVector<SDValue, 8> InVals;
9620   SDValue NewRoot = TLI->LowerFormalArguments(
9621       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9622 
9623   // Verify that the target's LowerFormalArguments behaved as expected.
9624   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9625          "LowerFormalArguments didn't return a valid chain!");
9626   assert(InVals.size() == Ins.size() &&
9627          "LowerFormalArguments didn't emit the correct number of values!");
9628   LLVM_DEBUG({
9629     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9630       assert(InVals[i].getNode() &&
9631              "LowerFormalArguments emitted a null value!");
9632       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9633              "LowerFormalArguments emitted a value with the wrong type!");
9634     }
9635   });
9636 
9637   // Update the DAG with the new chain value resulting from argument lowering.
9638   DAG.setRoot(NewRoot);
9639 
9640   // Set up the argument values.
9641   unsigned i = 0;
9642   if (!FuncInfo->CanLowerReturn) {
9643     // Create a virtual register for the sret pointer, and put in a copy
9644     // from the sret argument into it.
9645     SmallVector<EVT, 1> ValueVTs;
9646     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9647                     F.getReturnType()->getPointerTo(
9648                         DAG.getDataLayout().getAllocaAddrSpace()),
9649                     ValueVTs);
9650     MVT VT = ValueVTs[0].getSimpleVT();
9651     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9652     Optional<ISD::NodeType> AssertOp = None;
9653     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9654                                         nullptr, F.getCallingConv(), AssertOp);
9655 
9656     MachineFunction& MF = SDB->DAG.getMachineFunction();
9657     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9658     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9659     FuncInfo->DemoteRegister = SRetReg;
9660     NewRoot =
9661         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9662     DAG.setRoot(NewRoot);
9663 
9664     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9665     ++i;
9666   }
9667 
9668   SmallVector<SDValue, 4> Chains;
9669   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9670   for (const Argument &Arg : F.args()) {
9671     SmallVector<SDValue, 4> ArgValues;
9672     SmallVector<EVT, 4> ValueVTs;
9673     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9674     unsigned NumValues = ValueVTs.size();
9675     if (NumValues == 0)
9676       continue;
9677 
9678     bool ArgHasUses = !Arg.use_empty();
9679 
9680     // Elide the copying store if the target loaded this argument from a
9681     // suitable fixed stack object.
9682     if (Ins[i].Flags.isCopyElisionCandidate()) {
9683       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9684                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9685                              InVals[i], ArgHasUses);
9686     }
9687 
9688     // If this argument is unused then remember its value. It is used to generate
9689     // debugging information.
9690     bool isSwiftErrorArg =
9691         TLI->supportSwiftError() &&
9692         Arg.hasAttribute(Attribute::SwiftError);
9693     if (!ArgHasUses && !isSwiftErrorArg) {
9694       SDB->setUnusedArgValue(&Arg, InVals[i]);
9695 
9696       // Also remember any frame index for use in FastISel.
9697       if (FrameIndexSDNode *FI =
9698           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9699         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9700     }
9701 
9702     for (unsigned Val = 0; Val != NumValues; ++Val) {
9703       EVT VT = ValueVTs[Val];
9704       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9705                                                       F.getCallingConv(), VT);
9706       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9707           *CurDAG->getContext(), F.getCallingConv(), VT);
9708 
9709       // Even an apparant 'unused' swifterror argument needs to be returned. So
9710       // we do generate a copy for it that can be used on return from the
9711       // function.
9712       if (ArgHasUses || isSwiftErrorArg) {
9713         Optional<ISD::NodeType> AssertOp;
9714         if (Arg.hasAttribute(Attribute::SExt))
9715           AssertOp = ISD::AssertSext;
9716         else if (Arg.hasAttribute(Attribute::ZExt))
9717           AssertOp = ISD::AssertZext;
9718 
9719         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9720                                              PartVT, VT, nullptr,
9721                                              F.getCallingConv(), AssertOp));
9722       }
9723 
9724       i += NumParts;
9725     }
9726 
9727     // We don't need to do anything else for unused arguments.
9728     if (ArgValues.empty())
9729       continue;
9730 
9731     // Note down frame index.
9732     if (FrameIndexSDNode *FI =
9733         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9734       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9735 
9736     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9737                                      SDB->getCurSDLoc());
9738 
9739     SDB->setValue(&Arg, Res);
9740     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9741       // We want to associate the argument with the frame index, among
9742       // involved operands, that correspond to the lowest address. The
9743       // getCopyFromParts function, called earlier, is swapping the order of
9744       // the operands to BUILD_PAIR depending on endianness. The result of
9745       // that swapping is that the least significant bits of the argument will
9746       // be in the first operand of the BUILD_PAIR node, and the most
9747       // significant bits will be in the second operand.
9748       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9749       if (LoadSDNode *LNode =
9750           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9751         if (FrameIndexSDNode *FI =
9752             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9753           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9754     }
9755 
9756     // Update the SwiftErrorVRegDefMap.
9757     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9758       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9759       if (TargetRegisterInfo::isVirtualRegister(Reg))
9760         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9761                                            FuncInfo->SwiftErrorArg, Reg);
9762     }
9763 
9764     // If this argument is live outside of the entry block, insert a copy from
9765     // wherever we got it to the vreg that other BB's will reference it as.
9766     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9767       // If we can, though, try to skip creating an unnecessary vreg.
9768       // FIXME: This isn't very clean... it would be nice to make this more
9769       // general.  It's also subtly incompatible with the hacks FastISel
9770       // uses with vregs.
9771       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9772       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9773         FuncInfo->ValueMap[&Arg] = Reg;
9774         continue;
9775       }
9776     }
9777     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9778       FuncInfo->InitializeRegForValue(&Arg);
9779       SDB->CopyToExportRegsIfNeeded(&Arg);
9780     }
9781   }
9782 
9783   if (!Chains.empty()) {
9784     Chains.push_back(NewRoot);
9785     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9786   }
9787 
9788   DAG.setRoot(NewRoot);
9789 
9790   assert(i == InVals.size() && "Argument register count mismatch!");
9791 
9792   // If any argument copy elisions occurred and we have debug info, update the
9793   // stale frame indices used in the dbg.declare variable info table.
9794   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9795   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9796     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9797       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9798       if (I != ArgCopyElisionFrameIndexMap.end())
9799         VI.Slot = I->second;
9800     }
9801   }
9802 
9803   // Finally, if the target has anything special to do, allow it to do so.
9804   EmitFunctionEntryCode();
9805 }
9806 
9807 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9808 /// ensure constants are generated when needed.  Remember the virtual registers
9809 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9810 /// directly add them, because expansion might result in multiple MBB's for one
9811 /// BB.  As such, the start of the BB might correspond to a different MBB than
9812 /// the end.
9813 void
9814 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9815   const Instruction *TI = LLVMBB->getTerminator();
9816 
9817   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9818 
9819   // Check PHI nodes in successors that expect a value to be available from this
9820   // block.
9821   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9822     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9823     if (!isa<PHINode>(SuccBB->begin())) continue;
9824     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9825 
9826     // If this terminator has multiple identical successors (common for
9827     // switches), only handle each succ once.
9828     if (!SuccsHandled.insert(SuccMBB).second)
9829       continue;
9830 
9831     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9832 
9833     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9834     // nodes and Machine PHI nodes, but the incoming operands have not been
9835     // emitted yet.
9836     for (const PHINode &PN : SuccBB->phis()) {
9837       // Ignore dead phi's.
9838       if (PN.use_empty())
9839         continue;
9840 
9841       // Skip empty types
9842       if (PN.getType()->isEmptyTy())
9843         continue;
9844 
9845       unsigned Reg;
9846       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9847 
9848       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9849         unsigned &RegOut = ConstantsOut[C];
9850         if (RegOut == 0) {
9851           RegOut = FuncInfo.CreateRegs(C->getType());
9852           CopyValueToVirtualRegister(C, RegOut);
9853         }
9854         Reg = RegOut;
9855       } else {
9856         DenseMap<const Value *, unsigned>::iterator I =
9857           FuncInfo.ValueMap.find(PHIOp);
9858         if (I != FuncInfo.ValueMap.end())
9859           Reg = I->second;
9860         else {
9861           assert(isa<AllocaInst>(PHIOp) &&
9862                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9863                  "Didn't codegen value into a register!??");
9864           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9865           CopyValueToVirtualRegister(PHIOp, Reg);
9866         }
9867       }
9868 
9869       // Remember that this register needs to added to the machine PHI node as
9870       // the input for this MBB.
9871       SmallVector<EVT, 4> ValueVTs;
9872       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9873       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9874       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9875         EVT VT = ValueVTs[vti];
9876         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9877         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9878           FuncInfo.PHINodesToUpdate.push_back(
9879               std::make_pair(&*MBBI++, Reg + i));
9880         Reg += NumRegisters;
9881       }
9882     }
9883   }
9884 
9885   ConstantsOut.clear();
9886 }
9887 
9888 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9889 /// is 0.
9890 MachineBasicBlock *
9891 SelectionDAGBuilder::StackProtectorDescriptor::
9892 AddSuccessorMBB(const BasicBlock *BB,
9893                 MachineBasicBlock *ParentMBB,
9894                 bool IsLikely,
9895                 MachineBasicBlock *SuccMBB) {
9896   // If SuccBB has not been created yet, create it.
9897   if (!SuccMBB) {
9898     MachineFunction *MF = ParentMBB->getParent();
9899     MachineFunction::iterator BBI(ParentMBB);
9900     SuccMBB = MF->CreateMachineBasicBlock(BB);
9901     MF->insert(++BBI, SuccMBB);
9902   }
9903   // Add it as a successor of ParentMBB.
9904   ParentMBB->addSuccessor(
9905       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9906   return SuccMBB;
9907 }
9908 
9909 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9910   MachineFunction::iterator I(MBB);
9911   if (++I == FuncInfo.MF->end())
9912     return nullptr;
9913   return &*I;
9914 }
9915 
9916 /// During lowering new call nodes can be created (such as memset, etc.).
9917 /// Those will become new roots of the current DAG, but complications arise
9918 /// when they are tail calls. In such cases, the call lowering will update
9919 /// the root, but the builder still needs to know that a tail call has been
9920 /// lowered in order to avoid generating an additional return.
9921 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9922   // If the node is null, we do have a tail call.
9923   if (MaybeTC.getNode() != nullptr)
9924     DAG.setRoot(MaybeTC);
9925   else
9926     HasTailCall = true;
9927 }
9928 
9929 uint64_t
9930 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9931                                        unsigned First, unsigned Last) const {
9932   assert(Last >= First);
9933   const APInt &LowCase = Clusters[First].Low->getValue();
9934   const APInt &HighCase = Clusters[Last].High->getValue();
9935   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9936 
9937   // FIXME: A range of consecutive cases has 100% density, but only requires one
9938   // comparison to lower. We should discriminate against such consecutive ranges
9939   // in jump tables.
9940 
9941   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9942 }
9943 
9944 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9945     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9946     unsigned Last) const {
9947   assert(Last >= First);
9948   assert(TotalCases[Last] >= TotalCases[First]);
9949   uint64_t NumCases =
9950       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9951   return NumCases;
9952 }
9953 
9954 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9955                                          unsigned First, unsigned Last,
9956                                          const SwitchInst *SI,
9957                                          MachineBasicBlock *DefaultMBB,
9958                                          CaseCluster &JTCluster) {
9959   assert(First <= Last);
9960 
9961   auto Prob = BranchProbability::getZero();
9962   unsigned NumCmps = 0;
9963   std::vector<MachineBasicBlock*> Table;
9964   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9965 
9966   // Initialize probabilities in JTProbs.
9967   for (unsigned I = First; I <= Last; ++I)
9968     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9969 
9970   for (unsigned I = First; I <= Last; ++I) {
9971     assert(Clusters[I].Kind == CC_Range);
9972     Prob += Clusters[I].Prob;
9973     const APInt &Low = Clusters[I].Low->getValue();
9974     const APInt &High = Clusters[I].High->getValue();
9975     NumCmps += (Low == High) ? 1 : 2;
9976     if (I != First) {
9977       // Fill the gap between this and the previous cluster.
9978       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9979       assert(PreviousHigh.slt(Low));
9980       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9981       for (uint64_t J = 0; J < Gap; J++)
9982         Table.push_back(DefaultMBB);
9983     }
9984     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9985     for (uint64_t J = 0; J < ClusterSize; ++J)
9986       Table.push_back(Clusters[I].MBB);
9987     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9988   }
9989 
9990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9991   unsigned NumDests = JTProbs.size();
9992   if (TLI.isSuitableForBitTests(
9993           NumDests, NumCmps, Clusters[First].Low->getValue(),
9994           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9995     // Clusters[First..Last] should be lowered as bit tests instead.
9996     return false;
9997   }
9998 
9999   // Create the MBB that will load from and jump through the table.
10000   // Note: We create it here, but it's not inserted into the function yet.
10001   MachineFunction *CurMF = FuncInfo.MF;
10002   MachineBasicBlock *JumpTableMBB =
10003       CurMF->CreateMachineBasicBlock(SI->getParent());
10004 
10005   // Add successors. Note: use table order for determinism.
10006   SmallPtrSet<MachineBasicBlock *, 8> Done;
10007   for (MachineBasicBlock *Succ : Table) {
10008     if (Done.count(Succ))
10009       continue;
10010     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
10011     Done.insert(Succ);
10012   }
10013   JumpTableMBB->normalizeSuccProbs();
10014 
10015   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
10016                      ->createJumpTableIndex(Table);
10017 
10018   // Set up the jump table info.
10019   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
10020   JumpTableHeader JTH(Clusters[First].Low->getValue(),
10021                       Clusters[Last].High->getValue(), SI->getCondition(),
10022                       nullptr, false);
10023   JTCases.emplace_back(std::move(JTH), std::move(JT));
10024 
10025   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
10026                                      JTCases.size() - 1, Prob);
10027   return true;
10028 }
10029 
10030 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
10031                                          const SwitchInst *SI,
10032                                          MachineBasicBlock *DefaultMBB) {
10033 #ifndef NDEBUG
10034   // Clusters must be non-empty, sorted, and only contain Range clusters.
10035   assert(!Clusters.empty());
10036   for (CaseCluster &C : Clusters)
10037     assert(C.Kind == CC_Range);
10038   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
10039     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
10040 #endif
10041 
10042   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10043   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
10044     return;
10045 
10046   const int64_t N = Clusters.size();
10047   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
10048   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
10049 
10050   if (N < 2 || N < MinJumpTableEntries)
10051     return;
10052 
10053   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
10054   SmallVector<unsigned, 8> TotalCases(N);
10055   for (unsigned i = 0; i < N; ++i) {
10056     const APInt &Hi = Clusters[i].High->getValue();
10057     const APInt &Lo = Clusters[i].Low->getValue();
10058     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
10059     if (i != 0)
10060       TotalCases[i] += TotalCases[i - 1];
10061   }
10062 
10063   // Cheap case: the whole range may be suitable for jump table.
10064   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
10065   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
10066   assert(NumCases < UINT64_MAX / 100);
10067   assert(Range >= NumCases);
10068   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10069     CaseCluster JTCluster;
10070     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
10071       Clusters[0] = JTCluster;
10072       Clusters.resize(1);
10073       return;
10074     }
10075   }
10076 
10077   // The algorithm below is not suitable for -O0.
10078   if (TM.getOptLevel() == CodeGenOpt::None)
10079     return;
10080 
10081   // Split Clusters into minimum number of dense partitions. The algorithm uses
10082   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
10083   // for the Case Statement'" (1994), but builds the MinPartitions array in
10084   // reverse order to make it easier to reconstruct the partitions in ascending
10085   // order. In the choice between two optimal partitionings, it picks the one
10086   // which yields more jump tables.
10087 
10088   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10089   SmallVector<unsigned, 8> MinPartitions(N);
10090   // LastElement[i] is the last element of the partition starting at i.
10091   SmallVector<unsigned, 8> LastElement(N);
10092   // PartitionsScore[i] is used to break ties when choosing between two
10093   // partitionings resulting in the same number of partitions.
10094   SmallVector<unsigned, 8> PartitionsScore(N);
10095   // For PartitionsScore, a small number of comparisons is considered as good as
10096   // a jump table and a single comparison is considered better than a jump
10097   // table.
10098   enum PartitionScores : unsigned {
10099     NoTable = 0,
10100     Table = 1,
10101     FewCases = 1,
10102     SingleCase = 2
10103   };
10104 
10105   // Base case: There is only one way to partition Clusters[N-1].
10106   MinPartitions[N - 1] = 1;
10107   LastElement[N - 1] = N - 1;
10108   PartitionsScore[N - 1] = PartitionScores::SingleCase;
10109 
10110   // Note: loop indexes are signed to avoid underflow.
10111   for (int64_t i = N - 2; i >= 0; i--) {
10112     // Find optimal partitioning of Clusters[i..N-1].
10113     // Baseline: Put Clusters[i] into a partition on its own.
10114     MinPartitions[i] = MinPartitions[i + 1] + 1;
10115     LastElement[i] = i;
10116     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
10117 
10118     // Search for a solution that results in fewer partitions.
10119     for (int64_t j = N - 1; j > i; j--) {
10120       // Try building a partition from Clusters[i..j].
10121       uint64_t Range = getJumpTableRange(Clusters, i, j);
10122       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
10123       assert(NumCases < UINT64_MAX / 100);
10124       assert(Range >= NumCases);
10125       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10126         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10127         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
10128         int64_t NumEntries = j - i + 1;
10129 
10130         if (NumEntries == 1)
10131           Score += PartitionScores::SingleCase;
10132         else if (NumEntries <= SmallNumberOfEntries)
10133           Score += PartitionScores::FewCases;
10134         else if (NumEntries >= MinJumpTableEntries)
10135           Score += PartitionScores::Table;
10136 
10137         // If this leads to fewer partitions, or to the same number of
10138         // partitions with better score, it is a better partitioning.
10139         if (NumPartitions < MinPartitions[i] ||
10140             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
10141           MinPartitions[i] = NumPartitions;
10142           LastElement[i] = j;
10143           PartitionsScore[i] = Score;
10144         }
10145       }
10146     }
10147   }
10148 
10149   // Iterate over the partitions, replacing some with jump tables in-place.
10150   unsigned DstIndex = 0;
10151   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10152     Last = LastElement[First];
10153     assert(Last >= First);
10154     assert(DstIndex <= First);
10155     unsigned NumClusters = Last - First + 1;
10156 
10157     CaseCluster JTCluster;
10158     if (NumClusters >= MinJumpTableEntries &&
10159         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
10160       Clusters[DstIndex++] = JTCluster;
10161     } else {
10162       for (unsigned I = First; I <= Last; ++I)
10163         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
10164     }
10165   }
10166   Clusters.resize(DstIndex);
10167 }
10168 
10169 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
10170                                         unsigned First, unsigned Last,
10171                                         const SwitchInst *SI,
10172                                         CaseCluster &BTCluster) {
10173   assert(First <= Last);
10174   if (First == Last)
10175     return false;
10176 
10177   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10178   unsigned NumCmps = 0;
10179   for (int64_t I = First; I <= Last; ++I) {
10180     assert(Clusters[I].Kind == CC_Range);
10181     Dests.set(Clusters[I].MBB->getNumber());
10182     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10183   }
10184   unsigned NumDests = Dests.count();
10185 
10186   APInt Low = Clusters[First].Low->getValue();
10187   APInt High = Clusters[Last].High->getValue();
10188   assert(Low.slt(High));
10189 
10190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10191   const DataLayout &DL = DAG.getDataLayout();
10192   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10193     return false;
10194 
10195   APInt LowBound;
10196   APInt CmpRange;
10197 
10198   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10199   assert(TLI.rangeFitsInWord(Low, High, DL) &&
10200          "Case range must fit in bit mask!");
10201 
10202   // Check if the clusters cover a contiguous range such that no value in the
10203   // range will jump to the default statement.
10204   bool ContiguousRange = true;
10205   for (int64_t I = First + 1; I <= Last; ++I) {
10206     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10207       ContiguousRange = false;
10208       break;
10209     }
10210   }
10211 
10212   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10213     // Optimize the case where all the case values fit in a word without having
10214     // to subtract minValue. In this case, we can optimize away the subtraction.
10215     LowBound = APInt::getNullValue(Low.getBitWidth());
10216     CmpRange = High;
10217     ContiguousRange = false;
10218   } else {
10219     LowBound = Low;
10220     CmpRange = High - Low;
10221   }
10222 
10223   CaseBitsVector CBV;
10224   auto TotalProb = BranchProbability::getZero();
10225   for (unsigned i = First; i <= Last; ++i) {
10226     // Find the CaseBits for this destination.
10227     unsigned j;
10228     for (j = 0; j < CBV.size(); ++j)
10229       if (CBV[j].BB == Clusters[i].MBB)
10230         break;
10231     if (j == CBV.size())
10232       CBV.push_back(
10233           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10234     CaseBits *CB = &CBV[j];
10235 
10236     // Update Mask, Bits and ExtraProb.
10237     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10238     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10239     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10240     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10241     CB->Bits += Hi - Lo + 1;
10242     CB->ExtraProb += Clusters[i].Prob;
10243     TotalProb += Clusters[i].Prob;
10244   }
10245 
10246   BitTestInfo BTI;
10247   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10248     // Sort by probability first, number of bits second, bit mask third.
10249     if (a.ExtraProb != b.ExtraProb)
10250       return a.ExtraProb > b.ExtraProb;
10251     if (a.Bits != b.Bits)
10252       return a.Bits > b.Bits;
10253     return a.Mask < b.Mask;
10254   });
10255 
10256   for (auto &CB : CBV) {
10257     MachineBasicBlock *BitTestBB =
10258         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10259     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10260   }
10261   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10262                             SI->getCondition(), -1U, MVT::Other, false,
10263                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10264                             TotalProb);
10265 
10266   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10267                                     BitTestCases.size() - 1, TotalProb);
10268   return true;
10269 }
10270 
10271 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10272                                               const SwitchInst *SI) {
10273 // Partition Clusters into as few subsets as possible, where each subset has a
10274 // range that fits in a machine word and has <= 3 unique destinations.
10275 
10276 #ifndef NDEBUG
10277   // Clusters must be sorted and contain Range or JumpTable clusters.
10278   assert(!Clusters.empty());
10279   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10280   for (const CaseCluster &C : Clusters)
10281     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10282   for (unsigned i = 1; i < Clusters.size(); ++i)
10283     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10284 #endif
10285 
10286   // The algorithm below is not suitable for -O0.
10287   if (TM.getOptLevel() == CodeGenOpt::None)
10288     return;
10289 
10290   // If target does not have legal shift left, do not emit bit tests at all.
10291   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10292   const DataLayout &DL = DAG.getDataLayout();
10293 
10294   EVT PTy = TLI.getPointerTy(DL);
10295   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10296     return;
10297 
10298   int BitWidth = PTy.getSizeInBits();
10299   const int64_t N = Clusters.size();
10300 
10301   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10302   SmallVector<unsigned, 8> MinPartitions(N);
10303   // LastElement[i] is the last element of the partition starting at i.
10304   SmallVector<unsigned, 8> LastElement(N);
10305 
10306   // FIXME: This might not be the best algorithm for finding bit test clusters.
10307 
10308   // Base case: There is only one way to partition Clusters[N-1].
10309   MinPartitions[N - 1] = 1;
10310   LastElement[N - 1] = N - 1;
10311 
10312   // Note: loop indexes are signed to avoid underflow.
10313   for (int64_t i = N - 2; i >= 0; --i) {
10314     // Find optimal partitioning of Clusters[i..N-1].
10315     // Baseline: Put Clusters[i] into a partition on its own.
10316     MinPartitions[i] = MinPartitions[i + 1] + 1;
10317     LastElement[i] = i;
10318 
10319     // Search for a solution that results in fewer partitions.
10320     // Note: the search is limited by BitWidth, reducing time complexity.
10321     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10322       // Try building a partition from Clusters[i..j].
10323 
10324       // Check the range.
10325       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10326                                Clusters[j].High->getValue(), DL))
10327         continue;
10328 
10329       // Check nbr of destinations and cluster types.
10330       // FIXME: This works, but doesn't seem very efficient.
10331       bool RangesOnly = true;
10332       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10333       for (int64_t k = i; k <= j; k++) {
10334         if (Clusters[k].Kind != CC_Range) {
10335           RangesOnly = false;
10336           break;
10337         }
10338         Dests.set(Clusters[k].MBB->getNumber());
10339       }
10340       if (!RangesOnly || Dests.count() > 3)
10341         break;
10342 
10343       // Check if it's a better partition.
10344       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10345       if (NumPartitions < MinPartitions[i]) {
10346         // Found a better partition.
10347         MinPartitions[i] = NumPartitions;
10348         LastElement[i] = j;
10349       }
10350     }
10351   }
10352 
10353   // Iterate over the partitions, replacing with bit-test clusters in-place.
10354   unsigned DstIndex = 0;
10355   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10356     Last = LastElement[First];
10357     assert(First <= Last);
10358     assert(DstIndex <= First);
10359 
10360     CaseCluster BitTestCluster;
10361     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10362       Clusters[DstIndex++] = BitTestCluster;
10363     } else {
10364       size_t NumClusters = Last - First + 1;
10365       std::memmove(&Clusters[DstIndex], &Clusters[First],
10366                    sizeof(Clusters[0]) * NumClusters);
10367       DstIndex += NumClusters;
10368     }
10369   }
10370   Clusters.resize(DstIndex);
10371 }
10372 
10373 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10374                                         MachineBasicBlock *SwitchMBB,
10375                                         MachineBasicBlock *DefaultMBB) {
10376   MachineFunction *CurMF = FuncInfo.MF;
10377   MachineBasicBlock *NextMBB = nullptr;
10378   MachineFunction::iterator BBI(W.MBB);
10379   if (++BBI != FuncInfo.MF->end())
10380     NextMBB = &*BBI;
10381 
10382   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10383 
10384   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10385 
10386   if (Size == 2 && W.MBB == SwitchMBB) {
10387     // If any two of the cases has the same destination, and if one value
10388     // is the same as the other, but has one bit unset that the other has set,
10389     // use bit manipulation to do two compares at once.  For example:
10390     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10391     // TODO: This could be extended to merge any 2 cases in switches with 3
10392     // cases.
10393     // TODO: Handle cases where W.CaseBB != SwitchBB.
10394     CaseCluster &Small = *W.FirstCluster;
10395     CaseCluster &Big = *W.LastCluster;
10396 
10397     if (Small.Low == Small.High && Big.Low == Big.High &&
10398         Small.MBB == Big.MBB) {
10399       const APInt &SmallValue = Small.Low->getValue();
10400       const APInt &BigValue = Big.Low->getValue();
10401 
10402       // Check that there is only one bit different.
10403       APInt CommonBit = BigValue ^ SmallValue;
10404       if (CommonBit.isPowerOf2()) {
10405         SDValue CondLHS = getValue(Cond);
10406         EVT VT = CondLHS.getValueType();
10407         SDLoc DL = getCurSDLoc();
10408 
10409         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10410                                  DAG.getConstant(CommonBit, DL, VT));
10411         SDValue Cond = DAG.getSetCC(
10412             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10413             ISD::SETEQ);
10414 
10415         // Update successor info.
10416         // Both Small and Big will jump to Small.BB, so we sum up the
10417         // probabilities.
10418         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10419         if (BPI)
10420           addSuccessorWithProb(
10421               SwitchMBB, DefaultMBB,
10422               // The default destination is the first successor in IR.
10423               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10424         else
10425           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10426 
10427         // Insert the true branch.
10428         SDValue BrCond =
10429             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10430                         DAG.getBasicBlock(Small.MBB));
10431         // Insert the false branch.
10432         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10433                              DAG.getBasicBlock(DefaultMBB));
10434 
10435         DAG.setRoot(BrCond);
10436         return;
10437       }
10438     }
10439   }
10440 
10441   if (TM.getOptLevel() != CodeGenOpt::None) {
10442     // Here, we order cases by probability so the most likely case will be
10443     // checked first. However, two clusters can have the same probability in
10444     // which case their relative ordering is non-deterministic. So we use Low
10445     // as a tie-breaker as clusters are guaranteed to never overlap.
10446     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10447                [](const CaseCluster &a, const CaseCluster &b) {
10448       return a.Prob != b.Prob ?
10449              a.Prob > b.Prob :
10450              a.Low->getValue().slt(b.Low->getValue());
10451     });
10452 
10453     // Rearrange the case blocks so that the last one falls through if possible
10454     // without changing the order of probabilities.
10455     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10456       --I;
10457       if (I->Prob > W.LastCluster->Prob)
10458         break;
10459       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10460         std::swap(*I, *W.LastCluster);
10461         break;
10462       }
10463     }
10464   }
10465 
10466   // Compute total probability.
10467   BranchProbability DefaultProb = W.DefaultProb;
10468   BranchProbability UnhandledProbs = DefaultProb;
10469   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10470     UnhandledProbs += I->Prob;
10471 
10472   MachineBasicBlock *CurMBB = W.MBB;
10473   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10474     bool FallthroughUnreachable = false;
10475     MachineBasicBlock *Fallthrough;
10476     if (I == W.LastCluster) {
10477       // For the last cluster, fall through to the default destination.
10478       Fallthrough = DefaultMBB;
10479       FallthroughUnreachable = isa<UnreachableInst>(
10480           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10481     } else {
10482       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10483       CurMF->insert(BBI, Fallthrough);
10484       // Put Cond in a virtual register to make it available from the new blocks.
10485       ExportFromCurrentBlock(Cond);
10486     }
10487     UnhandledProbs -= I->Prob;
10488 
10489     switch (I->Kind) {
10490       case CC_JumpTable: {
10491         // FIXME: Optimize away range check based on pivot comparisons.
10492         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10493         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10494 
10495         // The jump block hasn't been inserted yet; insert it here.
10496         MachineBasicBlock *JumpMBB = JT->MBB;
10497         CurMF->insert(BBI, JumpMBB);
10498 
10499         auto JumpProb = I->Prob;
10500         auto FallthroughProb = UnhandledProbs;
10501 
10502         // If the default statement is a target of the jump table, we evenly
10503         // distribute the default probability to successors of CurMBB. Also
10504         // update the probability on the edge from JumpMBB to Fallthrough.
10505         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10506                                               SE = JumpMBB->succ_end();
10507              SI != SE; ++SI) {
10508           if (*SI == DefaultMBB) {
10509             JumpProb += DefaultProb / 2;
10510             FallthroughProb -= DefaultProb / 2;
10511             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10512             JumpMBB->normalizeSuccProbs();
10513             break;
10514           }
10515         }
10516 
10517         if (FallthroughUnreachable) {
10518           // Skip the range check if the fallthrough block is unreachable.
10519           JTH->OmitRangeCheck = true;
10520         }
10521 
10522         if (!JTH->OmitRangeCheck)
10523           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10524         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10525         CurMBB->normalizeSuccProbs();
10526 
10527         // The jump table header will be inserted in our current block, do the
10528         // range check, and fall through to our fallthrough block.
10529         JTH->HeaderBB = CurMBB;
10530         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10531 
10532         // If we're in the right place, emit the jump table header right now.
10533         if (CurMBB == SwitchMBB) {
10534           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10535           JTH->Emitted = true;
10536         }
10537         break;
10538       }
10539       case CC_BitTests: {
10540         // FIXME: If Fallthrough is unreachable, skip the range check.
10541 
10542         // FIXME: Optimize away range check based on pivot comparisons.
10543         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10544 
10545         // The bit test blocks haven't been inserted yet; insert them here.
10546         for (BitTestCase &BTC : BTB->Cases)
10547           CurMF->insert(BBI, BTC.ThisBB);
10548 
10549         // Fill in fields of the BitTestBlock.
10550         BTB->Parent = CurMBB;
10551         BTB->Default = Fallthrough;
10552 
10553         BTB->DefaultProb = UnhandledProbs;
10554         // If the cases in bit test don't form a contiguous range, we evenly
10555         // distribute the probability on the edge to Fallthrough to two
10556         // successors of CurMBB.
10557         if (!BTB->ContiguousRange) {
10558           BTB->Prob += DefaultProb / 2;
10559           BTB->DefaultProb -= DefaultProb / 2;
10560         }
10561 
10562         // If we're in the right place, emit the bit test header right now.
10563         if (CurMBB == SwitchMBB) {
10564           visitBitTestHeader(*BTB, SwitchMBB);
10565           BTB->Emitted = true;
10566         }
10567         break;
10568       }
10569       case CC_Range: {
10570         const Value *RHS, *LHS, *MHS;
10571         ISD::CondCode CC;
10572         if (I->Low == I->High) {
10573           // Check Cond == I->Low.
10574           CC = ISD::SETEQ;
10575           LHS = Cond;
10576           RHS=I->Low;
10577           MHS = nullptr;
10578         } else {
10579           // Check I->Low <= Cond <= I->High.
10580           CC = ISD::SETLE;
10581           LHS = I->Low;
10582           MHS = Cond;
10583           RHS = I->High;
10584         }
10585 
10586         // If Fallthrough is unreachable, fold away the comparison.
10587         if (FallthroughUnreachable)
10588           CC = ISD::SETTRUE;
10589 
10590         // The false probability is the sum of all unhandled cases.
10591         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10592                      getCurSDLoc(), I->Prob, UnhandledProbs);
10593 
10594         if (CurMBB == SwitchMBB)
10595           visitSwitchCase(CB, SwitchMBB);
10596         else
10597           SwitchCases.push_back(CB);
10598 
10599         break;
10600       }
10601     }
10602     CurMBB = Fallthrough;
10603   }
10604 }
10605 
10606 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10607                                               CaseClusterIt First,
10608                                               CaseClusterIt Last) {
10609   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10610     if (X.Prob != CC.Prob)
10611       return X.Prob > CC.Prob;
10612 
10613     // Ties are broken by comparing the case value.
10614     return X.Low->getValue().slt(CC.Low->getValue());
10615   });
10616 }
10617 
10618 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10619                                         const SwitchWorkListItem &W,
10620                                         Value *Cond,
10621                                         MachineBasicBlock *SwitchMBB) {
10622   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10623          "Clusters not sorted?");
10624 
10625   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10626 
10627   // Balance the tree based on branch probabilities to create a near-optimal (in
10628   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10629   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10630   CaseClusterIt LastLeft = W.FirstCluster;
10631   CaseClusterIt FirstRight = W.LastCluster;
10632   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10633   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10634 
10635   // Move LastLeft and FirstRight towards each other from opposite directions to
10636   // find a partitioning of the clusters which balances the probability on both
10637   // sides. If LeftProb and RightProb are equal, alternate which side is
10638   // taken to ensure 0-probability nodes are distributed evenly.
10639   unsigned I = 0;
10640   while (LastLeft + 1 < FirstRight) {
10641     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10642       LeftProb += (++LastLeft)->Prob;
10643     else
10644       RightProb += (--FirstRight)->Prob;
10645     I++;
10646   }
10647 
10648   while (true) {
10649     // Our binary search tree differs from a typical BST in that ours can have up
10650     // to three values in each leaf. The pivot selection above doesn't take that
10651     // into account, which means the tree might require more nodes and be less
10652     // efficient. We compensate for this here.
10653 
10654     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10655     unsigned NumRight = W.LastCluster - FirstRight + 1;
10656 
10657     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10658       // If one side has less than 3 clusters, and the other has more than 3,
10659       // consider taking a cluster from the other side.
10660 
10661       if (NumLeft < NumRight) {
10662         // Consider moving the first cluster on the right to the left side.
10663         CaseCluster &CC = *FirstRight;
10664         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10665         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10666         if (LeftSideRank <= RightSideRank) {
10667           // Moving the cluster to the left does not demote it.
10668           ++LastLeft;
10669           ++FirstRight;
10670           continue;
10671         }
10672       } else {
10673         assert(NumRight < NumLeft);
10674         // Consider moving the last element on the left to the right side.
10675         CaseCluster &CC = *LastLeft;
10676         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10677         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10678         if (RightSideRank <= LeftSideRank) {
10679           // Moving the cluster to the right does not demot it.
10680           --LastLeft;
10681           --FirstRight;
10682           continue;
10683         }
10684       }
10685     }
10686     break;
10687   }
10688 
10689   assert(LastLeft + 1 == FirstRight);
10690   assert(LastLeft >= W.FirstCluster);
10691   assert(FirstRight <= W.LastCluster);
10692 
10693   // Use the first element on the right as pivot since we will make less-than
10694   // comparisons against it.
10695   CaseClusterIt PivotCluster = FirstRight;
10696   assert(PivotCluster > W.FirstCluster);
10697   assert(PivotCluster <= W.LastCluster);
10698 
10699   CaseClusterIt FirstLeft = W.FirstCluster;
10700   CaseClusterIt LastRight = W.LastCluster;
10701 
10702   const ConstantInt *Pivot = PivotCluster->Low;
10703 
10704   // New blocks will be inserted immediately after the current one.
10705   MachineFunction::iterator BBI(W.MBB);
10706   ++BBI;
10707 
10708   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10709   // we can branch to its destination directly if it's squeezed exactly in
10710   // between the known lower bound and Pivot - 1.
10711   MachineBasicBlock *LeftMBB;
10712   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10713       FirstLeft->Low == W.GE &&
10714       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10715     LeftMBB = FirstLeft->MBB;
10716   } else {
10717     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10718     FuncInfo.MF->insert(BBI, LeftMBB);
10719     WorkList.push_back(
10720         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10721     // Put Cond in a virtual register to make it available from the new blocks.
10722     ExportFromCurrentBlock(Cond);
10723   }
10724 
10725   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10726   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10727   // directly if RHS.High equals the current upper bound.
10728   MachineBasicBlock *RightMBB;
10729   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10730       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10731     RightMBB = FirstRight->MBB;
10732   } else {
10733     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10734     FuncInfo.MF->insert(BBI, RightMBB);
10735     WorkList.push_back(
10736         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10737     // Put Cond in a virtual register to make it available from the new blocks.
10738     ExportFromCurrentBlock(Cond);
10739   }
10740 
10741   // Create the CaseBlock record that will be used to lower the branch.
10742   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10743                getCurSDLoc(), LeftProb, RightProb);
10744 
10745   if (W.MBB == SwitchMBB)
10746     visitSwitchCase(CB, SwitchMBB);
10747   else
10748     SwitchCases.push_back(CB);
10749 }
10750 
10751 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10752 // from the swith statement.
10753 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10754                                             BranchProbability PeeledCaseProb) {
10755   if (PeeledCaseProb == BranchProbability::getOne())
10756     return BranchProbability::getZero();
10757   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10758 
10759   uint32_t Numerator = CaseProb.getNumerator();
10760   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10761   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10762 }
10763 
10764 // Try to peel the top probability case if it exceeds the threshold.
10765 // Return current MachineBasicBlock for the switch statement if the peeling
10766 // does not occur.
10767 // If the peeling is performed, return the newly created MachineBasicBlock
10768 // for the peeled switch statement. Also update Clusters to remove the peeled
10769 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10770 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10771     const SwitchInst &SI, CaseClusterVector &Clusters,
10772     BranchProbability &PeeledCaseProb) {
10773   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10774   // Don't perform if there is only one cluster or optimizing for size.
10775   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10776       TM.getOptLevel() == CodeGenOpt::None ||
10777       SwitchMBB->getParent()->getFunction().hasMinSize())
10778     return SwitchMBB;
10779 
10780   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10781   unsigned PeeledCaseIndex = 0;
10782   bool SwitchPeeled = false;
10783   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10784     CaseCluster &CC = Clusters[Index];
10785     if (CC.Prob < TopCaseProb)
10786       continue;
10787     TopCaseProb = CC.Prob;
10788     PeeledCaseIndex = Index;
10789     SwitchPeeled = true;
10790   }
10791   if (!SwitchPeeled)
10792     return SwitchMBB;
10793 
10794   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10795                     << TopCaseProb << "\n");
10796 
10797   // Record the MBB for the peeled switch statement.
10798   MachineFunction::iterator BBI(SwitchMBB);
10799   ++BBI;
10800   MachineBasicBlock *PeeledSwitchMBB =
10801       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10802   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10803 
10804   ExportFromCurrentBlock(SI.getCondition());
10805   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10806   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10807                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10808   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10809 
10810   Clusters.erase(PeeledCaseIt);
10811   for (CaseCluster &CC : Clusters) {
10812     LLVM_DEBUG(
10813         dbgs() << "Scale the probablity for one cluster, before scaling: "
10814                << CC.Prob << "\n");
10815     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10816     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10817   }
10818   PeeledCaseProb = TopCaseProb;
10819   return PeeledSwitchMBB;
10820 }
10821 
10822 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10823   // Extract cases from the switch.
10824   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10825   CaseClusterVector Clusters;
10826   Clusters.reserve(SI.getNumCases());
10827   for (auto I : SI.cases()) {
10828     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10829     const ConstantInt *CaseVal = I.getCaseValue();
10830     BranchProbability Prob =
10831         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10832             : BranchProbability(1, SI.getNumCases() + 1);
10833     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10834   }
10835 
10836   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10837 
10838   // Cluster adjacent cases with the same destination. We do this at all
10839   // optimization levels because it's cheap to do and will make codegen faster
10840   // if there are many clusters.
10841   sortAndRangeify(Clusters);
10842 
10843   // The branch probablity of the peeled case.
10844   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10845   MachineBasicBlock *PeeledSwitchMBB =
10846       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10847 
10848   // If there is only the default destination, jump there directly.
10849   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10850   if (Clusters.empty()) {
10851     assert(PeeledSwitchMBB == SwitchMBB);
10852     SwitchMBB->addSuccessor(DefaultMBB);
10853     if (DefaultMBB != NextBlock(SwitchMBB)) {
10854       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10855                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10856     }
10857     return;
10858   }
10859 
10860   findJumpTables(Clusters, &SI, DefaultMBB);
10861   findBitTestClusters(Clusters, &SI);
10862 
10863   LLVM_DEBUG({
10864     dbgs() << "Case clusters: ";
10865     for (const CaseCluster &C : Clusters) {
10866       if (C.Kind == CC_JumpTable)
10867         dbgs() << "JT:";
10868       if (C.Kind == CC_BitTests)
10869         dbgs() << "BT:";
10870 
10871       C.Low->getValue().print(dbgs(), true);
10872       if (C.Low != C.High) {
10873         dbgs() << '-';
10874         C.High->getValue().print(dbgs(), true);
10875       }
10876       dbgs() << ' ';
10877     }
10878     dbgs() << '\n';
10879   });
10880 
10881   assert(!Clusters.empty());
10882   SwitchWorkList WorkList;
10883   CaseClusterIt First = Clusters.begin();
10884   CaseClusterIt Last = Clusters.end() - 1;
10885   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10886   // Scale the branchprobability for DefaultMBB if the peel occurs and
10887   // DefaultMBB is not replaced.
10888   if (PeeledCaseProb != BranchProbability::getZero() &&
10889       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10890     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10891   WorkList.push_back(
10892       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10893 
10894   while (!WorkList.empty()) {
10895     SwitchWorkListItem W = WorkList.back();
10896     WorkList.pop_back();
10897     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10898 
10899     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10900         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10901       // For optimized builds, lower large range as a balanced binary tree.
10902       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10903       continue;
10904     }
10905 
10906     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10907   }
10908 }
10909