1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = 219 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 326 // then truncating. 327 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 328 ValueVT.bitsLT(PartEVT)) { 329 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 330 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 331 } 332 333 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 334 } 335 336 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 337 const Twine &ErrMsg) { 338 const Instruction *I = dyn_cast_or_null<Instruction>(V); 339 if (!V) 340 return Ctx.emitError(ErrMsg); 341 342 const char *AsmError = ", possible invalid constraint for vector type"; 343 if (const CallInst *CI = dyn_cast<CallInst>(I)) 344 if (isa<InlineAsm>(CI->getCalledValue())) 345 return Ctx.emitError(I, ErrMsg + AsmError); 346 347 return Ctx.emitError(I, ErrMsg); 348 } 349 350 /// getCopyFromPartsVector - Create a value that contains the specified legal 351 /// parts combined into the value they represent. If the parts combine to a 352 /// type larger than ValueVT then AssertOp can be used to specify whether the 353 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 354 /// ValueVT (ISD::AssertSext). 355 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 356 const SDValue *Parts, unsigned NumParts, 357 MVT PartVT, EVT ValueVT, const Value *V, 358 Optional<CallingConv::ID> CallConv) { 359 assert(ValueVT.isVector() && "Not a vector value"); 360 assert(NumParts > 0 && "No parts to assemble!"); 361 const bool IsABIRegCopy = CallConv.hasValue(); 362 363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 364 SDValue Val = Parts[0]; 365 366 // Handle a multi-element vector. 367 if (NumParts > 1) { 368 EVT IntermediateVT; 369 MVT RegisterVT; 370 unsigned NumIntermediates; 371 unsigned NumRegs; 372 373 if (IsABIRegCopy) { 374 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 375 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 376 NumIntermediates, RegisterVT); 377 } else { 378 NumRegs = 379 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 380 NumIntermediates, RegisterVT); 381 } 382 383 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 384 NumParts = NumRegs; // Silence a compiler warning. 385 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 386 assert(RegisterVT.getSizeInBits() == 387 Parts[0].getSimpleValueType().getSizeInBits() && 388 "Part type sizes don't match!"); 389 390 // Assemble the parts into intermediate operands. 391 SmallVector<SDValue, 8> Ops(NumIntermediates); 392 if (NumIntermediates == NumParts) { 393 // If the register was not expanded, truncate or copy the value, 394 // as appropriate. 395 for (unsigned i = 0; i != NumParts; ++i) 396 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 397 PartVT, IntermediateVT, V); 398 } else if (NumParts > 0) { 399 // If the intermediate type was expanded, build the intermediate 400 // operands from the parts. 401 assert(NumParts % NumIntermediates == 0 && 402 "Must expand into a divisible number of parts!"); 403 unsigned Factor = NumParts / NumIntermediates; 404 for (unsigned i = 0; i != NumIntermediates; ++i) 405 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 406 PartVT, IntermediateVT, V); 407 } 408 409 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 410 // intermediate operands. 411 EVT BuiltVectorTy = 412 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 413 (IntermediateVT.isVector() 414 ? IntermediateVT.getVectorNumElements() * NumParts 415 : NumIntermediates)); 416 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 417 : ISD::BUILD_VECTOR, 418 DL, BuiltVectorTy, Ops); 419 } 420 421 // There is now one part, held in Val. Correct it to match ValueVT. 422 EVT PartEVT = Val.getValueType(); 423 424 if (PartEVT == ValueVT) 425 return Val; 426 427 if (PartEVT.isVector()) { 428 // If the element type of the source/dest vectors are the same, but the 429 // parts vector has more elements than the value vector, then we have a 430 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 431 // elements we want. 432 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 433 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 434 "Cannot narrow, it would be a lossy transformation"); 435 return DAG.getNode( 436 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 437 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 438 } 439 440 // Vector/Vector bitcast. 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 444 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 445 "Cannot handle this kind of promotion"); 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 449 } 450 451 // Trivial bitcast if the types are the same size and the destination 452 // vector type is legal. 453 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 454 TLI.isTypeLegal(ValueVT)) 455 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 456 457 if (ValueVT.getVectorNumElements() != 1) { 458 // Certain ABIs require that vectors are passed as integers. For vectors 459 // are the same size, this is an obvious bitcast. 460 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 463 // Bitcast Val back the original type and extract the corresponding 464 // vector we want. 465 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 466 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 467 ValueVT.getVectorElementType(), Elts); 468 Val = DAG.getBitcast(WiderVecType, Val); 469 return DAG.getNode( 470 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 471 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 472 } 473 474 diagnosePossiblyInvalidConstraint( 475 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 476 return DAG.getUNDEF(ValueVT); 477 } 478 479 // Handle cases such as i8 -> <1 x i1> 480 EVT ValueSVT = ValueVT.getVectorElementType(); 481 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 482 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 483 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 484 485 return DAG.getBuildVector(ValueVT, DL, Val); 486 } 487 488 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 489 SDValue Val, SDValue *Parts, unsigned NumParts, 490 MVT PartVT, const Value *V, 491 Optional<CallingConv::ID> CallConv); 492 493 /// getCopyToParts - Create a series of nodes that contain the specified value 494 /// split into legal parts. If the parts contain more bits than Val, then, for 495 /// integers, ExtendKind can be used to specify how to generate the extra bits. 496 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 497 SDValue *Parts, unsigned NumParts, MVT PartVT, 498 const Value *V, 499 Optional<CallingConv::ID> CallConv = None, 500 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 501 EVT ValueVT = Val.getValueType(); 502 503 // Handle the vector case separately. 504 if (ValueVT.isVector()) 505 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 506 CallConv); 507 508 unsigned PartBits = PartVT.getSizeInBits(); 509 unsigned OrigNumParts = NumParts; 510 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 511 "Copying to an illegal type!"); 512 513 if (NumParts == 0) 514 return; 515 516 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 517 EVT PartEVT = PartVT; 518 if (PartEVT == ValueVT) { 519 assert(NumParts == 1 && "No-op copy with multiple parts!"); 520 Parts[0] = Val; 521 return; 522 } 523 524 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 525 // If the parts cover more bits than the value has, promote the value. 526 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 527 assert(NumParts == 1 && "Do not know what to promote to!"); 528 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 529 } else { 530 if (ValueVT.isFloatingPoint()) { 531 // FP values need to be bitcast, then extended if they are being put 532 // into a larger container. 533 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 534 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 535 } 536 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 537 ValueVT.isInteger() && 538 "Unknown mismatch!"); 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 540 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 541 if (PartVT == MVT::x86mmx) 542 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 543 } 544 } else if (PartBits == ValueVT.getSizeInBits()) { 545 // Different types of the same size. 546 assert(NumParts == 1 && PartEVT != ValueVT); 547 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 548 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 549 // If the parts cover less bits than value has, truncate the value. 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 559 // The value may have changed - recompute ValueVT. 560 ValueVT = Val.getValueType(); 561 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 562 "Failed to tile the value with PartVT!"); 563 564 if (NumParts == 1) { 565 if (PartEVT != ValueVT) { 566 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 567 "scalar-to-vector conversion failed"); 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 Parts[0] = Val; 572 return; 573 } 574 575 // Expand the value into multiple parts. 576 if (NumParts & (NumParts - 1)) { 577 // The number of parts is not a power of 2. Split off and copy the tail. 578 assert(PartVT.isInteger() && ValueVT.isInteger() && 579 "Do not know what to expand to!"); 580 unsigned RoundParts = 1 << Log2_32(NumParts); 581 unsigned RoundBits = RoundParts * PartBits; 582 unsigned OddParts = NumParts - RoundParts; 583 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 584 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 585 586 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 587 CallConv); 588 589 if (DAG.getDataLayout().isBigEndian()) 590 // The odd parts were reversed by getCopyToParts - unreverse them. 591 std::reverse(Parts + RoundParts, Parts + NumParts); 592 593 NumParts = RoundParts; 594 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 595 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 596 } 597 598 // The number of parts is a power of 2. Repeatedly bisect the value using 599 // EXTRACT_ELEMENT. 600 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 601 EVT::getIntegerVT(*DAG.getContext(), 602 ValueVT.getSizeInBits()), 603 Val); 604 605 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 606 for (unsigned i = 0; i < NumParts; i += StepSize) { 607 unsigned ThisBits = StepSize * PartBits / 2; 608 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 609 SDValue &Part0 = Parts[i]; 610 SDValue &Part1 = Parts[i+StepSize/2]; 611 612 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 613 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 614 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 616 617 if (ThisBits == PartBits && ThisVT != PartVT) { 618 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 619 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 620 } 621 } 622 } 623 624 if (DAG.getDataLayout().isBigEndian()) 625 std::reverse(Parts, Parts + OrigNumParts); 626 } 627 628 static SDValue widenVectorToPartType(SelectionDAG &DAG, 629 SDValue Val, const SDLoc &DL, EVT PartVT) { 630 if (!PartVT.isVector()) 631 return SDValue(); 632 633 EVT ValueVT = Val.getValueType(); 634 unsigned PartNumElts = PartVT.getVectorNumElements(); 635 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 636 if (PartNumElts > ValueNumElts && 637 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 638 EVT ElementVT = PartVT.getVectorElementType(); 639 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 640 // undef elements. 641 SmallVector<SDValue, 16> Ops; 642 DAG.ExtractVectorElements(Val, Ops); 643 SDValue EltUndef = DAG.getUNDEF(ElementVT); 644 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 645 Ops.push_back(EltUndef); 646 647 // FIXME: Use CONCAT for 2x -> 4x. 648 return DAG.getBuildVector(PartVT, DL, Ops); 649 } 650 651 return SDValue(); 652 } 653 654 /// getCopyToPartsVector - Create a series of nodes that contain the specified 655 /// value split into legal parts. 656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 657 SDValue Val, SDValue *Parts, unsigned NumParts, 658 MVT PartVT, const Value *V, 659 Optional<CallingConv::ID> CallConv) { 660 EVT ValueVT = Val.getValueType(); 661 assert(ValueVT.isVector() && "Not a vector"); 662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 663 const bool IsABIRegCopy = CallConv.hasValue(); 664 665 if (NumParts == 1) { 666 EVT PartEVT = PartVT; 667 if (PartEVT == ValueVT) { 668 // Nothing to do. 669 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 670 // Bitconvert vector->vector case. 671 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 672 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 673 Val = Widened; 674 } else if (PartVT.isVector() && 675 PartEVT.getVectorElementType().bitsGE( 676 ValueVT.getVectorElementType()) && 677 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else { 682 if (ValueVT.getVectorNumElements() == 1) { 683 Val = DAG.getNode( 684 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 685 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 686 } else { 687 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 688 "lossy conversion of vector to scalar type"); 689 EVT IntermediateType = 690 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 691 Val = DAG.getBitcast(IntermediateType, Val); 692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 693 } 694 } 695 696 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 697 Parts[0] = Val; 698 return; 699 } 700 701 // Handle a multi-element vector. 702 EVT IntermediateVT; 703 MVT RegisterVT; 704 unsigned NumIntermediates; 705 unsigned NumRegs; 706 if (IsABIRegCopy) { 707 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 708 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 709 NumIntermediates, RegisterVT); 710 } else { 711 NumRegs = 712 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 713 NumIntermediates, RegisterVT); 714 } 715 716 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 717 NumParts = NumRegs; // Silence a compiler warning. 718 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 719 720 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 721 IntermediateVT.getVectorNumElements() : 1; 722 723 // Convert the vector to the appropiate type if necessary. 724 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 725 726 EVT BuiltVectorTy = EVT::getVectorVT( 727 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 728 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 729 if (ValueVT != BuiltVectorTy) { 730 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 731 Val = Widened; 732 733 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 734 } 735 736 // Split the vector into intermediate operands. 737 SmallVector<SDValue, 8> Ops(NumIntermediates); 738 for (unsigned i = 0; i != NumIntermediates; ++i) { 739 if (IntermediateVT.isVector()) { 740 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 741 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 742 } else { 743 Ops[i] = DAG.getNode( 744 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 745 DAG.getConstant(i, DL, IdxVT)); 746 } 747 } 748 749 // Split the intermediate operands into legal parts. 750 if (NumParts == NumIntermediates) { 751 // If the register was not expanded, promote or copy the value, 752 // as appropriate. 753 for (unsigned i = 0; i != NumParts; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 755 } else if (NumParts > 0) { 756 // If the intermediate type was expanded, split each the value into 757 // legal parts. 758 assert(NumIntermediates != 0 && "division by zero"); 759 assert(NumParts % NumIntermediates == 0 && 760 "Must expand into a divisible number of parts!"); 761 unsigned Factor = NumParts / NumIntermediates; 762 for (unsigned i = 0; i != NumIntermediates; ++i) 763 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 764 CallConv); 765 } 766 } 767 768 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 769 EVT valuevt, Optional<CallingConv::ID> CC) 770 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 771 RegCount(1, regs.size()), CallConv(CC) {} 772 773 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 774 const DataLayout &DL, unsigned Reg, Type *Ty, 775 Optional<CallingConv::ID> CC) { 776 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 777 778 CallConv = CC; 779 780 for (EVT ValueVT : ValueVTs) { 781 unsigned NumRegs = 782 isABIMangled() 783 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 784 : TLI.getNumRegisters(Context, ValueVT); 785 MVT RegisterVT = 786 isABIMangled() 787 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 788 : TLI.getRegisterType(Context, ValueVT); 789 for (unsigned i = 0; i != NumRegs; ++i) 790 Regs.push_back(Reg + i); 791 RegVTs.push_back(RegisterVT); 792 RegCount.push_back(NumRegs); 793 Reg += NumRegs; 794 } 795 } 796 797 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 798 FunctionLoweringInfo &FuncInfo, 799 const SDLoc &dl, SDValue &Chain, 800 SDValue *Flag, const Value *V) const { 801 // A Value with type {} or [0 x %t] needs no registers. 802 if (ValueVTs.empty()) 803 return SDValue(); 804 805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 806 807 // Assemble the legal parts into the final values. 808 SmallVector<SDValue, 4> Values(ValueVTs.size()); 809 SmallVector<SDValue, 8> Parts; 810 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 811 // Copy the legal parts from the registers. 812 EVT ValueVT = ValueVTs[Value]; 813 unsigned NumRegs = RegCount[Value]; 814 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 815 *DAG.getContext(), 816 CallConv.getValue(), RegVTs[Value]) 817 : RegVTs[Value]; 818 819 Parts.resize(NumRegs); 820 for (unsigned i = 0; i != NumRegs; ++i) { 821 SDValue P; 822 if (!Flag) { 823 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 824 } else { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 826 *Flag = P.getValue(2); 827 } 828 829 Chain = P.getValue(1); 830 Parts[i] = P; 831 832 // If the source register was virtual and if we know something about it, 833 // add an assert node. 834 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 835 !RegisterVT.isInteger()) 836 continue; 837 838 const FunctionLoweringInfo::LiveOutInfo *LOI = 839 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 840 if (!LOI) 841 continue; 842 843 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 844 unsigned NumSignBits = LOI->NumSignBits; 845 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 846 847 if (NumZeroBits == RegSize) { 848 // The current value is a zero. 849 // Explicitly express that as it would be easier for 850 // optimizations to kick in. 851 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 852 continue; 853 } 854 855 // FIXME: We capture more information than the dag can represent. For 856 // now, just use the tightest assertzext/assertsext possible. 857 bool isSExt; 858 EVT FromVT(MVT::Other); 859 if (NumZeroBits) { 860 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 861 isSExt = false; 862 } else if (NumSignBits > 1) { 863 FromVT = 864 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 865 isSExt = true; 866 } else { 867 continue; 868 } 869 // Add an assertion node. 870 assert(FromVT != MVT::Other); 871 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 872 RegisterVT, P, DAG.getValueType(FromVT)); 873 } 874 875 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 876 RegisterVT, ValueVT, V, CallConv); 877 Part += NumRegs; 878 Parts.clear(); 879 } 880 881 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 882 } 883 884 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 885 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 886 const Value *V, 887 ISD::NodeType PreferredExtendType) const { 888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 889 ISD::NodeType ExtendKind = PreferredExtendType; 890 891 // Get the list of the values's legal parts. 892 unsigned NumRegs = Regs.size(); 893 SmallVector<SDValue, 8> Parts(NumRegs); 894 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 895 unsigned NumParts = RegCount[Value]; 896 897 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 898 *DAG.getContext(), 899 CallConv.getValue(), RegVTs[Value]) 900 : RegVTs[Value]; 901 902 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 903 ExtendKind = ISD::ZERO_EXTEND; 904 905 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 906 NumParts, RegisterVT, V, CallConv, ExtendKind); 907 Part += NumParts; 908 } 909 910 // Copy the parts into the registers. 911 SmallVector<SDValue, 8> Chains(NumRegs); 912 for (unsigned i = 0; i != NumRegs; ++i) { 913 SDValue Part; 914 if (!Flag) { 915 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 916 } else { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 918 *Flag = Part.getValue(1); 919 } 920 921 Chains[i] = Part.getValue(0); 922 } 923 924 if (NumRegs == 1 || Flag) 925 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 926 // flagged to it. That is the CopyToReg nodes and the user are considered 927 // a single scheduling unit. If we create a TokenFactor and return it as 928 // chain, then the TokenFactor is both a predecessor (operand) of the 929 // user as well as a successor (the TF operands are flagged to the user). 930 // c1, f1 = CopyToReg 931 // c2, f2 = CopyToReg 932 // c3 = TokenFactor c1, c2 933 // ... 934 // = op c3, ..., f2 935 Chain = Chains[NumRegs-1]; 936 else 937 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 938 } 939 940 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 941 unsigned MatchingIdx, const SDLoc &dl, 942 SelectionDAG &DAG, 943 std::vector<SDValue> &Ops) const { 944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 945 946 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 947 if (HasMatching) 948 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 949 else if (!Regs.empty() && 950 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 951 // Put the register class of the virtual registers in the flag word. That 952 // way, later passes can recompute register class constraints for inline 953 // assembly as well as normal instructions. 954 // Don't do this for tied operands that can use the regclass information 955 // from the def. 956 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 957 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 958 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 959 } 960 961 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 962 Ops.push_back(Res); 963 964 if (Code == InlineAsm::Kind_Clobber) { 965 // Clobbers should always have a 1:1 mapping with registers, and may 966 // reference registers that have illegal (e.g. vector) types. Hence, we 967 // shouldn't try to apply any sort of splitting logic to them. 968 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 969 "No 1:1 mapping from clobbers to regs?"); 970 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 971 (void)SP; 972 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 973 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 974 assert( 975 (Regs[I] != SP || 976 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 977 "If we clobbered the stack pointer, MFI should know about it."); 978 } 979 return; 980 } 981 982 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 983 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 984 MVT RegisterVT = RegVTs[Value]; 985 for (unsigned i = 0; i != NumRegs; ++i) { 986 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 987 unsigned TheReg = Regs[Reg++]; 988 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 989 } 990 } 991 } 992 993 SmallVector<std::pair<unsigned, unsigned>, 4> 994 RegsForValue::getRegsAndSizes() const { 995 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 996 unsigned I = 0; 997 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 998 unsigned RegCount = std::get<0>(CountAndVT); 999 MVT RegisterVT = std::get<1>(CountAndVT); 1000 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1001 for (unsigned E = I + RegCount; I != E; ++I) 1002 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1003 } 1004 return OutVec; 1005 } 1006 1007 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1008 const TargetLibraryInfo *li) { 1009 AA = aa; 1010 GFI = gfi; 1011 LibInfo = li; 1012 DL = &DAG.getDataLayout(); 1013 Context = DAG.getContext(); 1014 LPadToCallSiteMap.clear(); 1015 } 1016 1017 void SelectionDAGBuilder::clear() { 1018 NodeMap.clear(); 1019 UnusedArgNodeMap.clear(); 1020 PendingLoads.clear(); 1021 PendingExports.clear(); 1022 CurInst = nullptr; 1023 HasTailCall = false; 1024 SDNodeOrder = LowestSDNodeOrder; 1025 StatepointLowering.clear(); 1026 } 1027 1028 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1029 DanglingDebugInfoMap.clear(); 1030 } 1031 1032 SDValue SelectionDAGBuilder::getRoot() { 1033 if (PendingLoads.empty()) 1034 return DAG.getRoot(); 1035 1036 if (PendingLoads.size() == 1) { 1037 SDValue Root = PendingLoads[0]; 1038 DAG.setRoot(Root); 1039 PendingLoads.clear(); 1040 return Root; 1041 } 1042 1043 // Otherwise, we have to make a token factor node. 1044 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1045 PendingLoads.clear(); 1046 DAG.setRoot(Root); 1047 return Root; 1048 } 1049 1050 SDValue SelectionDAGBuilder::getControlRoot() { 1051 SDValue Root = DAG.getRoot(); 1052 1053 if (PendingExports.empty()) 1054 return Root; 1055 1056 // Turn all of the CopyToReg chains into one factored node. 1057 if (Root.getOpcode() != ISD::EntryToken) { 1058 unsigned i = 0, e = PendingExports.size(); 1059 for (; i != e; ++i) { 1060 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1061 if (PendingExports[i].getNode()->getOperand(0) == Root) 1062 break; // Don't add the root if we already indirectly depend on it. 1063 } 1064 1065 if (i == e) 1066 PendingExports.push_back(Root); 1067 } 1068 1069 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1070 PendingExports); 1071 PendingExports.clear(); 1072 DAG.setRoot(Root); 1073 return Root; 1074 } 1075 1076 void SelectionDAGBuilder::visit(const Instruction &I) { 1077 // Set up outgoing PHI node register values before emitting the terminator. 1078 if (I.isTerminator()) { 1079 HandlePHINodesInSuccessorBlocks(I.getParent()); 1080 } 1081 1082 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1083 if (!isa<DbgInfoIntrinsic>(I)) 1084 ++SDNodeOrder; 1085 1086 CurInst = &I; 1087 1088 visit(I.getOpcode(), I); 1089 1090 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1091 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1092 // maps to this instruction. 1093 // TODO: We could handle all flags (nsw, etc) here. 1094 // TODO: If an IR instruction maps to >1 node, only the final node will have 1095 // flags set. 1096 if (SDNode *Node = getNodeForIRValue(&I)) { 1097 SDNodeFlags IncomingFlags; 1098 IncomingFlags.copyFMF(*FPMO); 1099 if (!Node->getFlags().isDefined()) 1100 Node->setFlags(IncomingFlags); 1101 else 1102 Node->intersectFlagsWith(IncomingFlags); 1103 } 1104 } 1105 1106 if (!I.isTerminator() && !HasTailCall && 1107 !isStatepoint(&I)) // statepoints handle their exports internally 1108 CopyToExportRegsIfNeeded(&I); 1109 1110 CurInst = nullptr; 1111 } 1112 1113 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1114 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1115 } 1116 1117 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1118 // Note: this doesn't use InstVisitor, because it has to work with 1119 // ConstantExpr's in addition to instructions. 1120 switch (Opcode) { 1121 default: llvm_unreachable("Unknown instruction type encountered!"); 1122 // Build the switch statement using the Instruction.def file. 1123 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1124 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1125 #include "llvm/IR/Instruction.def" 1126 } 1127 } 1128 1129 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1130 const DIExpression *Expr) { 1131 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1132 const DbgValueInst *DI = DDI.getDI(); 1133 DIVariable *DanglingVariable = DI->getVariable(); 1134 DIExpression *DanglingExpr = DI->getExpression(); 1135 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1136 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1137 return true; 1138 } 1139 return false; 1140 }; 1141 1142 for (auto &DDIMI : DanglingDebugInfoMap) { 1143 DanglingDebugInfoVector &DDIV = DDIMI.second; 1144 1145 // If debug info is to be dropped, run it through final checks to see 1146 // whether it can be salvaged. 1147 for (auto &DDI : DDIV) 1148 if (isMatchingDbgValue(DDI)) 1149 salvageUnresolvedDbgValue(DDI); 1150 1151 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1152 } 1153 } 1154 1155 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1156 // generate the debug data structures now that we've seen its definition. 1157 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1158 SDValue Val) { 1159 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1160 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1161 return; 1162 1163 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1164 for (auto &DDI : DDIV) { 1165 const DbgValueInst *DI = DDI.getDI(); 1166 assert(DI && "Ill-formed DanglingDebugInfo"); 1167 DebugLoc dl = DDI.getdl(); 1168 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1169 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1170 DILocalVariable *Variable = DI->getVariable(); 1171 DIExpression *Expr = DI->getExpression(); 1172 assert(Variable->isValidLocationForIntrinsic(dl) && 1173 "Expected inlined-at fields to agree"); 1174 SDDbgValue *SDV; 1175 if (Val.getNode()) { 1176 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1177 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1178 // we couldn't resolve it directly when examining the DbgValue intrinsic 1179 // in the first place we should not be more successful here). Unless we 1180 // have some test case that prove this to be correct we should avoid 1181 // calling EmitFuncArgumentDbgValue here. 1182 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1183 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1184 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1185 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1186 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1187 // inserted after the definition of Val when emitting the instructions 1188 // after ISel. An alternative could be to teach 1189 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1190 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1191 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1192 << ValSDNodeOrder << "\n"); 1193 SDV = getDbgValue(Val, Variable, Expr, dl, 1194 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1195 DAG.AddDbgValue(SDV, Val.getNode(), false); 1196 } else 1197 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1198 << "in EmitFuncArgumentDbgValue\n"); 1199 } else { 1200 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1201 auto Undef = 1202 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1203 auto SDV = 1204 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1205 DAG.AddDbgValue(SDV, nullptr, false); 1206 } 1207 } 1208 DDIV.clear(); 1209 } 1210 1211 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1212 Value *V = DDI.getDI()->getValue(); 1213 DILocalVariable *Var = DDI.getDI()->getVariable(); 1214 DIExpression *Expr = DDI.getDI()->getExpression(); 1215 DebugLoc DL = DDI.getdl(); 1216 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1217 unsigned SDOrder = DDI.getSDNodeOrder(); 1218 1219 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1220 // that DW_OP_stack_value is desired. 1221 assert(isa<DbgValueInst>(DDI.getDI())); 1222 bool StackValue = true; 1223 1224 // Can this Value can be encoded without any further work? 1225 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1226 return; 1227 1228 // Attempt to salvage back through as many instructions as possible. Bail if 1229 // a non-instruction is seen, such as a constant expression or global 1230 // variable. FIXME: Further work could recover those too. 1231 while (isa<Instruction>(V)) { 1232 Instruction &VAsInst = *cast<Instruction>(V); 1233 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1234 1235 // If we cannot salvage any further, and haven't yet found a suitable debug 1236 // expression, bail out. 1237 if (!NewExpr) 1238 break; 1239 1240 // New value and expr now represent this debuginfo. 1241 V = VAsInst.getOperand(0); 1242 Expr = NewExpr; 1243 1244 // Some kind of simplification occurred: check whether the operand of the 1245 // salvaged debug expression can be encoded in this DAG. 1246 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1247 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1248 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1249 return; 1250 } 1251 } 1252 1253 // This was the final opportunity to salvage this debug information, and it 1254 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1255 // any earlier variable location. 1256 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1257 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1258 DAG.AddDbgValue(SDV, nullptr, false); 1259 1260 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1261 << "\n"); 1262 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1263 << "\n"); 1264 } 1265 1266 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1267 DIExpression *Expr, DebugLoc dl, 1268 DebugLoc InstDL, unsigned Order) { 1269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1270 SDDbgValue *SDV; 1271 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1272 isa<ConstantPointerNull>(V)) { 1273 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1274 DAG.AddDbgValue(SDV, nullptr, false); 1275 return true; 1276 } 1277 1278 // If the Value is a frame index, we can create a FrameIndex debug value 1279 // without relying on the DAG at all. 1280 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1281 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1282 if (SI != FuncInfo.StaticAllocaMap.end()) { 1283 auto SDV = 1284 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1285 /*IsIndirect*/ false, dl, SDNodeOrder); 1286 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1287 // is still available even if the SDNode gets optimized out. 1288 DAG.AddDbgValue(SDV, nullptr, false); 1289 return true; 1290 } 1291 } 1292 1293 // Do not use getValue() in here; we don't want to generate code at 1294 // this point if it hasn't been done yet. 1295 SDValue N = NodeMap[V]; 1296 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1297 N = UnusedArgNodeMap[V]; 1298 if (N.getNode()) { 1299 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1300 return true; 1301 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1302 DAG.AddDbgValue(SDV, N.getNode(), false); 1303 return true; 1304 } 1305 1306 // Special rules apply for the first dbg.values of parameter variables in a 1307 // function. Identify them by the fact they reference Argument Values, that 1308 // they're parameters, and they are parameters of the current function. We 1309 // need to let them dangle until they get an SDNode. 1310 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1311 !InstDL.getInlinedAt(); 1312 if (!IsParamOfFunc) { 1313 // The value is not used in this block yet (or it would have an SDNode). 1314 // We still want the value to appear for the user if possible -- if it has 1315 // an associated VReg, we can refer to that instead. 1316 auto VMI = FuncInfo.ValueMap.find(V); 1317 if (VMI != FuncInfo.ValueMap.end()) { 1318 unsigned Reg = VMI->second; 1319 // If this is a PHI node, it may be split up into several MI PHI nodes 1320 // (in FunctionLoweringInfo::set). 1321 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1322 V->getType(), None); 1323 if (RFV.occupiesMultipleRegs()) { 1324 unsigned Offset = 0; 1325 unsigned BitsToDescribe = 0; 1326 if (auto VarSize = Var->getSizeInBits()) 1327 BitsToDescribe = *VarSize; 1328 if (auto Fragment = Expr->getFragmentInfo()) 1329 BitsToDescribe = Fragment->SizeInBits; 1330 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1331 unsigned RegisterSize = RegAndSize.second; 1332 // Bail out if all bits are described already. 1333 if (Offset >= BitsToDescribe) 1334 break; 1335 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1336 ? BitsToDescribe - Offset 1337 : RegisterSize; 1338 auto FragmentExpr = DIExpression::createFragmentExpression( 1339 Expr, Offset, FragmentSize); 1340 if (!FragmentExpr) 1341 continue; 1342 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1343 false, dl, SDNodeOrder); 1344 DAG.AddDbgValue(SDV, nullptr, false); 1345 Offset += RegisterSize; 1346 } 1347 } else { 1348 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1349 DAG.AddDbgValue(SDV, nullptr, false); 1350 } 1351 return true; 1352 } 1353 } 1354 1355 return false; 1356 } 1357 1358 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1359 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1360 for (auto &Pair : DanglingDebugInfoMap) 1361 for (auto &DDI : Pair.second) 1362 salvageUnresolvedDbgValue(DDI); 1363 clearDanglingDebugInfo(); 1364 } 1365 1366 /// getCopyFromRegs - If there was virtual register allocated for the value V 1367 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1368 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1369 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1370 SDValue Result; 1371 1372 if (It != FuncInfo.ValueMap.end()) { 1373 unsigned InReg = It->second; 1374 1375 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1376 DAG.getDataLayout(), InReg, Ty, 1377 None); // This is not an ABI copy. 1378 SDValue Chain = DAG.getEntryNode(); 1379 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1380 V); 1381 resolveDanglingDebugInfo(V, Result); 1382 } 1383 1384 return Result; 1385 } 1386 1387 /// getValue - Return an SDValue for the given Value. 1388 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1389 // If we already have an SDValue for this value, use it. It's important 1390 // to do this first, so that we don't create a CopyFromReg if we already 1391 // have a regular SDValue. 1392 SDValue &N = NodeMap[V]; 1393 if (N.getNode()) return N; 1394 1395 // If there's a virtual register allocated and initialized for this 1396 // value, use it. 1397 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1398 return copyFromReg; 1399 1400 // Otherwise create a new SDValue and remember it. 1401 SDValue Val = getValueImpl(V); 1402 NodeMap[V] = Val; 1403 resolveDanglingDebugInfo(V, Val); 1404 return Val; 1405 } 1406 1407 // Return true if SDValue exists for the given Value 1408 bool SelectionDAGBuilder::findValue(const Value *V) const { 1409 return (NodeMap.find(V) != NodeMap.end()) || 1410 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1411 } 1412 1413 /// getNonRegisterValue - Return an SDValue for the given Value, but 1414 /// don't look in FuncInfo.ValueMap for a virtual register. 1415 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1416 // If we already have an SDValue for this value, use it. 1417 SDValue &N = NodeMap[V]; 1418 if (N.getNode()) { 1419 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1420 // Remove the debug location from the node as the node is about to be used 1421 // in a location which may differ from the original debug location. This 1422 // is relevant to Constant and ConstantFP nodes because they can appear 1423 // as constant expressions inside PHI nodes. 1424 N->setDebugLoc(DebugLoc()); 1425 } 1426 return N; 1427 } 1428 1429 // Otherwise create a new SDValue and remember it. 1430 SDValue Val = getValueImpl(V); 1431 NodeMap[V] = Val; 1432 resolveDanglingDebugInfo(V, Val); 1433 return Val; 1434 } 1435 1436 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1437 /// Create an SDValue for the given value. 1438 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1440 1441 if (const Constant *C = dyn_cast<Constant>(V)) { 1442 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1443 1444 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1445 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1446 1447 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1448 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1449 1450 if (isa<ConstantPointerNull>(C)) { 1451 unsigned AS = V->getType()->getPointerAddressSpace(); 1452 return DAG.getConstant(0, getCurSDLoc(), 1453 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1454 } 1455 1456 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1457 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1458 1459 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1460 return DAG.getUNDEF(VT); 1461 1462 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1463 visit(CE->getOpcode(), *CE); 1464 SDValue N1 = NodeMap[V]; 1465 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1466 return N1; 1467 } 1468 1469 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1470 SmallVector<SDValue, 4> Constants; 1471 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1472 OI != OE; ++OI) { 1473 SDNode *Val = getValue(*OI).getNode(); 1474 // If the operand is an empty aggregate, there are no values. 1475 if (!Val) continue; 1476 // Add each leaf value from the operand to the Constants list 1477 // to form a flattened list of all the values. 1478 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1479 Constants.push_back(SDValue(Val, i)); 1480 } 1481 1482 return DAG.getMergeValues(Constants, getCurSDLoc()); 1483 } 1484 1485 if (const ConstantDataSequential *CDS = 1486 dyn_cast<ConstantDataSequential>(C)) { 1487 SmallVector<SDValue, 4> Ops; 1488 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1489 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1490 // Add each leaf value from the operand to the Constants list 1491 // to form a flattened list of all the values. 1492 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1493 Ops.push_back(SDValue(Val, i)); 1494 } 1495 1496 if (isa<ArrayType>(CDS->getType())) 1497 return DAG.getMergeValues(Ops, getCurSDLoc()); 1498 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1499 } 1500 1501 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1502 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1503 "Unknown struct or array constant!"); 1504 1505 SmallVector<EVT, 4> ValueVTs; 1506 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1507 unsigned NumElts = ValueVTs.size(); 1508 if (NumElts == 0) 1509 return SDValue(); // empty struct 1510 SmallVector<SDValue, 4> Constants(NumElts); 1511 for (unsigned i = 0; i != NumElts; ++i) { 1512 EVT EltVT = ValueVTs[i]; 1513 if (isa<UndefValue>(C)) 1514 Constants[i] = DAG.getUNDEF(EltVT); 1515 else if (EltVT.isFloatingPoint()) 1516 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1517 else 1518 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1519 } 1520 1521 return DAG.getMergeValues(Constants, getCurSDLoc()); 1522 } 1523 1524 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1525 return DAG.getBlockAddress(BA, VT); 1526 1527 VectorType *VecTy = cast<VectorType>(V->getType()); 1528 unsigned NumElements = VecTy->getNumElements(); 1529 1530 // Now that we know the number and type of the elements, get that number of 1531 // elements into the Ops array based on what kind of constant it is. 1532 SmallVector<SDValue, 16> Ops; 1533 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1534 for (unsigned i = 0; i != NumElements; ++i) 1535 Ops.push_back(getValue(CV->getOperand(i))); 1536 } else { 1537 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1538 EVT EltVT = 1539 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1540 1541 SDValue Op; 1542 if (EltVT.isFloatingPoint()) 1543 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1544 else 1545 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1546 Ops.assign(NumElements, Op); 1547 } 1548 1549 // Create a BUILD_VECTOR node. 1550 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1551 } 1552 1553 // If this is a static alloca, generate it as the frameindex instead of 1554 // computation. 1555 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1556 DenseMap<const AllocaInst*, int>::iterator SI = 1557 FuncInfo.StaticAllocaMap.find(AI); 1558 if (SI != FuncInfo.StaticAllocaMap.end()) 1559 return DAG.getFrameIndex(SI->second, 1560 TLI.getFrameIndexTy(DAG.getDataLayout())); 1561 } 1562 1563 // If this is an instruction which fast-isel has deferred, select it now. 1564 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1565 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1566 1567 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1568 Inst->getType(), getABIRegCopyCC(V)); 1569 SDValue Chain = DAG.getEntryNode(); 1570 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1571 } 1572 1573 llvm_unreachable("Can't get register for value!"); 1574 } 1575 1576 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1577 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1578 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1579 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1580 bool IsSEH = isAsynchronousEHPersonality(Pers); 1581 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1582 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1583 if (!IsSEH) 1584 CatchPadMBB->setIsEHScopeEntry(); 1585 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1586 if (IsMSVCCXX || IsCoreCLR) 1587 CatchPadMBB->setIsEHFuncletEntry(); 1588 // Wasm does not need catchpads anymore 1589 if (!IsWasmCXX) 1590 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1591 getControlRoot())); 1592 } 1593 1594 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1595 // Update machine-CFG edge. 1596 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1597 FuncInfo.MBB->addSuccessor(TargetMBB); 1598 1599 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1600 bool IsSEH = isAsynchronousEHPersonality(Pers); 1601 if (IsSEH) { 1602 // If this is not a fall-through branch or optimizations are switched off, 1603 // emit the branch. 1604 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1605 TM.getOptLevel() == CodeGenOpt::None) 1606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1607 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1608 return; 1609 } 1610 1611 // Figure out the funclet membership for the catchret's successor. 1612 // This will be used by the FuncletLayout pass to determine how to order the 1613 // BB's. 1614 // A 'catchret' returns to the outer scope's color. 1615 Value *ParentPad = I.getCatchSwitchParentPad(); 1616 const BasicBlock *SuccessorColor; 1617 if (isa<ConstantTokenNone>(ParentPad)) 1618 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1619 else 1620 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1621 assert(SuccessorColor && "No parent funclet for catchret!"); 1622 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1623 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1624 1625 // Create the terminator node. 1626 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1627 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1628 DAG.getBasicBlock(SuccessorColorMBB)); 1629 DAG.setRoot(Ret); 1630 } 1631 1632 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1633 // Don't emit any special code for the cleanuppad instruction. It just marks 1634 // the start of an EH scope/funclet. 1635 FuncInfo.MBB->setIsEHScopeEntry(); 1636 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1637 if (Pers != EHPersonality::Wasm_CXX) { 1638 FuncInfo.MBB->setIsEHFuncletEntry(); 1639 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1640 } 1641 } 1642 1643 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1644 // the control flow always stops at the single catch pad, as it does for a 1645 // cleanup pad. In case the exception caught is not of the types the catch pad 1646 // catches, it will be rethrown by a rethrow. 1647 static void findWasmUnwindDestinations( 1648 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1649 BranchProbability Prob, 1650 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1651 &UnwindDests) { 1652 while (EHPadBB) { 1653 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1654 if (isa<CleanupPadInst>(Pad)) { 1655 // Stop on cleanup pads. 1656 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1657 UnwindDests.back().first->setIsEHScopeEntry(); 1658 break; 1659 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1660 // Add the catchpad handlers to the possible destinations. We don't 1661 // continue to the unwind destination of the catchswitch for wasm. 1662 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1663 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1664 UnwindDests.back().first->setIsEHScopeEntry(); 1665 } 1666 break; 1667 } else { 1668 continue; 1669 } 1670 } 1671 } 1672 1673 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1674 /// many places it could ultimately go. In the IR, we have a single unwind 1675 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1676 /// This function skips over imaginary basic blocks that hold catchswitch 1677 /// instructions, and finds all the "real" machine 1678 /// basic block destinations. As those destinations may not be successors of 1679 /// EHPadBB, here we also calculate the edge probability to those destinations. 1680 /// The passed-in Prob is the edge probability to EHPadBB. 1681 static void findUnwindDestinations( 1682 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1683 BranchProbability Prob, 1684 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1685 &UnwindDests) { 1686 EHPersonality Personality = 1687 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1688 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1689 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1690 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1691 bool IsSEH = isAsynchronousEHPersonality(Personality); 1692 1693 if (IsWasmCXX) { 1694 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1695 assert(UnwindDests.size() <= 1 && 1696 "There should be at most one unwind destination for wasm"); 1697 return; 1698 } 1699 1700 while (EHPadBB) { 1701 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1702 BasicBlock *NewEHPadBB = nullptr; 1703 if (isa<LandingPadInst>(Pad)) { 1704 // Stop on landingpads. They are not funclets. 1705 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1706 break; 1707 } else if (isa<CleanupPadInst>(Pad)) { 1708 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1709 // personalities. 1710 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1711 UnwindDests.back().first->setIsEHScopeEntry(); 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 break; 1714 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1715 // Add the catchpad handlers to the possible destinations. 1716 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1717 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1718 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1719 if (IsMSVCCXX || IsCoreCLR) 1720 UnwindDests.back().first->setIsEHFuncletEntry(); 1721 if (!IsSEH) 1722 UnwindDests.back().first->setIsEHScopeEntry(); 1723 } 1724 NewEHPadBB = CatchSwitch->getUnwindDest(); 1725 } else { 1726 continue; 1727 } 1728 1729 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1730 if (BPI && NewEHPadBB) 1731 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1732 EHPadBB = NewEHPadBB; 1733 } 1734 } 1735 1736 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1737 // Update successor info. 1738 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1739 auto UnwindDest = I.getUnwindDest(); 1740 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1741 BranchProbability UnwindDestProb = 1742 (BPI && UnwindDest) 1743 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1744 : BranchProbability::getZero(); 1745 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1746 for (auto &UnwindDest : UnwindDests) { 1747 UnwindDest.first->setIsEHPad(); 1748 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1749 } 1750 FuncInfo.MBB->normalizeSuccProbs(); 1751 1752 // Create the terminator node. 1753 SDValue Ret = 1754 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1755 DAG.setRoot(Ret); 1756 } 1757 1758 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1759 report_fatal_error("visitCatchSwitch not yet implemented!"); 1760 } 1761 1762 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1764 auto &DL = DAG.getDataLayout(); 1765 SDValue Chain = getControlRoot(); 1766 SmallVector<ISD::OutputArg, 8> Outs; 1767 SmallVector<SDValue, 8> OutVals; 1768 1769 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1770 // lower 1771 // 1772 // %val = call <ty> @llvm.experimental.deoptimize() 1773 // ret <ty> %val 1774 // 1775 // differently. 1776 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1777 LowerDeoptimizingReturn(); 1778 return; 1779 } 1780 1781 if (!FuncInfo.CanLowerReturn) { 1782 unsigned DemoteReg = FuncInfo.DemoteRegister; 1783 const Function *F = I.getParent()->getParent(); 1784 1785 // Emit a store of the return value through the virtual register. 1786 // Leave Outs empty so that LowerReturn won't try to load return 1787 // registers the usual way. 1788 SmallVector<EVT, 1> PtrValueVTs; 1789 ComputeValueVTs(TLI, DL, 1790 F->getReturnType()->getPointerTo( 1791 DAG.getDataLayout().getAllocaAddrSpace()), 1792 PtrValueVTs); 1793 1794 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1795 DemoteReg, PtrValueVTs[0]); 1796 SDValue RetOp = getValue(I.getOperand(0)); 1797 1798 SmallVector<EVT, 4> ValueVTs, MemVTs; 1799 SmallVector<uint64_t, 4> Offsets; 1800 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1801 &Offsets); 1802 unsigned NumValues = ValueVTs.size(); 1803 1804 SmallVector<SDValue, 4> Chains(NumValues); 1805 for (unsigned i = 0; i != NumValues; ++i) { 1806 // An aggregate return value cannot wrap around the address space, so 1807 // offsets to its parts don't wrap either. 1808 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1809 1810 SDValue Val = RetOp.getValue(i); 1811 if (MemVTs[i] != ValueVTs[i]) 1812 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1813 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1814 // FIXME: better loc info would be nice. 1815 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1816 } 1817 1818 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1819 MVT::Other, Chains); 1820 } else if (I.getNumOperands() != 0) { 1821 SmallVector<EVT, 4> ValueVTs; 1822 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1823 unsigned NumValues = ValueVTs.size(); 1824 if (NumValues) { 1825 SDValue RetOp = getValue(I.getOperand(0)); 1826 1827 const Function *F = I.getParent()->getParent(); 1828 1829 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1830 I.getOperand(0)->getType(), F->getCallingConv(), 1831 /*IsVarArg*/ false); 1832 1833 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1834 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1835 Attribute::SExt)) 1836 ExtendKind = ISD::SIGN_EXTEND; 1837 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1838 Attribute::ZExt)) 1839 ExtendKind = ISD::ZERO_EXTEND; 1840 1841 LLVMContext &Context = F->getContext(); 1842 bool RetInReg = F->getAttributes().hasAttribute( 1843 AttributeList::ReturnIndex, Attribute::InReg); 1844 1845 for (unsigned j = 0; j != NumValues; ++j) { 1846 EVT VT = ValueVTs[j]; 1847 1848 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1849 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1850 1851 CallingConv::ID CC = F->getCallingConv(); 1852 1853 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1854 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1855 SmallVector<SDValue, 4> Parts(NumParts); 1856 getCopyToParts(DAG, getCurSDLoc(), 1857 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1858 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1859 1860 // 'inreg' on function refers to return value 1861 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1862 if (RetInReg) 1863 Flags.setInReg(); 1864 1865 if (I.getOperand(0)->getType()->isPointerTy()) { 1866 Flags.setPointer(); 1867 Flags.setPointerAddrSpace( 1868 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1869 } 1870 1871 if (NeedsRegBlock) { 1872 Flags.setInConsecutiveRegs(); 1873 if (j == NumValues - 1) 1874 Flags.setInConsecutiveRegsLast(); 1875 } 1876 1877 // Propagate extension type if any 1878 if (ExtendKind == ISD::SIGN_EXTEND) 1879 Flags.setSExt(); 1880 else if (ExtendKind == ISD::ZERO_EXTEND) 1881 Flags.setZExt(); 1882 1883 for (unsigned i = 0; i < NumParts; ++i) { 1884 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1885 VT, /*isfixed=*/true, 0, 0)); 1886 OutVals.push_back(Parts[i]); 1887 } 1888 } 1889 } 1890 } 1891 1892 // Push in swifterror virtual register as the last element of Outs. This makes 1893 // sure swifterror virtual register will be returned in the swifterror 1894 // physical register. 1895 const Function *F = I.getParent()->getParent(); 1896 if (TLI.supportSwiftError() && 1897 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1898 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1899 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1900 Flags.setSwiftError(); 1901 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1902 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1903 true /*isfixed*/, 1 /*origidx*/, 1904 0 /*partOffs*/)); 1905 // Create SDNode for the swifterror virtual register. 1906 OutVals.push_back( 1907 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1908 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1909 EVT(TLI.getPointerTy(DL)))); 1910 } 1911 1912 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1913 CallingConv::ID CallConv = 1914 DAG.getMachineFunction().getFunction().getCallingConv(); 1915 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1916 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1917 1918 // Verify that the target's LowerReturn behaved as expected. 1919 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1920 "LowerReturn didn't return a valid chain!"); 1921 1922 // Update the DAG with the new chain value resulting from return lowering. 1923 DAG.setRoot(Chain); 1924 } 1925 1926 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1927 /// created for it, emit nodes to copy the value into the virtual 1928 /// registers. 1929 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1930 // Skip empty types 1931 if (V->getType()->isEmptyTy()) 1932 return; 1933 1934 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1935 if (VMI != FuncInfo.ValueMap.end()) { 1936 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1937 CopyValueToVirtualRegister(V, VMI->second); 1938 } 1939 } 1940 1941 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1942 /// the current basic block, add it to ValueMap now so that we'll get a 1943 /// CopyTo/FromReg. 1944 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1945 // No need to export constants. 1946 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1947 1948 // Already exported? 1949 if (FuncInfo.isExportedInst(V)) return; 1950 1951 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1952 CopyValueToVirtualRegister(V, Reg); 1953 } 1954 1955 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1956 const BasicBlock *FromBB) { 1957 // The operands of the setcc have to be in this block. We don't know 1958 // how to export them from some other block. 1959 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1960 // Can export from current BB. 1961 if (VI->getParent() == FromBB) 1962 return true; 1963 1964 // Is already exported, noop. 1965 return FuncInfo.isExportedInst(V); 1966 } 1967 1968 // If this is an argument, we can export it if the BB is the entry block or 1969 // if it is already exported. 1970 if (isa<Argument>(V)) { 1971 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1972 return true; 1973 1974 // Otherwise, can only export this if it is already exported. 1975 return FuncInfo.isExportedInst(V); 1976 } 1977 1978 // Otherwise, constants can always be exported. 1979 return true; 1980 } 1981 1982 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1983 BranchProbability 1984 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1985 const MachineBasicBlock *Dst) const { 1986 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1987 const BasicBlock *SrcBB = Src->getBasicBlock(); 1988 const BasicBlock *DstBB = Dst->getBasicBlock(); 1989 if (!BPI) { 1990 // If BPI is not available, set the default probability as 1 / N, where N is 1991 // the number of successors. 1992 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1993 return BranchProbability(1, SuccSize); 1994 } 1995 return BPI->getEdgeProbability(SrcBB, DstBB); 1996 } 1997 1998 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1999 MachineBasicBlock *Dst, 2000 BranchProbability Prob) { 2001 if (!FuncInfo.BPI) 2002 Src->addSuccessorWithoutProb(Dst); 2003 else { 2004 if (Prob.isUnknown()) 2005 Prob = getEdgeProbability(Src, Dst); 2006 Src->addSuccessor(Dst, Prob); 2007 } 2008 } 2009 2010 static bool InBlock(const Value *V, const BasicBlock *BB) { 2011 if (const Instruction *I = dyn_cast<Instruction>(V)) 2012 return I->getParent() == BB; 2013 return true; 2014 } 2015 2016 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2017 /// This function emits a branch and is used at the leaves of an OR or an 2018 /// AND operator tree. 2019 void 2020 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2021 MachineBasicBlock *TBB, 2022 MachineBasicBlock *FBB, 2023 MachineBasicBlock *CurBB, 2024 MachineBasicBlock *SwitchBB, 2025 BranchProbability TProb, 2026 BranchProbability FProb, 2027 bool InvertCond) { 2028 const BasicBlock *BB = CurBB->getBasicBlock(); 2029 2030 // If the leaf of the tree is a comparison, merge the condition into 2031 // the caseblock. 2032 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2033 // The operands of the cmp have to be in this block. We don't know 2034 // how to export them from some other block. If this is the first block 2035 // of the sequence, no exporting is needed. 2036 if (CurBB == SwitchBB || 2037 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2038 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2039 ISD::CondCode Condition; 2040 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2041 ICmpInst::Predicate Pred = 2042 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2043 Condition = getICmpCondCode(Pred); 2044 } else { 2045 const FCmpInst *FC = cast<FCmpInst>(Cond); 2046 FCmpInst::Predicate Pred = 2047 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2048 Condition = getFCmpCondCode(Pred); 2049 if (TM.Options.NoNaNsFPMath) 2050 Condition = getFCmpCodeWithoutNaN(Condition); 2051 } 2052 2053 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2054 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2055 SwitchCases.push_back(CB); 2056 return; 2057 } 2058 } 2059 2060 // Create a CaseBlock record representing this branch. 2061 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2062 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2063 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2064 SwitchCases.push_back(CB); 2065 } 2066 2067 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2068 MachineBasicBlock *TBB, 2069 MachineBasicBlock *FBB, 2070 MachineBasicBlock *CurBB, 2071 MachineBasicBlock *SwitchBB, 2072 Instruction::BinaryOps Opc, 2073 BranchProbability TProb, 2074 BranchProbability FProb, 2075 bool InvertCond) { 2076 // Skip over not part of the tree and remember to invert op and operands at 2077 // next level. 2078 Value *NotCond; 2079 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2080 InBlock(NotCond, CurBB->getBasicBlock())) { 2081 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2082 !InvertCond); 2083 return; 2084 } 2085 2086 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2087 // Compute the effective opcode for Cond, taking into account whether it needs 2088 // to be inverted, e.g. 2089 // and (not (or A, B)), C 2090 // gets lowered as 2091 // and (and (not A, not B), C) 2092 unsigned BOpc = 0; 2093 if (BOp) { 2094 BOpc = BOp->getOpcode(); 2095 if (InvertCond) { 2096 if (BOpc == Instruction::And) 2097 BOpc = Instruction::Or; 2098 else if (BOpc == Instruction::Or) 2099 BOpc = Instruction::And; 2100 } 2101 } 2102 2103 // If this node is not part of the or/and tree, emit it as a branch. 2104 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2105 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2106 BOp->getParent() != CurBB->getBasicBlock() || 2107 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2108 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2109 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2110 TProb, FProb, InvertCond); 2111 return; 2112 } 2113 2114 // Create TmpBB after CurBB. 2115 MachineFunction::iterator BBI(CurBB); 2116 MachineFunction &MF = DAG.getMachineFunction(); 2117 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2118 CurBB->getParent()->insert(++BBI, TmpBB); 2119 2120 if (Opc == Instruction::Or) { 2121 // Codegen X | Y as: 2122 // BB1: 2123 // jmp_if_X TBB 2124 // jmp TmpBB 2125 // TmpBB: 2126 // jmp_if_Y TBB 2127 // jmp FBB 2128 // 2129 2130 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2131 // The requirement is that 2132 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2133 // = TrueProb for original BB. 2134 // Assuming the original probabilities are A and B, one choice is to set 2135 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2136 // A/(1+B) and 2B/(1+B). This choice assumes that 2137 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2138 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2139 // TmpBB, but the math is more complicated. 2140 2141 auto NewTrueProb = TProb / 2; 2142 auto NewFalseProb = TProb / 2 + FProb; 2143 // Emit the LHS condition. 2144 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2145 NewTrueProb, NewFalseProb, InvertCond); 2146 2147 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2148 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2149 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2150 // Emit the RHS condition into TmpBB. 2151 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2152 Probs[0], Probs[1], InvertCond); 2153 } else { 2154 assert(Opc == Instruction::And && "Unknown merge op!"); 2155 // Codegen X & Y as: 2156 // BB1: 2157 // jmp_if_X TmpBB 2158 // jmp FBB 2159 // TmpBB: 2160 // jmp_if_Y TBB 2161 // jmp FBB 2162 // 2163 // This requires creation of TmpBB after CurBB. 2164 2165 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2166 // The requirement is that 2167 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2168 // = FalseProb for original BB. 2169 // Assuming the original probabilities are A and B, one choice is to set 2170 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2171 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2172 // TrueProb for BB1 * FalseProb for TmpBB. 2173 2174 auto NewTrueProb = TProb + FProb / 2; 2175 auto NewFalseProb = FProb / 2; 2176 // Emit the LHS condition. 2177 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2178 NewTrueProb, NewFalseProb, InvertCond); 2179 2180 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2181 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2182 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2183 // Emit the RHS condition into TmpBB. 2184 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2185 Probs[0], Probs[1], InvertCond); 2186 } 2187 } 2188 2189 /// If the set of cases should be emitted as a series of branches, return true. 2190 /// If we should emit this as a bunch of and/or'd together conditions, return 2191 /// false. 2192 bool 2193 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2194 if (Cases.size() != 2) return true; 2195 2196 // If this is two comparisons of the same values or'd or and'd together, they 2197 // will get folded into a single comparison, so don't emit two blocks. 2198 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2199 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2200 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2201 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2202 return false; 2203 } 2204 2205 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2206 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2207 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2208 Cases[0].CC == Cases[1].CC && 2209 isa<Constant>(Cases[0].CmpRHS) && 2210 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2211 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2212 return false; 2213 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2214 return false; 2215 } 2216 2217 return true; 2218 } 2219 2220 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2221 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2222 2223 // Update machine-CFG edges. 2224 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2225 2226 if (I.isUnconditional()) { 2227 // Update machine-CFG edges. 2228 BrMBB->addSuccessor(Succ0MBB); 2229 2230 // If this is not a fall-through branch or optimizations are switched off, 2231 // emit the branch. 2232 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2233 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2234 MVT::Other, getControlRoot(), 2235 DAG.getBasicBlock(Succ0MBB))); 2236 2237 return; 2238 } 2239 2240 // If this condition is one of the special cases we handle, do special stuff 2241 // now. 2242 const Value *CondVal = I.getCondition(); 2243 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2244 2245 // If this is a series of conditions that are or'd or and'd together, emit 2246 // this as a sequence of branches instead of setcc's with and/or operations. 2247 // As long as jumps are not expensive, this should improve performance. 2248 // For example, instead of something like: 2249 // cmp A, B 2250 // C = seteq 2251 // cmp D, E 2252 // F = setle 2253 // or C, F 2254 // jnz foo 2255 // Emit: 2256 // cmp A, B 2257 // je foo 2258 // cmp D, E 2259 // jle foo 2260 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2261 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2262 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2263 !I.getMetadata(LLVMContext::MD_unpredictable) && 2264 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2265 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2266 Opcode, 2267 getEdgeProbability(BrMBB, Succ0MBB), 2268 getEdgeProbability(BrMBB, Succ1MBB), 2269 /*InvertCond=*/false); 2270 // If the compares in later blocks need to use values not currently 2271 // exported from this block, export them now. This block should always 2272 // be the first entry. 2273 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2274 2275 // Allow some cases to be rejected. 2276 if (ShouldEmitAsBranches(SwitchCases)) { 2277 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2278 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2279 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2280 } 2281 2282 // Emit the branch for this block. 2283 visitSwitchCase(SwitchCases[0], BrMBB); 2284 SwitchCases.erase(SwitchCases.begin()); 2285 return; 2286 } 2287 2288 // Okay, we decided not to do this, remove any inserted MBB's and clear 2289 // SwitchCases. 2290 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2291 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2292 2293 SwitchCases.clear(); 2294 } 2295 } 2296 2297 // Create a CaseBlock record representing this branch. 2298 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2299 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2300 2301 // Use visitSwitchCase to actually insert the fast branch sequence for this 2302 // cond branch. 2303 visitSwitchCase(CB, BrMBB); 2304 } 2305 2306 /// visitSwitchCase - Emits the necessary code to represent a single node in 2307 /// the binary search tree resulting from lowering a switch instruction. 2308 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2309 MachineBasicBlock *SwitchBB) { 2310 SDValue Cond; 2311 SDValue CondLHS = getValue(CB.CmpLHS); 2312 SDLoc dl = CB.DL; 2313 2314 if (CB.CC == ISD::SETTRUE) { 2315 // Branch or fall through to TrueBB. 2316 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2317 SwitchBB->normalizeSuccProbs(); 2318 if (CB.TrueBB != NextBlock(SwitchBB)) { 2319 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2320 DAG.getBasicBlock(CB.TrueBB))); 2321 } 2322 return; 2323 } 2324 2325 auto &TLI = DAG.getTargetLoweringInfo(); 2326 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2327 2328 // Build the setcc now. 2329 if (!CB.CmpMHS) { 2330 // Fold "(X == true)" to X and "(X == false)" to !X to 2331 // handle common cases produced by branch lowering. 2332 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2333 CB.CC == ISD::SETEQ) 2334 Cond = CondLHS; 2335 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2336 CB.CC == ISD::SETEQ) { 2337 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2338 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2339 } else { 2340 SDValue CondRHS = getValue(CB.CmpRHS); 2341 2342 // If a pointer's DAG type is larger than its memory type then the DAG 2343 // values are zero-extended. This breaks signed comparisons so truncate 2344 // back to the underlying type before doing the compare. 2345 if (CondLHS.getValueType() != MemVT) { 2346 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2347 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2348 } 2349 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2350 } 2351 } else { 2352 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2353 2354 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2355 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2356 2357 SDValue CmpOp = getValue(CB.CmpMHS); 2358 EVT VT = CmpOp.getValueType(); 2359 2360 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2361 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2362 ISD::SETLE); 2363 } else { 2364 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2365 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2366 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2367 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2368 } 2369 } 2370 2371 // Update successor info 2372 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2373 // TrueBB and FalseBB are always different unless the incoming IR is 2374 // degenerate. This only happens when running llc on weird IR. 2375 if (CB.TrueBB != CB.FalseBB) 2376 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2377 SwitchBB->normalizeSuccProbs(); 2378 2379 // If the lhs block is the next block, invert the condition so that we can 2380 // fall through to the lhs instead of the rhs block. 2381 if (CB.TrueBB == NextBlock(SwitchBB)) { 2382 std::swap(CB.TrueBB, CB.FalseBB); 2383 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2384 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2385 } 2386 2387 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2388 MVT::Other, getControlRoot(), Cond, 2389 DAG.getBasicBlock(CB.TrueBB)); 2390 2391 // Insert the false branch. Do this even if it's a fall through branch, 2392 // this makes it easier to do DAG optimizations which require inverting 2393 // the branch condition. 2394 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2395 DAG.getBasicBlock(CB.FalseBB)); 2396 2397 DAG.setRoot(BrCond); 2398 } 2399 2400 /// visitJumpTable - Emit JumpTable node in the current MBB 2401 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2402 // Emit the code for the jump table 2403 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2404 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2405 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2406 JT.Reg, PTy); 2407 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2408 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2409 MVT::Other, Index.getValue(1), 2410 Table, Index); 2411 DAG.setRoot(BrJumpTable); 2412 } 2413 2414 /// visitJumpTableHeader - This function emits necessary code to produce index 2415 /// in the JumpTable from switch case. 2416 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2417 JumpTableHeader &JTH, 2418 MachineBasicBlock *SwitchBB) { 2419 SDLoc dl = getCurSDLoc(); 2420 2421 // Subtract the lowest switch case value from the value being switched on. 2422 SDValue SwitchOp = getValue(JTH.SValue); 2423 EVT VT = SwitchOp.getValueType(); 2424 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2425 DAG.getConstant(JTH.First, dl, VT)); 2426 2427 // The SDNode we just created, which holds the value being switched on minus 2428 // the smallest case value, needs to be copied to a virtual register so it 2429 // can be used as an index into the jump table in a subsequent basic block. 2430 // This value may be smaller or larger than the target's pointer type, and 2431 // therefore require extension or truncating. 2432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2433 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2434 2435 unsigned JumpTableReg = 2436 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2437 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2438 JumpTableReg, SwitchOp); 2439 JT.Reg = JumpTableReg; 2440 2441 if (!JTH.OmitRangeCheck) { 2442 // Emit the range check for the jump table, and branch to the default block 2443 // for the switch statement if the value being switched on exceeds the 2444 // largest case in the switch. 2445 SDValue CMP = DAG.getSetCC( 2446 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2447 Sub.getValueType()), 2448 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2449 2450 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2451 MVT::Other, CopyTo, CMP, 2452 DAG.getBasicBlock(JT.Default)); 2453 2454 // Avoid emitting unnecessary branches to the next block. 2455 if (JT.MBB != NextBlock(SwitchBB)) 2456 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2457 DAG.getBasicBlock(JT.MBB)); 2458 2459 DAG.setRoot(BrCond); 2460 } else { 2461 // Avoid emitting unnecessary branches to the next block. 2462 if (JT.MBB != NextBlock(SwitchBB)) 2463 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2464 DAG.getBasicBlock(JT.MBB))); 2465 else 2466 DAG.setRoot(CopyTo); 2467 } 2468 } 2469 2470 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2471 /// variable if there exists one. 2472 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2473 SDValue &Chain) { 2474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2475 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2476 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2477 MachineFunction &MF = DAG.getMachineFunction(); 2478 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2479 MachineSDNode *Node = 2480 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2481 if (Global) { 2482 MachinePointerInfo MPInfo(Global); 2483 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2484 MachineMemOperand::MODereferenceable; 2485 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2486 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2487 DAG.setNodeMemRefs(Node, {MemRef}); 2488 } 2489 if (PtrTy != PtrMemTy) 2490 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2491 return SDValue(Node, 0); 2492 } 2493 2494 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2495 /// tail spliced into a stack protector check success bb. 2496 /// 2497 /// For a high level explanation of how this fits into the stack protector 2498 /// generation see the comment on the declaration of class 2499 /// StackProtectorDescriptor. 2500 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2501 MachineBasicBlock *ParentBB) { 2502 2503 // First create the loads to the guard/stack slot for the comparison. 2504 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2505 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2506 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2507 2508 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2509 int FI = MFI.getStackProtectorIndex(); 2510 2511 SDValue Guard; 2512 SDLoc dl = getCurSDLoc(); 2513 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2514 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2515 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2516 2517 // Generate code to load the content of the guard slot. 2518 SDValue GuardVal = DAG.getLoad( 2519 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2520 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2521 MachineMemOperand::MOVolatile); 2522 2523 if (TLI.useStackGuardXorFP()) 2524 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2525 2526 // Retrieve guard check function, nullptr if instrumentation is inlined. 2527 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2528 // The target provides a guard check function to validate the guard value. 2529 // Generate a call to that function with the content of the guard slot as 2530 // argument. 2531 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2532 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2533 2534 TargetLowering::ArgListTy Args; 2535 TargetLowering::ArgListEntry Entry; 2536 Entry.Node = GuardVal; 2537 Entry.Ty = FnTy->getParamType(0); 2538 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2539 Entry.IsInReg = true; 2540 Args.push_back(Entry); 2541 2542 TargetLowering::CallLoweringInfo CLI(DAG); 2543 CLI.setDebugLoc(getCurSDLoc()) 2544 .setChain(DAG.getEntryNode()) 2545 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2546 getValue(GuardCheckFn), std::move(Args)); 2547 2548 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2549 DAG.setRoot(Result.second); 2550 return; 2551 } 2552 2553 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2554 // Otherwise, emit a volatile load to retrieve the stack guard value. 2555 SDValue Chain = DAG.getEntryNode(); 2556 if (TLI.useLoadStackGuardNode()) { 2557 Guard = getLoadStackGuard(DAG, dl, Chain); 2558 } else { 2559 const Value *IRGuard = TLI.getSDagStackGuard(M); 2560 SDValue GuardPtr = getValue(IRGuard); 2561 2562 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2563 MachinePointerInfo(IRGuard, 0), Align, 2564 MachineMemOperand::MOVolatile); 2565 } 2566 2567 // Perform the comparison via a subtract/getsetcc. 2568 EVT VT = Guard.getValueType(); 2569 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2570 2571 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2572 *DAG.getContext(), 2573 Sub.getValueType()), 2574 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2575 2576 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2577 // branch to failure MBB. 2578 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2579 MVT::Other, GuardVal.getOperand(0), 2580 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2581 // Otherwise branch to success MBB. 2582 SDValue Br = DAG.getNode(ISD::BR, dl, 2583 MVT::Other, BrCond, 2584 DAG.getBasicBlock(SPD.getSuccessMBB())); 2585 2586 DAG.setRoot(Br); 2587 } 2588 2589 /// Codegen the failure basic block for a stack protector check. 2590 /// 2591 /// A failure stack protector machine basic block consists simply of a call to 2592 /// __stack_chk_fail(). 2593 /// 2594 /// For a high level explanation of how this fits into the stack protector 2595 /// generation see the comment on the declaration of class 2596 /// StackProtectorDescriptor. 2597 void 2598 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2600 SDValue Chain = 2601 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2602 None, false, getCurSDLoc(), false, false).second; 2603 // On PS4, the "return address" must still be within the calling function, 2604 // even if it's at the very end, so emit an explicit TRAP here. 2605 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2606 if (TM.getTargetTriple().isPS4CPU()) 2607 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2608 2609 DAG.setRoot(Chain); 2610 } 2611 2612 /// visitBitTestHeader - This function emits necessary code to produce value 2613 /// suitable for "bit tests" 2614 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2615 MachineBasicBlock *SwitchBB) { 2616 SDLoc dl = getCurSDLoc(); 2617 2618 // Subtract the minimum value 2619 SDValue SwitchOp = getValue(B.SValue); 2620 EVT VT = SwitchOp.getValueType(); 2621 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2622 DAG.getConstant(B.First, dl, VT)); 2623 2624 // Check range 2625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2626 SDValue RangeCmp = DAG.getSetCC( 2627 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2628 Sub.getValueType()), 2629 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2630 2631 // Determine the type of the test operands. 2632 bool UsePtrType = false; 2633 if (!TLI.isTypeLegal(VT)) 2634 UsePtrType = true; 2635 else { 2636 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2637 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2638 // Switch table case range are encoded into series of masks. 2639 // Just use pointer type, it's guaranteed to fit. 2640 UsePtrType = true; 2641 break; 2642 } 2643 } 2644 if (UsePtrType) { 2645 VT = TLI.getPointerTy(DAG.getDataLayout()); 2646 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2647 } 2648 2649 B.RegVT = VT.getSimpleVT(); 2650 B.Reg = FuncInfo.CreateReg(B.RegVT); 2651 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2652 2653 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2654 2655 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2656 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2657 SwitchBB->normalizeSuccProbs(); 2658 2659 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2660 MVT::Other, CopyTo, RangeCmp, 2661 DAG.getBasicBlock(B.Default)); 2662 2663 // Avoid emitting unnecessary branches to the next block. 2664 if (MBB != NextBlock(SwitchBB)) 2665 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2666 DAG.getBasicBlock(MBB)); 2667 2668 DAG.setRoot(BrRange); 2669 } 2670 2671 /// visitBitTestCase - this function produces one "bit test" 2672 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2673 MachineBasicBlock* NextMBB, 2674 BranchProbability BranchProbToNext, 2675 unsigned Reg, 2676 BitTestCase &B, 2677 MachineBasicBlock *SwitchBB) { 2678 SDLoc dl = getCurSDLoc(); 2679 MVT VT = BB.RegVT; 2680 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2681 SDValue Cmp; 2682 unsigned PopCount = countPopulation(B.Mask); 2683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2684 if (PopCount == 1) { 2685 // Testing for a single bit; just compare the shift count with what it 2686 // would need to be to shift a 1 bit in that position. 2687 Cmp = DAG.getSetCC( 2688 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2689 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2690 ISD::SETEQ); 2691 } else if (PopCount == BB.Range) { 2692 // There is only one zero bit in the range, test for it directly. 2693 Cmp = DAG.getSetCC( 2694 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2695 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2696 ISD::SETNE); 2697 } else { 2698 // Make desired shift 2699 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2700 DAG.getConstant(1, dl, VT), ShiftOp); 2701 2702 // Emit bit tests and jumps 2703 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2704 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2705 Cmp = DAG.getSetCC( 2706 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2707 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2708 } 2709 2710 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2711 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2712 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2713 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2714 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2715 // one as they are relative probabilities (and thus work more like weights), 2716 // and hence we need to normalize them to let the sum of them become one. 2717 SwitchBB->normalizeSuccProbs(); 2718 2719 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2720 MVT::Other, getControlRoot(), 2721 Cmp, DAG.getBasicBlock(B.TargetBB)); 2722 2723 // Avoid emitting unnecessary branches to the next block. 2724 if (NextMBB != NextBlock(SwitchBB)) 2725 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2726 DAG.getBasicBlock(NextMBB)); 2727 2728 DAG.setRoot(BrAnd); 2729 } 2730 2731 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2732 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2733 2734 // Retrieve successors. Look through artificial IR level blocks like 2735 // catchswitch for successors. 2736 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2737 const BasicBlock *EHPadBB = I.getSuccessor(1); 2738 2739 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2740 // have to do anything here to lower funclet bundles. 2741 assert(!I.hasOperandBundlesOtherThan( 2742 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2743 "Cannot lower invokes with arbitrary operand bundles yet!"); 2744 2745 const Value *Callee(I.getCalledValue()); 2746 const Function *Fn = dyn_cast<Function>(Callee); 2747 if (isa<InlineAsm>(Callee)) 2748 visitInlineAsm(&I); 2749 else if (Fn && Fn->isIntrinsic()) { 2750 switch (Fn->getIntrinsicID()) { 2751 default: 2752 llvm_unreachable("Cannot invoke this intrinsic"); 2753 case Intrinsic::donothing: 2754 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2755 break; 2756 case Intrinsic::experimental_patchpoint_void: 2757 case Intrinsic::experimental_patchpoint_i64: 2758 visitPatchpoint(&I, EHPadBB); 2759 break; 2760 case Intrinsic::experimental_gc_statepoint: 2761 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2762 break; 2763 case Intrinsic::wasm_rethrow_in_catch: { 2764 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2765 // special because it can be invoked, so we manually lower it to a DAG 2766 // node here. 2767 SmallVector<SDValue, 8> Ops; 2768 Ops.push_back(getRoot()); // inchain 2769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2770 Ops.push_back( 2771 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2772 TLI.getPointerTy(DAG.getDataLayout()))); 2773 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2774 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2775 break; 2776 } 2777 } 2778 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2779 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2780 // Eventually we will support lowering the @llvm.experimental.deoptimize 2781 // intrinsic, and right now there are no plans to support other intrinsics 2782 // with deopt state. 2783 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2784 } else { 2785 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2786 } 2787 2788 // If the value of the invoke is used outside of its defining block, make it 2789 // available as a virtual register. 2790 // We already took care of the exported value for the statepoint instruction 2791 // during call to the LowerStatepoint. 2792 if (!isStatepoint(I)) { 2793 CopyToExportRegsIfNeeded(&I); 2794 } 2795 2796 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2797 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2798 BranchProbability EHPadBBProb = 2799 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2800 : BranchProbability::getZero(); 2801 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2802 2803 // Update successor info. 2804 addSuccessorWithProb(InvokeMBB, Return); 2805 for (auto &UnwindDest : UnwindDests) { 2806 UnwindDest.first->setIsEHPad(); 2807 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2808 } 2809 InvokeMBB->normalizeSuccProbs(); 2810 2811 // Drop into normal successor. 2812 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2813 DAG.getBasicBlock(Return))); 2814 } 2815 2816 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2817 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2818 2819 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2820 // have to do anything here to lower funclet bundles. 2821 assert(!I.hasOperandBundlesOtherThan( 2822 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2823 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2824 2825 assert(isa<InlineAsm>(I.getCalledValue()) && 2826 "Only know how to handle inlineasm callbr"); 2827 visitInlineAsm(&I); 2828 2829 // Retrieve successors. 2830 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2831 2832 // Update successor info. 2833 addSuccessorWithProb(CallBrMBB, Return); 2834 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2835 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2836 addSuccessorWithProb(CallBrMBB, Target); 2837 } 2838 CallBrMBB->normalizeSuccProbs(); 2839 2840 // Drop into default successor. 2841 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2842 MVT::Other, getControlRoot(), 2843 DAG.getBasicBlock(Return))); 2844 } 2845 2846 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2847 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2848 } 2849 2850 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2851 assert(FuncInfo.MBB->isEHPad() && 2852 "Call to landingpad not in landing pad!"); 2853 2854 // If there aren't registers to copy the values into (e.g., during SjLj 2855 // exceptions), then don't bother to create these DAG nodes. 2856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2857 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2858 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2859 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2860 return; 2861 2862 // If landingpad's return type is token type, we don't create DAG nodes 2863 // for its exception pointer and selector value. The extraction of exception 2864 // pointer or selector value from token type landingpads is not currently 2865 // supported. 2866 if (LP.getType()->isTokenTy()) 2867 return; 2868 2869 SmallVector<EVT, 2> ValueVTs; 2870 SDLoc dl = getCurSDLoc(); 2871 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2872 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2873 2874 // Get the two live-in registers as SDValues. The physregs have already been 2875 // copied into virtual registers. 2876 SDValue Ops[2]; 2877 if (FuncInfo.ExceptionPointerVirtReg) { 2878 Ops[0] = DAG.getZExtOrTrunc( 2879 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2880 FuncInfo.ExceptionPointerVirtReg, 2881 TLI.getPointerTy(DAG.getDataLayout())), 2882 dl, ValueVTs[0]); 2883 } else { 2884 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2885 } 2886 Ops[1] = DAG.getZExtOrTrunc( 2887 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2888 FuncInfo.ExceptionSelectorVirtReg, 2889 TLI.getPointerTy(DAG.getDataLayout())), 2890 dl, ValueVTs[1]); 2891 2892 // Merge into one. 2893 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2894 DAG.getVTList(ValueVTs), Ops); 2895 setValue(&LP, Res); 2896 } 2897 2898 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2899 #ifndef NDEBUG 2900 for (const CaseCluster &CC : Clusters) 2901 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2902 #endif 2903 2904 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2905 return a.Low->getValue().slt(b.Low->getValue()); 2906 }); 2907 2908 // Merge adjacent clusters with the same destination. 2909 const unsigned N = Clusters.size(); 2910 unsigned DstIndex = 0; 2911 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2912 CaseCluster &CC = Clusters[SrcIndex]; 2913 const ConstantInt *CaseVal = CC.Low; 2914 MachineBasicBlock *Succ = CC.MBB; 2915 2916 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2917 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2918 // If this case has the same successor and is a neighbour, merge it into 2919 // the previous cluster. 2920 Clusters[DstIndex - 1].High = CaseVal; 2921 Clusters[DstIndex - 1].Prob += CC.Prob; 2922 } else { 2923 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2924 sizeof(Clusters[SrcIndex])); 2925 } 2926 } 2927 Clusters.resize(DstIndex); 2928 } 2929 2930 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2931 MachineBasicBlock *Last) { 2932 // Update JTCases. 2933 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2934 if (JTCases[i].first.HeaderBB == First) 2935 JTCases[i].first.HeaderBB = Last; 2936 2937 // Update BitTestCases. 2938 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2939 if (BitTestCases[i].Parent == First) 2940 BitTestCases[i].Parent = Last; 2941 } 2942 2943 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2944 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2945 2946 // Update machine-CFG edges with unique successors. 2947 SmallSet<BasicBlock*, 32> Done; 2948 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2949 BasicBlock *BB = I.getSuccessor(i); 2950 bool Inserted = Done.insert(BB).second; 2951 if (!Inserted) 2952 continue; 2953 2954 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2955 addSuccessorWithProb(IndirectBrMBB, Succ); 2956 } 2957 IndirectBrMBB->normalizeSuccProbs(); 2958 2959 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2960 MVT::Other, getControlRoot(), 2961 getValue(I.getAddress()))); 2962 } 2963 2964 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2965 if (!DAG.getTarget().Options.TrapUnreachable) 2966 return; 2967 2968 // We may be able to ignore unreachable behind a noreturn call. 2969 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2970 const BasicBlock &BB = *I.getParent(); 2971 if (&I != &BB.front()) { 2972 BasicBlock::const_iterator PredI = 2973 std::prev(BasicBlock::const_iterator(&I)); 2974 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2975 if (Call->doesNotReturn()) 2976 return; 2977 } 2978 } 2979 } 2980 2981 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2982 } 2983 2984 void SelectionDAGBuilder::visitFSub(const User &I) { 2985 // -0.0 - X --> fneg 2986 Type *Ty = I.getType(); 2987 if (isa<Constant>(I.getOperand(0)) && 2988 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2989 SDValue Op2 = getValue(I.getOperand(1)); 2990 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2991 Op2.getValueType(), Op2)); 2992 return; 2993 } 2994 2995 visitBinary(I, ISD::FSUB); 2996 } 2997 2998 /// Checks if the given instruction performs a vector reduction, in which case 2999 /// we have the freedom to alter the elements in the result as long as the 3000 /// reduction of them stays unchanged. 3001 static bool isVectorReductionOp(const User *I) { 3002 const Instruction *Inst = dyn_cast<Instruction>(I); 3003 if (!Inst || !Inst->getType()->isVectorTy()) 3004 return false; 3005 3006 auto OpCode = Inst->getOpcode(); 3007 switch (OpCode) { 3008 case Instruction::Add: 3009 case Instruction::Mul: 3010 case Instruction::And: 3011 case Instruction::Or: 3012 case Instruction::Xor: 3013 break; 3014 case Instruction::FAdd: 3015 case Instruction::FMul: 3016 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3017 if (FPOp->getFastMathFlags().isFast()) 3018 break; 3019 LLVM_FALLTHROUGH; 3020 default: 3021 return false; 3022 } 3023 3024 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3025 // Ensure the reduction size is a power of 2. 3026 if (!isPowerOf2_32(ElemNum)) 3027 return false; 3028 3029 unsigned ElemNumToReduce = ElemNum; 3030 3031 // Do DFS search on the def-use chain from the given instruction. We only 3032 // allow four kinds of operations during the search until we reach the 3033 // instruction that extracts the first element from the vector: 3034 // 3035 // 1. The reduction operation of the same opcode as the given instruction. 3036 // 3037 // 2. PHI node. 3038 // 3039 // 3. ShuffleVector instruction together with a reduction operation that 3040 // does a partial reduction. 3041 // 3042 // 4. ExtractElement that extracts the first element from the vector, and we 3043 // stop searching the def-use chain here. 3044 // 3045 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3046 // from 1-3 to the stack to continue the DFS. The given instruction is not 3047 // a reduction operation if we meet any other instructions other than those 3048 // listed above. 3049 3050 SmallVector<const User *, 16> UsersToVisit{Inst}; 3051 SmallPtrSet<const User *, 16> Visited; 3052 bool ReduxExtracted = false; 3053 3054 while (!UsersToVisit.empty()) { 3055 auto User = UsersToVisit.back(); 3056 UsersToVisit.pop_back(); 3057 if (!Visited.insert(User).second) 3058 continue; 3059 3060 for (const auto &U : User->users()) { 3061 auto Inst = dyn_cast<Instruction>(U); 3062 if (!Inst) 3063 return false; 3064 3065 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3066 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3067 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3068 return false; 3069 UsersToVisit.push_back(U); 3070 } else if (const ShuffleVectorInst *ShufInst = 3071 dyn_cast<ShuffleVectorInst>(U)) { 3072 // Detect the following pattern: A ShuffleVector instruction together 3073 // with a reduction that do partial reduction on the first and second 3074 // ElemNumToReduce / 2 elements, and store the result in 3075 // ElemNumToReduce / 2 elements in another vector. 3076 3077 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3078 if (ResultElements < ElemNum) 3079 return false; 3080 3081 if (ElemNumToReduce == 1) 3082 return false; 3083 if (!isa<UndefValue>(U->getOperand(1))) 3084 return false; 3085 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3086 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3087 return false; 3088 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3089 if (ShufInst->getMaskValue(i) != -1) 3090 return false; 3091 3092 // There is only one user of this ShuffleVector instruction, which 3093 // must be a reduction operation. 3094 if (!U->hasOneUse()) 3095 return false; 3096 3097 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3098 if (!U2 || U2->getOpcode() != OpCode) 3099 return false; 3100 3101 // Check operands of the reduction operation. 3102 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3103 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3104 UsersToVisit.push_back(U2); 3105 ElemNumToReduce /= 2; 3106 } else 3107 return false; 3108 } else if (isa<ExtractElementInst>(U)) { 3109 // At this moment we should have reduced all elements in the vector. 3110 if (ElemNumToReduce != 1) 3111 return false; 3112 3113 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3114 if (!Val || !Val->isZero()) 3115 return false; 3116 3117 ReduxExtracted = true; 3118 } else 3119 return false; 3120 } 3121 } 3122 return ReduxExtracted; 3123 } 3124 3125 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3126 SDNodeFlags Flags; 3127 3128 SDValue Op = getValue(I.getOperand(0)); 3129 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3130 Op, Flags); 3131 setValue(&I, UnNodeValue); 3132 } 3133 3134 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3135 SDNodeFlags Flags; 3136 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3137 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3138 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3139 } 3140 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3141 Flags.setExact(ExactOp->isExact()); 3142 } 3143 if (isVectorReductionOp(&I)) { 3144 Flags.setVectorReduction(true); 3145 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3146 } 3147 3148 SDValue Op1 = getValue(I.getOperand(0)); 3149 SDValue Op2 = getValue(I.getOperand(1)); 3150 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3151 Op1, Op2, Flags); 3152 setValue(&I, BinNodeValue); 3153 } 3154 3155 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3156 SDValue Op1 = getValue(I.getOperand(0)); 3157 SDValue Op2 = getValue(I.getOperand(1)); 3158 3159 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3160 Op1.getValueType(), DAG.getDataLayout()); 3161 3162 // Coerce the shift amount to the right type if we can. 3163 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3164 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3165 unsigned Op2Size = Op2.getValueSizeInBits(); 3166 SDLoc DL = getCurSDLoc(); 3167 3168 // If the operand is smaller than the shift count type, promote it. 3169 if (ShiftSize > Op2Size) 3170 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3171 3172 // If the operand is larger than the shift count type but the shift 3173 // count type has enough bits to represent any shift value, truncate 3174 // it now. This is a common case and it exposes the truncate to 3175 // optimization early. 3176 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3177 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3178 // Otherwise we'll need to temporarily settle for some other convenient 3179 // type. Type legalization will make adjustments once the shiftee is split. 3180 else 3181 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3182 } 3183 3184 bool nuw = false; 3185 bool nsw = false; 3186 bool exact = false; 3187 3188 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3189 3190 if (const OverflowingBinaryOperator *OFBinOp = 3191 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3192 nuw = OFBinOp->hasNoUnsignedWrap(); 3193 nsw = OFBinOp->hasNoSignedWrap(); 3194 } 3195 if (const PossiblyExactOperator *ExactOp = 3196 dyn_cast<const PossiblyExactOperator>(&I)) 3197 exact = ExactOp->isExact(); 3198 } 3199 SDNodeFlags Flags; 3200 Flags.setExact(exact); 3201 Flags.setNoSignedWrap(nsw); 3202 Flags.setNoUnsignedWrap(nuw); 3203 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3204 Flags); 3205 setValue(&I, Res); 3206 } 3207 3208 void SelectionDAGBuilder::visitSDiv(const User &I) { 3209 SDValue Op1 = getValue(I.getOperand(0)); 3210 SDValue Op2 = getValue(I.getOperand(1)); 3211 3212 SDNodeFlags Flags; 3213 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3214 cast<PossiblyExactOperator>(&I)->isExact()); 3215 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3216 Op2, Flags)); 3217 } 3218 3219 void SelectionDAGBuilder::visitICmp(const User &I) { 3220 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3221 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3222 predicate = IC->getPredicate(); 3223 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3224 predicate = ICmpInst::Predicate(IC->getPredicate()); 3225 SDValue Op1 = getValue(I.getOperand(0)); 3226 SDValue Op2 = getValue(I.getOperand(1)); 3227 ISD::CondCode Opcode = getICmpCondCode(predicate); 3228 3229 auto &TLI = DAG.getTargetLoweringInfo(); 3230 EVT MemVT = 3231 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3232 3233 // If a pointer's DAG type is larger than its memory type then the DAG values 3234 // are zero-extended. This breaks signed comparisons so truncate back to the 3235 // underlying type before doing the compare. 3236 if (Op1.getValueType() != MemVT) { 3237 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3238 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3239 } 3240 3241 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3242 I.getType()); 3243 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3244 } 3245 3246 void SelectionDAGBuilder::visitFCmp(const User &I) { 3247 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3248 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3249 predicate = FC->getPredicate(); 3250 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3251 predicate = FCmpInst::Predicate(FC->getPredicate()); 3252 SDValue Op1 = getValue(I.getOperand(0)); 3253 SDValue Op2 = getValue(I.getOperand(1)); 3254 3255 ISD::CondCode Condition = getFCmpCondCode(predicate); 3256 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3257 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3258 Condition = getFCmpCodeWithoutNaN(Condition); 3259 3260 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3261 I.getType()); 3262 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3263 } 3264 3265 // Check if the condition of the select has one use or two users that are both 3266 // selects with the same condition. 3267 static bool hasOnlySelectUsers(const Value *Cond) { 3268 return llvm::all_of(Cond->users(), [](const Value *V) { 3269 return isa<SelectInst>(V); 3270 }); 3271 } 3272 3273 void SelectionDAGBuilder::visitSelect(const User &I) { 3274 SmallVector<EVT, 4> ValueVTs; 3275 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3276 ValueVTs); 3277 unsigned NumValues = ValueVTs.size(); 3278 if (NumValues == 0) return; 3279 3280 SmallVector<SDValue, 4> Values(NumValues); 3281 SDValue Cond = getValue(I.getOperand(0)); 3282 SDValue LHSVal = getValue(I.getOperand(1)); 3283 SDValue RHSVal = getValue(I.getOperand(2)); 3284 auto BaseOps = {Cond}; 3285 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3286 ISD::VSELECT : ISD::SELECT; 3287 3288 bool IsUnaryAbs = false; 3289 3290 // Min/max matching is only viable if all output VTs are the same. 3291 if (is_splat(ValueVTs)) { 3292 EVT VT = ValueVTs[0]; 3293 LLVMContext &Ctx = *DAG.getContext(); 3294 auto &TLI = DAG.getTargetLoweringInfo(); 3295 3296 // We care about the legality of the operation after it has been type 3297 // legalized. 3298 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3299 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3300 VT = TLI.getTypeToTransformTo(Ctx, VT); 3301 3302 // If the vselect is legal, assume we want to leave this as a vector setcc + 3303 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3304 // min/max is legal on the scalar type. 3305 bool UseScalarMinMax = VT.isVector() && 3306 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3307 3308 Value *LHS, *RHS; 3309 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3310 ISD::NodeType Opc = ISD::DELETED_NODE; 3311 switch (SPR.Flavor) { 3312 case SPF_UMAX: Opc = ISD::UMAX; break; 3313 case SPF_UMIN: Opc = ISD::UMIN; break; 3314 case SPF_SMAX: Opc = ISD::SMAX; break; 3315 case SPF_SMIN: Opc = ISD::SMIN; break; 3316 case SPF_FMINNUM: 3317 switch (SPR.NaNBehavior) { 3318 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3319 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3320 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3321 case SPNB_RETURNS_ANY: { 3322 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3323 Opc = ISD::FMINNUM; 3324 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3325 Opc = ISD::FMINIMUM; 3326 else if (UseScalarMinMax) 3327 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3328 ISD::FMINNUM : ISD::FMINIMUM; 3329 break; 3330 } 3331 } 3332 break; 3333 case SPF_FMAXNUM: 3334 switch (SPR.NaNBehavior) { 3335 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3336 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3337 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3338 case SPNB_RETURNS_ANY: 3339 3340 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3341 Opc = ISD::FMAXNUM; 3342 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3343 Opc = ISD::FMAXIMUM; 3344 else if (UseScalarMinMax) 3345 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3346 ISD::FMAXNUM : ISD::FMAXIMUM; 3347 break; 3348 } 3349 break; 3350 case SPF_ABS: 3351 IsUnaryAbs = true; 3352 Opc = ISD::ABS; 3353 break; 3354 case SPF_NABS: 3355 // TODO: we need to produce sub(0, abs(X)). 3356 default: break; 3357 } 3358 3359 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3360 (TLI.isOperationLegalOrCustom(Opc, VT) || 3361 (UseScalarMinMax && 3362 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3363 // If the underlying comparison instruction is used by any other 3364 // instruction, the consumed instructions won't be destroyed, so it is 3365 // not profitable to convert to a min/max. 3366 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3367 OpCode = Opc; 3368 LHSVal = getValue(LHS); 3369 RHSVal = getValue(RHS); 3370 BaseOps = {}; 3371 } 3372 3373 if (IsUnaryAbs) { 3374 OpCode = Opc; 3375 LHSVal = getValue(LHS); 3376 BaseOps = {}; 3377 } 3378 } 3379 3380 if (IsUnaryAbs) { 3381 for (unsigned i = 0; i != NumValues; ++i) { 3382 Values[i] = 3383 DAG.getNode(OpCode, getCurSDLoc(), 3384 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3385 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3386 } 3387 } else { 3388 for (unsigned i = 0; i != NumValues; ++i) { 3389 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3390 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3391 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3392 Values[i] = DAG.getNode( 3393 OpCode, getCurSDLoc(), 3394 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3395 } 3396 } 3397 3398 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3399 DAG.getVTList(ValueVTs), Values)); 3400 } 3401 3402 void SelectionDAGBuilder::visitTrunc(const User &I) { 3403 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3404 SDValue N = getValue(I.getOperand(0)); 3405 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3406 I.getType()); 3407 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3408 } 3409 3410 void SelectionDAGBuilder::visitZExt(const User &I) { 3411 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3412 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3413 SDValue N = getValue(I.getOperand(0)); 3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3415 I.getType()); 3416 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3417 } 3418 3419 void SelectionDAGBuilder::visitSExt(const User &I) { 3420 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3421 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3422 SDValue N = getValue(I.getOperand(0)); 3423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3424 I.getType()); 3425 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3426 } 3427 3428 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3429 // FPTrunc is never a no-op cast, no need to check 3430 SDValue N = getValue(I.getOperand(0)); 3431 SDLoc dl = getCurSDLoc(); 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3434 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3435 DAG.getTargetConstant( 3436 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3437 } 3438 3439 void SelectionDAGBuilder::visitFPExt(const User &I) { 3440 // FPExt is never a no-op cast, no need to check 3441 SDValue N = getValue(I.getOperand(0)); 3442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3443 I.getType()); 3444 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3445 } 3446 3447 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3448 // FPToUI is never a no-op cast, no need to check 3449 SDValue N = getValue(I.getOperand(0)); 3450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3451 I.getType()); 3452 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3453 } 3454 3455 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3456 // FPToSI is never a no-op cast, no need to check 3457 SDValue N = getValue(I.getOperand(0)); 3458 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3459 I.getType()); 3460 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3461 } 3462 3463 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3464 // UIToFP is never a no-op cast, no need to check 3465 SDValue N = getValue(I.getOperand(0)); 3466 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3467 I.getType()); 3468 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3469 } 3470 3471 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3472 // SIToFP is never a no-op cast, no need to check 3473 SDValue N = getValue(I.getOperand(0)); 3474 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3475 I.getType()); 3476 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3477 } 3478 3479 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3480 // What to do depends on the size of the integer and the size of the pointer. 3481 // We can either truncate, zero extend, or no-op, accordingly. 3482 SDValue N = getValue(I.getOperand(0)); 3483 auto &TLI = DAG.getTargetLoweringInfo(); 3484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3485 I.getType()); 3486 EVT PtrMemVT = 3487 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3488 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3489 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3490 setValue(&I, N); 3491 } 3492 3493 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3494 // What to do depends on the size of the integer and the size of the pointer. 3495 // We can either truncate, zero extend, or no-op, accordingly. 3496 SDValue N = getValue(I.getOperand(0)); 3497 auto &TLI = DAG.getTargetLoweringInfo(); 3498 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3499 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3500 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3501 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3502 setValue(&I, N); 3503 } 3504 3505 void SelectionDAGBuilder::visitBitCast(const User &I) { 3506 SDValue N = getValue(I.getOperand(0)); 3507 SDLoc dl = getCurSDLoc(); 3508 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3509 I.getType()); 3510 3511 // BitCast assures us that source and destination are the same size so this is 3512 // either a BITCAST or a no-op. 3513 if (DestVT != N.getValueType()) 3514 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3515 DestVT, N)); // convert types. 3516 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3517 // might fold any kind of constant expression to an integer constant and that 3518 // is not what we are looking for. Only recognize a bitcast of a genuine 3519 // constant integer as an opaque constant. 3520 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3521 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3522 /*isOpaque*/true)); 3523 else 3524 setValue(&I, N); // noop cast. 3525 } 3526 3527 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3529 const Value *SV = I.getOperand(0); 3530 SDValue N = getValue(SV); 3531 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3532 3533 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3534 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3535 3536 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3537 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3538 3539 setValue(&I, N); 3540 } 3541 3542 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 SDValue InVec = getValue(I.getOperand(0)); 3545 SDValue InVal = getValue(I.getOperand(1)); 3546 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3547 TLI.getVectorIdxTy(DAG.getDataLayout())); 3548 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3549 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3550 InVec, InVal, InIdx)); 3551 } 3552 3553 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3555 SDValue InVec = getValue(I.getOperand(0)); 3556 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3557 TLI.getVectorIdxTy(DAG.getDataLayout())); 3558 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3559 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3560 InVec, InIdx)); 3561 } 3562 3563 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3564 SDValue Src1 = getValue(I.getOperand(0)); 3565 SDValue Src2 = getValue(I.getOperand(1)); 3566 SDLoc DL = getCurSDLoc(); 3567 3568 SmallVector<int, 8> Mask; 3569 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3570 unsigned MaskNumElts = Mask.size(); 3571 3572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3573 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3574 EVT SrcVT = Src1.getValueType(); 3575 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3576 3577 if (SrcNumElts == MaskNumElts) { 3578 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3579 return; 3580 } 3581 3582 // Normalize the shuffle vector since mask and vector length don't match. 3583 if (SrcNumElts < MaskNumElts) { 3584 // Mask is longer than the source vectors. We can use concatenate vector to 3585 // make the mask and vectors lengths match. 3586 3587 if (MaskNumElts % SrcNumElts == 0) { 3588 // Mask length is a multiple of the source vector length. 3589 // Check if the shuffle is some kind of concatenation of the input 3590 // vectors. 3591 unsigned NumConcat = MaskNumElts / SrcNumElts; 3592 bool IsConcat = true; 3593 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3594 for (unsigned i = 0; i != MaskNumElts; ++i) { 3595 int Idx = Mask[i]; 3596 if (Idx < 0) 3597 continue; 3598 // Ensure the indices in each SrcVT sized piece are sequential and that 3599 // the same source is used for the whole piece. 3600 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3601 (ConcatSrcs[i / SrcNumElts] >= 0 && 3602 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3603 IsConcat = false; 3604 break; 3605 } 3606 // Remember which source this index came from. 3607 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3608 } 3609 3610 // The shuffle is concatenating multiple vectors together. Just emit 3611 // a CONCAT_VECTORS operation. 3612 if (IsConcat) { 3613 SmallVector<SDValue, 8> ConcatOps; 3614 for (auto Src : ConcatSrcs) { 3615 if (Src < 0) 3616 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3617 else if (Src == 0) 3618 ConcatOps.push_back(Src1); 3619 else 3620 ConcatOps.push_back(Src2); 3621 } 3622 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3623 return; 3624 } 3625 } 3626 3627 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3628 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3629 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3630 PaddedMaskNumElts); 3631 3632 // Pad both vectors with undefs to make them the same length as the mask. 3633 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3634 3635 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3636 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3637 MOps1[0] = Src1; 3638 MOps2[0] = Src2; 3639 3640 Src1 = Src1.isUndef() 3641 ? DAG.getUNDEF(PaddedVT) 3642 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3643 Src2 = Src2.isUndef() 3644 ? DAG.getUNDEF(PaddedVT) 3645 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3646 3647 // Readjust mask for new input vector length. 3648 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3649 for (unsigned i = 0; i != MaskNumElts; ++i) { 3650 int Idx = Mask[i]; 3651 if (Idx >= (int)SrcNumElts) 3652 Idx -= SrcNumElts - PaddedMaskNumElts; 3653 MappedOps[i] = Idx; 3654 } 3655 3656 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3657 3658 // If the concatenated vector was padded, extract a subvector with the 3659 // correct number of elements. 3660 if (MaskNumElts != PaddedMaskNumElts) 3661 Result = DAG.getNode( 3662 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3663 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3664 3665 setValue(&I, Result); 3666 return; 3667 } 3668 3669 if (SrcNumElts > MaskNumElts) { 3670 // Analyze the access pattern of the vector to see if we can extract 3671 // two subvectors and do the shuffle. 3672 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3673 bool CanExtract = true; 3674 for (int Idx : Mask) { 3675 unsigned Input = 0; 3676 if (Idx < 0) 3677 continue; 3678 3679 if (Idx >= (int)SrcNumElts) { 3680 Input = 1; 3681 Idx -= SrcNumElts; 3682 } 3683 3684 // If all the indices come from the same MaskNumElts sized portion of 3685 // the sources we can use extract. Also make sure the extract wouldn't 3686 // extract past the end of the source. 3687 int NewStartIdx = alignDown(Idx, MaskNumElts); 3688 if (NewStartIdx + MaskNumElts > SrcNumElts || 3689 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3690 CanExtract = false; 3691 // Make sure we always update StartIdx as we use it to track if all 3692 // elements are undef. 3693 StartIdx[Input] = NewStartIdx; 3694 } 3695 3696 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3697 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3698 return; 3699 } 3700 if (CanExtract) { 3701 // Extract appropriate subvector and generate a vector shuffle 3702 for (unsigned Input = 0; Input < 2; ++Input) { 3703 SDValue &Src = Input == 0 ? Src1 : Src2; 3704 if (StartIdx[Input] < 0) 3705 Src = DAG.getUNDEF(VT); 3706 else { 3707 Src = DAG.getNode( 3708 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3709 DAG.getConstant(StartIdx[Input], DL, 3710 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3711 } 3712 } 3713 3714 // Calculate new mask. 3715 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3716 for (int &Idx : MappedOps) { 3717 if (Idx >= (int)SrcNumElts) 3718 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3719 else if (Idx >= 0) 3720 Idx -= StartIdx[0]; 3721 } 3722 3723 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3724 return; 3725 } 3726 } 3727 3728 // We can't use either concat vectors or extract subvectors so fall back to 3729 // replacing the shuffle with extract and build vector. 3730 // to insert and build vector. 3731 EVT EltVT = VT.getVectorElementType(); 3732 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3733 SmallVector<SDValue,8> Ops; 3734 for (int Idx : Mask) { 3735 SDValue Res; 3736 3737 if (Idx < 0) { 3738 Res = DAG.getUNDEF(EltVT); 3739 } else { 3740 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3741 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3742 3743 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3744 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3745 } 3746 3747 Ops.push_back(Res); 3748 } 3749 3750 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3751 } 3752 3753 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3754 ArrayRef<unsigned> Indices; 3755 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3756 Indices = IV->getIndices(); 3757 else 3758 Indices = cast<ConstantExpr>(&I)->getIndices(); 3759 3760 const Value *Op0 = I.getOperand(0); 3761 const Value *Op1 = I.getOperand(1); 3762 Type *AggTy = I.getType(); 3763 Type *ValTy = Op1->getType(); 3764 bool IntoUndef = isa<UndefValue>(Op0); 3765 bool FromUndef = isa<UndefValue>(Op1); 3766 3767 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3768 3769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3770 SmallVector<EVT, 4> AggValueVTs; 3771 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3772 SmallVector<EVT, 4> ValValueVTs; 3773 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3774 3775 unsigned NumAggValues = AggValueVTs.size(); 3776 unsigned NumValValues = ValValueVTs.size(); 3777 SmallVector<SDValue, 4> Values(NumAggValues); 3778 3779 // Ignore an insertvalue that produces an empty object 3780 if (!NumAggValues) { 3781 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3782 return; 3783 } 3784 3785 SDValue Agg = getValue(Op0); 3786 unsigned i = 0; 3787 // Copy the beginning value(s) from the original aggregate. 3788 for (; i != LinearIndex; ++i) 3789 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3790 SDValue(Agg.getNode(), Agg.getResNo() + i); 3791 // Copy values from the inserted value(s). 3792 if (NumValValues) { 3793 SDValue Val = getValue(Op1); 3794 for (; i != LinearIndex + NumValValues; ++i) 3795 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3796 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3797 } 3798 // Copy remaining value(s) from the original aggregate. 3799 for (; i != NumAggValues; ++i) 3800 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3801 SDValue(Agg.getNode(), Agg.getResNo() + i); 3802 3803 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3804 DAG.getVTList(AggValueVTs), Values)); 3805 } 3806 3807 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3808 ArrayRef<unsigned> Indices; 3809 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3810 Indices = EV->getIndices(); 3811 else 3812 Indices = cast<ConstantExpr>(&I)->getIndices(); 3813 3814 const Value *Op0 = I.getOperand(0); 3815 Type *AggTy = Op0->getType(); 3816 Type *ValTy = I.getType(); 3817 bool OutOfUndef = isa<UndefValue>(Op0); 3818 3819 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3820 3821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3822 SmallVector<EVT, 4> ValValueVTs; 3823 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3824 3825 unsigned NumValValues = ValValueVTs.size(); 3826 3827 // Ignore a extractvalue that produces an empty object 3828 if (!NumValValues) { 3829 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3830 return; 3831 } 3832 3833 SmallVector<SDValue, 4> Values(NumValValues); 3834 3835 SDValue Agg = getValue(Op0); 3836 // Copy out the selected value(s). 3837 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3838 Values[i - LinearIndex] = 3839 OutOfUndef ? 3840 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3841 SDValue(Agg.getNode(), Agg.getResNo() + i); 3842 3843 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3844 DAG.getVTList(ValValueVTs), Values)); 3845 } 3846 3847 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3848 Value *Op0 = I.getOperand(0); 3849 // Note that the pointer operand may be a vector of pointers. Take the scalar 3850 // element which holds a pointer. 3851 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3852 SDValue N = getValue(Op0); 3853 SDLoc dl = getCurSDLoc(); 3854 auto &TLI = DAG.getTargetLoweringInfo(); 3855 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3856 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3857 3858 // Normalize Vector GEP - all scalar operands should be converted to the 3859 // splat vector. 3860 unsigned VectorWidth = I.getType()->isVectorTy() ? 3861 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3862 3863 if (VectorWidth && !N.getValueType().isVector()) { 3864 LLVMContext &Context = *DAG.getContext(); 3865 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3866 N = DAG.getSplatBuildVector(VT, dl, N); 3867 } 3868 3869 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3870 GTI != E; ++GTI) { 3871 const Value *Idx = GTI.getOperand(); 3872 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3873 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3874 if (Field) { 3875 // N = N + Offset 3876 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3877 3878 // In an inbounds GEP with an offset that is nonnegative even when 3879 // interpreted as signed, assume there is no unsigned overflow. 3880 SDNodeFlags Flags; 3881 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3882 Flags.setNoUnsignedWrap(true); 3883 3884 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3885 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3886 } 3887 } else { 3888 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3889 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3890 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3891 3892 // If this is a scalar constant or a splat vector of constants, 3893 // handle it quickly. 3894 const auto *CI = dyn_cast<ConstantInt>(Idx); 3895 if (!CI && isa<ConstantDataVector>(Idx) && 3896 cast<ConstantDataVector>(Idx)->getSplatValue()) 3897 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3898 3899 if (CI) { 3900 if (CI->isZero()) 3901 continue; 3902 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3903 LLVMContext &Context = *DAG.getContext(); 3904 SDValue OffsVal = VectorWidth ? 3905 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3906 DAG.getConstant(Offs, dl, IdxTy); 3907 3908 // In an inbouds GEP with an offset that is nonnegative even when 3909 // interpreted as signed, assume there is no unsigned overflow. 3910 SDNodeFlags Flags; 3911 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3912 Flags.setNoUnsignedWrap(true); 3913 3914 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3915 3916 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3917 continue; 3918 } 3919 3920 // N = N + Idx * ElementSize; 3921 SDValue IdxN = getValue(Idx); 3922 3923 if (!IdxN.getValueType().isVector() && VectorWidth) { 3924 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3925 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3926 } 3927 3928 // If the index is smaller or larger than intptr_t, truncate or extend 3929 // it. 3930 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3931 3932 // If this is a multiply by a power of two, turn it into a shl 3933 // immediately. This is a very common case. 3934 if (ElementSize != 1) { 3935 if (ElementSize.isPowerOf2()) { 3936 unsigned Amt = ElementSize.logBase2(); 3937 IdxN = DAG.getNode(ISD::SHL, dl, 3938 N.getValueType(), IdxN, 3939 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3940 } else { 3941 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3942 IdxN.getValueType()); 3943 IdxN = DAG.getNode(ISD::MUL, dl, 3944 N.getValueType(), IdxN, Scale); 3945 } 3946 } 3947 3948 N = DAG.getNode(ISD::ADD, dl, 3949 N.getValueType(), N, IdxN); 3950 } 3951 } 3952 3953 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3954 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3955 3956 setValue(&I, N); 3957 } 3958 3959 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3960 // If this is a fixed sized alloca in the entry block of the function, 3961 // allocate it statically on the stack. 3962 if (FuncInfo.StaticAllocaMap.count(&I)) 3963 return; // getValue will auto-populate this. 3964 3965 SDLoc dl = getCurSDLoc(); 3966 Type *Ty = I.getAllocatedType(); 3967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3968 auto &DL = DAG.getDataLayout(); 3969 uint64_t TySize = DL.getTypeAllocSize(Ty); 3970 unsigned Align = 3971 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3972 3973 SDValue AllocSize = getValue(I.getArraySize()); 3974 3975 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3976 if (AllocSize.getValueType() != IntPtr) 3977 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3978 3979 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3980 AllocSize, 3981 DAG.getConstant(TySize, dl, IntPtr)); 3982 3983 // Handle alignment. If the requested alignment is less than or equal to 3984 // the stack alignment, ignore it. If the size is greater than or equal to 3985 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3986 unsigned StackAlign = 3987 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3988 if (Align <= StackAlign) 3989 Align = 0; 3990 3991 // Round the size of the allocation up to the stack alignment size 3992 // by add SA-1 to the size. This doesn't overflow because we're computing 3993 // an address inside an alloca. 3994 SDNodeFlags Flags; 3995 Flags.setNoUnsignedWrap(true); 3996 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3997 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3998 3999 // Mask out the low bits for alignment purposes. 4000 AllocSize = 4001 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4002 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4003 4004 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4005 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4006 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4007 setValue(&I, DSA); 4008 DAG.setRoot(DSA.getValue(1)); 4009 4010 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4011 } 4012 4013 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4014 if (I.isAtomic()) 4015 return visitAtomicLoad(I); 4016 4017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4018 const Value *SV = I.getOperand(0); 4019 if (TLI.supportSwiftError()) { 4020 // Swifterror values can come from either a function parameter with 4021 // swifterror attribute or an alloca with swifterror attribute. 4022 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4023 if (Arg->hasSwiftErrorAttr()) 4024 return visitLoadFromSwiftError(I); 4025 } 4026 4027 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4028 if (Alloca->isSwiftError()) 4029 return visitLoadFromSwiftError(I); 4030 } 4031 } 4032 4033 SDValue Ptr = getValue(SV); 4034 4035 Type *Ty = I.getType(); 4036 4037 bool isVolatile = I.isVolatile(); 4038 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4039 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4040 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 4041 unsigned Alignment = I.getAlignment(); 4042 4043 AAMDNodes AAInfo; 4044 I.getAAMetadata(AAInfo); 4045 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4046 4047 SmallVector<EVT, 4> ValueVTs, MemVTs; 4048 SmallVector<uint64_t, 4> Offsets; 4049 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4050 unsigned NumValues = ValueVTs.size(); 4051 if (NumValues == 0) 4052 return; 4053 4054 SDValue Root; 4055 bool ConstantMemory = false; 4056 if (isVolatile || NumValues > MaxParallelChains) 4057 // Serialize volatile loads with other side effects. 4058 Root = getRoot(); 4059 else if (AA && 4060 AA->pointsToConstantMemory(MemoryLocation( 4061 SV, 4062 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4063 AAInfo))) { 4064 // Do not serialize (non-volatile) loads of constant memory with anything. 4065 Root = DAG.getEntryNode(); 4066 ConstantMemory = true; 4067 } else { 4068 // Do not serialize non-volatile loads against each other. 4069 Root = DAG.getRoot(); 4070 } 4071 4072 SDLoc dl = getCurSDLoc(); 4073 4074 if (isVolatile) 4075 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4076 4077 // An aggregate load cannot wrap around the address space, so offsets to its 4078 // parts don't wrap either. 4079 SDNodeFlags Flags; 4080 Flags.setNoUnsignedWrap(true); 4081 4082 SmallVector<SDValue, 4> Values(NumValues); 4083 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4084 EVT PtrVT = Ptr.getValueType(); 4085 unsigned ChainI = 0; 4086 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4087 // Serializing loads here may result in excessive register pressure, and 4088 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4089 // could recover a bit by hoisting nodes upward in the chain by recognizing 4090 // they are side-effect free or do not alias. The optimizer should really 4091 // avoid this case by converting large object/array copies to llvm.memcpy 4092 // (MaxParallelChains should always remain as failsafe). 4093 if (ChainI == MaxParallelChains) { 4094 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4095 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4096 makeArrayRef(Chains.data(), ChainI)); 4097 Root = Chain; 4098 ChainI = 0; 4099 } 4100 SDValue A = DAG.getNode(ISD::ADD, dl, 4101 PtrVT, Ptr, 4102 DAG.getConstant(Offsets[i], dl, PtrVT), 4103 Flags); 4104 auto MMOFlags = MachineMemOperand::MONone; 4105 if (isVolatile) 4106 MMOFlags |= MachineMemOperand::MOVolatile; 4107 if (isNonTemporal) 4108 MMOFlags |= MachineMemOperand::MONonTemporal; 4109 if (isInvariant) 4110 MMOFlags |= MachineMemOperand::MOInvariant; 4111 if (isDereferenceable) 4112 MMOFlags |= MachineMemOperand::MODereferenceable; 4113 MMOFlags |= TLI.getMMOFlags(I); 4114 4115 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4116 MachinePointerInfo(SV, Offsets[i]), Alignment, 4117 MMOFlags, AAInfo, Ranges); 4118 Chains[ChainI] = L.getValue(1); 4119 4120 if (MemVTs[i] != ValueVTs[i]) 4121 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4122 4123 Values[i] = L; 4124 } 4125 4126 if (!ConstantMemory) { 4127 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4128 makeArrayRef(Chains.data(), ChainI)); 4129 if (isVolatile) 4130 DAG.setRoot(Chain); 4131 else 4132 PendingLoads.push_back(Chain); 4133 } 4134 4135 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4136 DAG.getVTList(ValueVTs), Values)); 4137 } 4138 4139 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4140 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4141 "call visitStoreToSwiftError when backend supports swifterror"); 4142 4143 SmallVector<EVT, 4> ValueVTs; 4144 SmallVector<uint64_t, 4> Offsets; 4145 const Value *SrcV = I.getOperand(0); 4146 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4147 SrcV->getType(), ValueVTs, &Offsets); 4148 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4149 "expect a single EVT for swifterror"); 4150 4151 SDValue Src = getValue(SrcV); 4152 // Create a virtual register, then update the virtual register. 4153 unsigned VReg; bool CreatedVReg; 4154 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4155 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4156 // Chain can be getRoot or getControlRoot. 4157 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4158 SDValue(Src.getNode(), Src.getResNo())); 4159 DAG.setRoot(CopyNode); 4160 if (CreatedVReg) 4161 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4162 } 4163 4164 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4165 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4166 "call visitLoadFromSwiftError when backend supports swifterror"); 4167 4168 assert(!I.isVolatile() && 4169 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4170 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4171 "Support volatile, non temporal, invariant for load_from_swift_error"); 4172 4173 const Value *SV = I.getOperand(0); 4174 Type *Ty = I.getType(); 4175 AAMDNodes AAInfo; 4176 I.getAAMetadata(AAInfo); 4177 assert( 4178 (!AA || 4179 !AA->pointsToConstantMemory(MemoryLocation( 4180 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4181 AAInfo))) && 4182 "load_from_swift_error should not be constant memory"); 4183 4184 SmallVector<EVT, 4> ValueVTs; 4185 SmallVector<uint64_t, 4> Offsets; 4186 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4187 ValueVTs, &Offsets); 4188 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4189 "expect a single EVT for swifterror"); 4190 4191 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4192 SDValue L = DAG.getCopyFromReg( 4193 getRoot(), getCurSDLoc(), 4194 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4195 ValueVTs[0]); 4196 4197 setValue(&I, L); 4198 } 4199 4200 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4201 if (I.isAtomic()) 4202 return visitAtomicStore(I); 4203 4204 const Value *SrcV = I.getOperand(0); 4205 const Value *PtrV = I.getOperand(1); 4206 4207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4208 if (TLI.supportSwiftError()) { 4209 // Swifterror values can come from either a function parameter with 4210 // swifterror attribute or an alloca with swifterror attribute. 4211 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4212 if (Arg->hasSwiftErrorAttr()) 4213 return visitStoreToSwiftError(I); 4214 } 4215 4216 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4217 if (Alloca->isSwiftError()) 4218 return visitStoreToSwiftError(I); 4219 } 4220 } 4221 4222 SmallVector<EVT, 4> ValueVTs, MemVTs; 4223 SmallVector<uint64_t, 4> Offsets; 4224 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4225 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4226 unsigned NumValues = ValueVTs.size(); 4227 if (NumValues == 0) 4228 return; 4229 4230 // Get the lowered operands. Note that we do this after 4231 // checking if NumResults is zero, because with zero results 4232 // the operands won't have values in the map. 4233 SDValue Src = getValue(SrcV); 4234 SDValue Ptr = getValue(PtrV); 4235 4236 SDValue Root = getRoot(); 4237 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4238 SDLoc dl = getCurSDLoc(); 4239 EVT PtrVT = Ptr.getValueType(); 4240 unsigned Alignment = I.getAlignment(); 4241 AAMDNodes AAInfo; 4242 I.getAAMetadata(AAInfo); 4243 4244 auto MMOFlags = MachineMemOperand::MONone; 4245 if (I.isVolatile()) 4246 MMOFlags |= MachineMemOperand::MOVolatile; 4247 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4248 MMOFlags |= MachineMemOperand::MONonTemporal; 4249 MMOFlags |= TLI.getMMOFlags(I); 4250 4251 // An aggregate load cannot wrap around the address space, so offsets to its 4252 // parts don't wrap either. 4253 SDNodeFlags Flags; 4254 Flags.setNoUnsignedWrap(true); 4255 4256 unsigned ChainI = 0; 4257 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4258 // See visitLoad comments. 4259 if (ChainI == MaxParallelChains) { 4260 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4261 makeArrayRef(Chains.data(), ChainI)); 4262 Root = Chain; 4263 ChainI = 0; 4264 } 4265 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4266 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4267 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4268 if (MemVTs[i] != ValueVTs[i]) 4269 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4270 SDValue St = 4271 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4272 Alignment, MMOFlags, AAInfo); 4273 Chains[ChainI] = St; 4274 } 4275 4276 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4277 makeArrayRef(Chains.data(), ChainI)); 4278 DAG.setRoot(StoreNode); 4279 } 4280 4281 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4282 bool IsCompressing) { 4283 SDLoc sdl = getCurSDLoc(); 4284 4285 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4286 unsigned& Alignment) { 4287 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4288 Src0 = I.getArgOperand(0); 4289 Ptr = I.getArgOperand(1); 4290 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4291 Mask = I.getArgOperand(3); 4292 }; 4293 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4294 unsigned& Alignment) { 4295 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4296 Src0 = I.getArgOperand(0); 4297 Ptr = I.getArgOperand(1); 4298 Mask = I.getArgOperand(2); 4299 Alignment = 0; 4300 }; 4301 4302 Value *PtrOperand, *MaskOperand, *Src0Operand; 4303 unsigned Alignment; 4304 if (IsCompressing) 4305 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4306 else 4307 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4308 4309 SDValue Ptr = getValue(PtrOperand); 4310 SDValue Src0 = getValue(Src0Operand); 4311 SDValue Mask = getValue(MaskOperand); 4312 4313 EVT VT = Src0.getValueType(); 4314 if (!Alignment) 4315 Alignment = DAG.getEVTAlignment(VT); 4316 4317 AAMDNodes AAInfo; 4318 I.getAAMetadata(AAInfo); 4319 4320 MachineMemOperand *MMO = 4321 DAG.getMachineFunction(). 4322 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4323 MachineMemOperand::MOStore, VT.getStoreSize(), 4324 Alignment, AAInfo); 4325 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4326 MMO, false /* Truncating */, 4327 IsCompressing); 4328 DAG.setRoot(StoreNode); 4329 setValue(&I, StoreNode); 4330 } 4331 4332 // Get a uniform base for the Gather/Scatter intrinsic. 4333 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4334 // We try to represent it as a base pointer + vector of indices. 4335 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4336 // The first operand of the GEP may be a single pointer or a vector of pointers 4337 // Example: 4338 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4339 // or 4340 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4341 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4342 // 4343 // When the first GEP operand is a single pointer - it is the uniform base we 4344 // are looking for. If first operand of the GEP is a splat vector - we 4345 // extract the splat value and use it as a uniform base. 4346 // In all other cases the function returns 'false'. 4347 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4348 SDValue &Scale, SelectionDAGBuilder* SDB) { 4349 SelectionDAG& DAG = SDB->DAG; 4350 LLVMContext &Context = *DAG.getContext(); 4351 4352 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4353 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4354 if (!GEP) 4355 return false; 4356 4357 const Value *GEPPtr = GEP->getPointerOperand(); 4358 if (!GEPPtr->getType()->isVectorTy()) 4359 Ptr = GEPPtr; 4360 else if (!(Ptr = getSplatValue(GEPPtr))) 4361 return false; 4362 4363 unsigned FinalIndex = GEP->getNumOperands() - 1; 4364 Value *IndexVal = GEP->getOperand(FinalIndex); 4365 4366 // Ensure all the other indices are 0. 4367 for (unsigned i = 1; i < FinalIndex; ++i) { 4368 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4369 if (!C || !C->isZero()) 4370 return false; 4371 } 4372 4373 // The operands of the GEP may be defined in another basic block. 4374 // In this case we'll not find nodes for the operands. 4375 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4376 return false; 4377 4378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4379 const DataLayout &DL = DAG.getDataLayout(); 4380 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4381 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4382 Base = SDB->getValue(Ptr); 4383 Index = SDB->getValue(IndexVal); 4384 4385 if (!Index.getValueType().isVector()) { 4386 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4387 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4388 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4389 } 4390 return true; 4391 } 4392 4393 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4394 SDLoc sdl = getCurSDLoc(); 4395 4396 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4397 const Value *Ptr = I.getArgOperand(1); 4398 SDValue Src0 = getValue(I.getArgOperand(0)); 4399 SDValue Mask = getValue(I.getArgOperand(3)); 4400 EVT VT = Src0.getValueType(); 4401 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4402 if (!Alignment) 4403 Alignment = DAG.getEVTAlignment(VT); 4404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4405 4406 AAMDNodes AAInfo; 4407 I.getAAMetadata(AAInfo); 4408 4409 SDValue Base; 4410 SDValue Index; 4411 SDValue Scale; 4412 const Value *BasePtr = Ptr; 4413 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4414 4415 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4416 MachineMemOperand *MMO = DAG.getMachineFunction(). 4417 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4418 MachineMemOperand::MOStore, VT.getStoreSize(), 4419 Alignment, AAInfo); 4420 if (!UniformBase) { 4421 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4422 Index = getValue(Ptr); 4423 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4424 } 4425 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4426 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4427 Ops, MMO); 4428 DAG.setRoot(Scatter); 4429 setValue(&I, Scatter); 4430 } 4431 4432 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4433 SDLoc sdl = getCurSDLoc(); 4434 4435 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4436 unsigned& Alignment) { 4437 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4438 Ptr = I.getArgOperand(0); 4439 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4440 Mask = I.getArgOperand(2); 4441 Src0 = I.getArgOperand(3); 4442 }; 4443 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4444 unsigned& Alignment) { 4445 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4446 Ptr = I.getArgOperand(0); 4447 Alignment = 0; 4448 Mask = I.getArgOperand(1); 4449 Src0 = I.getArgOperand(2); 4450 }; 4451 4452 Value *PtrOperand, *MaskOperand, *Src0Operand; 4453 unsigned Alignment; 4454 if (IsExpanding) 4455 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4456 else 4457 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4458 4459 SDValue Ptr = getValue(PtrOperand); 4460 SDValue Src0 = getValue(Src0Operand); 4461 SDValue Mask = getValue(MaskOperand); 4462 4463 EVT VT = Src0.getValueType(); 4464 if (!Alignment) 4465 Alignment = DAG.getEVTAlignment(VT); 4466 4467 AAMDNodes AAInfo; 4468 I.getAAMetadata(AAInfo); 4469 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4470 4471 // Do not serialize masked loads of constant memory with anything. 4472 bool AddToChain = 4473 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4474 PtrOperand, 4475 LocationSize::precise( 4476 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4477 AAInfo)); 4478 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4479 4480 MachineMemOperand *MMO = 4481 DAG.getMachineFunction(). 4482 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4483 MachineMemOperand::MOLoad, VT.getStoreSize(), 4484 Alignment, AAInfo, Ranges); 4485 4486 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4487 ISD::NON_EXTLOAD, IsExpanding); 4488 if (AddToChain) 4489 PendingLoads.push_back(Load.getValue(1)); 4490 setValue(&I, Load); 4491 } 4492 4493 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4494 SDLoc sdl = getCurSDLoc(); 4495 4496 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4497 const Value *Ptr = I.getArgOperand(0); 4498 SDValue Src0 = getValue(I.getArgOperand(3)); 4499 SDValue Mask = getValue(I.getArgOperand(2)); 4500 4501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4502 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4503 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4504 if (!Alignment) 4505 Alignment = DAG.getEVTAlignment(VT); 4506 4507 AAMDNodes AAInfo; 4508 I.getAAMetadata(AAInfo); 4509 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4510 4511 SDValue Root = DAG.getRoot(); 4512 SDValue Base; 4513 SDValue Index; 4514 SDValue Scale; 4515 const Value *BasePtr = Ptr; 4516 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4517 bool ConstantMemory = false; 4518 if (UniformBase && AA && 4519 AA->pointsToConstantMemory( 4520 MemoryLocation(BasePtr, 4521 LocationSize::precise( 4522 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4523 AAInfo))) { 4524 // Do not serialize (non-volatile) loads of constant memory with anything. 4525 Root = DAG.getEntryNode(); 4526 ConstantMemory = true; 4527 } 4528 4529 MachineMemOperand *MMO = 4530 DAG.getMachineFunction(). 4531 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4532 MachineMemOperand::MOLoad, VT.getStoreSize(), 4533 Alignment, AAInfo, Ranges); 4534 4535 if (!UniformBase) { 4536 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4537 Index = getValue(Ptr); 4538 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4539 } 4540 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4541 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4542 Ops, MMO); 4543 4544 SDValue OutChain = Gather.getValue(1); 4545 if (!ConstantMemory) 4546 PendingLoads.push_back(OutChain); 4547 setValue(&I, Gather); 4548 } 4549 4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4551 SDLoc dl = getCurSDLoc(); 4552 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4553 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4554 SyncScope::ID SSID = I.getSyncScopeID(); 4555 4556 SDValue InChain = getRoot(); 4557 4558 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4559 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4560 4561 auto Alignment = DAG.getEVTAlignment(MemVT); 4562 4563 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4564 if (I.isVolatile()) 4565 Flags |= MachineMemOperand::MOVolatile; 4566 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4567 4568 MachineFunction &MF = DAG.getMachineFunction(); 4569 MachineMemOperand *MMO = 4570 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4571 Flags, MemVT.getStoreSize(), Alignment, 4572 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4573 FailureOrdering); 4574 4575 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4576 dl, MemVT, VTs, InChain, 4577 getValue(I.getPointerOperand()), 4578 getValue(I.getCompareOperand()), 4579 getValue(I.getNewValOperand()), MMO); 4580 4581 SDValue OutChain = L.getValue(2); 4582 4583 setValue(&I, L); 4584 DAG.setRoot(OutChain); 4585 } 4586 4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4588 SDLoc dl = getCurSDLoc(); 4589 ISD::NodeType NT; 4590 switch (I.getOperation()) { 4591 default: llvm_unreachable("Unknown atomicrmw operation"); 4592 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4593 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4594 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4595 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4596 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4597 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4598 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4599 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4600 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4601 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4602 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4603 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4604 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4605 } 4606 AtomicOrdering Ordering = I.getOrdering(); 4607 SyncScope::ID SSID = I.getSyncScopeID(); 4608 4609 SDValue InChain = getRoot(); 4610 4611 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4612 auto Alignment = DAG.getEVTAlignment(MemVT); 4613 4614 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4615 if (I.isVolatile()) 4616 Flags |= MachineMemOperand::MOVolatile; 4617 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4618 4619 MachineFunction &MF = DAG.getMachineFunction(); 4620 MachineMemOperand *MMO = 4621 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4622 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4623 nullptr, SSID, Ordering); 4624 4625 SDValue L = 4626 DAG.getAtomic(NT, dl, MemVT, InChain, 4627 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4628 MMO); 4629 4630 SDValue OutChain = L.getValue(1); 4631 4632 setValue(&I, L); 4633 DAG.setRoot(OutChain); 4634 } 4635 4636 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4637 SDLoc dl = getCurSDLoc(); 4638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4639 SDValue Ops[3]; 4640 Ops[0] = getRoot(); 4641 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4642 TLI.getFenceOperandTy(DAG.getDataLayout())); 4643 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4644 TLI.getFenceOperandTy(DAG.getDataLayout())); 4645 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4646 } 4647 4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4649 SDLoc dl = getCurSDLoc(); 4650 AtomicOrdering Order = I.getOrdering(); 4651 SyncScope::ID SSID = I.getSyncScopeID(); 4652 4653 SDValue InChain = getRoot(); 4654 4655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4656 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4657 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4658 4659 if (!TLI.supportsUnalignedAtomics() && 4660 I.getAlignment() < MemVT.getSizeInBits() / 8) 4661 report_fatal_error("Cannot generate unaligned atomic load"); 4662 4663 auto Flags = MachineMemOperand::MOLoad; 4664 if (I.isVolatile()) 4665 Flags |= MachineMemOperand::MOVolatile; 4666 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4667 Flags |= MachineMemOperand::MOInvariant; 4668 if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout())) 4669 Flags |= MachineMemOperand::MODereferenceable; 4670 4671 Flags |= TLI.getMMOFlags(I); 4672 4673 MachineMemOperand *MMO = 4674 DAG.getMachineFunction(). 4675 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4676 Flags, MemVT.getStoreSize(), 4677 I.getAlignment() ? I.getAlignment() : 4678 DAG.getEVTAlignment(MemVT), 4679 AAMDNodes(), nullptr, SSID, Order); 4680 4681 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4682 SDValue L = 4683 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4684 getValue(I.getPointerOperand()), MMO); 4685 4686 SDValue OutChain = L.getValue(1); 4687 if (MemVT != VT) 4688 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4689 4690 setValue(&I, L); 4691 DAG.setRoot(OutChain); 4692 } 4693 4694 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4695 SDLoc dl = getCurSDLoc(); 4696 4697 AtomicOrdering Ordering = I.getOrdering(); 4698 SyncScope::ID SSID = I.getSyncScopeID(); 4699 4700 SDValue InChain = getRoot(); 4701 4702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4703 EVT MemVT = 4704 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4705 4706 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4707 report_fatal_error("Cannot generate unaligned atomic store"); 4708 4709 auto Flags = MachineMemOperand::MOStore; 4710 if (I.isVolatile()) 4711 Flags |= MachineMemOperand::MOVolatile; 4712 Flags |= TLI.getMMOFlags(I); 4713 4714 MachineFunction &MF = DAG.getMachineFunction(); 4715 MachineMemOperand *MMO = 4716 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4717 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4718 nullptr, SSID, Ordering); 4719 4720 SDValue Val = DAG.getPtrExtOrTrunc(getValue(I.getValueOperand()), dl, MemVT); 4721 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4722 getValue(I.getPointerOperand()), Val, MMO); 4723 4724 4725 DAG.setRoot(OutChain); 4726 } 4727 4728 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4729 /// node. 4730 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4731 unsigned Intrinsic) { 4732 // Ignore the callsite's attributes. A specific call site may be marked with 4733 // readnone, but the lowering code will expect the chain based on the 4734 // definition. 4735 const Function *F = I.getCalledFunction(); 4736 bool HasChain = !F->doesNotAccessMemory(); 4737 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4738 4739 // Build the operand list. 4740 SmallVector<SDValue, 8> Ops; 4741 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4742 if (OnlyLoad) { 4743 // We don't need to serialize loads against other loads. 4744 Ops.push_back(DAG.getRoot()); 4745 } else { 4746 Ops.push_back(getRoot()); 4747 } 4748 } 4749 4750 // Info is set by getTgtMemInstrinsic 4751 TargetLowering::IntrinsicInfo Info; 4752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4753 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4754 DAG.getMachineFunction(), 4755 Intrinsic); 4756 4757 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4758 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4759 Info.opc == ISD::INTRINSIC_W_CHAIN) 4760 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4761 TLI.getPointerTy(DAG.getDataLayout()))); 4762 4763 // Add all operands of the call to the operand list. 4764 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4765 SDValue Op = getValue(I.getArgOperand(i)); 4766 Ops.push_back(Op); 4767 } 4768 4769 SmallVector<EVT, 4> ValueVTs; 4770 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4771 4772 if (HasChain) 4773 ValueVTs.push_back(MVT::Other); 4774 4775 SDVTList VTs = DAG.getVTList(ValueVTs); 4776 4777 // Create the node. 4778 SDValue Result; 4779 if (IsTgtIntrinsic) { 4780 // This is target intrinsic that touches memory 4781 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4782 Ops, Info.memVT, 4783 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4784 Info.flags, Info.size); 4785 } else if (!HasChain) { 4786 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4787 } else if (!I.getType()->isVoidTy()) { 4788 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4789 } else { 4790 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4791 } 4792 4793 if (HasChain) { 4794 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4795 if (OnlyLoad) 4796 PendingLoads.push_back(Chain); 4797 else 4798 DAG.setRoot(Chain); 4799 } 4800 4801 if (!I.getType()->isVoidTy()) { 4802 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4803 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4804 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4805 } else 4806 Result = lowerRangeToAssertZExt(DAG, I, Result); 4807 4808 setValue(&I, Result); 4809 } 4810 } 4811 4812 /// GetSignificand - Get the significand and build it into a floating-point 4813 /// number with exponent of 1: 4814 /// 4815 /// Op = (Op & 0x007fffff) | 0x3f800000; 4816 /// 4817 /// where Op is the hexadecimal representation of floating point value. 4818 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4819 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4820 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4821 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4822 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4823 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4824 } 4825 4826 /// GetExponent - Get the exponent: 4827 /// 4828 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4829 /// 4830 /// where Op is the hexadecimal representation of floating point value. 4831 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4832 const TargetLowering &TLI, const SDLoc &dl) { 4833 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4834 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4835 SDValue t1 = DAG.getNode( 4836 ISD::SRL, dl, MVT::i32, t0, 4837 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4838 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4839 DAG.getConstant(127, dl, MVT::i32)); 4840 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4841 } 4842 4843 /// getF32Constant - Get 32-bit floating point constant. 4844 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4845 const SDLoc &dl) { 4846 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4847 MVT::f32); 4848 } 4849 4850 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4851 SelectionDAG &DAG) { 4852 // TODO: What fast-math-flags should be set on the floating-point nodes? 4853 4854 // IntegerPartOfX = ((int32_t)(t0); 4855 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4856 4857 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4858 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4859 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4860 4861 // IntegerPartOfX <<= 23; 4862 IntegerPartOfX = DAG.getNode( 4863 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4864 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4865 DAG.getDataLayout()))); 4866 4867 SDValue TwoToFractionalPartOfX; 4868 if (LimitFloatPrecision <= 6) { 4869 // For floating-point precision of 6: 4870 // 4871 // TwoToFractionalPartOfX = 4872 // 0.997535578f + 4873 // (0.735607626f + 0.252464424f * x) * x; 4874 // 4875 // error 0.0144103317, which is 6 bits 4876 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4877 getF32Constant(DAG, 0x3e814304, dl)); 4878 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4879 getF32Constant(DAG, 0x3f3c50c8, dl)); 4880 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4881 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4882 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4883 } else if (LimitFloatPrecision <= 12) { 4884 // For floating-point precision of 12: 4885 // 4886 // TwoToFractionalPartOfX = 4887 // 0.999892986f + 4888 // (0.696457318f + 4889 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4890 // 4891 // error 0.000107046256, which is 13 to 14 bits 4892 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4893 getF32Constant(DAG, 0x3da235e3, dl)); 4894 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4895 getF32Constant(DAG, 0x3e65b8f3, dl)); 4896 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4897 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4898 getF32Constant(DAG, 0x3f324b07, dl)); 4899 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4900 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4901 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4902 } else { // LimitFloatPrecision <= 18 4903 // For floating-point precision of 18: 4904 // 4905 // TwoToFractionalPartOfX = 4906 // 0.999999982f + 4907 // (0.693148872f + 4908 // (0.240227044f + 4909 // (0.554906021e-1f + 4910 // (0.961591928e-2f + 4911 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4912 // error 2.47208000*10^(-7), which is better than 18 bits 4913 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4914 getF32Constant(DAG, 0x3924b03e, dl)); 4915 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4916 getF32Constant(DAG, 0x3ab24b87, dl)); 4917 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4918 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4919 getF32Constant(DAG, 0x3c1d8c17, dl)); 4920 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4921 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4922 getF32Constant(DAG, 0x3d634a1d, dl)); 4923 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4924 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4925 getF32Constant(DAG, 0x3e75fe14, dl)); 4926 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4927 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4928 getF32Constant(DAG, 0x3f317234, dl)); 4929 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4930 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4931 getF32Constant(DAG, 0x3f800000, dl)); 4932 } 4933 4934 // Add the exponent into the result in integer domain. 4935 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4936 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4937 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4938 } 4939 4940 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4941 /// limited-precision mode. 4942 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4943 const TargetLowering &TLI) { 4944 if (Op.getValueType() == MVT::f32 && 4945 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4946 4947 // Put the exponent in the right bit position for later addition to the 4948 // final result: 4949 // 4950 // #define LOG2OFe 1.4426950f 4951 // t0 = Op * LOG2OFe 4952 4953 // TODO: What fast-math-flags should be set here? 4954 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4955 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4956 return getLimitedPrecisionExp2(t0, dl, DAG); 4957 } 4958 4959 // No special expansion. 4960 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4961 } 4962 4963 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4964 /// limited-precision mode. 4965 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4966 const TargetLowering &TLI) { 4967 // TODO: What fast-math-flags should be set on the floating-point nodes? 4968 4969 if (Op.getValueType() == MVT::f32 && 4970 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4971 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4972 4973 // Scale the exponent by log(2) [0.69314718f]. 4974 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4975 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4976 getF32Constant(DAG, 0x3f317218, dl)); 4977 4978 // Get the significand and build it into a floating-point number with 4979 // exponent of 1. 4980 SDValue X = GetSignificand(DAG, Op1, dl); 4981 4982 SDValue LogOfMantissa; 4983 if (LimitFloatPrecision <= 6) { 4984 // For floating-point precision of 6: 4985 // 4986 // LogofMantissa = 4987 // -1.1609546f + 4988 // (1.4034025f - 0.23903021f * x) * x; 4989 // 4990 // error 0.0034276066, which is better than 8 bits 4991 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4992 getF32Constant(DAG, 0xbe74c456, dl)); 4993 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4994 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4995 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4996 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4997 getF32Constant(DAG, 0x3f949a29, dl)); 4998 } else if (LimitFloatPrecision <= 12) { 4999 // For floating-point precision of 12: 5000 // 5001 // LogOfMantissa = 5002 // -1.7417939f + 5003 // (2.8212026f + 5004 // (-1.4699568f + 5005 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5006 // 5007 // error 0.000061011436, which is 14 bits 5008 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5009 getF32Constant(DAG, 0xbd67b6d6, dl)); 5010 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5011 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5013 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5014 getF32Constant(DAG, 0x3fbc278b, dl)); 5015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5016 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5017 getF32Constant(DAG, 0x40348e95, dl)); 5018 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5019 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5020 getF32Constant(DAG, 0x3fdef31a, dl)); 5021 } else { // LimitFloatPrecision <= 18 5022 // For floating-point precision of 18: 5023 // 5024 // LogOfMantissa = 5025 // -2.1072184f + 5026 // (4.2372794f + 5027 // (-3.7029485f + 5028 // (2.2781945f + 5029 // (-0.87823314f + 5030 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5031 // 5032 // error 0.0000023660568, which is better than 18 bits 5033 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5034 getF32Constant(DAG, 0xbc91e5ac, dl)); 5035 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5036 getF32Constant(DAG, 0x3e4350aa, dl)); 5037 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5038 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5039 getF32Constant(DAG, 0x3f60d3e3, dl)); 5040 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5041 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5042 getF32Constant(DAG, 0x4011cdf0, dl)); 5043 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5044 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5045 getF32Constant(DAG, 0x406cfd1c, dl)); 5046 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5047 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5048 getF32Constant(DAG, 0x408797cb, dl)); 5049 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5050 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5051 getF32Constant(DAG, 0x4006dcab, dl)); 5052 } 5053 5054 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5055 } 5056 5057 // No special expansion. 5058 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5059 } 5060 5061 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5062 /// limited-precision mode. 5063 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5064 const TargetLowering &TLI) { 5065 // TODO: What fast-math-flags should be set on the floating-point nodes? 5066 5067 if (Op.getValueType() == MVT::f32 && 5068 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5069 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5070 5071 // Get the exponent. 5072 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5073 5074 // Get the significand and build it into a floating-point number with 5075 // exponent of 1. 5076 SDValue X = GetSignificand(DAG, Op1, dl); 5077 5078 // Different possible minimax approximations of significand in 5079 // floating-point for various degrees of accuracy over [1,2]. 5080 SDValue Log2ofMantissa; 5081 if (LimitFloatPrecision <= 6) { 5082 // For floating-point precision of 6: 5083 // 5084 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5085 // 5086 // error 0.0049451742, which is more than 7 bits 5087 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5088 getF32Constant(DAG, 0xbeb08fe0, dl)); 5089 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5090 getF32Constant(DAG, 0x40019463, dl)); 5091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5092 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5093 getF32Constant(DAG, 0x3fd6633d, dl)); 5094 } else if (LimitFloatPrecision <= 12) { 5095 // For floating-point precision of 12: 5096 // 5097 // Log2ofMantissa = 5098 // -2.51285454f + 5099 // (4.07009056f + 5100 // (-2.12067489f + 5101 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5102 // 5103 // error 0.0000876136000, which is better than 13 bits 5104 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5105 getF32Constant(DAG, 0xbda7262e, dl)); 5106 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5107 getF32Constant(DAG, 0x3f25280b, dl)); 5108 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5109 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5110 getF32Constant(DAG, 0x4007b923, dl)); 5111 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5112 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5113 getF32Constant(DAG, 0x40823e2f, dl)); 5114 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5115 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5116 getF32Constant(DAG, 0x4020d29c, dl)); 5117 } else { // LimitFloatPrecision <= 18 5118 // For floating-point precision of 18: 5119 // 5120 // Log2ofMantissa = 5121 // -3.0400495f + 5122 // (6.1129976f + 5123 // (-5.3420409f + 5124 // (3.2865683f + 5125 // (-1.2669343f + 5126 // (0.27515199f - 5127 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5128 // 5129 // error 0.0000018516, which is better than 18 bits 5130 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5131 getF32Constant(DAG, 0xbcd2769e, dl)); 5132 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5133 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5134 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5135 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5136 getF32Constant(DAG, 0x3fa22ae7, dl)); 5137 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5138 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5139 getF32Constant(DAG, 0x40525723, dl)); 5140 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5141 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5142 getF32Constant(DAG, 0x40aaf200, dl)); 5143 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5144 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5145 getF32Constant(DAG, 0x40c39dad, dl)); 5146 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5147 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5148 getF32Constant(DAG, 0x4042902c, dl)); 5149 } 5150 5151 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5152 } 5153 5154 // No special expansion. 5155 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5156 } 5157 5158 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5159 /// limited-precision mode. 5160 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5161 const TargetLowering &TLI) { 5162 // TODO: What fast-math-flags should be set on the floating-point nodes? 5163 5164 if (Op.getValueType() == MVT::f32 && 5165 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5166 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5167 5168 // Scale the exponent by log10(2) [0.30102999f]. 5169 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5170 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5171 getF32Constant(DAG, 0x3e9a209a, dl)); 5172 5173 // Get the significand and build it into a floating-point number with 5174 // exponent of 1. 5175 SDValue X = GetSignificand(DAG, Op1, dl); 5176 5177 SDValue Log10ofMantissa; 5178 if (LimitFloatPrecision <= 6) { 5179 // For floating-point precision of 6: 5180 // 5181 // Log10ofMantissa = 5182 // -0.50419619f + 5183 // (0.60948995f - 0.10380950f * x) * x; 5184 // 5185 // error 0.0014886165, which is 6 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0xbdd49a13, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x3f1c0789, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x3f011300, dl)); 5193 } else if (LimitFloatPrecision <= 12) { 5194 // For floating-point precision of 12: 5195 // 5196 // Log10ofMantissa = 5197 // -0.64831180f + 5198 // (0.91751397f + 5199 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5200 // 5201 // error 0.00019228036, which is better than 12 bits 5202 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5203 getF32Constant(DAG, 0x3d431f31, dl)); 5204 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5205 getF32Constant(DAG, 0x3ea21fb2, dl)); 5206 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5207 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5208 getF32Constant(DAG, 0x3f6ae232, dl)); 5209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5210 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5211 getF32Constant(DAG, 0x3f25f7c3, dl)); 5212 } else { // LimitFloatPrecision <= 18 5213 // For floating-point precision of 18: 5214 // 5215 // Log10ofMantissa = 5216 // -0.84299375f + 5217 // (1.5327582f + 5218 // (-1.0688956f + 5219 // (0.49102474f + 5220 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5221 // 5222 // error 0.0000037995730, which is better than 18 bits 5223 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5224 getF32Constant(DAG, 0x3c5d51ce, dl)); 5225 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5226 getF32Constant(DAG, 0x3e00685a, dl)); 5227 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5228 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5229 getF32Constant(DAG, 0x3efb6798, dl)); 5230 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5231 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5232 getF32Constant(DAG, 0x3f88d192, dl)); 5233 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5234 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5235 getF32Constant(DAG, 0x3fc4316c, dl)); 5236 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5237 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5238 getF32Constant(DAG, 0x3f57ce70, dl)); 5239 } 5240 5241 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5242 } 5243 5244 // No special expansion. 5245 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5246 } 5247 5248 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5249 /// limited-precision mode. 5250 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5251 const TargetLowering &TLI) { 5252 if (Op.getValueType() == MVT::f32 && 5253 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5254 return getLimitedPrecisionExp2(Op, dl, DAG); 5255 5256 // No special expansion. 5257 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5258 } 5259 5260 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5261 /// limited-precision mode with x == 10.0f. 5262 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5263 SelectionDAG &DAG, const TargetLowering &TLI) { 5264 bool IsExp10 = false; 5265 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5266 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5267 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5268 APFloat Ten(10.0f); 5269 IsExp10 = LHSC->isExactlyValue(Ten); 5270 } 5271 } 5272 5273 // TODO: What fast-math-flags should be set on the FMUL node? 5274 if (IsExp10) { 5275 // Put the exponent in the right bit position for later addition to the 5276 // final result: 5277 // 5278 // #define LOG2OF10 3.3219281f 5279 // t0 = Op * LOG2OF10; 5280 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5281 getF32Constant(DAG, 0x40549a78, dl)); 5282 return getLimitedPrecisionExp2(t0, dl, DAG); 5283 } 5284 5285 // No special expansion. 5286 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5287 } 5288 5289 /// ExpandPowI - Expand a llvm.powi intrinsic. 5290 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5291 SelectionDAG &DAG) { 5292 // If RHS is a constant, we can expand this out to a multiplication tree, 5293 // otherwise we end up lowering to a call to __powidf2 (for example). When 5294 // optimizing for size, we only want to do this if the expansion would produce 5295 // a small number of multiplies, otherwise we do the full expansion. 5296 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5297 // Get the exponent as a positive value. 5298 unsigned Val = RHSC->getSExtValue(); 5299 if ((int)Val < 0) Val = -Val; 5300 5301 // powi(x, 0) -> 1.0 5302 if (Val == 0) 5303 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5304 5305 const Function &F = DAG.getMachineFunction().getFunction(); 5306 if (!F.hasOptSize() || 5307 // If optimizing for size, don't insert too many multiplies. 5308 // This inserts up to 5 multiplies. 5309 countPopulation(Val) + Log2_32(Val) < 7) { 5310 // We use the simple binary decomposition method to generate the multiply 5311 // sequence. There are more optimal ways to do this (for example, 5312 // powi(x,15) generates one more multiply than it should), but this has 5313 // the benefit of being both really simple and much better than a libcall. 5314 SDValue Res; // Logically starts equal to 1.0 5315 SDValue CurSquare = LHS; 5316 // TODO: Intrinsics should have fast-math-flags that propagate to these 5317 // nodes. 5318 while (Val) { 5319 if (Val & 1) { 5320 if (Res.getNode()) 5321 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5322 else 5323 Res = CurSquare; // 1.0*CurSquare. 5324 } 5325 5326 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5327 CurSquare, CurSquare); 5328 Val >>= 1; 5329 } 5330 5331 // If the original was negative, invert the result, producing 1/(x*x*x). 5332 if (RHSC->getSExtValue() < 0) 5333 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5334 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5335 return Res; 5336 } 5337 } 5338 5339 // Otherwise, expand to a libcall. 5340 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5341 } 5342 5343 // getUnderlyingArgReg - Find underlying register used for a truncated or 5344 // bitcasted argument. 5345 static unsigned getUnderlyingArgReg(const SDValue &N) { 5346 switch (N.getOpcode()) { 5347 case ISD::CopyFromReg: 5348 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5349 case ISD::BITCAST: 5350 case ISD::AssertZext: 5351 case ISD::AssertSext: 5352 case ISD::TRUNCATE: 5353 return getUnderlyingArgReg(N.getOperand(0)); 5354 default: 5355 return 0; 5356 } 5357 } 5358 5359 /// If the DbgValueInst is a dbg_value of a function argument, create the 5360 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5361 /// instruction selection, they will be inserted to the entry BB. 5362 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5363 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5364 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5365 const Argument *Arg = dyn_cast<Argument>(V); 5366 if (!Arg) 5367 return false; 5368 5369 if (!IsDbgDeclare) { 5370 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5371 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5372 // the entry block. 5373 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5374 if (!IsInEntryBlock) 5375 return false; 5376 5377 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5378 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5379 // variable that also is a param. 5380 // 5381 // Although, if we are at the top of the entry block already, we can still 5382 // emit using ArgDbgValue. This might catch some situations when the 5383 // dbg.value refers to an argument that isn't used in the entry block, so 5384 // any CopyToReg node would be optimized out and the only way to express 5385 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5386 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5387 // we should only emit as ArgDbgValue if the Variable is an argument to the 5388 // current function, and the dbg.value intrinsic is found in the entry 5389 // block. 5390 bool VariableIsFunctionInputArg = Variable->isParameter() && 5391 !DL->getInlinedAt(); 5392 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5393 if (!IsInPrologue && !VariableIsFunctionInputArg) 5394 return false; 5395 5396 // Here we assume that a function argument on IR level only can be used to 5397 // describe one input parameter on source level. If we for example have 5398 // source code like this 5399 // 5400 // struct A { long x, y; }; 5401 // void foo(struct A a, long b) { 5402 // ... 5403 // b = a.x; 5404 // ... 5405 // } 5406 // 5407 // and IR like this 5408 // 5409 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5410 // entry: 5411 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5412 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5413 // call void @llvm.dbg.value(metadata i32 %b, "b", 5414 // ... 5415 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5416 // ... 5417 // 5418 // then the last dbg.value is describing a parameter "b" using a value that 5419 // is an argument. But since we already has used %a1 to describe a parameter 5420 // we should not handle that last dbg.value here (that would result in an 5421 // incorrect hoisting of the DBG_VALUE to the function entry). 5422 // Notice that we allow one dbg.value per IR level argument, to accomodate 5423 // for the situation with fragments above. 5424 if (VariableIsFunctionInputArg) { 5425 unsigned ArgNo = Arg->getArgNo(); 5426 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5427 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5428 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5429 return false; 5430 FuncInfo.DescribedArgs.set(ArgNo); 5431 } 5432 } 5433 5434 MachineFunction &MF = DAG.getMachineFunction(); 5435 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5436 5437 bool IsIndirect = false; 5438 Optional<MachineOperand> Op; 5439 // Some arguments' frame index is recorded during argument lowering. 5440 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5441 if (FI != std::numeric_limits<int>::max()) 5442 Op = MachineOperand::CreateFI(FI); 5443 5444 if (!Op && N.getNode()) { 5445 unsigned Reg = getUnderlyingArgReg(N); 5446 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5447 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5448 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5449 if (PR) 5450 Reg = PR; 5451 } 5452 if (Reg) { 5453 Op = MachineOperand::CreateReg(Reg, false); 5454 IsIndirect = IsDbgDeclare; 5455 } 5456 } 5457 5458 if (!Op && N.getNode()) { 5459 // Check if frame index is available. 5460 SDValue LCandidate = peekThroughBitcasts(N); 5461 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5462 if (FrameIndexSDNode *FINode = 5463 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5464 Op = MachineOperand::CreateFI(FINode->getIndex()); 5465 } 5466 5467 if (!Op) { 5468 // Check if ValueMap has reg number. 5469 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5470 if (VMI != FuncInfo.ValueMap.end()) { 5471 const auto &TLI = DAG.getTargetLoweringInfo(); 5472 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5473 V->getType(), getABIRegCopyCC(V)); 5474 if (RFV.occupiesMultipleRegs()) { 5475 unsigned Offset = 0; 5476 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5477 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5478 auto FragmentExpr = DIExpression::createFragmentExpression( 5479 Expr, Offset, RegAndSize.second); 5480 if (!FragmentExpr) 5481 continue; 5482 FuncInfo.ArgDbgValues.push_back( 5483 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5484 Op->getReg(), Variable, *FragmentExpr)); 5485 Offset += RegAndSize.second; 5486 } 5487 return true; 5488 } 5489 Op = MachineOperand::CreateReg(VMI->second, false); 5490 IsIndirect = IsDbgDeclare; 5491 } 5492 } 5493 5494 if (!Op) 5495 return false; 5496 5497 assert(Variable->isValidLocationForIntrinsic(DL) && 5498 "Expected inlined-at fields to agree"); 5499 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5500 FuncInfo.ArgDbgValues.push_back( 5501 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5502 *Op, Variable, Expr)); 5503 5504 return true; 5505 } 5506 5507 /// Return the appropriate SDDbgValue based on N. 5508 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5509 DILocalVariable *Variable, 5510 DIExpression *Expr, 5511 const DebugLoc &dl, 5512 unsigned DbgSDNodeOrder) { 5513 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5514 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5515 // stack slot locations. 5516 // 5517 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5518 // debug values here after optimization: 5519 // 5520 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5521 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5522 // 5523 // Both describe the direct values of their associated variables. 5524 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5525 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5526 } 5527 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5528 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5529 } 5530 5531 // VisualStudio defines setjmp as _setjmp 5532 #if defined(_MSC_VER) && defined(setjmp) && \ 5533 !defined(setjmp_undefined_for_msvc) 5534 # pragma push_macro("setjmp") 5535 # undef setjmp 5536 # define setjmp_undefined_for_msvc 5537 #endif 5538 5539 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5540 switch (Intrinsic) { 5541 case Intrinsic::smul_fix: 5542 return ISD::SMULFIX; 5543 case Intrinsic::umul_fix: 5544 return ISD::UMULFIX; 5545 default: 5546 llvm_unreachable("Unhandled fixed point intrinsic"); 5547 } 5548 } 5549 5550 /// Lower the call to the specified intrinsic function. If we want to emit this 5551 /// as a call to a named external function, return the name. Otherwise, lower it 5552 /// and return null. 5553 const char * 5554 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5556 SDLoc sdl = getCurSDLoc(); 5557 DebugLoc dl = getCurDebugLoc(); 5558 SDValue Res; 5559 5560 switch (Intrinsic) { 5561 default: 5562 // By default, turn this into a target intrinsic node. 5563 visitTargetIntrinsic(I, Intrinsic); 5564 return nullptr; 5565 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5566 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5567 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5568 case Intrinsic::returnaddress: 5569 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5570 TLI.getPointerTy(DAG.getDataLayout()), 5571 getValue(I.getArgOperand(0)))); 5572 return nullptr; 5573 case Intrinsic::addressofreturnaddress: 5574 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5575 TLI.getPointerTy(DAG.getDataLayout()))); 5576 return nullptr; 5577 case Intrinsic::sponentry: 5578 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5579 TLI.getPointerTy(DAG.getDataLayout()))); 5580 return nullptr; 5581 case Intrinsic::frameaddress: 5582 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5583 TLI.getPointerTy(DAG.getDataLayout()), 5584 getValue(I.getArgOperand(0)))); 5585 return nullptr; 5586 case Intrinsic::read_register: { 5587 Value *Reg = I.getArgOperand(0); 5588 SDValue Chain = getRoot(); 5589 SDValue RegName = 5590 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5591 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5592 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5593 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5594 setValue(&I, Res); 5595 DAG.setRoot(Res.getValue(1)); 5596 return nullptr; 5597 } 5598 case Intrinsic::write_register: { 5599 Value *Reg = I.getArgOperand(0); 5600 Value *RegValue = I.getArgOperand(1); 5601 SDValue Chain = getRoot(); 5602 SDValue RegName = 5603 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5604 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5605 RegName, getValue(RegValue))); 5606 return nullptr; 5607 } 5608 case Intrinsic::setjmp: 5609 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5610 case Intrinsic::longjmp: 5611 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5612 case Intrinsic::memcpy: { 5613 const auto &MCI = cast<MemCpyInst>(I); 5614 SDValue Op1 = getValue(I.getArgOperand(0)); 5615 SDValue Op2 = getValue(I.getArgOperand(1)); 5616 SDValue Op3 = getValue(I.getArgOperand(2)); 5617 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5618 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5619 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5620 unsigned Align = MinAlign(DstAlign, SrcAlign); 5621 bool isVol = MCI.isVolatile(); 5622 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5623 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5624 // node. 5625 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5626 false, isTC, 5627 MachinePointerInfo(I.getArgOperand(0)), 5628 MachinePointerInfo(I.getArgOperand(1))); 5629 updateDAGForMaybeTailCall(MC); 5630 return nullptr; 5631 } 5632 case Intrinsic::memset: { 5633 const auto &MSI = cast<MemSetInst>(I); 5634 SDValue Op1 = getValue(I.getArgOperand(0)); 5635 SDValue Op2 = getValue(I.getArgOperand(1)); 5636 SDValue Op3 = getValue(I.getArgOperand(2)); 5637 // @llvm.memset defines 0 and 1 to both mean no alignment. 5638 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5639 bool isVol = MSI.isVolatile(); 5640 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5641 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5642 isTC, MachinePointerInfo(I.getArgOperand(0))); 5643 updateDAGForMaybeTailCall(MS); 5644 return nullptr; 5645 } 5646 case Intrinsic::memmove: { 5647 const auto &MMI = cast<MemMoveInst>(I); 5648 SDValue Op1 = getValue(I.getArgOperand(0)); 5649 SDValue Op2 = getValue(I.getArgOperand(1)); 5650 SDValue Op3 = getValue(I.getArgOperand(2)); 5651 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5652 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5653 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5654 unsigned Align = MinAlign(DstAlign, SrcAlign); 5655 bool isVol = MMI.isVolatile(); 5656 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5657 // FIXME: Support passing different dest/src alignments to the memmove DAG 5658 // node. 5659 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5660 isTC, MachinePointerInfo(I.getArgOperand(0)), 5661 MachinePointerInfo(I.getArgOperand(1))); 5662 updateDAGForMaybeTailCall(MM); 5663 return nullptr; 5664 } 5665 case Intrinsic::memcpy_element_unordered_atomic: { 5666 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5667 SDValue Dst = getValue(MI.getRawDest()); 5668 SDValue Src = getValue(MI.getRawSource()); 5669 SDValue Length = getValue(MI.getLength()); 5670 5671 unsigned DstAlign = MI.getDestAlignment(); 5672 unsigned SrcAlign = MI.getSourceAlignment(); 5673 Type *LengthTy = MI.getLength()->getType(); 5674 unsigned ElemSz = MI.getElementSizeInBytes(); 5675 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5676 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5677 SrcAlign, Length, LengthTy, ElemSz, isTC, 5678 MachinePointerInfo(MI.getRawDest()), 5679 MachinePointerInfo(MI.getRawSource())); 5680 updateDAGForMaybeTailCall(MC); 5681 return nullptr; 5682 } 5683 case Intrinsic::memmove_element_unordered_atomic: { 5684 auto &MI = cast<AtomicMemMoveInst>(I); 5685 SDValue Dst = getValue(MI.getRawDest()); 5686 SDValue Src = getValue(MI.getRawSource()); 5687 SDValue Length = getValue(MI.getLength()); 5688 5689 unsigned DstAlign = MI.getDestAlignment(); 5690 unsigned SrcAlign = MI.getSourceAlignment(); 5691 Type *LengthTy = MI.getLength()->getType(); 5692 unsigned ElemSz = MI.getElementSizeInBytes(); 5693 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5694 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5695 SrcAlign, Length, LengthTy, ElemSz, isTC, 5696 MachinePointerInfo(MI.getRawDest()), 5697 MachinePointerInfo(MI.getRawSource())); 5698 updateDAGForMaybeTailCall(MC); 5699 return nullptr; 5700 } 5701 case Intrinsic::memset_element_unordered_atomic: { 5702 auto &MI = cast<AtomicMemSetInst>(I); 5703 SDValue Dst = getValue(MI.getRawDest()); 5704 SDValue Val = getValue(MI.getValue()); 5705 SDValue Length = getValue(MI.getLength()); 5706 5707 unsigned DstAlign = MI.getDestAlignment(); 5708 Type *LengthTy = MI.getLength()->getType(); 5709 unsigned ElemSz = MI.getElementSizeInBytes(); 5710 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5711 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5712 LengthTy, ElemSz, isTC, 5713 MachinePointerInfo(MI.getRawDest())); 5714 updateDAGForMaybeTailCall(MC); 5715 return nullptr; 5716 } 5717 case Intrinsic::dbg_addr: 5718 case Intrinsic::dbg_declare: { 5719 const auto &DI = cast<DbgVariableIntrinsic>(I); 5720 DILocalVariable *Variable = DI.getVariable(); 5721 DIExpression *Expression = DI.getExpression(); 5722 dropDanglingDebugInfo(Variable, Expression); 5723 assert(Variable && "Missing variable"); 5724 5725 // Check if address has undef value. 5726 const Value *Address = DI.getVariableLocation(); 5727 if (!Address || isa<UndefValue>(Address) || 5728 (Address->use_empty() && !isa<Argument>(Address))) { 5729 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5730 return nullptr; 5731 } 5732 5733 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5734 5735 // Check if this variable can be described by a frame index, typically 5736 // either as a static alloca or a byval parameter. 5737 int FI = std::numeric_limits<int>::max(); 5738 if (const auto *AI = 5739 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5740 if (AI->isStaticAlloca()) { 5741 auto I = FuncInfo.StaticAllocaMap.find(AI); 5742 if (I != FuncInfo.StaticAllocaMap.end()) 5743 FI = I->second; 5744 } 5745 } else if (const auto *Arg = dyn_cast<Argument>( 5746 Address->stripInBoundsConstantOffsets())) { 5747 FI = FuncInfo.getArgumentFrameIndex(Arg); 5748 } 5749 5750 // llvm.dbg.addr is control dependent and always generates indirect 5751 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5752 // the MachineFunction variable table. 5753 if (FI != std::numeric_limits<int>::max()) { 5754 if (Intrinsic == Intrinsic::dbg_addr) { 5755 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5756 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5757 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5758 } 5759 return nullptr; 5760 } 5761 5762 SDValue &N = NodeMap[Address]; 5763 if (!N.getNode() && isa<Argument>(Address)) 5764 // Check unused arguments map. 5765 N = UnusedArgNodeMap[Address]; 5766 SDDbgValue *SDV; 5767 if (N.getNode()) { 5768 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5769 Address = BCI->getOperand(0); 5770 // Parameters are handled specially. 5771 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5772 if (isParameter && FINode) { 5773 // Byval parameter. We have a frame index at this point. 5774 SDV = 5775 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5776 /*IsIndirect*/ true, dl, SDNodeOrder); 5777 } else if (isa<Argument>(Address)) { 5778 // Address is an argument, so try to emit its dbg value using 5779 // virtual register info from the FuncInfo.ValueMap. 5780 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5781 return nullptr; 5782 } else { 5783 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5784 true, dl, SDNodeOrder); 5785 } 5786 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5787 } else { 5788 // If Address is an argument then try to emit its dbg value using 5789 // virtual register info from the FuncInfo.ValueMap. 5790 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5791 N)) { 5792 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5793 } 5794 } 5795 return nullptr; 5796 } 5797 case Intrinsic::dbg_label: { 5798 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5799 DILabel *Label = DI.getLabel(); 5800 assert(Label && "Missing label"); 5801 5802 SDDbgLabel *SDV; 5803 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5804 DAG.AddDbgLabel(SDV); 5805 return nullptr; 5806 } 5807 case Intrinsic::dbg_value: { 5808 const DbgValueInst &DI = cast<DbgValueInst>(I); 5809 assert(DI.getVariable() && "Missing variable"); 5810 5811 DILocalVariable *Variable = DI.getVariable(); 5812 DIExpression *Expression = DI.getExpression(); 5813 dropDanglingDebugInfo(Variable, Expression); 5814 const Value *V = DI.getValue(); 5815 if (!V) 5816 return nullptr; 5817 5818 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5819 SDNodeOrder)) 5820 return nullptr; 5821 5822 // TODO: Dangling debug info will eventually either be resolved or produce 5823 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5824 // between the original dbg.value location and its resolved DBG_VALUE, which 5825 // we should ideally fill with an extra Undef DBG_VALUE. 5826 5827 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5828 return nullptr; 5829 } 5830 5831 case Intrinsic::eh_typeid_for: { 5832 // Find the type id for the given typeinfo. 5833 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5834 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5835 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5836 setValue(&I, Res); 5837 return nullptr; 5838 } 5839 5840 case Intrinsic::eh_return_i32: 5841 case Intrinsic::eh_return_i64: 5842 DAG.getMachineFunction().setCallsEHReturn(true); 5843 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5844 MVT::Other, 5845 getControlRoot(), 5846 getValue(I.getArgOperand(0)), 5847 getValue(I.getArgOperand(1)))); 5848 return nullptr; 5849 case Intrinsic::eh_unwind_init: 5850 DAG.getMachineFunction().setCallsUnwindInit(true); 5851 return nullptr; 5852 case Intrinsic::eh_dwarf_cfa: 5853 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5854 TLI.getPointerTy(DAG.getDataLayout()), 5855 getValue(I.getArgOperand(0)))); 5856 return nullptr; 5857 case Intrinsic::eh_sjlj_callsite: { 5858 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5859 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5860 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5861 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5862 5863 MMI.setCurrentCallSite(CI->getZExtValue()); 5864 return nullptr; 5865 } 5866 case Intrinsic::eh_sjlj_functioncontext: { 5867 // Get and store the index of the function context. 5868 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5869 AllocaInst *FnCtx = 5870 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5871 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5872 MFI.setFunctionContextIndex(FI); 5873 return nullptr; 5874 } 5875 case Intrinsic::eh_sjlj_setjmp: { 5876 SDValue Ops[2]; 5877 Ops[0] = getRoot(); 5878 Ops[1] = getValue(I.getArgOperand(0)); 5879 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5880 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5881 setValue(&I, Op.getValue(0)); 5882 DAG.setRoot(Op.getValue(1)); 5883 return nullptr; 5884 } 5885 case Intrinsic::eh_sjlj_longjmp: 5886 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5887 getRoot(), getValue(I.getArgOperand(0)))); 5888 return nullptr; 5889 case Intrinsic::eh_sjlj_setup_dispatch: 5890 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5891 getRoot())); 5892 return nullptr; 5893 case Intrinsic::masked_gather: 5894 visitMaskedGather(I); 5895 return nullptr; 5896 case Intrinsic::masked_load: 5897 visitMaskedLoad(I); 5898 return nullptr; 5899 case Intrinsic::masked_scatter: 5900 visitMaskedScatter(I); 5901 return nullptr; 5902 case Intrinsic::masked_store: 5903 visitMaskedStore(I); 5904 return nullptr; 5905 case Intrinsic::masked_expandload: 5906 visitMaskedLoad(I, true /* IsExpanding */); 5907 return nullptr; 5908 case Intrinsic::masked_compressstore: 5909 visitMaskedStore(I, true /* IsCompressing */); 5910 return nullptr; 5911 case Intrinsic::x86_mmx_pslli_w: 5912 case Intrinsic::x86_mmx_pslli_d: 5913 case Intrinsic::x86_mmx_pslli_q: 5914 case Intrinsic::x86_mmx_psrli_w: 5915 case Intrinsic::x86_mmx_psrli_d: 5916 case Intrinsic::x86_mmx_psrli_q: 5917 case Intrinsic::x86_mmx_psrai_w: 5918 case Intrinsic::x86_mmx_psrai_d: { 5919 SDValue ShAmt = getValue(I.getArgOperand(1)); 5920 if (isa<ConstantSDNode>(ShAmt)) { 5921 visitTargetIntrinsic(I, Intrinsic); 5922 return nullptr; 5923 } 5924 unsigned NewIntrinsic = 0; 5925 EVT ShAmtVT = MVT::v2i32; 5926 switch (Intrinsic) { 5927 case Intrinsic::x86_mmx_pslli_w: 5928 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5929 break; 5930 case Intrinsic::x86_mmx_pslli_d: 5931 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5932 break; 5933 case Intrinsic::x86_mmx_pslli_q: 5934 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5935 break; 5936 case Intrinsic::x86_mmx_psrli_w: 5937 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5938 break; 5939 case Intrinsic::x86_mmx_psrli_d: 5940 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5941 break; 5942 case Intrinsic::x86_mmx_psrli_q: 5943 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5944 break; 5945 case Intrinsic::x86_mmx_psrai_w: 5946 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5947 break; 5948 case Intrinsic::x86_mmx_psrai_d: 5949 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5950 break; 5951 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5952 } 5953 5954 // The vector shift intrinsics with scalars uses 32b shift amounts but 5955 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5956 // to be zero. 5957 // We must do this early because v2i32 is not a legal type. 5958 SDValue ShOps[2]; 5959 ShOps[0] = ShAmt; 5960 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5961 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5962 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5963 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5964 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5965 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5966 getValue(I.getArgOperand(0)), ShAmt); 5967 setValue(&I, Res); 5968 return nullptr; 5969 } 5970 case Intrinsic::powi: 5971 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5972 getValue(I.getArgOperand(1)), DAG)); 5973 return nullptr; 5974 case Intrinsic::log: 5975 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5976 return nullptr; 5977 case Intrinsic::log2: 5978 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5979 return nullptr; 5980 case Intrinsic::log10: 5981 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5982 return nullptr; 5983 case Intrinsic::exp: 5984 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5985 return nullptr; 5986 case Intrinsic::exp2: 5987 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5988 return nullptr; 5989 case Intrinsic::pow: 5990 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5991 getValue(I.getArgOperand(1)), DAG, TLI)); 5992 return nullptr; 5993 case Intrinsic::sqrt: 5994 case Intrinsic::fabs: 5995 case Intrinsic::sin: 5996 case Intrinsic::cos: 5997 case Intrinsic::floor: 5998 case Intrinsic::ceil: 5999 case Intrinsic::trunc: 6000 case Intrinsic::rint: 6001 case Intrinsic::nearbyint: 6002 case Intrinsic::round: 6003 case Intrinsic::canonicalize: { 6004 unsigned Opcode; 6005 switch (Intrinsic) { 6006 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6007 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6008 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6009 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6010 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6011 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6012 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6013 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6014 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6015 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6016 case Intrinsic::round: Opcode = ISD::FROUND; break; 6017 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6018 } 6019 6020 setValue(&I, DAG.getNode(Opcode, sdl, 6021 getValue(I.getArgOperand(0)).getValueType(), 6022 getValue(I.getArgOperand(0)))); 6023 return nullptr; 6024 } 6025 case Intrinsic::minnum: { 6026 auto VT = getValue(I.getArgOperand(0)).getValueType(); 6027 unsigned Opc = 6028 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 6029 ? ISD::FMINIMUM 6030 : ISD::FMINNUM; 6031 setValue(&I, DAG.getNode(Opc, sdl, VT, 6032 getValue(I.getArgOperand(0)), 6033 getValue(I.getArgOperand(1)))); 6034 return nullptr; 6035 } 6036 case Intrinsic::maxnum: { 6037 auto VT = getValue(I.getArgOperand(0)).getValueType(); 6038 unsigned Opc = 6039 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 6040 ? ISD::FMAXIMUM 6041 : ISD::FMAXNUM; 6042 setValue(&I, DAG.getNode(Opc, sdl, VT, 6043 getValue(I.getArgOperand(0)), 6044 getValue(I.getArgOperand(1)))); 6045 return nullptr; 6046 } 6047 case Intrinsic::minimum: 6048 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6049 getValue(I.getArgOperand(0)).getValueType(), 6050 getValue(I.getArgOperand(0)), 6051 getValue(I.getArgOperand(1)))); 6052 return nullptr; 6053 case Intrinsic::maximum: 6054 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6055 getValue(I.getArgOperand(0)).getValueType(), 6056 getValue(I.getArgOperand(0)), 6057 getValue(I.getArgOperand(1)))); 6058 return nullptr; 6059 case Intrinsic::copysign: 6060 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6061 getValue(I.getArgOperand(0)).getValueType(), 6062 getValue(I.getArgOperand(0)), 6063 getValue(I.getArgOperand(1)))); 6064 return nullptr; 6065 case Intrinsic::fma: 6066 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6067 getValue(I.getArgOperand(0)).getValueType(), 6068 getValue(I.getArgOperand(0)), 6069 getValue(I.getArgOperand(1)), 6070 getValue(I.getArgOperand(2)))); 6071 return nullptr; 6072 case Intrinsic::experimental_constrained_fadd: 6073 case Intrinsic::experimental_constrained_fsub: 6074 case Intrinsic::experimental_constrained_fmul: 6075 case Intrinsic::experimental_constrained_fdiv: 6076 case Intrinsic::experimental_constrained_frem: 6077 case Intrinsic::experimental_constrained_fma: 6078 case Intrinsic::experimental_constrained_sqrt: 6079 case Intrinsic::experimental_constrained_pow: 6080 case Intrinsic::experimental_constrained_powi: 6081 case Intrinsic::experimental_constrained_sin: 6082 case Intrinsic::experimental_constrained_cos: 6083 case Intrinsic::experimental_constrained_exp: 6084 case Intrinsic::experimental_constrained_exp2: 6085 case Intrinsic::experimental_constrained_log: 6086 case Intrinsic::experimental_constrained_log10: 6087 case Intrinsic::experimental_constrained_log2: 6088 case Intrinsic::experimental_constrained_rint: 6089 case Intrinsic::experimental_constrained_nearbyint: 6090 case Intrinsic::experimental_constrained_maxnum: 6091 case Intrinsic::experimental_constrained_minnum: 6092 case Intrinsic::experimental_constrained_ceil: 6093 case Intrinsic::experimental_constrained_floor: 6094 case Intrinsic::experimental_constrained_round: 6095 case Intrinsic::experimental_constrained_trunc: 6096 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6097 return nullptr; 6098 case Intrinsic::fmuladd: { 6099 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6100 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6101 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6102 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6103 getValue(I.getArgOperand(0)).getValueType(), 6104 getValue(I.getArgOperand(0)), 6105 getValue(I.getArgOperand(1)), 6106 getValue(I.getArgOperand(2)))); 6107 } else { 6108 // TODO: Intrinsic calls should have fast-math-flags. 6109 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6110 getValue(I.getArgOperand(0)).getValueType(), 6111 getValue(I.getArgOperand(0)), 6112 getValue(I.getArgOperand(1))); 6113 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6114 getValue(I.getArgOperand(0)).getValueType(), 6115 Mul, 6116 getValue(I.getArgOperand(2))); 6117 setValue(&I, Add); 6118 } 6119 return nullptr; 6120 } 6121 case Intrinsic::convert_to_fp16: 6122 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6123 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6124 getValue(I.getArgOperand(0)), 6125 DAG.getTargetConstant(0, sdl, 6126 MVT::i32)))); 6127 return nullptr; 6128 case Intrinsic::convert_from_fp16: 6129 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6130 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6131 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6132 getValue(I.getArgOperand(0))))); 6133 return nullptr; 6134 case Intrinsic::pcmarker: { 6135 SDValue Tmp = getValue(I.getArgOperand(0)); 6136 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6137 return nullptr; 6138 } 6139 case Intrinsic::readcyclecounter: { 6140 SDValue Op = getRoot(); 6141 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6142 DAG.getVTList(MVT::i64, MVT::Other), Op); 6143 setValue(&I, Res); 6144 DAG.setRoot(Res.getValue(1)); 6145 return nullptr; 6146 } 6147 case Intrinsic::bitreverse: 6148 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6149 getValue(I.getArgOperand(0)).getValueType(), 6150 getValue(I.getArgOperand(0)))); 6151 return nullptr; 6152 case Intrinsic::bswap: 6153 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6154 getValue(I.getArgOperand(0)).getValueType(), 6155 getValue(I.getArgOperand(0)))); 6156 return nullptr; 6157 case Intrinsic::cttz: { 6158 SDValue Arg = getValue(I.getArgOperand(0)); 6159 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6160 EVT Ty = Arg.getValueType(); 6161 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6162 sdl, Ty, Arg)); 6163 return nullptr; 6164 } 6165 case Intrinsic::ctlz: { 6166 SDValue Arg = getValue(I.getArgOperand(0)); 6167 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6168 EVT Ty = Arg.getValueType(); 6169 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6170 sdl, Ty, Arg)); 6171 return nullptr; 6172 } 6173 case Intrinsic::ctpop: { 6174 SDValue Arg = getValue(I.getArgOperand(0)); 6175 EVT Ty = Arg.getValueType(); 6176 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6177 return nullptr; 6178 } 6179 case Intrinsic::fshl: 6180 case Intrinsic::fshr: { 6181 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6182 SDValue X = getValue(I.getArgOperand(0)); 6183 SDValue Y = getValue(I.getArgOperand(1)); 6184 SDValue Z = getValue(I.getArgOperand(2)); 6185 EVT VT = X.getValueType(); 6186 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6187 SDValue Zero = DAG.getConstant(0, sdl, VT); 6188 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6189 6190 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6191 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6192 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6193 return nullptr; 6194 } 6195 6196 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6197 // avoid the select that is necessary in the general case to filter out 6198 // the 0-shift possibility that leads to UB. 6199 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6200 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6201 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6202 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6203 return nullptr; 6204 } 6205 6206 // Some targets only rotate one way. Try the opposite direction. 6207 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6208 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6209 // Negate the shift amount because it is safe to ignore the high bits. 6210 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6211 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6212 return nullptr; 6213 } 6214 6215 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6216 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6217 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6218 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6219 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6220 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6221 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6222 return nullptr; 6223 } 6224 6225 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6226 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6227 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6228 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6229 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6230 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6231 6232 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6233 // and that is undefined. We must compare and select to avoid UB. 6234 EVT CCVT = MVT::i1; 6235 if (VT.isVector()) 6236 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6237 6238 // For fshl, 0-shift returns the 1st arg (X). 6239 // For fshr, 0-shift returns the 2nd arg (Y). 6240 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6241 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6242 return nullptr; 6243 } 6244 case Intrinsic::sadd_sat: { 6245 SDValue Op1 = getValue(I.getArgOperand(0)); 6246 SDValue Op2 = getValue(I.getArgOperand(1)); 6247 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6248 return nullptr; 6249 } 6250 case Intrinsic::uadd_sat: { 6251 SDValue Op1 = getValue(I.getArgOperand(0)); 6252 SDValue Op2 = getValue(I.getArgOperand(1)); 6253 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6254 return nullptr; 6255 } 6256 case Intrinsic::ssub_sat: { 6257 SDValue Op1 = getValue(I.getArgOperand(0)); 6258 SDValue Op2 = getValue(I.getArgOperand(1)); 6259 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6260 return nullptr; 6261 } 6262 case Intrinsic::usub_sat: { 6263 SDValue Op1 = getValue(I.getArgOperand(0)); 6264 SDValue Op2 = getValue(I.getArgOperand(1)); 6265 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6266 return nullptr; 6267 } 6268 case Intrinsic::smul_fix: 6269 case Intrinsic::umul_fix: { 6270 SDValue Op1 = getValue(I.getArgOperand(0)); 6271 SDValue Op2 = getValue(I.getArgOperand(1)); 6272 SDValue Op3 = getValue(I.getArgOperand(2)); 6273 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6274 Op1.getValueType(), Op1, Op2, Op3)); 6275 return nullptr; 6276 } 6277 case Intrinsic::stacksave: { 6278 SDValue Op = getRoot(); 6279 Res = DAG.getNode( 6280 ISD::STACKSAVE, sdl, 6281 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6282 setValue(&I, Res); 6283 DAG.setRoot(Res.getValue(1)); 6284 return nullptr; 6285 } 6286 case Intrinsic::stackrestore: 6287 Res = getValue(I.getArgOperand(0)); 6288 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6289 return nullptr; 6290 case Intrinsic::get_dynamic_area_offset: { 6291 SDValue Op = getRoot(); 6292 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6293 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6294 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6295 // target. 6296 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6297 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6298 " intrinsic!"); 6299 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6300 Op); 6301 DAG.setRoot(Op); 6302 setValue(&I, Res); 6303 return nullptr; 6304 } 6305 case Intrinsic::stackguard: { 6306 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6307 MachineFunction &MF = DAG.getMachineFunction(); 6308 const Module &M = *MF.getFunction().getParent(); 6309 SDValue Chain = getRoot(); 6310 if (TLI.useLoadStackGuardNode()) { 6311 Res = getLoadStackGuard(DAG, sdl, Chain); 6312 } else { 6313 const Value *Global = TLI.getSDagStackGuard(M); 6314 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6315 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6316 MachinePointerInfo(Global, 0), Align, 6317 MachineMemOperand::MOVolatile); 6318 } 6319 if (TLI.useStackGuardXorFP()) 6320 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6321 DAG.setRoot(Chain); 6322 setValue(&I, Res); 6323 return nullptr; 6324 } 6325 case Intrinsic::stackprotector: { 6326 // Emit code into the DAG to store the stack guard onto the stack. 6327 MachineFunction &MF = DAG.getMachineFunction(); 6328 MachineFrameInfo &MFI = MF.getFrameInfo(); 6329 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6330 SDValue Src, Chain = getRoot(); 6331 6332 if (TLI.useLoadStackGuardNode()) 6333 Src = getLoadStackGuard(DAG, sdl, Chain); 6334 else 6335 Src = getValue(I.getArgOperand(0)); // The guard's value. 6336 6337 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6338 6339 int FI = FuncInfo.StaticAllocaMap[Slot]; 6340 MFI.setStackProtectorIndex(FI); 6341 6342 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6343 6344 // Store the stack protector onto the stack. 6345 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6346 DAG.getMachineFunction(), FI), 6347 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6348 setValue(&I, Res); 6349 DAG.setRoot(Res); 6350 return nullptr; 6351 } 6352 case Intrinsic::objectsize: { 6353 // If we don't know by now, we're never going to know. 6354 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6355 6356 assert(CI && "Non-constant type in __builtin_object_size?"); 6357 6358 SDValue Arg = getValue(I.getCalledValue()); 6359 EVT Ty = Arg.getValueType(); 6360 6361 if (CI->isZero()) 6362 Res = DAG.getConstant(-1ULL, sdl, Ty); 6363 else 6364 Res = DAG.getConstant(0, sdl, Ty); 6365 6366 setValue(&I, Res); 6367 return nullptr; 6368 } 6369 6370 case Intrinsic::is_constant: 6371 // If this wasn't constant-folded away by now, then it's not a 6372 // constant. 6373 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6374 return nullptr; 6375 6376 case Intrinsic::annotation: 6377 case Intrinsic::ptr_annotation: 6378 case Intrinsic::launder_invariant_group: 6379 case Intrinsic::strip_invariant_group: 6380 // Drop the intrinsic, but forward the value 6381 setValue(&I, getValue(I.getOperand(0))); 6382 return nullptr; 6383 case Intrinsic::assume: 6384 case Intrinsic::var_annotation: 6385 case Intrinsic::sideeffect: 6386 // Discard annotate attributes, assumptions, and artificial side-effects. 6387 return nullptr; 6388 6389 case Intrinsic::codeview_annotation: { 6390 // Emit a label associated with this metadata. 6391 MachineFunction &MF = DAG.getMachineFunction(); 6392 MCSymbol *Label = 6393 MF.getMMI().getContext().createTempSymbol("annotation", true); 6394 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6395 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6396 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6397 DAG.setRoot(Res); 6398 return nullptr; 6399 } 6400 6401 case Intrinsic::init_trampoline: { 6402 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6403 6404 SDValue Ops[6]; 6405 Ops[0] = getRoot(); 6406 Ops[1] = getValue(I.getArgOperand(0)); 6407 Ops[2] = getValue(I.getArgOperand(1)); 6408 Ops[3] = getValue(I.getArgOperand(2)); 6409 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6410 Ops[5] = DAG.getSrcValue(F); 6411 6412 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6413 6414 DAG.setRoot(Res); 6415 return nullptr; 6416 } 6417 case Intrinsic::adjust_trampoline: 6418 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6419 TLI.getPointerTy(DAG.getDataLayout()), 6420 getValue(I.getArgOperand(0)))); 6421 return nullptr; 6422 case Intrinsic::gcroot: { 6423 assert(DAG.getMachineFunction().getFunction().hasGC() && 6424 "only valid in functions with gc specified, enforced by Verifier"); 6425 assert(GFI && "implied by previous"); 6426 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6427 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6428 6429 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6430 GFI->addStackRoot(FI->getIndex(), TypeMap); 6431 return nullptr; 6432 } 6433 case Intrinsic::gcread: 6434 case Intrinsic::gcwrite: 6435 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6436 case Intrinsic::flt_rounds: 6437 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6438 return nullptr; 6439 6440 case Intrinsic::expect: 6441 // Just replace __builtin_expect(exp, c) with EXP. 6442 setValue(&I, getValue(I.getArgOperand(0))); 6443 return nullptr; 6444 6445 case Intrinsic::debugtrap: 6446 case Intrinsic::trap: { 6447 StringRef TrapFuncName = 6448 I.getAttributes() 6449 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6450 .getValueAsString(); 6451 if (TrapFuncName.empty()) { 6452 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6453 ISD::TRAP : ISD::DEBUGTRAP; 6454 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6455 return nullptr; 6456 } 6457 TargetLowering::ArgListTy Args; 6458 6459 TargetLowering::CallLoweringInfo CLI(DAG); 6460 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6461 CallingConv::C, I.getType(), 6462 DAG.getExternalSymbol(TrapFuncName.data(), 6463 TLI.getPointerTy(DAG.getDataLayout())), 6464 std::move(Args)); 6465 6466 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6467 DAG.setRoot(Result.second); 6468 return nullptr; 6469 } 6470 6471 case Intrinsic::uadd_with_overflow: 6472 case Intrinsic::sadd_with_overflow: 6473 case Intrinsic::usub_with_overflow: 6474 case Intrinsic::ssub_with_overflow: 6475 case Intrinsic::umul_with_overflow: 6476 case Intrinsic::smul_with_overflow: { 6477 ISD::NodeType Op; 6478 switch (Intrinsic) { 6479 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6480 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6481 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6482 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6483 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6484 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6485 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6486 } 6487 SDValue Op1 = getValue(I.getArgOperand(0)); 6488 SDValue Op2 = getValue(I.getArgOperand(1)); 6489 6490 EVT ResultVT = Op1.getValueType(); 6491 EVT OverflowVT = MVT::i1; 6492 if (ResultVT.isVector()) 6493 OverflowVT = EVT::getVectorVT( 6494 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6495 6496 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6497 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6498 return nullptr; 6499 } 6500 case Intrinsic::prefetch: { 6501 SDValue Ops[5]; 6502 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6503 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6504 Ops[0] = DAG.getRoot(); 6505 Ops[1] = getValue(I.getArgOperand(0)); 6506 Ops[2] = getValue(I.getArgOperand(1)); 6507 Ops[3] = getValue(I.getArgOperand(2)); 6508 Ops[4] = getValue(I.getArgOperand(3)); 6509 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6510 DAG.getVTList(MVT::Other), Ops, 6511 EVT::getIntegerVT(*Context, 8), 6512 MachinePointerInfo(I.getArgOperand(0)), 6513 0, /* align */ 6514 Flags); 6515 6516 // Chain the prefetch in parallell with any pending loads, to stay out of 6517 // the way of later optimizations. 6518 PendingLoads.push_back(Result); 6519 Result = getRoot(); 6520 DAG.setRoot(Result); 6521 return nullptr; 6522 } 6523 case Intrinsic::lifetime_start: 6524 case Intrinsic::lifetime_end: { 6525 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6526 // Stack coloring is not enabled in O0, discard region information. 6527 if (TM.getOptLevel() == CodeGenOpt::None) 6528 return nullptr; 6529 6530 const int64_t ObjectSize = 6531 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6532 Value *const ObjectPtr = I.getArgOperand(1); 6533 SmallVector<const Value *, 4> Allocas; 6534 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6535 6536 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6537 E = Allocas.end(); Object != E; ++Object) { 6538 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6539 6540 // Could not find an Alloca. 6541 if (!LifetimeObject) 6542 continue; 6543 6544 // First check that the Alloca is static, otherwise it won't have a 6545 // valid frame index. 6546 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6547 if (SI == FuncInfo.StaticAllocaMap.end()) 6548 return nullptr; 6549 6550 const int FrameIndex = SI->second; 6551 int64_t Offset; 6552 if (GetPointerBaseWithConstantOffset( 6553 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6554 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6555 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6556 Offset); 6557 DAG.setRoot(Res); 6558 } 6559 return nullptr; 6560 } 6561 case Intrinsic::invariant_start: 6562 // Discard region information. 6563 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6564 return nullptr; 6565 case Intrinsic::invariant_end: 6566 // Discard region information. 6567 return nullptr; 6568 case Intrinsic::clear_cache: 6569 return TLI.getClearCacheBuiltinName(); 6570 case Intrinsic::donothing: 6571 // ignore 6572 return nullptr; 6573 case Intrinsic::experimental_stackmap: 6574 visitStackmap(I); 6575 return nullptr; 6576 case Intrinsic::experimental_patchpoint_void: 6577 case Intrinsic::experimental_patchpoint_i64: 6578 visitPatchpoint(&I); 6579 return nullptr; 6580 case Intrinsic::experimental_gc_statepoint: 6581 LowerStatepoint(ImmutableStatepoint(&I)); 6582 return nullptr; 6583 case Intrinsic::experimental_gc_result: 6584 visitGCResult(cast<GCResultInst>(I)); 6585 return nullptr; 6586 case Intrinsic::experimental_gc_relocate: 6587 visitGCRelocate(cast<GCRelocateInst>(I)); 6588 return nullptr; 6589 case Intrinsic::instrprof_increment: 6590 llvm_unreachable("instrprof failed to lower an increment"); 6591 case Intrinsic::instrprof_value_profile: 6592 llvm_unreachable("instrprof failed to lower a value profiling call"); 6593 case Intrinsic::localescape: { 6594 MachineFunction &MF = DAG.getMachineFunction(); 6595 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6596 6597 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6598 // is the same on all targets. 6599 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6600 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6601 if (isa<ConstantPointerNull>(Arg)) 6602 continue; // Skip null pointers. They represent a hole in index space. 6603 AllocaInst *Slot = cast<AllocaInst>(Arg); 6604 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6605 "can only escape static allocas"); 6606 int FI = FuncInfo.StaticAllocaMap[Slot]; 6607 MCSymbol *FrameAllocSym = 6608 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6609 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6610 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6611 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6612 .addSym(FrameAllocSym) 6613 .addFrameIndex(FI); 6614 } 6615 6616 return nullptr; 6617 } 6618 6619 case Intrinsic::localrecover: { 6620 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6621 MachineFunction &MF = DAG.getMachineFunction(); 6622 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6623 6624 // Get the symbol that defines the frame offset. 6625 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6626 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6627 unsigned IdxVal = 6628 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6629 MCSymbol *FrameAllocSym = 6630 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6631 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6632 6633 // Create a MCSymbol for the label to avoid any target lowering 6634 // that would make this PC relative. 6635 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6636 SDValue OffsetVal = 6637 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6638 6639 // Add the offset to the FP. 6640 Value *FP = I.getArgOperand(1); 6641 SDValue FPVal = getValue(FP); 6642 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6643 setValue(&I, Add); 6644 6645 return nullptr; 6646 } 6647 6648 case Intrinsic::eh_exceptionpointer: 6649 case Intrinsic::eh_exceptioncode: { 6650 // Get the exception pointer vreg, copy from it, and resize it to fit. 6651 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6652 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6653 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6654 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6655 SDValue N = 6656 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6657 if (Intrinsic == Intrinsic::eh_exceptioncode) 6658 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6659 setValue(&I, N); 6660 return nullptr; 6661 } 6662 case Intrinsic::xray_customevent: { 6663 // Here we want to make sure that the intrinsic behaves as if it has a 6664 // specific calling convention, and only for x86_64. 6665 // FIXME: Support other platforms later. 6666 const auto &Triple = DAG.getTarget().getTargetTriple(); 6667 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6668 return nullptr; 6669 6670 SDLoc DL = getCurSDLoc(); 6671 SmallVector<SDValue, 8> Ops; 6672 6673 // We want to say that we always want the arguments in registers. 6674 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6675 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6676 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6677 SDValue Chain = getRoot(); 6678 Ops.push_back(LogEntryVal); 6679 Ops.push_back(StrSizeVal); 6680 Ops.push_back(Chain); 6681 6682 // We need to enforce the calling convention for the callsite, so that 6683 // argument ordering is enforced correctly, and that register allocation can 6684 // see that some registers may be assumed clobbered and have to preserve 6685 // them across calls to the intrinsic. 6686 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6687 DL, NodeTys, Ops); 6688 SDValue patchableNode = SDValue(MN, 0); 6689 DAG.setRoot(patchableNode); 6690 setValue(&I, patchableNode); 6691 return nullptr; 6692 } 6693 case Intrinsic::xray_typedevent: { 6694 // Here we want to make sure that the intrinsic behaves as if it has a 6695 // specific calling convention, and only for x86_64. 6696 // FIXME: Support other platforms later. 6697 const auto &Triple = DAG.getTarget().getTargetTriple(); 6698 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6699 return nullptr; 6700 6701 SDLoc DL = getCurSDLoc(); 6702 SmallVector<SDValue, 8> Ops; 6703 6704 // We want to say that we always want the arguments in registers. 6705 // It's unclear to me how manipulating the selection DAG here forces callers 6706 // to provide arguments in registers instead of on the stack. 6707 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6708 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6709 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6710 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6711 SDValue Chain = getRoot(); 6712 Ops.push_back(LogTypeId); 6713 Ops.push_back(LogEntryVal); 6714 Ops.push_back(StrSizeVal); 6715 Ops.push_back(Chain); 6716 6717 // We need to enforce the calling convention for the callsite, so that 6718 // argument ordering is enforced correctly, and that register allocation can 6719 // see that some registers may be assumed clobbered and have to preserve 6720 // them across calls to the intrinsic. 6721 MachineSDNode *MN = DAG.getMachineNode( 6722 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6723 SDValue patchableNode = SDValue(MN, 0); 6724 DAG.setRoot(patchableNode); 6725 setValue(&I, patchableNode); 6726 return nullptr; 6727 } 6728 case Intrinsic::experimental_deoptimize: 6729 LowerDeoptimizeCall(&I); 6730 return nullptr; 6731 6732 case Intrinsic::experimental_vector_reduce_fadd: 6733 case Intrinsic::experimental_vector_reduce_fmul: 6734 case Intrinsic::experimental_vector_reduce_add: 6735 case Intrinsic::experimental_vector_reduce_mul: 6736 case Intrinsic::experimental_vector_reduce_and: 6737 case Intrinsic::experimental_vector_reduce_or: 6738 case Intrinsic::experimental_vector_reduce_xor: 6739 case Intrinsic::experimental_vector_reduce_smax: 6740 case Intrinsic::experimental_vector_reduce_smin: 6741 case Intrinsic::experimental_vector_reduce_umax: 6742 case Intrinsic::experimental_vector_reduce_umin: 6743 case Intrinsic::experimental_vector_reduce_fmax: 6744 case Intrinsic::experimental_vector_reduce_fmin: 6745 visitVectorReduce(I, Intrinsic); 6746 return nullptr; 6747 6748 case Intrinsic::icall_branch_funnel: { 6749 SmallVector<SDValue, 16> Ops; 6750 Ops.push_back(DAG.getRoot()); 6751 Ops.push_back(getValue(I.getArgOperand(0))); 6752 6753 int64_t Offset; 6754 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6755 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6756 if (!Base) 6757 report_fatal_error( 6758 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6759 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6760 6761 struct BranchFunnelTarget { 6762 int64_t Offset; 6763 SDValue Target; 6764 }; 6765 SmallVector<BranchFunnelTarget, 8> Targets; 6766 6767 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6768 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6769 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6770 if (ElemBase != Base) 6771 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6772 "to the same GlobalValue"); 6773 6774 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6775 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6776 if (!GA) 6777 report_fatal_error( 6778 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6779 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6780 GA->getGlobal(), getCurSDLoc(), 6781 Val.getValueType(), GA->getOffset())}); 6782 } 6783 llvm::sort(Targets, 6784 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6785 return T1.Offset < T2.Offset; 6786 }); 6787 6788 for (auto &T : Targets) { 6789 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6790 Ops.push_back(T.Target); 6791 } 6792 6793 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6794 getCurSDLoc(), MVT::Other, Ops), 6795 0); 6796 DAG.setRoot(N); 6797 setValue(&I, N); 6798 HasTailCall = true; 6799 return nullptr; 6800 } 6801 6802 case Intrinsic::wasm_landingpad_index: 6803 // Information this intrinsic contained has been transferred to 6804 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6805 // delete it now. 6806 return nullptr; 6807 } 6808 } 6809 6810 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6811 const ConstrainedFPIntrinsic &FPI) { 6812 SDLoc sdl = getCurSDLoc(); 6813 unsigned Opcode; 6814 switch (FPI.getIntrinsicID()) { 6815 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6816 case Intrinsic::experimental_constrained_fadd: 6817 Opcode = ISD::STRICT_FADD; 6818 break; 6819 case Intrinsic::experimental_constrained_fsub: 6820 Opcode = ISD::STRICT_FSUB; 6821 break; 6822 case Intrinsic::experimental_constrained_fmul: 6823 Opcode = ISD::STRICT_FMUL; 6824 break; 6825 case Intrinsic::experimental_constrained_fdiv: 6826 Opcode = ISD::STRICT_FDIV; 6827 break; 6828 case Intrinsic::experimental_constrained_frem: 6829 Opcode = ISD::STRICT_FREM; 6830 break; 6831 case Intrinsic::experimental_constrained_fma: 6832 Opcode = ISD::STRICT_FMA; 6833 break; 6834 case Intrinsic::experimental_constrained_sqrt: 6835 Opcode = ISD::STRICT_FSQRT; 6836 break; 6837 case Intrinsic::experimental_constrained_pow: 6838 Opcode = ISD::STRICT_FPOW; 6839 break; 6840 case Intrinsic::experimental_constrained_powi: 6841 Opcode = ISD::STRICT_FPOWI; 6842 break; 6843 case Intrinsic::experimental_constrained_sin: 6844 Opcode = ISD::STRICT_FSIN; 6845 break; 6846 case Intrinsic::experimental_constrained_cos: 6847 Opcode = ISD::STRICT_FCOS; 6848 break; 6849 case Intrinsic::experimental_constrained_exp: 6850 Opcode = ISD::STRICT_FEXP; 6851 break; 6852 case Intrinsic::experimental_constrained_exp2: 6853 Opcode = ISD::STRICT_FEXP2; 6854 break; 6855 case Intrinsic::experimental_constrained_log: 6856 Opcode = ISD::STRICT_FLOG; 6857 break; 6858 case Intrinsic::experimental_constrained_log10: 6859 Opcode = ISD::STRICT_FLOG10; 6860 break; 6861 case Intrinsic::experimental_constrained_log2: 6862 Opcode = ISD::STRICT_FLOG2; 6863 break; 6864 case Intrinsic::experimental_constrained_rint: 6865 Opcode = ISD::STRICT_FRINT; 6866 break; 6867 case Intrinsic::experimental_constrained_nearbyint: 6868 Opcode = ISD::STRICT_FNEARBYINT; 6869 break; 6870 case Intrinsic::experimental_constrained_maxnum: 6871 Opcode = ISD::STRICT_FMAXNUM; 6872 break; 6873 case Intrinsic::experimental_constrained_minnum: 6874 Opcode = ISD::STRICT_FMINNUM; 6875 break; 6876 case Intrinsic::experimental_constrained_ceil: 6877 Opcode = ISD::STRICT_FCEIL; 6878 break; 6879 case Intrinsic::experimental_constrained_floor: 6880 Opcode = ISD::STRICT_FFLOOR; 6881 break; 6882 case Intrinsic::experimental_constrained_round: 6883 Opcode = ISD::STRICT_FROUND; 6884 break; 6885 case Intrinsic::experimental_constrained_trunc: 6886 Opcode = ISD::STRICT_FTRUNC; 6887 break; 6888 } 6889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6890 SDValue Chain = getRoot(); 6891 SmallVector<EVT, 4> ValueVTs; 6892 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6893 ValueVTs.push_back(MVT::Other); // Out chain 6894 6895 SDVTList VTs = DAG.getVTList(ValueVTs); 6896 SDValue Result; 6897 if (FPI.isUnaryOp()) 6898 Result = DAG.getNode(Opcode, sdl, VTs, 6899 { Chain, getValue(FPI.getArgOperand(0)) }); 6900 else if (FPI.isTernaryOp()) 6901 Result = DAG.getNode(Opcode, sdl, VTs, 6902 { Chain, getValue(FPI.getArgOperand(0)), 6903 getValue(FPI.getArgOperand(1)), 6904 getValue(FPI.getArgOperand(2)) }); 6905 else 6906 Result = DAG.getNode(Opcode, sdl, VTs, 6907 { Chain, getValue(FPI.getArgOperand(0)), 6908 getValue(FPI.getArgOperand(1)) }); 6909 6910 assert(Result.getNode()->getNumValues() == 2); 6911 SDValue OutChain = Result.getValue(1); 6912 DAG.setRoot(OutChain); 6913 SDValue FPResult = Result.getValue(0); 6914 setValue(&FPI, FPResult); 6915 } 6916 6917 std::pair<SDValue, SDValue> 6918 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6919 const BasicBlock *EHPadBB) { 6920 MachineFunction &MF = DAG.getMachineFunction(); 6921 MachineModuleInfo &MMI = MF.getMMI(); 6922 MCSymbol *BeginLabel = nullptr; 6923 6924 if (EHPadBB) { 6925 // Insert a label before the invoke call to mark the try range. This can be 6926 // used to detect deletion of the invoke via the MachineModuleInfo. 6927 BeginLabel = MMI.getContext().createTempSymbol(); 6928 6929 // For SjLj, keep track of which landing pads go with which invokes 6930 // so as to maintain the ordering of pads in the LSDA. 6931 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6932 if (CallSiteIndex) { 6933 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6934 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6935 6936 // Now that the call site is handled, stop tracking it. 6937 MMI.setCurrentCallSite(0); 6938 } 6939 6940 // Both PendingLoads and PendingExports must be flushed here; 6941 // this call might not return. 6942 (void)getRoot(); 6943 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6944 6945 CLI.setChain(getRoot()); 6946 } 6947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6948 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6949 6950 assert((CLI.IsTailCall || Result.second.getNode()) && 6951 "Non-null chain expected with non-tail call!"); 6952 assert((Result.second.getNode() || !Result.first.getNode()) && 6953 "Null value expected with tail call!"); 6954 6955 if (!Result.second.getNode()) { 6956 // As a special case, a null chain means that a tail call has been emitted 6957 // and the DAG root is already updated. 6958 HasTailCall = true; 6959 6960 // Since there's no actual continuation from this block, nothing can be 6961 // relying on us setting vregs for them. 6962 PendingExports.clear(); 6963 } else { 6964 DAG.setRoot(Result.second); 6965 } 6966 6967 if (EHPadBB) { 6968 // Insert a label at the end of the invoke call to mark the try range. This 6969 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6970 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6971 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6972 6973 // Inform MachineModuleInfo of range. 6974 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6975 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6976 // actually use outlined funclets and their LSDA info style. 6977 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6978 assert(CLI.CS); 6979 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6980 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6981 BeginLabel, EndLabel); 6982 } else if (!isScopedEHPersonality(Pers)) { 6983 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6984 } 6985 } 6986 6987 return Result; 6988 } 6989 6990 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6991 bool isTailCall, 6992 const BasicBlock *EHPadBB) { 6993 auto &DL = DAG.getDataLayout(); 6994 FunctionType *FTy = CS.getFunctionType(); 6995 Type *RetTy = CS.getType(); 6996 6997 TargetLowering::ArgListTy Args; 6998 Args.reserve(CS.arg_size()); 6999 7000 const Value *SwiftErrorVal = nullptr; 7001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7002 7003 // We can't tail call inside a function with a swifterror argument. Lowering 7004 // does not support this yet. It would have to move into the swifterror 7005 // register before the call. 7006 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7007 if (TLI.supportSwiftError() && 7008 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7009 isTailCall = false; 7010 7011 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7012 i != e; ++i) { 7013 TargetLowering::ArgListEntry Entry; 7014 const Value *V = *i; 7015 7016 // Skip empty types 7017 if (V->getType()->isEmptyTy()) 7018 continue; 7019 7020 SDValue ArgNode = getValue(V); 7021 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7022 7023 Entry.setAttributes(&CS, i - CS.arg_begin()); 7024 7025 // Use swifterror virtual register as input to the call. 7026 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7027 SwiftErrorVal = V; 7028 // We find the virtual register for the actual swifterror argument. 7029 // Instead of using the Value, we use the virtual register instead. 7030 Entry.Node = DAG.getRegister(FuncInfo 7031 .getOrCreateSwiftErrorVRegUseAt( 7032 CS.getInstruction(), FuncInfo.MBB, V) 7033 .first, 7034 EVT(TLI.getPointerTy(DL))); 7035 } 7036 7037 Args.push_back(Entry); 7038 7039 // If we have an explicit sret argument that is an Instruction, (i.e., it 7040 // might point to function-local memory), we can't meaningfully tail-call. 7041 if (Entry.IsSRet && isa<Instruction>(V)) 7042 isTailCall = false; 7043 } 7044 7045 // Check if target-independent constraints permit a tail call here. 7046 // Target-dependent constraints are checked within TLI->LowerCallTo. 7047 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7048 isTailCall = false; 7049 7050 // Disable tail calls if there is an swifterror argument. Targets have not 7051 // been updated to support tail calls. 7052 if (TLI.supportSwiftError() && SwiftErrorVal) 7053 isTailCall = false; 7054 7055 TargetLowering::CallLoweringInfo CLI(DAG); 7056 CLI.setDebugLoc(getCurSDLoc()) 7057 .setChain(getRoot()) 7058 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7059 .setTailCall(isTailCall) 7060 .setConvergent(CS.isConvergent()); 7061 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7062 7063 if (Result.first.getNode()) { 7064 const Instruction *Inst = CS.getInstruction(); 7065 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7066 setValue(Inst, Result.first); 7067 } 7068 7069 // The last element of CLI.InVals has the SDValue for swifterror return. 7070 // Here we copy it to a virtual register and update SwiftErrorMap for 7071 // book-keeping. 7072 if (SwiftErrorVal && TLI.supportSwiftError()) { 7073 // Get the last element of InVals. 7074 SDValue Src = CLI.InVals.back(); 7075 unsigned VReg; bool CreatedVReg; 7076 std::tie(VReg, CreatedVReg) = 7077 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 7078 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7079 // We update the virtual register for the actual swifterror argument. 7080 if (CreatedVReg) 7081 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 7082 DAG.setRoot(CopyNode); 7083 } 7084 } 7085 7086 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7087 SelectionDAGBuilder &Builder) { 7088 // Check to see if this load can be trivially constant folded, e.g. if the 7089 // input is from a string literal. 7090 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7091 // Cast pointer to the type we really want to load. 7092 Type *LoadTy = 7093 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7094 if (LoadVT.isVector()) 7095 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7096 7097 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7098 PointerType::getUnqual(LoadTy)); 7099 7100 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7101 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7102 return Builder.getValue(LoadCst); 7103 } 7104 7105 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7106 // still constant memory, the input chain can be the entry node. 7107 SDValue Root; 7108 bool ConstantMemory = false; 7109 7110 // Do not serialize (non-volatile) loads of constant memory with anything. 7111 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7112 Root = Builder.DAG.getEntryNode(); 7113 ConstantMemory = true; 7114 } else { 7115 // Do not serialize non-volatile loads against each other. 7116 Root = Builder.DAG.getRoot(); 7117 } 7118 7119 SDValue Ptr = Builder.getValue(PtrVal); 7120 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7121 Ptr, MachinePointerInfo(PtrVal), 7122 /* Alignment = */ 1); 7123 7124 if (!ConstantMemory) 7125 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7126 return LoadVal; 7127 } 7128 7129 /// Record the value for an instruction that produces an integer result, 7130 /// converting the type where necessary. 7131 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7132 SDValue Value, 7133 bool IsSigned) { 7134 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7135 I.getType(), true); 7136 if (IsSigned) 7137 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7138 else 7139 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7140 setValue(&I, Value); 7141 } 7142 7143 /// See if we can lower a memcmp call into an optimized form. If so, return 7144 /// true and lower it. Otherwise return false, and it will be lowered like a 7145 /// normal call. 7146 /// The caller already checked that \p I calls the appropriate LibFunc with a 7147 /// correct prototype. 7148 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7149 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7150 const Value *Size = I.getArgOperand(2); 7151 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7152 if (CSize && CSize->getZExtValue() == 0) { 7153 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7154 I.getType(), true); 7155 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7156 return true; 7157 } 7158 7159 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7160 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7161 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7162 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7163 if (Res.first.getNode()) { 7164 processIntegerCallValue(I, Res.first, true); 7165 PendingLoads.push_back(Res.second); 7166 return true; 7167 } 7168 7169 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7170 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7171 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7172 return false; 7173 7174 // If the target has a fast compare for the given size, it will return a 7175 // preferred load type for that size. Require that the load VT is legal and 7176 // that the target supports unaligned loads of that type. Otherwise, return 7177 // INVALID. 7178 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7180 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7181 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7182 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7183 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7184 // TODO: Check alignment of src and dest ptrs. 7185 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7186 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7187 if (!TLI.isTypeLegal(LVT) || 7188 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7189 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7190 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7191 } 7192 7193 return LVT; 7194 }; 7195 7196 // This turns into unaligned loads. We only do this if the target natively 7197 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7198 // we'll only produce a small number of byte loads. 7199 MVT LoadVT; 7200 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7201 switch (NumBitsToCompare) { 7202 default: 7203 return false; 7204 case 16: 7205 LoadVT = MVT::i16; 7206 break; 7207 case 32: 7208 LoadVT = MVT::i32; 7209 break; 7210 case 64: 7211 case 128: 7212 case 256: 7213 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7214 break; 7215 } 7216 7217 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7218 return false; 7219 7220 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7221 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7222 7223 // Bitcast to a wide integer type if the loads are vectors. 7224 if (LoadVT.isVector()) { 7225 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7226 LoadL = DAG.getBitcast(CmpVT, LoadL); 7227 LoadR = DAG.getBitcast(CmpVT, LoadR); 7228 } 7229 7230 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7231 processIntegerCallValue(I, Cmp, false); 7232 return true; 7233 } 7234 7235 /// See if we can lower a memchr call into an optimized form. If so, return 7236 /// true and lower it. Otherwise return false, and it will be lowered like a 7237 /// normal call. 7238 /// The caller already checked that \p I calls the appropriate LibFunc with a 7239 /// correct prototype. 7240 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7241 const Value *Src = I.getArgOperand(0); 7242 const Value *Char = I.getArgOperand(1); 7243 const Value *Length = I.getArgOperand(2); 7244 7245 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7246 std::pair<SDValue, SDValue> Res = 7247 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7248 getValue(Src), getValue(Char), getValue(Length), 7249 MachinePointerInfo(Src)); 7250 if (Res.first.getNode()) { 7251 setValue(&I, Res.first); 7252 PendingLoads.push_back(Res.second); 7253 return true; 7254 } 7255 7256 return false; 7257 } 7258 7259 /// See if we can lower a mempcpy call into an optimized form. If so, return 7260 /// true and lower it. Otherwise return false, and it will be lowered like a 7261 /// normal call. 7262 /// The caller already checked that \p I calls the appropriate LibFunc with a 7263 /// correct prototype. 7264 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7265 SDValue Dst = getValue(I.getArgOperand(0)); 7266 SDValue Src = getValue(I.getArgOperand(1)); 7267 SDValue Size = getValue(I.getArgOperand(2)); 7268 7269 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7270 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7271 unsigned Align = std::min(DstAlign, SrcAlign); 7272 if (Align == 0) // Alignment of one or both could not be inferred. 7273 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7274 7275 bool isVol = false; 7276 SDLoc sdl = getCurSDLoc(); 7277 7278 // In the mempcpy context we need to pass in a false value for isTailCall 7279 // because the return pointer needs to be adjusted by the size of 7280 // the copied memory. 7281 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7282 false, /*isTailCall=*/false, 7283 MachinePointerInfo(I.getArgOperand(0)), 7284 MachinePointerInfo(I.getArgOperand(1))); 7285 assert(MC.getNode() != nullptr && 7286 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7287 DAG.setRoot(MC); 7288 7289 // Check if Size needs to be truncated or extended. 7290 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7291 7292 // Adjust return pointer to point just past the last dst byte. 7293 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7294 Dst, Size); 7295 setValue(&I, DstPlusSize); 7296 return true; 7297 } 7298 7299 /// See if we can lower a strcpy call into an optimized form. If so, return 7300 /// true and lower it, otherwise return false and it will be lowered like a 7301 /// normal call. 7302 /// The caller already checked that \p I calls the appropriate LibFunc with a 7303 /// correct prototype. 7304 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7305 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7306 7307 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7308 std::pair<SDValue, SDValue> Res = 7309 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7310 getValue(Arg0), getValue(Arg1), 7311 MachinePointerInfo(Arg0), 7312 MachinePointerInfo(Arg1), isStpcpy); 7313 if (Res.first.getNode()) { 7314 setValue(&I, Res.first); 7315 DAG.setRoot(Res.second); 7316 return true; 7317 } 7318 7319 return false; 7320 } 7321 7322 /// See if we can lower a strcmp call into an optimized form. If so, return 7323 /// true and lower it, otherwise return false and it will be lowered like a 7324 /// normal call. 7325 /// The caller already checked that \p I calls the appropriate LibFunc with a 7326 /// correct prototype. 7327 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7328 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7329 7330 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7331 std::pair<SDValue, SDValue> Res = 7332 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7333 getValue(Arg0), getValue(Arg1), 7334 MachinePointerInfo(Arg0), 7335 MachinePointerInfo(Arg1)); 7336 if (Res.first.getNode()) { 7337 processIntegerCallValue(I, Res.first, true); 7338 PendingLoads.push_back(Res.second); 7339 return true; 7340 } 7341 7342 return false; 7343 } 7344 7345 /// See if we can lower a strlen call into an optimized form. If so, return 7346 /// true and lower it, otherwise return false and it will be lowered like a 7347 /// normal call. 7348 /// The caller already checked that \p I calls the appropriate LibFunc with a 7349 /// correct prototype. 7350 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7351 const Value *Arg0 = I.getArgOperand(0); 7352 7353 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7354 std::pair<SDValue, SDValue> Res = 7355 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7356 getValue(Arg0), MachinePointerInfo(Arg0)); 7357 if (Res.first.getNode()) { 7358 processIntegerCallValue(I, Res.first, false); 7359 PendingLoads.push_back(Res.second); 7360 return true; 7361 } 7362 7363 return false; 7364 } 7365 7366 /// See if we can lower a strnlen call into an optimized form. If so, return 7367 /// true and lower it, otherwise return false and it will be lowered like a 7368 /// normal call. 7369 /// The caller already checked that \p I calls the appropriate LibFunc with a 7370 /// correct prototype. 7371 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7372 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7373 7374 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7375 std::pair<SDValue, SDValue> Res = 7376 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7377 getValue(Arg0), getValue(Arg1), 7378 MachinePointerInfo(Arg0)); 7379 if (Res.first.getNode()) { 7380 processIntegerCallValue(I, Res.first, false); 7381 PendingLoads.push_back(Res.second); 7382 return true; 7383 } 7384 7385 return false; 7386 } 7387 7388 /// See if we can lower a unary floating-point operation into an SDNode with 7389 /// the specified Opcode. If so, return true and lower it, otherwise return 7390 /// false and it will be lowered like a normal call. 7391 /// The caller already checked that \p I calls the appropriate LibFunc with a 7392 /// correct prototype. 7393 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7394 unsigned Opcode) { 7395 // We already checked this call's prototype; verify it doesn't modify errno. 7396 if (!I.onlyReadsMemory()) 7397 return false; 7398 7399 SDValue Tmp = getValue(I.getArgOperand(0)); 7400 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7401 return true; 7402 } 7403 7404 /// See if we can lower a binary floating-point operation into an SDNode with 7405 /// the specified Opcode. If so, return true and lower it. Otherwise return 7406 /// false, and it will be lowered like a normal call. 7407 /// The caller already checked that \p I calls the appropriate LibFunc with a 7408 /// correct prototype. 7409 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7410 unsigned Opcode) { 7411 // We already checked this call's prototype; verify it doesn't modify errno. 7412 if (!I.onlyReadsMemory()) 7413 return false; 7414 7415 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7416 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7417 EVT VT = Tmp0.getValueType(); 7418 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7419 return true; 7420 } 7421 7422 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7423 // Handle inline assembly differently. 7424 if (isa<InlineAsm>(I.getCalledValue())) { 7425 visitInlineAsm(&I); 7426 return; 7427 } 7428 7429 const char *RenameFn = nullptr; 7430 if (Function *F = I.getCalledFunction()) { 7431 if (F->isDeclaration()) { 7432 // Is this an LLVM intrinsic or a target-specific intrinsic? 7433 unsigned IID = F->getIntrinsicID(); 7434 if (!IID) 7435 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7436 IID = II->getIntrinsicID(F); 7437 7438 if (IID) { 7439 RenameFn = visitIntrinsicCall(I, IID); 7440 if (!RenameFn) 7441 return; 7442 } 7443 } 7444 7445 // Check for well-known libc/libm calls. If the function is internal, it 7446 // can't be a library call. Don't do the check if marked as nobuiltin for 7447 // some reason or the call site requires strict floating point semantics. 7448 LibFunc Func; 7449 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7450 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7451 LibInfo->hasOptimizedCodeGen(Func)) { 7452 switch (Func) { 7453 default: break; 7454 case LibFunc_copysign: 7455 case LibFunc_copysignf: 7456 case LibFunc_copysignl: 7457 // We already checked this call's prototype; verify it doesn't modify 7458 // errno. 7459 if (I.onlyReadsMemory()) { 7460 SDValue LHS = getValue(I.getArgOperand(0)); 7461 SDValue RHS = getValue(I.getArgOperand(1)); 7462 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7463 LHS.getValueType(), LHS, RHS)); 7464 return; 7465 } 7466 break; 7467 case LibFunc_fabs: 7468 case LibFunc_fabsf: 7469 case LibFunc_fabsl: 7470 if (visitUnaryFloatCall(I, ISD::FABS)) 7471 return; 7472 break; 7473 case LibFunc_fmin: 7474 case LibFunc_fminf: 7475 case LibFunc_fminl: 7476 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7477 return; 7478 break; 7479 case LibFunc_fmax: 7480 case LibFunc_fmaxf: 7481 case LibFunc_fmaxl: 7482 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7483 return; 7484 break; 7485 case LibFunc_sin: 7486 case LibFunc_sinf: 7487 case LibFunc_sinl: 7488 if (visitUnaryFloatCall(I, ISD::FSIN)) 7489 return; 7490 break; 7491 case LibFunc_cos: 7492 case LibFunc_cosf: 7493 case LibFunc_cosl: 7494 if (visitUnaryFloatCall(I, ISD::FCOS)) 7495 return; 7496 break; 7497 case LibFunc_sqrt: 7498 case LibFunc_sqrtf: 7499 case LibFunc_sqrtl: 7500 case LibFunc_sqrt_finite: 7501 case LibFunc_sqrtf_finite: 7502 case LibFunc_sqrtl_finite: 7503 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7504 return; 7505 break; 7506 case LibFunc_floor: 7507 case LibFunc_floorf: 7508 case LibFunc_floorl: 7509 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7510 return; 7511 break; 7512 case LibFunc_nearbyint: 7513 case LibFunc_nearbyintf: 7514 case LibFunc_nearbyintl: 7515 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7516 return; 7517 break; 7518 case LibFunc_ceil: 7519 case LibFunc_ceilf: 7520 case LibFunc_ceill: 7521 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7522 return; 7523 break; 7524 case LibFunc_rint: 7525 case LibFunc_rintf: 7526 case LibFunc_rintl: 7527 if (visitUnaryFloatCall(I, ISD::FRINT)) 7528 return; 7529 break; 7530 case LibFunc_round: 7531 case LibFunc_roundf: 7532 case LibFunc_roundl: 7533 if (visitUnaryFloatCall(I, ISD::FROUND)) 7534 return; 7535 break; 7536 case LibFunc_trunc: 7537 case LibFunc_truncf: 7538 case LibFunc_truncl: 7539 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7540 return; 7541 break; 7542 case LibFunc_log2: 7543 case LibFunc_log2f: 7544 case LibFunc_log2l: 7545 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7546 return; 7547 break; 7548 case LibFunc_exp2: 7549 case LibFunc_exp2f: 7550 case LibFunc_exp2l: 7551 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7552 return; 7553 break; 7554 case LibFunc_memcmp: 7555 if (visitMemCmpCall(I)) 7556 return; 7557 break; 7558 case LibFunc_mempcpy: 7559 if (visitMemPCpyCall(I)) 7560 return; 7561 break; 7562 case LibFunc_memchr: 7563 if (visitMemChrCall(I)) 7564 return; 7565 break; 7566 case LibFunc_strcpy: 7567 if (visitStrCpyCall(I, false)) 7568 return; 7569 break; 7570 case LibFunc_stpcpy: 7571 if (visitStrCpyCall(I, true)) 7572 return; 7573 break; 7574 case LibFunc_strcmp: 7575 if (visitStrCmpCall(I)) 7576 return; 7577 break; 7578 case LibFunc_strlen: 7579 if (visitStrLenCall(I)) 7580 return; 7581 break; 7582 case LibFunc_strnlen: 7583 if (visitStrNLenCall(I)) 7584 return; 7585 break; 7586 } 7587 } 7588 } 7589 7590 SDValue Callee; 7591 if (!RenameFn) 7592 Callee = getValue(I.getCalledValue()); 7593 else 7594 Callee = DAG.getExternalSymbol( 7595 RenameFn, 7596 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7597 7598 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7599 // have to do anything here to lower funclet bundles. 7600 assert(!I.hasOperandBundlesOtherThan( 7601 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7602 "Cannot lower calls with arbitrary operand bundles!"); 7603 7604 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7605 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7606 else 7607 // Check if we can potentially perform a tail call. More detailed checking 7608 // is be done within LowerCallTo, after more information about the call is 7609 // known. 7610 LowerCallTo(&I, Callee, I.isTailCall()); 7611 } 7612 7613 namespace { 7614 7615 /// AsmOperandInfo - This contains information for each constraint that we are 7616 /// lowering. 7617 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7618 public: 7619 /// CallOperand - If this is the result output operand or a clobber 7620 /// this is null, otherwise it is the incoming operand to the CallInst. 7621 /// This gets modified as the asm is processed. 7622 SDValue CallOperand; 7623 7624 /// AssignedRegs - If this is a register or register class operand, this 7625 /// contains the set of register corresponding to the operand. 7626 RegsForValue AssignedRegs; 7627 7628 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7629 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7630 } 7631 7632 /// Whether or not this operand accesses memory 7633 bool hasMemory(const TargetLowering &TLI) const { 7634 // Indirect operand accesses access memory. 7635 if (isIndirect) 7636 return true; 7637 7638 for (const auto &Code : Codes) 7639 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7640 return true; 7641 7642 return false; 7643 } 7644 7645 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7646 /// corresponds to. If there is no Value* for this operand, it returns 7647 /// MVT::Other. 7648 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7649 const DataLayout &DL) const { 7650 if (!CallOperandVal) return MVT::Other; 7651 7652 if (isa<BasicBlock>(CallOperandVal)) 7653 return TLI.getPointerTy(DL); 7654 7655 llvm::Type *OpTy = CallOperandVal->getType(); 7656 7657 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7658 // If this is an indirect operand, the operand is a pointer to the 7659 // accessed type. 7660 if (isIndirect) { 7661 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7662 if (!PtrTy) 7663 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7664 OpTy = PtrTy->getElementType(); 7665 } 7666 7667 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7668 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7669 if (STy->getNumElements() == 1) 7670 OpTy = STy->getElementType(0); 7671 7672 // If OpTy is not a single value, it may be a struct/union that we 7673 // can tile with integers. 7674 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7675 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7676 switch (BitSize) { 7677 default: break; 7678 case 1: 7679 case 8: 7680 case 16: 7681 case 32: 7682 case 64: 7683 case 128: 7684 OpTy = IntegerType::get(Context, BitSize); 7685 break; 7686 } 7687 } 7688 7689 return TLI.getValueType(DL, OpTy, true); 7690 } 7691 }; 7692 7693 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7694 7695 } // end anonymous namespace 7696 7697 /// Make sure that the output operand \p OpInfo and its corresponding input 7698 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7699 /// out). 7700 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7701 SDISelAsmOperandInfo &MatchingOpInfo, 7702 SelectionDAG &DAG) { 7703 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7704 return; 7705 7706 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7707 const auto &TLI = DAG.getTargetLoweringInfo(); 7708 7709 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7710 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7711 OpInfo.ConstraintVT); 7712 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7713 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7714 MatchingOpInfo.ConstraintVT); 7715 if ((OpInfo.ConstraintVT.isInteger() != 7716 MatchingOpInfo.ConstraintVT.isInteger()) || 7717 (MatchRC.second != InputRC.second)) { 7718 // FIXME: error out in a more elegant fashion 7719 report_fatal_error("Unsupported asm: input constraint" 7720 " with a matching output constraint of" 7721 " incompatible type!"); 7722 } 7723 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7724 } 7725 7726 /// Get a direct memory input to behave well as an indirect operand. 7727 /// This may introduce stores, hence the need for a \p Chain. 7728 /// \return The (possibly updated) chain. 7729 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7730 SDISelAsmOperandInfo &OpInfo, 7731 SelectionDAG &DAG) { 7732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7733 7734 // If we don't have an indirect input, put it in the constpool if we can, 7735 // otherwise spill it to a stack slot. 7736 // TODO: This isn't quite right. We need to handle these according to 7737 // the addressing mode that the constraint wants. Also, this may take 7738 // an additional register for the computation and we don't want that 7739 // either. 7740 7741 // If the operand is a float, integer, or vector constant, spill to a 7742 // constant pool entry to get its address. 7743 const Value *OpVal = OpInfo.CallOperandVal; 7744 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7745 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7746 OpInfo.CallOperand = DAG.getConstantPool( 7747 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7748 return Chain; 7749 } 7750 7751 // Otherwise, create a stack slot and emit a store to it before the asm. 7752 Type *Ty = OpVal->getType(); 7753 auto &DL = DAG.getDataLayout(); 7754 uint64_t TySize = DL.getTypeAllocSize(Ty); 7755 unsigned Align = DL.getPrefTypeAlignment(Ty); 7756 MachineFunction &MF = DAG.getMachineFunction(); 7757 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7758 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7759 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7760 MachinePointerInfo::getFixedStack(MF, SSFI), 7761 TLI.getMemValueType(DL, Ty)); 7762 OpInfo.CallOperand = StackSlot; 7763 7764 return Chain; 7765 } 7766 7767 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7768 /// specified operand. We prefer to assign virtual registers, to allow the 7769 /// register allocator to handle the assignment process. However, if the asm 7770 /// uses features that we can't model on machineinstrs, we have SDISel do the 7771 /// allocation. This produces generally horrible, but correct, code. 7772 /// 7773 /// OpInfo describes the operand 7774 /// RefOpInfo describes the matching operand if any, the operand otherwise 7775 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7776 SDISelAsmOperandInfo &OpInfo, 7777 SDISelAsmOperandInfo &RefOpInfo) { 7778 LLVMContext &Context = *DAG.getContext(); 7779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7780 7781 MachineFunction &MF = DAG.getMachineFunction(); 7782 SmallVector<unsigned, 4> Regs; 7783 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7784 7785 // No work to do for memory operations. 7786 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7787 return; 7788 7789 // If this is a constraint for a single physreg, or a constraint for a 7790 // register class, find it. 7791 unsigned AssignedReg; 7792 const TargetRegisterClass *RC; 7793 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7794 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7795 // RC is unset only on failure. Return immediately. 7796 if (!RC) 7797 return; 7798 7799 // Get the actual register value type. This is important, because the user 7800 // may have asked for (e.g.) the AX register in i32 type. We need to 7801 // remember that AX is actually i16 to get the right extension. 7802 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7803 7804 if (OpInfo.ConstraintVT != MVT::Other) { 7805 // If this is an FP operand in an integer register (or visa versa), or more 7806 // generally if the operand value disagrees with the register class we plan 7807 // to stick it in, fix the operand type. 7808 // 7809 // If this is an input value, the bitcast to the new type is done now. 7810 // Bitcast for output value is done at the end of visitInlineAsm(). 7811 if ((OpInfo.Type == InlineAsm::isOutput || 7812 OpInfo.Type == InlineAsm::isInput) && 7813 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7814 // Try to convert to the first EVT that the reg class contains. If the 7815 // types are identical size, use a bitcast to convert (e.g. two differing 7816 // vector types). Note: output bitcast is done at the end of 7817 // visitInlineAsm(). 7818 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7819 // Exclude indirect inputs while they are unsupported because the code 7820 // to perform the load is missing and thus OpInfo.CallOperand still 7821 // refers to the input address rather than the pointed-to value. 7822 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7823 OpInfo.CallOperand = 7824 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7825 OpInfo.ConstraintVT = RegVT; 7826 // If the operand is an FP value and we want it in integer registers, 7827 // use the corresponding integer type. This turns an f64 value into 7828 // i64, which can be passed with two i32 values on a 32-bit machine. 7829 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7830 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7831 if (OpInfo.Type == InlineAsm::isInput) 7832 OpInfo.CallOperand = 7833 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7834 OpInfo.ConstraintVT = VT; 7835 } 7836 } 7837 } 7838 7839 // No need to allocate a matching input constraint since the constraint it's 7840 // matching to has already been allocated. 7841 if (OpInfo.isMatchingInputConstraint()) 7842 return; 7843 7844 EVT ValueVT = OpInfo.ConstraintVT; 7845 if (OpInfo.ConstraintVT == MVT::Other) 7846 ValueVT = RegVT; 7847 7848 // Initialize NumRegs. 7849 unsigned NumRegs = 1; 7850 if (OpInfo.ConstraintVT != MVT::Other) 7851 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7852 7853 // If this is a constraint for a specific physical register, like {r17}, 7854 // assign it now. 7855 7856 // If this associated to a specific register, initialize iterator to correct 7857 // place. If virtual, make sure we have enough registers 7858 7859 // Initialize iterator if necessary 7860 TargetRegisterClass::iterator I = RC->begin(); 7861 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7862 7863 // Do not check for single registers. 7864 if (AssignedReg) { 7865 for (; *I != AssignedReg; ++I) 7866 assert(I != RC->end() && "AssignedReg should be member of RC"); 7867 } 7868 7869 for (; NumRegs; --NumRegs, ++I) { 7870 assert(I != RC->end() && "Ran out of registers to allocate!"); 7871 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7872 Regs.push_back(R); 7873 } 7874 7875 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7876 } 7877 7878 static unsigned 7879 findMatchingInlineAsmOperand(unsigned OperandNo, 7880 const std::vector<SDValue> &AsmNodeOperands) { 7881 // Scan until we find the definition we already emitted of this operand. 7882 unsigned CurOp = InlineAsm::Op_FirstOperand; 7883 for (; OperandNo; --OperandNo) { 7884 // Advance to the next operand. 7885 unsigned OpFlag = 7886 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7887 assert((InlineAsm::isRegDefKind(OpFlag) || 7888 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7889 InlineAsm::isMemKind(OpFlag)) && 7890 "Skipped past definitions?"); 7891 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7892 } 7893 return CurOp; 7894 } 7895 7896 namespace { 7897 7898 class ExtraFlags { 7899 unsigned Flags = 0; 7900 7901 public: 7902 explicit ExtraFlags(ImmutableCallSite CS) { 7903 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7904 if (IA->hasSideEffects()) 7905 Flags |= InlineAsm::Extra_HasSideEffects; 7906 if (IA->isAlignStack()) 7907 Flags |= InlineAsm::Extra_IsAlignStack; 7908 if (CS.isConvergent()) 7909 Flags |= InlineAsm::Extra_IsConvergent; 7910 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7911 } 7912 7913 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7914 // Ideally, we would only check against memory constraints. However, the 7915 // meaning of an Other constraint can be target-specific and we can't easily 7916 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7917 // for Other constraints as well. 7918 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7919 OpInfo.ConstraintType == TargetLowering::C_Other) { 7920 if (OpInfo.Type == InlineAsm::isInput) 7921 Flags |= InlineAsm::Extra_MayLoad; 7922 else if (OpInfo.Type == InlineAsm::isOutput) 7923 Flags |= InlineAsm::Extra_MayStore; 7924 else if (OpInfo.Type == InlineAsm::isClobber) 7925 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7926 } 7927 } 7928 7929 unsigned get() const { return Flags; } 7930 }; 7931 7932 } // end anonymous namespace 7933 7934 /// visitInlineAsm - Handle a call to an InlineAsm object. 7935 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7936 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7937 7938 /// ConstraintOperands - Information about all of the constraints. 7939 SDISelAsmOperandInfoVector ConstraintOperands; 7940 7941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7942 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7943 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7944 7945 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7946 // AsmDialect, MayLoad, MayStore). 7947 bool HasSideEffect = IA->hasSideEffects(); 7948 ExtraFlags ExtraInfo(CS); 7949 7950 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7951 unsigned ResNo = 0; // ResNo - The result number of the next output. 7952 for (auto &T : TargetConstraints) { 7953 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7954 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7955 7956 // Compute the value type for each operand. 7957 if (OpInfo.Type == InlineAsm::isInput || 7958 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7959 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7960 7961 // Process the call argument. BasicBlocks are labels, currently appearing 7962 // only in asm's. 7963 const Instruction *I = CS.getInstruction(); 7964 if (isa<CallBrInst>(I) && 7965 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7966 cast<CallBrInst>(I)->getNumIndirectDests())) { 7967 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7968 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7969 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7970 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7971 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7972 } else { 7973 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7974 } 7975 7976 OpInfo.ConstraintVT = 7977 OpInfo 7978 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7979 .getSimpleVT(); 7980 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7981 // The return value of the call is this value. As such, there is no 7982 // corresponding argument. 7983 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7984 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7985 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7986 DAG.getDataLayout(), STy->getElementType(ResNo)); 7987 } else { 7988 assert(ResNo == 0 && "Asm only has one result!"); 7989 OpInfo.ConstraintVT = 7990 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7991 } 7992 ++ResNo; 7993 } else { 7994 OpInfo.ConstraintVT = MVT::Other; 7995 } 7996 7997 if (!HasSideEffect) 7998 HasSideEffect = OpInfo.hasMemory(TLI); 7999 8000 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8001 // FIXME: Could we compute this on OpInfo rather than T? 8002 8003 // Compute the constraint code and ConstraintType to use. 8004 TLI.ComputeConstraintToUse(T, SDValue()); 8005 8006 ExtraInfo.update(T); 8007 } 8008 8009 // We won't need to flush pending loads if this asm doesn't touch 8010 // memory and is nonvolatile. 8011 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8012 8013 // Second pass over the constraints: compute which constraint option to use. 8014 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8015 // If this is an output operand with a matching input operand, look up the 8016 // matching input. If their types mismatch, e.g. one is an integer, the 8017 // other is floating point, or their sizes are different, flag it as an 8018 // error. 8019 if (OpInfo.hasMatchingInput()) { 8020 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8021 patchMatchingInput(OpInfo, Input, DAG); 8022 } 8023 8024 // Compute the constraint code and ConstraintType to use. 8025 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8026 8027 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8028 OpInfo.Type == InlineAsm::isClobber) 8029 continue; 8030 8031 // If this is a memory input, and if the operand is not indirect, do what we 8032 // need to provide an address for the memory input. 8033 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8034 !OpInfo.isIndirect) { 8035 assert((OpInfo.isMultipleAlternative || 8036 (OpInfo.Type == InlineAsm::isInput)) && 8037 "Can only indirectify direct input operands!"); 8038 8039 // Memory operands really want the address of the value. 8040 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8041 8042 // There is no longer a Value* corresponding to this operand. 8043 OpInfo.CallOperandVal = nullptr; 8044 8045 // It is now an indirect operand. 8046 OpInfo.isIndirect = true; 8047 } 8048 8049 } 8050 8051 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8052 std::vector<SDValue> AsmNodeOperands; 8053 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8054 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8055 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8056 8057 // If we have a !srcloc metadata node associated with it, we want to attach 8058 // this to the ultimately generated inline asm machineinstr. To do this, we 8059 // pass in the third operand as this (potentially null) inline asm MDNode. 8060 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8061 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8062 8063 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8064 // bits as operand 3. 8065 AsmNodeOperands.push_back(DAG.getTargetConstant( 8066 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8067 8068 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8069 // this, assign virtual and physical registers for inputs and otput. 8070 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8071 // Assign Registers. 8072 SDISelAsmOperandInfo &RefOpInfo = 8073 OpInfo.isMatchingInputConstraint() 8074 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8075 : OpInfo; 8076 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8077 8078 switch (OpInfo.Type) { 8079 case InlineAsm::isOutput: 8080 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8081 (OpInfo.ConstraintType == TargetLowering::C_Other && 8082 OpInfo.isIndirect)) { 8083 unsigned ConstraintID = 8084 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8085 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8086 "Failed to convert memory constraint code to constraint id."); 8087 8088 // Add information to the INLINEASM node to know about this output. 8089 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8090 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8091 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8092 MVT::i32)); 8093 AsmNodeOperands.push_back(OpInfo.CallOperand); 8094 break; 8095 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 8096 !OpInfo.isIndirect) || 8097 OpInfo.ConstraintType == TargetLowering::C_Register || 8098 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8099 // Otherwise, this outputs to a register (directly for C_Register / 8100 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 8101 // register that we can use. 8102 if (OpInfo.AssignedRegs.Regs.empty()) { 8103 emitInlineAsmError( 8104 CS, "couldn't allocate output register for constraint '" + 8105 Twine(OpInfo.ConstraintCode) + "'"); 8106 return; 8107 } 8108 8109 // Add information to the INLINEASM node to know that this register is 8110 // set. 8111 OpInfo.AssignedRegs.AddInlineAsmOperands( 8112 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8113 : InlineAsm::Kind_RegDef, 8114 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8115 } 8116 break; 8117 8118 case InlineAsm::isInput: { 8119 SDValue InOperandVal = OpInfo.CallOperand; 8120 8121 if (OpInfo.isMatchingInputConstraint()) { 8122 // If this is required to match an output register we have already set, 8123 // just use its register. 8124 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8125 AsmNodeOperands); 8126 unsigned OpFlag = 8127 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8128 if (InlineAsm::isRegDefKind(OpFlag) || 8129 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8130 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8131 if (OpInfo.isIndirect) { 8132 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8133 emitInlineAsmError(CS, "inline asm not supported yet:" 8134 " don't know how to handle tied " 8135 "indirect register inputs"); 8136 return; 8137 } 8138 8139 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8140 SmallVector<unsigned, 4> Regs; 8141 8142 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8143 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8144 MachineRegisterInfo &RegInfo = 8145 DAG.getMachineFunction().getRegInfo(); 8146 for (unsigned i = 0; i != NumRegs; ++i) 8147 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8148 } else { 8149 emitInlineAsmError(CS, "inline asm error: This value type register " 8150 "class is not natively supported!"); 8151 return; 8152 } 8153 8154 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8155 8156 SDLoc dl = getCurSDLoc(); 8157 // Use the produced MatchedRegs object to 8158 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8159 CS.getInstruction()); 8160 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8161 true, OpInfo.getMatchedOperand(), dl, 8162 DAG, AsmNodeOperands); 8163 break; 8164 } 8165 8166 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8167 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8168 "Unexpected number of operands"); 8169 // Add information to the INLINEASM node to know about this input. 8170 // See InlineAsm.h isUseOperandTiedToDef. 8171 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8172 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8173 OpInfo.getMatchedOperand()); 8174 AsmNodeOperands.push_back(DAG.getTargetConstant( 8175 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8176 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8177 break; 8178 } 8179 8180 // Treat indirect 'X' constraint as memory. 8181 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8182 OpInfo.isIndirect) 8183 OpInfo.ConstraintType = TargetLowering::C_Memory; 8184 8185 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8186 std::vector<SDValue> Ops; 8187 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8188 Ops, DAG); 8189 if (Ops.empty()) { 8190 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8191 Twine(OpInfo.ConstraintCode) + "'"); 8192 return; 8193 } 8194 8195 // Add information to the INLINEASM node to know about this input. 8196 unsigned ResOpType = 8197 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8198 AsmNodeOperands.push_back(DAG.getTargetConstant( 8199 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8200 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8201 break; 8202 } 8203 8204 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8205 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8206 assert(InOperandVal.getValueType() == 8207 TLI.getPointerTy(DAG.getDataLayout()) && 8208 "Memory operands expect pointer values"); 8209 8210 unsigned ConstraintID = 8211 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8212 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8213 "Failed to convert memory constraint code to constraint id."); 8214 8215 // Add information to the INLINEASM node to know about this input. 8216 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8217 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8218 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8219 getCurSDLoc(), 8220 MVT::i32)); 8221 AsmNodeOperands.push_back(InOperandVal); 8222 break; 8223 } 8224 8225 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8226 OpInfo.ConstraintType == TargetLowering::C_Register) && 8227 "Unknown constraint type!"); 8228 8229 // TODO: Support this. 8230 if (OpInfo.isIndirect) { 8231 emitInlineAsmError( 8232 CS, "Don't know how to handle indirect register inputs yet " 8233 "for constraint '" + 8234 Twine(OpInfo.ConstraintCode) + "'"); 8235 return; 8236 } 8237 8238 // Copy the input into the appropriate registers. 8239 if (OpInfo.AssignedRegs.Regs.empty()) { 8240 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8241 Twine(OpInfo.ConstraintCode) + "'"); 8242 return; 8243 } 8244 8245 SDLoc dl = getCurSDLoc(); 8246 8247 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8248 Chain, &Flag, CS.getInstruction()); 8249 8250 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8251 dl, DAG, AsmNodeOperands); 8252 break; 8253 } 8254 case InlineAsm::isClobber: 8255 // Add the clobbered value to the operand list, so that the register 8256 // allocator is aware that the physreg got clobbered. 8257 if (!OpInfo.AssignedRegs.Regs.empty()) 8258 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8259 false, 0, getCurSDLoc(), DAG, 8260 AsmNodeOperands); 8261 break; 8262 } 8263 } 8264 8265 // Finish up input operands. Set the input chain and add the flag last. 8266 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8267 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8268 8269 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR 8270 : ISD::INLINEASM; 8271 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8272 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8273 Flag = Chain.getValue(1); 8274 8275 // Do additional work to generate outputs. 8276 8277 SmallVector<EVT, 1> ResultVTs; 8278 SmallVector<SDValue, 1> ResultValues; 8279 SmallVector<SDValue, 8> OutChains; 8280 8281 llvm::Type *CSResultType = CS.getType(); 8282 ArrayRef<Type *> ResultTypes; 8283 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8284 ResultTypes = StructResult->elements(); 8285 else if (!CSResultType->isVoidTy()) 8286 ResultTypes = makeArrayRef(CSResultType); 8287 8288 auto CurResultType = ResultTypes.begin(); 8289 auto handleRegAssign = [&](SDValue V) { 8290 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8291 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8292 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8293 ++CurResultType; 8294 // If the type of the inline asm call site return value is different but has 8295 // same size as the type of the asm output bitcast it. One example of this 8296 // is for vectors with different width / number of elements. This can 8297 // happen for register classes that can contain multiple different value 8298 // types. The preg or vreg allocated may not have the same VT as was 8299 // expected. 8300 // 8301 // This can also happen for a return value that disagrees with the register 8302 // class it is put in, eg. a double in a general-purpose register on a 8303 // 32-bit machine. 8304 if (ResultVT != V.getValueType() && 8305 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8306 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8307 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8308 V.getValueType().isInteger()) { 8309 // If a result value was tied to an input value, the computed result 8310 // may have a wider width than the expected result. Extract the 8311 // relevant portion. 8312 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8313 } 8314 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8315 ResultVTs.push_back(ResultVT); 8316 ResultValues.push_back(V); 8317 }; 8318 8319 // Deal with output operands. 8320 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8321 if (OpInfo.Type == InlineAsm::isOutput) { 8322 SDValue Val; 8323 // Skip trivial output operands. 8324 if (OpInfo.AssignedRegs.Regs.empty()) 8325 continue; 8326 8327 switch (OpInfo.ConstraintType) { 8328 case TargetLowering::C_Register: 8329 case TargetLowering::C_RegisterClass: 8330 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8331 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8332 break; 8333 case TargetLowering::C_Other: 8334 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8335 OpInfo, DAG); 8336 break; 8337 case TargetLowering::C_Memory: 8338 break; // Already handled. 8339 case TargetLowering::C_Unknown: 8340 assert(false && "Unexpected unknown constraint"); 8341 } 8342 8343 // Indirect output manifest as stores. Record output chains. 8344 if (OpInfo.isIndirect) { 8345 const Value *Ptr = OpInfo.CallOperandVal; 8346 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8347 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8348 MachinePointerInfo(Ptr)); 8349 OutChains.push_back(Store); 8350 } else { 8351 // generate CopyFromRegs to associated registers. 8352 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8353 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8354 for (const SDValue &V : Val->op_values()) 8355 handleRegAssign(V); 8356 } else 8357 handleRegAssign(Val); 8358 } 8359 } 8360 } 8361 8362 // Set results. 8363 if (!ResultValues.empty()) { 8364 assert(CurResultType == ResultTypes.end() && 8365 "Mismatch in number of ResultTypes"); 8366 assert(ResultValues.size() == ResultTypes.size() && 8367 "Mismatch in number of output operands in asm result"); 8368 8369 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8370 DAG.getVTList(ResultVTs), ResultValues); 8371 setValue(CS.getInstruction(), V); 8372 } 8373 8374 // Collect store chains. 8375 if (!OutChains.empty()) 8376 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8377 8378 // Only Update Root if inline assembly has a memory effect. 8379 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8380 DAG.setRoot(Chain); 8381 } 8382 8383 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8384 const Twine &Message) { 8385 LLVMContext &Ctx = *DAG.getContext(); 8386 Ctx.emitError(CS.getInstruction(), Message); 8387 8388 // Make sure we leave the DAG in a valid state 8389 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8390 SmallVector<EVT, 1> ValueVTs; 8391 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8392 8393 if (ValueVTs.empty()) 8394 return; 8395 8396 SmallVector<SDValue, 1> Ops; 8397 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8398 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8399 8400 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8401 } 8402 8403 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8404 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8405 MVT::Other, getRoot(), 8406 getValue(I.getArgOperand(0)), 8407 DAG.getSrcValue(I.getArgOperand(0)))); 8408 } 8409 8410 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8412 const DataLayout &DL = DAG.getDataLayout(); 8413 SDValue V = DAG.getVAArg( 8414 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8415 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8416 DL.getABITypeAlignment(I.getType())); 8417 DAG.setRoot(V.getValue(1)); 8418 8419 if (I.getType()->isPointerTy()) 8420 V = DAG.getPtrExtOrTrunc( 8421 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8422 setValue(&I, V); 8423 } 8424 8425 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8426 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8427 MVT::Other, getRoot(), 8428 getValue(I.getArgOperand(0)), 8429 DAG.getSrcValue(I.getArgOperand(0)))); 8430 } 8431 8432 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8433 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8434 MVT::Other, getRoot(), 8435 getValue(I.getArgOperand(0)), 8436 getValue(I.getArgOperand(1)), 8437 DAG.getSrcValue(I.getArgOperand(0)), 8438 DAG.getSrcValue(I.getArgOperand(1)))); 8439 } 8440 8441 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8442 const Instruction &I, 8443 SDValue Op) { 8444 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8445 if (!Range) 8446 return Op; 8447 8448 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8449 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8450 return Op; 8451 8452 APInt Lo = CR.getUnsignedMin(); 8453 if (!Lo.isMinValue()) 8454 return Op; 8455 8456 APInt Hi = CR.getUnsignedMax(); 8457 unsigned Bits = std::max(Hi.getActiveBits(), 8458 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8459 8460 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8461 8462 SDLoc SL = getCurSDLoc(); 8463 8464 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8465 DAG.getValueType(SmallVT)); 8466 unsigned NumVals = Op.getNode()->getNumValues(); 8467 if (NumVals == 1) 8468 return ZExt; 8469 8470 SmallVector<SDValue, 4> Ops; 8471 8472 Ops.push_back(ZExt); 8473 for (unsigned I = 1; I != NumVals; ++I) 8474 Ops.push_back(Op.getValue(I)); 8475 8476 return DAG.getMergeValues(Ops, SL); 8477 } 8478 8479 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8480 /// the call being lowered. 8481 /// 8482 /// This is a helper for lowering intrinsics that follow a target calling 8483 /// convention or require stack pointer adjustment. Only a subset of the 8484 /// intrinsic's operands need to participate in the calling convention. 8485 void SelectionDAGBuilder::populateCallLoweringInfo( 8486 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8487 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8488 bool IsPatchPoint) { 8489 TargetLowering::ArgListTy Args; 8490 Args.reserve(NumArgs); 8491 8492 // Populate the argument list. 8493 // Attributes for args start at offset 1, after the return attribute. 8494 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8495 ArgI != ArgE; ++ArgI) { 8496 const Value *V = Call->getOperand(ArgI); 8497 8498 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8499 8500 TargetLowering::ArgListEntry Entry; 8501 Entry.Node = getValue(V); 8502 Entry.Ty = V->getType(); 8503 Entry.setAttributes(Call, ArgI); 8504 Args.push_back(Entry); 8505 } 8506 8507 CLI.setDebugLoc(getCurSDLoc()) 8508 .setChain(getRoot()) 8509 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8510 .setDiscardResult(Call->use_empty()) 8511 .setIsPatchPoint(IsPatchPoint); 8512 } 8513 8514 /// Add a stack map intrinsic call's live variable operands to a stackmap 8515 /// or patchpoint target node's operand list. 8516 /// 8517 /// Constants are converted to TargetConstants purely as an optimization to 8518 /// avoid constant materialization and register allocation. 8519 /// 8520 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8521 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8522 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8523 /// address materialization and register allocation, but may also be required 8524 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8525 /// alloca in the entry block, then the runtime may assume that the alloca's 8526 /// StackMap location can be read immediately after compilation and that the 8527 /// location is valid at any point during execution (this is similar to the 8528 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8529 /// only available in a register, then the runtime would need to trap when 8530 /// execution reaches the StackMap in order to read the alloca's location. 8531 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8532 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8533 SelectionDAGBuilder &Builder) { 8534 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8535 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8536 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8537 Ops.push_back( 8538 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8539 Ops.push_back( 8540 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8541 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8542 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8543 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8544 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8545 } else 8546 Ops.push_back(OpVal); 8547 } 8548 } 8549 8550 /// Lower llvm.experimental.stackmap directly to its target opcode. 8551 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8552 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8553 // [live variables...]) 8554 8555 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8556 8557 SDValue Chain, InFlag, Callee, NullPtr; 8558 SmallVector<SDValue, 32> Ops; 8559 8560 SDLoc DL = getCurSDLoc(); 8561 Callee = getValue(CI.getCalledValue()); 8562 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8563 8564 // The stackmap intrinsic only records the live variables (the arguemnts 8565 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8566 // intrinsic, this won't be lowered to a function call. This means we don't 8567 // have to worry about calling conventions and target specific lowering code. 8568 // Instead we perform the call lowering right here. 8569 // 8570 // chain, flag = CALLSEQ_START(chain, 0, 0) 8571 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8572 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8573 // 8574 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8575 InFlag = Chain.getValue(1); 8576 8577 // Add the <id> and <numBytes> constants. 8578 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8579 Ops.push_back(DAG.getTargetConstant( 8580 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8581 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8582 Ops.push_back(DAG.getTargetConstant( 8583 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8584 MVT::i32)); 8585 8586 // Push live variables for the stack map. 8587 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8588 8589 // We are not pushing any register mask info here on the operands list, 8590 // because the stackmap doesn't clobber anything. 8591 8592 // Push the chain and the glue flag. 8593 Ops.push_back(Chain); 8594 Ops.push_back(InFlag); 8595 8596 // Create the STACKMAP node. 8597 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8598 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8599 Chain = SDValue(SM, 0); 8600 InFlag = Chain.getValue(1); 8601 8602 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8603 8604 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8605 8606 // Set the root to the target-lowered call chain. 8607 DAG.setRoot(Chain); 8608 8609 // Inform the Frame Information that we have a stackmap in this function. 8610 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8611 } 8612 8613 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8614 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8615 const BasicBlock *EHPadBB) { 8616 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8617 // i32 <numBytes>, 8618 // i8* <target>, 8619 // i32 <numArgs>, 8620 // [Args...], 8621 // [live variables...]) 8622 8623 CallingConv::ID CC = CS.getCallingConv(); 8624 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8625 bool HasDef = !CS->getType()->isVoidTy(); 8626 SDLoc dl = getCurSDLoc(); 8627 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8628 8629 // Handle immediate and symbolic callees. 8630 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8631 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8632 /*isTarget=*/true); 8633 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8634 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8635 SDLoc(SymbolicCallee), 8636 SymbolicCallee->getValueType(0)); 8637 8638 // Get the real number of arguments participating in the call <numArgs> 8639 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8640 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8641 8642 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8643 // Intrinsics include all meta-operands up to but not including CC. 8644 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8645 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8646 "Not enough arguments provided to the patchpoint intrinsic"); 8647 8648 // For AnyRegCC the arguments are lowered later on manually. 8649 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8650 Type *ReturnTy = 8651 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8652 8653 TargetLowering::CallLoweringInfo CLI(DAG); 8654 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8655 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8656 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8657 8658 SDNode *CallEnd = Result.second.getNode(); 8659 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8660 CallEnd = CallEnd->getOperand(0).getNode(); 8661 8662 /// Get a call instruction from the call sequence chain. 8663 /// Tail calls are not allowed. 8664 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8665 "Expected a callseq node."); 8666 SDNode *Call = CallEnd->getOperand(0).getNode(); 8667 bool HasGlue = Call->getGluedNode(); 8668 8669 // Replace the target specific call node with the patchable intrinsic. 8670 SmallVector<SDValue, 8> Ops; 8671 8672 // Add the <id> and <numBytes> constants. 8673 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8674 Ops.push_back(DAG.getTargetConstant( 8675 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8676 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8677 Ops.push_back(DAG.getTargetConstant( 8678 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8679 MVT::i32)); 8680 8681 // Add the callee. 8682 Ops.push_back(Callee); 8683 8684 // Adjust <numArgs> to account for any arguments that have been passed on the 8685 // stack instead. 8686 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8687 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8688 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8689 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8690 8691 // Add the calling convention 8692 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8693 8694 // Add the arguments we omitted previously. The register allocator should 8695 // place these in any free register. 8696 if (IsAnyRegCC) 8697 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8698 Ops.push_back(getValue(CS.getArgument(i))); 8699 8700 // Push the arguments from the call instruction up to the register mask. 8701 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8702 Ops.append(Call->op_begin() + 2, e); 8703 8704 // Push live variables for the stack map. 8705 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8706 8707 // Push the register mask info. 8708 if (HasGlue) 8709 Ops.push_back(*(Call->op_end()-2)); 8710 else 8711 Ops.push_back(*(Call->op_end()-1)); 8712 8713 // Push the chain (this is originally the first operand of the call, but 8714 // becomes now the last or second to last operand). 8715 Ops.push_back(*(Call->op_begin())); 8716 8717 // Push the glue flag (last operand). 8718 if (HasGlue) 8719 Ops.push_back(*(Call->op_end()-1)); 8720 8721 SDVTList NodeTys; 8722 if (IsAnyRegCC && HasDef) { 8723 // Create the return types based on the intrinsic definition 8724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8725 SmallVector<EVT, 3> ValueVTs; 8726 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8727 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8728 8729 // There is always a chain and a glue type at the end 8730 ValueVTs.push_back(MVT::Other); 8731 ValueVTs.push_back(MVT::Glue); 8732 NodeTys = DAG.getVTList(ValueVTs); 8733 } else 8734 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8735 8736 // Replace the target specific call node with a PATCHPOINT node. 8737 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8738 dl, NodeTys, Ops); 8739 8740 // Update the NodeMap. 8741 if (HasDef) { 8742 if (IsAnyRegCC) 8743 setValue(CS.getInstruction(), SDValue(MN, 0)); 8744 else 8745 setValue(CS.getInstruction(), Result.first); 8746 } 8747 8748 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8749 // call sequence. Furthermore the location of the chain and glue can change 8750 // when the AnyReg calling convention is used and the intrinsic returns a 8751 // value. 8752 if (IsAnyRegCC && HasDef) { 8753 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8754 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8755 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8756 } else 8757 DAG.ReplaceAllUsesWith(Call, MN); 8758 DAG.DeleteNode(Call); 8759 8760 // Inform the Frame Information that we have a patchpoint in this function. 8761 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8762 } 8763 8764 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8765 unsigned Intrinsic) { 8766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8767 SDValue Op1 = getValue(I.getArgOperand(0)); 8768 SDValue Op2; 8769 if (I.getNumArgOperands() > 1) 8770 Op2 = getValue(I.getArgOperand(1)); 8771 SDLoc dl = getCurSDLoc(); 8772 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8773 SDValue Res; 8774 FastMathFlags FMF; 8775 if (isa<FPMathOperator>(I)) 8776 FMF = I.getFastMathFlags(); 8777 8778 switch (Intrinsic) { 8779 case Intrinsic::experimental_vector_reduce_fadd: 8780 if (FMF.isFast()) 8781 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8782 else 8783 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8784 break; 8785 case Intrinsic::experimental_vector_reduce_fmul: 8786 if (FMF.isFast()) 8787 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8788 else 8789 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8790 break; 8791 case Intrinsic::experimental_vector_reduce_add: 8792 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8793 break; 8794 case Intrinsic::experimental_vector_reduce_mul: 8795 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8796 break; 8797 case Intrinsic::experimental_vector_reduce_and: 8798 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8799 break; 8800 case Intrinsic::experimental_vector_reduce_or: 8801 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8802 break; 8803 case Intrinsic::experimental_vector_reduce_xor: 8804 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8805 break; 8806 case Intrinsic::experimental_vector_reduce_smax: 8807 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8808 break; 8809 case Intrinsic::experimental_vector_reduce_smin: 8810 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8811 break; 8812 case Intrinsic::experimental_vector_reduce_umax: 8813 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8814 break; 8815 case Intrinsic::experimental_vector_reduce_umin: 8816 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8817 break; 8818 case Intrinsic::experimental_vector_reduce_fmax: 8819 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8820 break; 8821 case Intrinsic::experimental_vector_reduce_fmin: 8822 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8823 break; 8824 default: 8825 llvm_unreachable("Unhandled vector reduce intrinsic"); 8826 } 8827 setValue(&I, Res); 8828 } 8829 8830 /// Returns an AttributeList representing the attributes applied to the return 8831 /// value of the given call. 8832 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8833 SmallVector<Attribute::AttrKind, 2> Attrs; 8834 if (CLI.RetSExt) 8835 Attrs.push_back(Attribute::SExt); 8836 if (CLI.RetZExt) 8837 Attrs.push_back(Attribute::ZExt); 8838 if (CLI.IsInReg) 8839 Attrs.push_back(Attribute::InReg); 8840 8841 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8842 Attrs); 8843 } 8844 8845 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8846 /// implementation, which just calls LowerCall. 8847 /// FIXME: When all targets are 8848 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8849 std::pair<SDValue, SDValue> 8850 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8851 // Handle the incoming return values from the call. 8852 CLI.Ins.clear(); 8853 Type *OrigRetTy = CLI.RetTy; 8854 SmallVector<EVT, 4> RetTys; 8855 SmallVector<uint64_t, 4> Offsets; 8856 auto &DL = CLI.DAG.getDataLayout(); 8857 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8858 8859 if (CLI.IsPostTypeLegalization) { 8860 // If we are lowering a libcall after legalization, split the return type. 8861 SmallVector<EVT, 4> OldRetTys; 8862 SmallVector<uint64_t, 4> OldOffsets; 8863 RetTys.swap(OldRetTys); 8864 Offsets.swap(OldOffsets); 8865 8866 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8867 EVT RetVT = OldRetTys[i]; 8868 uint64_t Offset = OldOffsets[i]; 8869 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8870 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8871 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8872 RetTys.append(NumRegs, RegisterVT); 8873 for (unsigned j = 0; j != NumRegs; ++j) 8874 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8875 } 8876 } 8877 8878 SmallVector<ISD::OutputArg, 4> Outs; 8879 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8880 8881 bool CanLowerReturn = 8882 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8883 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8884 8885 SDValue DemoteStackSlot; 8886 int DemoteStackIdx = -100; 8887 if (!CanLowerReturn) { 8888 // FIXME: equivalent assert? 8889 // assert(!CS.hasInAllocaArgument() && 8890 // "sret demotion is incompatible with inalloca"); 8891 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8892 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8893 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8894 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8895 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8896 DL.getAllocaAddrSpace()); 8897 8898 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8899 ArgListEntry Entry; 8900 Entry.Node = DemoteStackSlot; 8901 Entry.Ty = StackSlotPtrType; 8902 Entry.IsSExt = false; 8903 Entry.IsZExt = false; 8904 Entry.IsInReg = false; 8905 Entry.IsSRet = true; 8906 Entry.IsNest = false; 8907 Entry.IsByVal = false; 8908 Entry.IsReturned = false; 8909 Entry.IsSwiftSelf = false; 8910 Entry.IsSwiftError = false; 8911 Entry.Alignment = Align; 8912 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8913 CLI.NumFixedArgs += 1; 8914 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8915 8916 // sret demotion isn't compatible with tail-calls, since the sret argument 8917 // points into the callers stack frame. 8918 CLI.IsTailCall = false; 8919 } else { 8920 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8921 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 8922 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8923 ISD::ArgFlagsTy Flags; 8924 if (NeedsRegBlock) { 8925 Flags.setInConsecutiveRegs(); 8926 if (I == RetTys.size() - 1) 8927 Flags.setInConsecutiveRegsLast(); 8928 } 8929 EVT VT = RetTys[I]; 8930 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8931 CLI.CallConv, VT); 8932 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8933 CLI.CallConv, VT); 8934 for (unsigned i = 0; i != NumRegs; ++i) { 8935 ISD::InputArg MyFlags; 8936 MyFlags.Flags = Flags; 8937 MyFlags.VT = RegisterVT; 8938 MyFlags.ArgVT = VT; 8939 MyFlags.Used = CLI.IsReturnValueUsed; 8940 if (CLI.RetTy->isPointerTy()) { 8941 MyFlags.Flags.setPointer(); 8942 MyFlags.Flags.setPointerAddrSpace( 8943 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 8944 } 8945 if (CLI.RetSExt) 8946 MyFlags.Flags.setSExt(); 8947 if (CLI.RetZExt) 8948 MyFlags.Flags.setZExt(); 8949 if (CLI.IsInReg) 8950 MyFlags.Flags.setInReg(); 8951 CLI.Ins.push_back(MyFlags); 8952 } 8953 } 8954 } 8955 8956 // We push in swifterror return as the last element of CLI.Ins. 8957 ArgListTy &Args = CLI.getArgs(); 8958 if (supportSwiftError()) { 8959 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8960 if (Args[i].IsSwiftError) { 8961 ISD::InputArg MyFlags; 8962 MyFlags.VT = getPointerTy(DL); 8963 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8964 MyFlags.Flags.setSwiftError(); 8965 CLI.Ins.push_back(MyFlags); 8966 } 8967 } 8968 } 8969 8970 // Handle all of the outgoing arguments. 8971 CLI.Outs.clear(); 8972 CLI.OutVals.clear(); 8973 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8974 SmallVector<EVT, 4> ValueVTs; 8975 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8976 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8977 Type *FinalType = Args[i].Ty; 8978 if (Args[i].IsByVal) 8979 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8980 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8981 FinalType, CLI.CallConv, CLI.IsVarArg); 8982 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8983 ++Value) { 8984 EVT VT = ValueVTs[Value]; 8985 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8986 SDValue Op = SDValue(Args[i].Node.getNode(), 8987 Args[i].Node.getResNo() + Value); 8988 ISD::ArgFlagsTy Flags; 8989 8990 // Certain targets (such as MIPS), may have a different ABI alignment 8991 // for a type depending on the context. Give the target a chance to 8992 // specify the alignment it wants. 8993 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8994 8995 if (Args[i].Ty->isPointerTy()) { 8996 Flags.setPointer(); 8997 Flags.setPointerAddrSpace( 8998 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 8999 } 9000 if (Args[i].IsZExt) 9001 Flags.setZExt(); 9002 if (Args[i].IsSExt) 9003 Flags.setSExt(); 9004 if (Args[i].IsInReg) { 9005 // If we are using vectorcall calling convention, a structure that is 9006 // passed InReg - is surely an HVA 9007 if (CLI.CallConv == CallingConv::X86_VectorCall && 9008 isa<StructType>(FinalType)) { 9009 // The first value of a structure is marked 9010 if (0 == Value) 9011 Flags.setHvaStart(); 9012 Flags.setHva(); 9013 } 9014 // Set InReg Flag 9015 Flags.setInReg(); 9016 } 9017 if (Args[i].IsSRet) 9018 Flags.setSRet(); 9019 if (Args[i].IsSwiftSelf) 9020 Flags.setSwiftSelf(); 9021 if (Args[i].IsSwiftError) 9022 Flags.setSwiftError(); 9023 if (Args[i].IsByVal) 9024 Flags.setByVal(); 9025 if (Args[i].IsInAlloca) { 9026 Flags.setInAlloca(); 9027 // Set the byval flag for CCAssignFn callbacks that don't know about 9028 // inalloca. This way we can know how many bytes we should've allocated 9029 // and how many bytes a callee cleanup function will pop. If we port 9030 // inalloca to more targets, we'll have to add custom inalloca handling 9031 // in the various CC lowering callbacks. 9032 Flags.setByVal(); 9033 } 9034 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9035 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9036 Type *ElementTy = Ty->getElementType(); 9037 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9038 // For ByVal, alignment should come from FE. BE will guess if this 9039 // info is not there but there are cases it cannot get right. 9040 unsigned FrameAlign; 9041 if (Args[i].Alignment) 9042 FrameAlign = Args[i].Alignment; 9043 else 9044 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9045 Flags.setByValAlign(FrameAlign); 9046 } 9047 if (Args[i].IsNest) 9048 Flags.setNest(); 9049 if (NeedsRegBlock) 9050 Flags.setInConsecutiveRegs(); 9051 Flags.setOrigAlign(OriginalAlignment); 9052 9053 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9054 CLI.CallConv, VT); 9055 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9056 CLI.CallConv, VT); 9057 SmallVector<SDValue, 4> Parts(NumParts); 9058 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9059 9060 if (Args[i].IsSExt) 9061 ExtendKind = ISD::SIGN_EXTEND; 9062 else if (Args[i].IsZExt) 9063 ExtendKind = ISD::ZERO_EXTEND; 9064 9065 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9066 // for now. 9067 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9068 CanLowerReturn) { 9069 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 9070 "unexpected use of 'returned'"); 9071 // Before passing 'returned' to the target lowering code, ensure that 9072 // either the register MVT and the actual EVT are the same size or that 9073 // the return value and argument are extended in the same way; in these 9074 // cases it's safe to pass the argument register value unchanged as the 9075 // return register value (although it's at the target's option whether 9076 // to do so) 9077 // TODO: allow code generation to take advantage of partially preserved 9078 // registers rather than clobbering the entire register when the 9079 // parameter extension method is not compatible with the return 9080 // extension method 9081 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9082 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9083 CLI.RetZExt == Args[i].IsZExt)) 9084 Flags.setReturned(); 9085 } 9086 9087 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9088 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9089 9090 for (unsigned j = 0; j != NumParts; ++j) { 9091 // if it isn't first piece, alignment must be 1 9092 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9093 i < CLI.NumFixedArgs, 9094 i, j*Parts[j].getValueType().getStoreSize()); 9095 if (NumParts > 1 && j == 0) 9096 MyFlags.Flags.setSplit(); 9097 else if (j != 0) { 9098 MyFlags.Flags.setOrigAlign(1); 9099 if (j == NumParts - 1) 9100 MyFlags.Flags.setSplitEnd(); 9101 } 9102 9103 CLI.Outs.push_back(MyFlags); 9104 CLI.OutVals.push_back(Parts[j]); 9105 } 9106 9107 if (NeedsRegBlock && Value == NumValues - 1) 9108 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9109 } 9110 } 9111 9112 SmallVector<SDValue, 4> InVals; 9113 CLI.Chain = LowerCall(CLI, InVals); 9114 9115 // Update CLI.InVals to use outside of this function. 9116 CLI.InVals = InVals; 9117 9118 // Verify that the target's LowerCall behaved as expected. 9119 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9120 "LowerCall didn't return a valid chain!"); 9121 assert((!CLI.IsTailCall || InVals.empty()) && 9122 "LowerCall emitted a return value for a tail call!"); 9123 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9124 "LowerCall didn't emit the correct number of values!"); 9125 9126 // For a tail call, the return value is merely live-out and there aren't 9127 // any nodes in the DAG representing it. Return a special value to 9128 // indicate that a tail call has been emitted and no more Instructions 9129 // should be processed in the current block. 9130 if (CLI.IsTailCall) { 9131 CLI.DAG.setRoot(CLI.Chain); 9132 return std::make_pair(SDValue(), SDValue()); 9133 } 9134 9135 #ifndef NDEBUG 9136 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9137 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9138 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9139 "LowerCall emitted a value with the wrong type!"); 9140 } 9141 #endif 9142 9143 SmallVector<SDValue, 4> ReturnValues; 9144 if (!CanLowerReturn) { 9145 // The instruction result is the result of loading from the 9146 // hidden sret parameter. 9147 SmallVector<EVT, 1> PVTs; 9148 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9149 9150 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9151 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9152 EVT PtrVT = PVTs[0]; 9153 9154 unsigned NumValues = RetTys.size(); 9155 ReturnValues.resize(NumValues); 9156 SmallVector<SDValue, 4> Chains(NumValues); 9157 9158 // An aggregate return value cannot wrap around the address space, so 9159 // offsets to its parts don't wrap either. 9160 SDNodeFlags Flags; 9161 Flags.setNoUnsignedWrap(true); 9162 9163 for (unsigned i = 0; i < NumValues; ++i) { 9164 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9165 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9166 PtrVT), Flags); 9167 SDValue L = CLI.DAG.getLoad( 9168 RetTys[i], CLI.DL, CLI.Chain, Add, 9169 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9170 DemoteStackIdx, Offsets[i]), 9171 /* Alignment = */ 1); 9172 ReturnValues[i] = L; 9173 Chains[i] = L.getValue(1); 9174 } 9175 9176 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9177 } else { 9178 // Collect the legal value parts into potentially illegal values 9179 // that correspond to the original function's return values. 9180 Optional<ISD::NodeType> AssertOp; 9181 if (CLI.RetSExt) 9182 AssertOp = ISD::AssertSext; 9183 else if (CLI.RetZExt) 9184 AssertOp = ISD::AssertZext; 9185 unsigned CurReg = 0; 9186 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9187 EVT VT = RetTys[I]; 9188 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9189 CLI.CallConv, VT); 9190 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9191 CLI.CallConv, VT); 9192 9193 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9194 NumRegs, RegisterVT, VT, nullptr, 9195 CLI.CallConv, AssertOp)); 9196 CurReg += NumRegs; 9197 } 9198 9199 // For a function returning void, there is no return value. We can't create 9200 // such a node, so we just return a null return value in that case. In 9201 // that case, nothing will actually look at the value. 9202 if (ReturnValues.empty()) 9203 return std::make_pair(SDValue(), CLI.Chain); 9204 } 9205 9206 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9207 CLI.DAG.getVTList(RetTys), ReturnValues); 9208 return std::make_pair(Res, CLI.Chain); 9209 } 9210 9211 void TargetLowering::LowerOperationWrapper(SDNode *N, 9212 SmallVectorImpl<SDValue> &Results, 9213 SelectionDAG &DAG) const { 9214 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9215 Results.push_back(Res); 9216 } 9217 9218 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9219 llvm_unreachable("LowerOperation not implemented for this target!"); 9220 } 9221 9222 void 9223 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9224 SDValue Op = getNonRegisterValue(V); 9225 assert((Op.getOpcode() != ISD::CopyFromReg || 9226 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9227 "Copy from a reg to the same reg!"); 9228 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9229 9230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9231 // If this is an InlineAsm we have to match the registers required, not the 9232 // notional registers required by the type. 9233 9234 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9235 None); // This is not an ABI copy. 9236 SDValue Chain = DAG.getEntryNode(); 9237 9238 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9239 FuncInfo.PreferredExtendType.end()) 9240 ? ISD::ANY_EXTEND 9241 : FuncInfo.PreferredExtendType[V]; 9242 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9243 PendingExports.push_back(Chain); 9244 } 9245 9246 #include "llvm/CodeGen/SelectionDAGISel.h" 9247 9248 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9249 /// entry block, return true. This includes arguments used by switches, since 9250 /// the switch may expand into multiple basic blocks. 9251 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9252 // With FastISel active, we may be splitting blocks, so force creation 9253 // of virtual registers for all non-dead arguments. 9254 if (FastISel) 9255 return A->use_empty(); 9256 9257 const BasicBlock &Entry = A->getParent()->front(); 9258 for (const User *U : A->users()) 9259 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9260 return false; // Use not in entry block. 9261 9262 return true; 9263 } 9264 9265 using ArgCopyElisionMapTy = 9266 DenseMap<const Argument *, 9267 std::pair<const AllocaInst *, const StoreInst *>>; 9268 9269 /// Scan the entry block of the function in FuncInfo for arguments that look 9270 /// like copies into a local alloca. Record any copied arguments in 9271 /// ArgCopyElisionCandidates. 9272 static void 9273 findArgumentCopyElisionCandidates(const DataLayout &DL, 9274 FunctionLoweringInfo *FuncInfo, 9275 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9276 // Record the state of every static alloca used in the entry block. Argument 9277 // allocas are all used in the entry block, so we need approximately as many 9278 // entries as we have arguments. 9279 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9280 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9281 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9282 StaticAllocas.reserve(NumArgs * 2); 9283 9284 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9285 if (!V) 9286 return nullptr; 9287 V = V->stripPointerCasts(); 9288 const auto *AI = dyn_cast<AllocaInst>(V); 9289 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9290 return nullptr; 9291 auto Iter = StaticAllocas.insert({AI, Unknown}); 9292 return &Iter.first->second; 9293 }; 9294 9295 // Look for stores of arguments to static allocas. Look through bitcasts and 9296 // GEPs to handle type coercions, as long as the alloca is fully initialized 9297 // by the store. Any non-store use of an alloca escapes it and any subsequent 9298 // unanalyzed store might write it. 9299 // FIXME: Handle structs initialized with multiple stores. 9300 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9301 // Look for stores, and handle non-store uses conservatively. 9302 const auto *SI = dyn_cast<StoreInst>(&I); 9303 if (!SI) { 9304 // We will look through cast uses, so ignore them completely. 9305 if (I.isCast()) 9306 continue; 9307 // Ignore debug info intrinsics, they don't escape or store to allocas. 9308 if (isa<DbgInfoIntrinsic>(I)) 9309 continue; 9310 // This is an unknown instruction. Assume it escapes or writes to all 9311 // static alloca operands. 9312 for (const Use &U : I.operands()) { 9313 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9314 *Info = StaticAllocaInfo::Clobbered; 9315 } 9316 continue; 9317 } 9318 9319 // If the stored value is a static alloca, mark it as escaped. 9320 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9321 *Info = StaticAllocaInfo::Clobbered; 9322 9323 // Check if the destination is a static alloca. 9324 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9325 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9326 if (!Info) 9327 continue; 9328 const AllocaInst *AI = cast<AllocaInst>(Dst); 9329 9330 // Skip allocas that have been initialized or clobbered. 9331 if (*Info != StaticAllocaInfo::Unknown) 9332 continue; 9333 9334 // Check if the stored value is an argument, and that this store fully 9335 // initializes the alloca. Don't elide copies from the same argument twice. 9336 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9337 const auto *Arg = dyn_cast<Argument>(Val); 9338 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9339 Arg->getType()->isEmptyTy() || 9340 DL.getTypeStoreSize(Arg->getType()) != 9341 DL.getTypeAllocSize(AI->getAllocatedType()) || 9342 ArgCopyElisionCandidates.count(Arg)) { 9343 *Info = StaticAllocaInfo::Clobbered; 9344 continue; 9345 } 9346 9347 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9348 << '\n'); 9349 9350 // Mark this alloca and store for argument copy elision. 9351 *Info = StaticAllocaInfo::Elidable; 9352 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9353 9354 // Stop scanning if we've seen all arguments. This will happen early in -O0 9355 // builds, which is useful, because -O0 builds have large entry blocks and 9356 // many allocas. 9357 if (ArgCopyElisionCandidates.size() == NumArgs) 9358 break; 9359 } 9360 } 9361 9362 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9363 /// ArgVal is a load from a suitable fixed stack object. 9364 static void tryToElideArgumentCopy( 9365 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9366 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9367 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9368 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9369 SDValue ArgVal, bool &ArgHasUses) { 9370 // Check if this is a load from a fixed stack object. 9371 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9372 if (!LNode) 9373 return; 9374 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9375 if (!FINode) 9376 return; 9377 9378 // Check that the fixed stack object is the right size and alignment. 9379 // Look at the alignment that the user wrote on the alloca instead of looking 9380 // at the stack object. 9381 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9382 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9383 const AllocaInst *AI = ArgCopyIter->second.first; 9384 int FixedIndex = FINode->getIndex(); 9385 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9386 int OldIndex = AllocaIndex; 9387 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9388 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9389 LLVM_DEBUG( 9390 dbgs() << " argument copy elision failed due to bad fixed stack " 9391 "object size\n"); 9392 return; 9393 } 9394 unsigned RequiredAlignment = AI->getAlignment(); 9395 if (!RequiredAlignment) { 9396 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9397 AI->getAllocatedType()); 9398 } 9399 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9400 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9401 "greater than stack argument alignment (" 9402 << RequiredAlignment << " vs " 9403 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9404 return; 9405 } 9406 9407 // Perform the elision. Delete the old stack object and replace its only use 9408 // in the variable info map. Mark the stack object as mutable. 9409 LLVM_DEBUG({ 9410 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9411 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9412 << '\n'; 9413 }); 9414 MFI.RemoveStackObject(OldIndex); 9415 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9416 AllocaIndex = FixedIndex; 9417 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9418 Chains.push_back(ArgVal.getValue(1)); 9419 9420 // Avoid emitting code for the store implementing the copy. 9421 const StoreInst *SI = ArgCopyIter->second.second; 9422 ElidedArgCopyInstrs.insert(SI); 9423 9424 // Check for uses of the argument again so that we can avoid exporting ArgVal 9425 // if it is't used by anything other than the store. 9426 for (const Value *U : Arg.users()) { 9427 if (U != SI) { 9428 ArgHasUses = true; 9429 break; 9430 } 9431 } 9432 } 9433 9434 void SelectionDAGISel::LowerArguments(const Function &F) { 9435 SelectionDAG &DAG = SDB->DAG; 9436 SDLoc dl = SDB->getCurSDLoc(); 9437 const DataLayout &DL = DAG.getDataLayout(); 9438 SmallVector<ISD::InputArg, 16> Ins; 9439 9440 if (!FuncInfo->CanLowerReturn) { 9441 // Put in an sret pointer parameter before all the other parameters. 9442 SmallVector<EVT, 1> ValueVTs; 9443 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9444 F.getReturnType()->getPointerTo( 9445 DAG.getDataLayout().getAllocaAddrSpace()), 9446 ValueVTs); 9447 9448 // NOTE: Assuming that a pointer will never break down to more than one VT 9449 // or one register. 9450 ISD::ArgFlagsTy Flags; 9451 Flags.setSRet(); 9452 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9453 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9454 ISD::InputArg::NoArgIndex, 0); 9455 Ins.push_back(RetArg); 9456 } 9457 9458 // Look for stores of arguments to static allocas. Mark such arguments with a 9459 // flag to ask the target to give us the memory location of that argument if 9460 // available. 9461 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9462 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9463 9464 // Set up the incoming argument description vector. 9465 for (const Argument &Arg : F.args()) { 9466 unsigned ArgNo = Arg.getArgNo(); 9467 SmallVector<EVT, 4> ValueVTs; 9468 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9469 bool isArgValueUsed = !Arg.use_empty(); 9470 unsigned PartBase = 0; 9471 Type *FinalType = Arg.getType(); 9472 if (Arg.hasAttribute(Attribute::ByVal)) 9473 FinalType = cast<PointerType>(FinalType)->getElementType(); 9474 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9475 FinalType, F.getCallingConv(), F.isVarArg()); 9476 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9477 Value != NumValues; ++Value) { 9478 EVT VT = ValueVTs[Value]; 9479 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9480 ISD::ArgFlagsTy Flags; 9481 9482 // Certain targets (such as MIPS), may have a different ABI alignment 9483 // for a type depending on the context. Give the target a chance to 9484 // specify the alignment it wants. 9485 unsigned OriginalAlignment = 9486 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9487 9488 if (Arg.getType()->isPointerTy()) { 9489 Flags.setPointer(); 9490 Flags.setPointerAddrSpace( 9491 cast<PointerType>(Arg.getType())->getAddressSpace()); 9492 } 9493 if (Arg.hasAttribute(Attribute::ZExt)) 9494 Flags.setZExt(); 9495 if (Arg.hasAttribute(Attribute::SExt)) 9496 Flags.setSExt(); 9497 if (Arg.hasAttribute(Attribute::InReg)) { 9498 // If we are using vectorcall calling convention, a structure that is 9499 // passed InReg - is surely an HVA 9500 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9501 isa<StructType>(Arg.getType())) { 9502 // The first value of a structure is marked 9503 if (0 == Value) 9504 Flags.setHvaStart(); 9505 Flags.setHva(); 9506 } 9507 // Set InReg Flag 9508 Flags.setInReg(); 9509 } 9510 if (Arg.hasAttribute(Attribute::StructRet)) 9511 Flags.setSRet(); 9512 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9513 Flags.setSwiftSelf(); 9514 if (Arg.hasAttribute(Attribute::SwiftError)) 9515 Flags.setSwiftError(); 9516 if (Arg.hasAttribute(Attribute::ByVal)) 9517 Flags.setByVal(); 9518 if (Arg.hasAttribute(Attribute::InAlloca)) { 9519 Flags.setInAlloca(); 9520 // Set the byval flag for CCAssignFn callbacks that don't know about 9521 // inalloca. This way we can know how many bytes we should've allocated 9522 // and how many bytes a callee cleanup function will pop. If we port 9523 // inalloca to more targets, we'll have to add custom inalloca handling 9524 // in the various CC lowering callbacks. 9525 Flags.setByVal(); 9526 } 9527 if (F.getCallingConv() == CallingConv::X86_INTR) { 9528 // IA Interrupt passes frame (1st parameter) by value in the stack. 9529 if (ArgNo == 0) 9530 Flags.setByVal(); 9531 } 9532 if (Flags.isByVal() || Flags.isInAlloca()) { 9533 PointerType *Ty = cast<PointerType>(Arg.getType()); 9534 Type *ElementTy = Ty->getElementType(); 9535 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9536 // For ByVal, alignment should be passed from FE. BE will guess if 9537 // this info is not there but there are cases it cannot get right. 9538 unsigned FrameAlign; 9539 if (Arg.getParamAlignment()) 9540 FrameAlign = Arg.getParamAlignment(); 9541 else 9542 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9543 Flags.setByValAlign(FrameAlign); 9544 } 9545 if (Arg.hasAttribute(Attribute::Nest)) 9546 Flags.setNest(); 9547 if (NeedsRegBlock) 9548 Flags.setInConsecutiveRegs(); 9549 Flags.setOrigAlign(OriginalAlignment); 9550 if (ArgCopyElisionCandidates.count(&Arg)) 9551 Flags.setCopyElisionCandidate(); 9552 9553 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9554 *CurDAG->getContext(), F.getCallingConv(), VT); 9555 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9556 *CurDAG->getContext(), F.getCallingConv(), VT); 9557 for (unsigned i = 0; i != NumRegs; ++i) { 9558 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9559 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9560 if (NumRegs > 1 && i == 0) 9561 MyFlags.Flags.setSplit(); 9562 // if it isn't first piece, alignment must be 1 9563 else if (i > 0) { 9564 MyFlags.Flags.setOrigAlign(1); 9565 if (i == NumRegs - 1) 9566 MyFlags.Flags.setSplitEnd(); 9567 } 9568 Ins.push_back(MyFlags); 9569 } 9570 if (NeedsRegBlock && Value == NumValues - 1) 9571 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9572 PartBase += VT.getStoreSize(); 9573 } 9574 } 9575 9576 // Call the target to set up the argument values. 9577 SmallVector<SDValue, 8> InVals; 9578 SDValue NewRoot = TLI->LowerFormalArguments( 9579 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9580 9581 // Verify that the target's LowerFormalArguments behaved as expected. 9582 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9583 "LowerFormalArguments didn't return a valid chain!"); 9584 assert(InVals.size() == Ins.size() && 9585 "LowerFormalArguments didn't emit the correct number of values!"); 9586 LLVM_DEBUG({ 9587 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9588 assert(InVals[i].getNode() && 9589 "LowerFormalArguments emitted a null value!"); 9590 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9591 "LowerFormalArguments emitted a value with the wrong type!"); 9592 } 9593 }); 9594 9595 // Update the DAG with the new chain value resulting from argument lowering. 9596 DAG.setRoot(NewRoot); 9597 9598 // Set up the argument values. 9599 unsigned i = 0; 9600 if (!FuncInfo->CanLowerReturn) { 9601 // Create a virtual register for the sret pointer, and put in a copy 9602 // from the sret argument into it. 9603 SmallVector<EVT, 1> ValueVTs; 9604 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9605 F.getReturnType()->getPointerTo( 9606 DAG.getDataLayout().getAllocaAddrSpace()), 9607 ValueVTs); 9608 MVT VT = ValueVTs[0].getSimpleVT(); 9609 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9610 Optional<ISD::NodeType> AssertOp = None; 9611 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9612 nullptr, F.getCallingConv(), AssertOp); 9613 9614 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9615 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9616 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9617 FuncInfo->DemoteRegister = SRetReg; 9618 NewRoot = 9619 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9620 DAG.setRoot(NewRoot); 9621 9622 // i indexes lowered arguments. Bump it past the hidden sret argument. 9623 ++i; 9624 } 9625 9626 SmallVector<SDValue, 4> Chains; 9627 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9628 for (const Argument &Arg : F.args()) { 9629 SmallVector<SDValue, 4> ArgValues; 9630 SmallVector<EVT, 4> ValueVTs; 9631 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9632 unsigned NumValues = ValueVTs.size(); 9633 if (NumValues == 0) 9634 continue; 9635 9636 bool ArgHasUses = !Arg.use_empty(); 9637 9638 // Elide the copying store if the target loaded this argument from a 9639 // suitable fixed stack object. 9640 if (Ins[i].Flags.isCopyElisionCandidate()) { 9641 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9642 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9643 InVals[i], ArgHasUses); 9644 } 9645 9646 // If this argument is unused then remember its value. It is used to generate 9647 // debugging information. 9648 bool isSwiftErrorArg = 9649 TLI->supportSwiftError() && 9650 Arg.hasAttribute(Attribute::SwiftError); 9651 if (!ArgHasUses && !isSwiftErrorArg) { 9652 SDB->setUnusedArgValue(&Arg, InVals[i]); 9653 9654 // Also remember any frame index for use in FastISel. 9655 if (FrameIndexSDNode *FI = 9656 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9657 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9658 } 9659 9660 for (unsigned Val = 0; Val != NumValues; ++Val) { 9661 EVT VT = ValueVTs[Val]; 9662 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9663 F.getCallingConv(), VT); 9664 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9665 *CurDAG->getContext(), F.getCallingConv(), VT); 9666 9667 // Even an apparant 'unused' swifterror argument needs to be returned. So 9668 // we do generate a copy for it that can be used on return from the 9669 // function. 9670 if (ArgHasUses || isSwiftErrorArg) { 9671 Optional<ISD::NodeType> AssertOp; 9672 if (Arg.hasAttribute(Attribute::SExt)) 9673 AssertOp = ISD::AssertSext; 9674 else if (Arg.hasAttribute(Attribute::ZExt)) 9675 AssertOp = ISD::AssertZext; 9676 9677 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9678 PartVT, VT, nullptr, 9679 F.getCallingConv(), AssertOp)); 9680 } 9681 9682 i += NumParts; 9683 } 9684 9685 // We don't need to do anything else for unused arguments. 9686 if (ArgValues.empty()) 9687 continue; 9688 9689 // Note down frame index. 9690 if (FrameIndexSDNode *FI = 9691 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9692 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9693 9694 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9695 SDB->getCurSDLoc()); 9696 9697 SDB->setValue(&Arg, Res); 9698 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9699 // We want to associate the argument with the frame index, among 9700 // involved operands, that correspond to the lowest address. The 9701 // getCopyFromParts function, called earlier, is swapping the order of 9702 // the operands to BUILD_PAIR depending on endianness. The result of 9703 // that swapping is that the least significant bits of the argument will 9704 // be in the first operand of the BUILD_PAIR node, and the most 9705 // significant bits will be in the second operand. 9706 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9707 if (LoadSDNode *LNode = 9708 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9709 if (FrameIndexSDNode *FI = 9710 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9711 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9712 } 9713 9714 // Update the SwiftErrorVRegDefMap. 9715 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9716 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9717 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9718 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9719 FuncInfo->SwiftErrorArg, Reg); 9720 } 9721 9722 // If this argument is live outside of the entry block, insert a copy from 9723 // wherever we got it to the vreg that other BB's will reference it as. 9724 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9725 // If we can, though, try to skip creating an unnecessary vreg. 9726 // FIXME: This isn't very clean... it would be nice to make this more 9727 // general. It's also subtly incompatible with the hacks FastISel 9728 // uses with vregs. 9729 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9730 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9731 FuncInfo->ValueMap[&Arg] = Reg; 9732 continue; 9733 } 9734 } 9735 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9736 FuncInfo->InitializeRegForValue(&Arg); 9737 SDB->CopyToExportRegsIfNeeded(&Arg); 9738 } 9739 } 9740 9741 if (!Chains.empty()) { 9742 Chains.push_back(NewRoot); 9743 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9744 } 9745 9746 DAG.setRoot(NewRoot); 9747 9748 assert(i == InVals.size() && "Argument register count mismatch!"); 9749 9750 // If any argument copy elisions occurred and we have debug info, update the 9751 // stale frame indices used in the dbg.declare variable info table. 9752 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9753 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9754 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9755 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9756 if (I != ArgCopyElisionFrameIndexMap.end()) 9757 VI.Slot = I->second; 9758 } 9759 } 9760 9761 // Finally, if the target has anything special to do, allow it to do so. 9762 EmitFunctionEntryCode(); 9763 } 9764 9765 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9766 /// ensure constants are generated when needed. Remember the virtual registers 9767 /// that need to be added to the Machine PHI nodes as input. We cannot just 9768 /// directly add them, because expansion might result in multiple MBB's for one 9769 /// BB. As such, the start of the BB might correspond to a different MBB than 9770 /// the end. 9771 void 9772 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9773 const Instruction *TI = LLVMBB->getTerminator(); 9774 9775 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9776 9777 // Check PHI nodes in successors that expect a value to be available from this 9778 // block. 9779 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9780 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9781 if (!isa<PHINode>(SuccBB->begin())) continue; 9782 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9783 9784 // If this terminator has multiple identical successors (common for 9785 // switches), only handle each succ once. 9786 if (!SuccsHandled.insert(SuccMBB).second) 9787 continue; 9788 9789 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9790 9791 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9792 // nodes and Machine PHI nodes, but the incoming operands have not been 9793 // emitted yet. 9794 for (const PHINode &PN : SuccBB->phis()) { 9795 // Ignore dead phi's. 9796 if (PN.use_empty()) 9797 continue; 9798 9799 // Skip empty types 9800 if (PN.getType()->isEmptyTy()) 9801 continue; 9802 9803 unsigned Reg; 9804 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9805 9806 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9807 unsigned &RegOut = ConstantsOut[C]; 9808 if (RegOut == 0) { 9809 RegOut = FuncInfo.CreateRegs(C->getType()); 9810 CopyValueToVirtualRegister(C, RegOut); 9811 } 9812 Reg = RegOut; 9813 } else { 9814 DenseMap<const Value *, unsigned>::iterator I = 9815 FuncInfo.ValueMap.find(PHIOp); 9816 if (I != FuncInfo.ValueMap.end()) 9817 Reg = I->second; 9818 else { 9819 assert(isa<AllocaInst>(PHIOp) && 9820 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9821 "Didn't codegen value into a register!??"); 9822 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9823 CopyValueToVirtualRegister(PHIOp, Reg); 9824 } 9825 } 9826 9827 // Remember that this register needs to added to the machine PHI node as 9828 // the input for this MBB. 9829 SmallVector<EVT, 4> ValueVTs; 9830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9831 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9832 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9833 EVT VT = ValueVTs[vti]; 9834 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9835 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9836 FuncInfo.PHINodesToUpdate.push_back( 9837 std::make_pair(&*MBBI++, Reg + i)); 9838 Reg += NumRegisters; 9839 } 9840 } 9841 } 9842 9843 ConstantsOut.clear(); 9844 } 9845 9846 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9847 /// is 0. 9848 MachineBasicBlock * 9849 SelectionDAGBuilder::StackProtectorDescriptor:: 9850 AddSuccessorMBB(const BasicBlock *BB, 9851 MachineBasicBlock *ParentMBB, 9852 bool IsLikely, 9853 MachineBasicBlock *SuccMBB) { 9854 // If SuccBB has not been created yet, create it. 9855 if (!SuccMBB) { 9856 MachineFunction *MF = ParentMBB->getParent(); 9857 MachineFunction::iterator BBI(ParentMBB); 9858 SuccMBB = MF->CreateMachineBasicBlock(BB); 9859 MF->insert(++BBI, SuccMBB); 9860 } 9861 // Add it as a successor of ParentMBB. 9862 ParentMBB->addSuccessor( 9863 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9864 return SuccMBB; 9865 } 9866 9867 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9868 MachineFunction::iterator I(MBB); 9869 if (++I == FuncInfo.MF->end()) 9870 return nullptr; 9871 return &*I; 9872 } 9873 9874 /// During lowering new call nodes can be created (such as memset, etc.). 9875 /// Those will become new roots of the current DAG, but complications arise 9876 /// when they are tail calls. In such cases, the call lowering will update 9877 /// the root, but the builder still needs to know that a tail call has been 9878 /// lowered in order to avoid generating an additional return. 9879 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9880 // If the node is null, we do have a tail call. 9881 if (MaybeTC.getNode() != nullptr) 9882 DAG.setRoot(MaybeTC); 9883 else 9884 HasTailCall = true; 9885 } 9886 9887 uint64_t 9888 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9889 unsigned First, unsigned Last) const { 9890 assert(Last >= First); 9891 const APInt &LowCase = Clusters[First].Low->getValue(); 9892 const APInt &HighCase = Clusters[Last].High->getValue(); 9893 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9894 9895 // FIXME: A range of consecutive cases has 100% density, but only requires one 9896 // comparison to lower. We should discriminate against such consecutive ranges 9897 // in jump tables. 9898 9899 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9900 } 9901 9902 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9903 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9904 unsigned Last) const { 9905 assert(Last >= First); 9906 assert(TotalCases[Last] >= TotalCases[First]); 9907 uint64_t NumCases = 9908 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9909 return NumCases; 9910 } 9911 9912 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9913 unsigned First, unsigned Last, 9914 const SwitchInst *SI, 9915 MachineBasicBlock *DefaultMBB, 9916 CaseCluster &JTCluster) { 9917 assert(First <= Last); 9918 9919 auto Prob = BranchProbability::getZero(); 9920 unsigned NumCmps = 0; 9921 std::vector<MachineBasicBlock*> Table; 9922 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9923 9924 // Initialize probabilities in JTProbs. 9925 for (unsigned I = First; I <= Last; ++I) 9926 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9927 9928 for (unsigned I = First; I <= Last; ++I) { 9929 assert(Clusters[I].Kind == CC_Range); 9930 Prob += Clusters[I].Prob; 9931 const APInt &Low = Clusters[I].Low->getValue(); 9932 const APInt &High = Clusters[I].High->getValue(); 9933 NumCmps += (Low == High) ? 1 : 2; 9934 if (I != First) { 9935 // Fill the gap between this and the previous cluster. 9936 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9937 assert(PreviousHigh.slt(Low)); 9938 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9939 for (uint64_t J = 0; J < Gap; J++) 9940 Table.push_back(DefaultMBB); 9941 } 9942 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9943 for (uint64_t J = 0; J < ClusterSize; ++J) 9944 Table.push_back(Clusters[I].MBB); 9945 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9946 } 9947 9948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9949 unsigned NumDests = JTProbs.size(); 9950 if (TLI.isSuitableForBitTests( 9951 NumDests, NumCmps, Clusters[First].Low->getValue(), 9952 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9953 // Clusters[First..Last] should be lowered as bit tests instead. 9954 return false; 9955 } 9956 9957 // Create the MBB that will load from and jump through the table. 9958 // Note: We create it here, but it's not inserted into the function yet. 9959 MachineFunction *CurMF = FuncInfo.MF; 9960 MachineBasicBlock *JumpTableMBB = 9961 CurMF->CreateMachineBasicBlock(SI->getParent()); 9962 9963 // Add successors. Note: use table order for determinism. 9964 SmallPtrSet<MachineBasicBlock *, 8> Done; 9965 for (MachineBasicBlock *Succ : Table) { 9966 if (Done.count(Succ)) 9967 continue; 9968 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9969 Done.insert(Succ); 9970 } 9971 JumpTableMBB->normalizeSuccProbs(); 9972 9973 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9974 ->createJumpTableIndex(Table); 9975 9976 // Set up the jump table info. 9977 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9978 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9979 Clusters[Last].High->getValue(), SI->getCondition(), 9980 nullptr, false); 9981 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9982 9983 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9984 JTCases.size() - 1, Prob); 9985 return true; 9986 } 9987 9988 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9989 const SwitchInst *SI, 9990 MachineBasicBlock *DefaultMBB) { 9991 #ifndef NDEBUG 9992 // Clusters must be non-empty, sorted, and only contain Range clusters. 9993 assert(!Clusters.empty()); 9994 for (CaseCluster &C : Clusters) 9995 assert(C.Kind == CC_Range); 9996 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9997 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9998 #endif 9999 10000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10001 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 10002 return; 10003 10004 const int64_t N = Clusters.size(); 10005 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 10006 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 10007 10008 if (N < 2 || N < MinJumpTableEntries) 10009 return; 10010 10011 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 10012 SmallVector<unsigned, 8> TotalCases(N); 10013 for (unsigned i = 0; i < N; ++i) { 10014 const APInt &Hi = Clusters[i].High->getValue(); 10015 const APInt &Lo = Clusters[i].Low->getValue(); 10016 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 10017 if (i != 0) 10018 TotalCases[i] += TotalCases[i - 1]; 10019 } 10020 10021 // Cheap case: the whole range may be suitable for jump table. 10022 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 10023 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 10024 assert(NumCases < UINT64_MAX / 100); 10025 assert(Range >= NumCases); 10026 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 10027 CaseCluster JTCluster; 10028 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 10029 Clusters[0] = JTCluster; 10030 Clusters.resize(1); 10031 return; 10032 } 10033 } 10034 10035 // The algorithm below is not suitable for -O0. 10036 if (TM.getOptLevel() == CodeGenOpt::None) 10037 return; 10038 10039 // Split Clusters into minimum number of dense partitions. The algorithm uses 10040 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 10041 // for the Case Statement'" (1994), but builds the MinPartitions array in 10042 // reverse order to make it easier to reconstruct the partitions in ascending 10043 // order. In the choice between two optimal partitionings, it picks the one 10044 // which yields more jump tables. 10045 10046 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10047 SmallVector<unsigned, 8> MinPartitions(N); 10048 // LastElement[i] is the last element of the partition starting at i. 10049 SmallVector<unsigned, 8> LastElement(N); 10050 // PartitionsScore[i] is used to break ties when choosing between two 10051 // partitionings resulting in the same number of partitions. 10052 SmallVector<unsigned, 8> PartitionsScore(N); 10053 // For PartitionsScore, a small number of comparisons is considered as good as 10054 // a jump table and a single comparison is considered better than a jump 10055 // table. 10056 enum PartitionScores : unsigned { 10057 NoTable = 0, 10058 Table = 1, 10059 FewCases = 1, 10060 SingleCase = 2 10061 }; 10062 10063 // Base case: There is only one way to partition Clusters[N-1]. 10064 MinPartitions[N - 1] = 1; 10065 LastElement[N - 1] = N - 1; 10066 PartitionsScore[N - 1] = PartitionScores::SingleCase; 10067 10068 // Note: loop indexes are signed to avoid underflow. 10069 for (int64_t i = N - 2; i >= 0; i--) { 10070 // Find optimal partitioning of Clusters[i..N-1]. 10071 // Baseline: Put Clusters[i] into a partition on its own. 10072 MinPartitions[i] = MinPartitions[i + 1] + 1; 10073 LastElement[i] = i; 10074 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 10075 10076 // Search for a solution that results in fewer partitions. 10077 for (int64_t j = N - 1; j > i; j--) { 10078 // Try building a partition from Clusters[i..j]. 10079 uint64_t Range = getJumpTableRange(Clusters, i, j); 10080 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 10081 assert(NumCases < UINT64_MAX / 100); 10082 assert(Range >= NumCases); 10083 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 10084 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10085 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 10086 int64_t NumEntries = j - i + 1; 10087 10088 if (NumEntries == 1) 10089 Score += PartitionScores::SingleCase; 10090 else if (NumEntries <= SmallNumberOfEntries) 10091 Score += PartitionScores::FewCases; 10092 else if (NumEntries >= MinJumpTableEntries) 10093 Score += PartitionScores::Table; 10094 10095 // If this leads to fewer partitions, or to the same number of 10096 // partitions with better score, it is a better partitioning. 10097 if (NumPartitions < MinPartitions[i] || 10098 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 10099 MinPartitions[i] = NumPartitions; 10100 LastElement[i] = j; 10101 PartitionsScore[i] = Score; 10102 } 10103 } 10104 } 10105 } 10106 10107 // Iterate over the partitions, replacing some with jump tables in-place. 10108 unsigned DstIndex = 0; 10109 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10110 Last = LastElement[First]; 10111 assert(Last >= First); 10112 assert(DstIndex <= First); 10113 unsigned NumClusters = Last - First + 1; 10114 10115 CaseCluster JTCluster; 10116 if (NumClusters >= MinJumpTableEntries && 10117 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 10118 Clusters[DstIndex++] = JTCluster; 10119 } else { 10120 for (unsigned I = First; I <= Last; ++I) 10121 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 10122 } 10123 } 10124 Clusters.resize(DstIndex); 10125 } 10126 10127 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 10128 unsigned First, unsigned Last, 10129 const SwitchInst *SI, 10130 CaseCluster &BTCluster) { 10131 assert(First <= Last); 10132 if (First == Last) 10133 return false; 10134 10135 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10136 unsigned NumCmps = 0; 10137 for (int64_t I = First; I <= Last; ++I) { 10138 assert(Clusters[I].Kind == CC_Range); 10139 Dests.set(Clusters[I].MBB->getNumber()); 10140 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 10141 } 10142 unsigned NumDests = Dests.count(); 10143 10144 APInt Low = Clusters[First].Low->getValue(); 10145 APInt High = Clusters[Last].High->getValue(); 10146 assert(Low.slt(High)); 10147 10148 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10149 const DataLayout &DL = DAG.getDataLayout(); 10150 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 10151 return false; 10152 10153 APInt LowBound; 10154 APInt CmpRange; 10155 10156 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 10157 assert(TLI.rangeFitsInWord(Low, High, DL) && 10158 "Case range must fit in bit mask!"); 10159 10160 // Check if the clusters cover a contiguous range such that no value in the 10161 // range will jump to the default statement. 10162 bool ContiguousRange = true; 10163 for (int64_t I = First + 1; I <= Last; ++I) { 10164 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 10165 ContiguousRange = false; 10166 break; 10167 } 10168 } 10169 10170 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 10171 // Optimize the case where all the case values fit in a word without having 10172 // to subtract minValue. In this case, we can optimize away the subtraction. 10173 LowBound = APInt::getNullValue(Low.getBitWidth()); 10174 CmpRange = High; 10175 ContiguousRange = false; 10176 } else { 10177 LowBound = Low; 10178 CmpRange = High - Low; 10179 } 10180 10181 CaseBitsVector CBV; 10182 auto TotalProb = BranchProbability::getZero(); 10183 for (unsigned i = First; i <= Last; ++i) { 10184 // Find the CaseBits for this destination. 10185 unsigned j; 10186 for (j = 0; j < CBV.size(); ++j) 10187 if (CBV[j].BB == Clusters[i].MBB) 10188 break; 10189 if (j == CBV.size()) 10190 CBV.push_back( 10191 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10192 CaseBits *CB = &CBV[j]; 10193 10194 // Update Mask, Bits and ExtraProb. 10195 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10196 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10197 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10198 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10199 CB->Bits += Hi - Lo + 1; 10200 CB->ExtraProb += Clusters[i].Prob; 10201 TotalProb += Clusters[i].Prob; 10202 } 10203 10204 BitTestInfo BTI; 10205 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10206 // Sort by probability first, number of bits second, bit mask third. 10207 if (a.ExtraProb != b.ExtraProb) 10208 return a.ExtraProb > b.ExtraProb; 10209 if (a.Bits != b.Bits) 10210 return a.Bits > b.Bits; 10211 return a.Mask < b.Mask; 10212 }); 10213 10214 for (auto &CB : CBV) { 10215 MachineBasicBlock *BitTestBB = 10216 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10217 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10218 } 10219 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10220 SI->getCondition(), -1U, MVT::Other, false, 10221 ContiguousRange, nullptr, nullptr, std::move(BTI), 10222 TotalProb); 10223 10224 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10225 BitTestCases.size() - 1, TotalProb); 10226 return true; 10227 } 10228 10229 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10230 const SwitchInst *SI) { 10231 // Partition Clusters into as few subsets as possible, where each subset has a 10232 // range that fits in a machine word and has <= 3 unique destinations. 10233 10234 #ifndef NDEBUG 10235 // Clusters must be sorted and contain Range or JumpTable clusters. 10236 assert(!Clusters.empty()); 10237 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10238 for (const CaseCluster &C : Clusters) 10239 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10240 for (unsigned i = 1; i < Clusters.size(); ++i) 10241 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10242 #endif 10243 10244 // The algorithm below is not suitable for -O0. 10245 if (TM.getOptLevel() == CodeGenOpt::None) 10246 return; 10247 10248 // If target does not have legal shift left, do not emit bit tests at all. 10249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10250 const DataLayout &DL = DAG.getDataLayout(); 10251 10252 EVT PTy = TLI.getPointerTy(DL); 10253 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10254 return; 10255 10256 int BitWidth = PTy.getSizeInBits(); 10257 const int64_t N = Clusters.size(); 10258 10259 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10260 SmallVector<unsigned, 8> MinPartitions(N); 10261 // LastElement[i] is the last element of the partition starting at i. 10262 SmallVector<unsigned, 8> LastElement(N); 10263 10264 // FIXME: This might not be the best algorithm for finding bit test clusters. 10265 10266 // Base case: There is only one way to partition Clusters[N-1]. 10267 MinPartitions[N - 1] = 1; 10268 LastElement[N - 1] = N - 1; 10269 10270 // Note: loop indexes are signed to avoid underflow. 10271 for (int64_t i = N - 2; i >= 0; --i) { 10272 // Find optimal partitioning of Clusters[i..N-1]. 10273 // Baseline: Put Clusters[i] into a partition on its own. 10274 MinPartitions[i] = MinPartitions[i + 1] + 1; 10275 LastElement[i] = i; 10276 10277 // Search for a solution that results in fewer partitions. 10278 // Note: the search is limited by BitWidth, reducing time complexity. 10279 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10280 // Try building a partition from Clusters[i..j]. 10281 10282 // Check the range. 10283 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10284 Clusters[j].High->getValue(), DL)) 10285 continue; 10286 10287 // Check nbr of destinations and cluster types. 10288 // FIXME: This works, but doesn't seem very efficient. 10289 bool RangesOnly = true; 10290 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10291 for (int64_t k = i; k <= j; k++) { 10292 if (Clusters[k].Kind != CC_Range) { 10293 RangesOnly = false; 10294 break; 10295 } 10296 Dests.set(Clusters[k].MBB->getNumber()); 10297 } 10298 if (!RangesOnly || Dests.count() > 3) 10299 break; 10300 10301 // Check if it's a better partition. 10302 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10303 if (NumPartitions < MinPartitions[i]) { 10304 // Found a better partition. 10305 MinPartitions[i] = NumPartitions; 10306 LastElement[i] = j; 10307 } 10308 } 10309 } 10310 10311 // Iterate over the partitions, replacing with bit-test clusters in-place. 10312 unsigned DstIndex = 0; 10313 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10314 Last = LastElement[First]; 10315 assert(First <= Last); 10316 assert(DstIndex <= First); 10317 10318 CaseCluster BitTestCluster; 10319 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10320 Clusters[DstIndex++] = BitTestCluster; 10321 } else { 10322 size_t NumClusters = Last - First + 1; 10323 std::memmove(&Clusters[DstIndex], &Clusters[First], 10324 sizeof(Clusters[0]) * NumClusters); 10325 DstIndex += NumClusters; 10326 } 10327 } 10328 Clusters.resize(DstIndex); 10329 } 10330 10331 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10332 MachineBasicBlock *SwitchMBB, 10333 MachineBasicBlock *DefaultMBB) { 10334 MachineFunction *CurMF = FuncInfo.MF; 10335 MachineBasicBlock *NextMBB = nullptr; 10336 MachineFunction::iterator BBI(W.MBB); 10337 if (++BBI != FuncInfo.MF->end()) 10338 NextMBB = &*BBI; 10339 10340 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10341 10342 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10343 10344 if (Size == 2 && W.MBB == SwitchMBB) { 10345 // If any two of the cases has the same destination, and if one value 10346 // is the same as the other, but has one bit unset that the other has set, 10347 // use bit manipulation to do two compares at once. For example: 10348 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10349 // TODO: This could be extended to merge any 2 cases in switches with 3 10350 // cases. 10351 // TODO: Handle cases where W.CaseBB != SwitchBB. 10352 CaseCluster &Small = *W.FirstCluster; 10353 CaseCluster &Big = *W.LastCluster; 10354 10355 if (Small.Low == Small.High && Big.Low == Big.High && 10356 Small.MBB == Big.MBB) { 10357 const APInt &SmallValue = Small.Low->getValue(); 10358 const APInt &BigValue = Big.Low->getValue(); 10359 10360 // Check that there is only one bit different. 10361 APInt CommonBit = BigValue ^ SmallValue; 10362 if (CommonBit.isPowerOf2()) { 10363 SDValue CondLHS = getValue(Cond); 10364 EVT VT = CondLHS.getValueType(); 10365 SDLoc DL = getCurSDLoc(); 10366 10367 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10368 DAG.getConstant(CommonBit, DL, VT)); 10369 SDValue Cond = DAG.getSetCC( 10370 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10371 ISD::SETEQ); 10372 10373 // Update successor info. 10374 // Both Small and Big will jump to Small.BB, so we sum up the 10375 // probabilities. 10376 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10377 if (BPI) 10378 addSuccessorWithProb( 10379 SwitchMBB, DefaultMBB, 10380 // The default destination is the first successor in IR. 10381 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10382 else 10383 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10384 10385 // Insert the true branch. 10386 SDValue BrCond = 10387 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10388 DAG.getBasicBlock(Small.MBB)); 10389 // Insert the false branch. 10390 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10391 DAG.getBasicBlock(DefaultMBB)); 10392 10393 DAG.setRoot(BrCond); 10394 return; 10395 } 10396 } 10397 } 10398 10399 if (TM.getOptLevel() != CodeGenOpt::None) { 10400 // Here, we order cases by probability so the most likely case will be 10401 // checked first. However, two clusters can have the same probability in 10402 // which case their relative ordering is non-deterministic. So we use Low 10403 // as a tie-breaker as clusters are guaranteed to never overlap. 10404 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10405 [](const CaseCluster &a, const CaseCluster &b) { 10406 return a.Prob != b.Prob ? 10407 a.Prob > b.Prob : 10408 a.Low->getValue().slt(b.Low->getValue()); 10409 }); 10410 10411 // Rearrange the case blocks so that the last one falls through if possible 10412 // without changing the order of probabilities. 10413 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10414 --I; 10415 if (I->Prob > W.LastCluster->Prob) 10416 break; 10417 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10418 std::swap(*I, *W.LastCluster); 10419 break; 10420 } 10421 } 10422 } 10423 10424 // Compute total probability. 10425 BranchProbability DefaultProb = W.DefaultProb; 10426 BranchProbability UnhandledProbs = DefaultProb; 10427 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10428 UnhandledProbs += I->Prob; 10429 10430 MachineBasicBlock *CurMBB = W.MBB; 10431 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10432 bool FallthroughUnreachable = false; 10433 MachineBasicBlock *Fallthrough; 10434 if (I == W.LastCluster) { 10435 // For the last cluster, fall through to the default destination. 10436 Fallthrough = DefaultMBB; 10437 FallthroughUnreachable = isa<UnreachableInst>( 10438 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10439 } else { 10440 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10441 CurMF->insert(BBI, Fallthrough); 10442 // Put Cond in a virtual register to make it available from the new blocks. 10443 ExportFromCurrentBlock(Cond); 10444 } 10445 UnhandledProbs -= I->Prob; 10446 10447 switch (I->Kind) { 10448 case CC_JumpTable: { 10449 // FIXME: Optimize away range check based on pivot comparisons. 10450 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10451 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10452 10453 // The jump block hasn't been inserted yet; insert it here. 10454 MachineBasicBlock *JumpMBB = JT->MBB; 10455 CurMF->insert(BBI, JumpMBB); 10456 10457 auto JumpProb = I->Prob; 10458 auto FallthroughProb = UnhandledProbs; 10459 10460 // If the default statement is a target of the jump table, we evenly 10461 // distribute the default probability to successors of CurMBB. Also 10462 // update the probability on the edge from JumpMBB to Fallthrough. 10463 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10464 SE = JumpMBB->succ_end(); 10465 SI != SE; ++SI) { 10466 if (*SI == DefaultMBB) { 10467 JumpProb += DefaultProb / 2; 10468 FallthroughProb -= DefaultProb / 2; 10469 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10470 JumpMBB->normalizeSuccProbs(); 10471 break; 10472 } 10473 } 10474 10475 if (FallthroughUnreachable) { 10476 // Skip the range check if the fallthrough block is unreachable. 10477 JTH->OmitRangeCheck = true; 10478 } 10479 10480 if (!JTH->OmitRangeCheck) 10481 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10482 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10483 CurMBB->normalizeSuccProbs(); 10484 10485 // The jump table header will be inserted in our current block, do the 10486 // range check, and fall through to our fallthrough block. 10487 JTH->HeaderBB = CurMBB; 10488 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10489 10490 // If we're in the right place, emit the jump table header right now. 10491 if (CurMBB == SwitchMBB) { 10492 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10493 JTH->Emitted = true; 10494 } 10495 break; 10496 } 10497 case CC_BitTests: { 10498 // FIXME: If Fallthrough is unreachable, skip the range check. 10499 10500 // FIXME: Optimize away range check based on pivot comparisons. 10501 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10502 10503 // The bit test blocks haven't been inserted yet; insert them here. 10504 for (BitTestCase &BTC : BTB->Cases) 10505 CurMF->insert(BBI, BTC.ThisBB); 10506 10507 // Fill in fields of the BitTestBlock. 10508 BTB->Parent = CurMBB; 10509 BTB->Default = Fallthrough; 10510 10511 BTB->DefaultProb = UnhandledProbs; 10512 // If the cases in bit test don't form a contiguous range, we evenly 10513 // distribute the probability on the edge to Fallthrough to two 10514 // successors of CurMBB. 10515 if (!BTB->ContiguousRange) { 10516 BTB->Prob += DefaultProb / 2; 10517 BTB->DefaultProb -= DefaultProb / 2; 10518 } 10519 10520 // If we're in the right place, emit the bit test header right now. 10521 if (CurMBB == SwitchMBB) { 10522 visitBitTestHeader(*BTB, SwitchMBB); 10523 BTB->Emitted = true; 10524 } 10525 break; 10526 } 10527 case CC_Range: { 10528 const Value *RHS, *LHS, *MHS; 10529 ISD::CondCode CC; 10530 if (I->Low == I->High) { 10531 // Check Cond == I->Low. 10532 CC = ISD::SETEQ; 10533 LHS = Cond; 10534 RHS=I->Low; 10535 MHS = nullptr; 10536 } else { 10537 // Check I->Low <= Cond <= I->High. 10538 CC = ISD::SETLE; 10539 LHS = I->Low; 10540 MHS = Cond; 10541 RHS = I->High; 10542 } 10543 10544 // If Fallthrough is unreachable, fold away the comparison. 10545 if (FallthroughUnreachable) 10546 CC = ISD::SETTRUE; 10547 10548 // The false probability is the sum of all unhandled cases. 10549 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10550 getCurSDLoc(), I->Prob, UnhandledProbs); 10551 10552 if (CurMBB == SwitchMBB) 10553 visitSwitchCase(CB, SwitchMBB); 10554 else 10555 SwitchCases.push_back(CB); 10556 10557 break; 10558 } 10559 } 10560 CurMBB = Fallthrough; 10561 } 10562 } 10563 10564 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10565 CaseClusterIt First, 10566 CaseClusterIt Last) { 10567 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10568 if (X.Prob != CC.Prob) 10569 return X.Prob > CC.Prob; 10570 10571 // Ties are broken by comparing the case value. 10572 return X.Low->getValue().slt(CC.Low->getValue()); 10573 }); 10574 } 10575 10576 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10577 const SwitchWorkListItem &W, 10578 Value *Cond, 10579 MachineBasicBlock *SwitchMBB) { 10580 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10581 "Clusters not sorted?"); 10582 10583 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10584 10585 // Balance the tree based on branch probabilities to create a near-optimal (in 10586 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10587 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10588 CaseClusterIt LastLeft = W.FirstCluster; 10589 CaseClusterIt FirstRight = W.LastCluster; 10590 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10591 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10592 10593 // Move LastLeft and FirstRight towards each other from opposite directions to 10594 // find a partitioning of the clusters which balances the probability on both 10595 // sides. If LeftProb and RightProb are equal, alternate which side is 10596 // taken to ensure 0-probability nodes are distributed evenly. 10597 unsigned I = 0; 10598 while (LastLeft + 1 < FirstRight) { 10599 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10600 LeftProb += (++LastLeft)->Prob; 10601 else 10602 RightProb += (--FirstRight)->Prob; 10603 I++; 10604 } 10605 10606 while (true) { 10607 // Our binary search tree differs from a typical BST in that ours can have up 10608 // to three values in each leaf. The pivot selection above doesn't take that 10609 // into account, which means the tree might require more nodes and be less 10610 // efficient. We compensate for this here. 10611 10612 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10613 unsigned NumRight = W.LastCluster - FirstRight + 1; 10614 10615 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10616 // If one side has less than 3 clusters, and the other has more than 3, 10617 // consider taking a cluster from the other side. 10618 10619 if (NumLeft < NumRight) { 10620 // Consider moving the first cluster on the right to the left side. 10621 CaseCluster &CC = *FirstRight; 10622 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10623 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10624 if (LeftSideRank <= RightSideRank) { 10625 // Moving the cluster to the left does not demote it. 10626 ++LastLeft; 10627 ++FirstRight; 10628 continue; 10629 } 10630 } else { 10631 assert(NumRight < NumLeft); 10632 // Consider moving the last element on the left to the right side. 10633 CaseCluster &CC = *LastLeft; 10634 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10635 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10636 if (RightSideRank <= LeftSideRank) { 10637 // Moving the cluster to the right does not demot it. 10638 --LastLeft; 10639 --FirstRight; 10640 continue; 10641 } 10642 } 10643 } 10644 break; 10645 } 10646 10647 assert(LastLeft + 1 == FirstRight); 10648 assert(LastLeft >= W.FirstCluster); 10649 assert(FirstRight <= W.LastCluster); 10650 10651 // Use the first element on the right as pivot since we will make less-than 10652 // comparisons against it. 10653 CaseClusterIt PivotCluster = FirstRight; 10654 assert(PivotCluster > W.FirstCluster); 10655 assert(PivotCluster <= W.LastCluster); 10656 10657 CaseClusterIt FirstLeft = W.FirstCluster; 10658 CaseClusterIt LastRight = W.LastCluster; 10659 10660 const ConstantInt *Pivot = PivotCluster->Low; 10661 10662 // New blocks will be inserted immediately after the current one. 10663 MachineFunction::iterator BBI(W.MBB); 10664 ++BBI; 10665 10666 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10667 // we can branch to its destination directly if it's squeezed exactly in 10668 // between the known lower bound and Pivot - 1. 10669 MachineBasicBlock *LeftMBB; 10670 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10671 FirstLeft->Low == W.GE && 10672 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10673 LeftMBB = FirstLeft->MBB; 10674 } else { 10675 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10676 FuncInfo.MF->insert(BBI, LeftMBB); 10677 WorkList.push_back( 10678 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10679 // Put Cond in a virtual register to make it available from the new blocks. 10680 ExportFromCurrentBlock(Cond); 10681 } 10682 10683 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10684 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10685 // directly if RHS.High equals the current upper bound. 10686 MachineBasicBlock *RightMBB; 10687 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10688 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10689 RightMBB = FirstRight->MBB; 10690 } else { 10691 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10692 FuncInfo.MF->insert(BBI, RightMBB); 10693 WorkList.push_back( 10694 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10695 // Put Cond in a virtual register to make it available from the new blocks. 10696 ExportFromCurrentBlock(Cond); 10697 } 10698 10699 // Create the CaseBlock record that will be used to lower the branch. 10700 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10701 getCurSDLoc(), LeftProb, RightProb); 10702 10703 if (W.MBB == SwitchMBB) 10704 visitSwitchCase(CB, SwitchMBB); 10705 else 10706 SwitchCases.push_back(CB); 10707 } 10708 10709 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10710 // from the swith statement. 10711 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10712 BranchProbability PeeledCaseProb) { 10713 if (PeeledCaseProb == BranchProbability::getOne()) 10714 return BranchProbability::getZero(); 10715 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10716 10717 uint32_t Numerator = CaseProb.getNumerator(); 10718 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10719 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10720 } 10721 10722 // Try to peel the top probability case if it exceeds the threshold. 10723 // Return current MachineBasicBlock for the switch statement if the peeling 10724 // does not occur. 10725 // If the peeling is performed, return the newly created MachineBasicBlock 10726 // for the peeled switch statement. Also update Clusters to remove the peeled 10727 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10728 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10729 const SwitchInst &SI, CaseClusterVector &Clusters, 10730 BranchProbability &PeeledCaseProb) { 10731 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10732 // Don't perform if there is only one cluster or optimizing for size. 10733 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10734 TM.getOptLevel() == CodeGenOpt::None || 10735 SwitchMBB->getParent()->getFunction().hasMinSize()) 10736 return SwitchMBB; 10737 10738 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10739 unsigned PeeledCaseIndex = 0; 10740 bool SwitchPeeled = false; 10741 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10742 CaseCluster &CC = Clusters[Index]; 10743 if (CC.Prob < TopCaseProb) 10744 continue; 10745 TopCaseProb = CC.Prob; 10746 PeeledCaseIndex = Index; 10747 SwitchPeeled = true; 10748 } 10749 if (!SwitchPeeled) 10750 return SwitchMBB; 10751 10752 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10753 << TopCaseProb << "\n"); 10754 10755 // Record the MBB for the peeled switch statement. 10756 MachineFunction::iterator BBI(SwitchMBB); 10757 ++BBI; 10758 MachineBasicBlock *PeeledSwitchMBB = 10759 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10760 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10761 10762 ExportFromCurrentBlock(SI.getCondition()); 10763 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10764 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10765 nullptr, nullptr, TopCaseProb.getCompl()}; 10766 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10767 10768 Clusters.erase(PeeledCaseIt); 10769 for (CaseCluster &CC : Clusters) { 10770 LLVM_DEBUG( 10771 dbgs() << "Scale the probablity for one cluster, before scaling: " 10772 << CC.Prob << "\n"); 10773 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10774 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10775 } 10776 PeeledCaseProb = TopCaseProb; 10777 return PeeledSwitchMBB; 10778 } 10779 10780 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10781 // Extract cases from the switch. 10782 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10783 CaseClusterVector Clusters; 10784 Clusters.reserve(SI.getNumCases()); 10785 for (auto I : SI.cases()) { 10786 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10787 const ConstantInt *CaseVal = I.getCaseValue(); 10788 BranchProbability Prob = 10789 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10790 : BranchProbability(1, SI.getNumCases() + 1); 10791 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10792 } 10793 10794 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10795 10796 // Cluster adjacent cases with the same destination. We do this at all 10797 // optimization levels because it's cheap to do and will make codegen faster 10798 // if there are many clusters. 10799 sortAndRangeify(Clusters); 10800 10801 // The branch probablity of the peeled case. 10802 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10803 MachineBasicBlock *PeeledSwitchMBB = 10804 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10805 10806 // If there is only the default destination, jump there directly. 10807 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10808 if (Clusters.empty()) { 10809 assert(PeeledSwitchMBB == SwitchMBB); 10810 SwitchMBB->addSuccessor(DefaultMBB); 10811 if (DefaultMBB != NextBlock(SwitchMBB)) { 10812 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10813 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10814 } 10815 return; 10816 } 10817 10818 findJumpTables(Clusters, &SI, DefaultMBB); 10819 findBitTestClusters(Clusters, &SI); 10820 10821 LLVM_DEBUG({ 10822 dbgs() << "Case clusters: "; 10823 for (const CaseCluster &C : Clusters) { 10824 if (C.Kind == CC_JumpTable) 10825 dbgs() << "JT:"; 10826 if (C.Kind == CC_BitTests) 10827 dbgs() << "BT:"; 10828 10829 C.Low->getValue().print(dbgs(), true); 10830 if (C.Low != C.High) { 10831 dbgs() << '-'; 10832 C.High->getValue().print(dbgs(), true); 10833 } 10834 dbgs() << ' '; 10835 } 10836 dbgs() << '\n'; 10837 }); 10838 10839 assert(!Clusters.empty()); 10840 SwitchWorkList WorkList; 10841 CaseClusterIt First = Clusters.begin(); 10842 CaseClusterIt Last = Clusters.end() - 1; 10843 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10844 // Scale the branchprobability for DefaultMBB if the peel occurs and 10845 // DefaultMBB is not replaced. 10846 if (PeeledCaseProb != BranchProbability::getZero() && 10847 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10848 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10849 WorkList.push_back( 10850 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10851 10852 while (!WorkList.empty()) { 10853 SwitchWorkListItem W = WorkList.back(); 10854 WorkList.pop_back(); 10855 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10856 10857 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10858 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10859 // For optimized builds, lower large range as a balanced binary tree. 10860 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10861 continue; 10862 } 10863 10864 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10865 } 10866 } 10867