xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 97a0c5417906556014781b33a938bd8133baa336)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts =
219           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
326   // then truncating.
327   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
328       ValueVT.bitsLT(PartEVT)) {
329     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
330     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
331   }
332 
333   report_fatal_error("Unknown mismatch in getCopyFromParts!");
334 }
335 
336 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
337                                               const Twine &ErrMsg) {
338   const Instruction *I = dyn_cast_or_null<Instruction>(V);
339   if (!V)
340     return Ctx.emitError(ErrMsg);
341 
342   const char *AsmError = ", possible invalid constraint for vector type";
343   if (const CallInst *CI = dyn_cast<CallInst>(I))
344     if (isa<InlineAsm>(CI->getCalledValue()))
345       return Ctx.emitError(I, ErrMsg + AsmError);
346 
347   return Ctx.emitError(I, ErrMsg);
348 }
349 
350 /// getCopyFromPartsVector - Create a value that contains the specified legal
351 /// parts combined into the value they represent.  If the parts combine to a
352 /// type larger than ValueVT then AssertOp can be used to specify whether the
353 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
354 /// ValueVT (ISD::AssertSext).
355 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
356                                       const SDValue *Parts, unsigned NumParts,
357                                       MVT PartVT, EVT ValueVT, const Value *V,
358                                       Optional<CallingConv::ID> CallConv) {
359   assert(ValueVT.isVector() && "Not a vector value");
360   assert(NumParts > 0 && "No parts to assemble!");
361   const bool IsABIRegCopy = CallConv.hasValue();
362 
363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
364   SDValue Val = Parts[0];
365 
366   // Handle a multi-element vector.
367   if (NumParts > 1) {
368     EVT IntermediateVT;
369     MVT RegisterVT;
370     unsigned NumIntermediates;
371     unsigned NumRegs;
372 
373     if (IsABIRegCopy) {
374       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
375           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
376           NumIntermediates, RegisterVT);
377     } else {
378       NumRegs =
379           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
380                                      NumIntermediates, RegisterVT);
381     }
382 
383     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
384     NumParts = NumRegs; // Silence a compiler warning.
385     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
386     assert(RegisterVT.getSizeInBits() ==
387            Parts[0].getSimpleValueType().getSizeInBits() &&
388            "Part type sizes don't match!");
389 
390     // Assemble the parts into intermediate operands.
391     SmallVector<SDValue, 8> Ops(NumIntermediates);
392     if (NumIntermediates == NumParts) {
393       // If the register was not expanded, truncate or copy the value,
394       // as appropriate.
395       for (unsigned i = 0; i != NumParts; ++i)
396         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
397                                   PartVT, IntermediateVT, V);
398     } else if (NumParts > 0) {
399       // If the intermediate type was expanded, build the intermediate
400       // operands from the parts.
401       assert(NumParts % NumIntermediates == 0 &&
402              "Must expand into a divisible number of parts!");
403       unsigned Factor = NumParts / NumIntermediates;
404       for (unsigned i = 0; i != NumIntermediates; ++i)
405         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
406                                   PartVT, IntermediateVT, V);
407     }
408 
409     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
410     // intermediate operands.
411     EVT BuiltVectorTy =
412         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
413                          (IntermediateVT.isVector()
414                               ? IntermediateVT.getVectorNumElements() * NumParts
415                               : NumIntermediates));
416     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
417                                                 : ISD::BUILD_VECTOR,
418                       DL, BuiltVectorTy, Ops);
419   }
420 
421   // There is now one part, held in Val.  Correct it to match ValueVT.
422   EVT PartEVT = Val.getValueType();
423 
424   if (PartEVT == ValueVT)
425     return Val;
426 
427   if (PartEVT.isVector()) {
428     // If the element type of the source/dest vectors are the same, but the
429     // parts vector has more elements than the value vector, then we have a
430     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
431     // elements we want.
432     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
433       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
434              "Cannot narrow, it would be a lossy transformation");
435       return DAG.getNode(
436           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
437           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
438     }
439 
440     // Vector/Vector bitcast.
441     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443 
444     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
445       "Cannot handle this kind of promotion");
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 
449   }
450 
451   // Trivial bitcast if the types are the same size and the destination
452   // vector type is legal.
453   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
454       TLI.isTypeLegal(ValueVT))
455     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
456 
457   if (ValueVT.getVectorNumElements() != 1) {
458      // Certain ABIs require that vectors are passed as integers. For vectors
459      // are the same size, this is an obvious bitcast.
460      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
461        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
463        // Bitcast Val back the original type and extract the corresponding
464        // vector we want.
465        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
466        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
467                                            ValueVT.getVectorElementType(), Elts);
468        Val = DAG.getBitcast(WiderVecType, Val);
469        return DAG.getNode(
470            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
471            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
472      }
473 
474      diagnosePossiblyInvalidConstraint(
475          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
476      return DAG.getUNDEF(ValueVT);
477   }
478 
479   // Handle cases such as i8 -> <1 x i1>
480   EVT ValueSVT = ValueVT.getVectorElementType();
481   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
482     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
483                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
484 
485   return DAG.getBuildVector(ValueVT, DL, Val);
486 }
487 
488 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
489                                  SDValue Val, SDValue *Parts, unsigned NumParts,
490                                  MVT PartVT, const Value *V,
491                                  Optional<CallingConv::ID> CallConv);
492 
493 /// getCopyToParts - Create a series of nodes that contain the specified value
494 /// split into legal parts.  If the parts contain more bits than Val, then, for
495 /// integers, ExtendKind can be used to specify how to generate the extra bits.
496 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
497                            SDValue *Parts, unsigned NumParts, MVT PartVT,
498                            const Value *V,
499                            Optional<CallingConv::ID> CallConv = None,
500                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
501   EVT ValueVT = Val.getValueType();
502 
503   // Handle the vector case separately.
504   if (ValueVT.isVector())
505     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
506                                 CallConv);
507 
508   unsigned PartBits = PartVT.getSizeInBits();
509   unsigned OrigNumParts = NumParts;
510   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
511          "Copying to an illegal type!");
512 
513   if (NumParts == 0)
514     return;
515 
516   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
517   EVT PartEVT = PartVT;
518   if (PartEVT == ValueVT) {
519     assert(NumParts == 1 && "No-op copy with multiple parts!");
520     Parts[0] = Val;
521     return;
522   }
523 
524   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
525     // If the parts cover more bits than the value has, promote the value.
526     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
527       assert(NumParts == 1 && "Do not know what to promote to!");
528       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
529     } else {
530       if (ValueVT.isFloatingPoint()) {
531         // FP values need to be bitcast, then extended if they are being put
532         // into a larger container.
533         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
534         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
535       }
536       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
537              ValueVT.isInteger() &&
538              "Unknown mismatch!");
539       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
540       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
541       if (PartVT == MVT::x86mmx)
542         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
543     }
544   } else if (PartBits == ValueVT.getSizeInBits()) {
545     // Different types of the same size.
546     assert(NumParts == 1 && PartEVT != ValueVT);
547     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
549     // If the parts cover less bits than value has, truncate the value.
550     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551            ValueVT.isInteger() &&
552            "Unknown mismatch!");
553     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
555     if (PartVT == MVT::x86mmx)
556       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557   }
558 
559   // The value may have changed - recompute ValueVT.
560   ValueVT = Val.getValueType();
561   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
562          "Failed to tile the value with PartVT!");
563 
564   if (NumParts == 1) {
565     if (PartEVT != ValueVT) {
566       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
567                                         "scalar-to-vector conversion failed");
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569     }
570 
571     Parts[0] = Val;
572     return;
573   }
574 
575   // Expand the value into multiple parts.
576   if (NumParts & (NumParts - 1)) {
577     // The number of parts is not a power of 2.  Split off and copy the tail.
578     assert(PartVT.isInteger() && ValueVT.isInteger() &&
579            "Do not know what to expand to!");
580     unsigned RoundParts = 1 << Log2_32(NumParts);
581     unsigned RoundBits = RoundParts * PartBits;
582     unsigned OddParts = NumParts - RoundParts;
583     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
584       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
585 
586     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
587                    CallConv);
588 
589     if (DAG.getDataLayout().isBigEndian())
590       // The odd parts were reversed by getCopyToParts - unreverse them.
591       std::reverse(Parts + RoundParts, Parts + NumParts);
592 
593     NumParts = RoundParts;
594     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
595     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
596   }
597 
598   // The number of parts is a power of 2.  Repeatedly bisect the value using
599   // EXTRACT_ELEMENT.
600   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
601                          EVT::getIntegerVT(*DAG.getContext(),
602                                            ValueVT.getSizeInBits()),
603                          Val);
604 
605   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
606     for (unsigned i = 0; i < NumParts; i += StepSize) {
607       unsigned ThisBits = StepSize * PartBits / 2;
608       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
609       SDValue &Part0 = Parts[i];
610       SDValue &Part1 = Parts[i+StepSize/2];
611 
612       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
613                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
614       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
616 
617       if (ThisBits == PartBits && ThisVT != PartVT) {
618         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
619         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
620       }
621     }
622   }
623 
624   if (DAG.getDataLayout().isBigEndian())
625     std::reverse(Parts, Parts + OrigNumParts);
626 }
627 
628 static SDValue widenVectorToPartType(SelectionDAG &DAG,
629                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
630   if (!PartVT.isVector())
631     return SDValue();
632 
633   EVT ValueVT = Val.getValueType();
634   unsigned PartNumElts = PartVT.getVectorNumElements();
635   unsigned ValueNumElts = ValueVT.getVectorNumElements();
636   if (PartNumElts > ValueNumElts &&
637       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
638     EVT ElementVT = PartVT.getVectorElementType();
639     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
640     // undef elements.
641     SmallVector<SDValue, 16> Ops;
642     DAG.ExtractVectorElements(Val, Ops);
643     SDValue EltUndef = DAG.getUNDEF(ElementVT);
644     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
645       Ops.push_back(EltUndef);
646 
647     // FIXME: Use CONCAT for 2x -> 4x.
648     return DAG.getBuildVector(PartVT, DL, Ops);
649   }
650 
651   return SDValue();
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  Optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.hasValue();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                  ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else {
682       if (ValueVT.getVectorNumElements() == 1) {
683         Val = DAG.getNode(
684             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
685             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
686       } else {
687         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
688                "lossy conversion of vector to scalar type");
689         EVT IntermediateType =
690             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
691         Val = DAG.getBitcast(IntermediateType, Val);
692         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
693       }
694     }
695 
696     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
697     Parts[0] = Val;
698     return;
699   }
700 
701   // Handle a multi-element vector.
702   EVT IntermediateVT;
703   MVT RegisterVT;
704   unsigned NumIntermediates;
705   unsigned NumRegs;
706   if (IsABIRegCopy) {
707     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
708         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
709         NumIntermediates, RegisterVT);
710   } else {
711     NumRegs =
712         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
713                                    NumIntermediates, RegisterVT);
714   }
715 
716   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
717   NumParts = NumRegs; // Silence a compiler warning.
718   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
719 
720   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
721     IntermediateVT.getVectorNumElements() : 1;
722 
723   // Convert the vector to the appropiate type if necessary.
724   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
725 
726   EVT BuiltVectorTy = EVT::getVectorVT(
727       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
728   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
729   if (ValueVT != BuiltVectorTy) {
730     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
731       Val = Widened;
732 
733     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
734   }
735 
736   // Split the vector into intermediate operands.
737   SmallVector<SDValue, 8> Ops(NumIntermediates);
738   for (unsigned i = 0; i != NumIntermediates; ++i) {
739     if (IntermediateVT.isVector()) {
740       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
741                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
742     } else {
743       Ops[i] = DAG.getNode(
744           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
745           DAG.getConstant(i, DL, IdxVT));
746     }
747   }
748 
749   // Split the intermediate operands into legal parts.
750   if (NumParts == NumIntermediates) {
751     // If the register was not expanded, promote or copy the value,
752     // as appropriate.
753     for (unsigned i = 0; i != NumParts; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
755   } else if (NumParts > 0) {
756     // If the intermediate type was expanded, split each the value into
757     // legal parts.
758     assert(NumIntermediates != 0 && "division by zero");
759     assert(NumParts % NumIntermediates == 0 &&
760            "Must expand into a divisible number of parts!");
761     unsigned Factor = NumParts / NumIntermediates;
762     for (unsigned i = 0; i != NumIntermediates; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
764                      CallConv);
765   }
766 }
767 
768 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
769                            EVT valuevt, Optional<CallingConv::ID> CC)
770     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
771       RegCount(1, regs.size()), CallConv(CC) {}
772 
773 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
774                            const DataLayout &DL, unsigned Reg, Type *Ty,
775                            Optional<CallingConv::ID> CC) {
776   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
777 
778   CallConv = CC;
779 
780   for (EVT ValueVT : ValueVTs) {
781     unsigned NumRegs =
782         isABIMangled()
783             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
784             : TLI.getNumRegisters(Context, ValueVT);
785     MVT RegisterVT =
786         isABIMangled()
787             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
788             : TLI.getRegisterType(Context, ValueVT);
789     for (unsigned i = 0; i != NumRegs; ++i)
790       Regs.push_back(Reg + i);
791     RegVTs.push_back(RegisterVT);
792     RegCount.push_back(NumRegs);
793     Reg += NumRegs;
794   }
795 }
796 
797 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
798                                       FunctionLoweringInfo &FuncInfo,
799                                       const SDLoc &dl, SDValue &Chain,
800                                       SDValue *Flag, const Value *V) const {
801   // A Value with type {} or [0 x %t] needs no registers.
802   if (ValueVTs.empty())
803     return SDValue();
804 
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   // Assemble the legal parts into the final values.
808   SmallVector<SDValue, 4> Values(ValueVTs.size());
809   SmallVector<SDValue, 8> Parts;
810   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
811     // Copy the legal parts from the registers.
812     EVT ValueVT = ValueVTs[Value];
813     unsigned NumRegs = RegCount[Value];
814     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
815                                           *DAG.getContext(),
816                                           CallConv.getValue(), RegVTs[Value])
817                                     : RegVTs[Value];
818 
819     Parts.resize(NumRegs);
820     for (unsigned i = 0; i != NumRegs; ++i) {
821       SDValue P;
822       if (!Flag) {
823         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
824       } else {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
826         *Flag = P.getValue(2);
827       }
828 
829       Chain = P.getValue(1);
830       Parts[i] = P;
831 
832       // If the source register was virtual and if we know something about it,
833       // add an assert node.
834       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
835           !RegisterVT.isInteger())
836         continue;
837 
838       const FunctionLoweringInfo::LiveOutInfo *LOI =
839         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
840       if (!LOI)
841         continue;
842 
843       unsigned RegSize = RegisterVT.getScalarSizeInBits();
844       unsigned NumSignBits = LOI->NumSignBits;
845       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
846 
847       if (NumZeroBits == RegSize) {
848         // The current value is a zero.
849         // Explicitly express that as it would be easier for
850         // optimizations to kick in.
851         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
852         continue;
853       }
854 
855       // FIXME: We capture more information than the dag can represent.  For
856       // now, just use the tightest assertzext/assertsext possible.
857       bool isSExt;
858       EVT FromVT(MVT::Other);
859       if (NumZeroBits) {
860         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
861         isSExt = false;
862       } else if (NumSignBits > 1) {
863         FromVT =
864             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
865         isSExt = true;
866       } else {
867         continue;
868       }
869       // Add an assertion node.
870       assert(FromVT != MVT::Other);
871       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
872                              RegisterVT, P, DAG.getValueType(FromVT));
873     }
874 
875     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
876                                      RegisterVT, ValueVT, V, CallConv);
877     Part += NumRegs;
878     Parts.clear();
879   }
880 
881   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
882 }
883 
884 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
885                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
886                                  const Value *V,
887                                  ISD::NodeType PreferredExtendType) const {
888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
889   ISD::NodeType ExtendKind = PreferredExtendType;
890 
891   // Get the list of the values's legal parts.
892   unsigned NumRegs = Regs.size();
893   SmallVector<SDValue, 8> Parts(NumRegs);
894   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
895     unsigned NumParts = RegCount[Value];
896 
897     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
898                                           *DAG.getContext(),
899                                           CallConv.getValue(), RegVTs[Value])
900                                     : RegVTs[Value];
901 
902     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
903       ExtendKind = ISD::ZERO_EXTEND;
904 
905     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
906                    NumParts, RegisterVT, V, CallConv, ExtendKind);
907     Part += NumParts;
908   }
909 
910   // Copy the parts into the registers.
911   SmallVector<SDValue, 8> Chains(NumRegs);
912   for (unsigned i = 0; i != NumRegs; ++i) {
913     SDValue Part;
914     if (!Flag) {
915       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
916     } else {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
918       *Flag = Part.getValue(1);
919     }
920 
921     Chains[i] = Part.getValue(0);
922   }
923 
924   if (NumRegs == 1 || Flag)
925     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
926     // flagged to it. That is the CopyToReg nodes and the user are considered
927     // a single scheduling unit. If we create a TokenFactor and return it as
928     // chain, then the TokenFactor is both a predecessor (operand) of the
929     // user as well as a successor (the TF operands are flagged to the user).
930     // c1, f1 = CopyToReg
931     // c2, f2 = CopyToReg
932     // c3     = TokenFactor c1, c2
933     // ...
934     //        = op c3, ..., f2
935     Chain = Chains[NumRegs-1];
936   else
937     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
938 }
939 
940 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
941                                         unsigned MatchingIdx, const SDLoc &dl,
942                                         SelectionDAG &DAG,
943                                         std::vector<SDValue> &Ops) const {
944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
945 
946   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
947   if (HasMatching)
948     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
949   else if (!Regs.empty() &&
950            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
951     // Put the register class of the virtual registers in the flag word.  That
952     // way, later passes can recompute register class constraints for inline
953     // assembly as well as normal instructions.
954     // Don't do this for tied operands that can use the regclass information
955     // from the def.
956     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
957     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
958     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
959   }
960 
961   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
962   Ops.push_back(Res);
963 
964   if (Code == InlineAsm::Kind_Clobber) {
965     // Clobbers should always have a 1:1 mapping with registers, and may
966     // reference registers that have illegal (e.g. vector) types. Hence, we
967     // shouldn't try to apply any sort of splitting logic to them.
968     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
969            "No 1:1 mapping from clobbers to regs?");
970     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
971     (void)SP;
972     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
973       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
974       assert(
975           (Regs[I] != SP ||
976            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
977           "If we clobbered the stack pointer, MFI should know about it.");
978     }
979     return;
980   }
981 
982   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
983     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
984     MVT RegisterVT = RegVTs[Value];
985     for (unsigned i = 0; i != NumRegs; ++i) {
986       assert(Reg < Regs.size() && "Mismatch in # registers expected");
987       unsigned TheReg = Regs[Reg++];
988       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
989     }
990   }
991 }
992 
993 SmallVector<std::pair<unsigned, unsigned>, 4>
994 RegsForValue::getRegsAndSizes() const {
995   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
996   unsigned I = 0;
997   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
998     unsigned RegCount = std::get<0>(CountAndVT);
999     MVT RegisterVT = std::get<1>(CountAndVT);
1000     unsigned RegisterSize = RegisterVT.getSizeInBits();
1001     for (unsigned E = I + RegCount; I != E; ++I)
1002       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1003   }
1004   return OutVec;
1005 }
1006 
1007 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1008                                const TargetLibraryInfo *li) {
1009   AA = aa;
1010   GFI = gfi;
1011   LibInfo = li;
1012   DL = &DAG.getDataLayout();
1013   Context = DAG.getContext();
1014   LPadToCallSiteMap.clear();
1015 }
1016 
1017 void SelectionDAGBuilder::clear() {
1018   NodeMap.clear();
1019   UnusedArgNodeMap.clear();
1020   PendingLoads.clear();
1021   PendingExports.clear();
1022   CurInst = nullptr;
1023   HasTailCall = false;
1024   SDNodeOrder = LowestSDNodeOrder;
1025   StatepointLowering.clear();
1026 }
1027 
1028 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1029   DanglingDebugInfoMap.clear();
1030 }
1031 
1032 SDValue SelectionDAGBuilder::getRoot() {
1033   if (PendingLoads.empty())
1034     return DAG.getRoot();
1035 
1036   if (PendingLoads.size() == 1) {
1037     SDValue Root = PendingLoads[0];
1038     DAG.setRoot(Root);
1039     PendingLoads.clear();
1040     return Root;
1041   }
1042 
1043   // Otherwise, we have to make a token factor node.
1044   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1045   PendingLoads.clear();
1046   DAG.setRoot(Root);
1047   return Root;
1048 }
1049 
1050 SDValue SelectionDAGBuilder::getControlRoot() {
1051   SDValue Root = DAG.getRoot();
1052 
1053   if (PendingExports.empty())
1054     return Root;
1055 
1056   // Turn all of the CopyToReg chains into one factored node.
1057   if (Root.getOpcode() != ISD::EntryToken) {
1058     unsigned i = 0, e = PendingExports.size();
1059     for (; i != e; ++i) {
1060       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1061       if (PendingExports[i].getNode()->getOperand(0) == Root)
1062         break;  // Don't add the root if we already indirectly depend on it.
1063     }
1064 
1065     if (i == e)
1066       PendingExports.push_back(Root);
1067   }
1068 
1069   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1070                      PendingExports);
1071   PendingExports.clear();
1072   DAG.setRoot(Root);
1073   return Root;
1074 }
1075 
1076 void SelectionDAGBuilder::visit(const Instruction &I) {
1077   // Set up outgoing PHI node register values before emitting the terminator.
1078   if (I.isTerminator()) {
1079     HandlePHINodesInSuccessorBlocks(I.getParent());
1080   }
1081 
1082   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1083   if (!isa<DbgInfoIntrinsic>(I))
1084     ++SDNodeOrder;
1085 
1086   CurInst = &I;
1087 
1088   visit(I.getOpcode(), I);
1089 
1090   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1091     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1092     // maps to this instruction.
1093     // TODO: We could handle all flags (nsw, etc) here.
1094     // TODO: If an IR instruction maps to >1 node, only the final node will have
1095     //       flags set.
1096     if (SDNode *Node = getNodeForIRValue(&I)) {
1097       SDNodeFlags IncomingFlags;
1098       IncomingFlags.copyFMF(*FPMO);
1099       if (!Node->getFlags().isDefined())
1100         Node->setFlags(IncomingFlags);
1101       else
1102         Node->intersectFlagsWith(IncomingFlags);
1103     }
1104   }
1105 
1106   if (!I.isTerminator() && !HasTailCall &&
1107       !isStatepoint(&I)) // statepoints handle their exports internally
1108     CopyToExportRegsIfNeeded(&I);
1109 
1110   CurInst = nullptr;
1111 }
1112 
1113 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1114   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1115 }
1116 
1117 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1118   // Note: this doesn't use InstVisitor, because it has to work with
1119   // ConstantExpr's in addition to instructions.
1120   switch (Opcode) {
1121   default: llvm_unreachable("Unknown instruction type encountered!");
1122     // Build the switch statement using the Instruction.def file.
1123 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1124     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1125 #include "llvm/IR/Instruction.def"
1126   }
1127 }
1128 
1129 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1130                                                 const DIExpression *Expr) {
1131   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1132     const DbgValueInst *DI = DDI.getDI();
1133     DIVariable *DanglingVariable = DI->getVariable();
1134     DIExpression *DanglingExpr = DI->getExpression();
1135     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1136       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1137       return true;
1138     }
1139     return false;
1140   };
1141 
1142   for (auto &DDIMI : DanglingDebugInfoMap) {
1143     DanglingDebugInfoVector &DDIV = DDIMI.second;
1144 
1145     // If debug info is to be dropped, run it through final checks to see
1146     // whether it can be salvaged.
1147     for (auto &DDI : DDIV)
1148       if (isMatchingDbgValue(DDI))
1149         salvageUnresolvedDbgValue(DDI);
1150 
1151     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1152   }
1153 }
1154 
1155 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1156 // generate the debug data structures now that we've seen its definition.
1157 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1158                                                    SDValue Val) {
1159   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1160   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1161     return;
1162 
1163   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1164   for (auto &DDI : DDIV) {
1165     const DbgValueInst *DI = DDI.getDI();
1166     assert(DI && "Ill-formed DanglingDebugInfo");
1167     DebugLoc dl = DDI.getdl();
1168     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1169     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1170     DILocalVariable *Variable = DI->getVariable();
1171     DIExpression *Expr = DI->getExpression();
1172     assert(Variable->isValidLocationForIntrinsic(dl) &&
1173            "Expected inlined-at fields to agree");
1174     SDDbgValue *SDV;
1175     if (Val.getNode()) {
1176       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1177       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1178       // we couldn't resolve it directly when examining the DbgValue intrinsic
1179       // in the first place we should not be more successful here). Unless we
1180       // have some test case that prove this to be correct we should avoid
1181       // calling EmitFuncArgumentDbgValue here.
1182       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1183         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1184                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1185         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1186         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1187         // inserted after the definition of Val when emitting the instructions
1188         // after ISel. An alternative could be to teach
1189         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1190         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1191                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1192                    << ValSDNodeOrder << "\n");
1193         SDV = getDbgValue(Val, Variable, Expr, dl,
1194                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1195         DAG.AddDbgValue(SDV, Val.getNode(), false);
1196       } else
1197         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1198                           << "in EmitFuncArgumentDbgValue\n");
1199     } else {
1200       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1201       auto Undef =
1202           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1203       auto SDV =
1204           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1205       DAG.AddDbgValue(SDV, nullptr, false);
1206     }
1207   }
1208   DDIV.clear();
1209 }
1210 
1211 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1212   Value *V = DDI.getDI()->getValue();
1213   DILocalVariable *Var = DDI.getDI()->getVariable();
1214   DIExpression *Expr = DDI.getDI()->getExpression();
1215   DebugLoc DL = DDI.getdl();
1216   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1217   unsigned SDOrder = DDI.getSDNodeOrder();
1218 
1219   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1220   // that DW_OP_stack_value is desired.
1221   assert(isa<DbgValueInst>(DDI.getDI()));
1222   bool StackValue = true;
1223 
1224   // Can this Value can be encoded without any further work?
1225   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1226     return;
1227 
1228   // Attempt to salvage back through as many instructions as possible. Bail if
1229   // a non-instruction is seen, such as a constant expression or global
1230   // variable. FIXME: Further work could recover those too.
1231   while (isa<Instruction>(V)) {
1232     Instruction &VAsInst = *cast<Instruction>(V);
1233     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1234 
1235     // If we cannot salvage any further, and haven't yet found a suitable debug
1236     // expression, bail out.
1237     if (!NewExpr)
1238       break;
1239 
1240     // New value and expr now represent this debuginfo.
1241     V = VAsInst.getOperand(0);
1242     Expr = NewExpr;
1243 
1244     // Some kind of simplification occurred: check whether the operand of the
1245     // salvaged debug expression can be encoded in this DAG.
1246     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1247       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1248                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1249       return;
1250     }
1251   }
1252 
1253   // This was the final opportunity to salvage this debug information, and it
1254   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1255   // any earlier variable location.
1256   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1257   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1258   DAG.AddDbgValue(SDV, nullptr, false);
1259 
1260   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1261                     << "\n");
1262   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1263                     << "\n");
1264 }
1265 
1266 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1267                                            DIExpression *Expr, DebugLoc dl,
1268                                            DebugLoc InstDL, unsigned Order) {
1269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1270   SDDbgValue *SDV;
1271   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1272       isa<ConstantPointerNull>(V)) {
1273     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1274     DAG.AddDbgValue(SDV, nullptr, false);
1275     return true;
1276   }
1277 
1278   // If the Value is a frame index, we can create a FrameIndex debug value
1279   // without relying on the DAG at all.
1280   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1281     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1282     if (SI != FuncInfo.StaticAllocaMap.end()) {
1283       auto SDV =
1284           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1285                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1286       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1287       // is still available even if the SDNode gets optimized out.
1288       DAG.AddDbgValue(SDV, nullptr, false);
1289       return true;
1290     }
1291   }
1292 
1293   // Do not use getValue() in here; we don't want to generate code at
1294   // this point if it hasn't been done yet.
1295   SDValue N = NodeMap[V];
1296   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1297     N = UnusedArgNodeMap[V];
1298   if (N.getNode()) {
1299     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1300       return true;
1301     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1302     DAG.AddDbgValue(SDV, N.getNode(), false);
1303     return true;
1304   }
1305 
1306   // Special rules apply for the first dbg.values of parameter variables in a
1307   // function. Identify them by the fact they reference Argument Values, that
1308   // they're parameters, and they are parameters of the current function. We
1309   // need to let them dangle until they get an SDNode.
1310   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1311                        !InstDL.getInlinedAt();
1312   if (!IsParamOfFunc) {
1313     // The value is not used in this block yet (or it would have an SDNode).
1314     // We still want the value to appear for the user if possible -- if it has
1315     // an associated VReg, we can refer to that instead.
1316     auto VMI = FuncInfo.ValueMap.find(V);
1317     if (VMI != FuncInfo.ValueMap.end()) {
1318       unsigned Reg = VMI->second;
1319       // If this is a PHI node, it may be split up into several MI PHI nodes
1320       // (in FunctionLoweringInfo::set).
1321       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1322                        V->getType(), None);
1323       if (RFV.occupiesMultipleRegs()) {
1324         unsigned Offset = 0;
1325         unsigned BitsToDescribe = 0;
1326         if (auto VarSize = Var->getSizeInBits())
1327           BitsToDescribe = *VarSize;
1328         if (auto Fragment = Expr->getFragmentInfo())
1329           BitsToDescribe = Fragment->SizeInBits;
1330         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1331           unsigned RegisterSize = RegAndSize.second;
1332           // Bail out if all bits are described already.
1333           if (Offset >= BitsToDescribe)
1334             break;
1335           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1336               ? BitsToDescribe - Offset
1337               : RegisterSize;
1338           auto FragmentExpr = DIExpression::createFragmentExpression(
1339               Expr, Offset, FragmentSize);
1340           if (!FragmentExpr)
1341               continue;
1342           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1343                                     false, dl, SDNodeOrder);
1344           DAG.AddDbgValue(SDV, nullptr, false);
1345           Offset += RegisterSize;
1346         }
1347       } else {
1348         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1349         DAG.AddDbgValue(SDV, nullptr, false);
1350       }
1351       return true;
1352     }
1353   }
1354 
1355   return false;
1356 }
1357 
1358 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1359   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1360   for (auto &Pair : DanglingDebugInfoMap)
1361     for (auto &DDI : Pair.second)
1362       salvageUnresolvedDbgValue(DDI);
1363   clearDanglingDebugInfo();
1364 }
1365 
1366 /// getCopyFromRegs - If there was virtual register allocated for the value V
1367 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1368 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1369   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1370   SDValue Result;
1371 
1372   if (It != FuncInfo.ValueMap.end()) {
1373     unsigned InReg = It->second;
1374 
1375     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1376                      DAG.getDataLayout(), InReg, Ty,
1377                      None); // This is not an ABI copy.
1378     SDValue Chain = DAG.getEntryNode();
1379     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1380                                  V);
1381     resolveDanglingDebugInfo(V, Result);
1382   }
1383 
1384   return Result;
1385 }
1386 
1387 /// getValue - Return an SDValue for the given Value.
1388 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1389   // If we already have an SDValue for this value, use it. It's important
1390   // to do this first, so that we don't create a CopyFromReg if we already
1391   // have a regular SDValue.
1392   SDValue &N = NodeMap[V];
1393   if (N.getNode()) return N;
1394 
1395   // If there's a virtual register allocated and initialized for this
1396   // value, use it.
1397   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1398     return copyFromReg;
1399 
1400   // Otherwise create a new SDValue and remember it.
1401   SDValue Val = getValueImpl(V);
1402   NodeMap[V] = Val;
1403   resolveDanglingDebugInfo(V, Val);
1404   return Val;
1405 }
1406 
1407 // Return true if SDValue exists for the given Value
1408 bool SelectionDAGBuilder::findValue(const Value *V) const {
1409   return (NodeMap.find(V) != NodeMap.end()) ||
1410     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1411 }
1412 
1413 /// getNonRegisterValue - Return an SDValue for the given Value, but
1414 /// don't look in FuncInfo.ValueMap for a virtual register.
1415 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1416   // If we already have an SDValue for this value, use it.
1417   SDValue &N = NodeMap[V];
1418   if (N.getNode()) {
1419     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1420       // Remove the debug location from the node as the node is about to be used
1421       // in a location which may differ from the original debug location.  This
1422       // is relevant to Constant and ConstantFP nodes because they can appear
1423       // as constant expressions inside PHI nodes.
1424       N->setDebugLoc(DebugLoc());
1425     }
1426     return N;
1427   }
1428 
1429   // Otherwise create a new SDValue and remember it.
1430   SDValue Val = getValueImpl(V);
1431   NodeMap[V] = Val;
1432   resolveDanglingDebugInfo(V, Val);
1433   return Val;
1434 }
1435 
1436 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1437 /// Create an SDValue for the given value.
1438 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1440 
1441   if (const Constant *C = dyn_cast<Constant>(V)) {
1442     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1443 
1444     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1445       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1446 
1447     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1448       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1449 
1450     if (isa<ConstantPointerNull>(C)) {
1451       unsigned AS = V->getType()->getPointerAddressSpace();
1452       return DAG.getConstant(0, getCurSDLoc(),
1453                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1454     }
1455 
1456     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1457       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1458 
1459     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1460       return DAG.getUNDEF(VT);
1461 
1462     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1463       visit(CE->getOpcode(), *CE);
1464       SDValue N1 = NodeMap[V];
1465       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1466       return N1;
1467     }
1468 
1469     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1470       SmallVector<SDValue, 4> Constants;
1471       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1472            OI != OE; ++OI) {
1473         SDNode *Val = getValue(*OI).getNode();
1474         // If the operand is an empty aggregate, there are no values.
1475         if (!Val) continue;
1476         // Add each leaf value from the operand to the Constants list
1477         // to form a flattened list of all the values.
1478         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1479           Constants.push_back(SDValue(Val, i));
1480       }
1481 
1482       return DAG.getMergeValues(Constants, getCurSDLoc());
1483     }
1484 
1485     if (const ConstantDataSequential *CDS =
1486           dyn_cast<ConstantDataSequential>(C)) {
1487       SmallVector<SDValue, 4> Ops;
1488       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1489         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1490         // Add each leaf value from the operand to the Constants list
1491         // to form a flattened list of all the values.
1492         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1493           Ops.push_back(SDValue(Val, i));
1494       }
1495 
1496       if (isa<ArrayType>(CDS->getType()))
1497         return DAG.getMergeValues(Ops, getCurSDLoc());
1498       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1499     }
1500 
1501     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1502       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1503              "Unknown struct or array constant!");
1504 
1505       SmallVector<EVT, 4> ValueVTs;
1506       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1507       unsigned NumElts = ValueVTs.size();
1508       if (NumElts == 0)
1509         return SDValue(); // empty struct
1510       SmallVector<SDValue, 4> Constants(NumElts);
1511       for (unsigned i = 0; i != NumElts; ++i) {
1512         EVT EltVT = ValueVTs[i];
1513         if (isa<UndefValue>(C))
1514           Constants[i] = DAG.getUNDEF(EltVT);
1515         else if (EltVT.isFloatingPoint())
1516           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1517         else
1518           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1519       }
1520 
1521       return DAG.getMergeValues(Constants, getCurSDLoc());
1522     }
1523 
1524     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1525       return DAG.getBlockAddress(BA, VT);
1526 
1527     VectorType *VecTy = cast<VectorType>(V->getType());
1528     unsigned NumElements = VecTy->getNumElements();
1529 
1530     // Now that we know the number and type of the elements, get that number of
1531     // elements into the Ops array based on what kind of constant it is.
1532     SmallVector<SDValue, 16> Ops;
1533     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1534       for (unsigned i = 0; i != NumElements; ++i)
1535         Ops.push_back(getValue(CV->getOperand(i)));
1536     } else {
1537       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1538       EVT EltVT =
1539           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1540 
1541       SDValue Op;
1542       if (EltVT.isFloatingPoint())
1543         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1544       else
1545         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1546       Ops.assign(NumElements, Op);
1547     }
1548 
1549     // Create a BUILD_VECTOR node.
1550     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1551   }
1552 
1553   // If this is a static alloca, generate it as the frameindex instead of
1554   // computation.
1555   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1556     DenseMap<const AllocaInst*, int>::iterator SI =
1557       FuncInfo.StaticAllocaMap.find(AI);
1558     if (SI != FuncInfo.StaticAllocaMap.end())
1559       return DAG.getFrameIndex(SI->second,
1560                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1561   }
1562 
1563   // If this is an instruction which fast-isel has deferred, select it now.
1564   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1565     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1566 
1567     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1568                      Inst->getType(), getABIRegCopyCC(V));
1569     SDValue Chain = DAG.getEntryNode();
1570     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1571   }
1572 
1573   llvm_unreachable("Can't get register for value!");
1574 }
1575 
1576 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1577   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1578   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1579   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1580   bool IsSEH = isAsynchronousEHPersonality(Pers);
1581   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1582   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1583   if (!IsSEH)
1584     CatchPadMBB->setIsEHScopeEntry();
1585   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1586   if (IsMSVCCXX || IsCoreCLR)
1587     CatchPadMBB->setIsEHFuncletEntry();
1588   // Wasm does not need catchpads anymore
1589   if (!IsWasmCXX)
1590     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1591                             getControlRoot()));
1592 }
1593 
1594 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1595   // Update machine-CFG edge.
1596   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1597   FuncInfo.MBB->addSuccessor(TargetMBB);
1598 
1599   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1600   bool IsSEH = isAsynchronousEHPersonality(Pers);
1601   if (IsSEH) {
1602     // If this is not a fall-through branch or optimizations are switched off,
1603     // emit the branch.
1604     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1605         TM.getOptLevel() == CodeGenOpt::None)
1606       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1607                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1608     return;
1609   }
1610 
1611   // Figure out the funclet membership for the catchret's successor.
1612   // This will be used by the FuncletLayout pass to determine how to order the
1613   // BB's.
1614   // A 'catchret' returns to the outer scope's color.
1615   Value *ParentPad = I.getCatchSwitchParentPad();
1616   const BasicBlock *SuccessorColor;
1617   if (isa<ConstantTokenNone>(ParentPad))
1618     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1619   else
1620     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1621   assert(SuccessorColor && "No parent funclet for catchret!");
1622   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1623   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1624 
1625   // Create the terminator node.
1626   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1627                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1628                             DAG.getBasicBlock(SuccessorColorMBB));
1629   DAG.setRoot(Ret);
1630 }
1631 
1632 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1633   // Don't emit any special code for the cleanuppad instruction. It just marks
1634   // the start of an EH scope/funclet.
1635   FuncInfo.MBB->setIsEHScopeEntry();
1636   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1637   if (Pers != EHPersonality::Wasm_CXX) {
1638     FuncInfo.MBB->setIsEHFuncletEntry();
1639     FuncInfo.MBB->setIsCleanupFuncletEntry();
1640   }
1641 }
1642 
1643 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1644 // the control flow always stops at the single catch pad, as it does for a
1645 // cleanup pad. In case the exception caught is not of the types the catch pad
1646 // catches, it will be rethrown by a rethrow.
1647 static void findWasmUnwindDestinations(
1648     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1649     BranchProbability Prob,
1650     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1651         &UnwindDests) {
1652   while (EHPadBB) {
1653     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1654     if (isa<CleanupPadInst>(Pad)) {
1655       // Stop on cleanup pads.
1656       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1657       UnwindDests.back().first->setIsEHScopeEntry();
1658       break;
1659     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1660       // Add the catchpad handlers to the possible destinations. We don't
1661       // continue to the unwind destination of the catchswitch for wasm.
1662       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1663         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1664         UnwindDests.back().first->setIsEHScopeEntry();
1665       }
1666       break;
1667     } else {
1668       continue;
1669     }
1670   }
1671 }
1672 
1673 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1674 /// many places it could ultimately go. In the IR, we have a single unwind
1675 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1676 /// This function skips over imaginary basic blocks that hold catchswitch
1677 /// instructions, and finds all the "real" machine
1678 /// basic block destinations. As those destinations may not be successors of
1679 /// EHPadBB, here we also calculate the edge probability to those destinations.
1680 /// The passed-in Prob is the edge probability to EHPadBB.
1681 static void findUnwindDestinations(
1682     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1683     BranchProbability Prob,
1684     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1685         &UnwindDests) {
1686   EHPersonality Personality =
1687     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1688   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1689   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1690   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1691   bool IsSEH = isAsynchronousEHPersonality(Personality);
1692 
1693   if (IsWasmCXX) {
1694     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1695     assert(UnwindDests.size() <= 1 &&
1696            "There should be at most one unwind destination for wasm");
1697     return;
1698   }
1699 
1700   while (EHPadBB) {
1701     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1702     BasicBlock *NewEHPadBB = nullptr;
1703     if (isa<LandingPadInst>(Pad)) {
1704       // Stop on landingpads. They are not funclets.
1705       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1706       break;
1707     } else if (isa<CleanupPadInst>(Pad)) {
1708       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1709       // personalities.
1710       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1711       UnwindDests.back().first->setIsEHScopeEntry();
1712       UnwindDests.back().first->setIsEHFuncletEntry();
1713       break;
1714     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1715       // Add the catchpad handlers to the possible destinations.
1716       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1717         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1718         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1719         if (IsMSVCCXX || IsCoreCLR)
1720           UnwindDests.back().first->setIsEHFuncletEntry();
1721         if (!IsSEH)
1722           UnwindDests.back().first->setIsEHScopeEntry();
1723       }
1724       NewEHPadBB = CatchSwitch->getUnwindDest();
1725     } else {
1726       continue;
1727     }
1728 
1729     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1730     if (BPI && NewEHPadBB)
1731       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1732     EHPadBB = NewEHPadBB;
1733   }
1734 }
1735 
1736 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1737   // Update successor info.
1738   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1739   auto UnwindDest = I.getUnwindDest();
1740   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1741   BranchProbability UnwindDestProb =
1742       (BPI && UnwindDest)
1743           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1744           : BranchProbability::getZero();
1745   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1746   for (auto &UnwindDest : UnwindDests) {
1747     UnwindDest.first->setIsEHPad();
1748     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1749   }
1750   FuncInfo.MBB->normalizeSuccProbs();
1751 
1752   // Create the terminator node.
1753   SDValue Ret =
1754       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1755   DAG.setRoot(Ret);
1756 }
1757 
1758 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1759   report_fatal_error("visitCatchSwitch not yet implemented!");
1760 }
1761 
1762 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1764   auto &DL = DAG.getDataLayout();
1765   SDValue Chain = getControlRoot();
1766   SmallVector<ISD::OutputArg, 8> Outs;
1767   SmallVector<SDValue, 8> OutVals;
1768 
1769   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1770   // lower
1771   //
1772   //   %val = call <ty> @llvm.experimental.deoptimize()
1773   //   ret <ty> %val
1774   //
1775   // differently.
1776   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1777     LowerDeoptimizingReturn();
1778     return;
1779   }
1780 
1781   if (!FuncInfo.CanLowerReturn) {
1782     unsigned DemoteReg = FuncInfo.DemoteRegister;
1783     const Function *F = I.getParent()->getParent();
1784 
1785     // Emit a store of the return value through the virtual register.
1786     // Leave Outs empty so that LowerReturn won't try to load return
1787     // registers the usual way.
1788     SmallVector<EVT, 1> PtrValueVTs;
1789     ComputeValueVTs(TLI, DL,
1790                     F->getReturnType()->getPointerTo(
1791                         DAG.getDataLayout().getAllocaAddrSpace()),
1792                     PtrValueVTs);
1793 
1794     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1795                                         DemoteReg, PtrValueVTs[0]);
1796     SDValue RetOp = getValue(I.getOperand(0));
1797 
1798     SmallVector<EVT, 4> ValueVTs, MemVTs;
1799     SmallVector<uint64_t, 4> Offsets;
1800     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1801                     &Offsets);
1802     unsigned NumValues = ValueVTs.size();
1803 
1804     SmallVector<SDValue, 4> Chains(NumValues);
1805     for (unsigned i = 0; i != NumValues; ++i) {
1806       // An aggregate return value cannot wrap around the address space, so
1807       // offsets to its parts don't wrap either.
1808       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1809 
1810       SDValue Val = RetOp.getValue(i);
1811       if (MemVTs[i] != ValueVTs[i])
1812         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1813       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1814           // FIXME: better loc info would be nice.
1815           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1816     }
1817 
1818     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1819                         MVT::Other, Chains);
1820   } else if (I.getNumOperands() != 0) {
1821     SmallVector<EVT, 4> ValueVTs;
1822     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1823     unsigned NumValues = ValueVTs.size();
1824     if (NumValues) {
1825       SDValue RetOp = getValue(I.getOperand(0));
1826 
1827       const Function *F = I.getParent()->getParent();
1828 
1829       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1830           I.getOperand(0)->getType(), F->getCallingConv(),
1831           /*IsVarArg*/ false);
1832 
1833       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1834       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1835                                           Attribute::SExt))
1836         ExtendKind = ISD::SIGN_EXTEND;
1837       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1838                                                Attribute::ZExt))
1839         ExtendKind = ISD::ZERO_EXTEND;
1840 
1841       LLVMContext &Context = F->getContext();
1842       bool RetInReg = F->getAttributes().hasAttribute(
1843           AttributeList::ReturnIndex, Attribute::InReg);
1844 
1845       for (unsigned j = 0; j != NumValues; ++j) {
1846         EVT VT = ValueVTs[j];
1847 
1848         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1849           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1850 
1851         CallingConv::ID CC = F->getCallingConv();
1852 
1853         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1854         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1855         SmallVector<SDValue, 4> Parts(NumParts);
1856         getCopyToParts(DAG, getCurSDLoc(),
1857                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1858                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1859 
1860         // 'inreg' on function refers to return value
1861         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1862         if (RetInReg)
1863           Flags.setInReg();
1864 
1865         if (I.getOperand(0)->getType()->isPointerTy()) {
1866           Flags.setPointer();
1867           Flags.setPointerAddrSpace(
1868               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1869         }
1870 
1871         if (NeedsRegBlock) {
1872           Flags.setInConsecutiveRegs();
1873           if (j == NumValues - 1)
1874             Flags.setInConsecutiveRegsLast();
1875         }
1876 
1877         // Propagate extension type if any
1878         if (ExtendKind == ISD::SIGN_EXTEND)
1879           Flags.setSExt();
1880         else if (ExtendKind == ISD::ZERO_EXTEND)
1881           Flags.setZExt();
1882 
1883         for (unsigned i = 0; i < NumParts; ++i) {
1884           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1885                                         VT, /*isfixed=*/true, 0, 0));
1886           OutVals.push_back(Parts[i]);
1887         }
1888       }
1889     }
1890   }
1891 
1892   // Push in swifterror virtual register as the last element of Outs. This makes
1893   // sure swifterror virtual register will be returned in the swifterror
1894   // physical register.
1895   const Function *F = I.getParent()->getParent();
1896   if (TLI.supportSwiftError() &&
1897       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1898     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1899     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1900     Flags.setSwiftError();
1901     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1902                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1903                                   true /*isfixed*/, 1 /*origidx*/,
1904                                   0 /*partOffs*/));
1905     // Create SDNode for the swifterror virtual register.
1906     OutVals.push_back(
1907         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1908                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1909                         EVT(TLI.getPointerTy(DL))));
1910   }
1911 
1912   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1913   CallingConv::ID CallConv =
1914     DAG.getMachineFunction().getFunction().getCallingConv();
1915   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1916       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1917 
1918   // Verify that the target's LowerReturn behaved as expected.
1919   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1920          "LowerReturn didn't return a valid chain!");
1921 
1922   // Update the DAG with the new chain value resulting from return lowering.
1923   DAG.setRoot(Chain);
1924 }
1925 
1926 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1927 /// created for it, emit nodes to copy the value into the virtual
1928 /// registers.
1929 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1930   // Skip empty types
1931   if (V->getType()->isEmptyTy())
1932     return;
1933 
1934   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1935   if (VMI != FuncInfo.ValueMap.end()) {
1936     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1937     CopyValueToVirtualRegister(V, VMI->second);
1938   }
1939 }
1940 
1941 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1942 /// the current basic block, add it to ValueMap now so that we'll get a
1943 /// CopyTo/FromReg.
1944 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1945   // No need to export constants.
1946   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1947 
1948   // Already exported?
1949   if (FuncInfo.isExportedInst(V)) return;
1950 
1951   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1952   CopyValueToVirtualRegister(V, Reg);
1953 }
1954 
1955 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1956                                                      const BasicBlock *FromBB) {
1957   // The operands of the setcc have to be in this block.  We don't know
1958   // how to export them from some other block.
1959   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1960     // Can export from current BB.
1961     if (VI->getParent() == FromBB)
1962       return true;
1963 
1964     // Is already exported, noop.
1965     return FuncInfo.isExportedInst(V);
1966   }
1967 
1968   // If this is an argument, we can export it if the BB is the entry block or
1969   // if it is already exported.
1970   if (isa<Argument>(V)) {
1971     if (FromBB == &FromBB->getParent()->getEntryBlock())
1972       return true;
1973 
1974     // Otherwise, can only export this if it is already exported.
1975     return FuncInfo.isExportedInst(V);
1976   }
1977 
1978   // Otherwise, constants can always be exported.
1979   return true;
1980 }
1981 
1982 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1983 BranchProbability
1984 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1985                                         const MachineBasicBlock *Dst) const {
1986   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1987   const BasicBlock *SrcBB = Src->getBasicBlock();
1988   const BasicBlock *DstBB = Dst->getBasicBlock();
1989   if (!BPI) {
1990     // If BPI is not available, set the default probability as 1 / N, where N is
1991     // the number of successors.
1992     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1993     return BranchProbability(1, SuccSize);
1994   }
1995   return BPI->getEdgeProbability(SrcBB, DstBB);
1996 }
1997 
1998 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1999                                                MachineBasicBlock *Dst,
2000                                                BranchProbability Prob) {
2001   if (!FuncInfo.BPI)
2002     Src->addSuccessorWithoutProb(Dst);
2003   else {
2004     if (Prob.isUnknown())
2005       Prob = getEdgeProbability(Src, Dst);
2006     Src->addSuccessor(Dst, Prob);
2007   }
2008 }
2009 
2010 static bool InBlock(const Value *V, const BasicBlock *BB) {
2011   if (const Instruction *I = dyn_cast<Instruction>(V))
2012     return I->getParent() == BB;
2013   return true;
2014 }
2015 
2016 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2017 /// This function emits a branch and is used at the leaves of an OR or an
2018 /// AND operator tree.
2019 void
2020 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2021                                                   MachineBasicBlock *TBB,
2022                                                   MachineBasicBlock *FBB,
2023                                                   MachineBasicBlock *CurBB,
2024                                                   MachineBasicBlock *SwitchBB,
2025                                                   BranchProbability TProb,
2026                                                   BranchProbability FProb,
2027                                                   bool InvertCond) {
2028   const BasicBlock *BB = CurBB->getBasicBlock();
2029 
2030   // If the leaf of the tree is a comparison, merge the condition into
2031   // the caseblock.
2032   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2033     // The operands of the cmp have to be in this block.  We don't know
2034     // how to export them from some other block.  If this is the first block
2035     // of the sequence, no exporting is needed.
2036     if (CurBB == SwitchBB ||
2037         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2038          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2039       ISD::CondCode Condition;
2040       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2041         ICmpInst::Predicate Pred =
2042             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2043         Condition = getICmpCondCode(Pred);
2044       } else {
2045         const FCmpInst *FC = cast<FCmpInst>(Cond);
2046         FCmpInst::Predicate Pred =
2047             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2048         Condition = getFCmpCondCode(Pred);
2049         if (TM.Options.NoNaNsFPMath)
2050           Condition = getFCmpCodeWithoutNaN(Condition);
2051       }
2052 
2053       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2054                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2055       SwitchCases.push_back(CB);
2056       return;
2057     }
2058   }
2059 
2060   // Create a CaseBlock record representing this branch.
2061   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2062   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2063                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2064   SwitchCases.push_back(CB);
2065 }
2066 
2067 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2068                                                MachineBasicBlock *TBB,
2069                                                MachineBasicBlock *FBB,
2070                                                MachineBasicBlock *CurBB,
2071                                                MachineBasicBlock *SwitchBB,
2072                                                Instruction::BinaryOps Opc,
2073                                                BranchProbability TProb,
2074                                                BranchProbability FProb,
2075                                                bool InvertCond) {
2076   // Skip over not part of the tree and remember to invert op and operands at
2077   // next level.
2078   Value *NotCond;
2079   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2080       InBlock(NotCond, CurBB->getBasicBlock())) {
2081     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2082                          !InvertCond);
2083     return;
2084   }
2085 
2086   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2087   // Compute the effective opcode for Cond, taking into account whether it needs
2088   // to be inverted, e.g.
2089   //   and (not (or A, B)), C
2090   // gets lowered as
2091   //   and (and (not A, not B), C)
2092   unsigned BOpc = 0;
2093   if (BOp) {
2094     BOpc = BOp->getOpcode();
2095     if (InvertCond) {
2096       if (BOpc == Instruction::And)
2097         BOpc = Instruction::Or;
2098       else if (BOpc == Instruction::Or)
2099         BOpc = Instruction::And;
2100     }
2101   }
2102 
2103   // If this node is not part of the or/and tree, emit it as a branch.
2104   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2105       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2106       BOp->getParent() != CurBB->getBasicBlock() ||
2107       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2108       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2109     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2110                                  TProb, FProb, InvertCond);
2111     return;
2112   }
2113 
2114   //  Create TmpBB after CurBB.
2115   MachineFunction::iterator BBI(CurBB);
2116   MachineFunction &MF = DAG.getMachineFunction();
2117   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2118   CurBB->getParent()->insert(++BBI, TmpBB);
2119 
2120   if (Opc == Instruction::Or) {
2121     // Codegen X | Y as:
2122     // BB1:
2123     //   jmp_if_X TBB
2124     //   jmp TmpBB
2125     // TmpBB:
2126     //   jmp_if_Y TBB
2127     //   jmp FBB
2128     //
2129 
2130     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2131     // The requirement is that
2132     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2133     //     = TrueProb for original BB.
2134     // Assuming the original probabilities are A and B, one choice is to set
2135     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2136     // A/(1+B) and 2B/(1+B). This choice assumes that
2137     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2138     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2139     // TmpBB, but the math is more complicated.
2140 
2141     auto NewTrueProb = TProb / 2;
2142     auto NewFalseProb = TProb / 2 + FProb;
2143     // Emit the LHS condition.
2144     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2145                          NewTrueProb, NewFalseProb, InvertCond);
2146 
2147     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2148     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2149     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2150     // Emit the RHS condition into TmpBB.
2151     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2152                          Probs[0], Probs[1], InvertCond);
2153   } else {
2154     assert(Opc == Instruction::And && "Unknown merge op!");
2155     // Codegen X & Y as:
2156     // BB1:
2157     //   jmp_if_X TmpBB
2158     //   jmp FBB
2159     // TmpBB:
2160     //   jmp_if_Y TBB
2161     //   jmp FBB
2162     //
2163     //  This requires creation of TmpBB after CurBB.
2164 
2165     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2166     // The requirement is that
2167     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2168     //     = FalseProb for original BB.
2169     // Assuming the original probabilities are A and B, one choice is to set
2170     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2171     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2172     // TrueProb for BB1 * FalseProb for TmpBB.
2173 
2174     auto NewTrueProb = TProb + FProb / 2;
2175     auto NewFalseProb = FProb / 2;
2176     // Emit the LHS condition.
2177     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2178                          NewTrueProb, NewFalseProb, InvertCond);
2179 
2180     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2181     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2182     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2183     // Emit the RHS condition into TmpBB.
2184     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2185                          Probs[0], Probs[1], InvertCond);
2186   }
2187 }
2188 
2189 /// If the set of cases should be emitted as a series of branches, return true.
2190 /// If we should emit this as a bunch of and/or'd together conditions, return
2191 /// false.
2192 bool
2193 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2194   if (Cases.size() != 2) return true;
2195 
2196   // If this is two comparisons of the same values or'd or and'd together, they
2197   // will get folded into a single comparison, so don't emit two blocks.
2198   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2199        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2200       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2202     return false;
2203   }
2204 
2205   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2206   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2207   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2208       Cases[0].CC == Cases[1].CC &&
2209       isa<Constant>(Cases[0].CmpRHS) &&
2210       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2211     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2212       return false;
2213     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2214       return false;
2215   }
2216 
2217   return true;
2218 }
2219 
2220 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2221   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2222 
2223   // Update machine-CFG edges.
2224   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2225 
2226   if (I.isUnconditional()) {
2227     // Update machine-CFG edges.
2228     BrMBB->addSuccessor(Succ0MBB);
2229 
2230     // If this is not a fall-through branch or optimizations are switched off,
2231     // emit the branch.
2232     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2233       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2234                               MVT::Other, getControlRoot(),
2235                               DAG.getBasicBlock(Succ0MBB)));
2236 
2237     return;
2238   }
2239 
2240   // If this condition is one of the special cases we handle, do special stuff
2241   // now.
2242   const Value *CondVal = I.getCondition();
2243   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2244 
2245   // If this is a series of conditions that are or'd or and'd together, emit
2246   // this as a sequence of branches instead of setcc's with and/or operations.
2247   // As long as jumps are not expensive, this should improve performance.
2248   // For example, instead of something like:
2249   //     cmp A, B
2250   //     C = seteq
2251   //     cmp D, E
2252   //     F = setle
2253   //     or C, F
2254   //     jnz foo
2255   // Emit:
2256   //     cmp A, B
2257   //     je foo
2258   //     cmp D, E
2259   //     jle foo
2260   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2261     Instruction::BinaryOps Opcode = BOp->getOpcode();
2262     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2263         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2264         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2265       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2266                            Opcode,
2267                            getEdgeProbability(BrMBB, Succ0MBB),
2268                            getEdgeProbability(BrMBB, Succ1MBB),
2269                            /*InvertCond=*/false);
2270       // If the compares in later blocks need to use values not currently
2271       // exported from this block, export them now.  This block should always
2272       // be the first entry.
2273       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2274 
2275       // Allow some cases to be rejected.
2276       if (ShouldEmitAsBranches(SwitchCases)) {
2277         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2278           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2279           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2280         }
2281 
2282         // Emit the branch for this block.
2283         visitSwitchCase(SwitchCases[0], BrMBB);
2284         SwitchCases.erase(SwitchCases.begin());
2285         return;
2286       }
2287 
2288       // Okay, we decided not to do this, remove any inserted MBB's and clear
2289       // SwitchCases.
2290       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2291         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2292 
2293       SwitchCases.clear();
2294     }
2295   }
2296 
2297   // Create a CaseBlock record representing this branch.
2298   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2299                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2300 
2301   // Use visitSwitchCase to actually insert the fast branch sequence for this
2302   // cond branch.
2303   visitSwitchCase(CB, BrMBB);
2304 }
2305 
2306 /// visitSwitchCase - Emits the necessary code to represent a single node in
2307 /// the binary search tree resulting from lowering a switch instruction.
2308 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2309                                           MachineBasicBlock *SwitchBB) {
2310   SDValue Cond;
2311   SDValue CondLHS = getValue(CB.CmpLHS);
2312   SDLoc dl = CB.DL;
2313 
2314   if (CB.CC == ISD::SETTRUE) {
2315     // Branch or fall through to TrueBB.
2316     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2317     SwitchBB->normalizeSuccProbs();
2318     if (CB.TrueBB != NextBlock(SwitchBB)) {
2319       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2320                               DAG.getBasicBlock(CB.TrueBB)));
2321     }
2322     return;
2323   }
2324 
2325   auto &TLI = DAG.getTargetLoweringInfo();
2326   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2327 
2328   // Build the setcc now.
2329   if (!CB.CmpMHS) {
2330     // Fold "(X == true)" to X and "(X == false)" to !X to
2331     // handle common cases produced by branch lowering.
2332     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2333         CB.CC == ISD::SETEQ)
2334       Cond = CondLHS;
2335     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2336              CB.CC == ISD::SETEQ) {
2337       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2338       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2339     } else {
2340       SDValue CondRHS = getValue(CB.CmpRHS);
2341 
2342       // If a pointer's DAG type is larger than its memory type then the DAG
2343       // values are zero-extended. This breaks signed comparisons so truncate
2344       // back to the underlying type before doing the compare.
2345       if (CondLHS.getValueType() != MemVT) {
2346         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2347         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2348       }
2349       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2350     }
2351   } else {
2352     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2353 
2354     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2355     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2356 
2357     SDValue CmpOp = getValue(CB.CmpMHS);
2358     EVT VT = CmpOp.getValueType();
2359 
2360     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2361       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2362                           ISD::SETLE);
2363     } else {
2364       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2365                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2366       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2367                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2368     }
2369   }
2370 
2371   // Update successor info
2372   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2373   // TrueBB and FalseBB are always different unless the incoming IR is
2374   // degenerate. This only happens when running llc on weird IR.
2375   if (CB.TrueBB != CB.FalseBB)
2376     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2377   SwitchBB->normalizeSuccProbs();
2378 
2379   // If the lhs block is the next block, invert the condition so that we can
2380   // fall through to the lhs instead of the rhs block.
2381   if (CB.TrueBB == NextBlock(SwitchBB)) {
2382     std::swap(CB.TrueBB, CB.FalseBB);
2383     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2384     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2385   }
2386 
2387   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2388                                MVT::Other, getControlRoot(), Cond,
2389                                DAG.getBasicBlock(CB.TrueBB));
2390 
2391   // Insert the false branch. Do this even if it's a fall through branch,
2392   // this makes it easier to do DAG optimizations which require inverting
2393   // the branch condition.
2394   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2395                        DAG.getBasicBlock(CB.FalseBB));
2396 
2397   DAG.setRoot(BrCond);
2398 }
2399 
2400 /// visitJumpTable - Emit JumpTable node in the current MBB
2401 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2402   // Emit the code for the jump table
2403   assert(JT.Reg != -1U && "Should lower JT Header first!");
2404   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2405   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2406                                      JT.Reg, PTy);
2407   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2408   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2409                                     MVT::Other, Index.getValue(1),
2410                                     Table, Index);
2411   DAG.setRoot(BrJumpTable);
2412 }
2413 
2414 /// visitJumpTableHeader - This function emits necessary code to produce index
2415 /// in the JumpTable from switch case.
2416 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2417                                                JumpTableHeader &JTH,
2418                                                MachineBasicBlock *SwitchBB) {
2419   SDLoc dl = getCurSDLoc();
2420 
2421   // Subtract the lowest switch case value from the value being switched on.
2422   SDValue SwitchOp = getValue(JTH.SValue);
2423   EVT VT = SwitchOp.getValueType();
2424   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2425                             DAG.getConstant(JTH.First, dl, VT));
2426 
2427   // The SDNode we just created, which holds the value being switched on minus
2428   // the smallest case value, needs to be copied to a virtual register so it
2429   // can be used as an index into the jump table in a subsequent basic block.
2430   // This value may be smaller or larger than the target's pointer type, and
2431   // therefore require extension or truncating.
2432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2433   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2434 
2435   unsigned JumpTableReg =
2436       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2437   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2438                                     JumpTableReg, SwitchOp);
2439   JT.Reg = JumpTableReg;
2440 
2441   if (!JTH.OmitRangeCheck) {
2442     // Emit the range check for the jump table, and branch to the default block
2443     // for the switch statement if the value being switched on exceeds the
2444     // largest case in the switch.
2445     SDValue CMP = DAG.getSetCC(
2446         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2447                                    Sub.getValueType()),
2448         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2449 
2450     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2451                                  MVT::Other, CopyTo, CMP,
2452                                  DAG.getBasicBlock(JT.Default));
2453 
2454     // Avoid emitting unnecessary branches to the next block.
2455     if (JT.MBB != NextBlock(SwitchBB))
2456       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2457                            DAG.getBasicBlock(JT.MBB));
2458 
2459     DAG.setRoot(BrCond);
2460   } else {
2461     // Avoid emitting unnecessary branches to the next block.
2462     if (JT.MBB != NextBlock(SwitchBB))
2463       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2464                               DAG.getBasicBlock(JT.MBB)));
2465     else
2466       DAG.setRoot(CopyTo);
2467   }
2468 }
2469 
2470 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2471 /// variable if there exists one.
2472 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2473                                  SDValue &Chain) {
2474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2475   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2476   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2477   MachineFunction &MF = DAG.getMachineFunction();
2478   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2479   MachineSDNode *Node =
2480       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2481   if (Global) {
2482     MachinePointerInfo MPInfo(Global);
2483     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2484                  MachineMemOperand::MODereferenceable;
2485     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2486         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2487     DAG.setNodeMemRefs(Node, {MemRef});
2488   }
2489   if (PtrTy != PtrMemTy)
2490     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2491   return SDValue(Node, 0);
2492 }
2493 
2494 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2495 /// tail spliced into a stack protector check success bb.
2496 ///
2497 /// For a high level explanation of how this fits into the stack protector
2498 /// generation see the comment on the declaration of class
2499 /// StackProtectorDescriptor.
2500 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2501                                                   MachineBasicBlock *ParentBB) {
2502 
2503   // First create the loads to the guard/stack slot for the comparison.
2504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2505   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2506   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2507 
2508   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2509   int FI = MFI.getStackProtectorIndex();
2510 
2511   SDValue Guard;
2512   SDLoc dl = getCurSDLoc();
2513   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2514   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2515   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2516 
2517   // Generate code to load the content of the guard slot.
2518   SDValue GuardVal = DAG.getLoad(
2519       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2520       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2521       MachineMemOperand::MOVolatile);
2522 
2523   if (TLI.useStackGuardXorFP())
2524     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2525 
2526   // Retrieve guard check function, nullptr if instrumentation is inlined.
2527   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2528     // The target provides a guard check function to validate the guard value.
2529     // Generate a call to that function with the content of the guard slot as
2530     // argument.
2531     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2532     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2533 
2534     TargetLowering::ArgListTy Args;
2535     TargetLowering::ArgListEntry Entry;
2536     Entry.Node = GuardVal;
2537     Entry.Ty = FnTy->getParamType(0);
2538     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2539       Entry.IsInReg = true;
2540     Args.push_back(Entry);
2541 
2542     TargetLowering::CallLoweringInfo CLI(DAG);
2543     CLI.setDebugLoc(getCurSDLoc())
2544         .setChain(DAG.getEntryNode())
2545         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2546                    getValue(GuardCheckFn), std::move(Args));
2547 
2548     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2549     DAG.setRoot(Result.second);
2550     return;
2551   }
2552 
2553   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2554   // Otherwise, emit a volatile load to retrieve the stack guard value.
2555   SDValue Chain = DAG.getEntryNode();
2556   if (TLI.useLoadStackGuardNode()) {
2557     Guard = getLoadStackGuard(DAG, dl, Chain);
2558   } else {
2559     const Value *IRGuard = TLI.getSDagStackGuard(M);
2560     SDValue GuardPtr = getValue(IRGuard);
2561 
2562     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2563                         MachinePointerInfo(IRGuard, 0), Align,
2564                         MachineMemOperand::MOVolatile);
2565   }
2566 
2567   // Perform the comparison via a subtract/getsetcc.
2568   EVT VT = Guard.getValueType();
2569   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2570 
2571   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2572                                                         *DAG.getContext(),
2573                                                         Sub.getValueType()),
2574                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2575 
2576   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2577   // branch to failure MBB.
2578   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2579                                MVT::Other, GuardVal.getOperand(0),
2580                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2581   // Otherwise branch to success MBB.
2582   SDValue Br = DAG.getNode(ISD::BR, dl,
2583                            MVT::Other, BrCond,
2584                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2585 
2586   DAG.setRoot(Br);
2587 }
2588 
2589 /// Codegen the failure basic block for a stack protector check.
2590 ///
2591 /// A failure stack protector machine basic block consists simply of a call to
2592 /// __stack_chk_fail().
2593 ///
2594 /// For a high level explanation of how this fits into the stack protector
2595 /// generation see the comment on the declaration of class
2596 /// StackProtectorDescriptor.
2597 void
2598 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2600   SDValue Chain =
2601       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2602                       None, false, getCurSDLoc(), false, false).second;
2603   // On PS4, the "return address" must still be within the calling function,
2604   // even if it's at the very end, so emit an explicit TRAP here.
2605   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2606   if (TM.getTargetTriple().isPS4CPU())
2607     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2608 
2609   DAG.setRoot(Chain);
2610 }
2611 
2612 /// visitBitTestHeader - This function emits necessary code to produce value
2613 /// suitable for "bit tests"
2614 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2615                                              MachineBasicBlock *SwitchBB) {
2616   SDLoc dl = getCurSDLoc();
2617 
2618   // Subtract the minimum value
2619   SDValue SwitchOp = getValue(B.SValue);
2620   EVT VT = SwitchOp.getValueType();
2621   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2622                             DAG.getConstant(B.First, dl, VT));
2623 
2624   // Check range
2625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2626   SDValue RangeCmp = DAG.getSetCC(
2627       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2628                                  Sub.getValueType()),
2629       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2630 
2631   // Determine the type of the test operands.
2632   bool UsePtrType = false;
2633   if (!TLI.isTypeLegal(VT))
2634     UsePtrType = true;
2635   else {
2636     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2637       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2638         // Switch table case range are encoded into series of masks.
2639         // Just use pointer type, it's guaranteed to fit.
2640         UsePtrType = true;
2641         break;
2642       }
2643   }
2644   if (UsePtrType) {
2645     VT = TLI.getPointerTy(DAG.getDataLayout());
2646     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2647   }
2648 
2649   B.RegVT = VT.getSimpleVT();
2650   B.Reg = FuncInfo.CreateReg(B.RegVT);
2651   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2652 
2653   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2654 
2655   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657   SwitchBB->normalizeSuccProbs();
2658 
2659   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2660                                 MVT::Other, CopyTo, RangeCmp,
2661                                 DAG.getBasicBlock(B.Default));
2662 
2663   // Avoid emitting unnecessary branches to the next block.
2664   if (MBB != NextBlock(SwitchBB))
2665     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2666                           DAG.getBasicBlock(MBB));
2667 
2668   DAG.setRoot(BrRange);
2669 }
2670 
2671 /// visitBitTestCase - this function produces one "bit test"
2672 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2673                                            MachineBasicBlock* NextMBB,
2674                                            BranchProbability BranchProbToNext,
2675                                            unsigned Reg,
2676                                            BitTestCase &B,
2677                                            MachineBasicBlock *SwitchBB) {
2678   SDLoc dl = getCurSDLoc();
2679   MVT VT = BB.RegVT;
2680   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2681   SDValue Cmp;
2682   unsigned PopCount = countPopulation(B.Mask);
2683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2684   if (PopCount == 1) {
2685     // Testing for a single bit; just compare the shift count with what it
2686     // would need to be to shift a 1 bit in that position.
2687     Cmp = DAG.getSetCC(
2688         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2689         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2690         ISD::SETEQ);
2691   } else if (PopCount == BB.Range) {
2692     // There is only one zero bit in the range, test for it directly.
2693     Cmp = DAG.getSetCC(
2694         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2695         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2696         ISD::SETNE);
2697   } else {
2698     // Make desired shift
2699     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2700                                     DAG.getConstant(1, dl, VT), ShiftOp);
2701 
2702     // Emit bit tests and jumps
2703     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2704                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2705     Cmp = DAG.getSetCC(
2706         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2707         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2708   }
2709 
2710   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2711   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2712   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2713   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2714   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2715   // one as they are relative probabilities (and thus work more like weights),
2716   // and hence we need to normalize them to let the sum of them become one.
2717   SwitchBB->normalizeSuccProbs();
2718 
2719   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2720                               MVT::Other, getControlRoot(),
2721                               Cmp, DAG.getBasicBlock(B.TargetBB));
2722 
2723   // Avoid emitting unnecessary branches to the next block.
2724   if (NextMBB != NextBlock(SwitchBB))
2725     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2726                         DAG.getBasicBlock(NextMBB));
2727 
2728   DAG.setRoot(BrAnd);
2729 }
2730 
2731 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2732   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2733 
2734   // Retrieve successors. Look through artificial IR level blocks like
2735   // catchswitch for successors.
2736   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2737   const BasicBlock *EHPadBB = I.getSuccessor(1);
2738 
2739   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2740   // have to do anything here to lower funclet bundles.
2741   assert(!I.hasOperandBundlesOtherThan(
2742              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2743          "Cannot lower invokes with arbitrary operand bundles yet!");
2744 
2745   const Value *Callee(I.getCalledValue());
2746   const Function *Fn = dyn_cast<Function>(Callee);
2747   if (isa<InlineAsm>(Callee))
2748     visitInlineAsm(&I);
2749   else if (Fn && Fn->isIntrinsic()) {
2750     switch (Fn->getIntrinsicID()) {
2751     default:
2752       llvm_unreachable("Cannot invoke this intrinsic");
2753     case Intrinsic::donothing:
2754       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2755       break;
2756     case Intrinsic::experimental_patchpoint_void:
2757     case Intrinsic::experimental_patchpoint_i64:
2758       visitPatchpoint(&I, EHPadBB);
2759       break;
2760     case Intrinsic::experimental_gc_statepoint:
2761       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2762       break;
2763     case Intrinsic::wasm_rethrow_in_catch: {
2764       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2765       // special because it can be invoked, so we manually lower it to a DAG
2766       // node here.
2767       SmallVector<SDValue, 8> Ops;
2768       Ops.push_back(getRoot()); // inchain
2769       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2770       Ops.push_back(
2771           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2772                                 TLI.getPointerTy(DAG.getDataLayout())));
2773       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2774       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2775       break;
2776     }
2777     }
2778   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2779     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2780     // Eventually we will support lowering the @llvm.experimental.deoptimize
2781     // intrinsic, and right now there are no plans to support other intrinsics
2782     // with deopt state.
2783     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2784   } else {
2785     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2786   }
2787 
2788   // If the value of the invoke is used outside of its defining block, make it
2789   // available as a virtual register.
2790   // We already took care of the exported value for the statepoint instruction
2791   // during call to the LowerStatepoint.
2792   if (!isStatepoint(I)) {
2793     CopyToExportRegsIfNeeded(&I);
2794   }
2795 
2796   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2797   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2798   BranchProbability EHPadBBProb =
2799       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2800           : BranchProbability::getZero();
2801   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2802 
2803   // Update successor info.
2804   addSuccessorWithProb(InvokeMBB, Return);
2805   for (auto &UnwindDest : UnwindDests) {
2806     UnwindDest.first->setIsEHPad();
2807     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2808   }
2809   InvokeMBB->normalizeSuccProbs();
2810 
2811   // Drop into normal successor.
2812   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2813                           DAG.getBasicBlock(Return)));
2814 }
2815 
2816 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2817   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2818 
2819   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2820   // have to do anything here to lower funclet bundles.
2821   assert(!I.hasOperandBundlesOtherThan(
2822              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2823          "Cannot lower callbrs with arbitrary operand bundles yet!");
2824 
2825   assert(isa<InlineAsm>(I.getCalledValue()) &&
2826          "Only know how to handle inlineasm callbr");
2827   visitInlineAsm(&I);
2828 
2829   // Retrieve successors.
2830   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2831 
2832   // Update successor info.
2833   addSuccessorWithProb(CallBrMBB, Return);
2834   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2835     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2836     addSuccessorWithProb(CallBrMBB, Target);
2837   }
2838   CallBrMBB->normalizeSuccProbs();
2839 
2840   // Drop into default successor.
2841   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2842                           MVT::Other, getControlRoot(),
2843                           DAG.getBasicBlock(Return)));
2844 }
2845 
2846 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2847   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2848 }
2849 
2850 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2851   assert(FuncInfo.MBB->isEHPad() &&
2852          "Call to landingpad not in landing pad!");
2853 
2854   // If there aren't registers to copy the values into (e.g., during SjLj
2855   // exceptions), then don't bother to create these DAG nodes.
2856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2857   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2858   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2859       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2860     return;
2861 
2862   // If landingpad's return type is token type, we don't create DAG nodes
2863   // for its exception pointer and selector value. The extraction of exception
2864   // pointer or selector value from token type landingpads is not currently
2865   // supported.
2866   if (LP.getType()->isTokenTy())
2867     return;
2868 
2869   SmallVector<EVT, 2> ValueVTs;
2870   SDLoc dl = getCurSDLoc();
2871   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2872   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2873 
2874   // Get the two live-in registers as SDValues. The physregs have already been
2875   // copied into virtual registers.
2876   SDValue Ops[2];
2877   if (FuncInfo.ExceptionPointerVirtReg) {
2878     Ops[0] = DAG.getZExtOrTrunc(
2879         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2880                            FuncInfo.ExceptionPointerVirtReg,
2881                            TLI.getPointerTy(DAG.getDataLayout())),
2882         dl, ValueVTs[0]);
2883   } else {
2884     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2885   }
2886   Ops[1] = DAG.getZExtOrTrunc(
2887       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2888                          FuncInfo.ExceptionSelectorVirtReg,
2889                          TLI.getPointerTy(DAG.getDataLayout())),
2890       dl, ValueVTs[1]);
2891 
2892   // Merge into one.
2893   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2894                             DAG.getVTList(ValueVTs), Ops);
2895   setValue(&LP, Res);
2896 }
2897 
2898 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2899 #ifndef NDEBUG
2900   for (const CaseCluster &CC : Clusters)
2901     assert(CC.Low == CC.High && "Input clusters must be single-case");
2902 #endif
2903 
2904   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2905     return a.Low->getValue().slt(b.Low->getValue());
2906   });
2907 
2908   // Merge adjacent clusters with the same destination.
2909   const unsigned N = Clusters.size();
2910   unsigned DstIndex = 0;
2911   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2912     CaseCluster &CC = Clusters[SrcIndex];
2913     const ConstantInt *CaseVal = CC.Low;
2914     MachineBasicBlock *Succ = CC.MBB;
2915 
2916     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2917         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2918       // If this case has the same successor and is a neighbour, merge it into
2919       // the previous cluster.
2920       Clusters[DstIndex - 1].High = CaseVal;
2921       Clusters[DstIndex - 1].Prob += CC.Prob;
2922     } else {
2923       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2924                    sizeof(Clusters[SrcIndex]));
2925     }
2926   }
2927   Clusters.resize(DstIndex);
2928 }
2929 
2930 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2931                                            MachineBasicBlock *Last) {
2932   // Update JTCases.
2933   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2934     if (JTCases[i].first.HeaderBB == First)
2935       JTCases[i].first.HeaderBB = Last;
2936 
2937   // Update BitTestCases.
2938   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2939     if (BitTestCases[i].Parent == First)
2940       BitTestCases[i].Parent = Last;
2941 }
2942 
2943 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2944   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2945 
2946   // Update machine-CFG edges with unique successors.
2947   SmallSet<BasicBlock*, 32> Done;
2948   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2949     BasicBlock *BB = I.getSuccessor(i);
2950     bool Inserted = Done.insert(BB).second;
2951     if (!Inserted)
2952         continue;
2953 
2954     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2955     addSuccessorWithProb(IndirectBrMBB, Succ);
2956   }
2957   IndirectBrMBB->normalizeSuccProbs();
2958 
2959   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2960                           MVT::Other, getControlRoot(),
2961                           getValue(I.getAddress())));
2962 }
2963 
2964 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2965   if (!DAG.getTarget().Options.TrapUnreachable)
2966     return;
2967 
2968   // We may be able to ignore unreachable behind a noreturn call.
2969   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2970     const BasicBlock &BB = *I.getParent();
2971     if (&I != &BB.front()) {
2972       BasicBlock::const_iterator PredI =
2973         std::prev(BasicBlock::const_iterator(&I));
2974       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2975         if (Call->doesNotReturn())
2976           return;
2977       }
2978     }
2979   }
2980 
2981   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2982 }
2983 
2984 void SelectionDAGBuilder::visitFSub(const User &I) {
2985   // -0.0 - X --> fneg
2986   Type *Ty = I.getType();
2987   if (isa<Constant>(I.getOperand(0)) &&
2988       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2989     SDValue Op2 = getValue(I.getOperand(1));
2990     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2991                              Op2.getValueType(), Op2));
2992     return;
2993   }
2994 
2995   visitBinary(I, ISD::FSUB);
2996 }
2997 
2998 /// Checks if the given instruction performs a vector reduction, in which case
2999 /// we have the freedom to alter the elements in the result as long as the
3000 /// reduction of them stays unchanged.
3001 static bool isVectorReductionOp(const User *I) {
3002   const Instruction *Inst = dyn_cast<Instruction>(I);
3003   if (!Inst || !Inst->getType()->isVectorTy())
3004     return false;
3005 
3006   auto OpCode = Inst->getOpcode();
3007   switch (OpCode) {
3008   case Instruction::Add:
3009   case Instruction::Mul:
3010   case Instruction::And:
3011   case Instruction::Or:
3012   case Instruction::Xor:
3013     break;
3014   case Instruction::FAdd:
3015   case Instruction::FMul:
3016     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3017       if (FPOp->getFastMathFlags().isFast())
3018         break;
3019     LLVM_FALLTHROUGH;
3020   default:
3021     return false;
3022   }
3023 
3024   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3025   // Ensure the reduction size is a power of 2.
3026   if (!isPowerOf2_32(ElemNum))
3027     return false;
3028 
3029   unsigned ElemNumToReduce = ElemNum;
3030 
3031   // Do DFS search on the def-use chain from the given instruction. We only
3032   // allow four kinds of operations during the search until we reach the
3033   // instruction that extracts the first element from the vector:
3034   //
3035   //   1. The reduction operation of the same opcode as the given instruction.
3036   //
3037   //   2. PHI node.
3038   //
3039   //   3. ShuffleVector instruction together with a reduction operation that
3040   //      does a partial reduction.
3041   //
3042   //   4. ExtractElement that extracts the first element from the vector, and we
3043   //      stop searching the def-use chain here.
3044   //
3045   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3046   // from 1-3 to the stack to continue the DFS. The given instruction is not
3047   // a reduction operation if we meet any other instructions other than those
3048   // listed above.
3049 
3050   SmallVector<const User *, 16> UsersToVisit{Inst};
3051   SmallPtrSet<const User *, 16> Visited;
3052   bool ReduxExtracted = false;
3053 
3054   while (!UsersToVisit.empty()) {
3055     auto User = UsersToVisit.back();
3056     UsersToVisit.pop_back();
3057     if (!Visited.insert(User).second)
3058       continue;
3059 
3060     for (const auto &U : User->users()) {
3061       auto Inst = dyn_cast<Instruction>(U);
3062       if (!Inst)
3063         return false;
3064 
3065       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3066         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3067           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3068             return false;
3069         UsersToVisit.push_back(U);
3070       } else if (const ShuffleVectorInst *ShufInst =
3071                      dyn_cast<ShuffleVectorInst>(U)) {
3072         // Detect the following pattern: A ShuffleVector instruction together
3073         // with a reduction that do partial reduction on the first and second
3074         // ElemNumToReduce / 2 elements, and store the result in
3075         // ElemNumToReduce / 2 elements in another vector.
3076 
3077         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3078         if (ResultElements < ElemNum)
3079           return false;
3080 
3081         if (ElemNumToReduce == 1)
3082           return false;
3083         if (!isa<UndefValue>(U->getOperand(1)))
3084           return false;
3085         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3086           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3087             return false;
3088         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3089           if (ShufInst->getMaskValue(i) != -1)
3090             return false;
3091 
3092         // There is only one user of this ShuffleVector instruction, which
3093         // must be a reduction operation.
3094         if (!U->hasOneUse())
3095           return false;
3096 
3097         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3098         if (!U2 || U2->getOpcode() != OpCode)
3099           return false;
3100 
3101         // Check operands of the reduction operation.
3102         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3103             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3104           UsersToVisit.push_back(U2);
3105           ElemNumToReduce /= 2;
3106         } else
3107           return false;
3108       } else if (isa<ExtractElementInst>(U)) {
3109         // At this moment we should have reduced all elements in the vector.
3110         if (ElemNumToReduce != 1)
3111           return false;
3112 
3113         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3114         if (!Val || !Val->isZero())
3115           return false;
3116 
3117         ReduxExtracted = true;
3118       } else
3119         return false;
3120     }
3121   }
3122   return ReduxExtracted;
3123 }
3124 
3125 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3126   SDNodeFlags Flags;
3127 
3128   SDValue Op = getValue(I.getOperand(0));
3129   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3130                                     Op, Flags);
3131   setValue(&I, UnNodeValue);
3132 }
3133 
3134 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3135   SDNodeFlags Flags;
3136   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3137     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3138     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3139   }
3140   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3141     Flags.setExact(ExactOp->isExact());
3142   }
3143   if (isVectorReductionOp(&I)) {
3144     Flags.setVectorReduction(true);
3145     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3146   }
3147 
3148   SDValue Op1 = getValue(I.getOperand(0));
3149   SDValue Op2 = getValue(I.getOperand(1));
3150   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3151                                      Op1, Op2, Flags);
3152   setValue(&I, BinNodeValue);
3153 }
3154 
3155 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3156   SDValue Op1 = getValue(I.getOperand(0));
3157   SDValue Op2 = getValue(I.getOperand(1));
3158 
3159   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3160       Op1.getValueType(), DAG.getDataLayout());
3161 
3162   // Coerce the shift amount to the right type if we can.
3163   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3164     unsigned ShiftSize = ShiftTy.getSizeInBits();
3165     unsigned Op2Size = Op2.getValueSizeInBits();
3166     SDLoc DL = getCurSDLoc();
3167 
3168     // If the operand is smaller than the shift count type, promote it.
3169     if (ShiftSize > Op2Size)
3170       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3171 
3172     // If the operand is larger than the shift count type but the shift
3173     // count type has enough bits to represent any shift value, truncate
3174     // it now. This is a common case and it exposes the truncate to
3175     // optimization early.
3176     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3177       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3178     // Otherwise we'll need to temporarily settle for some other convenient
3179     // type.  Type legalization will make adjustments once the shiftee is split.
3180     else
3181       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3182   }
3183 
3184   bool nuw = false;
3185   bool nsw = false;
3186   bool exact = false;
3187 
3188   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3189 
3190     if (const OverflowingBinaryOperator *OFBinOp =
3191             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3192       nuw = OFBinOp->hasNoUnsignedWrap();
3193       nsw = OFBinOp->hasNoSignedWrap();
3194     }
3195     if (const PossiblyExactOperator *ExactOp =
3196             dyn_cast<const PossiblyExactOperator>(&I))
3197       exact = ExactOp->isExact();
3198   }
3199   SDNodeFlags Flags;
3200   Flags.setExact(exact);
3201   Flags.setNoSignedWrap(nsw);
3202   Flags.setNoUnsignedWrap(nuw);
3203   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3204                             Flags);
3205   setValue(&I, Res);
3206 }
3207 
3208 void SelectionDAGBuilder::visitSDiv(const User &I) {
3209   SDValue Op1 = getValue(I.getOperand(0));
3210   SDValue Op2 = getValue(I.getOperand(1));
3211 
3212   SDNodeFlags Flags;
3213   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3214                  cast<PossiblyExactOperator>(&I)->isExact());
3215   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3216                            Op2, Flags));
3217 }
3218 
3219 void SelectionDAGBuilder::visitICmp(const User &I) {
3220   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3221   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3222     predicate = IC->getPredicate();
3223   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3224     predicate = ICmpInst::Predicate(IC->getPredicate());
3225   SDValue Op1 = getValue(I.getOperand(0));
3226   SDValue Op2 = getValue(I.getOperand(1));
3227   ISD::CondCode Opcode = getICmpCondCode(predicate);
3228 
3229   auto &TLI = DAG.getTargetLoweringInfo();
3230   EVT MemVT =
3231       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3232 
3233   // If a pointer's DAG type is larger than its memory type then the DAG values
3234   // are zero-extended. This breaks signed comparisons so truncate back to the
3235   // underlying type before doing the compare.
3236   if (Op1.getValueType() != MemVT) {
3237     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3238     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3239   }
3240 
3241   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3242                                                         I.getType());
3243   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3244 }
3245 
3246 void SelectionDAGBuilder::visitFCmp(const User &I) {
3247   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3248   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3249     predicate = FC->getPredicate();
3250   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3251     predicate = FCmpInst::Predicate(FC->getPredicate());
3252   SDValue Op1 = getValue(I.getOperand(0));
3253   SDValue Op2 = getValue(I.getOperand(1));
3254 
3255   ISD::CondCode Condition = getFCmpCondCode(predicate);
3256   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3257   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3258     Condition = getFCmpCodeWithoutNaN(Condition);
3259 
3260   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3261                                                         I.getType());
3262   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3263 }
3264 
3265 // Check if the condition of the select has one use or two users that are both
3266 // selects with the same condition.
3267 static bool hasOnlySelectUsers(const Value *Cond) {
3268   return llvm::all_of(Cond->users(), [](const Value *V) {
3269     return isa<SelectInst>(V);
3270   });
3271 }
3272 
3273 void SelectionDAGBuilder::visitSelect(const User &I) {
3274   SmallVector<EVT, 4> ValueVTs;
3275   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3276                   ValueVTs);
3277   unsigned NumValues = ValueVTs.size();
3278   if (NumValues == 0) return;
3279 
3280   SmallVector<SDValue, 4> Values(NumValues);
3281   SDValue Cond     = getValue(I.getOperand(0));
3282   SDValue LHSVal   = getValue(I.getOperand(1));
3283   SDValue RHSVal   = getValue(I.getOperand(2));
3284   auto BaseOps = {Cond};
3285   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3286     ISD::VSELECT : ISD::SELECT;
3287 
3288   bool IsUnaryAbs = false;
3289 
3290   // Min/max matching is only viable if all output VTs are the same.
3291   if (is_splat(ValueVTs)) {
3292     EVT VT = ValueVTs[0];
3293     LLVMContext &Ctx = *DAG.getContext();
3294     auto &TLI = DAG.getTargetLoweringInfo();
3295 
3296     // We care about the legality of the operation after it has been type
3297     // legalized.
3298     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3299            VT != TLI.getTypeToTransformTo(Ctx, VT))
3300       VT = TLI.getTypeToTransformTo(Ctx, VT);
3301 
3302     // If the vselect is legal, assume we want to leave this as a vector setcc +
3303     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3304     // min/max is legal on the scalar type.
3305     bool UseScalarMinMax = VT.isVector() &&
3306       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3307 
3308     Value *LHS, *RHS;
3309     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3310     ISD::NodeType Opc = ISD::DELETED_NODE;
3311     switch (SPR.Flavor) {
3312     case SPF_UMAX:    Opc = ISD::UMAX; break;
3313     case SPF_UMIN:    Opc = ISD::UMIN; break;
3314     case SPF_SMAX:    Opc = ISD::SMAX; break;
3315     case SPF_SMIN:    Opc = ISD::SMIN; break;
3316     case SPF_FMINNUM:
3317       switch (SPR.NaNBehavior) {
3318       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3319       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3320       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3321       case SPNB_RETURNS_ANY: {
3322         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3323           Opc = ISD::FMINNUM;
3324         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3325           Opc = ISD::FMINIMUM;
3326         else if (UseScalarMinMax)
3327           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3328             ISD::FMINNUM : ISD::FMINIMUM;
3329         break;
3330       }
3331       }
3332       break;
3333     case SPF_FMAXNUM:
3334       switch (SPR.NaNBehavior) {
3335       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3336       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3337       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3338       case SPNB_RETURNS_ANY:
3339 
3340         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3341           Opc = ISD::FMAXNUM;
3342         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3343           Opc = ISD::FMAXIMUM;
3344         else if (UseScalarMinMax)
3345           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3346             ISD::FMAXNUM : ISD::FMAXIMUM;
3347         break;
3348       }
3349       break;
3350     case SPF_ABS:
3351       IsUnaryAbs = true;
3352       Opc = ISD::ABS;
3353       break;
3354     case SPF_NABS:
3355       // TODO: we need to produce sub(0, abs(X)).
3356     default: break;
3357     }
3358 
3359     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3360         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3361          (UseScalarMinMax &&
3362           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3363         // If the underlying comparison instruction is used by any other
3364         // instruction, the consumed instructions won't be destroyed, so it is
3365         // not profitable to convert to a min/max.
3366         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3367       OpCode = Opc;
3368       LHSVal = getValue(LHS);
3369       RHSVal = getValue(RHS);
3370       BaseOps = {};
3371     }
3372 
3373     if (IsUnaryAbs) {
3374       OpCode = Opc;
3375       LHSVal = getValue(LHS);
3376       BaseOps = {};
3377     }
3378   }
3379 
3380   if (IsUnaryAbs) {
3381     for (unsigned i = 0; i != NumValues; ++i) {
3382       Values[i] =
3383           DAG.getNode(OpCode, getCurSDLoc(),
3384                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3385                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3386     }
3387   } else {
3388     for (unsigned i = 0; i != NumValues; ++i) {
3389       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3390       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3391       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3392       Values[i] = DAG.getNode(
3393           OpCode, getCurSDLoc(),
3394           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3395     }
3396   }
3397 
3398   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3399                            DAG.getVTList(ValueVTs), Values));
3400 }
3401 
3402 void SelectionDAGBuilder::visitTrunc(const User &I) {
3403   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3404   SDValue N = getValue(I.getOperand(0));
3405   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3406                                                         I.getType());
3407   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3408 }
3409 
3410 void SelectionDAGBuilder::visitZExt(const User &I) {
3411   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3412   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3413   SDValue N = getValue(I.getOperand(0));
3414   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3415                                                         I.getType());
3416   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3417 }
3418 
3419 void SelectionDAGBuilder::visitSExt(const User &I) {
3420   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3421   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3422   SDValue N = getValue(I.getOperand(0));
3423   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3424                                                         I.getType());
3425   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3426 }
3427 
3428 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3429   // FPTrunc is never a no-op cast, no need to check
3430   SDValue N = getValue(I.getOperand(0));
3431   SDLoc dl = getCurSDLoc();
3432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3433   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3434   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3435                            DAG.getTargetConstant(
3436                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3437 }
3438 
3439 void SelectionDAGBuilder::visitFPExt(const User &I) {
3440   // FPExt is never a no-op cast, no need to check
3441   SDValue N = getValue(I.getOperand(0));
3442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443                                                         I.getType());
3444   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3445 }
3446 
3447 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3448   // FPToUI is never a no-op cast, no need to check
3449   SDValue N = getValue(I.getOperand(0));
3450   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3451                                                         I.getType());
3452   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3453 }
3454 
3455 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3456   // FPToSI is never a no-op cast, no need to check
3457   SDValue N = getValue(I.getOperand(0));
3458   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459                                                         I.getType());
3460   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3461 }
3462 
3463 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3464   // UIToFP is never a no-op cast, no need to check
3465   SDValue N = getValue(I.getOperand(0));
3466   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3467                                                         I.getType());
3468   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3469 }
3470 
3471 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3472   // SIToFP is never a no-op cast, no need to check
3473   SDValue N = getValue(I.getOperand(0));
3474   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3475                                                         I.getType());
3476   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3477 }
3478 
3479 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3480   // What to do depends on the size of the integer and the size of the pointer.
3481   // We can either truncate, zero extend, or no-op, accordingly.
3482   SDValue N = getValue(I.getOperand(0));
3483   auto &TLI = DAG.getTargetLoweringInfo();
3484   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3485                                                         I.getType());
3486   EVT PtrMemVT =
3487       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3488   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3494   // What to do depends on the size of the integer and the size of the pointer.
3495   // We can either truncate, zero extend, or no-op, accordingly.
3496   SDValue N = getValue(I.getOperand(0));
3497   auto &TLI = DAG.getTargetLoweringInfo();
3498   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3499   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3500   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3501   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3502   setValue(&I, N);
3503 }
3504 
3505 void SelectionDAGBuilder::visitBitCast(const User &I) {
3506   SDValue N = getValue(I.getOperand(0));
3507   SDLoc dl = getCurSDLoc();
3508   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3509                                                         I.getType());
3510 
3511   // BitCast assures us that source and destination are the same size so this is
3512   // either a BITCAST or a no-op.
3513   if (DestVT != N.getValueType())
3514     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3515                              DestVT, N)); // convert types.
3516   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3517   // might fold any kind of constant expression to an integer constant and that
3518   // is not what we are looking for. Only recognize a bitcast of a genuine
3519   // constant integer as an opaque constant.
3520   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3521     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3522                                  /*isOpaque*/true));
3523   else
3524     setValue(&I, N);            // noop cast.
3525 }
3526 
3527 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3529   const Value *SV = I.getOperand(0);
3530   SDValue N = getValue(SV);
3531   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3532 
3533   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3534   unsigned DestAS = I.getType()->getPointerAddressSpace();
3535 
3536   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3537     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3538 
3539   setValue(&I, N);
3540 }
3541 
3542 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   SDValue InVec = getValue(I.getOperand(0));
3545   SDValue InVal = getValue(I.getOperand(1));
3546   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3547                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3548   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3549                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3550                            InVec, InVal, InIdx));
3551 }
3552 
3553 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3554   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3555   SDValue InVec = getValue(I.getOperand(0));
3556   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3557                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3558   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3559                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3560                            InVec, InIdx));
3561 }
3562 
3563 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3564   SDValue Src1 = getValue(I.getOperand(0));
3565   SDValue Src2 = getValue(I.getOperand(1));
3566   SDLoc DL = getCurSDLoc();
3567 
3568   SmallVector<int, 8> Mask;
3569   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3570   unsigned MaskNumElts = Mask.size();
3571 
3572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3573   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3574   EVT SrcVT = Src1.getValueType();
3575   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3576 
3577   if (SrcNumElts == MaskNumElts) {
3578     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3579     return;
3580   }
3581 
3582   // Normalize the shuffle vector since mask and vector length don't match.
3583   if (SrcNumElts < MaskNumElts) {
3584     // Mask is longer than the source vectors. We can use concatenate vector to
3585     // make the mask and vectors lengths match.
3586 
3587     if (MaskNumElts % SrcNumElts == 0) {
3588       // Mask length is a multiple of the source vector length.
3589       // Check if the shuffle is some kind of concatenation of the input
3590       // vectors.
3591       unsigned NumConcat = MaskNumElts / SrcNumElts;
3592       bool IsConcat = true;
3593       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3594       for (unsigned i = 0; i != MaskNumElts; ++i) {
3595         int Idx = Mask[i];
3596         if (Idx < 0)
3597           continue;
3598         // Ensure the indices in each SrcVT sized piece are sequential and that
3599         // the same source is used for the whole piece.
3600         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3601             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3602              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3603           IsConcat = false;
3604           break;
3605         }
3606         // Remember which source this index came from.
3607         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3608       }
3609 
3610       // The shuffle is concatenating multiple vectors together. Just emit
3611       // a CONCAT_VECTORS operation.
3612       if (IsConcat) {
3613         SmallVector<SDValue, 8> ConcatOps;
3614         for (auto Src : ConcatSrcs) {
3615           if (Src < 0)
3616             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3617           else if (Src == 0)
3618             ConcatOps.push_back(Src1);
3619           else
3620             ConcatOps.push_back(Src2);
3621         }
3622         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3623         return;
3624       }
3625     }
3626 
3627     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3628     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3629     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3630                                     PaddedMaskNumElts);
3631 
3632     // Pad both vectors with undefs to make them the same length as the mask.
3633     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3634 
3635     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3636     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3637     MOps1[0] = Src1;
3638     MOps2[0] = Src2;
3639 
3640     Src1 = Src1.isUndef()
3641                ? DAG.getUNDEF(PaddedVT)
3642                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3643     Src2 = Src2.isUndef()
3644                ? DAG.getUNDEF(PaddedVT)
3645                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3646 
3647     // Readjust mask for new input vector length.
3648     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3649     for (unsigned i = 0; i != MaskNumElts; ++i) {
3650       int Idx = Mask[i];
3651       if (Idx >= (int)SrcNumElts)
3652         Idx -= SrcNumElts - PaddedMaskNumElts;
3653       MappedOps[i] = Idx;
3654     }
3655 
3656     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3657 
3658     // If the concatenated vector was padded, extract a subvector with the
3659     // correct number of elements.
3660     if (MaskNumElts != PaddedMaskNumElts)
3661       Result = DAG.getNode(
3662           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3663           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3664 
3665     setValue(&I, Result);
3666     return;
3667   }
3668 
3669   if (SrcNumElts > MaskNumElts) {
3670     // Analyze the access pattern of the vector to see if we can extract
3671     // two subvectors and do the shuffle.
3672     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3673     bool CanExtract = true;
3674     for (int Idx : Mask) {
3675       unsigned Input = 0;
3676       if (Idx < 0)
3677         continue;
3678 
3679       if (Idx >= (int)SrcNumElts) {
3680         Input = 1;
3681         Idx -= SrcNumElts;
3682       }
3683 
3684       // If all the indices come from the same MaskNumElts sized portion of
3685       // the sources we can use extract. Also make sure the extract wouldn't
3686       // extract past the end of the source.
3687       int NewStartIdx = alignDown(Idx, MaskNumElts);
3688       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3689           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3690         CanExtract = false;
3691       // Make sure we always update StartIdx as we use it to track if all
3692       // elements are undef.
3693       StartIdx[Input] = NewStartIdx;
3694     }
3695 
3696     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3697       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3698       return;
3699     }
3700     if (CanExtract) {
3701       // Extract appropriate subvector and generate a vector shuffle
3702       for (unsigned Input = 0; Input < 2; ++Input) {
3703         SDValue &Src = Input == 0 ? Src1 : Src2;
3704         if (StartIdx[Input] < 0)
3705           Src = DAG.getUNDEF(VT);
3706         else {
3707           Src = DAG.getNode(
3708               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3709               DAG.getConstant(StartIdx[Input], DL,
3710                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3711         }
3712       }
3713 
3714       // Calculate new mask.
3715       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3716       for (int &Idx : MappedOps) {
3717         if (Idx >= (int)SrcNumElts)
3718           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3719         else if (Idx >= 0)
3720           Idx -= StartIdx[0];
3721       }
3722 
3723       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3724       return;
3725     }
3726   }
3727 
3728   // We can't use either concat vectors or extract subvectors so fall back to
3729   // replacing the shuffle with extract and build vector.
3730   // to insert and build vector.
3731   EVT EltVT = VT.getVectorElementType();
3732   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3733   SmallVector<SDValue,8> Ops;
3734   for (int Idx : Mask) {
3735     SDValue Res;
3736 
3737     if (Idx < 0) {
3738       Res = DAG.getUNDEF(EltVT);
3739     } else {
3740       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3741       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3742 
3743       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3744                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3745     }
3746 
3747     Ops.push_back(Res);
3748   }
3749 
3750   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3751 }
3752 
3753 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3754   ArrayRef<unsigned> Indices;
3755   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3756     Indices = IV->getIndices();
3757   else
3758     Indices = cast<ConstantExpr>(&I)->getIndices();
3759 
3760   const Value *Op0 = I.getOperand(0);
3761   const Value *Op1 = I.getOperand(1);
3762   Type *AggTy = I.getType();
3763   Type *ValTy = Op1->getType();
3764   bool IntoUndef = isa<UndefValue>(Op0);
3765   bool FromUndef = isa<UndefValue>(Op1);
3766 
3767   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3768 
3769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3770   SmallVector<EVT, 4> AggValueVTs;
3771   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3772   SmallVector<EVT, 4> ValValueVTs;
3773   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3774 
3775   unsigned NumAggValues = AggValueVTs.size();
3776   unsigned NumValValues = ValValueVTs.size();
3777   SmallVector<SDValue, 4> Values(NumAggValues);
3778 
3779   // Ignore an insertvalue that produces an empty object
3780   if (!NumAggValues) {
3781     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3782     return;
3783   }
3784 
3785   SDValue Agg = getValue(Op0);
3786   unsigned i = 0;
3787   // Copy the beginning value(s) from the original aggregate.
3788   for (; i != LinearIndex; ++i)
3789     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3790                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3791   // Copy values from the inserted value(s).
3792   if (NumValValues) {
3793     SDValue Val = getValue(Op1);
3794     for (; i != LinearIndex + NumValValues; ++i)
3795       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3796                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3797   }
3798   // Copy remaining value(s) from the original aggregate.
3799   for (; i != NumAggValues; ++i)
3800     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3801                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3802 
3803   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3804                            DAG.getVTList(AggValueVTs), Values));
3805 }
3806 
3807 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3808   ArrayRef<unsigned> Indices;
3809   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3810     Indices = EV->getIndices();
3811   else
3812     Indices = cast<ConstantExpr>(&I)->getIndices();
3813 
3814   const Value *Op0 = I.getOperand(0);
3815   Type *AggTy = Op0->getType();
3816   Type *ValTy = I.getType();
3817   bool OutOfUndef = isa<UndefValue>(Op0);
3818 
3819   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3820 
3821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3822   SmallVector<EVT, 4> ValValueVTs;
3823   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3824 
3825   unsigned NumValValues = ValValueVTs.size();
3826 
3827   // Ignore a extractvalue that produces an empty object
3828   if (!NumValValues) {
3829     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3830     return;
3831   }
3832 
3833   SmallVector<SDValue, 4> Values(NumValValues);
3834 
3835   SDValue Agg = getValue(Op0);
3836   // Copy out the selected value(s).
3837   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3838     Values[i - LinearIndex] =
3839       OutOfUndef ?
3840         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3841         SDValue(Agg.getNode(), Agg.getResNo() + i);
3842 
3843   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3844                            DAG.getVTList(ValValueVTs), Values));
3845 }
3846 
3847 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3848   Value *Op0 = I.getOperand(0);
3849   // Note that the pointer operand may be a vector of pointers. Take the scalar
3850   // element which holds a pointer.
3851   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3852   SDValue N = getValue(Op0);
3853   SDLoc dl = getCurSDLoc();
3854   auto &TLI = DAG.getTargetLoweringInfo();
3855   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3856   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3857 
3858   // Normalize Vector GEP - all scalar operands should be converted to the
3859   // splat vector.
3860   unsigned VectorWidth = I.getType()->isVectorTy() ?
3861     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3862 
3863   if (VectorWidth && !N.getValueType().isVector()) {
3864     LLVMContext &Context = *DAG.getContext();
3865     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3866     N = DAG.getSplatBuildVector(VT, dl, N);
3867   }
3868 
3869   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3870        GTI != E; ++GTI) {
3871     const Value *Idx = GTI.getOperand();
3872     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3873       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3874       if (Field) {
3875         // N = N + Offset
3876         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3877 
3878         // In an inbounds GEP with an offset that is nonnegative even when
3879         // interpreted as signed, assume there is no unsigned overflow.
3880         SDNodeFlags Flags;
3881         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3882           Flags.setNoUnsignedWrap(true);
3883 
3884         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3885                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3886       }
3887     } else {
3888       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3889       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3890       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3891 
3892       // If this is a scalar constant or a splat vector of constants,
3893       // handle it quickly.
3894       const auto *CI = dyn_cast<ConstantInt>(Idx);
3895       if (!CI && isa<ConstantDataVector>(Idx) &&
3896           cast<ConstantDataVector>(Idx)->getSplatValue())
3897         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3898 
3899       if (CI) {
3900         if (CI->isZero())
3901           continue;
3902         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3903         LLVMContext &Context = *DAG.getContext();
3904         SDValue OffsVal = VectorWidth ?
3905           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3906           DAG.getConstant(Offs, dl, IdxTy);
3907 
3908         // In an inbouds GEP with an offset that is nonnegative even when
3909         // interpreted as signed, assume there is no unsigned overflow.
3910         SDNodeFlags Flags;
3911         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3912           Flags.setNoUnsignedWrap(true);
3913 
3914         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3915 
3916         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3917         continue;
3918       }
3919 
3920       // N = N + Idx * ElementSize;
3921       SDValue IdxN = getValue(Idx);
3922 
3923       if (!IdxN.getValueType().isVector() && VectorWidth) {
3924         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3925         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3926       }
3927 
3928       // If the index is smaller or larger than intptr_t, truncate or extend
3929       // it.
3930       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3931 
3932       // If this is a multiply by a power of two, turn it into a shl
3933       // immediately.  This is a very common case.
3934       if (ElementSize != 1) {
3935         if (ElementSize.isPowerOf2()) {
3936           unsigned Amt = ElementSize.logBase2();
3937           IdxN = DAG.getNode(ISD::SHL, dl,
3938                              N.getValueType(), IdxN,
3939                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3940         } else {
3941           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3942                                           IdxN.getValueType());
3943           IdxN = DAG.getNode(ISD::MUL, dl,
3944                              N.getValueType(), IdxN, Scale);
3945         }
3946       }
3947 
3948       N = DAG.getNode(ISD::ADD, dl,
3949                       N.getValueType(), N, IdxN);
3950     }
3951   }
3952 
3953   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3954     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3955 
3956   setValue(&I, N);
3957 }
3958 
3959 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3960   // If this is a fixed sized alloca in the entry block of the function,
3961   // allocate it statically on the stack.
3962   if (FuncInfo.StaticAllocaMap.count(&I))
3963     return;   // getValue will auto-populate this.
3964 
3965   SDLoc dl = getCurSDLoc();
3966   Type *Ty = I.getAllocatedType();
3967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3968   auto &DL = DAG.getDataLayout();
3969   uint64_t TySize = DL.getTypeAllocSize(Ty);
3970   unsigned Align =
3971       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3972 
3973   SDValue AllocSize = getValue(I.getArraySize());
3974 
3975   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3976   if (AllocSize.getValueType() != IntPtr)
3977     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3978 
3979   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3980                           AllocSize,
3981                           DAG.getConstant(TySize, dl, IntPtr));
3982 
3983   // Handle alignment.  If the requested alignment is less than or equal to
3984   // the stack alignment, ignore it.  If the size is greater than or equal to
3985   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3986   unsigned StackAlign =
3987       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3988   if (Align <= StackAlign)
3989     Align = 0;
3990 
3991   // Round the size of the allocation up to the stack alignment size
3992   // by add SA-1 to the size. This doesn't overflow because we're computing
3993   // an address inside an alloca.
3994   SDNodeFlags Flags;
3995   Flags.setNoUnsignedWrap(true);
3996   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3997                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3998 
3999   // Mask out the low bits for alignment purposes.
4000   AllocSize =
4001       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4002                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4003 
4004   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4005   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4006   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4007   setValue(&I, DSA);
4008   DAG.setRoot(DSA.getValue(1));
4009 
4010   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4011 }
4012 
4013 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4014   if (I.isAtomic())
4015     return visitAtomicLoad(I);
4016 
4017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4018   const Value *SV = I.getOperand(0);
4019   if (TLI.supportSwiftError()) {
4020     // Swifterror values can come from either a function parameter with
4021     // swifterror attribute or an alloca with swifterror attribute.
4022     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4023       if (Arg->hasSwiftErrorAttr())
4024         return visitLoadFromSwiftError(I);
4025     }
4026 
4027     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4028       if (Alloca->isSwiftError())
4029         return visitLoadFromSwiftError(I);
4030     }
4031   }
4032 
4033   SDValue Ptr = getValue(SV);
4034 
4035   Type *Ty = I.getType();
4036 
4037   bool isVolatile = I.isVolatile();
4038   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
4039   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
4040   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
4041   unsigned Alignment = I.getAlignment();
4042 
4043   AAMDNodes AAInfo;
4044   I.getAAMetadata(AAInfo);
4045   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4046 
4047   SmallVector<EVT, 4> ValueVTs, MemVTs;
4048   SmallVector<uint64_t, 4> Offsets;
4049   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4050   unsigned NumValues = ValueVTs.size();
4051   if (NumValues == 0)
4052     return;
4053 
4054   SDValue Root;
4055   bool ConstantMemory = false;
4056   if (isVolatile || NumValues > MaxParallelChains)
4057     // Serialize volatile loads with other side effects.
4058     Root = getRoot();
4059   else if (AA &&
4060            AA->pointsToConstantMemory(MemoryLocation(
4061                SV,
4062                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4063                AAInfo))) {
4064     // Do not serialize (non-volatile) loads of constant memory with anything.
4065     Root = DAG.getEntryNode();
4066     ConstantMemory = true;
4067   } else {
4068     // Do not serialize non-volatile loads against each other.
4069     Root = DAG.getRoot();
4070   }
4071 
4072   SDLoc dl = getCurSDLoc();
4073 
4074   if (isVolatile)
4075     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4076 
4077   // An aggregate load cannot wrap around the address space, so offsets to its
4078   // parts don't wrap either.
4079   SDNodeFlags Flags;
4080   Flags.setNoUnsignedWrap(true);
4081 
4082   SmallVector<SDValue, 4> Values(NumValues);
4083   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4084   EVT PtrVT = Ptr.getValueType();
4085   unsigned ChainI = 0;
4086   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4087     // Serializing loads here may result in excessive register pressure, and
4088     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4089     // could recover a bit by hoisting nodes upward in the chain by recognizing
4090     // they are side-effect free or do not alias. The optimizer should really
4091     // avoid this case by converting large object/array copies to llvm.memcpy
4092     // (MaxParallelChains should always remain as failsafe).
4093     if (ChainI == MaxParallelChains) {
4094       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4095       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4096                                   makeArrayRef(Chains.data(), ChainI));
4097       Root = Chain;
4098       ChainI = 0;
4099     }
4100     SDValue A = DAG.getNode(ISD::ADD, dl,
4101                             PtrVT, Ptr,
4102                             DAG.getConstant(Offsets[i], dl, PtrVT),
4103                             Flags);
4104     auto MMOFlags = MachineMemOperand::MONone;
4105     if (isVolatile)
4106       MMOFlags |= MachineMemOperand::MOVolatile;
4107     if (isNonTemporal)
4108       MMOFlags |= MachineMemOperand::MONonTemporal;
4109     if (isInvariant)
4110       MMOFlags |= MachineMemOperand::MOInvariant;
4111     if (isDereferenceable)
4112       MMOFlags |= MachineMemOperand::MODereferenceable;
4113     MMOFlags |= TLI.getMMOFlags(I);
4114 
4115     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4116                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4117                             MMOFlags, AAInfo, Ranges);
4118     Chains[ChainI] = L.getValue(1);
4119 
4120     if (MemVTs[i] != ValueVTs[i])
4121       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4122 
4123     Values[i] = L;
4124   }
4125 
4126   if (!ConstantMemory) {
4127     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4128                                 makeArrayRef(Chains.data(), ChainI));
4129     if (isVolatile)
4130       DAG.setRoot(Chain);
4131     else
4132       PendingLoads.push_back(Chain);
4133   }
4134 
4135   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4136                            DAG.getVTList(ValueVTs), Values));
4137 }
4138 
4139 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4140   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4141          "call visitStoreToSwiftError when backend supports swifterror");
4142 
4143   SmallVector<EVT, 4> ValueVTs;
4144   SmallVector<uint64_t, 4> Offsets;
4145   const Value *SrcV = I.getOperand(0);
4146   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4147                   SrcV->getType(), ValueVTs, &Offsets);
4148   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4149          "expect a single EVT for swifterror");
4150 
4151   SDValue Src = getValue(SrcV);
4152   // Create a virtual register, then update the virtual register.
4153   unsigned VReg; bool CreatedVReg;
4154   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4155   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4156   // Chain can be getRoot or getControlRoot.
4157   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4158                                       SDValue(Src.getNode(), Src.getResNo()));
4159   DAG.setRoot(CopyNode);
4160   if (CreatedVReg)
4161     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4162 }
4163 
4164 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4165   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4166          "call visitLoadFromSwiftError when backend supports swifterror");
4167 
4168   assert(!I.isVolatile() &&
4169          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4170          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4171          "Support volatile, non temporal, invariant for load_from_swift_error");
4172 
4173   const Value *SV = I.getOperand(0);
4174   Type *Ty = I.getType();
4175   AAMDNodes AAInfo;
4176   I.getAAMetadata(AAInfo);
4177   assert(
4178       (!AA ||
4179        !AA->pointsToConstantMemory(MemoryLocation(
4180            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4181            AAInfo))) &&
4182       "load_from_swift_error should not be constant memory");
4183 
4184   SmallVector<EVT, 4> ValueVTs;
4185   SmallVector<uint64_t, 4> Offsets;
4186   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4187                   ValueVTs, &Offsets);
4188   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4189          "expect a single EVT for swifterror");
4190 
4191   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4192   SDValue L = DAG.getCopyFromReg(
4193       getRoot(), getCurSDLoc(),
4194       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4195       ValueVTs[0]);
4196 
4197   setValue(&I, L);
4198 }
4199 
4200 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4201   if (I.isAtomic())
4202     return visitAtomicStore(I);
4203 
4204   const Value *SrcV = I.getOperand(0);
4205   const Value *PtrV = I.getOperand(1);
4206 
4207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4208   if (TLI.supportSwiftError()) {
4209     // Swifterror values can come from either a function parameter with
4210     // swifterror attribute or an alloca with swifterror attribute.
4211     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4212       if (Arg->hasSwiftErrorAttr())
4213         return visitStoreToSwiftError(I);
4214     }
4215 
4216     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4217       if (Alloca->isSwiftError())
4218         return visitStoreToSwiftError(I);
4219     }
4220   }
4221 
4222   SmallVector<EVT, 4> ValueVTs, MemVTs;
4223   SmallVector<uint64_t, 4> Offsets;
4224   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4225                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4226   unsigned NumValues = ValueVTs.size();
4227   if (NumValues == 0)
4228     return;
4229 
4230   // Get the lowered operands. Note that we do this after
4231   // checking if NumResults is zero, because with zero results
4232   // the operands won't have values in the map.
4233   SDValue Src = getValue(SrcV);
4234   SDValue Ptr = getValue(PtrV);
4235 
4236   SDValue Root = getRoot();
4237   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4238   SDLoc dl = getCurSDLoc();
4239   EVT PtrVT = Ptr.getValueType();
4240   unsigned Alignment = I.getAlignment();
4241   AAMDNodes AAInfo;
4242   I.getAAMetadata(AAInfo);
4243 
4244   auto MMOFlags = MachineMemOperand::MONone;
4245   if (I.isVolatile())
4246     MMOFlags |= MachineMemOperand::MOVolatile;
4247   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4248     MMOFlags |= MachineMemOperand::MONonTemporal;
4249   MMOFlags |= TLI.getMMOFlags(I);
4250 
4251   // An aggregate load cannot wrap around the address space, so offsets to its
4252   // parts don't wrap either.
4253   SDNodeFlags Flags;
4254   Flags.setNoUnsignedWrap(true);
4255 
4256   unsigned ChainI = 0;
4257   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4258     // See visitLoad comments.
4259     if (ChainI == MaxParallelChains) {
4260       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4261                                   makeArrayRef(Chains.data(), ChainI));
4262       Root = Chain;
4263       ChainI = 0;
4264     }
4265     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4266                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4267     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4268     if (MemVTs[i] != ValueVTs[i])
4269       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4270     SDValue St =
4271         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4272                      Alignment, MMOFlags, AAInfo);
4273     Chains[ChainI] = St;
4274   }
4275 
4276   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4277                                   makeArrayRef(Chains.data(), ChainI));
4278   DAG.setRoot(StoreNode);
4279 }
4280 
4281 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4282                                            bool IsCompressing) {
4283   SDLoc sdl = getCurSDLoc();
4284 
4285   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4286                            unsigned& Alignment) {
4287     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4288     Src0 = I.getArgOperand(0);
4289     Ptr = I.getArgOperand(1);
4290     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4291     Mask = I.getArgOperand(3);
4292   };
4293   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4294                            unsigned& Alignment) {
4295     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4296     Src0 = I.getArgOperand(0);
4297     Ptr = I.getArgOperand(1);
4298     Mask = I.getArgOperand(2);
4299     Alignment = 0;
4300   };
4301 
4302   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4303   unsigned Alignment;
4304   if (IsCompressing)
4305     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4306   else
4307     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4308 
4309   SDValue Ptr = getValue(PtrOperand);
4310   SDValue Src0 = getValue(Src0Operand);
4311   SDValue Mask = getValue(MaskOperand);
4312 
4313   EVT VT = Src0.getValueType();
4314   if (!Alignment)
4315     Alignment = DAG.getEVTAlignment(VT);
4316 
4317   AAMDNodes AAInfo;
4318   I.getAAMetadata(AAInfo);
4319 
4320   MachineMemOperand *MMO =
4321     DAG.getMachineFunction().
4322     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4323                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4324                           Alignment, AAInfo);
4325   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4326                                          MMO, false /* Truncating */,
4327                                          IsCompressing);
4328   DAG.setRoot(StoreNode);
4329   setValue(&I, StoreNode);
4330 }
4331 
4332 // Get a uniform base for the Gather/Scatter intrinsic.
4333 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4334 // We try to represent it as a base pointer + vector of indices.
4335 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4336 // The first operand of the GEP may be a single pointer or a vector of pointers
4337 // Example:
4338 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4339 //  or
4340 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4341 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4342 //
4343 // When the first GEP operand is a single pointer - it is the uniform base we
4344 // are looking for. If first operand of the GEP is a splat vector - we
4345 // extract the splat value and use it as a uniform base.
4346 // In all other cases the function returns 'false'.
4347 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4348                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4349   SelectionDAG& DAG = SDB->DAG;
4350   LLVMContext &Context = *DAG.getContext();
4351 
4352   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4353   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4354   if (!GEP)
4355     return false;
4356 
4357   const Value *GEPPtr = GEP->getPointerOperand();
4358   if (!GEPPtr->getType()->isVectorTy())
4359     Ptr = GEPPtr;
4360   else if (!(Ptr = getSplatValue(GEPPtr)))
4361     return false;
4362 
4363   unsigned FinalIndex = GEP->getNumOperands() - 1;
4364   Value *IndexVal = GEP->getOperand(FinalIndex);
4365 
4366   // Ensure all the other indices are 0.
4367   for (unsigned i = 1; i < FinalIndex; ++i) {
4368     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4369     if (!C || !C->isZero())
4370       return false;
4371   }
4372 
4373   // The operands of the GEP may be defined in another basic block.
4374   // In this case we'll not find nodes for the operands.
4375   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4376     return false;
4377 
4378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4379   const DataLayout &DL = DAG.getDataLayout();
4380   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4381                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4382   Base = SDB->getValue(Ptr);
4383   Index = SDB->getValue(IndexVal);
4384 
4385   if (!Index.getValueType().isVector()) {
4386     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4387     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4388     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4389   }
4390   return true;
4391 }
4392 
4393 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4394   SDLoc sdl = getCurSDLoc();
4395 
4396   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4397   const Value *Ptr = I.getArgOperand(1);
4398   SDValue Src0 = getValue(I.getArgOperand(0));
4399   SDValue Mask = getValue(I.getArgOperand(3));
4400   EVT VT = Src0.getValueType();
4401   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4402   if (!Alignment)
4403     Alignment = DAG.getEVTAlignment(VT);
4404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4405 
4406   AAMDNodes AAInfo;
4407   I.getAAMetadata(AAInfo);
4408 
4409   SDValue Base;
4410   SDValue Index;
4411   SDValue Scale;
4412   const Value *BasePtr = Ptr;
4413   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4414 
4415   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4416   MachineMemOperand *MMO = DAG.getMachineFunction().
4417     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4418                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4419                          Alignment, AAInfo);
4420   if (!UniformBase) {
4421     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4422     Index = getValue(Ptr);
4423     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4424   }
4425   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4426   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4427                                          Ops, MMO);
4428   DAG.setRoot(Scatter);
4429   setValue(&I, Scatter);
4430 }
4431 
4432 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4433   SDLoc sdl = getCurSDLoc();
4434 
4435   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4436                            unsigned& Alignment) {
4437     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4438     Ptr = I.getArgOperand(0);
4439     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4440     Mask = I.getArgOperand(2);
4441     Src0 = I.getArgOperand(3);
4442   };
4443   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4444                            unsigned& Alignment) {
4445     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4446     Ptr = I.getArgOperand(0);
4447     Alignment = 0;
4448     Mask = I.getArgOperand(1);
4449     Src0 = I.getArgOperand(2);
4450   };
4451 
4452   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4453   unsigned Alignment;
4454   if (IsExpanding)
4455     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4456   else
4457     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4458 
4459   SDValue Ptr = getValue(PtrOperand);
4460   SDValue Src0 = getValue(Src0Operand);
4461   SDValue Mask = getValue(MaskOperand);
4462 
4463   EVT VT = Src0.getValueType();
4464   if (!Alignment)
4465     Alignment = DAG.getEVTAlignment(VT);
4466 
4467   AAMDNodes AAInfo;
4468   I.getAAMetadata(AAInfo);
4469   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4470 
4471   // Do not serialize masked loads of constant memory with anything.
4472   bool AddToChain =
4473       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4474                  PtrOperand,
4475                  LocationSize::precise(
4476                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4477                  AAInfo));
4478   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4479 
4480   MachineMemOperand *MMO =
4481     DAG.getMachineFunction().
4482     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4483                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4484                           Alignment, AAInfo, Ranges);
4485 
4486   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4487                                    ISD::NON_EXTLOAD, IsExpanding);
4488   if (AddToChain)
4489     PendingLoads.push_back(Load.getValue(1));
4490   setValue(&I, Load);
4491 }
4492 
4493 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4494   SDLoc sdl = getCurSDLoc();
4495 
4496   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4497   const Value *Ptr = I.getArgOperand(0);
4498   SDValue Src0 = getValue(I.getArgOperand(3));
4499   SDValue Mask = getValue(I.getArgOperand(2));
4500 
4501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4502   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4503   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4504   if (!Alignment)
4505     Alignment = DAG.getEVTAlignment(VT);
4506 
4507   AAMDNodes AAInfo;
4508   I.getAAMetadata(AAInfo);
4509   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4510 
4511   SDValue Root = DAG.getRoot();
4512   SDValue Base;
4513   SDValue Index;
4514   SDValue Scale;
4515   const Value *BasePtr = Ptr;
4516   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4517   bool ConstantMemory = false;
4518   if (UniformBase && AA &&
4519       AA->pointsToConstantMemory(
4520           MemoryLocation(BasePtr,
4521                          LocationSize::precise(
4522                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4523                          AAInfo))) {
4524     // Do not serialize (non-volatile) loads of constant memory with anything.
4525     Root = DAG.getEntryNode();
4526     ConstantMemory = true;
4527   }
4528 
4529   MachineMemOperand *MMO =
4530     DAG.getMachineFunction().
4531     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4532                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4533                          Alignment, AAInfo, Ranges);
4534 
4535   if (!UniformBase) {
4536     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4537     Index = getValue(Ptr);
4538     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4539   }
4540   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4541   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4542                                        Ops, MMO);
4543 
4544   SDValue OutChain = Gather.getValue(1);
4545   if (!ConstantMemory)
4546     PendingLoads.push_back(OutChain);
4547   setValue(&I, Gather);
4548 }
4549 
4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4551   SDLoc dl = getCurSDLoc();
4552   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4553   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4554   SyncScope::ID SSID = I.getSyncScopeID();
4555 
4556   SDValue InChain = getRoot();
4557 
4558   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4559   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4560 
4561   auto Alignment = DAG.getEVTAlignment(MemVT);
4562 
4563   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4564   if (I.isVolatile())
4565     Flags |= MachineMemOperand::MOVolatile;
4566   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4567 
4568   MachineFunction &MF = DAG.getMachineFunction();
4569   MachineMemOperand *MMO =
4570     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4571                             Flags, MemVT.getStoreSize(), Alignment,
4572                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4573                             FailureOrdering);
4574 
4575   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4576                                    dl, MemVT, VTs, InChain,
4577                                    getValue(I.getPointerOperand()),
4578                                    getValue(I.getCompareOperand()),
4579                                    getValue(I.getNewValOperand()), MMO);
4580 
4581   SDValue OutChain = L.getValue(2);
4582 
4583   setValue(&I, L);
4584   DAG.setRoot(OutChain);
4585 }
4586 
4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4588   SDLoc dl = getCurSDLoc();
4589   ISD::NodeType NT;
4590   switch (I.getOperation()) {
4591   default: llvm_unreachable("Unknown atomicrmw operation");
4592   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4593   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4594   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4595   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4596   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4597   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4598   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4599   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4600   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4601   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4602   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4603   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4604   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4605   }
4606   AtomicOrdering Ordering = I.getOrdering();
4607   SyncScope::ID SSID = I.getSyncScopeID();
4608 
4609   SDValue InChain = getRoot();
4610 
4611   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4612   auto Alignment = DAG.getEVTAlignment(MemVT);
4613 
4614   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4615   if (I.isVolatile())
4616     Flags |= MachineMemOperand::MOVolatile;
4617   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4618 
4619   MachineFunction &MF = DAG.getMachineFunction();
4620   MachineMemOperand *MMO =
4621     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4622                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4623                             nullptr, SSID, Ordering);
4624 
4625   SDValue L =
4626     DAG.getAtomic(NT, dl, MemVT, InChain,
4627                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4628                   MMO);
4629 
4630   SDValue OutChain = L.getValue(1);
4631 
4632   setValue(&I, L);
4633   DAG.setRoot(OutChain);
4634 }
4635 
4636 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4637   SDLoc dl = getCurSDLoc();
4638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4639   SDValue Ops[3];
4640   Ops[0] = getRoot();
4641   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4642                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4643   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4644                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4645   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4646 }
4647 
4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4649   SDLoc dl = getCurSDLoc();
4650   AtomicOrdering Order = I.getOrdering();
4651   SyncScope::ID SSID = I.getSyncScopeID();
4652 
4653   SDValue InChain = getRoot();
4654 
4655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4656   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4657   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4658 
4659   if (!TLI.supportsUnalignedAtomics() &&
4660       I.getAlignment() < MemVT.getSizeInBits() / 8)
4661     report_fatal_error("Cannot generate unaligned atomic load");
4662 
4663   auto Flags = MachineMemOperand::MOLoad;
4664   if (I.isVolatile())
4665     Flags |= MachineMemOperand::MOVolatile;
4666   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4667     Flags |= MachineMemOperand::MOInvariant;
4668   if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout()))
4669     Flags |= MachineMemOperand::MODereferenceable;
4670 
4671   Flags |= TLI.getMMOFlags(I);
4672 
4673   MachineMemOperand *MMO =
4674       DAG.getMachineFunction().
4675       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4676                            Flags, MemVT.getStoreSize(),
4677                            I.getAlignment() ? I.getAlignment() :
4678                                               DAG.getEVTAlignment(MemVT),
4679                            AAMDNodes(), nullptr, SSID, Order);
4680 
4681   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4682   SDValue L =
4683       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4684                     getValue(I.getPointerOperand()), MMO);
4685 
4686   SDValue OutChain = L.getValue(1);
4687   if (MemVT != VT)
4688     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4689 
4690   setValue(&I, L);
4691   DAG.setRoot(OutChain);
4692 }
4693 
4694 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4695   SDLoc dl = getCurSDLoc();
4696 
4697   AtomicOrdering Ordering = I.getOrdering();
4698   SyncScope::ID SSID = I.getSyncScopeID();
4699 
4700   SDValue InChain = getRoot();
4701 
4702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4703   EVT MemVT =
4704       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4705 
4706   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4707     report_fatal_error("Cannot generate unaligned atomic store");
4708 
4709   auto Flags = MachineMemOperand::MOStore;
4710   if (I.isVolatile())
4711     Flags |= MachineMemOperand::MOVolatile;
4712   Flags |= TLI.getMMOFlags(I);
4713 
4714   MachineFunction &MF = DAG.getMachineFunction();
4715   MachineMemOperand *MMO =
4716     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4717                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4718                             nullptr, SSID, Ordering);
4719 
4720   SDValue Val = DAG.getPtrExtOrTrunc(getValue(I.getValueOperand()), dl, MemVT);
4721   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4722                                    getValue(I.getPointerOperand()), Val, MMO);
4723 
4724 
4725   DAG.setRoot(OutChain);
4726 }
4727 
4728 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4729 /// node.
4730 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4731                                                unsigned Intrinsic) {
4732   // Ignore the callsite's attributes. A specific call site may be marked with
4733   // readnone, but the lowering code will expect the chain based on the
4734   // definition.
4735   const Function *F = I.getCalledFunction();
4736   bool HasChain = !F->doesNotAccessMemory();
4737   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4738 
4739   // Build the operand list.
4740   SmallVector<SDValue, 8> Ops;
4741   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4742     if (OnlyLoad) {
4743       // We don't need to serialize loads against other loads.
4744       Ops.push_back(DAG.getRoot());
4745     } else {
4746       Ops.push_back(getRoot());
4747     }
4748   }
4749 
4750   // Info is set by getTgtMemInstrinsic
4751   TargetLowering::IntrinsicInfo Info;
4752   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4753   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4754                                                DAG.getMachineFunction(),
4755                                                Intrinsic);
4756 
4757   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4758   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4759       Info.opc == ISD::INTRINSIC_W_CHAIN)
4760     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4761                                         TLI.getPointerTy(DAG.getDataLayout())));
4762 
4763   // Add all operands of the call to the operand list.
4764   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4765     SDValue Op = getValue(I.getArgOperand(i));
4766     Ops.push_back(Op);
4767   }
4768 
4769   SmallVector<EVT, 4> ValueVTs;
4770   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4771 
4772   if (HasChain)
4773     ValueVTs.push_back(MVT::Other);
4774 
4775   SDVTList VTs = DAG.getVTList(ValueVTs);
4776 
4777   // Create the node.
4778   SDValue Result;
4779   if (IsTgtIntrinsic) {
4780     // This is target intrinsic that touches memory
4781     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4782       Ops, Info.memVT,
4783       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4784       Info.flags, Info.size);
4785   } else if (!HasChain) {
4786     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4787   } else if (!I.getType()->isVoidTy()) {
4788     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4789   } else {
4790     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4791   }
4792 
4793   if (HasChain) {
4794     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4795     if (OnlyLoad)
4796       PendingLoads.push_back(Chain);
4797     else
4798       DAG.setRoot(Chain);
4799   }
4800 
4801   if (!I.getType()->isVoidTy()) {
4802     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4803       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4804       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4805     } else
4806       Result = lowerRangeToAssertZExt(DAG, I, Result);
4807 
4808     setValue(&I, Result);
4809   }
4810 }
4811 
4812 /// GetSignificand - Get the significand and build it into a floating-point
4813 /// number with exponent of 1:
4814 ///
4815 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4816 ///
4817 /// where Op is the hexadecimal representation of floating point value.
4818 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4819   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4820                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4821   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4822                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4823   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4824 }
4825 
4826 /// GetExponent - Get the exponent:
4827 ///
4828 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4829 ///
4830 /// where Op is the hexadecimal representation of floating point value.
4831 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4832                            const TargetLowering &TLI, const SDLoc &dl) {
4833   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4834                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4835   SDValue t1 = DAG.getNode(
4836       ISD::SRL, dl, MVT::i32, t0,
4837       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4838   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4839                            DAG.getConstant(127, dl, MVT::i32));
4840   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4841 }
4842 
4843 /// getF32Constant - Get 32-bit floating point constant.
4844 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4845                               const SDLoc &dl) {
4846   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4847                            MVT::f32);
4848 }
4849 
4850 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4851                                        SelectionDAG &DAG) {
4852   // TODO: What fast-math-flags should be set on the floating-point nodes?
4853 
4854   //   IntegerPartOfX = ((int32_t)(t0);
4855   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4856 
4857   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4858   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4859   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4860 
4861   //   IntegerPartOfX <<= 23;
4862   IntegerPartOfX = DAG.getNode(
4863       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4864       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4865                                   DAG.getDataLayout())));
4866 
4867   SDValue TwoToFractionalPartOfX;
4868   if (LimitFloatPrecision <= 6) {
4869     // For floating-point precision of 6:
4870     //
4871     //   TwoToFractionalPartOfX =
4872     //     0.997535578f +
4873     //       (0.735607626f + 0.252464424f * x) * x;
4874     //
4875     // error 0.0144103317, which is 6 bits
4876     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4877                              getF32Constant(DAG, 0x3e814304, dl));
4878     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4879                              getF32Constant(DAG, 0x3f3c50c8, dl));
4880     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4881     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4882                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4883   } else if (LimitFloatPrecision <= 12) {
4884     // For floating-point precision of 12:
4885     //
4886     //   TwoToFractionalPartOfX =
4887     //     0.999892986f +
4888     //       (0.696457318f +
4889     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4890     //
4891     // error 0.000107046256, which is 13 to 14 bits
4892     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4893                              getF32Constant(DAG, 0x3da235e3, dl));
4894     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4895                              getF32Constant(DAG, 0x3e65b8f3, dl));
4896     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4897     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4898                              getF32Constant(DAG, 0x3f324b07, dl));
4899     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4900     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4901                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4902   } else { // LimitFloatPrecision <= 18
4903     // For floating-point precision of 18:
4904     //
4905     //   TwoToFractionalPartOfX =
4906     //     0.999999982f +
4907     //       (0.693148872f +
4908     //         (0.240227044f +
4909     //           (0.554906021e-1f +
4910     //             (0.961591928e-2f +
4911     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4912     // error 2.47208000*10^(-7), which is better than 18 bits
4913     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4914                              getF32Constant(DAG, 0x3924b03e, dl));
4915     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4916                              getF32Constant(DAG, 0x3ab24b87, dl));
4917     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4918     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4919                              getF32Constant(DAG, 0x3c1d8c17, dl));
4920     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4921     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4922                              getF32Constant(DAG, 0x3d634a1d, dl));
4923     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4924     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4925                              getF32Constant(DAG, 0x3e75fe14, dl));
4926     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4927     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4928                               getF32Constant(DAG, 0x3f317234, dl));
4929     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4930     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4931                                          getF32Constant(DAG, 0x3f800000, dl));
4932   }
4933 
4934   // Add the exponent into the result in integer domain.
4935   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4936   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4937                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4938 }
4939 
4940 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4941 /// limited-precision mode.
4942 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4943                          const TargetLowering &TLI) {
4944   if (Op.getValueType() == MVT::f32 &&
4945       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4946 
4947     // Put the exponent in the right bit position for later addition to the
4948     // final result:
4949     //
4950     //   #define LOG2OFe 1.4426950f
4951     //   t0 = Op * LOG2OFe
4952 
4953     // TODO: What fast-math-flags should be set here?
4954     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4955                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4956     return getLimitedPrecisionExp2(t0, dl, DAG);
4957   }
4958 
4959   // No special expansion.
4960   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4961 }
4962 
4963 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4964 /// limited-precision mode.
4965 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4966                          const TargetLowering &TLI) {
4967   // TODO: What fast-math-flags should be set on the floating-point nodes?
4968 
4969   if (Op.getValueType() == MVT::f32 &&
4970       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4971     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4972 
4973     // Scale the exponent by log(2) [0.69314718f].
4974     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4975     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4976                                         getF32Constant(DAG, 0x3f317218, dl));
4977 
4978     // Get the significand and build it into a floating-point number with
4979     // exponent of 1.
4980     SDValue X = GetSignificand(DAG, Op1, dl);
4981 
4982     SDValue LogOfMantissa;
4983     if (LimitFloatPrecision <= 6) {
4984       // For floating-point precision of 6:
4985       //
4986       //   LogofMantissa =
4987       //     -1.1609546f +
4988       //       (1.4034025f - 0.23903021f * x) * x;
4989       //
4990       // error 0.0034276066, which is better than 8 bits
4991       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4992                                getF32Constant(DAG, 0xbe74c456, dl));
4993       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4994                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4995       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4996       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4997                                   getF32Constant(DAG, 0x3f949a29, dl));
4998     } else if (LimitFloatPrecision <= 12) {
4999       // For floating-point precision of 12:
5000       //
5001       //   LogOfMantissa =
5002       //     -1.7417939f +
5003       //       (2.8212026f +
5004       //         (-1.4699568f +
5005       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5006       //
5007       // error 0.000061011436, which is 14 bits
5008       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5009                                getF32Constant(DAG, 0xbd67b6d6, dl));
5010       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5011                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5012       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5013       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5014                                getF32Constant(DAG, 0x3fbc278b, dl));
5015       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5016       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5017                                getF32Constant(DAG, 0x40348e95, dl));
5018       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5019       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5020                                   getF32Constant(DAG, 0x3fdef31a, dl));
5021     } else { // LimitFloatPrecision <= 18
5022       // For floating-point precision of 18:
5023       //
5024       //   LogOfMantissa =
5025       //     -2.1072184f +
5026       //       (4.2372794f +
5027       //         (-3.7029485f +
5028       //           (2.2781945f +
5029       //             (-0.87823314f +
5030       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5031       //
5032       // error 0.0000023660568, which is better than 18 bits
5033       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5034                                getF32Constant(DAG, 0xbc91e5ac, dl));
5035       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5036                                getF32Constant(DAG, 0x3e4350aa, dl));
5037       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5038       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5039                                getF32Constant(DAG, 0x3f60d3e3, dl));
5040       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5041       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5042                                getF32Constant(DAG, 0x4011cdf0, dl));
5043       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5044       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5045                                getF32Constant(DAG, 0x406cfd1c, dl));
5046       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5047       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5048                                getF32Constant(DAG, 0x408797cb, dl));
5049       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5050       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5051                                   getF32Constant(DAG, 0x4006dcab, dl));
5052     }
5053 
5054     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5055   }
5056 
5057   // No special expansion.
5058   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5059 }
5060 
5061 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5062 /// limited-precision mode.
5063 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5064                           const TargetLowering &TLI) {
5065   // TODO: What fast-math-flags should be set on the floating-point nodes?
5066 
5067   if (Op.getValueType() == MVT::f32 &&
5068       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5069     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5070 
5071     // Get the exponent.
5072     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5073 
5074     // Get the significand and build it into a floating-point number with
5075     // exponent of 1.
5076     SDValue X = GetSignificand(DAG, Op1, dl);
5077 
5078     // Different possible minimax approximations of significand in
5079     // floating-point for various degrees of accuracy over [1,2].
5080     SDValue Log2ofMantissa;
5081     if (LimitFloatPrecision <= 6) {
5082       // For floating-point precision of 6:
5083       //
5084       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5085       //
5086       // error 0.0049451742, which is more than 7 bits
5087       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5088                                getF32Constant(DAG, 0xbeb08fe0, dl));
5089       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5090                                getF32Constant(DAG, 0x40019463, dl));
5091       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5092       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5093                                    getF32Constant(DAG, 0x3fd6633d, dl));
5094     } else if (LimitFloatPrecision <= 12) {
5095       // For floating-point precision of 12:
5096       //
5097       //   Log2ofMantissa =
5098       //     -2.51285454f +
5099       //       (4.07009056f +
5100       //         (-2.12067489f +
5101       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5102       //
5103       // error 0.0000876136000, which is better than 13 bits
5104       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5105                                getF32Constant(DAG, 0xbda7262e, dl));
5106       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5107                                getF32Constant(DAG, 0x3f25280b, dl));
5108       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5109       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5110                                getF32Constant(DAG, 0x4007b923, dl));
5111       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5112       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5113                                getF32Constant(DAG, 0x40823e2f, dl));
5114       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5115       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5116                                    getF32Constant(DAG, 0x4020d29c, dl));
5117     } else { // LimitFloatPrecision <= 18
5118       // For floating-point precision of 18:
5119       //
5120       //   Log2ofMantissa =
5121       //     -3.0400495f +
5122       //       (6.1129976f +
5123       //         (-5.3420409f +
5124       //           (3.2865683f +
5125       //             (-1.2669343f +
5126       //               (0.27515199f -
5127       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5128       //
5129       // error 0.0000018516, which is better than 18 bits
5130       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5131                                getF32Constant(DAG, 0xbcd2769e, dl));
5132       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5133                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5134       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5135       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5136                                getF32Constant(DAG, 0x3fa22ae7, dl));
5137       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5138       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5139                                getF32Constant(DAG, 0x40525723, dl));
5140       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5141       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5142                                getF32Constant(DAG, 0x40aaf200, dl));
5143       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5144       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5145                                getF32Constant(DAG, 0x40c39dad, dl));
5146       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5147       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5148                                    getF32Constant(DAG, 0x4042902c, dl));
5149     }
5150 
5151     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5152   }
5153 
5154   // No special expansion.
5155   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5156 }
5157 
5158 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5159 /// limited-precision mode.
5160 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5161                            const TargetLowering &TLI) {
5162   // TODO: What fast-math-flags should be set on the floating-point nodes?
5163 
5164   if (Op.getValueType() == MVT::f32 &&
5165       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5166     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5167 
5168     // Scale the exponent by log10(2) [0.30102999f].
5169     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5170     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5171                                         getF32Constant(DAG, 0x3e9a209a, dl));
5172 
5173     // Get the significand and build it into a floating-point number with
5174     // exponent of 1.
5175     SDValue X = GetSignificand(DAG, Op1, dl);
5176 
5177     SDValue Log10ofMantissa;
5178     if (LimitFloatPrecision <= 6) {
5179       // For floating-point precision of 6:
5180       //
5181       //   Log10ofMantissa =
5182       //     -0.50419619f +
5183       //       (0.60948995f - 0.10380950f * x) * x;
5184       //
5185       // error 0.0014886165, which is 6 bits
5186       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5187                                getF32Constant(DAG, 0xbdd49a13, dl));
5188       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5189                                getF32Constant(DAG, 0x3f1c0789, dl));
5190       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5191       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5192                                     getF32Constant(DAG, 0x3f011300, dl));
5193     } else if (LimitFloatPrecision <= 12) {
5194       // For floating-point precision of 12:
5195       //
5196       //   Log10ofMantissa =
5197       //     -0.64831180f +
5198       //       (0.91751397f +
5199       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5200       //
5201       // error 0.00019228036, which is better than 12 bits
5202       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5203                                getF32Constant(DAG, 0x3d431f31, dl));
5204       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5205                                getF32Constant(DAG, 0x3ea21fb2, dl));
5206       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5207       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5208                                getF32Constant(DAG, 0x3f6ae232, dl));
5209       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5210       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5211                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5212     } else { // LimitFloatPrecision <= 18
5213       // For floating-point precision of 18:
5214       //
5215       //   Log10ofMantissa =
5216       //     -0.84299375f +
5217       //       (1.5327582f +
5218       //         (-1.0688956f +
5219       //           (0.49102474f +
5220       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5221       //
5222       // error 0.0000037995730, which is better than 18 bits
5223       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5224                                getF32Constant(DAG, 0x3c5d51ce, dl));
5225       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5226                                getF32Constant(DAG, 0x3e00685a, dl));
5227       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5228       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5229                                getF32Constant(DAG, 0x3efb6798, dl));
5230       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5231       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5232                                getF32Constant(DAG, 0x3f88d192, dl));
5233       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5234       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5235                                getF32Constant(DAG, 0x3fc4316c, dl));
5236       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5237       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5238                                     getF32Constant(DAG, 0x3f57ce70, dl));
5239     }
5240 
5241     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5242   }
5243 
5244   // No special expansion.
5245   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5246 }
5247 
5248 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5249 /// limited-precision mode.
5250 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5251                           const TargetLowering &TLI) {
5252   if (Op.getValueType() == MVT::f32 &&
5253       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5254     return getLimitedPrecisionExp2(Op, dl, DAG);
5255 
5256   // No special expansion.
5257   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5258 }
5259 
5260 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5261 /// limited-precision mode with x == 10.0f.
5262 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5263                          SelectionDAG &DAG, const TargetLowering &TLI) {
5264   bool IsExp10 = false;
5265   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5266       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5267     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5268       APFloat Ten(10.0f);
5269       IsExp10 = LHSC->isExactlyValue(Ten);
5270     }
5271   }
5272 
5273   // TODO: What fast-math-flags should be set on the FMUL node?
5274   if (IsExp10) {
5275     // Put the exponent in the right bit position for later addition to the
5276     // final result:
5277     //
5278     //   #define LOG2OF10 3.3219281f
5279     //   t0 = Op * LOG2OF10;
5280     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5281                              getF32Constant(DAG, 0x40549a78, dl));
5282     return getLimitedPrecisionExp2(t0, dl, DAG);
5283   }
5284 
5285   // No special expansion.
5286   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5287 }
5288 
5289 /// ExpandPowI - Expand a llvm.powi intrinsic.
5290 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5291                           SelectionDAG &DAG) {
5292   // If RHS is a constant, we can expand this out to a multiplication tree,
5293   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5294   // optimizing for size, we only want to do this if the expansion would produce
5295   // a small number of multiplies, otherwise we do the full expansion.
5296   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5297     // Get the exponent as a positive value.
5298     unsigned Val = RHSC->getSExtValue();
5299     if ((int)Val < 0) Val = -Val;
5300 
5301     // powi(x, 0) -> 1.0
5302     if (Val == 0)
5303       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5304 
5305     const Function &F = DAG.getMachineFunction().getFunction();
5306     if (!F.hasOptSize() ||
5307         // If optimizing for size, don't insert too many multiplies.
5308         // This inserts up to 5 multiplies.
5309         countPopulation(Val) + Log2_32(Val) < 7) {
5310       // We use the simple binary decomposition method to generate the multiply
5311       // sequence.  There are more optimal ways to do this (for example,
5312       // powi(x,15) generates one more multiply than it should), but this has
5313       // the benefit of being both really simple and much better than a libcall.
5314       SDValue Res;  // Logically starts equal to 1.0
5315       SDValue CurSquare = LHS;
5316       // TODO: Intrinsics should have fast-math-flags that propagate to these
5317       // nodes.
5318       while (Val) {
5319         if (Val & 1) {
5320           if (Res.getNode())
5321             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5322           else
5323             Res = CurSquare;  // 1.0*CurSquare.
5324         }
5325 
5326         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5327                                 CurSquare, CurSquare);
5328         Val >>= 1;
5329       }
5330 
5331       // If the original was negative, invert the result, producing 1/(x*x*x).
5332       if (RHSC->getSExtValue() < 0)
5333         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5334                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5335       return Res;
5336     }
5337   }
5338 
5339   // Otherwise, expand to a libcall.
5340   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5341 }
5342 
5343 // getUnderlyingArgReg - Find underlying register used for a truncated or
5344 // bitcasted argument.
5345 static unsigned getUnderlyingArgReg(const SDValue &N) {
5346   switch (N.getOpcode()) {
5347   case ISD::CopyFromReg:
5348     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5349   case ISD::BITCAST:
5350   case ISD::AssertZext:
5351   case ISD::AssertSext:
5352   case ISD::TRUNCATE:
5353     return getUnderlyingArgReg(N.getOperand(0));
5354   default:
5355     return 0;
5356   }
5357 }
5358 
5359 /// If the DbgValueInst is a dbg_value of a function argument, create the
5360 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5361 /// instruction selection, they will be inserted to the entry BB.
5362 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5363     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5364     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5365   const Argument *Arg = dyn_cast<Argument>(V);
5366   if (!Arg)
5367     return false;
5368 
5369   if (!IsDbgDeclare) {
5370     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5371     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5372     // the entry block.
5373     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5374     if (!IsInEntryBlock)
5375       return false;
5376 
5377     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5378     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5379     // variable that also is a param.
5380     //
5381     // Although, if we are at the top of the entry block already, we can still
5382     // emit using ArgDbgValue. This might catch some situations when the
5383     // dbg.value refers to an argument that isn't used in the entry block, so
5384     // any CopyToReg node would be optimized out and the only way to express
5385     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5386     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5387     // we should only emit as ArgDbgValue if the Variable is an argument to the
5388     // current function, and the dbg.value intrinsic is found in the entry
5389     // block.
5390     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5391         !DL->getInlinedAt();
5392     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5393     if (!IsInPrologue && !VariableIsFunctionInputArg)
5394       return false;
5395 
5396     // Here we assume that a function argument on IR level only can be used to
5397     // describe one input parameter on source level. If we for example have
5398     // source code like this
5399     //
5400     //    struct A { long x, y; };
5401     //    void foo(struct A a, long b) {
5402     //      ...
5403     //      b = a.x;
5404     //      ...
5405     //    }
5406     //
5407     // and IR like this
5408     //
5409     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5410     //  entry:
5411     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5412     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5413     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5414     //    ...
5415     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5416     //    ...
5417     //
5418     // then the last dbg.value is describing a parameter "b" using a value that
5419     // is an argument. But since we already has used %a1 to describe a parameter
5420     // we should not handle that last dbg.value here (that would result in an
5421     // incorrect hoisting of the DBG_VALUE to the function entry).
5422     // Notice that we allow one dbg.value per IR level argument, to accomodate
5423     // for the situation with fragments above.
5424     if (VariableIsFunctionInputArg) {
5425       unsigned ArgNo = Arg->getArgNo();
5426       if (ArgNo >= FuncInfo.DescribedArgs.size())
5427         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5428       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5429         return false;
5430       FuncInfo.DescribedArgs.set(ArgNo);
5431     }
5432   }
5433 
5434   MachineFunction &MF = DAG.getMachineFunction();
5435   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5436 
5437   bool IsIndirect = false;
5438   Optional<MachineOperand> Op;
5439   // Some arguments' frame index is recorded during argument lowering.
5440   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5441   if (FI != std::numeric_limits<int>::max())
5442     Op = MachineOperand::CreateFI(FI);
5443 
5444   if (!Op && N.getNode()) {
5445     unsigned Reg = getUnderlyingArgReg(N);
5446     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5447       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5448       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5449       if (PR)
5450         Reg = PR;
5451     }
5452     if (Reg) {
5453       Op = MachineOperand::CreateReg(Reg, false);
5454       IsIndirect = IsDbgDeclare;
5455     }
5456   }
5457 
5458   if (!Op && N.getNode()) {
5459     // Check if frame index is available.
5460     SDValue LCandidate = peekThroughBitcasts(N);
5461     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5462       if (FrameIndexSDNode *FINode =
5463           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5464         Op = MachineOperand::CreateFI(FINode->getIndex());
5465   }
5466 
5467   if (!Op) {
5468     // Check if ValueMap has reg number.
5469     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5470     if (VMI != FuncInfo.ValueMap.end()) {
5471       const auto &TLI = DAG.getTargetLoweringInfo();
5472       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5473                        V->getType(), getABIRegCopyCC(V));
5474       if (RFV.occupiesMultipleRegs()) {
5475         unsigned Offset = 0;
5476         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5477           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5478           auto FragmentExpr = DIExpression::createFragmentExpression(
5479               Expr, Offset, RegAndSize.second);
5480           if (!FragmentExpr)
5481             continue;
5482           FuncInfo.ArgDbgValues.push_back(
5483               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5484                       Op->getReg(), Variable, *FragmentExpr));
5485           Offset += RegAndSize.second;
5486         }
5487         return true;
5488       }
5489       Op = MachineOperand::CreateReg(VMI->second, false);
5490       IsIndirect = IsDbgDeclare;
5491     }
5492   }
5493 
5494   if (!Op)
5495     return false;
5496 
5497   assert(Variable->isValidLocationForIntrinsic(DL) &&
5498          "Expected inlined-at fields to agree");
5499   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5500   FuncInfo.ArgDbgValues.push_back(
5501       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5502               *Op, Variable, Expr));
5503 
5504   return true;
5505 }
5506 
5507 /// Return the appropriate SDDbgValue based on N.
5508 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5509                                              DILocalVariable *Variable,
5510                                              DIExpression *Expr,
5511                                              const DebugLoc &dl,
5512                                              unsigned DbgSDNodeOrder) {
5513   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5514     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5515     // stack slot locations.
5516     //
5517     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5518     // debug values here after optimization:
5519     //
5520     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5521     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5522     //
5523     // Both describe the direct values of their associated variables.
5524     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5525                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5526   }
5527   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5528                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5529 }
5530 
5531 // VisualStudio defines setjmp as _setjmp
5532 #if defined(_MSC_VER) && defined(setjmp) && \
5533                          !defined(setjmp_undefined_for_msvc)
5534 #  pragma push_macro("setjmp")
5535 #  undef setjmp
5536 #  define setjmp_undefined_for_msvc
5537 #endif
5538 
5539 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5540   switch (Intrinsic) {
5541   case Intrinsic::smul_fix:
5542     return ISD::SMULFIX;
5543   case Intrinsic::umul_fix:
5544     return ISD::UMULFIX;
5545   default:
5546     llvm_unreachable("Unhandled fixed point intrinsic");
5547   }
5548 }
5549 
5550 /// Lower the call to the specified intrinsic function. If we want to emit this
5551 /// as a call to a named external function, return the name. Otherwise, lower it
5552 /// and return null.
5553 const char *
5554 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5556   SDLoc sdl = getCurSDLoc();
5557   DebugLoc dl = getCurDebugLoc();
5558   SDValue Res;
5559 
5560   switch (Intrinsic) {
5561   default:
5562     // By default, turn this into a target intrinsic node.
5563     visitTargetIntrinsic(I, Intrinsic);
5564     return nullptr;
5565   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5566   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5567   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5568   case Intrinsic::returnaddress:
5569     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5570                              TLI.getPointerTy(DAG.getDataLayout()),
5571                              getValue(I.getArgOperand(0))));
5572     return nullptr;
5573   case Intrinsic::addressofreturnaddress:
5574     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5575                              TLI.getPointerTy(DAG.getDataLayout())));
5576     return nullptr;
5577   case Intrinsic::sponentry:
5578     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5579                              TLI.getPointerTy(DAG.getDataLayout())));
5580     return nullptr;
5581   case Intrinsic::frameaddress:
5582     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5583                              TLI.getPointerTy(DAG.getDataLayout()),
5584                              getValue(I.getArgOperand(0))));
5585     return nullptr;
5586   case Intrinsic::read_register: {
5587     Value *Reg = I.getArgOperand(0);
5588     SDValue Chain = getRoot();
5589     SDValue RegName =
5590         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5591     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5592     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5593       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5594     setValue(&I, Res);
5595     DAG.setRoot(Res.getValue(1));
5596     return nullptr;
5597   }
5598   case Intrinsic::write_register: {
5599     Value *Reg = I.getArgOperand(0);
5600     Value *RegValue = I.getArgOperand(1);
5601     SDValue Chain = getRoot();
5602     SDValue RegName =
5603         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5604     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5605                             RegName, getValue(RegValue)));
5606     return nullptr;
5607   }
5608   case Intrinsic::setjmp:
5609     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5610   case Intrinsic::longjmp:
5611     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5612   case Intrinsic::memcpy: {
5613     const auto &MCI = cast<MemCpyInst>(I);
5614     SDValue Op1 = getValue(I.getArgOperand(0));
5615     SDValue Op2 = getValue(I.getArgOperand(1));
5616     SDValue Op3 = getValue(I.getArgOperand(2));
5617     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5618     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5619     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5620     unsigned Align = MinAlign(DstAlign, SrcAlign);
5621     bool isVol = MCI.isVolatile();
5622     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5623     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5624     // node.
5625     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5626                                false, isTC,
5627                                MachinePointerInfo(I.getArgOperand(0)),
5628                                MachinePointerInfo(I.getArgOperand(1)));
5629     updateDAGForMaybeTailCall(MC);
5630     return nullptr;
5631   }
5632   case Intrinsic::memset: {
5633     const auto &MSI = cast<MemSetInst>(I);
5634     SDValue Op1 = getValue(I.getArgOperand(0));
5635     SDValue Op2 = getValue(I.getArgOperand(1));
5636     SDValue Op3 = getValue(I.getArgOperand(2));
5637     // @llvm.memset defines 0 and 1 to both mean no alignment.
5638     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5639     bool isVol = MSI.isVolatile();
5640     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5641     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5642                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5643     updateDAGForMaybeTailCall(MS);
5644     return nullptr;
5645   }
5646   case Intrinsic::memmove: {
5647     const auto &MMI = cast<MemMoveInst>(I);
5648     SDValue Op1 = getValue(I.getArgOperand(0));
5649     SDValue Op2 = getValue(I.getArgOperand(1));
5650     SDValue Op3 = getValue(I.getArgOperand(2));
5651     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5652     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5653     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5654     unsigned Align = MinAlign(DstAlign, SrcAlign);
5655     bool isVol = MMI.isVolatile();
5656     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5657     // FIXME: Support passing different dest/src alignments to the memmove DAG
5658     // node.
5659     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5660                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5661                                 MachinePointerInfo(I.getArgOperand(1)));
5662     updateDAGForMaybeTailCall(MM);
5663     return nullptr;
5664   }
5665   case Intrinsic::memcpy_element_unordered_atomic: {
5666     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5667     SDValue Dst = getValue(MI.getRawDest());
5668     SDValue Src = getValue(MI.getRawSource());
5669     SDValue Length = getValue(MI.getLength());
5670 
5671     unsigned DstAlign = MI.getDestAlignment();
5672     unsigned SrcAlign = MI.getSourceAlignment();
5673     Type *LengthTy = MI.getLength()->getType();
5674     unsigned ElemSz = MI.getElementSizeInBytes();
5675     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5676     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5677                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5678                                      MachinePointerInfo(MI.getRawDest()),
5679                                      MachinePointerInfo(MI.getRawSource()));
5680     updateDAGForMaybeTailCall(MC);
5681     return nullptr;
5682   }
5683   case Intrinsic::memmove_element_unordered_atomic: {
5684     auto &MI = cast<AtomicMemMoveInst>(I);
5685     SDValue Dst = getValue(MI.getRawDest());
5686     SDValue Src = getValue(MI.getRawSource());
5687     SDValue Length = getValue(MI.getLength());
5688 
5689     unsigned DstAlign = MI.getDestAlignment();
5690     unsigned SrcAlign = MI.getSourceAlignment();
5691     Type *LengthTy = MI.getLength()->getType();
5692     unsigned ElemSz = MI.getElementSizeInBytes();
5693     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5694     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5695                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5696                                       MachinePointerInfo(MI.getRawDest()),
5697                                       MachinePointerInfo(MI.getRawSource()));
5698     updateDAGForMaybeTailCall(MC);
5699     return nullptr;
5700   }
5701   case Intrinsic::memset_element_unordered_atomic: {
5702     auto &MI = cast<AtomicMemSetInst>(I);
5703     SDValue Dst = getValue(MI.getRawDest());
5704     SDValue Val = getValue(MI.getValue());
5705     SDValue Length = getValue(MI.getLength());
5706 
5707     unsigned DstAlign = MI.getDestAlignment();
5708     Type *LengthTy = MI.getLength()->getType();
5709     unsigned ElemSz = MI.getElementSizeInBytes();
5710     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5711     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5712                                      LengthTy, ElemSz, isTC,
5713                                      MachinePointerInfo(MI.getRawDest()));
5714     updateDAGForMaybeTailCall(MC);
5715     return nullptr;
5716   }
5717   case Intrinsic::dbg_addr:
5718   case Intrinsic::dbg_declare: {
5719     const auto &DI = cast<DbgVariableIntrinsic>(I);
5720     DILocalVariable *Variable = DI.getVariable();
5721     DIExpression *Expression = DI.getExpression();
5722     dropDanglingDebugInfo(Variable, Expression);
5723     assert(Variable && "Missing variable");
5724 
5725     // Check if address has undef value.
5726     const Value *Address = DI.getVariableLocation();
5727     if (!Address || isa<UndefValue>(Address) ||
5728         (Address->use_empty() && !isa<Argument>(Address))) {
5729       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5730       return nullptr;
5731     }
5732 
5733     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5734 
5735     // Check if this variable can be described by a frame index, typically
5736     // either as a static alloca or a byval parameter.
5737     int FI = std::numeric_limits<int>::max();
5738     if (const auto *AI =
5739             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5740       if (AI->isStaticAlloca()) {
5741         auto I = FuncInfo.StaticAllocaMap.find(AI);
5742         if (I != FuncInfo.StaticAllocaMap.end())
5743           FI = I->second;
5744       }
5745     } else if (const auto *Arg = dyn_cast<Argument>(
5746                    Address->stripInBoundsConstantOffsets())) {
5747       FI = FuncInfo.getArgumentFrameIndex(Arg);
5748     }
5749 
5750     // llvm.dbg.addr is control dependent and always generates indirect
5751     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5752     // the MachineFunction variable table.
5753     if (FI != std::numeric_limits<int>::max()) {
5754       if (Intrinsic == Intrinsic::dbg_addr) {
5755         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5756             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5757         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5758       }
5759       return nullptr;
5760     }
5761 
5762     SDValue &N = NodeMap[Address];
5763     if (!N.getNode() && isa<Argument>(Address))
5764       // Check unused arguments map.
5765       N = UnusedArgNodeMap[Address];
5766     SDDbgValue *SDV;
5767     if (N.getNode()) {
5768       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5769         Address = BCI->getOperand(0);
5770       // Parameters are handled specially.
5771       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5772       if (isParameter && FINode) {
5773         // Byval parameter. We have a frame index at this point.
5774         SDV =
5775             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5776                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5777       } else if (isa<Argument>(Address)) {
5778         // Address is an argument, so try to emit its dbg value using
5779         // virtual register info from the FuncInfo.ValueMap.
5780         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5781         return nullptr;
5782       } else {
5783         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5784                               true, dl, SDNodeOrder);
5785       }
5786       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5787     } else {
5788       // If Address is an argument then try to emit its dbg value using
5789       // virtual register info from the FuncInfo.ValueMap.
5790       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5791                                     N)) {
5792         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5793       }
5794     }
5795     return nullptr;
5796   }
5797   case Intrinsic::dbg_label: {
5798     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5799     DILabel *Label = DI.getLabel();
5800     assert(Label && "Missing label");
5801 
5802     SDDbgLabel *SDV;
5803     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5804     DAG.AddDbgLabel(SDV);
5805     return nullptr;
5806   }
5807   case Intrinsic::dbg_value: {
5808     const DbgValueInst &DI = cast<DbgValueInst>(I);
5809     assert(DI.getVariable() && "Missing variable");
5810 
5811     DILocalVariable *Variable = DI.getVariable();
5812     DIExpression *Expression = DI.getExpression();
5813     dropDanglingDebugInfo(Variable, Expression);
5814     const Value *V = DI.getValue();
5815     if (!V)
5816       return nullptr;
5817 
5818     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5819         SDNodeOrder))
5820       return nullptr;
5821 
5822     // TODO: Dangling debug info will eventually either be resolved or produce
5823     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5824     // between the original dbg.value location and its resolved DBG_VALUE, which
5825     // we should ideally fill with an extra Undef DBG_VALUE.
5826 
5827     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5828     return nullptr;
5829   }
5830 
5831   case Intrinsic::eh_typeid_for: {
5832     // Find the type id for the given typeinfo.
5833     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5834     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5835     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5836     setValue(&I, Res);
5837     return nullptr;
5838   }
5839 
5840   case Intrinsic::eh_return_i32:
5841   case Intrinsic::eh_return_i64:
5842     DAG.getMachineFunction().setCallsEHReturn(true);
5843     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5844                             MVT::Other,
5845                             getControlRoot(),
5846                             getValue(I.getArgOperand(0)),
5847                             getValue(I.getArgOperand(1))));
5848     return nullptr;
5849   case Intrinsic::eh_unwind_init:
5850     DAG.getMachineFunction().setCallsUnwindInit(true);
5851     return nullptr;
5852   case Intrinsic::eh_dwarf_cfa:
5853     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5854                              TLI.getPointerTy(DAG.getDataLayout()),
5855                              getValue(I.getArgOperand(0))));
5856     return nullptr;
5857   case Intrinsic::eh_sjlj_callsite: {
5858     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5859     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5860     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5861     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5862 
5863     MMI.setCurrentCallSite(CI->getZExtValue());
5864     return nullptr;
5865   }
5866   case Intrinsic::eh_sjlj_functioncontext: {
5867     // Get and store the index of the function context.
5868     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5869     AllocaInst *FnCtx =
5870       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5871     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5872     MFI.setFunctionContextIndex(FI);
5873     return nullptr;
5874   }
5875   case Intrinsic::eh_sjlj_setjmp: {
5876     SDValue Ops[2];
5877     Ops[0] = getRoot();
5878     Ops[1] = getValue(I.getArgOperand(0));
5879     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5880                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5881     setValue(&I, Op.getValue(0));
5882     DAG.setRoot(Op.getValue(1));
5883     return nullptr;
5884   }
5885   case Intrinsic::eh_sjlj_longjmp:
5886     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5887                             getRoot(), getValue(I.getArgOperand(0))));
5888     return nullptr;
5889   case Intrinsic::eh_sjlj_setup_dispatch:
5890     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5891                             getRoot()));
5892     return nullptr;
5893   case Intrinsic::masked_gather:
5894     visitMaskedGather(I);
5895     return nullptr;
5896   case Intrinsic::masked_load:
5897     visitMaskedLoad(I);
5898     return nullptr;
5899   case Intrinsic::masked_scatter:
5900     visitMaskedScatter(I);
5901     return nullptr;
5902   case Intrinsic::masked_store:
5903     visitMaskedStore(I);
5904     return nullptr;
5905   case Intrinsic::masked_expandload:
5906     visitMaskedLoad(I, true /* IsExpanding */);
5907     return nullptr;
5908   case Intrinsic::masked_compressstore:
5909     visitMaskedStore(I, true /* IsCompressing */);
5910     return nullptr;
5911   case Intrinsic::x86_mmx_pslli_w:
5912   case Intrinsic::x86_mmx_pslli_d:
5913   case Intrinsic::x86_mmx_pslli_q:
5914   case Intrinsic::x86_mmx_psrli_w:
5915   case Intrinsic::x86_mmx_psrli_d:
5916   case Intrinsic::x86_mmx_psrli_q:
5917   case Intrinsic::x86_mmx_psrai_w:
5918   case Intrinsic::x86_mmx_psrai_d: {
5919     SDValue ShAmt = getValue(I.getArgOperand(1));
5920     if (isa<ConstantSDNode>(ShAmt)) {
5921       visitTargetIntrinsic(I, Intrinsic);
5922       return nullptr;
5923     }
5924     unsigned NewIntrinsic = 0;
5925     EVT ShAmtVT = MVT::v2i32;
5926     switch (Intrinsic) {
5927     case Intrinsic::x86_mmx_pslli_w:
5928       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5929       break;
5930     case Intrinsic::x86_mmx_pslli_d:
5931       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5932       break;
5933     case Intrinsic::x86_mmx_pslli_q:
5934       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5935       break;
5936     case Intrinsic::x86_mmx_psrli_w:
5937       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5938       break;
5939     case Intrinsic::x86_mmx_psrli_d:
5940       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5941       break;
5942     case Intrinsic::x86_mmx_psrli_q:
5943       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5944       break;
5945     case Intrinsic::x86_mmx_psrai_w:
5946       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5947       break;
5948     case Intrinsic::x86_mmx_psrai_d:
5949       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5950       break;
5951     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5952     }
5953 
5954     // The vector shift intrinsics with scalars uses 32b shift amounts but
5955     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5956     // to be zero.
5957     // We must do this early because v2i32 is not a legal type.
5958     SDValue ShOps[2];
5959     ShOps[0] = ShAmt;
5960     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5961     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5962     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5963     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5964     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5965                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5966                        getValue(I.getArgOperand(0)), ShAmt);
5967     setValue(&I, Res);
5968     return nullptr;
5969   }
5970   case Intrinsic::powi:
5971     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5972                             getValue(I.getArgOperand(1)), DAG));
5973     return nullptr;
5974   case Intrinsic::log:
5975     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5976     return nullptr;
5977   case Intrinsic::log2:
5978     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5979     return nullptr;
5980   case Intrinsic::log10:
5981     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5982     return nullptr;
5983   case Intrinsic::exp:
5984     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5985     return nullptr;
5986   case Intrinsic::exp2:
5987     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5988     return nullptr;
5989   case Intrinsic::pow:
5990     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5991                            getValue(I.getArgOperand(1)), DAG, TLI));
5992     return nullptr;
5993   case Intrinsic::sqrt:
5994   case Intrinsic::fabs:
5995   case Intrinsic::sin:
5996   case Intrinsic::cos:
5997   case Intrinsic::floor:
5998   case Intrinsic::ceil:
5999   case Intrinsic::trunc:
6000   case Intrinsic::rint:
6001   case Intrinsic::nearbyint:
6002   case Intrinsic::round:
6003   case Intrinsic::canonicalize: {
6004     unsigned Opcode;
6005     switch (Intrinsic) {
6006     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6007     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6008     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6009     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6010     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6011     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6012     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6013     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6014     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6015     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6016     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6017     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6018     }
6019 
6020     setValue(&I, DAG.getNode(Opcode, sdl,
6021                              getValue(I.getArgOperand(0)).getValueType(),
6022                              getValue(I.getArgOperand(0))));
6023     return nullptr;
6024   }
6025   case Intrinsic::minnum: {
6026     auto VT = getValue(I.getArgOperand(0)).getValueType();
6027     unsigned Opc =
6028         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
6029             ? ISD::FMINIMUM
6030             : ISD::FMINNUM;
6031     setValue(&I, DAG.getNode(Opc, sdl, VT,
6032                              getValue(I.getArgOperand(0)),
6033                              getValue(I.getArgOperand(1))));
6034     return nullptr;
6035   }
6036   case Intrinsic::maxnum: {
6037     auto VT = getValue(I.getArgOperand(0)).getValueType();
6038     unsigned Opc =
6039         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
6040             ? ISD::FMAXIMUM
6041             : ISD::FMAXNUM;
6042     setValue(&I, DAG.getNode(Opc, sdl, VT,
6043                              getValue(I.getArgOperand(0)),
6044                              getValue(I.getArgOperand(1))));
6045     return nullptr;
6046   }
6047   case Intrinsic::minimum:
6048     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6049                              getValue(I.getArgOperand(0)).getValueType(),
6050                              getValue(I.getArgOperand(0)),
6051                              getValue(I.getArgOperand(1))));
6052     return nullptr;
6053   case Intrinsic::maximum:
6054     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6055                              getValue(I.getArgOperand(0)).getValueType(),
6056                              getValue(I.getArgOperand(0)),
6057                              getValue(I.getArgOperand(1))));
6058     return nullptr;
6059   case Intrinsic::copysign:
6060     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6061                              getValue(I.getArgOperand(0)).getValueType(),
6062                              getValue(I.getArgOperand(0)),
6063                              getValue(I.getArgOperand(1))));
6064     return nullptr;
6065   case Intrinsic::fma:
6066     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6067                              getValue(I.getArgOperand(0)).getValueType(),
6068                              getValue(I.getArgOperand(0)),
6069                              getValue(I.getArgOperand(1)),
6070                              getValue(I.getArgOperand(2))));
6071     return nullptr;
6072   case Intrinsic::experimental_constrained_fadd:
6073   case Intrinsic::experimental_constrained_fsub:
6074   case Intrinsic::experimental_constrained_fmul:
6075   case Intrinsic::experimental_constrained_fdiv:
6076   case Intrinsic::experimental_constrained_frem:
6077   case Intrinsic::experimental_constrained_fma:
6078   case Intrinsic::experimental_constrained_sqrt:
6079   case Intrinsic::experimental_constrained_pow:
6080   case Intrinsic::experimental_constrained_powi:
6081   case Intrinsic::experimental_constrained_sin:
6082   case Intrinsic::experimental_constrained_cos:
6083   case Intrinsic::experimental_constrained_exp:
6084   case Intrinsic::experimental_constrained_exp2:
6085   case Intrinsic::experimental_constrained_log:
6086   case Intrinsic::experimental_constrained_log10:
6087   case Intrinsic::experimental_constrained_log2:
6088   case Intrinsic::experimental_constrained_rint:
6089   case Intrinsic::experimental_constrained_nearbyint:
6090   case Intrinsic::experimental_constrained_maxnum:
6091   case Intrinsic::experimental_constrained_minnum:
6092   case Intrinsic::experimental_constrained_ceil:
6093   case Intrinsic::experimental_constrained_floor:
6094   case Intrinsic::experimental_constrained_round:
6095   case Intrinsic::experimental_constrained_trunc:
6096     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6097     return nullptr;
6098   case Intrinsic::fmuladd: {
6099     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6100     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6101         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6102       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6103                                getValue(I.getArgOperand(0)).getValueType(),
6104                                getValue(I.getArgOperand(0)),
6105                                getValue(I.getArgOperand(1)),
6106                                getValue(I.getArgOperand(2))));
6107     } else {
6108       // TODO: Intrinsic calls should have fast-math-flags.
6109       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6110                                 getValue(I.getArgOperand(0)).getValueType(),
6111                                 getValue(I.getArgOperand(0)),
6112                                 getValue(I.getArgOperand(1)));
6113       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6114                                 getValue(I.getArgOperand(0)).getValueType(),
6115                                 Mul,
6116                                 getValue(I.getArgOperand(2)));
6117       setValue(&I, Add);
6118     }
6119     return nullptr;
6120   }
6121   case Intrinsic::convert_to_fp16:
6122     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6123                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6124                                          getValue(I.getArgOperand(0)),
6125                                          DAG.getTargetConstant(0, sdl,
6126                                                                MVT::i32))));
6127     return nullptr;
6128   case Intrinsic::convert_from_fp16:
6129     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6130                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6131                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6132                                          getValue(I.getArgOperand(0)))));
6133     return nullptr;
6134   case Intrinsic::pcmarker: {
6135     SDValue Tmp = getValue(I.getArgOperand(0));
6136     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6137     return nullptr;
6138   }
6139   case Intrinsic::readcyclecounter: {
6140     SDValue Op = getRoot();
6141     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6142                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6143     setValue(&I, Res);
6144     DAG.setRoot(Res.getValue(1));
6145     return nullptr;
6146   }
6147   case Intrinsic::bitreverse:
6148     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6149                              getValue(I.getArgOperand(0)).getValueType(),
6150                              getValue(I.getArgOperand(0))));
6151     return nullptr;
6152   case Intrinsic::bswap:
6153     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6154                              getValue(I.getArgOperand(0)).getValueType(),
6155                              getValue(I.getArgOperand(0))));
6156     return nullptr;
6157   case Intrinsic::cttz: {
6158     SDValue Arg = getValue(I.getArgOperand(0));
6159     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6160     EVT Ty = Arg.getValueType();
6161     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6162                              sdl, Ty, Arg));
6163     return nullptr;
6164   }
6165   case Intrinsic::ctlz: {
6166     SDValue Arg = getValue(I.getArgOperand(0));
6167     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6168     EVT Ty = Arg.getValueType();
6169     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6170                              sdl, Ty, Arg));
6171     return nullptr;
6172   }
6173   case Intrinsic::ctpop: {
6174     SDValue Arg = getValue(I.getArgOperand(0));
6175     EVT Ty = Arg.getValueType();
6176     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6177     return nullptr;
6178   }
6179   case Intrinsic::fshl:
6180   case Intrinsic::fshr: {
6181     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6182     SDValue X = getValue(I.getArgOperand(0));
6183     SDValue Y = getValue(I.getArgOperand(1));
6184     SDValue Z = getValue(I.getArgOperand(2));
6185     EVT VT = X.getValueType();
6186     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6187     SDValue Zero = DAG.getConstant(0, sdl, VT);
6188     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6189 
6190     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6191     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6192       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6193       return nullptr;
6194     }
6195 
6196     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6197     // avoid the select that is necessary in the general case to filter out
6198     // the 0-shift possibility that leads to UB.
6199     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6200       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6201       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6202         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6203         return nullptr;
6204       }
6205 
6206       // Some targets only rotate one way. Try the opposite direction.
6207       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6208       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6209         // Negate the shift amount because it is safe to ignore the high bits.
6210         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6211         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6212         return nullptr;
6213       }
6214 
6215       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6216       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6217       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6218       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6219       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6220       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6221       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6222       return nullptr;
6223     }
6224 
6225     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6226     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6227     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6228     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6229     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6230     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6231 
6232     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6233     // and that is undefined. We must compare and select to avoid UB.
6234     EVT CCVT = MVT::i1;
6235     if (VT.isVector())
6236       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6237 
6238     // For fshl, 0-shift returns the 1st arg (X).
6239     // For fshr, 0-shift returns the 2nd arg (Y).
6240     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6241     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6242     return nullptr;
6243   }
6244   case Intrinsic::sadd_sat: {
6245     SDValue Op1 = getValue(I.getArgOperand(0));
6246     SDValue Op2 = getValue(I.getArgOperand(1));
6247     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6248     return nullptr;
6249   }
6250   case Intrinsic::uadd_sat: {
6251     SDValue Op1 = getValue(I.getArgOperand(0));
6252     SDValue Op2 = getValue(I.getArgOperand(1));
6253     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6254     return nullptr;
6255   }
6256   case Intrinsic::ssub_sat: {
6257     SDValue Op1 = getValue(I.getArgOperand(0));
6258     SDValue Op2 = getValue(I.getArgOperand(1));
6259     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6260     return nullptr;
6261   }
6262   case Intrinsic::usub_sat: {
6263     SDValue Op1 = getValue(I.getArgOperand(0));
6264     SDValue Op2 = getValue(I.getArgOperand(1));
6265     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6266     return nullptr;
6267   }
6268   case Intrinsic::smul_fix:
6269   case Intrinsic::umul_fix: {
6270     SDValue Op1 = getValue(I.getArgOperand(0));
6271     SDValue Op2 = getValue(I.getArgOperand(1));
6272     SDValue Op3 = getValue(I.getArgOperand(2));
6273     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6274                              Op1.getValueType(), Op1, Op2, Op3));
6275     return nullptr;
6276   }
6277   case Intrinsic::stacksave: {
6278     SDValue Op = getRoot();
6279     Res = DAG.getNode(
6280         ISD::STACKSAVE, sdl,
6281         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6282     setValue(&I, Res);
6283     DAG.setRoot(Res.getValue(1));
6284     return nullptr;
6285   }
6286   case Intrinsic::stackrestore:
6287     Res = getValue(I.getArgOperand(0));
6288     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6289     return nullptr;
6290   case Intrinsic::get_dynamic_area_offset: {
6291     SDValue Op = getRoot();
6292     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6293     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6294     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6295     // target.
6296     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6297       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6298                          " intrinsic!");
6299     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6300                       Op);
6301     DAG.setRoot(Op);
6302     setValue(&I, Res);
6303     return nullptr;
6304   }
6305   case Intrinsic::stackguard: {
6306     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6307     MachineFunction &MF = DAG.getMachineFunction();
6308     const Module &M = *MF.getFunction().getParent();
6309     SDValue Chain = getRoot();
6310     if (TLI.useLoadStackGuardNode()) {
6311       Res = getLoadStackGuard(DAG, sdl, Chain);
6312     } else {
6313       const Value *Global = TLI.getSDagStackGuard(M);
6314       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6315       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6316                         MachinePointerInfo(Global, 0), Align,
6317                         MachineMemOperand::MOVolatile);
6318     }
6319     if (TLI.useStackGuardXorFP())
6320       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6321     DAG.setRoot(Chain);
6322     setValue(&I, Res);
6323     return nullptr;
6324   }
6325   case Intrinsic::stackprotector: {
6326     // Emit code into the DAG to store the stack guard onto the stack.
6327     MachineFunction &MF = DAG.getMachineFunction();
6328     MachineFrameInfo &MFI = MF.getFrameInfo();
6329     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6330     SDValue Src, Chain = getRoot();
6331 
6332     if (TLI.useLoadStackGuardNode())
6333       Src = getLoadStackGuard(DAG, sdl, Chain);
6334     else
6335       Src = getValue(I.getArgOperand(0));   // The guard's value.
6336 
6337     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6338 
6339     int FI = FuncInfo.StaticAllocaMap[Slot];
6340     MFI.setStackProtectorIndex(FI);
6341 
6342     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6343 
6344     // Store the stack protector onto the stack.
6345     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6346                                                  DAG.getMachineFunction(), FI),
6347                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6348     setValue(&I, Res);
6349     DAG.setRoot(Res);
6350     return nullptr;
6351   }
6352   case Intrinsic::objectsize: {
6353     // If we don't know by now, we're never going to know.
6354     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6355 
6356     assert(CI && "Non-constant type in __builtin_object_size?");
6357 
6358     SDValue Arg = getValue(I.getCalledValue());
6359     EVT Ty = Arg.getValueType();
6360 
6361     if (CI->isZero())
6362       Res = DAG.getConstant(-1ULL, sdl, Ty);
6363     else
6364       Res = DAG.getConstant(0, sdl, Ty);
6365 
6366     setValue(&I, Res);
6367     return nullptr;
6368   }
6369 
6370   case Intrinsic::is_constant:
6371     // If this wasn't constant-folded away by now, then it's not a
6372     // constant.
6373     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6374     return nullptr;
6375 
6376   case Intrinsic::annotation:
6377   case Intrinsic::ptr_annotation:
6378   case Intrinsic::launder_invariant_group:
6379   case Intrinsic::strip_invariant_group:
6380     // Drop the intrinsic, but forward the value
6381     setValue(&I, getValue(I.getOperand(0)));
6382     return nullptr;
6383   case Intrinsic::assume:
6384   case Intrinsic::var_annotation:
6385   case Intrinsic::sideeffect:
6386     // Discard annotate attributes, assumptions, and artificial side-effects.
6387     return nullptr;
6388 
6389   case Intrinsic::codeview_annotation: {
6390     // Emit a label associated with this metadata.
6391     MachineFunction &MF = DAG.getMachineFunction();
6392     MCSymbol *Label =
6393         MF.getMMI().getContext().createTempSymbol("annotation", true);
6394     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6395     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6396     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6397     DAG.setRoot(Res);
6398     return nullptr;
6399   }
6400 
6401   case Intrinsic::init_trampoline: {
6402     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6403 
6404     SDValue Ops[6];
6405     Ops[0] = getRoot();
6406     Ops[1] = getValue(I.getArgOperand(0));
6407     Ops[2] = getValue(I.getArgOperand(1));
6408     Ops[3] = getValue(I.getArgOperand(2));
6409     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6410     Ops[5] = DAG.getSrcValue(F);
6411 
6412     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6413 
6414     DAG.setRoot(Res);
6415     return nullptr;
6416   }
6417   case Intrinsic::adjust_trampoline:
6418     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6419                              TLI.getPointerTy(DAG.getDataLayout()),
6420                              getValue(I.getArgOperand(0))));
6421     return nullptr;
6422   case Intrinsic::gcroot: {
6423     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6424            "only valid in functions with gc specified, enforced by Verifier");
6425     assert(GFI && "implied by previous");
6426     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6427     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6428 
6429     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6430     GFI->addStackRoot(FI->getIndex(), TypeMap);
6431     return nullptr;
6432   }
6433   case Intrinsic::gcread:
6434   case Intrinsic::gcwrite:
6435     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6436   case Intrinsic::flt_rounds:
6437     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6438     return nullptr;
6439 
6440   case Intrinsic::expect:
6441     // Just replace __builtin_expect(exp, c) with EXP.
6442     setValue(&I, getValue(I.getArgOperand(0)));
6443     return nullptr;
6444 
6445   case Intrinsic::debugtrap:
6446   case Intrinsic::trap: {
6447     StringRef TrapFuncName =
6448         I.getAttributes()
6449             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6450             .getValueAsString();
6451     if (TrapFuncName.empty()) {
6452       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6453         ISD::TRAP : ISD::DEBUGTRAP;
6454       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6455       return nullptr;
6456     }
6457     TargetLowering::ArgListTy Args;
6458 
6459     TargetLowering::CallLoweringInfo CLI(DAG);
6460     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6461         CallingConv::C, I.getType(),
6462         DAG.getExternalSymbol(TrapFuncName.data(),
6463                               TLI.getPointerTy(DAG.getDataLayout())),
6464         std::move(Args));
6465 
6466     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6467     DAG.setRoot(Result.second);
6468     return nullptr;
6469   }
6470 
6471   case Intrinsic::uadd_with_overflow:
6472   case Intrinsic::sadd_with_overflow:
6473   case Intrinsic::usub_with_overflow:
6474   case Intrinsic::ssub_with_overflow:
6475   case Intrinsic::umul_with_overflow:
6476   case Intrinsic::smul_with_overflow: {
6477     ISD::NodeType Op;
6478     switch (Intrinsic) {
6479     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6480     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6481     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6482     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6483     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6484     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6485     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6486     }
6487     SDValue Op1 = getValue(I.getArgOperand(0));
6488     SDValue Op2 = getValue(I.getArgOperand(1));
6489 
6490     EVT ResultVT = Op1.getValueType();
6491     EVT OverflowVT = MVT::i1;
6492     if (ResultVT.isVector())
6493       OverflowVT = EVT::getVectorVT(
6494           *Context, OverflowVT, ResultVT.getVectorNumElements());
6495 
6496     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6497     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6498     return nullptr;
6499   }
6500   case Intrinsic::prefetch: {
6501     SDValue Ops[5];
6502     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6503     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6504     Ops[0] = DAG.getRoot();
6505     Ops[1] = getValue(I.getArgOperand(0));
6506     Ops[2] = getValue(I.getArgOperand(1));
6507     Ops[3] = getValue(I.getArgOperand(2));
6508     Ops[4] = getValue(I.getArgOperand(3));
6509     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6510                                              DAG.getVTList(MVT::Other), Ops,
6511                                              EVT::getIntegerVT(*Context, 8),
6512                                              MachinePointerInfo(I.getArgOperand(0)),
6513                                              0, /* align */
6514                                              Flags);
6515 
6516     // Chain the prefetch in parallell with any pending loads, to stay out of
6517     // the way of later optimizations.
6518     PendingLoads.push_back(Result);
6519     Result = getRoot();
6520     DAG.setRoot(Result);
6521     return nullptr;
6522   }
6523   case Intrinsic::lifetime_start:
6524   case Intrinsic::lifetime_end: {
6525     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6526     // Stack coloring is not enabled in O0, discard region information.
6527     if (TM.getOptLevel() == CodeGenOpt::None)
6528       return nullptr;
6529 
6530     const int64_t ObjectSize =
6531         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6532     Value *const ObjectPtr = I.getArgOperand(1);
6533     SmallVector<const Value *, 4> Allocas;
6534     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6535 
6536     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6537            E = Allocas.end(); Object != E; ++Object) {
6538       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6539 
6540       // Could not find an Alloca.
6541       if (!LifetimeObject)
6542         continue;
6543 
6544       // First check that the Alloca is static, otherwise it won't have a
6545       // valid frame index.
6546       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6547       if (SI == FuncInfo.StaticAllocaMap.end())
6548         return nullptr;
6549 
6550       const int FrameIndex = SI->second;
6551       int64_t Offset;
6552       if (GetPointerBaseWithConstantOffset(
6553               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6554         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6555       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6556                                 Offset);
6557       DAG.setRoot(Res);
6558     }
6559     return nullptr;
6560   }
6561   case Intrinsic::invariant_start:
6562     // Discard region information.
6563     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6564     return nullptr;
6565   case Intrinsic::invariant_end:
6566     // Discard region information.
6567     return nullptr;
6568   case Intrinsic::clear_cache:
6569     return TLI.getClearCacheBuiltinName();
6570   case Intrinsic::donothing:
6571     // ignore
6572     return nullptr;
6573   case Intrinsic::experimental_stackmap:
6574     visitStackmap(I);
6575     return nullptr;
6576   case Intrinsic::experimental_patchpoint_void:
6577   case Intrinsic::experimental_patchpoint_i64:
6578     visitPatchpoint(&I);
6579     return nullptr;
6580   case Intrinsic::experimental_gc_statepoint:
6581     LowerStatepoint(ImmutableStatepoint(&I));
6582     return nullptr;
6583   case Intrinsic::experimental_gc_result:
6584     visitGCResult(cast<GCResultInst>(I));
6585     return nullptr;
6586   case Intrinsic::experimental_gc_relocate:
6587     visitGCRelocate(cast<GCRelocateInst>(I));
6588     return nullptr;
6589   case Intrinsic::instrprof_increment:
6590     llvm_unreachable("instrprof failed to lower an increment");
6591   case Intrinsic::instrprof_value_profile:
6592     llvm_unreachable("instrprof failed to lower a value profiling call");
6593   case Intrinsic::localescape: {
6594     MachineFunction &MF = DAG.getMachineFunction();
6595     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6596 
6597     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6598     // is the same on all targets.
6599     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6600       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6601       if (isa<ConstantPointerNull>(Arg))
6602         continue; // Skip null pointers. They represent a hole in index space.
6603       AllocaInst *Slot = cast<AllocaInst>(Arg);
6604       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6605              "can only escape static allocas");
6606       int FI = FuncInfo.StaticAllocaMap[Slot];
6607       MCSymbol *FrameAllocSym =
6608           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6609               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6610       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6611               TII->get(TargetOpcode::LOCAL_ESCAPE))
6612           .addSym(FrameAllocSym)
6613           .addFrameIndex(FI);
6614     }
6615 
6616     return nullptr;
6617   }
6618 
6619   case Intrinsic::localrecover: {
6620     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6621     MachineFunction &MF = DAG.getMachineFunction();
6622     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6623 
6624     // Get the symbol that defines the frame offset.
6625     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6626     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6627     unsigned IdxVal =
6628         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6629     MCSymbol *FrameAllocSym =
6630         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6631             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6632 
6633     // Create a MCSymbol for the label to avoid any target lowering
6634     // that would make this PC relative.
6635     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6636     SDValue OffsetVal =
6637         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6638 
6639     // Add the offset to the FP.
6640     Value *FP = I.getArgOperand(1);
6641     SDValue FPVal = getValue(FP);
6642     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6643     setValue(&I, Add);
6644 
6645     return nullptr;
6646   }
6647 
6648   case Intrinsic::eh_exceptionpointer:
6649   case Intrinsic::eh_exceptioncode: {
6650     // Get the exception pointer vreg, copy from it, and resize it to fit.
6651     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6652     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6653     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6654     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6655     SDValue N =
6656         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6657     if (Intrinsic == Intrinsic::eh_exceptioncode)
6658       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6659     setValue(&I, N);
6660     return nullptr;
6661   }
6662   case Intrinsic::xray_customevent: {
6663     // Here we want to make sure that the intrinsic behaves as if it has a
6664     // specific calling convention, and only for x86_64.
6665     // FIXME: Support other platforms later.
6666     const auto &Triple = DAG.getTarget().getTargetTriple();
6667     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6668       return nullptr;
6669 
6670     SDLoc DL = getCurSDLoc();
6671     SmallVector<SDValue, 8> Ops;
6672 
6673     // We want to say that we always want the arguments in registers.
6674     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6675     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6676     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6677     SDValue Chain = getRoot();
6678     Ops.push_back(LogEntryVal);
6679     Ops.push_back(StrSizeVal);
6680     Ops.push_back(Chain);
6681 
6682     // We need to enforce the calling convention for the callsite, so that
6683     // argument ordering is enforced correctly, and that register allocation can
6684     // see that some registers may be assumed clobbered and have to preserve
6685     // them across calls to the intrinsic.
6686     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6687                                            DL, NodeTys, Ops);
6688     SDValue patchableNode = SDValue(MN, 0);
6689     DAG.setRoot(patchableNode);
6690     setValue(&I, patchableNode);
6691     return nullptr;
6692   }
6693   case Intrinsic::xray_typedevent: {
6694     // Here we want to make sure that the intrinsic behaves as if it has a
6695     // specific calling convention, and only for x86_64.
6696     // FIXME: Support other platforms later.
6697     const auto &Triple = DAG.getTarget().getTargetTriple();
6698     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6699       return nullptr;
6700 
6701     SDLoc DL = getCurSDLoc();
6702     SmallVector<SDValue, 8> Ops;
6703 
6704     // We want to say that we always want the arguments in registers.
6705     // It's unclear to me how manipulating the selection DAG here forces callers
6706     // to provide arguments in registers instead of on the stack.
6707     SDValue LogTypeId = getValue(I.getArgOperand(0));
6708     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6709     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6710     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6711     SDValue Chain = getRoot();
6712     Ops.push_back(LogTypeId);
6713     Ops.push_back(LogEntryVal);
6714     Ops.push_back(StrSizeVal);
6715     Ops.push_back(Chain);
6716 
6717     // We need to enforce the calling convention for the callsite, so that
6718     // argument ordering is enforced correctly, and that register allocation can
6719     // see that some registers may be assumed clobbered and have to preserve
6720     // them across calls to the intrinsic.
6721     MachineSDNode *MN = DAG.getMachineNode(
6722         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6723     SDValue patchableNode = SDValue(MN, 0);
6724     DAG.setRoot(patchableNode);
6725     setValue(&I, patchableNode);
6726     return nullptr;
6727   }
6728   case Intrinsic::experimental_deoptimize:
6729     LowerDeoptimizeCall(&I);
6730     return nullptr;
6731 
6732   case Intrinsic::experimental_vector_reduce_fadd:
6733   case Intrinsic::experimental_vector_reduce_fmul:
6734   case Intrinsic::experimental_vector_reduce_add:
6735   case Intrinsic::experimental_vector_reduce_mul:
6736   case Intrinsic::experimental_vector_reduce_and:
6737   case Intrinsic::experimental_vector_reduce_or:
6738   case Intrinsic::experimental_vector_reduce_xor:
6739   case Intrinsic::experimental_vector_reduce_smax:
6740   case Intrinsic::experimental_vector_reduce_smin:
6741   case Intrinsic::experimental_vector_reduce_umax:
6742   case Intrinsic::experimental_vector_reduce_umin:
6743   case Intrinsic::experimental_vector_reduce_fmax:
6744   case Intrinsic::experimental_vector_reduce_fmin:
6745     visitVectorReduce(I, Intrinsic);
6746     return nullptr;
6747 
6748   case Intrinsic::icall_branch_funnel: {
6749     SmallVector<SDValue, 16> Ops;
6750     Ops.push_back(DAG.getRoot());
6751     Ops.push_back(getValue(I.getArgOperand(0)));
6752 
6753     int64_t Offset;
6754     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6755         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6756     if (!Base)
6757       report_fatal_error(
6758           "llvm.icall.branch.funnel operand must be a GlobalValue");
6759     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6760 
6761     struct BranchFunnelTarget {
6762       int64_t Offset;
6763       SDValue Target;
6764     };
6765     SmallVector<BranchFunnelTarget, 8> Targets;
6766 
6767     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6768       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6769           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6770       if (ElemBase != Base)
6771         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6772                            "to the same GlobalValue");
6773 
6774       SDValue Val = getValue(I.getArgOperand(Op + 1));
6775       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6776       if (!GA)
6777         report_fatal_error(
6778             "llvm.icall.branch.funnel operand must be a GlobalValue");
6779       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6780                                      GA->getGlobal(), getCurSDLoc(),
6781                                      Val.getValueType(), GA->getOffset())});
6782     }
6783     llvm::sort(Targets,
6784                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6785                  return T1.Offset < T2.Offset;
6786                });
6787 
6788     for (auto &T : Targets) {
6789       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6790       Ops.push_back(T.Target);
6791     }
6792 
6793     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6794                                  getCurSDLoc(), MVT::Other, Ops),
6795               0);
6796     DAG.setRoot(N);
6797     setValue(&I, N);
6798     HasTailCall = true;
6799     return nullptr;
6800   }
6801 
6802   case Intrinsic::wasm_landingpad_index:
6803     // Information this intrinsic contained has been transferred to
6804     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6805     // delete it now.
6806     return nullptr;
6807   }
6808 }
6809 
6810 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6811     const ConstrainedFPIntrinsic &FPI) {
6812   SDLoc sdl = getCurSDLoc();
6813   unsigned Opcode;
6814   switch (FPI.getIntrinsicID()) {
6815   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6816   case Intrinsic::experimental_constrained_fadd:
6817     Opcode = ISD::STRICT_FADD;
6818     break;
6819   case Intrinsic::experimental_constrained_fsub:
6820     Opcode = ISD::STRICT_FSUB;
6821     break;
6822   case Intrinsic::experimental_constrained_fmul:
6823     Opcode = ISD::STRICT_FMUL;
6824     break;
6825   case Intrinsic::experimental_constrained_fdiv:
6826     Opcode = ISD::STRICT_FDIV;
6827     break;
6828   case Intrinsic::experimental_constrained_frem:
6829     Opcode = ISD::STRICT_FREM;
6830     break;
6831   case Intrinsic::experimental_constrained_fma:
6832     Opcode = ISD::STRICT_FMA;
6833     break;
6834   case Intrinsic::experimental_constrained_sqrt:
6835     Opcode = ISD::STRICT_FSQRT;
6836     break;
6837   case Intrinsic::experimental_constrained_pow:
6838     Opcode = ISD::STRICT_FPOW;
6839     break;
6840   case Intrinsic::experimental_constrained_powi:
6841     Opcode = ISD::STRICT_FPOWI;
6842     break;
6843   case Intrinsic::experimental_constrained_sin:
6844     Opcode = ISD::STRICT_FSIN;
6845     break;
6846   case Intrinsic::experimental_constrained_cos:
6847     Opcode = ISD::STRICT_FCOS;
6848     break;
6849   case Intrinsic::experimental_constrained_exp:
6850     Opcode = ISD::STRICT_FEXP;
6851     break;
6852   case Intrinsic::experimental_constrained_exp2:
6853     Opcode = ISD::STRICT_FEXP2;
6854     break;
6855   case Intrinsic::experimental_constrained_log:
6856     Opcode = ISD::STRICT_FLOG;
6857     break;
6858   case Intrinsic::experimental_constrained_log10:
6859     Opcode = ISD::STRICT_FLOG10;
6860     break;
6861   case Intrinsic::experimental_constrained_log2:
6862     Opcode = ISD::STRICT_FLOG2;
6863     break;
6864   case Intrinsic::experimental_constrained_rint:
6865     Opcode = ISD::STRICT_FRINT;
6866     break;
6867   case Intrinsic::experimental_constrained_nearbyint:
6868     Opcode = ISD::STRICT_FNEARBYINT;
6869     break;
6870   case Intrinsic::experimental_constrained_maxnum:
6871     Opcode = ISD::STRICT_FMAXNUM;
6872     break;
6873   case Intrinsic::experimental_constrained_minnum:
6874     Opcode = ISD::STRICT_FMINNUM;
6875     break;
6876   case Intrinsic::experimental_constrained_ceil:
6877     Opcode = ISD::STRICT_FCEIL;
6878     break;
6879   case Intrinsic::experimental_constrained_floor:
6880     Opcode = ISD::STRICT_FFLOOR;
6881     break;
6882   case Intrinsic::experimental_constrained_round:
6883     Opcode = ISD::STRICT_FROUND;
6884     break;
6885   case Intrinsic::experimental_constrained_trunc:
6886     Opcode = ISD::STRICT_FTRUNC;
6887     break;
6888   }
6889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6890   SDValue Chain = getRoot();
6891   SmallVector<EVT, 4> ValueVTs;
6892   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6893   ValueVTs.push_back(MVT::Other); // Out chain
6894 
6895   SDVTList VTs = DAG.getVTList(ValueVTs);
6896   SDValue Result;
6897   if (FPI.isUnaryOp())
6898     Result = DAG.getNode(Opcode, sdl, VTs,
6899                          { Chain, getValue(FPI.getArgOperand(0)) });
6900   else if (FPI.isTernaryOp())
6901     Result = DAG.getNode(Opcode, sdl, VTs,
6902                          { Chain, getValue(FPI.getArgOperand(0)),
6903                                   getValue(FPI.getArgOperand(1)),
6904                                   getValue(FPI.getArgOperand(2)) });
6905   else
6906     Result = DAG.getNode(Opcode, sdl, VTs,
6907                          { Chain, getValue(FPI.getArgOperand(0)),
6908                            getValue(FPI.getArgOperand(1))  });
6909 
6910   assert(Result.getNode()->getNumValues() == 2);
6911   SDValue OutChain = Result.getValue(1);
6912   DAG.setRoot(OutChain);
6913   SDValue FPResult = Result.getValue(0);
6914   setValue(&FPI, FPResult);
6915 }
6916 
6917 std::pair<SDValue, SDValue>
6918 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6919                                     const BasicBlock *EHPadBB) {
6920   MachineFunction &MF = DAG.getMachineFunction();
6921   MachineModuleInfo &MMI = MF.getMMI();
6922   MCSymbol *BeginLabel = nullptr;
6923 
6924   if (EHPadBB) {
6925     // Insert a label before the invoke call to mark the try range.  This can be
6926     // used to detect deletion of the invoke via the MachineModuleInfo.
6927     BeginLabel = MMI.getContext().createTempSymbol();
6928 
6929     // For SjLj, keep track of which landing pads go with which invokes
6930     // so as to maintain the ordering of pads in the LSDA.
6931     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6932     if (CallSiteIndex) {
6933       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6934       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6935 
6936       // Now that the call site is handled, stop tracking it.
6937       MMI.setCurrentCallSite(0);
6938     }
6939 
6940     // Both PendingLoads and PendingExports must be flushed here;
6941     // this call might not return.
6942     (void)getRoot();
6943     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6944 
6945     CLI.setChain(getRoot());
6946   }
6947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6948   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6949 
6950   assert((CLI.IsTailCall || Result.second.getNode()) &&
6951          "Non-null chain expected with non-tail call!");
6952   assert((Result.second.getNode() || !Result.first.getNode()) &&
6953          "Null value expected with tail call!");
6954 
6955   if (!Result.second.getNode()) {
6956     // As a special case, a null chain means that a tail call has been emitted
6957     // and the DAG root is already updated.
6958     HasTailCall = true;
6959 
6960     // Since there's no actual continuation from this block, nothing can be
6961     // relying on us setting vregs for them.
6962     PendingExports.clear();
6963   } else {
6964     DAG.setRoot(Result.second);
6965   }
6966 
6967   if (EHPadBB) {
6968     // Insert a label at the end of the invoke call to mark the try range.  This
6969     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6970     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6971     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6972 
6973     // Inform MachineModuleInfo of range.
6974     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6975     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6976     // actually use outlined funclets and their LSDA info style.
6977     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6978       assert(CLI.CS);
6979       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6980       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6981                                 BeginLabel, EndLabel);
6982     } else if (!isScopedEHPersonality(Pers)) {
6983       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6984     }
6985   }
6986 
6987   return Result;
6988 }
6989 
6990 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6991                                       bool isTailCall,
6992                                       const BasicBlock *EHPadBB) {
6993   auto &DL = DAG.getDataLayout();
6994   FunctionType *FTy = CS.getFunctionType();
6995   Type *RetTy = CS.getType();
6996 
6997   TargetLowering::ArgListTy Args;
6998   Args.reserve(CS.arg_size());
6999 
7000   const Value *SwiftErrorVal = nullptr;
7001   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7002 
7003   // We can't tail call inside a function with a swifterror argument. Lowering
7004   // does not support this yet. It would have to move into the swifterror
7005   // register before the call.
7006   auto *Caller = CS.getInstruction()->getParent()->getParent();
7007   if (TLI.supportSwiftError() &&
7008       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7009     isTailCall = false;
7010 
7011   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7012        i != e; ++i) {
7013     TargetLowering::ArgListEntry Entry;
7014     const Value *V = *i;
7015 
7016     // Skip empty types
7017     if (V->getType()->isEmptyTy())
7018       continue;
7019 
7020     SDValue ArgNode = getValue(V);
7021     Entry.Node = ArgNode; Entry.Ty = V->getType();
7022 
7023     Entry.setAttributes(&CS, i - CS.arg_begin());
7024 
7025     // Use swifterror virtual register as input to the call.
7026     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7027       SwiftErrorVal = V;
7028       // We find the virtual register for the actual swifterror argument.
7029       // Instead of using the Value, we use the virtual register instead.
7030       Entry.Node = DAG.getRegister(FuncInfo
7031                                        .getOrCreateSwiftErrorVRegUseAt(
7032                                            CS.getInstruction(), FuncInfo.MBB, V)
7033                                        .first,
7034                                    EVT(TLI.getPointerTy(DL)));
7035     }
7036 
7037     Args.push_back(Entry);
7038 
7039     // If we have an explicit sret argument that is an Instruction, (i.e., it
7040     // might point to function-local memory), we can't meaningfully tail-call.
7041     if (Entry.IsSRet && isa<Instruction>(V))
7042       isTailCall = false;
7043   }
7044 
7045   // Check if target-independent constraints permit a tail call here.
7046   // Target-dependent constraints are checked within TLI->LowerCallTo.
7047   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7048     isTailCall = false;
7049 
7050   // Disable tail calls if there is an swifterror argument. Targets have not
7051   // been updated to support tail calls.
7052   if (TLI.supportSwiftError() && SwiftErrorVal)
7053     isTailCall = false;
7054 
7055   TargetLowering::CallLoweringInfo CLI(DAG);
7056   CLI.setDebugLoc(getCurSDLoc())
7057       .setChain(getRoot())
7058       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7059       .setTailCall(isTailCall)
7060       .setConvergent(CS.isConvergent());
7061   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7062 
7063   if (Result.first.getNode()) {
7064     const Instruction *Inst = CS.getInstruction();
7065     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7066     setValue(Inst, Result.first);
7067   }
7068 
7069   // The last element of CLI.InVals has the SDValue for swifterror return.
7070   // Here we copy it to a virtual register and update SwiftErrorMap for
7071   // book-keeping.
7072   if (SwiftErrorVal && TLI.supportSwiftError()) {
7073     // Get the last element of InVals.
7074     SDValue Src = CLI.InVals.back();
7075     unsigned VReg; bool CreatedVReg;
7076     std::tie(VReg, CreatedVReg) =
7077         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
7078     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7079     // We update the virtual register for the actual swifterror argument.
7080     if (CreatedVReg)
7081       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
7082     DAG.setRoot(CopyNode);
7083   }
7084 }
7085 
7086 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7087                              SelectionDAGBuilder &Builder) {
7088   // Check to see if this load can be trivially constant folded, e.g. if the
7089   // input is from a string literal.
7090   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7091     // Cast pointer to the type we really want to load.
7092     Type *LoadTy =
7093         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7094     if (LoadVT.isVector())
7095       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7096 
7097     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7098                                          PointerType::getUnqual(LoadTy));
7099 
7100     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7101             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7102       return Builder.getValue(LoadCst);
7103   }
7104 
7105   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7106   // still constant memory, the input chain can be the entry node.
7107   SDValue Root;
7108   bool ConstantMemory = false;
7109 
7110   // Do not serialize (non-volatile) loads of constant memory with anything.
7111   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7112     Root = Builder.DAG.getEntryNode();
7113     ConstantMemory = true;
7114   } else {
7115     // Do not serialize non-volatile loads against each other.
7116     Root = Builder.DAG.getRoot();
7117   }
7118 
7119   SDValue Ptr = Builder.getValue(PtrVal);
7120   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7121                                         Ptr, MachinePointerInfo(PtrVal),
7122                                         /* Alignment = */ 1);
7123 
7124   if (!ConstantMemory)
7125     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7126   return LoadVal;
7127 }
7128 
7129 /// Record the value for an instruction that produces an integer result,
7130 /// converting the type where necessary.
7131 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7132                                                   SDValue Value,
7133                                                   bool IsSigned) {
7134   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7135                                                     I.getType(), true);
7136   if (IsSigned)
7137     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7138   else
7139     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7140   setValue(&I, Value);
7141 }
7142 
7143 /// See if we can lower a memcmp call into an optimized form. If so, return
7144 /// true and lower it. Otherwise return false, and it will be lowered like a
7145 /// normal call.
7146 /// The caller already checked that \p I calls the appropriate LibFunc with a
7147 /// correct prototype.
7148 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7149   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7150   const Value *Size = I.getArgOperand(2);
7151   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7152   if (CSize && CSize->getZExtValue() == 0) {
7153     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7154                                                           I.getType(), true);
7155     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7156     return true;
7157   }
7158 
7159   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7160   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7161       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7162       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7163   if (Res.first.getNode()) {
7164     processIntegerCallValue(I, Res.first, true);
7165     PendingLoads.push_back(Res.second);
7166     return true;
7167   }
7168 
7169   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7170   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7171   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7172     return false;
7173 
7174   // If the target has a fast compare for the given size, it will return a
7175   // preferred load type for that size. Require that the load VT is legal and
7176   // that the target supports unaligned loads of that type. Otherwise, return
7177   // INVALID.
7178   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7179     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7180     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7181     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7182       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7183       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7184       // TODO: Check alignment of src and dest ptrs.
7185       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7186       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7187       if (!TLI.isTypeLegal(LVT) ||
7188           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7189           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7190         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7191     }
7192 
7193     return LVT;
7194   };
7195 
7196   // This turns into unaligned loads. We only do this if the target natively
7197   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7198   // we'll only produce a small number of byte loads.
7199   MVT LoadVT;
7200   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7201   switch (NumBitsToCompare) {
7202   default:
7203     return false;
7204   case 16:
7205     LoadVT = MVT::i16;
7206     break;
7207   case 32:
7208     LoadVT = MVT::i32;
7209     break;
7210   case 64:
7211   case 128:
7212   case 256:
7213     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7214     break;
7215   }
7216 
7217   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7218     return false;
7219 
7220   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7221   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7222 
7223   // Bitcast to a wide integer type if the loads are vectors.
7224   if (LoadVT.isVector()) {
7225     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7226     LoadL = DAG.getBitcast(CmpVT, LoadL);
7227     LoadR = DAG.getBitcast(CmpVT, LoadR);
7228   }
7229 
7230   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7231   processIntegerCallValue(I, Cmp, false);
7232   return true;
7233 }
7234 
7235 /// See if we can lower a memchr call into an optimized form. If so, return
7236 /// true and lower it. Otherwise return false, and it will be lowered like a
7237 /// normal call.
7238 /// The caller already checked that \p I calls the appropriate LibFunc with a
7239 /// correct prototype.
7240 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7241   const Value *Src = I.getArgOperand(0);
7242   const Value *Char = I.getArgOperand(1);
7243   const Value *Length = I.getArgOperand(2);
7244 
7245   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7246   std::pair<SDValue, SDValue> Res =
7247     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7248                                 getValue(Src), getValue(Char), getValue(Length),
7249                                 MachinePointerInfo(Src));
7250   if (Res.first.getNode()) {
7251     setValue(&I, Res.first);
7252     PendingLoads.push_back(Res.second);
7253     return true;
7254   }
7255 
7256   return false;
7257 }
7258 
7259 /// See if we can lower a mempcpy call into an optimized form. If so, return
7260 /// true and lower it. Otherwise return false, and it will be lowered like a
7261 /// normal call.
7262 /// The caller already checked that \p I calls the appropriate LibFunc with a
7263 /// correct prototype.
7264 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7265   SDValue Dst = getValue(I.getArgOperand(0));
7266   SDValue Src = getValue(I.getArgOperand(1));
7267   SDValue Size = getValue(I.getArgOperand(2));
7268 
7269   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7270   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7271   unsigned Align = std::min(DstAlign, SrcAlign);
7272   if (Align == 0) // Alignment of one or both could not be inferred.
7273     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7274 
7275   bool isVol = false;
7276   SDLoc sdl = getCurSDLoc();
7277 
7278   // In the mempcpy context we need to pass in a false value for isTailCall
7279   // because the return pointer needs to be adjusted by the size of
7280   // the copied memory.
7281   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7282                              false, /*isTailCall=*/false,
7283                              MachinePointerInfo(I.getArgOperand(0)),
7284                              MachinePointerInfo(I.getArgOperand(1)));
7285   assert(MC.getNode() != nullptr &&
7286          "** memcpy should not be lowered as TailCall in mempcpy context **");
7287   DAG.setRoot(MC);
7288 
7289   // Check if Size needs to be truncated or extended.
7290   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7291 
7292   // Adjust return pointer to point just past the last dst byte.
7293   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7294                                     Dst, Size);
7295   setValue(&I, DstPlusSize);
7296   return true;
7297 }
7298 
7299 /// See if we can lower a strcpy call into an optimized form.  If so, return
7300 /// true and lower it, otherwise return false and it will be lowered like a
7301 /// normal call.
7302 /// The caller already checked that \p I calls the appropriate LibFunc with a
7303 /// correct prototype.
7304 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7305   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7306 
7307   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7308   std::pair<SDValue, SDValue> Res =
7309     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7310                                 getValue(Arg0), getValue(Arg1),
7311                                 MachinePointerInfo(Arg0),
7312                                 MachinePointerInfo(Arg1), isStpcpy);
7313   if (Res.first.getNode()) {
7314     setValue(&I, Res.first);
7315     DAG.setRoot(Res.second);
7316     return true;
7317   }
7318 
7319   return false;
7320 }
7321 
7322 /// See if we can lower a strcmp call into an optimized form.  If so, return
7323 /// true and lower it, otherwise return false and it will be lowered like a
7324 /// normal call.
7325 /// The caller already checked that \p I calls the appropriate LibFunc with a
7326 /// correct prototype.
7327 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7328   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7329 
7330   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7331   std::pair<SDValue, SDValue> Res =
7332     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7333                                 getValue(Arg0), getValue(Arg1),
7334                                 MachinePointerInfo(Arg0),
7335                                 MachinePointerInfo(Arg1));
7336   if (Res.first.getNode()) {
7337     processIntegerCallValue(I, Res.first, true);
7338     PendingLoads.push_back(Res.second);
7339     return true;
7340   }
7341 
7342   return false;
7343 }
7344 
7345 /// See if we can lower a strlen call into an optimized form.  If so, return
7346 /// true and lower it, otherwise return false and it will be lowered like a
7347 /// normal call.
7348 /// The caller already checked that \p I calls the appropriate LibFunc with a
7349 /// correct prototype.
7350 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7351   const Value *Arg0 = I.getArgOperand(0);
7352 
7353   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7354   std::pair<SDValue, SDValue> Res =
7355     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7356                                 getValue(Arg0), MachinePointerInfo(Arg0));
7357   if (Res.first.getNode()) {
7358     processIntegerCallValue(I, Res.first, false);
7359     PendingLoads.push_back(Res.second);
7360     return true;
7361   }
7362 
7363   return false;
7364 }
7365 
7366 /// See if we can lower a strnlen call into an optimized form.  If so, return
7367 /// true and lower it, otherwise return false and it will be lowered like a
7368 /// normal call.
7369 /// The caller already checked that \p I calls the appropriate LibFunc with a
7370 /// correct prototype.
7371 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7372   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7373 
7374   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7375   std::pair<SDValue, SDValue> Res =
7376     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7377                                  getValue(Arg0), getValue(Arg1),
7378                                  MachinePointerInfo(Arg0));
7379   if (Res.first.getNode()) {
7380     processIntegerCallValue(I, Res.first, false);
7381     PendingLoads.push_back(Res.second);
7382     return true;
7383   }
7384 
7385   return false;
7386 }
7387 
7388 /// See if we can lower a unary floating-point operation into an SDNode with
7389 /// the specified Opcode.  If so, return true and lower it, otherwise return
7390 /// false and it will be lowered like a normal call.
7391 /// The caller already checked that \p I calls the appropriate LibFunc with a
7392 /// correct prototype.
7393 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7394                                               unsigned Opcode) {
7395   // We already checked this call's prototype; verify it doesn't modify errno.
7396   if (!I.onlyReadsMemory())
7397     return false;
7398 
7399   SDValue Tmp = getValue(I.getArgOperand(0));
7400   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7401   return true;
7402 }
7403 
7404 /// See if we can lower a binary floating-point operation into an SDNode with
7405 /// the specified Opcode. If so, return true and lower it. Otherwise return
7406 /// false, and it will be lowered like a normal call.
7407 /// The caller already checked that \p I calls the appropriate LibFunc with a
7408 /// correct prototype.
7409 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7410                                                unsigned Opcode) {
7411   // We already checked this call's prototype; verify it doesn't modify errno.
7412   if (!I.onlyReadsMemory())
7413     return false;
7414 
7415   SDValue Tmp0 = getValue(I.getArgOperand(0));
7416   SDValue Tmp1 = getValue(I.getArgOperand(1));
7417   EVT VT = Tmp0.getValueType();
7418   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7419   return true;
7420 }
7421 
7422 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7423   // Handle inline assembly differently.
7424   if (isa<InlineAsm>(I.getCalledValue())) {
7425     visitInlineAsm(&I);
7426     return;
7427   }
7428 
7429   const char *RenameFn = nullptr;
7430   if (Function *F = I.getCalledFunction()) {
7431     if (F->isDeclaration()) {
7432       // Is this an LLVM intrinsic or a target-specific intrinsic?
7433       unsigned IID = F->getIntrinsicID();
7434       if (!IID)
7435         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7436           IID = II->getIntrinsicID(F);
7437 
7438       if (IID) {
7439         RenameFn = visitIntrinsicCall(I, IID);
7440         if (!RenameFn)
7441           return;
7442       }
7443     }
7444 
7445     // Check for well-known libc/libm calls.  If the function is internal, it
7446     // can't be a library call.  Don't do the check if marked as nobuiltin for
7447     // some reason or the call site requires strict floating point semantics.
7448     LibFunc Func;
7449     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7450         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7451         LibInfo->hasOptimizedCodeGen(Func)) {
7452       switch (Func) {
7453       default: break;
7454       case LibFunc_copysign:
7455       case LibFunc_copysignf:
7456       case LibFunc_copysignl:
7457         // We already checked this call's prototype; verify it doesn't modify
7458         // errno.
7459         if (I.onlyReadsMemory()) {
7460           SDValue LHS = getValue(I.getArgOperand(0));
7461           SDValue RHS = getValue(I.getArgOperand(1));
7462           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7463                                    LHS.getValueType(), LHS, RHS));
7464           return;
7465         }
7466         break;
7467       case LibFunc_fabs:
7468       case LibFunc_fabsf:
7469       case LibFunc_fabsl:
7470         if (visitUnaryFloatCall(I, ISD::FABS))
7471           return;
7472         break;
7473       case LibFunc_fmin:
7474       case LibFunc_fminf:
7475       case LibFunc_fminl:
7476         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7477           return;
7478         break;
7479       case LibFunc_fmax:
7480       case LibFunc_fmaxf:
7481       case LibFunc_fmaxl:
7482         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7483           return;
7484         break;
7485       case LibFunc_sin:
7486       case LibFunc_sinf:
7487       case LibFunc_sinl:
7488         if (visitUnaryFloatCall(I, ISD::FSIN))
7489           return;
7490         break;
7491       case LibFunc_cos:
7492       case LibFunc_cosf:
7493       case LibFunc_cosl:
7494         if (visitUnaryFloatCall(I, ISD::FCOS))
7495           return;
7496         break;
7497       case LibFunc_sqrt:
7498       case LibFunc_sqrtf:
7499       case LibFunc_sqrtl:
7500       case LibFunc_sqrt_finite:
7501       case LibFunc_sqrtf_finite:
7502       case LibFunc_sqrtl_finite:
7503         if (visitUnaryFloatCall(I, ISD::FSQRT))
7504           return;
7505         break;
7506       case LibFunc_floor:
7507       case LibFunc_floorf:
7508       case LibFunc_floorl:
7509         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7510           return;
7511         break;
7512       case LibFunc_nearbyint:
7513       case LibFunc_nearbyintf:
7514       case LibFunc_nearbyintl:
7515         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7516           return;
7517         break;
7518       case LibFunc_ceil:
7519       case LibFunc_ceilf:
7520       case LibFunc_ceill:
7521         if (visitUnaryFloatCall(I, ISD::FCEIL))
7522           return;
7523         break;
7524       case LibFunc_rint:
7525       case LibFunc_rintf:
7526       case LibFunc_rintl:
7527         if (visitUnaryFloatCall(I, ISD::FRINT))
7528           return;
7529         break;
7530       case LibFunc_round:
7531       case LibFunc_roundf:
7532       case LibFunc_roundl:
7533         if (visitUnaryFloatCall(I, ISD::FROUND))
7534           return;
7535         break;
7536       case LibFunc_trunc:
7537       case LibFunc_truncf:
7538       case LibFunc_truncl:
7539         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7540           return;
7541         break;
7542       case LibFunc_log2:
7543       case LibFunc_log2f:
7544       case LibFunc_log2l:
7545         if (visitUnaryFloatCall(I, ISD::FLOG2))
7546           return;
7547         break;
7548       case LibFunc_exp2:
7549       case LibFunc_exp2f:
7550       case LibFunc_exp2l:
7551         if (visitUnaryFloatCall(I, ISD::FEXP2))
7552           return;
7553         break;
7554       case LibFunc_memcmp:
7555         if (visitMemCmpCall(I))
7556           return;
7557         break;
7558       case LibFunc_mempcpy:
7559         if (visitMemPCpyCall(I))
7560           return;
7561         break;
7562       case LibFunc_memchr:
7563         if (visitMemChrCall(I))
7564           return;
7565         break;
7566       case LibFunc_strcpy:
7567         if (visitStrCpyCall(I, false))
7568           return;
7569         break;
7570       case LibFunc_stpcpy:
7571         if (visitStrCpyCall(I, true))
7572           return;
7573         break;
7574       case LibFunc_strcmp:
7575         if (visitStrCmpCall(I))
7576           return;
7577         break;
7578       case LibFunc_strlen:
7579         if (visitStrLenCall(I))
7580           return;
7581         break;
7582       case LibFunc_strnlen:
7583         if (visitStrNLenCall(I))
7584           return;
7585         break;
7586       }
7587     }
7588   }
7589 
7590   SDValue Callee;
7591   if (!RenameFn)
7592     Callee = getValue(I.getCalledValue());
7593   else
7594     Callee = DAG.getExternalSymbol(
7595         RenameFn,
7596         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7597 
7598   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7599   // have to do anything here to lower funclet bundles.
7600   assert(!I.hasOperandBundlesOtherThan(
7601              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7602          "Cannot lower calls with arbitrary operand bundles!");
7603 
7604   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7605     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7606   else
7607     // Check if we can potentially perform a tail call. More detailed checking
7608     // is be done within LowerCallTo, after more information about the call is
7609     // known.
7610     LowerCallTo(&I, Callee, I.isTailCall());
7611 }
7612 
7613 namespace {
7614 
7615 /// AsmOperandInfo - This contains information for each constraint that we are
7616 /// lowering.
7617 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7618 public:
7619   /// CallOperand - If this is the result output operand or a clobber
7620   /// this is null, otherwise it is the incoming operand to the CallInst.
7621   /// This gets modified as the asm is processed.
7622   SDValue CallOperand;
7623 
7624   /// AssignedRegs - If this is a register or register class operand, this
7625   /// contains the set of register corresponding to the operand.
7626   RegsForValue AssignedRegs;
7627 
7628   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7629     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7630   }
7631 
7632   /// Whether or not this operand accesses memory
7633   bool hasMemory(const TargetLowering &TLI) const {
7634     // Indirect operand accesses access memory.
7635     if (isIndirect)
7636       return true;
7637 
7638     for (const auto &Code : Codes)
7639       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7640         return true;
7641 
7642     return false;
7643   }
7644 
7645   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7646   /// corresponds to.  If there is no Value* for this operand, it returns
7647   /// MVT::Other.
7648   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7649                            const DataLayout &DL) const {
7650     if (!CallOperandVal) return MVT::Other;
7651 
7652     if (isa<BasicBlock>(CallOperandVal))
7653       return TLI.getPointerTy(DL);
7654 
7655     llvm::Type *OpTy = CallOperandVal->getType();
7656 
7657     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7658     // If this is an indirect operand, the operand is a pointer to the
7659     // accessed type.
7660     if (isIndirect) {
7661       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7662       if (!PtrTy)
7663         report_fatal_error("Indirect operand for inline asm not a pointer!");
7664       OpTy = PtrTy->getElementType();
7665     }
7666 
7667     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7668     if (StructType *STy = dyn_cast<StructType>(OpTy))
7669       if (STy->getNumElements() == 1)
7670         OpTy = STy->getElementType(0);
7671 
7672     // If OpTy is not a single value, it may be a struct/union that we
7673     // can tile with integers.
7674     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7675       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7676       switch (BitSize) {
7677       default: break;
7678       case 1:
7679       case 8:
7680       case 16:
7681       case 32:
7682       case 64:
7683       case 128:
7684         OpTy = IntegerType::get(Context, BitSize);
7685         break;
7686       }
7687     }
7688 
7689     return TLI.getValueType(DL, OpTy, true);
7690   }
7691 };
7692 
7693 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7694 
7695 } // end anonymous namespace
7696 
7697 /// Make sure that the output operand \p OpInfo and its corresponding input
7698 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7699 /// out).
7700 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7701                                SDISelAsmOperandInfo &MatchingOpInfo,
7702                                SelectionDAG &DAG) {
7703   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7704     return;
7705 
7706   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7707   const auto &TLI = DAG.getTargetLoweringInfo();
7708 
7709   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7710       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7711                                        OpInfo.ConstraintVT);
7712   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7713       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7714                                        MatchingOpInfo.ConstraintVT);
7715   if ((OpInfo.ConstraintVT.isInteger() !=
7716        MatchingOpInfo.ConstraintVT.isInteger()) ||
7717       (MatchRC.second != InputRC.second)) {
7718     // FIXME: error out in a more elegant fashion
7719     report_fatal_error("Unsupported asm: input constraint"
7720                        " with a matching output constraint of"
7721                        " incompatible type!");
7722   }
7723   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7724 }
7725 
7726 /// Get a direct memory input to behave well as an indirect operand.
7727 /// This may introduce stores, hence the need for a \p Chain.
7728 /// \return The (possibly updated) chain.
7729 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7730                                         SDISelAsmOperandInfo &OpInfo,
7731                                         SelectionDAG &DAG) {
7732   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7733 
7734   // If we don't have an indirect input, put it in the constpool if we can,
7735   // otherwise spill it to a stack slot.
7736   // TODO: This isn't quite right. We need to handle these according to
7737   // the addressing mode that the constraint wants. Also, this may take
7738   // an additional register for the computation and we don't want that
7739   // either.
7740 
7741   // If the operand is a float, integer, or vector constant, spill to a
7742   // constant pool entry to get its address.
7743   const Value *OpVal = OpInfo.CallOperandVal;
7744   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7745       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7746     OpInfo.CallOperand = DAG.getConstantPool(
7747         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7748     return Chain;
7749   }
7750 
7751   // Otherwise, create a stack slot and emit a store to it before the asm.
7752   Type *Ty = OpVal->getType();
7753   auto &DL = DAG.getDataLayout();
7754   uint64_t TySize = DL.getTypeAllocSize(Ty);
7755   unsigned Align = DL.getPrefTypeAlignment(Ty);
7756   MachineFunction &MF = DAG.getMachineFunction();
7757   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7758   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7759   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7760                             MachinePointerInfo::getFixedStack(MF, SSFI),
7761                             TLI.getMemValueType(DL, Ty));
7762   OpInfo.CallOperand = StackSlot;
7763 
7764   return Chain;
7765 }
7766 
7767 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7768 /// specified operand.  We prefer to assign virtual registers, to allow the
7769 /// register allocator to handle the assignment process.  However, if the asm
7770 /// uses features that we can't model on machineinstrs, we have SDISel do the
7771 /// allocation.  This produces generally horrible, but correct, code.
7772 ///
7773 ///   OpInfo describes the operand
7774 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7775 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7776                                  SDISelAsmOperandInfo &OpInfo,
7777                                  SDISelAsmOperandInfo &RefOpInfo) {
7778   LLVMContext &Context = *DAG.getContext();
7779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7780 
7781   MachineFunction &MF = DAG.getMachineFunction();
7782   SmallVector<unsigned, 4> Regs;
7783   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7784 
7785   // No work to do for memory operations.
7786   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7787     return;
7788 
7789   // If this is a constraint for a single physreg, or a constraint for a
7790   // register class, find it.
7791   unsigned AssignedReg;
7792   const TargetRegisterClass *RC;
7793   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7794       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7795   // RC is unset only on failure. Return immediately.
7796   if (!RC)
7797     return;
7798 
7799   // Get the actual register value type.  This is important, because the user
7800   // may have asked for (e.g.) the AX register in i32 type.  We need to
7801   // remember that AX is actually i16 to get the right extension.
7802   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7803 
7804   if (OpInfo.ConstraintVT != MVT::Other) {
7805     // If this is an FP operand in an integer register (or visa versa), or more
7806     // generally if the operand value disagrees with the register class we plan
7807     // to stick it in, fix the operand type.
7808     //
7809     // If this is an input value, the bitcast to the new type is done now.
7810     // Bitcast for output value is done at the end of visitInlineAsm().
7811     if ((OpInfo.Type == InlineAsm::isOutput ||
7812          OpInfo.Type == InlineAsm::isInput) &&
7813         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7814       // Try to convert to the first EVT that the reg class contains.  If the
7815       // types are identical size, use a bitcast to convert (e.g. two differing
7816       // vector types).  Note: output bitcast is done at the end of
7817       // visitInlineAsm().
7818       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7819         // Exclude indirect inputs while they are unsupported because the code
7820         // to perform the load is missing and thus OpInfo.CallOperand still
7821         // refers to the input address rather than the pointed-to value.
7822         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7823           OpInfo.CallOperand =
7824               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7825         OpInfo.ConstraintVT = RegVT;
7826         // If the operand is an FP value and we want it in integer registers,
7827         // use the corresponding integer type. This turns an f64 value into
7828         // i64, which can be passed with two i32 values on a 32-bit machine.
7829       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7830         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7831         if (OpInfo.Type == InlineAsm::isInput)
7832           OpInfo.CallOperand =
7833               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7834         OpInfo.ConstraintVT = VT;
7835       }
7836     }
7837   }
7838 
7839   // No need to allocate a matching input constraint since the constraint it's
7840   // matching to has already been allocated.
7841   if (OpInfo.isMatchingInputConstraint())
7842     return;
7843 
7844   EVT ValueVT = OpInfo.ConstraintVT;
7845   if (OpInfo.ConstraintVT == MVT::Other)
7846     ValueVT = RegVT;
7847 
7848   // Initialize NumRegs.
7849   unsigned NumRegs = 1;
7850   if (OpInfo.ConstraintVT != MVT::Other)
7851     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7852 
7853   // If this is a constraint for a specific physical register, like {r17},
7854   // assign it now.
7855 
7856   // If this associated to a specific register, initialize iterator to correct
7857   // place. If virtual, make sure we have enough registers
7858 
7859   // Initialize iterator if necessary
7860   TargetRegisterClass::iterator I = RC->begin();
7861   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7862 
7863   // Do not check for single registers.
7864   if (AssignedReg) {
7865       for (; *I != AssignedReg; ++I)
7866         assert(I != RC->end() && "AssignedReg should be member of RC");
7867   }
7868 
7869   for (; NumRegs; --NumRegs, ++I) {
7870     assert(I != RC->end() && "Ran out of registers to allocate!");
7871     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7872     Regs.push_back(R);
7873   }
7874 
7875   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7876 }
7877 
7878 static unsigned
7879 findMatchingInlineAsmOperand(unsigned OperandNo,
7880                              const std::vector<SDValue> &AsmNodeOperands) {
7881   // Scan until we find the definition we already emitted of this operand.
7882   unsigned CurOp = InlineAsm::Op_FirstOperand;
7883   for (; OperandNo; --OperandNo) {
7884     // Advance to the next operand.
7885     unsigned OpFlag =
7886         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7887     assert((InlineAsm::isRegDefKind(OpFlag) ||
7888             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7889             InlineAsm::isMemKind(OpFlag)) &&
7890            "Skipped past definitions?");
7891     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7892   }
7893   return CurOp;
7894 }
7895 
7896 namespace {
7897 
7898 class ExtraFlags {
7899   unsigned Flags = 0;
7900 
7901 public:
7902   explicit ExtraFlags(ImmutableCallSite CS) {
7903     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7904     if (IA->hasSideEffects())
7905       Flags |= InlineAsm::Extra_HasSideEffects;
7906     if (IA->isAlignStack())
7907       Flags |= InlineAsm::Extra_IsAlignStack;
7908     if (CS.isConvergent())
7909       Flags |= InlineAsm::Extra_IsConvergent;
7910     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7911   }
7912 
7913   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7914     // Ideally, we would only check against memory constraints.  However, the
7915     // meaning of an Other constraint can be target-specific and we can't easily
7916     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7917     // for Other constraints as well.
7918     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7919         OpInfo.ConstraintType == TargetLowering::C_Other) {
7920       if (OpInfo.Type == InlineAsm::isInput)
7921         Flags |= InlineAsm::Extra_MayLoad;
7922       else if (OpInfo.Type == InlineAsm::isOutput)
7923         Flags |= InlineAsm::Extra_MayStore;
7924       else if (OpInfo.Type == InlineAsm::isClobber)
7925         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7926     }
7927   }
7928 
7929   unsigned get() const { return Flags; }
7930 };
7931 
7932 } // end anonymous namespace
7933 
7934 /// visitInlineAsm - Handle a call to an InlineAsm object.
7935 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7936   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7937 
7938   /// ConstraintOperands - Information about all of the constraints.
7939   SDISelAsmOperandInfoVector ConstraintOperands;
7940 
7941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7942   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7943       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7944 
7945   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7946   // AsmDialect, MayLoad, MayStore).
7947   bool HasSideEffect = IA->hasSideEffects();
7948   ExtraFlags ExtraInfo(CS);
7949 
7950   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7951   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7952   for (auto &T : TargetConstraints) {
7953     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7954     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7955 
7956     // Compute the value type for each operand.
7957     if (OpInfo.Type == InlineAsm::isInput ||
7958         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7959       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7960 
7961       // Process the call argument. BasicBlocks are labels, currently appearing
7962       // only in asm's.
7963       const Instruction *I = CS.getInstruction();
7964       if (isa<CallBrInst>(I) &&
7965           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7966                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7967         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7968         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7969         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7970       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7971         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7972       } else {
7973         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7974       }
7975 
7976       OpInfo.ConstraintVT =
7977           OpInfo
7978               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7979               .getSimpleVT();
7980     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7981       // The return value of the call is this value.  As such, there is no
7982       // corresponding argument.
7983       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7984       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7985         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7986             DAG.getDataLayout(), STy->getElementType(ResNo));
7987       } else {
7988         assert(ResNo == 0 && "Asm only has one result!");
7989         OpInfo.ConstraintVT =
7990             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7991       }
7992       ++ResNo;
7993     } else {
7994       OpInfo.ConstraintVT = MVT::Other;
7995     }
7996 
7997     if (!HasSideEffect)
7998       HasSideEffect = OpInfo.hasMemory(TLI);
7999 
8000     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8001     // FIXME: Could we compute this on OpInfo rather than T?
8002 
8003     // Compute the constraint code and ConstraintType to use.
8004     TLI.ComputeConstraintToUse(T, SDValue());
8005 
8006     ExtraInfo.update(T);
8007   }
8008 
8009   // We won't need to flush pending loads if this asm doesn't touch
8010   // memory and is nonvolatile.
8011   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8012 
8013   // Second pass over the constraints: compute which constraint option to use.
8014   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8015     // If this is an output operand with a matching input operand, look up the
8016     // matching input. If their types mismatch, e.g. one is an integer, the
8017     // other is floating point, or their sizes are different, flag it as an
8018     // error.
8019     if (OpInfo.hasMatchingInput()) {
8020       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8021       patchMatchingInput(OpInfo, Input, DAG);
8022     }
8023 
8024     // Compute the constraint code and ConstraintType to use.
8025     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8026 
8027     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8028         OpInfo.Type == InlineAsm::isClobber)
8029       continue;
8030 
8031     // If this is a memory input, and if the operand is not indirect, do what we
8032     // need to provide an address for the memory input.
8033     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8034         !OpInfo.isIndirect) {
8035       assert((OpInfo.isMultipleAlternative ||
8036               (OpInfo.Type == InlineAsm::isInput)) &&
8037              "Can only indirectify direct input operands!");
8038 
8039       // Memory operands really want the address of the value.
8040       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8041 
8042       // There is no longer a Value* corresponding to this operand.
8043       OpInfo.CallOperandVal = nullptr;
8044 
8045       // It is now an indirect operand.
8046       OpInfo.isIndirect = true;
8047     }
8048 
8049   }
8050 
8051   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8052   std::vector<SDValue> AsmNodeOperands;
8053   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8054   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8055       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8056 
8057   // If we have a !srcloc metadata node associated with it, we want to attach
8058   // this to the ultimately generated inline asm machineinstr.  To do this, we
8059   // pass in the third operand as this (potentially null) inline asm MDNode.
8060   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8061   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8062 
8063   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8064   // bits as operand 3.
8065   AsmNodeOperands.push_back(DAG.getTargetConstant(
8066       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8067 
8068   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8069   // this, assign virtual and physical registers for inputs and otput.
8070   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8071     // Assign Registers.
8072     SDISelAsmOperandInfo &RefOpInfo =
8073         OpInfo.isMatchingInputConstraint()
8074             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8075             : OpInfo;
8076     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8077 
8078     switch (OpInfo.Type) {
8079     case InlineAsm::isOutput:
8080       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8081           (OpInfo.ConstraintType == TargetLowering::C_Other &&
8082            OpInfo.isIndirect)) {
8083         unsigned ConstraintID =
8084             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8085         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8086                "Failed to convert memory constraint code to constraint id.");
8087 
8088         // Add information to the INLINEASM node to know about this output.
8089         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8090         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8091         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8092                                                         MVT::i32));
8093         AsmNodeOperands.push_back(OpInfo.CallOperand);
8094         break;
8095       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
8096                   !OpInfo.isIndirect) ||
8097                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8098                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8099         // Otherwise, this outputs to a register (directly for C_Register /
8100         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8101         // register that we can use.
8102         if (OpInfo.AssignedRegs.Regs.empty()) {
8103           emitInlineAsmError(
8104               CS, "couldn't allocate output register for constraint '" +
8105                       Twine(OpInfo.ConstraintCode) + "'");
8106           return;
8107         }
8108 
8109         // Add information to the INLINEASM node to know that this register is
8110         // set.
8111         OpInfo.AssignedRegs.AddInlineAsmOperands(
8112             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8113                                   : InlineAsm::Kind_RegDef,
8114             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8115       }
8116       break;
8117 
8118     case InlineAsm::isInput: {
8119       SDValue InOperandVal = OpInfo.CallOperand;
8120 
8121       if (OpInfo.isMatchingInputConstraint()) {
8122         // If this is required to match an output register we have already set,
8123         // just use its register.
8124         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8125                                                   AsmNodeOperands);
8126         unsigned OpFlag =
8127           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8128         if (InlineAsm::isRegDefKind(OpFlag) ||
8129             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8130           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8131           if (OpInfo.isIndirect) {
8132             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8133             emitInlineAsmError(CS, "inline asm not supported yet:"
8134                                    " don't know how to handle tied "
8135                                    "indirect register inputs");
8136             return;
8137           }
8138 
8139           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8140           SmallVector<unsigned, 4> Regs;
8141 
8142           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8143             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8144             MachineRegisterInfo &RegInfo =
8145                 DAG.getMachineFunction().getRegInfo();
8146             for (unsigned i = 0; i != NumRegs; ++i)
8147               Regs.push_back(RegInfo.createVirtualRegister(RC));
8148           } else {
8149             emitInlineAsmError(CS, "inline asm error: This value type register "
8150                                    "class is not natively supported!");
8151             return;
8152           }
8153 
8154           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8155 
8156           SDLoc dl = getCurSDLoc();
8157           // Use the produced MatchedRegs object to
8158           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8159                                     CS.getInstruction());
8160           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8161                                            true, OpInfo.getMatchedOperand(), dl,
8162                                            DAG, AsmNodeOperands);
8163           break;
8164         }
8165 
8166         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8167         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8168                "Unexpected number of operands");
8169         // Add information to the INLINEASM node to know about this input.
8170         // See InlineAsm.h isUseOperandTiedToDef.
8171         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8172         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8173                                                     OpInfo.getMatchedOperand());
8174         AsmNodeOperands.push_back(DAG.getTargetConstant(
8175             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8176         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8177         break;
8178       }
8179 
8180       // Treat indirect 'X' constraint as memory.
8181       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8182           OpInfo.isIndirect)
8183         OpInfo.ConstraintType = TargetLowering::C_Memory;
8184 
8185       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8186         std::vector<SDValue> Ops;
8187         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8188                                           Ops, DAG);
8189         if (Ops.empty()) {
8190           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8191                                      Twine(OpInfo.ConstraintCode) + "'");
8192           return;
8193         }
8194 
8195         // Add information to the INLINEASM node to know about this input.
8196         unsigned ResOpType =
8197           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8198         AsmNodeOperands.push_back(DAG.getTargetConstant(
8199             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8200         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8201         break;
8202       }
8203 
8204       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8205         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8206         assert(InOperandVal.getValueType() ==
8207                    TLI.getPointerTy(DAG.getDataLayout()) &&
8208                "Memory operands expect pointer values");
8209 
8210         unsigned ConstraintID =
8211             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8212         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8213                "Failed to convert memory constraint code to constraint id.");
8214 
8215         // Add information to the INLINEASM node to know about this input.
8216         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8217         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8218         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8219                                                         getCurSDLoc(),
8220                                                         MVT::i32));
8221         AsmNodeOperands.push_back(InOperandVal);
8222         break;
8223       }
8224 
8225       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8226               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8227              "Unknown constraint type!");
8228 
8229       // TODO: Support this.
8230       if (OpInfo.isIndirect) {
8231         emitInlineAsmError(
8232             CS, "Don't know how to handle indirect register inputs yet "
8233                 "for constraint '" +
8234                     Twine(OpInfo.ConstraintCode) + "'");
8235         return;
8236       }
8237 
8238       // Copy the input into the appropriate registers.
8239       if (OpInfo.AssignedRegs.Regs.empty()) {
8240         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8241                                    Twine(OpInfo.ConstraintCode) + "'");
8242         return;
8243       }
8244 
8245       SDLoc dl = getCurSDLoc();
8246 
8247       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8248                                         Chain, &Flag, CS.getInstruction());
8249 
8250       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8251                                                dl, DAG, AsmNodeOperands);
8252       break;
8253     }
8254     case InlineAsm::isClobber:
8255       // Add the clobbered value to the operand list, so that the register
8256       // allocator is aware that the physreg got clobbered.
8257       if (!OpInfo.AssignedRegs.Regs.empty())
8258         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8259                                                  false, 0, getCurSDLoc(), DAG,
8260                                                  AsmNodeOperands);
8261       break;
8262     }
8263   }
8264 
8265   // Finish up input operands.  Set the input chain and add the flag last.
8266   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8267   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8268 
8269   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR
8270                                                          : ISD::INLINEASM;
8271   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8272                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8273   Flag = Chain.getValue(1);
8274 
8275   // Do additional work to generate outputs.
8276 
8277   SmallVector<EVT, 1> ResultVTs;
8278   SmallVector<SDValue, 1> ResultValues;
8279   SmallVector<SDValue, 8> OutChains;
8280 
8281   llvm::Type *CSResultType = CS.getType();
8282   ArrayRef<Type *> ResultTypes;
8283   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8284     ResultTypes = StructResult->elements();
8285   else if (!CSResultType->isVoidTy())
8286     ResultTypes = makeArrayRef(CSResultType);
8287 
8288   auto CurResultType = ResultTypes.begin();
8289   auto handleRegAssign = [&](SDValue V) {
8290     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8291     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8292     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8293     ++CurResultType;
8294     // If the type of the inline asm call site return value is different but has
8295     // same size as the type of the asm output bitcast it.  One example of this
8296     // is for vectors with different width / number of elements.  This can
8297     // happen for register classes that can contain multiple different value
8298     // types.  The preg or vreg allocated may not have the same VT as was
8299     // expected.
8300     //
8301     // This can also happen for a return value that disagrees with the register
8302     // class it is put in, eg. a double in a general-purpose register on a
8303     // 32-bit machine.
8304     if (ResultVT != V.getValueType() &&
8305         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8306       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8307     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8308              V.getValueType().isInteger()) {
8309       // If a result value was tied to an input value, the computed result
8310       // may have a wider width than the expected result.  Extract the
8311       // relevant portion.
8312       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8313     }
8314     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8315     ResultVTs.push_back(ResultVT);
8316     ResultValues.push_back(V);
8317   };
8318 
8319   // Deal with output operands.
8320   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8321     if (OpInfo.Type == InlineAsm::isOutput) {
8322       SDValue Val;
8323       // Skip trivial output operands.
8324       if (OpInfo.AssignedRegs.Regs.empty())
8325         continue;
8326 
8327       switch (OpInfo.ConstraintType) {
8328       case TargetLowering::C_Register:
8329       case TargetLowering::C_RegisterClass:
8330         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8331             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8332         break;
8333       case TargetLowering::C_Other:
8334         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8335                                               OpInfo, DAG);
8336         break;
8337       case TargetLowering::C_Memory:
8338         break; // Already handled.
8339       case TargetLowering::C_Unknown:
8340         assert(false && "Unexpected unknown constraint");
8341       }
8342 
8343       // Indirect output manifest as stores. Record output chains.
8344       if (OpInfo.isIndirect) {
8345         const Value *Ptr = OpInfo.CallOperandVal;
8346         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8347         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8348                                      MachinePointerInfo(Ptr));
8349         OutChains.push_back(Store);
8350       } else {
8351         // generate CopyFromRegs to associated registers.
8352         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8353         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8354           for (const SDValue &V : Val->op_values())
8355             handleRegAssign(V);
8356         } else
8357           handleRegAssign(Val);
8358       }
8359     }
8360   }
8361 
8362   // Set results.
8363   if (!ResultValues.empty()) {
8364     assert(CurResultType == ResultTypes.end() &&
8365            "Mismatch in number of ResultTypes");
8366     assert(ResultValues.size() == ResultTypes.size() &&
8367            "Mismatch in number of output operands in asm result");
8368 
8369     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8370                             DAG.getVTList(ResultVTs), ResultValues);
8371     setValue(CS.getInstruction(), V);
8372   }
8373 
8374   // Collect store chains.
8375   if (!OutChains.empty())
8376     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8377 
8378   // Only Update Root if inline assembly has a memory effect.
8379   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8380     DAG.setRoot(Chain);
8381 }
8382 
8383 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8384                                              const Twine &Message) {
8385   LLVMContext &Ctx = *DAG.getContext();
8386   Ctx.emitError(CS.getInstruction(), Message);
8387 
8388   // Make sure we leave the DAG in a valid state
8389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8390   SmallVector<EVT, 1> ValueVTs;
8391   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8392 
8393   if (ValueVTs.empty())
8394     return;
8395 
8396   SmallVector<SDValue, 1> Ops;
8397   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8398     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8399 
8400   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8401 }
8402 
8403 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8404   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8405                           MVT::Other, getRoot(),
8406                           getValue(I.getArgOperand(0)),
8407                           DAG.getSrcValue(I.getArgOperand(0))));
8408 }
8409 
8410 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8412   const DataLayout &DL = DAG.getDataLayout();
8413   SDValue V = DAG.getVAArg(
8414       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8415       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8416       DL.getABITypeAlignment(I.getType()));
8417   DAG.setRoot(V.getValue(1));
8418 
8419   if (I.getType()->isPointerTy())
8420     V = DAG.getPtrExtOrTrunc(
8421         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8422   setValue(&I, V);
8423 }
8424 
8425 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8426   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8427                           MVT::Other, getRoot(),
8428                           getValue(I.getArgOperand(0)),
8429                           DAG.getSrcValue(I.getArgOperand(0))));
8430 }
8431 
8432 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8433   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8434                           MVT::Other, getRoot(),
8435                           getValue(I.getArgOperand(0)),
8436                           getValue(I.getArgOperand(1)),
8437                           DAG.getSrcValue(I.getArgOperand(0)),
8438                           DAG.getSrcValue(I.getArgOperand(1))));
8439 }
8440 
8441 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8442                                                     const Instruction &I,
8443                                                     SDValue Op) {
8444   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8445   if (!Range)
8446     return Op;
8447 
8448   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8449   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8450     return Op;
8451 
8452   APInt Lo = CR.getUnsignedMin();
8453   if (!Lo.isMinValue())
8454     return Op;
8455 
8456   APInt Hi = CR.getUnsignedMax();
8457   unsigned Bits = std::max(Hi.getActiveBits(),
8458                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8459 
8460   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8461 
8462   SDLoc SL = getCurSDLoc();
8463 
8464   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8465                              DAG.getValueType(SmallVT));
8466   unsigned NumVals = Op.getNode()->getNumValues();
8467   if (NumVals == 1)
8468     return ZExt;
8469 
8470   SmallVector<SDValue, 4> Ops;
8471 
8472   Ops.push_back(ZExt);
8473   for (unsigned I = 1; I != NumVals; ++I)
8474     Ops.push_back(Op.getValue(I));
8475 
8476   return DAG.getMergeValues(Ops, SL);
8477 }
8478 
8479 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8480 /// the call being lowered.
8481 ///
8482 /// This is a helper for lowering intrinsics that follow a target calling
8483 /// convention or require stack pointer adjustment. Only a subset of the
8484 /// intrinsic's operands need to participate in the calling convention.
8485 void SelectionDAGBuilder::populateCallLoweringInfo(
8486     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8487     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8488     bool IsPatchPoint) {
8489   TargetLowering::ArgListTy Args;
8490   Args.reserve(NumArgs);
8491 
8492   // Populate the argument list.
8493   // Attributes for args start at offset 1, after the return attribute.
8494   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8495        ArgI != ArgE; ++ArgI) {
8496     const Value *V = Call->getOperand(ArgI);
8497 
8498     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8499 
8500     TargetLowering::ArgListEntry Entry;
8501     Entry.Node = getValue(V);
8502     Entry.Ty = V->getType();
8503     Entry.setAttributes(Call, ArgI);
8504     Args.push_back(Entry);
8505   }
8506 
8507   CLI.setDebugLoc(getCurSDLoc())
8508       .setChain(getRoot())
8509       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8510       .setDiscardResult(Call->use_empty())
8511       .setIsPatchPoint(IsPatchPoint);
8512 }
8513 
8514 /// Add a stack map intrinsic call's live variable operands to a stackmap
8515 /// or patchpoint target node's operand list.
8516 ///
8517 /// Constants are converted to TargetConstants purely as an optimization to
8518 /// avoid constant materialization and register allocation.
8519 ///
8520 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8521 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8522 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8523 /// address materialization and register allocation, but may also be required
8524 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8525 /// alloca in the entry block, then the runtime may assume that the alloca's
8526 /// StackMap location can be read immediately after compilation and that the
8527 /// location is valid at any point during execution (this is similar to the
8528 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8529 /// only available in a register, then the runtime would need to trap when
8530 /// execution reaches the StackMap in order to read the alloca's location.
8531 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8532                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8533                                 SelectionDAGBuilder &Builder) {
8534   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8535     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8536     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8537       Ops.push_back(
8538         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8539       Ops.push_back(
8540         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8541     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8542       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8543       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8544           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8545     } else
8546       Ops.push_back(OpVal);
8547   }
8548 }
8549 
8550 /// Lower llvm.experimental.stackmap directly to its target opcode.
8551 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8552   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8553   //                                  [live variables...])
8554 
8555   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8556 
8557   SDValue Chain, InFlag, Callee, NullPtr;
8558   SmallVector<SDValue, 32> Ops;
8559 
8560   SDLoc DL = getCurSDLoc();
8561   Callee = getValue(CI.getCalledValue());
8562   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8563 
8564   // The stackmap intrinsic only records the live variables (the arguemnts
8565   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8566   // intrinsic, this won't be lowered to a function call. This means we don't
8567   // have to worry about calling conventions and target specific lowering code.
8568   // Instead we perform the call lowering right here.
8569   //
8570   // chain, flag = CALLSEQ_START(chain, 0, 0)
8571   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8572   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8573   //
8574   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8575   InFlag = Chain.getValue(1);
8576 
8577   // Add the <id> and <numBytes> constants.
8578   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8579   Ops.push_back(DAG.getTargetConstant(
8580                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8581   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8582   Ops.push_back(DAG.getTargetConstant(
8583                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8584                   MVT::i32));
8585 
8586   // Push live variables for the stack map.
8587   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8588 
8589   // We are not pushing any register mask info here on the operands list,
8590   // because the stackmap doesn't clobber anything.
8591 
8592   // Push the chain and the glue flag.
8593   Ops.push_back(Chain);
8594   Ops.push_back(InFlag);
8595 
8596   // Create the STACKMAP node.
8597   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8598   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8599   Chain = SDValue(SM, 0);
8600   InFlag = Chain.getValue(1);
8601 
8602   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8603 
8604   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8605 
8606   // Set the root to the target-lowered call chain.
8607   DAG.setRoot(Chain);
8608 
8609   // Inform the Frame Information that we have a stackmap in this function.
8610   FuncInfo.MF->getFrameInfo().setHasStackMap();
8611 }
8612 
8613 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8614 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8615                                           const BasicBlock *EHPadBB) {
8616   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8617   //                                                 i32 <numBytes>,
8618   //                                                 i8* <target>,
8619   //                                                 i32 <numArgs>,
8620   //                                                 [Args...],
8621   //                                                 [live variables...])
8622 
8623   CallingConv::ID CC = CS.getCallingConv();
8624   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8625   bool HasDef = !CS->getType()->isVoidTy();
8626   SDLoc dl = getCurSDLoc();
8627   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8628 
8629   // Handle immediate and symbolic callees.
8630   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8631     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8632                                    /*isTarget=*/true);
8633   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8634     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8635                                          SDLoc(SymbolicCallee),
8636                                          SymbolicCallee->getValueType(0));
8637 
8638   // Get the real number of arguments participating in the call <numArgs>
8639   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8640   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8641 
8642   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8643   // Intrinsics include all meta-operands up to but not including CC.
8644   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8645   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8646          "Not enough arguments provided to the patchpoint intrinsic");
8647 
8648   // For AnyRegCC the arguments are lowered later on manually.
8649   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8650   Type *ReturnTy =
8651     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8652 
8653   TargetLowering::CallLoweringInfo CLI(DAG);
8654   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8655                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8656   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8657 
8658   SDNode *CallEnd = Result.second.getNode();
8659   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8660     CallEnd = CallEnd->getOperand(0).getNode();
8661 
8662   /// Get a call instruction from the call sequence chain.
8663   /// Tail calls are not allowed.
8664   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8665          "Expected a callseq node.");
8666   SDNode *Call = CallEnd->getOperand(0).getNode();
8667   bool HasGlue = Call->getGluedNode();
8668 
8669   // Replace the target specific call node with the patchable intrinsic.
8670   SmallVector<SDValue, 8> Ops;
8671 
8672   // Add the <id> and <numBytes> constants.
8673   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8674   Ops.push_back(DAG.getTargetConstant(
8675                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8676   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8677   Ops.push_back(DAG.getTargetConstant(
8678                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8679                   MVT::i32));
8680 
8681   // Add the callee.
8682   Ops.push_back(Callee);
8683 
8684   // Adjust <numArgs> to account for any arguments that have been passed on the
8685   // stack instead.
8686   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8687   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8688   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8689   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8690 
8691   // Add the calling convention
8692   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8693 
8694   // Add the arguments we omitted previously. The register allocator should
8695   // place these in any free register.
8696   if (IsAnyRegCC)
8697     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8698       Ops.push_back(getValue(CS.getArgument(i)));
8699 
8700   // Push the arguments from the call instruction up to the register mask.
8701   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8702   Ops.append(Call->op_begin() + 2, e);
8703 
8704   // Push live variables for the stack map.
8705   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8706 
8707   // Push the register mask info.
8708   if (HasGlue)
8709     Ops.push_back(*(Call->op_end()-2));
8710   else
8711     Ops.push_back(*(Call->op_end()-1));
8712 
8713   // Push the chain (this is originally the first operand of the call, but
8714   // becomes now the last or second to last operand).
8715   Ops.push_back(*(Call->op_begin()));
8716 
8717   // Push the glue flag (last operand).
8718   if (HasGlue)
8719     Ops.push_back(*(Call->op_end()-1));
8720 
8721   SDVTList NodeTys;
8722   if (IsAnyRegCC && HasDef) {
8723     // Create the return types based on the intrinsic definition
8724     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8725     SmallVector<EVT, 3> ValueVTs;
8726     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8727     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8728 
8729     // There is always a chain and a glue type at the end
8730     ValueVTs.push_back(MVT::Other);
8731     ValueVTs.push_back(MVT::Glue);
8732     NodeTys = DAG.getVTList(ValueVTs);
8733   } else
8734     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8735 
8736   // Replace the target specific call node with a PATCHPOINT node.
8737   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8738                                          dl, NodeTys, Ops);
8739 
8740   // Update the NodeMap.
8741   if (HasDef) {
8742     if (IsAnyRegCC)
8743       setValue(CS.getInstruction(), SDValue(MN, 0));
8744     else
8745       setValue(CS.getInstruction(), Result.first);
8746   }
8747 
8748   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8749   // call sequence. Furthermore the location of the chain and glue can change
8750   // when the AnyReg calling convention is used and the intrinsic returns a
8751   // value.
8752   if (IsAnyRegCC && HasDef) {
8753     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8754     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8755     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8756   } else
8757     DAG.ReplaceAllUsesWith(Call, MN);
8758   DAG.DeleteNode(Call);
8759 
8760   // Inform the Frame Information that we have a patchpoint in this function.
8761   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8762 }
8763 
8764 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8765                                             unsigned Intrinsic) {
8766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8767   SDValue Op1 = getValue(I.getArgOperand(0));
8768   SDValue Op2;
8769   if (I.getNumArgOperands() > 1)
8770     Op2 = getValue(I.getArgOperand(1));
8771   SDLoc dl = getCurSDLoc();
8772   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8773   SDValue Res;
8774   FastMathFlags FMF;
8775   if (isa<FPMathOperator>(I))
8776     FMF = I.getFastMathFlags();
8777 
8778   switch (Intrinsic) {
8779   case Intrinsic::experimental_vector_reduce_fadd:
8780     if (FMF.isFast())
8781       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8782     else
8783       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8784     break;
8785   case Intrinsic::experimental_vector_reduce_fmul:
8786     if (FMF.isFast())
8787       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8788     else
8789       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8790     break;
8791   case Intrinsic::experimental_vector_reduce_add:
8792     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8793     break;
8794   case Intrinsic::experimental_vector_reduce_mul:
8795     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8796     break;
8797   case Intrinsic::experimental_vector_reduce_and:
8798     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8799     break;
8800   case Intrinsic::experimental_vector_reduce_or:
8801     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8802     break;
8803   case Intrinsic::experimental_vector_reduce_xor:
8804     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8805     break;
8806   case Intrinsic::experimental_vector_reduce_smax:
8807     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8808     break;
8809   case Intrinsic::experimental_vector_reduce_smin:
8810     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8811     break;
8812   case Intrinsic::experimental_vector_reduce_umax:
8813     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8814     break;
8815   case Intrinsic::experimental_vector_reduce_umin:
8816     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8817     break;
8818   case Intrinsic::experimental_vector_reduce_fmax:
8819     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8820     break;
8821   case Intrinsic::experimental_vector_reduce_fmin:
8822     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8823     break;
8824   default:
8825     llvm_unreachable("Unhandled vector reduce intrinsic");
8826   }
8827   setValue(&I, Res);
8828 }
8829 
8830 /// Returns an AttributeList representing the attributes applied to the return
8831 /// value of the given call.
8832 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8833   SmallVector<Attribute::AttrKind, 2> Attrs;
8834   if (CLI.RetSExt)
8835     Attrs.push_back(Attribute::SExt);
8836   if (CLI.RetZExt)
8837     Attrs.push_back(Attribute::ZExt);
8838   if (CLI.IsInReg)
8839     Attrs.push_back(Attribute::InReg);
8840 
8841   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8842                             Attrs);
8843 }
8844 
8845 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8846 /// implementation, which just calls LowerCall.
8847 /// FIXME: When all targets are
8848 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8849 std::pair<SDValue, SDValue>
8850 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8851   // Handle the incoming return values from the call.
8852   CLI.Ins.clear();
8853   Type *OrigRetTy = CLI.RetTy;
8854   SmallVector<EVT, 4> RetTys;
8855   SmallVector<uint64_t, 4> Offsets;
8856   auto &DL = CLI.DAG.getDataLayout();
8857   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8858 
8859   if (CLI.IsPostTypeLegalization) {
8860     // If we are lowering a libcall after legalization, split the return type.
8861     SmallVector<EVT, 4> OldRetTys;
8862     SmallVector<uint64_t, 4> OldOffsets;
8863     RetTys.swap(OldRetTys);
8864     Offsets.swap(OldOffsets);
8865 
8866     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8867       EVT RetVT = OldRetTys[i];
8868       uint64_t Offset = OldOffsets[i];
8869       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8870       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8871       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8872       RetTys.append(NumRegs, RegisterVT);
8873       for (unsigned j = 0; j != NumRegs; ++j)
8874         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8875     }
8876   }
8877 
8878   SmallVector<ISD::OutputArg, 4> Outs;
8879   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8880 
8881   bool CanLowerReturn =
8882       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8883                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8884 
8885   SDValue DemoteStackSlot;
8886   int DemoteStackIdx = -100;
8887   if (!CanLowerReturn) {
8888     // FIXME: equivalent assert?
8889     // assert(!CS.hasInAllocaArgument() &&
8890     //        "sret demotion is incompatible with inalloca");
8891     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8892     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8893     MachineFunction &MF = CLI.DAG.getMachineFunction();
8894     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8895     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8896                                               DL.getAllocaAddrSpace());
8897 
8898     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8899     ArgListEntry Entry;
8900     Entry.Node = DemoteStackSlot;
8901     Entry.Ty = StackSlotPtrType;
8902     Entry.IsSExt = false;
8903     Entry.IsZExt = false;
8904     Entry.IsInReg = false;
8905     Entry.IsSRet = true;
8906     Entry.IsNest = false;
8907     Entry.IsByVal = false;
8908     Entry.IsReturned = false;
8909     Entry.IsSwiftSelf = false;
8910     Entry.IsSwiftError = false;
8911     Entry.Alignment = Align;
8912     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8913     CLI.NumFixedArgs += 1;
8914     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8915 
8916     // sret demotion isn't compatible with tail-calls, since the sret argument
8917     // points into the callers stack frame.
8918     CLI.IsTailCall = false;
8919   } else {
8920     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8921         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
8922     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8923       ISD::ArgFlagsTy Flags;
8924       if (NeedsRegBlock) {
8925         Flags.setInConsecutiveRegs();
8926         if (I == RetTys.size() - 1)
8927           Flags.setInConsecutiveRegsLast();
8928       }
8929       EVT VT = RetTys[I];
8930       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8931                                                      CLI.CallConv, VT);
8932       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8933                                                        CLI.CallConv, VT);
8934       for (unsigned i = 0; i != NumRegs; ++i) {
8935         ISD::InputArg MyFlags;
8936         MyFlags.Flags = Flags;
8937         MyFlags.VT = RegisterVT;
8938         MyFlags.ArgVT = VT;
8939         MyFlags.Used = CLI.IsReturnValueUsed;
8940         if (CLI.RetTy->isPointerTy()) {
8941           MyFlags.Flags.setPointer();
8942           MyFlags.Flags.setPointerAddrSpace(
8943               cast<PointerType>(CLI.RetTy)->getAddressSpace());
8944         }
8945         if (CLI.RetSExt)
8946           MyFlags.Flags.setSExt();
8947         if (CLI.RetZExt)
8948           MyFlags.Flags.setZExt();
8949         if (CLI.IsInReg)
8950           MyFlags.Flags.setInReg();
8951         CLI.Ins.push_back(MyFlags);
8952       }
8953     }
8954   }
8955 
8956   // We push in swifterror return as the last element of CLI.Ins.
8957   ArgListTy &Args = CLI.getArgs();
8958   if (supportSwiftError()) {
8959     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8960       if (Args[i].IsSwiftError) {
8961         ISD::InputArg MyFlags;
8962         MyFlags.VT = getPointerTy(DL);
8963         MyFlags.ArgVT = EVT(getPointerTy(DL));
8964         MyFlags.Flags.setSwiftError();
8965         CLI.Ins.push_back(MyFlags);
8966       }
8967     }
8968   }
8969 
8970   // Handle all of the outgoing arguments.
8971   CLI.Outs.clear();
8972   CLI.OutVals.clear();
8973   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8974     SmallVector<EVT, 4> ValueVTs;
8975     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8976     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8977     Type *FinalType = Args[i].Ty;
8978     if (Args[i].IsByVal)
8979       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8980     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8981         FinalType, CLI.CallConv, CLI.IsVarArg);
8982     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8983          ++Value) {
8984       EVT VT = ValueVTs[Value];
8985       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8986       SDValue Op = SDValue(Args[i].Node.getNode(),
8987                            Args[i].Node.getResNo() + Value);
8988       ISD::ArgFlagsTy Flags;
8989 
8990       // Certain targets (such as MIPS), may have a different ABI alignment
8991       // for a type depending on the context. Give the target a chance to
8992       // specify the alignment it wants.
8993       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8994 
8995       if (Args[i].Ty->isPointerTy()) {
8996         Flags.setPointer();
8997         Flags.setPointerAddrSpace(
8998             cast<PointerType>(Args[i].Ty)->getAddressSpace());
8999       }
9000       if (Args[i].IsZExt)
9001         Flags.setZExt();
9002       if (Args[i].IsSExt)
9003         Flags.setSExt();
9004       if (Args[i].IsInReg) {
9005         // If we are using vectorcall calling convention, a structure that is
9006         // passed InReg - is surely an HVA
9007         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9008             isa<StructType>(FinalType)) {
9009           // The first value of a structure is marked
9010           if (0 == Value)
9011             Flags.setHvaStart();
9012           Flags.setHva();
9013         }
9014         // Set InReg Flag
9015         Flags.setInReg();
9016       }
9017       if (Args[i].IsSRet)
9018         Flags.setSRet();
9019       if (Args[i].IsSwiftSelf)
9020         Flags.setSwiftSelf();
9021       if (Args[i].IsSwiftError)
9022         Flags.setSwiftError();
9023       if (Args[i].IsByVal)
9024         Flags.setByVal();
9025       if (Args[i].IsInAlloca) {
9026         Flags.setInAlloca();
9027         // Set the byval flag for CCAssignFn callbacks that don't know about
9028         // inalloca.  This way we can know how many bytes we should've allocated
9029         // and how many bytes a callee cleanup function will pop.  If we port
9030         // inalloca to more targets, we'll have to add custom inalloca handling
9031         // in the various CC lowering callbacks.
9032         Flags.setByVal();
9033       }
9034       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9035         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9036         Type *ElementTy = Ty->getElementType();
9037         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9038         // For ByVal, alignment should come from FE.  BE will guess if this
9039         // info is not there but there are cases it cannot get right.
9040         unsigned FrameAlign;
9041         if (Args[i].Alignment)
9042           FrameAlign = Args[i].Alignment;
9043         else
9044           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9045         Flags.setByValAlign(FrameAlign);
9046       }
9047       if (Args[i].IsNest)
9048         Flags.setNest();
9049       if (NeedsRegBlock)
9050         Flags.setInConsecutiveRegs();
9051       Flags.setOrigAlign(OriginalAlignment);
9052 
9053       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9054                                                  CLI.CallConv, VT);
9055       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9056                                                         CLI.CallConv, VT);
9057       SmallVector<SDValue, 4> Parts(NumParts);
9058       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9059 
9060       if (Args[i].IsSExt)
9061         ExtendKind = ISD::SIGN_EXTEND;
9062       else if (Args[i].IsZExt)
9063         ExtendKind = ISD::ZERO_EXTEND;
9064 
9065       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9066       // for now.
9067       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9068           CanLowerReturn) {
9069         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
9070                "unexpected use of 'returned'");
9071         // Before passing 'returned' to the target lowering code, ensure that
9072         // either the register MVT and the actual EVT are the same size or that
9073         // the return value and argument are extended in the same way; in these
9074         // cases it's safe to pass the argument register value unchanged as the
9075         // return register value (although it's at the target's option whether
9076         // to do so)
9077         // TODO: allow code generation to take advantage of partially preserved
9078         // registers rather than clobbering the entire register when the
9079         // parameter extension method is not compatible with the return
9080         // extension method
9081         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9082             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9083              CLI.RetZExt == Args[i].IsZExt))
9084           Flags.setReturned();
9085       }
9086 
9087       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9088                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9089 
9090       for (unsigned j = 0; j != NumParts; ++j) {
9091         // if it isn't first piece, alignment must be 1
9092         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9093                                i < CLI.NumFixedArgs,
9094                                i, j*Parts[j].getValueType().getStoreSize());
9095         if (NumParts > 1 && j == 0)
9096           MyFlags.Flags.setSplit();
9097         else if (j != 0) {
9098           MyFlags.Flags.setOrigAlign(1);
9099           if (j == NumParts - 1)
9100             MyFlags.Flags.setSplitEnd();
9101         }
9102 
9103         CLI.Outs.push_back(MyFlags);
9104         CLI.OutVals.push_back(Parts[j]);
9105       }
9106 
9107       if (NeedsRegBlock && Value == NumValues - 1)
9108         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9109     }
9110   }
9111 
9112   SmallVector<SDValue, 4> InVals;
9113   CLI.Chain = LowerCall(CLI, InVals);
9114 
9115   // Update CLI.InVals to use outside of this function.
9116   CLI.InVals = InVals;
9117 
9118   // Verify that the target's LowerCall behaved as expected.
9119   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9120          "LowerCall didn't return a valid chain!");
9121   assert((!CLI.IsTailCall || InVals.empty()) &&
9122          "LowerCall emitted a return value for a tail call!");
9123   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9124          "LowerCall didn't emit the correct number of values!");
9125 
9126   // For a tail call, the return value is merely live-out and there aren't
9127   // any nodes in the DAG representing it. Return a special value to
9128   // indicate that a tail call has been emitted and no more Instructions
9129   // should be processed in the current block.
9130   if (CLI.IsTailCall) {
9131     CLI.DAG.setRoot(CLI.Chain);
9132     return std::make_pair(SDValue(), SDValue());
9133   }
9134 
9135 #ifndef NDEBUG
9136   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9137     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9138     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9139            "LowerCall emitted a value with the wrong type!");
9140   }
9141 #endif
9142 
9143   SmallVector<SDValue, 4> ReturnValues;
9144   if (!CanLowerReturn) {
9145     // The instruction result is the result of loading from the
9146     // hidden sret parameter.
9147     SmallVector<EVT, 1> PVTs;
9148     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9149 
9150     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9151     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9152     EVT PtrVT = PVTs[0];
9153 
9154     unsigned NumValues = RetTys.size();
9155     ReturnValues.resize(NumValues);
9156     SmallVector<SDValue, 4> Chains(NumValues);
9157 
9158     // An aggregate return value cannot wrap around the address space, so
9159     // offsets to its parts don't wrap either.
9160     SDNodeFlags Flags;
9161     Flags.setNoUnsignedWrap(true);
9162 
9163     for (unsigned i = 0; i < NumValues; ++i) {
9164       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9165                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9166                                                         PtrVT), Flags);
9167       SDValue L = CLI.DAG.getLoad(
9168           RetTys[i], CLI.DL, CLI.Chain, Add,
9169           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9170                                             DemoteStackIdx, Offsets[i]),
9171           /* Alignment = */ 1);
9172       ReturnValues[i] = L;
9173       Chains[i] = L.getValue(1);
9174     }
9175 
9176     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9177   } else {
9178     // Collect the legal value parts into potentially illegal values
9179     // that correspond to the original function's return values.
9180     Optional<ISD::NodeType> AssertOp;
9181     if (CLI.RetSExt)
9182       AssertOp = ISD::AssertSext;
9183     else if (CLI.RetZExt)
9184       AssertOp = ISD::AssertZext;
9185     unsigned CurReg = 0;
9186     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9187       EVT VT = RetTys[I];
9188       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9189                                                      CLI.CallConv, VT);
9190       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9191                                                        CLI.CallConv, VT);
9192 
9193       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9194                                               NumRegs, RegisterVT, VT, nullptr,
9195                                               CLI.CallConv, AssertOp));
9196       CurReg += NumRegs;
9197     }
9198 
9199     // For a function returning void, there is no return value. We can't create
9200     // such a node, so we just return a null return value in that case. In
9201     // that case, nothing will actually look at the value.
9202     if (ReturnValues.empty())
9203       return std::make_pair(SDValue(), CLI.Chain);
9204   }
9205 
9206   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9207                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9208   return std::make_pair(Res, CLI.Chain);
9209 }
9210 
9211 void TargetLowering::LowerOperationWrapper(SDNode *N,
9212                                            SmallVectorImpl<SDValue> &Results,
9213                                            SelectionDAG &DAG) const {
9214   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9215     Results.push_back(Res);
9216 }
9217 
9218 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9219   llvm_unreachable("LowerOperation not implemented for this target!");
9220 }
9221 
9222 void
9223 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9224   SDValue Op = getNonRegisterValue(V);
9225   assert((Op.getOpcode() != ISD::CopyFromReg ||
9226           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9227          "Copy from a reg to the same reg!");
9228   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9229 
9230   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9231   // If this is an InlineAsm we have to match the registers required, not the
9232   // notional registers required by the type.
9233 
9234   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9235                    None); // This is not an ABI copy.
9236   SDValue Chain = DAG.getEntryNode();
9237 
9238   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9239                               FuncInfo.PreferredExtendType.end())
9240                                  ? ISD::ANY_EXTEND
9241                                  : FuncInfo.PreferredExtendType[V];
9242   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9243   PendingExports.push_back(Chain);
9244 }
9245 
9246 #include "llvm/CodeGen/SelectionDAGISel.h"
9247 
9248 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9249 /// entry block, return true.  This includes arguments used by switches, since
9250 /// the switch may expand into multiple basic blocks.
9251 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9252   // With FastISel active, we may be splitting blocks, so force creation
9253   // of virtual registers for all non-dead arguments.
9254   if (FastISel)
9255     return A->use_empty();
9256 
9257   const BasicBlock &Entry = A->getParent()->front();
9258   for (const User *U : A->users())
9259     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9260       return false;  // Use not in entry block.
9261 
9262   return true;
9263 }
9264 
9265 using ArgCopyElisionMapTy =
9266     DenseMap<const Argument *,
9267              std::pair<const AllocaInst *, const StoreInst *>>;
9268 
9269 /// Scan the entry block of the function in FuncInfo for arguments that look
9270 /// like copies into a local alloca. Record any copied arguments in
9271 /// ArgCopyElisionCandidates.
9272 static void
9273 findArgumentCopyElisionCandidates(const DataLayout &DL,
9274                                   FunctionLoweringInfo *FuncInfo,
9275                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9276   // Record the state of every static alloca used in the entry block. Argument
9277   // allocas are all used in the entry block, so we need approximately as many
9278   // entries as we have arguments.
9279   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9280   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9281   unsigned NumArgs = FuncInfo->Fn->arg_size();
9282   StaticAllocas.reserve(NumArgs * 2);
9283 
9284   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9285     if (!V)
9286       return nullptr;
9287     V = V->stripPointerCasts();
9288     const auto *AI = dyn_cast<AllocaInst>(V);
9289     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9290       return nullptr;
9291     auto Iter = StaticAllocas.insert({AI, Unknown});
9292     return &Iter.first->second;
9293   };
9294 
9295   // Look for stores of arguments to static allocas. Look through bitcasts and
9296   // GEPs to handle type coercions, as long as the alloca is fully initialized
9297   // by the store. Any non-store use of an alloca escapes it and any subsequent
9298   // unanalyzed store might write it.
9299   // FIXME: Handle structs initialized with multiple stores.
9300   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9301     // Look for stores, and handle non-store uses conservatively.
9302     const auto *SI = dyn_cast<StoreInst>(&I);
9303     if (!SI) {
9304       // We will look through cast uses, so ignore them completely.
9305       if (I.isCast())
9306         continue;
9307       // Ignore debug info intrinsics, they don't escape or store to allocas.
9308       if (isa<DbgInfoIntrinsic>(I))
9309         continue;
9310       // This is an unknown instruction. Assume it escapes or writes to all
9311       // static alloca operands.
9312       for (const Use &U : I.operands()) {
9313         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9314           *Info = StaticAllocaInfo::Clobbered;
9315       }
9316       continue;
9317     }
9318 
9319     // If the stored value is a static alloca, mark it as escaped.
9320     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9321       *Info = StaticAllocaInfo::Clobbered;
9322 
9323     // Check if the destination is a static alloca.
9324     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9325     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9326     if (!Info)
9327       continue;
9328     const AllocaInst *AI = cast<AllocaInst>(Dst);
9329 
9330     // Skip allocas that have been initialized or clobbered.
9331     if (*Info != StaticAllocaInfo::Unknown)
9332       continue;
9333 
9334     // Check if the stored value is an argument, and that this store fully
9335     // initializes the alloca. Don't elide copies from the same argument twice.
9336     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9337     const auto *Arg = dyn_cast<Argument>(Val);
9338     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9339         Arg->getType()->isEmptyTy() ||
9340         DL.getTypeStoreSize(Arg->getType()) !=
9341             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9342         ArgCopyElisionCandidates.count(Arg)) {
9343       *Info = StaticAllocaInfo::Clobbered;
9344       continue;
9345     }
9346 
9347     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9348                       << '\n');
9349 
9350     // Mark this alloca and store for argument copy elision.
9351     *Info = StaticAllocaInfo::Elidable;
9352     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9353 
9354     // Stop scanning if we've seen all arguments. This will happen early in -O0
9355     // builds, which is useful, because -O0 builds have large entry blocks and
9356     // many allocas.
9357     if (ArgCopyElisionCandidates.size() == NumArgs)
9358       break;
9359   }
9360 }
9361 
9362 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9363 /// ArgVal is a load from a suitable fixed stack object.
9364 static void tryToElideArgumentCopy(
9365     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9366     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9367     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9368     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9369     SDValue ArgVal, bool &ArgHasUses) {
9370   // Check if this is a load from a fixed stack object.
9371   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9372   if (!LNode)
9373     return;
9374   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9375   if (!FINode)
9376     return;
9377 
9378   // Check that the fixed stack object is the right size and alignment.
9379   // Look at the alignment that the user wrote on the alloca instead of looking
9380   // at the stack object.
9381   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9382   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9383   const AllocaInst *AI = ArgCopyIter->second.first;
9384   int FixedIndex = FINode->getIndex();
9385   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9386   int OldIndex = AllocaIndex;
9387   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9388   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9389     LLVM_DEBUG(
9390         dbgs() << "  argument copy elision failed due to bad fixed stack "
9391                   "object size\n");
9392     return;
9393   }
9394   unsigned RequiredAlignment = AI->getAlignment();
9395   if (!RequiredAlignment) {
9396     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9397         AI->getAllocatedType());
9398   }
9399   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9400     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9401                          "greater than stack argument alignment ("
9402                       << RequiredAlignment << " vs "
9403                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9404     return;
9405   }
9406 
9407   // Perform the elision. Delete the old stack object and replace its only use
9408   // in the variable info map. Mark the stack object as mutable.
9409   LLVM_DEBUG({
9410     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9411            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9412            << '\n';
9413   });
9414   MFI.RemoveStackObject(OldIndex);
9415   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9416   AllocaIndex = FixedIndex;
9417   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9418   Chains.push_back(ArgVal.getValue(1));
9419 
9420   // Avoid emitting code for the store implementing the copy.
9421   const StoreInst *SI = ArgCopyIter->second.second;
9422   ElidedArgCopyInstrs.insert(SI);
9423 
9424   // Check for uses of the argument again so that we can avoid exporting ArgVal
9425   // if it is't used by anything other than the store.
9426   for (const Value *U : Arg.users()) {
9427     if (U != SI) {
9428       ArgHasUses = true;
9429       break;
9430     }
9431   }
9432 }
9433 
9434 void SelectionDAGISel::LowerArguments(const Function &F) {
9435   SelectionDAG &DAG = SDB->DAG;
9436   SDLoc dl = SDB->getCurSDLoc();
9437   const DataLayout &DL = DAG.getDataLayout();
9438   SmallVector<ISD::InputArg, 16> Ins;
9439 
9440   if (!FuncInfo->CanLowerReturn) {
9441     // Put in an sret pointer parameter before all the other parameters.
9442     SmallVector<EVT, 1> ValueVTs;
9443     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9444                     F.getReturnType()->getPointerTo(
9445                         DAG.getDataLayout().getAllocaAddrSpace()),
9446                     ValueVTs);
9447 
9448     // NOTE: Assuming that a pointer will never break down to more than one VT
9449     // or one register.
9450     ISD::ArgFlagsTy Flags;
9451     Flags.setSRet();
9452     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9453     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9454                          ISD::InputArg::NoArgIndex, 0);
9455     Ins.push_back(RetArg);
9456   }
9457 
9458   // Look for stores of arguments to static allocas. Mark such arguments with a
9459   // flag to ask the target to give us the memory location of that argument if
9460   // available.
9461   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9462   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9463 
9464   // Set up the incoming argument description vector.
9465   for (const Argument &Arg : F.args()) {
9466     unsigned ArgNo = Arg.getArgNo();
9467     SmallVector<EVT, 4> ValueVTs;
9468     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9469     bool isArgValueUsed = !Arg.use_empty();
9470     unsigned PartBase = 0;
9471     Type *FinalType = Arg.getType();
9472     if (Arg.hasAttribute(Attribute::ByVal))
9473       FinalType = cast<PointerType>(FinalType)->getElementType();
9474     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9475         FinalType, F.getCallingConv(), F.isVarArg());
9476     for (unsigned Value = 0, NumValues = ValueVTs.size();
9477          Value != NumValues; ++Value) {
9478       EVT VT = ValueVTs[Value];
9479       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9480       ISD::ArgFlagsTy Flags;
9481 
9482       // Certain targets (such as MIPS), may have a different ABI alignment
9483       // for a type depending on the context. Give the target a chance to
9484       // specify the alignment it wants.
9485       unsigned OriginalAlignment =
9486           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9487 
9488       if (Arg.getType()->isPointerTy()) {
9489         Flags.setPointer();
9490         Flags.setPointerAddrSpace(
9491             cast<PointerType>(Arg.getType())->getAddressSpace());
9492       }
9493       if (Arg.hasAttribute(Attribute::ZExt))
9494         Flags.setZExt();
9495       if (Arg.hasAttribute(Attribute::SExt))
9496         Flags.setSExt();
9497       if (Arg.hasAttribute(Attribute::InReg)) {
9498         // If we are using vectorcall calling convention, a structure that is
9499         // passed InReg - is surely an HVA
9500         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9501             isa<StructType>(Arg.getType())) {
9502           // The first value of a structure is marked
9503           if (0 == Value)
9504             Flags.setHvaStart();
9505           Flags.setHva();
9506         }
9507         // Set InReg Flag
9508         Flags.setInReg();
9509       }
9510       if (Arg.hasAttribute(Attribute::StructRet))
9511         Flags.setSRet();
9512       if (Arg.hasAttribute(Attribute::SwiftSelf))
9513         Flags.setSwiftSelf();
9514       if (Arg.hasAttribute(Attribute::SwiftError))
9515         Flags.setSwiftError();
9516       if (Arg.hasAttribute(Attribute::ByVal))
9517         Flags.setByVal();
9518       if (Arg.hasAttribute(Attribute::InAlloca)) {
9519         Flags.setInAlloca();
9520         // Set the byval flag for CCAssignFn callbacks that don't know about
9521         // inalloca.  This way we can know how many bytes we should've allocated
9522         // and how many bytes a callee cleanup function will pop.  If we port
9523         // inalloca to more targets, we'll have to add custom inalloca handling
9524         // in the various CC lowering callbacks.
9525         Flags.setByVal();
9526       }
9527       if (F.getCallingConv() == CallingConv::X86_INTR) {
9528         // IA Interrupt passes frame (1st parameter) by value in the stack.
9529         if (ArgNo == 0)
9530           Flags.setByVal();
9531       }
9532       if (Flags.isByVal() || Flags.isInAlloca()) {
9533         PointerType *Ty = cast<PointerType>(Arg.getType());
9534         Type *ElementTy = Ty->getElementType();
9535         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9536         // For ByVal, alignment should be passed from FE.  BE will guess if
9537         // this info is not there but there are cases it cannot get right.
9538         unsigned FrameAlign;
9539         if (Arg.getParamAlignment())
9540           FrameAlign = Arg.getParamAlignment();
9541         else
9542           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9543         Flags.setByValAlign(FrameAlign);
9544       }
9545       if (Arg.hasAttribute(Attribute::Nest))
9546         Flags.setNest();
9547       if (NeedsRegBlock)
9548         Flags.setInConsecutiveRegs();
9549       Flags.setOrigAlign(OriginalAlignment);
9550       if (ArgCopyElisionCandidates.count(&Arg))
9551         Flags.setCopyElisionCandidate();
9552 
9553       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9554           *CurDAG->getContext(), F.getCallingConv(), VT);
9555       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9556           *CurDAG->getContext(), F.getCallingConv(), VT);
9557       for (unsigned i = 0; i != NumRegs; ++i) {
9558         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9559                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9560         if (NumRegs > 1 && i == 0)
9561           MyFlags.Flags.setSplit();
9562         // if it isn't first piece, alignment must be 1
9563         else if (i > 0) {
9564           MyFlags.Flags.setOrigAlign(1);
9565           if (i == NumRegs - 1)
9566             MyFlags.Flags.setSplitEnd();
9567         }
9568         Ins.push_back(MyFlags);
9569       }
9570       if (NeedsRegBlock && Value == NumValues - 1)
9571         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9572       PartBase += VT.getStoreSize();
9573     }
9574   }
9575 
9576   // Call the target to set up the argument values.
9577   SmallVector<SDValue, 8> InVals;
9578   SDValue NewRoot = TLI->LowerFormalArguments(
9579       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9580 
9581   // Verify that the target's LowerFormalArguments behaved as expected.
9582   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9583          "LowerFormalArguments didn't return a valid chain!");
9584   assert(InVals.size() == Ins.size() &&
9585          "LowerFormalArguments didn't emit the correct number of values!");
9586   LLVM_DEBUG({
9587     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9588       assert(InVals[i].getNode() &&
9589              "LowerFormalArguments emitted a null value!");
9590       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9591              "LowerFormalArguments emitted a value with the wrong type!");
9592     }
9593   });
9594 
9595   // Update the DAG with the new chain value resulting from argument lowering.
9596   DAG.setRoot(NewRoot);
9597 
9598   // Set up the argument values.
9599   unsigned i = 0;
9600   if (!FuncInfo->CanLowerReturn) {
9601     // Create a virtual register for the sret pointer, and put in a copy
9602     // from the sret argument into it.
9603     SmallVector<EVT, 1> ValueVTs;
9604     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9605                     F.getReturnType()->getPointerTo(
9606                         DAG.getDataLayout().getAllocaAddrSpace()),
9607                     ValueVTs);
9608     MVT VT = ValueVTs[0].getSimpleVT();
9609     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9610     Optional<ISD::NodeType> AssertOp = None;
9611     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9612                                         nullptr, F.getCallingConv(), AssertOp);
9613 
9614     MachineFunction& MF = SDB->DAG.getMachineFunction();
9615     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9616     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9617     FuncInfo->DemoteRegister = SRetReg;
9618     NewRoot =
9619         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9620     DAG.setRoot(NewRoot);
9621 
9622     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9623     ++i;
9624   }
9625 
9626   SmallVector<SDValue, 4> Chains;
9627   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9628   for (const Argument &Arg : F.args()) {
9629     SmallVector<SDValue, 4> ArgValues;
9630     SmallVector<EVT, 4> ValueVTs;
9631     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9632     unsigned NumValues = ValueVTs.size();
9633     if (NumValues == 0)
9634       continue;
9635 
9636     bool ArgHasUses = !Arg.use_empty();
9637 
9638     // Elide the copying store if the target loaded this argument from a
9639     // suitable fixed stack object.
9640     if (Ins[i].Flags.isCopyElisionCandidate()) {
9641       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9642                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9643                              InVals[i], ArgHasUses);
9644     }
9645 
9646     // If this argument is unused then remember its value. It is used to generate
9647     // debugging information.
9648     bool isSwiftErrorArg =
9649         TLI->supportSwiftError() &&
9650         Arg.hasAttribute(Attribute::SwiftError);
9651     if (!ArgHasUses && !isSwiftErrorArg) {
9652       SDB->setUnusedArgValue(&Arg, InVals[i]);
9653 
9654       // Also remember any frame index for use in FastISel.
9655       if (FrameIndexSDNode *FI =
9656           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9657         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9658     }
9659 
9660     for (unsigned Val = 0; Val != NumValues; ++Val) {
9661       EVT VT = ValueVTs[Val];
9662       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9663                                                       F.getCallingConv(), VT);
9664       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9665           *CurDAG->getContext(), F.getCallingConv(), VT);
9666 
9667       // Even an apparant 'unused' swifterror argument needs to be returned. So
9668       // we do generate a copy for it that can be used on return from the
9669       // function.
9670       if (ArgHasUses || isSwiftErrorArg) {
9671         Optional<ISD::NodeType> AssertOp;
9672         if (Arg.hasAttribute(Attribute::SExt))
9673           AssertOp = ISD::AssertSext;
9674         else if (Arg.hasAttribute(Attribute::ZExt))
9675           AssertOp = ISD::AssertZext;
9676 
9677         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9678                                              PartVT, VT, nullptr,
9679                                              F.getCallingConv(), AssertOp));
9680       }
9681 
9682       i += NumParts;
9683     }
9684 
9685     // We don't need to do anything else for unused arguments.
9686     if (ArgValues.empty())
9687       continue;
9688 
9689     // Note down frame index.
9690     if (FrameIndexSDNode *FI =
9691         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9692       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9693 
9694     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9695                                      SDB->getCurSDLoc());
9696 
9697     SDB->setValue(&Arg, Res);
9698     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9699       // We want to associate the argument with the frame index, among
9700       // involved operands, that correspond to the lowest address. The
9701       // getCopyFromParts function, called earlier, is swapping the order of
9702       // the operands to BUILD_PAIR depending on endianness. The result of
9703       // that swapping is that the least significant bits of the argument will
9704       // be in the first operand of the BUILD_PAIR node, and the most
9705       // significant bits will be in the second operand.
9706       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9707       if (LoadSDNode *LNode =
9708           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9709         if (FrameIndexSDNode *FI =
9710             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9711           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9712     }
9713 
9714     // Update the SwiftErrorVRegDefMap.
9715     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9716       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9717       if (TargetRegisterInfo::isVirtualRegister(Reg))
9718         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9719                                            FuncInfo->SwiftErrorArg, Reg);
9720     }
9721 
9722     // If this argument is live outside of the entry block, insert a copy from
9723     // wherever we got it to the vreg that other BB's will reference it as.
9724     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9725       // If we can, though, try to skip creating an unnecessary vreg.
9726       // FIXME: This isn't very clean... it would be nice to make this more
9727       // general.  It's also subtly incompatible with the hacks FastISel
9728       // uses with vregs.
9729       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9730       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9731         FuncInfo->ValueMap[&Arg] = Reg;
9732         continue;
9733       }
9734     }
9735     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9736       FuncInfo->InitializeRegForValue(&Arg);
9737       SDB->CopyToExportRegsIfNeeded(&Arg);
9738     }
9739   }
9740 
9741   if (!Chains.empty()) {
9742     Chains.push_back(NewRoot);
9743     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9744   }
9745 
9746   DAG.setRoot(NewRoot);
9747 
9748   assert(i == InVals.size() && "Argument register count mismatch!");
9749 
9750   // If any argument copy elisions occurred and we have debug info, update the
9751   // stale frame indices used in the dbg.declare variable info table.
9752   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9753   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9754     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9755       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9756       if (I != ArgCopyElisionFrameIndexMap.end())
9757         VI.Slot = I->second;
9758     }
9759   }
9760 
9761   // Finally, if the target has anything special to do, allow it to do so.
9762   EmitFunctionEntryCode();
9763 }
9764 
9765 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9766 /// ensure constants are generated when needed.  Remember the virtual registers
9767 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9768 /// directly add them, because expansion might result in multiple MBB's for one
9769 /// BB.  As such, the start of the BB might correspond to a different MBB than
9770 /// the end.
9771 void
9772 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9773   const Instruction *TI = LLVMBB->getTerminator();
9774 
9775   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9776 
9777   // Check PHI nodes in successors that expect a value to be available from this
9778   // block.
9779   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9780     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9781     if (!isa<PHINode>(SuccBB->begin())) continue;
9782     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9783 
9784     // If this terminator has multiple identical successors (common for
9785     // switches), only handle each succ once.
9786     if (!SuccsHandled.insert(SuccMBB).second)
9787       continue;
9788 
9789     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9790 
9791     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9792     // nodes and Machine PHI nodes, but the incoming operands have not been
9793     // emitted yet.
9794     for (const PHINode &PN : SuccBB->phis()) {
9795       // Ignore dead phi's.
9796       if (PN.use_empty())
9797         continue;
9798 
9799       // Skip empty types
9800       if (PN.getType()->isEmptyTy())
9801         continue;
9802 
9803       unsigned Reg;
9804       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9805 
9806       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9807         unsigned &RegOut = ConstantsOut[C];
9808         if (RegOut == 0) {
9809           RegOut = FuncInfo.CreateRegs(C->getType());
9810           CopyValueToVirtualRegister(C, RegOut);
9811         }
9812         Reg = RegOut;
9813       } else {
9814         DenseMap<const Value *, unsigned>::iterator I =
9815           FuncInfo.ValueMap.find(PHIOp);
9816         if (I != FuncInfo.ValueMap.end())
9817           Reg = I->second;
9818         else {
9819           assert(isa<AllocaInst>(PHIOp) &&
9820                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9821                  "Didn't codegen value into a register!??");
9822           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9823           CopyValueToVirtualRegister(PHIOp, Reg);
9824         }
9825       }
9826 
9827       // Remember that this register needs to added to the machine PHI node as
9828       // the input for this MBB.
9829       SmallVector<EVT, 4> ValueVTs;
9830       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9831       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9832       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9833         EVT VT = ValueVTs[vti];
9834         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9835         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9836           FuncInfo.PHINodesToUpdate.push_back(
9837               std::make_pair(&*MBBI++, Reg + i));
9838         Reg += NumRegisters;
9839       }
9840     }
9841   }
9842 
9843   ConstantsOut.clear();
9844 }
9845 
9846 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9847 /// is 0.
9848 MachineBasicBlock *
9849 SelectionDAGBuilder::StackProtectorDescriptor::
9850 AddSuccessorMBB(const BasicBlock *BB,
9851                 MachineBasicBlock *ParentMBB,
9852                 bool IsLikely,
9853                 MachineBasicBlock *SuccMBB) {
9854   // If SuccBB has not been created yet, create it.
9855   if (!SuccMBB) {
9856     MachineFunction *MF = ParentMBB->getParent();
9857     MachineFunction::iterator BBI(ParentMBB);
9858     SuccMBB = MF->CreateMachineBasicBlock(BB);
9859     MF->insert(++BBI, SuccMBB);
9860   }
9861   // Add it as a successor of ParentMBB.
9862   ParentMBB->addSuccessor(
9863       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9864   return SuccMBB;
9865 }
9866 
9867 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9868   MachineFunction::iterator I(MBB);
9869   if (++I == FuncInfo.MF->end())
9870     return nullptr;
9871   return &*I;
9872 }
9873 
9874 /// During lowering new call nodes can be created (such as memset, etc.).
9875 /// Those will become new roots of the current DAG, but complications arise
9876 /// when they are tail calls. In such cases, the call lowering will update
9877 /// the root, but the builder still needs to know that a tail call has been
9878 /// lowered in order to avoid generating an additional return.
9879 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9880   // If the node is null, we do have a tail call.
9881   if (MaybeTC.getNode() != nullptr)
9882     DAG.setRoot(MaybeTC);
9883   else
9884     HasTailCall = true;
9885 }
9886 
9887 uint64_t
9888 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9889                                        unsigned First, unsigned Last) const {
9890   assert(Last >= First);
9891   const APInt &LowCase = Clusters[First].Low->getValue();
9892   const APInt &HighCase = Clusters[Last].High->getValue();
9893   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9894 
9895   // FIXME: A range of consecutive cases has 100% density, but only requires one
9896   // comparison to lower. We should discriminate against such consecutive ranges
9897   // in jump tables.
9898 
9899   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9900 }
9901 
9902 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9903     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9904     unsigned Last) const {
9905   assert(Last >= First);
9906   assert(TotalCases[Last] >= TotalCases[First]);
9907   uint64_t NumCases =
9908       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9909   return NumCases;
9910 }
9911 
9912 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9913                                          unsigned First, unsigned Last,
9914                                          const SwitchInst *SI,
9915                                          MachineBasicBlock *DefaultMBB,
9916                                          CaseCluster &JTCluster) {
9917   assert(First <= Last);
9918 
9919   auto Prob = BranchProbability::getZero();
9920   unsigned NumCmps = 0;
9921   std::vector<MachineBasicBlock*> Table;
9922   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9923 
9924   // Initialize probabilities in JTProbs.
9925   for (unsigned I = First; I <= Last; ++I)
9926     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9927 
9928   for (unsigned I = First; I <= Last; ++I) {
9929     assert(Clusters[I].Kind == CC_Range);
9930     Prob += Clusters[I].Prob;
9931     const APInt &Low = Clusters[I].Low->getValue();
9932     const APInt &High = Clusters[I].High->getValue();
9933     NumCmps += (Low == High) ? 1 : 2;
9934     if (I != First) {
9935       // Fill the gap between this and the previous cluster.
9936       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9937       assert(PreviousHigh.slt(Low));
9938       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9939       for (uint64_t J = 0; J < Gap; J++)
9940         Table.push_back(DefaultMBB);
9941     }
9942     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9943     for (uint64_t J = 0; J < ClusterSize; ++J)
9944       Table.push_back(Clusters[I].MBB);
9945     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9946   }
9947 
9948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9949   unsigned NumDests = JTProbs.size();
9950   if (TLI.isSuitableForBitTests(
9951           NumDests, NumCmps, Clusters[First].Low->getValue(),
9952           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9953     // Clusters[First..Last] should be lowered as bit tests instead.
9954     return false;
9955   }
9956 
9957   // Create the MBB that will load from and jump through the table.
9958   // Note: We create it here, but it's not inserted into the function yet.
9959   MachineFunction *CurMF = FuncInfo.MF;
9960   MachineBasicBlock *JumpTableMBB =
9961       CurMF->CreateMachineBasicBlock(SI->getParent());
9962 
9963   // Add successors. Note: use table order for determinism.
9964   SmallPtrSet<MachineBasicBlock *, 8> Done;
9965   for (MachineBasicBlock *Succ : Table) {
9966     if (Done.count(Succ))
9967       continue;
9968     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9969     Done.insert(Succ);
9970   }
9971   JumpTableMBB->normalizeSuccProbs();
9972 
9973   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9974                      ->createJumpTableIndex(Table);
9975 
9976   // Set up the jump table info.
9977   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9978   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9979                       Clusters[Last].High->getValue(), SI->getCondition(),
9980                       nullptr, false);
9981   JTCases.emplace_back(std::move(JTH), std::move(JT));
9982 
9983   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9984                                      JTCases.size() - 1, Prob);
9985   return true;
9986 }
9987 
9988 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9989                                          const SwitchInst *SI,
9990                                          MachineBasicBlock *DefaultMBB) {
9991 #ifndef NDEBUG
9992   // Clusters must be non-empty, sorted, and only contain Range clusters.
9993   assert(!Clusters.empty());
9994   for (CaseCluster &C : Clusters)
9995     assert(C.Kind == CC_Range);
9996   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9997     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9998 #endif
9999 
10000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10001   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
10002     return;
10003 
10004   const int64_t N = Clusters.size();
10005   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
10006   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
10007 
10008   if (N < 2 || N < MinJumpTableEntries)
10009     return;
10010 
10011   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
10012   SmallVector<unsigned, 8> TotalCases(N);
10013   for (unsigned i = 0; i < N; ++i) {
10014     const APInt &Hi = Clusters[i].High->getValue();
10015     const APInt &Lo = Clusters[i].Low->getValue();
10016     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
10017     if (i != 0)
10018       TotalCases[i] += TotalCases[i - 1];
10019   }
10020 
10021   // Cheap case: the whole range may be suitable for jump table.
10022   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
10023   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
10024   assert(NumCases < UINT64_MAX / 100);
10025   assert(Range >= NumCases);
10026   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10027     CaseCluster JTCluster;
10028     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
10029       Clusters[0] = JTCluster;
10030       Clusters.resize(1);
10031       return;
10032     }
10033   }
10034 
10035   // The algorithm below is not suitable for -O0.
10036   if (TM.getOptLevel() == CodeGenOpt::None)
10037     return;
10038 
10039   // Split Clusters into minimum number of dense partitions. The algorithm uses
10040   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
10041   // for the Case Statement'" (1994), but builds the MinPartitions array in
10042   // reverse order to make it easier to reconstruct the partitions in ascending
10043   // order. In the choice between two optimal partitionings, it picks the one
10044   // which yields more jump tables.
10045 
10046   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10047   SmallVector<unsigned, 8> MinPartitions(N);
10048   // LastElement[i] is the last element of the partition starting at i.
10049   SmallVector<unsigned, 8> LastElement(N);
10050   // PartitionsScore[i] is used to break ties when choosing between two
10051   // partitionings resulting in the same number of partitions.
10052   SmallVector<unsigned, 8> PartitionsScore(N);
10053   // For PartitionsScore, a small number of comparisons is considered as good as
10054   // a jump table and a single comparison is considered better than a jump
10055   // table.
10056   enum PartitionScores : unsigned {
10057     NoTable = 0,
10058     Table = 1,
10059     FewCases = 1,
10060     SingleCase = 2
10061   };
10062 
10063   // Base case: There is only one way to partition Clusters[N-1].
10064   MinPartitions[N - 1] = 1;
10065   LastElement[N - 1] = N - 1;
10066   PartitionsScore[N - 1] = PartitionScores::SingleCase;
10067 
10068   // Note: loop indexes are signed to avoid underflow.
10069   for (int64_t i = N - 2; i >= 0; i--) {
10070     // Find optimal partitioning of Clusters[i..N-1].
10071     // Baseline: Put Clusters[i] into a partition on its own.
10072     MinPartitions[i] = MinPartitions[i + 1] + 1;
10073     LastElement[i] = i;
10074     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
10075 
10076     // Search for a solution that results in fewer partitions.
10077     for (int64_t j = N - 1; j > i; j--) {
10078       // Try building a partition from Clusters[i..j].
10079       uint64_t Range = getJumpTableRange(Clusters, i, j);
10080       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
10081       assert(NumCases < UINT64_MAX / 100);
10082       assert(Range >= NumCases);
10083       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10084         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10085         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
10086         int64_t NumEntries = j - i + 1;
10087 
10088         if (NumEntries == 1)
10089           Score += PartitionScores::SingleCase;
10090         else if (NumEntries <= SmallNumberOfEntries)
10091           Score += PartitionScores::FewCases;
10092         else if (NumEntries >= MinJumpTableEntries)
10093           Score += PartitionScores::Table;
10094 
10095         // If this leads to fewer partitions, or to the same number of
10096         // partitions with better score, it is a better partitioning.
10097         if (NumPartitions < MinPartitions[i] ||
10098             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
10099           MinPartitions[i] = NumPartitions;
10100           LastElement[i] = j;
10101           PartitionsScore[i] = Score;
10102         }
10103       }
10104     }
10105   }
10106 
10107   // Iterate over the partitions, replacing some with jump tables in-place.
10108   unsigned DstIndex = 0;
10109   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10110     Last = LastElement[First];
10111     assert(Last >= First);
10112     assert(DstIndex <= First);
10113     unsigned NumClusters = Last - First + 1;
10114 
10115     CaseCluster JTCluster;
10116     if (NumClusters >= MinJumpTableEntries &&
10117         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
10118       Clusters[DstIndex++] = JTCluster;
10119     } else {
10120       for (unsigned I = First; I <= Last; ++I)
10121         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
10122     }
10123   }
10124   Clusters.resize(DstIndex);
10125 }
10126 
10127 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
10128                                         unsigned First, unsigned Last,
10129                                         const SwitchInst *SI,
10130                                         CaseCluster &BTCluster) {
10131   assert(First <= Last);
10132   if (First == Last)
10133     return false;
10134 
10135   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10136   unsigned NumCmps = 0;
10137   for (int64_t I = First; I <= Last; ++I) {
10138     assert(Clusters[I].Kind == CC_Range);
10139     Dests.set(Clusters[I].MBB->getNumber());
10140     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10141   }
10142   unsigned NumDests = Dests.count();
10143 
10144   APInt Low = Clusters[First].Low->getValue();
10145   APInt High = Clusters[Last].High->getValue();
10146   assert(Low.slt(High));
10147 
10148   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10149   const DataLayout &DL = DAG.getDataLayout();
10150   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10151     return false;
10152 
10153   APInt LowBound;
10154   APInt CmpRange;
10155 
10156   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10157   assert(TLI.rangeFitsInWord(Low, High, DL) &&
10158          "Case range must fit in bit mask!");
10159 
10160   // Check if the clusters cover a contiguous range such that no value in the
10161   // range will jump to the default statement.
10162   bool ContiguousRange = true;
10163   for (int64_t I = First + 1; I <= Last; ++I) {
10164     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10165       ContiguousRange = false;
10166       break;
10167     }
10168   }
10169 
10170   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10171     // Optimize the case where all the case values fit in a word without having
10172     // to subtract minValue. In this case, we can optimize away the subtraction.
10173     LowBound = APInt::getNullValue(Low.getBitWidth());
10174     CmpRange = High;
10175     ContiguousRange = false;
10176   } else {
10177     LowBound = Low;
10178     CmpRange = High - Low;
10179   }
10180 
10181   CaseBitsVector CBV;
10182   auto TotalProb = BranchProbability::getZero();
10183   for (unsigned i = First; i <= Last; ++i) {
10184     // Find the CaseBits for this destination.
10185     unsigned j;
10186     for (j = 0; j < CBV.size(); ++j)
10187       if (CBV[j].BB == Clusters[i].MBB)
10188         break;
10189     if (j == CBV.size())
10190       CBV.push_back(
10191           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10192     CaseBits *CB = &CBV[j];
10193 
10194     // Update Mask, Bits and ExtraProb.
10195     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10196     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10197     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10198     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10199     CB->Bits += Hi - Lo + 1;
10200     CB->ExtraProb += Clusters[i].Prob;
10201     TotalProb += Clusters[i].Prob;
10202   }
10203 
10204   BitTestInfo BTI;
10205   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10206     // Sort by probability first, number of bits second, bit mask third.
10207     if (a.ExtraProb != b.ExtraProb)
10208       return a.ExtraProb > b.ExtraProb;
10209     if (a.Bits != b.Bits)
10210       return a.Bits > b.Bits;
10211     return a.Mask < b.Mask;
10212   });
10213 
10214   for (auto &CB : CBV) {
10215     MachineBasicBlock *BitTestBB =
10216         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10217     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10218   }
10219   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10220                             SI->getCondition(), -1U, MVT::Other, false,
10221                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10222                             TotalProb);
10223 
10224   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10225                                     BitTestCases.size() - 1, TotalProb);
10226   return true;
10227 }
10228 
10229 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10230                                               const SwitchInst *SI) {
10231 // Partition Clusters into as few subsets as possible, where each subset has a
10232 // range that fits in a machine word and has <= 3 unique destinations.
10233 
10234 #ifndef NDEBUG
10235   // Clusters must be sorted and contain Range or JumpTable clusters.
10236   assert(!Clusters.empty());
10237   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10238   for (const CaseCluster &C : Clusters)
10239     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10240   for (unsigned i = 1; i < Clusters.size(); ++i)
10241     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10242 #endif
10243 
10244   // The algorithm below is not suitable for -O0.
10245   if (TM.getOptLevel() == CodeGenOpt::None)
10246     return;
10247 
10248   // If target does not have legal shift left, do not emit bit tests at all.
10249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10250   const DataLayout &DL = DAG.getDataLayout();
10251 
10252   EVT PTy = TLI.getPointerTy(DL);
10253   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10254     return;
10255 
10256   int BitWidth = PTy.getSizeInBits();
10257   const int64_t N = Clusters.size();
10258 
10259   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10260   SmallVector<unsigned, 8> MinPartitions(N);
10261   // LastElement[i] is the last element of the partition starting at i.
10262   SmallVector<unsigned, 8> LastElement(N);
10263 
10264   // FIXME: This might not be the best algorithm for finding bit test clusters.
10265 
10266   // Base case: There is only one way to partition Clusters[N-1].
10267   MinPartitions[N - 1] = 1;
10268   LastElement[N - 1] = N - 1;
10269 
10270   // Note: loop indexes are signed to avoid underflow.
10271   for (int64_t i = N - 2; i >= 0; --i) {
10272     // Find optimal partitioning of Clusters[i..N-1].
10273     // Baseline: Put Clusters[i] into a partition on its own.
10274     MinPartitions[i] = MinPartitions[i + 1] + 1;
10275     LastElement[i] = i;
10276 
10277     // Search for a solution that results in fewer partitions.
10278     // Note: the search is limited by BitWidth, reducing time complexity.
10279     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10280       // Try building a partition from Clusters[i..j].
10281 
10282       // Check the range.
10283       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10284                                Clusters[j].High->getValue(), DL))
10285         continue;
10286 
10287       // Check nbr of destinations and cluster types.
10288       // FIXME: This works, but doesn't seem very efficient.
10289       bool RangesOnly = true;
10290       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10291       for (int64_t k = i; k <= j; k++) {
10292         if (Clusters[k].Kind != CC_Range) {
10293           RangesOnly = false;
10294           break;
10295         }
10296         Dests.set(Clusters[k].MBB->getNumber());
10297       }
10298       if (!RangesOnly || Dests.count() > 3)
10299         break;
10300 
10301       // Check if it's a better partition.
10302       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10303       if (NumPartitions < MinPartitions[i]) {
10304         // Found a better partition.
10305         MinPartitions[i] = NumPartitions;
10306         LastElement[i] = j;
10307       }
10308     }
10309   }
10310 
10311   // Iterate over the partitions, replacing with bit-test clusters in-place.
10312   unsigned DstIndex = 0;
10313   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10314     Last = LastElement[First];
10315     assert(First <= Last);
10316     assert(DstIndex <= First);
10317 
10318     CaseCluster BitTestCluster;
10319     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10320       Clusters[DstIndex++] = BitTestCluster;
10321     } else {
10322       size_t NumClusters = Last - First + 1;
10323       std::memmove(&Clusters[DstIndex], &Clusters[First],
10324                    sizeof(Clusters[0]) * NumClusters);
10325       DstIndex += NumClusters;
10326     }
10327   }
10328   Clusters.resize(DstIndex);
10329 }
10330 
10331 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10332                                         MachineBasicBlock *SwitchMBB,
10333                                         MachineBasicBlock *DefaultMBB) {
10334   MachineFunction *CurMF = FuncInfo.MF;
10335   MachineBasicBlock *NextMBB = nullptr;
10336   MachineFunction::iterator BBI(W.MBB);
10337   if (++BBI != FuncInfo.MF->end())
10338     NextMBB = &*BBI;
10339 
10340   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10341 
10342   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10343 
10344   if (Size == 2 && W.MBB == SwitchMBB) {
10345     // If any two of the cases has the same destination, and if one value
10346     // is the same as the other, but has one bit unset that the other has set,
10347     // use bit manipulation to do two compares at once.  For example:
10348     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10349     // TODO: This could be extended to merge any 2 cases in switches with 3
10350     // cases.
10351     // TODO: Handle cases where W.CaseBB != SwitchBB.
10352     CaseCluster &Small = *W.FirstCluster;
10353     CaseCluster &Big = *W.LastCluster;
10354 
10355     if (Small.Low == Small.High && Big.Low == Big.High &&
10356         Small.MBB == Big.MBB) {
10357       const APInt &SmallValue = Small.Low->getValue();
10358       const APInt &BigValue = Big.Low->getValue();
10359 
10360       // Check that there is only one bit different.
10361       APInt CommonBit = BigValue ^ SmallValue;
10362       if (CommonBit.isPowerOf2()) {
10363         SDValue CondLHS = getValue(Cond);
10364         EVT VT = CondLHS.getValueType();
10365         SDLoc DL = getCurSDLoc();
10366 
10367         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10368                                  DAG.getConstant(CommonBit, DL, VT));
10369         SDValue Cond = DAG.getSetCC(
10370             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10371             ISD::SETEQ);
10372 
10373         // Update successor info.
10374         // Both Small and Big will jump to Small.BB, so we sum up the
10375         // probabilities.
10376         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10377         if (BPI)
10378           addSuccessorWithProb(
10379               SwitchMBB, DefaultMBB,
10380               // The default destination is the first successor in IR.
10381               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10382         else
10383           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10384 
10385         // Insert the true branch.
10386         SDValue BrCond =
10387             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10388                         DAG.getBasicBlock(Small.MBB));
10389         // Insert the false branch.
10390         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10391                              DAG.getBasicBlock(DefaultMBB));
10392 
10393         DAG.setRoot(BrCond);
10394         return;
10395       }
10396     }
10397   }
10398 
10399   if (TM.getOptLevel() != CodeGenOpt::None) {
10400     // Here, we order cases by probability so the most likely case will be
10401     // checked first. However, two clusters can have the same probability in
10402     // which case their relative ordering is non-deterministic. So we use Low
10403     // as a tie-breaker as clusters are guaranteed to never overlap.
10404     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10405                [](const CaseCluster &a, const CaseCluster &b) {
10406       return a.Prob != b.Prob ?
10407              a.Prob > b.Prob :
10408              a.Low->getValue().slt(b.Low->getValue());
10409     });
10410 
10411     // Rearrange the case blocks so that the last one falls through if possible
10412     // without changing the order of probabilities.
10413     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10414       --I;
10415       if (I->Prob > W.LastCluster->Prob)
10416         break;
10417       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10418         std::swap(*I, *W.LastCluster);
10419         break;
10420       }
10421     }
10422   }
10423 
10424   // Compute total probability.
10425   BranchProbability DefaultProb = W.DefaultProb;
10426   BranchProbability UnhandledProbs = DefaultProb;
10427   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10428     UnhandledProbs += I->Prob;
10429 
10430   MachineBasicBlock *CurMBB = W.MBB;
10431   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10432     bool FallthroughUnreachable = false;
10433     MachineBasicBlock *Fallthrough;
10434     if (I == W.LastCluster) {
10435       // For the last cluster, fall through to the default destination.
10436       Fallthrough = DefaultMBB;
10437       FallthroughUnreachable = isa<UnreachableInst>(
10438           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10439     } else {
10440       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10441       CurMF->insert(BBI, Fallthrough);
10442       // Put Cond in a virtual register to make it available from the new blocks.
10443       ExportFromCurrentBlock(Cond);
10444     }
10445     UnhandledProbs -= I->Prob;
10446 
10447     switch (I->Kind) {
10448       case CC_JumpTable: {
10449         // FIXME: Optimize away range check based on pivot comparisons.
10450         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10451         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10452 
10453         // The jump block hasn't been inserted yet; insert it here.
10454         MachineBasicBlock *JumpMBB = JT->MBB;
10455         CurMF->insert(BBI, JumpMBB);
10456 
10457         auto JumpProb = I->Prob;
10458         auto FallthroughProb = UnhandledProbs;
10459 
10460         // If the default statement is a target of the jump table, we evenly
10461         // distribute the default probability to successors of CurMBB. Also
10462         // update the probability on the edge from JumpMBB to Fallthrough.
10463         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10464                                               SE = JumpMBB->succ_end();
10465              SI != SE; ++SI) {
10466           if (*SI == DefaultMBB) {
10467             JumpProb += DefaultProb / 2;
10468             FallthroughProb -= DefaultProb / 2;
10469             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10470             JumpMBB->normalizeSuccProbs();
10471             break;
10472           }
10473         }
10474 
10475         if (FallthroughUnreachable) {
10476           // Skip the range check if the fallthrough block is unreachable.
10477           JTH->OmitRangeCheck = true;
10478         }
10479 
10480         if (!JTH->OmitRangeCheck)
10481           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10482         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10483         CurMBB->normalizeSuccProbs();
10484 
10485         // The jump table header will be inserted in our current block, do the
10486         // range check, and fall through to our fallthrough block.
10487         JTH->HeaderBB = CurMBB;
10488         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10489 
10490         // If we're in the right place, emit the jump table header right now.
10491         if (CurMBB == SwitchMBB) {
10492           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10493           JTH->Emitted = true;
10494         }
10495         break;
10496       }
10497       case CC_BitTests: {
10498         // FIXME: If Fallthrough is unreachable, skip the range check.
10499 
10500         // FIXME: Optimize away range check based on pivot comparisons.
10501         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10502 
10503         // The bit test blocks haven't been inserted yet; insert them here.
10504         for (BitTestCase &BTC : BTB->Cases)
10505           CurMF->insert(BBI, BTC.ThisBB);
10506 
10507         // Fill in fields of the BitTestBlock.
10508         BTB->Parent = CurMBB;
10509         BTB->Default = Fallthrough;
10510 
10511         BTB->DefaultProb = UnhandledProbs;
10512         // If the cases in bit test don't form a contiguous range, we evenly
10513         // distribute the probability on the edge to Fallthrough to two
10514         // successors of CurMBB.
10515         if (!BTB->ContiguousRange) {
10516           BTB->Prob += DefaultProb / 2;
10517           BTB->DefaultProb -= DefaultProb / 2;
10518         }
10519 
10520         // If we're in the right place, emit the bit test header right now.
10521         if (CurMBB == SwitchMBB) {
10522           visitBitTestHeader(*BTB, SwitchMBB);
10523           BTB->Emitted = true;
10524         }
10525         break;
10526       }
10527       case CC_Range: {
10528         const Value *RHS, *LHS, *MHS;
10529         ISD::CondCode CC;
10530         if (I->Low == I->High) {
10531           // Check Cond == I->Low.
10532           CC = ISD::SETEQ;
10533           LHS = Cond;
10534           RHS=I->Low;
10535           MHS = nullptr;
10536         } else {
10537           // Check I->Low <= Cond <= I->High.
10538           CC = ISD::SETLE;
10539           LHS = I->Low;
10540           MHS = Cond;
10541           RHS = I->High;
10542         }
10543 
10544         // If Fallthrough is unreachable, fold away the comparison.
10545         if (FallthroughUnreachable)
10546           CC = ISD::SETTRUE;
10547 
10548         // The false probability is the sum of all unhandled cases.
10549         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10550                      getCurSDLoc(), I->Prob, UnhandledProbs);
10551 
10552         if (CurMBB == SwitchMBB)
10553           visitSwitchCase(CB, SwitchMBB);
10554         else
10555           SwitchCases.push_back(CB);
10556 
10557         break;
10558       }
10559     }
10560     CurMBB = Fallthrough;
10561   }
10562 }
10563 
10564 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10565                                               CaseClusterIt First,
10566                                               CaseClusterIt Last) {
10567   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10568     if (X.Prob != CC.Prob)
10569       return X.Prob > CC.Prob;
10570 
10571     // Ties are broken by comparing the case value.
10572     return X.Low->getValue().slt(CC.Low->getValue());
10573   });
10574 }
10575 
10576 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10577                                         const SwitchWorkListItem &W,
10578                                         Value *Cond,
10579                                         MachineBasicBlock *SwitchMBB) {
10580   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10581          "Clusters not sorted?");
10582 
10583   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10584 
10585   // Balance the tree based on branch probabilities to create a near-optimal (in
10586   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10587   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10588   CaseClusterIt LastLeft = W.FirstCluster;
10589   CaseClusterIt FirstRight = W.LastCluster;
10590   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10591   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10592 
10593   // Move LastLeft and FirstRight towards each other from opposite directions to
10594   // find a partitioning of the clusters which balances the probability on both
10595   // sides. If LeftProb and RightProb are equal, alternate which side is
10596   // taken to ensure 0-probability nodes are distributed evenly.
10597   unsigned I = 0;
10598   while (LastLeft + 1 < FirstRight) {
10599     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10600       LeftProb += (++LastLeft)->Prob;
10601     else
10602       RightProb += (--FirstRight)->Prob;
10603     I++;
10604   }
10605 
10606   while (true) {
10607     // Our binary search tree differs from a typical BST in that ours can have up
10608     // to three values in each leaf. The pivot selection above doesn't take that
10609     // into account, which means the tree might require more nodes and be less
10610     // efficient. We compensate for this here.
10611 
10612     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10613     unsigned NumRight = W.LastCluster - FirstRight + 1;
10614 
10615     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10616       // If one side has less than 3 clusters, and the other has more than 3,
10617       // consider taking a cluster from the other side.
10618 
10619       if (NumLeft < NumRight) {
10620         // Consider moving the first cluster on the right to the left side.
10621         CaseCluster &CC = *FirstRight;
10622         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10623         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10624         if (LeftSideRank <= RightSideRank) {
10625           // Moving the cluster to the left does not demote it.
10626           ++LastLeft;
10627           ++FirstRight;
10628           continue;
10629         }
10630       } else {
10631         assert(NumRight < NumLeft);
10632         // Consider moving the last element on the left to the right side.
10633         CaseCluster &CC = *LastLeft;
10634         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10635         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10636         if (RightSideRank <= LeftSideRank) {
10637           // Moving the cluster to the right does not demot it.
10638           --LastLeft;
10639           --FirstRight;
10640           continue;
10641         }
10642       }
10643     }
10644     break;
10645   }
10646 
10647   assert(LastLeft + 1 == FirstRight);
10648   assert(LastLeft >= W.FirstCluster);
10649   assert(FirstRight <= W.LastCluster);
10650 
10651   // Use the first element on the right as pivot since we will make less-than
10652   // comparisons against it.
10653   CaseClusterIt PivotCluster = FirstRight;
10654   assert(PivotCluster > W.FirstCluster);
10655   assert(PivotCluster <= W.LastCluster);
10656 
10657   CaseClusterIt FirstLeft = W.FirstCluster;
10658   CaseClusterIt LastRight = W.LastCluster;
10659 
10660   const ConstantInt *Pivot = PivotCluster->Low;
10661 
10662   // New blocks will be inserted immediately after the current one.
10663   MachineFunction::iterator BBI(W.MBB);
10664   ++BBI;
10665 
10666   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10667   // we can branch to its destination directly if it's squeezed exactly in
10668   // between the known lower bound and Pivot - 1.
10669   MachineBasicBlock *LeftMBB;
10670   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10671       FirstLeft->Low == W.GE &&
10672       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10673     LeftMBB = FirstLeft->MBB;
10674   } else {
10675     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10676     FuncInfo.MF->insert(BBI, LeftMBB);
10677     WorkList.push_back(
10678         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10679     // Put Cond in a virtual register to make it available from the new blocks.
10680     ExportFromCurrentBlock(Cond);
10681   }
10682 
10683   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10684   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10685   // directly if RHS.High equals the current upper bound.
10686   MachineBasicBlock *RightMBB;
10687   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10688       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10689     RightMBB = FirstRight->MBB;
10690   } else {
10691     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10692     FuncInfo.MF->insert(BBI, RightMBB);
10693     WorkList.push_back(
10694         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10695     // Put Cond in a virtual register to make it available from the new blocks.
10696     ExportFromCurrentBlock(Cond);
10697   }
10698 
10699   // Create the CaseBlock record that will be used to lower the branch.
10700   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10701                getCurSDLoc(), LeftProb, RightProb);
10702 
10703   if (W.MBB == SwitchMBB)
10704     visitSwitchCase(CB, SwitchMBB);
10705   else
10706     SwitchCases.push_back(CB);
10707 }
10708 
10709 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10710 // from the swith statement.
10711 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10712                                             BranchProbability PeeledCaseProb) {
10713   if (PeeledCaseProb == BranchProbability::getOne())
10714     return BranchProbability::getZero();
10715   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10716 
10717   uint32_t Numerator = CaseProb.getNumerator();
10718   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10719   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10720 }
10721 
10722 // Try to peel the top probability case if it exceeds the threshold.
10723 // Return current MachineBasicBlock for the switch statement if the peeling
10724 // does not occur.
10725 // If the peeling is performed, return the newly created MachineBasicBlock
10726 // for the peeled switch statement. Also update Clusters to remove the peeled
10727 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10728 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10729     const SwitchInst &SI, CaseClusterVector &Clusters,
10730     BranchProbability &PeeledCaseProb) {
10731   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10732   // Don't perform if there is only one cluster or optimizing for size.
10733   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10734       TM.getOptLevel() == CodeGenOpt::None ||
10735       SwitchMBB->getParent()->getFunction().hasMinSize())
10736     return SwitchMBB;
10737 
10738   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10739   unsigned PeeledCaseIndex = 0;
10740   bool SwitchPeeled = false;
10741   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10742     CaseCluster &CC = Clusters[Index];
10743     if (CC.Prob < TopCaseProb)
10744       continue;
10745     TopCaseProb = CC.Prob;
10746     PeeledCaseIndex = Index;
10747     SwitchPeeled = true;
10748   }
10749   if (!SwitchPeeled)
10750     return SwitchMBB;
10751 
10752   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10753                     << TopCaseProb << "\n");
10754 
10755   // Record the MBB for the peeled switch statement.
10756   MachineFunction::iterator BBI(SwitchMBB);
10757   ++BBI;
10758   MachineBasicBlock *PeeledSwitchMBB =
10759       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10760   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10761 
10762   ExportFromCurrentBlock(SI.getCondition());
10763   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10764   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10765                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10766   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10767 
10768   Clusters.erase(PeeledCaseIt);
10769   for (CaseCluster &CC : Clusters) {
10770     LLVM_DEBUG(
10771         dbgs() << "Scale the probablity for one cluster, before scaling: "
10772                << CC.Prob << "\n");
10773     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10774     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10775   }
10776   PeeledCaseProb = TopCaseProb;
10777   return PeeledSwitchMBB;
10778 }
10779 
10780 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10781   // Extract cases from the switch.
10782   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10783   CaseClusterVector Clusters;
10784   Clusters.reserve(SI.getNumCases());
10785   for (auto I : SI.cases()) {
10786     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10787     const ConstantInt *CaseVal = I.getCaseValue();
10788     BranchProbability Prob =
10789         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10790             : BranchProbability(1, SI.getNumCases() + 1);
10791     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10792   }
10793 
10794   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10795 
10796   // Cluster adjacent cases with the same destination. We do this at all
10797   // optimization levels because it's cheap to do and will make codegen faster
10798   // if there are many clusters.
10799   sortAndRangeify(Clusters);
10800 
10801   // The branch probablity of the peeled case.
10802   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10803   MachineBasicBlock *PeeledSwitchMBB =
10804       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10805 
10806   // If there is only the default destination, jump there directly.
10807   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10808   if (Clusters.empty()) {
10809     assert(PeeledSwitchMBB == SwitchMBB);
10810     SwitchMBB->addSuccessor(DefaultMBB);
10811     if (DefaultMBB != NextBlock(SwitchMBB)) {
10812       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10813                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10814     }
10815     return;
10816   }
10817 
10818   findJumpTables(Clusters, &SI, DefaultMBB);
10819   findBitTestClusters(Clusters, &SI);
10820 
10821   LLVM_DEBUG({
10822     dbgs() << "Case clusters: ";
10823     for (const CaseCluster &C : Clusters) {
10824       if (C.Kind == CC_JumpTable)
10825         dbgs() << "JT:";
10826       if (C.Kind == CC_BitTests)
10827         dbgs() << "BT:";
10828 
10829       C.Low->getValue().print(dbgs(), true);
10830       if (C.Low != C.High) {
10831         dbgs() << '-';
10832         C.High->getValue().print(dbgs(), true);
10833       }
10834       dbgs() << ' ';
10835     }
10836     dbgs() << '\n';
10837   });
10838 
10839   assert(!Clusters.empty());
10840   SwitchWorkList WorkList;
10841   CaseClusterIt First = Clusters.begin();
10842   CaseClusterIt Last = Clusters.end() - 1;
10843   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10844   // Scale the branchprobability for DefaultMBB if the peel occurs and
10845   // DefaultMBB is not replaced.
10846   if (PeeledCaseProb != BranchProbability::getZero() &&
10847       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10848     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10849   WorkList.push_back(
10850       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10851 
10852   while (!WorkList.empty()) {
10853     SwitchWorkListItem W = WorkList.back();
10854     WorkList.pop_back();
10855     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10856 
10857     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10858         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10859       // For optimized builds, lower large range as a balanced binary tree.
10860       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10861       continue;
10862     }
10863 
10864     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10865   }
10866 }
10867