1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsAArch64.h" 78 #include "llvm/IR/IntrinsicsWebAssembly.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Statepoint.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/Support/AtomicOrdering.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <cstddef> 101 #include <iterator> 102 #include <limits> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace PatternMatch; 107 using namespace SwitchCG; 108 109 #define DEBUG_TYPE "isel" 110 111 /// LimitFloatPrecision - Generate low-precision inline sequences for 112 /// some float libcalls (6, 8 or 12 bits). 113 static unsigned LimitFloatPrecision; 114 115 static cl::opt<bool> 116 InsertAssertAlign("insert-assert-align", cl::init(true), 117 cl::desc("Insert the experimental `assertalign` node."), 118 cl::ReallyHidden); 119 120 static cl::opt<unsigned, true> 121 LimitFPPrecision("limit-float-precision", 122 cl::desc("Generate low-precision inline sequences " 123 "for some float libcalls"), 124 cl::location(LimitFloatPrecision), cl::Hidden, 125 cl::init(0)); 126 127 static cl::opt<unsigned> SwitchPeelThreshold( 128 "switch-peel-threshold", cl::Hidden, cl::init(66), 129 cl::desc("Set the case probability threshold for peeling the case from a " 130 "switch statement. A value greater than 100 will void this " 131 "optimization")); 132 133 // Limit the width of DAG chains. This is important in general to prevent 134 // DAG-based analysis from blowing up. For example, alias analysis and 135 // load clustering may not complete in reasonable time. It is difficult to 136 // recognize and avoid this situation within each individual analysis, and 137 // future analyses are likely to have the same behavior. Limiting DAG width is 138 // the safe approach and will be especially important with global DAGs. 139 // 140 // MaxParallelChains default is arbitrarily high to avoid affecting 141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 142 // sequence over this should have been converted to llvm.memcpy by the 143 // frontend. It is easy to induce this behavior with .ll code such as: 144 // %buffer = alloca [4096 x i8] 145 // %data = load [4096 x i8]* %argPtr 146 // store [4096 x i8] %data, [4096 x i8]* %buffer 147 static const unsigned MaxParallelChains = 64; 148 149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 150 const SDValue *Parts, unsigned NumParts, 151 MVT PartVT, EVT ValueVT, const Value *V, 152 Optional<CallingConv::ID> CC); 153 154 /// getCopyFromParts - Create a value that contains the specified legal parts 155 /// combined into the value they represent. If the parts combine to a type 156 /// larger than ValueVT then AssertOp can be used to specify whether the extra 157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 158 /// (ISD::AssertSext). 159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 160 const SDValue *Parts, unsigned NumParts, 161 MVT PartVT, EVT ValueVT, const Value *V, 162 Optional<CallingConv::ID> CC = None, 163 Optional<ISD::NodeType> AssertOp = None) { 164 // Let the target assemble the parts if it wants to 165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 166 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 167 PartVT, ValueVT, CC)) 168 return Val; 169 170 if (ValueVT.isVector()) 171 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 172 CC); 173 174 assert(NumParts > 0 && "No parts to assemble!"); 175 SDValue Val = Parts[0]; 176 177 if (NumParts > 1) { 178 // Assemble the value from multiple parts. 179 if (ValueVT.isInteger()) { 180 unsigned PartBits = PartVT.getSizeInBits(); 181 unsigned ValueBits = ValueVT.getSizeInBits(); 182 183 // Assemble the power of 2 part. 184 unsigned RoundParts = 185 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 Optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 Optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 482 SDValue *Parts, unsigned NumParts, MVT PartVT, 483 const Value *V, 484 Optional<CallingConv::ID> CallConv = None, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 Optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 Optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, Optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 Optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = 851 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = 934 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1139 if (!isa<DbgInfoIntrinsic>(I)) 1140 ++SDNodeOrder; 1141 1142 CurInst = &I; 1143 1144 // Set inserted listener only if required. 1145 bool NodeInserted = false; 1146 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1147 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1148 if (PCSectionsMD) { 1149 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1150 DAG, [&](SDNode *) { NodeInserted = true; }); 1151 } 1152 1153 visit(I.getOpcode(), I); 1154 1155 if (!I.isTerminator() && !HasTailCall && 1156 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1157 CopyToExportRegsIfNeeded(&I); 1158 1159 // Handle metadata. 1160 if (PCSectionsMD) { 1161 auto It = NodeMap.find(&I); 1162 if (It != NodeMap.end()) { 1163 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1164 } else if (NodeInserted) { 1165 // This should not happen; if it does, don't let it go unnoticed so we can 1166 // fix it. Relevant visit*() function is probably missing a setValue(). 1167 errs() << "warning: loosing !pcsections metadata [" 1168 << I.getModule()->getName() << "]\n"; 1169 LLVM_DEBUG(I.dump()); 1170 assert(false); 1171 } 1172 } 1173 1174 CurInst = nullptr; 1175 } 1176 1177 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1178 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1179 } 1180 1181 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1182 // Note: this doesn't use InstVisitor, because it has to work with 1183 // ConstantExpr's in addition to instructions. 1184 switch (Opcode) { 1185 default: llvm_unreachable("Unknown instruction type encountered!"); 1186 // Build the switch statement using the Instruction.def file. 1187 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1188 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1189 #include "llvm/IR/Instruction.def" 1190 } 1191 } 1192 1193 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1194 DebugLoc DL, unsigned Order) { 1195 // We treat variadic dbg_values differently at this stage. 1196 if (DI->hasArgList()) { 1197 // For variadic dbg_values we will now insert an undef. 1198 // FIXME: We can potentially recover these! 1199 SmallVector<SDDbgOperand, 2> Locs; 1200 for (const Value *V : DI->getValues()) { 1201 auto Undef = UndefValue::get(V->getType()); 1202 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1203 } 1204 SDDbgValue *SDV = DAG.getDbgValueList( 1205 DI->getVariable(), DI->getExpression(), Locs, {}, 1206 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1207 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1208 } else { 1209 // TODO: Dangling debug info will eventually either be resolved or produce 1210 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1211 // between the original dbg.value location and its resolved DBG_VALUE, 1212 // which we should ideally fill with an extra Undef DBG_VALUE. 1213 assert(DI->getNumVariableLocationOps() == 1 && 1214 "DbgValueInst without an ArgList should have a single location " 1215 "operand."); 1216 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1217 } 1218 } 1219 1220 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1221 const DIExpression *Expr) { 1222 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1223 const DbgValueInst *DI = DDI.getDI(); 1224 DIVariable *DanglingVariable = DI->getVariable(); 1225 DIExpression *DanglingExpr = DI->getExpression(); 1226 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1227 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1228 return true; 1229 } 1230 return false; 1231 }; 1232 1233 for (auto &DDIMI : DanglingDebugInfoMap) { 1234 DanglingDebugInfoVector &DDIV = DDIMI.second; 1235 1236 // If debug info is to be dropped, run it through final checks to see 1237 // whether it can be salvaged. 1238 for (auto &DDI : DDIV) 1239 if (isMatchingDbgValue(DDI)) 1240 salvageUnresolvedDbgValue(DDI); 1241 1242 erase_if(DDIV, isMatchingDbgValue); 1243 } 1244 } 1245 1246 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1247 // generate the debug data structures now that we've seen its definition. 1248 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1249 SDValue Val) { 1250 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1251 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1252 return; 1253 1254 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1255 for (auto &DDI : DDIV) { 1256 const DbgValueInst *DI = DDI.getDI(); 1257 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1258 assert(DI && "Ill-formed DanglingDebugInfo"); 1259 DebugLoc dl = DDI.getdl(); 1260 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1261 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1262 DILocalVariable *Variable = DI->getVariable(); 1263 DIExpression *Expr = DI->getExpression(); 1264 assert(Variable->isValidLocationForIntrinsic(dl) && 1265 "Expected inlined-at fields to agree"); 1266 SDDbgValue *SDV; 1267 if (Val.getNode()) { 1268 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1269 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1270 // we couldn't resolve it directly when examining the DbgValue intrinsic 1271 // in the first place we should not be more successful here). Unless we 1272 // have some test case that prove this to be correct we should avoid 1273 // calling EmitFuncArgumentDbgValue here. 1274 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1275 FuncArgumentDbgValueKind::Value, Val)) { 1276 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1277 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1278 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1279 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1280 // inserted after the definition of Val when emitting the instructions 1281 // after ISel. An alternative could be to teach 1282 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1283 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1284 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1285 << ValSDNodeOrder << "\n"); 1286 SDV = getDbgValue(Val, Variable, Expr, dl, 1287 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1288 DAG.AddDbgValue(SDV, false); 1289 } else 1290 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1291 << "in EmitFuncArgumentDbgValue\n"); 1292 } else { 1293 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1294 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1295 auto SDV = 1296 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1297 DAG.AddDbgValue(SDV, false); 1298 } 1299 } 1300 DDIV.clear(); 1301 } 1302 1303 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1304 // TODO: For the variadic implementation, instead of only checking the fail 1305 // state of `handleDebugValue`, we need know specifically which values were 1306 // invalid, so that we attempt to salvage only those values when processing 1307 // a DIArgList. 1308 assert(!DDI.getDI()->hasArgList() && 1309 "Not implemented for variadic dbg_values"); 1310 Value *V = DDI.getDI()->getValue(0); 1311 DILocalVariable *Var = DDI.getDI()->getVariable(); 1312 DIExpression *Expr = DDI.getDI()->getExpression(); 1313 DebugLoc DL = DDI.getdl(); 1314 unsigned SDOrder = DDI.getSDNodeOrder(); 1315 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1316 // that DW_OP_stack_value is desired. 1317 assert(isa<DbgValueInst>(DDI.getDI())); 1318 bool StackValue = true; 1319 1320 // Can this Value can be encoded without any further work? 1321 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1322 return; 1323 1324 // Attempt to salvage back through as many instructions as possible. Bail if 1325 // a non-instruction is seen, such as a constant expression or global 1326 // variable. FIXME: Further work could recover those too. 1327 while (isa<Instruction>(V)) { 1328 Instruction &VAsInst = *cast<Instruction>(V); 1329 // Temporary "0", awaiting real implementation. 1330 SmallVector<uint64_t, 16> Ops; 1331 SmallVector<Value *, 4> AdditionalValues; 1332 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1333 AdditionalValues); 1334 // If we cannot salvage any further, and haven't yet found a suitable debug 1335 // expression, bail out. 1336 if (!V) 1337 break; 1338 1339 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1340 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1341 // here for variadic dbg_values, remove that condition. 1342 if (!AdditionalValues.empty()) 1343 break; 1344 1345 // New value and expr now represent this debuginfo. 1346 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1347 1348 // Some kind of simplification occurred: check whether the operand of the 1349 // salvaged debug expression can be encoded in this DAG. 1350 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1351 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1352 << *DDI.getDI() << "\nBy stripping back to:\n " << *V); 1353 return; 1354 } 1355 } 1356 1357 // This was the final opportunity to salvage this debug information, and it 1358 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1359 // any earlier variable location. 1360 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1361 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1362 DAG.AddDbgValue(SDV, false); 1363 1364 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << *DDI.getDI() 1365 << "\n"); 1366 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1367 << "\n"); 1368 } 1369 1370 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1371 DILocalVariable *Var, 1372 DIExpression *Expr, DebugLoc DbgLoc, 1373 unsigned Order, bool IsVariadic) { 1374 if (Values.empty()) 1375 return true; 1376 SmallVector<SDDbgOperand> LocationOps; 1377 SmallVector<SDNode *> Dependencies; 1378 for (const Value *V : Values) { 1379 // Constant value. 1380 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1381 isa<ConstantPointerNull>(V)) { 1382 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1383 continue; 1384 } 1385 1386 // Look through IntToPtr constants. 1387 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1388 if (CE->getOpcode() == Instruction::IntToPtr) { 1389 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1390 continue; 1391 } 1392 1393 // If the Value is a frame index, we can create a FrameIndex debug value 1394 // without relying on the DAG at all. 1395 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1396 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1397 if (SI != FuncInfo.StaticAllocaMap.end()) { 1398 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1399 continue; 1400 } 1401 } 1402 1403 // Do not use getValue() in here; we don't want to generate code at 1404 // this point if it hasn't been done yet. 1405 SDValue N = NodeMap[V]; 1406 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1407 N = UnusedArgNodeMap[V]; 1408 if (N.getNode()) { 1409 // Only emit func arg dbg value for non-variadic dbg.values for now. 1410 if (!IsVariadic && 1411 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1412 FuncArgumentDbgValueKind::Value, N)) 1413 return true; 1414 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1415 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1416 // describe stack slot locations. 1417 // 1418 // Consider "int x = 0; int *px = &x;". There are two kinds of 1419 // interesting debug values here after optimization: 1420 // 1421 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1422 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1423 // 1424 // Both describe the direct values of their associated variables. 1425 Dependencies.push_back(N.getNode()); 1426 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1427 continue; 1428 } 1429 LocationOps.emplace_back( 1430 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1431 continue; 1432 } 1433 1434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1435 // Special rules apply for the first dbg.values of parameter variables in a 1436 // function. Identify them by the fact they reference Argument Values, that 1437 // they're parameters, and they are parameters of the current function. We 1438 // need to let them dangle until they get an SDNode. 1439 bool IsParamOfFunc = 1440 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1441 if (IsParamOfFunc) 1442 return false; 1443 1444 // The value is not used in this block yet (or it would have an SDNode). 1445 // We still want the value to appear for the user if possible -- if it has 1446 // an associated VReg, we can refer to that instead. 1447 auto VMI = FuncInfo.ValueMap.find(V); 1448 if (VMI != FuncInfo.ValueMap.end()) { 1449 unsigned Reg = VMI->second; 1450 // If this is a PHI node, it may be split up into several MI PHI nodes 1451 // (in FunctionLoweringInfo::set). 1452 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1453 V->getType(), None); 1454 if (RFV.occupiesMultipleRegs()) { 1455 // FIXME: We could potentially support variadic dbg_values here. 1456 if (IsVariadic) 1457 return false; 1458 unsigned Offset = 0; 1459 unsigned BitsToDescribe = 0; 1460 if (auto VarSize = Var->getSizeInBits()) 1461 BitsToDescribe = *VarSize; 1462 if (auto Fragment = Expr->getFragmentInfo()) 1463 BitsToDescribe = Fragment->SizeInBits; 1464 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1465 // Bail out if all bits are described already. 1466 if (Offset >= BitsToDescribe) 1467 break; 1468 // TODO: handle scalable vectors. 1469 unsigned RegisterSize = RegAndSize.second; 1470 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1471 ? BitsToDescribe - Offset 1472 : RegisterSize; 1473 auto FragmentExpr = DIExpression::createFragmentExpression( 1474 Expr, Offset, FragmentSize); 1475 if (!FragmentExpr) 1476 continue; 1477 SDDbgValue *SDV = DAG.getVRegDbgValue( 1478 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1479 DAG.AddDbgValue(SDV, false); 1480 Offset += RegisterSize; 1481 } 1482 return true; 1483 } 1484 // We can use simple vreg locations for variadic dbg_values as well. 1485 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1486 continue; 1487 } 1488 // We failed to create a SDDbgOperand for V. 1489 return false; 1490 } 1491 1492 // We have created a SDDbgOperand for each Value in Values. 1493 // Should use Order instead of SDNodeOrder? 1494 assert(!LocationOps.empty()); 1495 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1496 /*IsIndirect=*/false, DbgLoc, 1497 SDNodeOrder, IsVariadic); 1498 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1499 return true; 1500 } 1501 1502 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1503 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1504 for (auto &Pair : DanglingDebugInfoMap) 1505 for (auto &DDI : Pair.second) 1506 salvageUnresolvedDbgValue(DDI); 1507 clearDanglingDebugInfo(); 1508 } 1509 1510 /// getCopyFromRegs - If there was virtual register allocated for the value V 1511 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1512 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1513 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1514 SDValue Result; 1515 1516 if (It != FuncInfo.ValueMap.end()) { 1517 Register InReg = It->second; 1518 1519 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1520 DAG.getDataLayout(), InReg, Ty, 1521 None); // This is not an ABI copy. 1522 SDValue Chain = DAG.getEntryNode(); 1523 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1524 V); 1525 resolveDanglingDebugInfo(V, Result); 1526 } 1527 1528 return Result; 1529 } 1530 1531 /// getValue - Return an SDValue for the given Value. 1532 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1533 // If we already have an SDValue for this value, use it. It's important 1534 // to do this first, so that we don't create a CopyFromReg if we already 1535 // have a regular SDValue. 1536 SDValue &N = NodeMap[V]; 1537 if (N.getNode()) return N; 1538 1539 // If there's a virtual register allocated and initialized for this 1540 // value, use it. 1541 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1542 return copyFromReg; 1543 1544 // Otherwise create a new SDValue and remember it. 1545 SDValue Val = getValueImpl(V); 1546 NodeMap[V] = Val; 1547 resolveDanglingDebugInfo(V, Val); 1548 return Val; 1549 } 1550 1551 /// getNonRegisterValue - Return an SDValue for the given Value, but 1552 /// don't look in FuncInfo.ValueMap for a virtual register. 1553 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1554 // If we already have an SDValue for this value, use it. 1555 SDValue &N = NodeMap[V]; 1556 if (N.getNode()) { 1557 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1558 // Remove the debug location from the node as the node is about to be used 1559 // in a location which may differ from the original debug location. This 1560 // is relevant to Constant and ConstantFP nodes because they can appear 1561 // as constant expressions inside PHI nodes. 1562 N->setDebugLoc(DebugLoc()); 1563 } 1564 return N; 1565 } 1566 1567 // Otherwise create a new SDValue and remember it. 1568 SDValue Val = getValueImpl(V); 1569 NodeMap[V] = Val; 1570 resolveDanglingDebugInfo(V, Val); 1571 return Val; 1572 } 1573 1574 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1575 /// Create an SDValue for the given value. 1576 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1578 1579 if (const Constant *C = dyn_cast<Constant>(V)) { 1580 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1581 1582 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1583 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1584 1585 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1586 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1587 1588 if (isa<ConstantPointerNull>(C)) { 1589 unsigned AS = V->getType()->getPointerAddressSpace(); 1590 return DAG.getConstant(0, getCurSDLoc(), 1591 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1592 } 1593 1594 if (match(C, m_VScale(DAG.getDataLayout()))) 1595 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1596 1597 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1598 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1599 1600 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1601 return DAG.getUNDEF(VT); 1602 1603 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1604 visit(CE->getOpcode(), *CE); 1605 SDValue N1 = NodeMap[V]; 1606 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1607 return N1; 1608 } 1609 1610 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1611 SmallVector<SDValue, 4> Constants; 1612 for (const Use &U : C->operands()) { 1613 SDNode *Val = getValue(U).getNode(); 1614 // If the operand is an empty aggregate, there are no values. 1615 if (!Val) continue; 1616 // Add each leaf value from the operand to the Constants list 1617 // to form a flattened list of all the values. 1618 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1619 Constants.push_back(SDValue(Val, i)); 1620 } 1621 1622 return DAG.getMergeValues(Constants, getCurSDLoc()); 1623 } 1624 1625 if (const ConstantDataSequential *CDS = 1626 dyn_cast<ConstantDataSequential>(C)) { 1627 SmallVector<SDValue, 4> Ops; 1628 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1629 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1630 // Add each leaf value from the operand to the Constants list 1631 // to form a flattened list of all the values. 1632 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1633 Ops.push_back(SDValue(Val, i)); 1634 } 1635 1636 if (isa<ArrayType>(CDS->getType())) 1637 return DAG.getMergeValues(Ops, getCurSDLoc()); 1638 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1639 } 1640 1641 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1642 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1643 "Unknown struct or array constant!"); 1644 1645 SmallVector<EVT, 4> ValueVTs; 1646 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1647 unsigned NumElts = ValueVTs.size(); 1648 if (NumElts == 0) 1649 return SDValue(); // empty struct 1650 SmallVector<SDValue, 4> Constants(NumElts); 1651 for (unsigned i = 0; i != NumElts; ++i) { 1652 EVT EltVT = ValueVTs[i]; 1653 if (isa<UndefValue>(C)) 1654 Constants[i] = DAG.getUNDEF(EltVT); 1655 else if (EltVT.isFloatingPoint()) 1656 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1657 else 1658 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1659 } 1660 1661 return DAG.getMergeValues(Constants, getCurSDLoc()); 1662 } 1663 1664 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1665 return DAG.getBlockAddress(BA, VT); 1666 1667 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1668 return getValue(Equiv->getGlobalValue()); 1669 1670 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1671 return getValue(NC->getGlobalValue()); 1672 1673 VectorType *VecTy = cast<VectorType>(V->getType()); 1674 1675 // Now that we know the number and type of the elements, get that number of 1676 // elements into the Ops array based on what kind of constant it is. 1677 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1678 SmallVector<SDValue, 16> Ops; 1679 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1680 for (unsigned i = 0; i != NumElements; ++i) 1681 Ops.push_back(getValue(CV->getOperand(i))); 1682 1683 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1684 } 1685 1686 if (isa<ConstantAggregateZero>(C)) { 1687 EVT EltVT = 1688 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1689 1690 SDValue Op; 1691 if (EltVT.isFloatingPoint()) 1692 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1693 else 1694 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1695 1696 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1697 } 1698 1699 llvm_unreachable("Unknown vector constant"); 1700 } 1701 1702 // If this is a static alloca, generate it as the frameindex instead of 1703 // computation. 1704 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1705 DenseMap<const AllocaInst*, int>::iterator SI = 1706 FuncInfo.StaticAllocaMap.find(AI); 1707 if (SI != FuncInfo.StaticAllocaMap.end()) 1708 return DAG.getFrameIndex(SI->second, 1709 TLI.getFrameIndexTy(DAG.getDataLayout())); 1710 } 1711 1712 // If this is an instruction which fast-isel has deferred, select it now. 1713 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1714 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1715 1716 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1717 Inst->getType(), None); 1718 SDValue Chain = DAG.getEntryNode(); 1719 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1720 } 1721 1722 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1723 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1724 1725 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1726 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1727 1728 llvm_unreachable("Can't get register for value!"); 1729 } 1730 1731 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1732 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1733 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1734 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1735 bool IsSEH = isAsynchronousEHPersonality(Pers); 1736 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1737 if (!IsSEH) 1738 CatchPadMBB->setIsEHScopeEntry(); 1739 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1740 if (IsMSVCCXX || IsCoreCLR) 1741 CatchPadMBB->setIsEHFuncletEntry(); 1742 } 1743 1744 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1745 // Update machine-CFG edge. 1746 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1747 FuncInfo.MBB->addSuccessor(TargetMBB); 1748 TargetMBB->setIsEHCatchretTarget(true); 1749 DAG.getMachineFunction().setHasEHCatchret(true); 1750 1751 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1752 bool IsSEH = isAsynchronousEHPersonality(Pers); 1753 if (IsSEH) { 1754 // If this is not a fall-through branch or optimizations are switched off, 1755 // emit the branch. 1756 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1757 TM.getOptLevel() == CodeGenOpt::None) 1758 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1759 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1760 return; 1761 } 1762 1763 // Figure out the funclet membership for the catchret's successor. 1764 // This will be used by the FuncletLayout pass to determine how to order the 1765 // BB's. 1766 // A 'catchret' returns to the outer scope's color. 1767 Value *ParentPad = I.getCatchSwitchParentPad(); 1768 const BasicBlock *SuccessorColor; 1769 if (isa<ConstantTokenNone>(ParentPad)) 1770 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1771 else 1772 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1773 assert(SuccessorColor && "No parent funclet for catchret!"); 1774 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1775 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1776 1777 // Create the terminator node. 1778 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1779 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1780 DAG.getBasicBlock(SuccessorColorMBB)); 1781 DAG.setRoot(Ret); 1782 } 1783 1784 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1785 // Don't emit any special code for the cleanuppad instruction. It just marks 1786 // the start of an EH scope/funclet. 1787 FuncInfo.MBB->setIsEHScopeEntry(); 1788 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1789 if (Pers != EHPersonality::Wasm_CXX) { 1790 FuncInfo.MBB->setIsEHFuncletEntry(); 1791 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1792 } 1793 } 1794 1795 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1796 // not match, it is OK to add only the first unwind destination catchpad to the 1797 // successors, because there will be at least one invoke instruction within the 1798 // catch scope that points to the next unwind destination, if one exists, so 1799 // CFGSort cannot mess up with BB sorting order. 1800 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1801 // call within them, and catchpads only consisting of 'catch (...)' have a 1802 // '__cxa_end_catch' call within them, both of which generate invokes in case 1803 // the next unwind destination exists, i.e., the next unwind destination is not 1804 // the caller.) 1805 // 1806 // Having at most one EH pad successor is also simpler and helps later 1807 // transformations. 1808 // 1809 // For example, 1810 // current: 1811 // invoke void @foo to ... unwind label %catch.dispatch 1812 // catch.dispatch: 1813 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1814 // catch.start: 1815 // ... 1816 // ... in this BB or some other child BB dominated by this BB there will be an 1817 // invoke that points to 'next' BB as an unwind destination 1818 // 1819 // next: ; We don't need to add this to 'current' BB's successor 1820 // ... 1821 static void findWasmUnwindDestinations( 1822 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1823 BranchProbability Prob, 1824 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1825 &UnwindDests) { 1826 while (EHPadBB) { 1827 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1828 if (isa<CleanupPadInst>(Pad)) { 1829 // Stop on cleanup pads. 1830 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1831 UnwindDests.back().first->setIsEHScopeEntry(); 1832 break; 1833 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1834 // Add the catchpad handlers to the possible destinations. We don't 1835 // continue to the unwind destination of the catchswitch for wasm. 1836 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1837 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1838 UnwindDests.back().first->setIsEHScopeEntry(); 1839 } 1840 break; 1841 } else { 1842 continue; 1843 } 1844 } 1845 } 1846 1847 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1848 /// many places it could ultimately go. In the IR, we have a single unwind 1849 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1850 /// This function skips over imaginary basic blocks that hold catchswitch 1851 /// instructions, and finds all the "real" machine 1852 /// basic block destinations. As those destinations may not be successors of 1853 /// EHPadBB, here we also calculate the edge probability to those destinations. 1854 /// The passed-in Prob is the edge probability to EHPadBB. 1855 static void findUnwindDestinations( 1856 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1857 BranchProbability Prob, 1858 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1859 &UnwindDests) { 1860 EHPersonality Personality = 1861 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1862 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1863 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1864 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1865 bool IsSEH = isAsynchronousEHPersonality(Personality); 1866 1867 if (IsWasmCXX) { 1868 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1869 assert(UnwindDests.size() <= 1 && 1870 "There should be at most one unwind destination for wasm"); 1871 return; 1872 } 1873 1874 while (EHPadBB) { 1875 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1876 BasicBlock *NewEHPadBB = nullptr; 1877 if (isa<LandingPadInst>(Pad)) { 1878 // Stop on landingpads. They are not funclets. 1879 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1880 break; 1881 } else if (isa<CleanupPadInst>(Pad)) { 1882 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1883 // personalities. 1884 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1885 UnwindDests.back().first->setIsEHScopeEntry(); 1886 UnwindDests.back().first->setIsEHFuncletEntry(); 1887 break; 1888 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1889 // Add the catchpad handlers to the possible destinations. 1890 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1891 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1892 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1893 if (IsMSVCCXX || IsCoreCLR) 1894 UnwindDests.back().first->setIsEHFuncletEntry(); 1895 if (!IsSEH) 1896 UnwindDests.back().first->setIsEHScopeEntry(); 1897 } 1898 NewEHPadBB = CatchSwitch->getUnwindDest(); 1899 } else { 1900 continue; 1901 } 1902 1903 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1904 if (BPI && NewEHPadBB) 1905 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1906 EHPadBB = NewEHPadBB; 1907 } 1908 } 1909 1910 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1911 // Update successor info. 1912 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1913 auto UnwindDest = I.getUnwindDest(); 1914 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1915 BranchProbability UnwindDestProb = 1916 (BPI && UnwindDest) 1917 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1918 : BranchProbability::getZero(); 1919 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1920 for (auto &UnwindDest : UnwindDests) { 1921 UnwindDest.first->setIsEHPad(); 1922 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1923 } 1924 FuncInfo.MBB->normalizeSuccProbs(); 1925 1926 // Create the terminator node. 1927 SDValue Ret = 1928 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1929 DAG.setRoot(Ret); 1930 } 1931 1932 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1933 report_fatal_error("visitCatchSwitch not yet implemented!"); 1934 } 1935 1936 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1938 auto &DL = DAG.getDataLayout(); 1939 SDValue Chain = getControlRoot(); 1940 SmallVector<ISD::OutputArg, 8> Outs; 1941 SmallVector<SDValue, 8> OutVals; 1942 1943 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1944 // lower 1945 // 1946 // %val = call <ty> @llvm.experimental.deoptimize() 1947 // ret <ty> %val 1948 // 1949 // differently. 1950 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1951 LowerDeoptimizingReturn(); 1952 return; 1953 } 1954 1955 if (!FuncInfo.CanLowerReturn) { 1956 unsigned DemoteReg = FuncInfo.DemoteRegister; 1957 const Function *F = I.getParent()->getParent(); 1958 1959 // Emit a store of the return value through the virtual register. 1960 // Leave Outs empty so that LowerReturn won't try to load return 1961 // registers the usual way. 1962 SmallVector<EVT, 1> PtrValueVTs; 1963 ComputeValueVTs(TLI, DL, 1964 F->getReturnType()->getPointerTo( 1965 DAG.getDataLayout().getAllocaAddrSpace()), 1966 PtrValueVTs); 1967 1968 SDValue RetPtr = 1969 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1970 SDValue RetOp = getValue(I.getOperand(0)); 1971 1972 SmallVector<EVT, 4> ValueVTs, MemVTs; 1973 SmallVector<uint64_t, 4> Offsets; 1974 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1975 &Offsets); 1976 unsigned NumValues = ValueVTs.size(); 1977 1978 SmallVector<SDValue, 4> Chains(NumValues); 1979 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1980 for (unsigned i = 0; i != NumValues; ++i) { 1981 // An aggregate return value cannot wrap around the address space, so 1982 // offsets to its parts don't wrap either. 1983 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1984 TypeSize::Fixed(Offsets[i])); 1985 1986 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1987 if (MemVTs[i] != ValueVTs[i]) 1988 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1989 Chains[i] = DAG.getStore( 1990 Chain, getCurSDLoc(), Val, 1991 // FIXME: better loc info would be nice. 1992 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1993 commonAlignment(BaseAlign, Offsets[i])); 1994 } 1995 1996 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1997 MVT::Other, Chains); 1998 } else if (I.getNumOperands() != 0) { 1999 SmallVector<EVT, 4> ValueVTs; 2000 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2001 unsigned NumValues = ValueVTs.size(); 2002 if (NumValues) { 2003 SDValue RetOp = getValue(I.getOperand(0)); 2004 2005 const Function *F = I.getParent()->getParent(); 2006 2007 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2008 I.getOperand(0)->getType(), F->getCallingConv(), 2009 /*IsVarArg*/ false, DL); 2010 2011 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2012 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2013 ExtendKind = ISD::SIGN_EXTEND; 2014 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2015 ExtendKind = ISD::ZERO_EXTEND; 2016 2017 LLVMContext &Context = F->getContext(); 2018 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2019 2020 for (unsigned j = 0; j != NumValues; ++j) { 2021 EVT VT = ValueVTs[j]; 2022 2023 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2024 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2025 2026 CallingConv::ID CC = F->getCallingConv(); 2027 2028 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2029 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2030 SmallVector<SDValue, 4> Parts(NumParts); 2031 getCopyToParts(DAG, getCurSDLoc(), 2032 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2033 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2034 2035 // 'inreg' on function refers to return value 2036 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2037 if (RetInReg) 2038 Flags.setInReg(); 2039 2040 if (I.getOperand(0)->getType()->isPointerTy()) { 2041 Flags.setPointer(); 2042 Flags.setPointerAddrSpace( 2043 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2044 } 2045 2046 if (NeedsRegBlock) { 2047 Flags.setInConsecutiveRegs(); 2048 if (j == NumValues - 1) 2049 Flags.setInConsecutiveRegsLast(); 2050 } 2051 2052 // Propagate extension type if any 2053 if (ExtendKind == ISD::SIGN_EXTEND) 2054 Flags.setSExt(); 2055 else if (ExtendKind == ISD::ZERO_EXTEND) 2056 Flags.setZExt(); 2057 2058 for (unsigned i = 0; i < NumParts; ++i) { 2059 Outs.push_back(ISD::OutputArg(Flags, 2060 Parts[i].getValueType().getSimpleVT(), 2061 VT, /*isfixed=*/true, 0, 0)); 2062 OutVals.push_back(Parts[i]); 2063 } 2064 } 2065 } 2066 } 2067 2068 // Push in swifterror virtual register as the last element of Outs. This makes 2069 // sure swifterror virtual register will be returned in the swifterror 2070 // physical register. 2071 const Function *F = I.getParent()->getParent(); 2072 if (TLI.supportSwiftError() && 2073 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2074 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2075 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2076 Flags.setSwiftError(); 2077 Outs.push_back(ISD::OutputArg( 2078 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2079 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2080 // Create SDNode for the swifterror virtual register. 2081 OutVals.push_back( 2082 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2083 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2084 EVT(TLI.getPointerTy(DL)))); 2085 } 2086 2087 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2088 CallingConv::ID CallConv = 2089 DAG.getMachineFunction().getFunction().getCallingConv(); 2090 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2091 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2092 2093 // Verify that the target's LowerReturn behaved as expected. 2094 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2095 "LowerReturn didn't return a valid chain!"); 2096 2097 // Update the DAG with the new chain value resulting from return lowering. 2098 DAG.setRoot(Chain); 2099 } 2100 2101 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2102 /// created for it, emit nodes to copy the value into the virtual 2103 /// registers. 2104 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2105 // Skip empty types 2106 if (V->getType()->isEmptyTy()) 2107 return; 2108 2109 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2110 if (VMI != FuncInfo.ValueMap.end()) { 2111 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2112 CopyValueToVirtualRegister(V, VMI->second); 2113 } 2114 } 2115 2116 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2117 /// the current basic block, add it to ValueMap now so that we'll get a 2118 /// CopyTo/FromReg. 2119 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2120 // No need to export constants. 2121 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2122 2123 // Already exported? 2124 if (FuncInfo.isExportedInst(V)) return; 2125 2126 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2127 CopyValueToVirtualRegister(V, Reg); 2128 } 2129 2130 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2131 const BasicBlock *FromBB) { 2132 // The operands of the setcc have to be in this block. We don't know 2133 // how to export them from some other block. 2134 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2135 // Can export from current BB. 2136 if (VI->getParent() == FromBB) 2137 return true; 2138 2139 // Is already exported, noop. 2140 return FuncInfo.isExportedInst(V); 2141 } 2142 2143 // If this is an argument, we can export it if the BB is the entry block or 2144 // if it is already exported. 2145 if (isa<Argument>(V)) { 2146 if (FromBB->isEntryBlock()) 2147 return true; 2148 2149 // Otherwise, can only export this if it is already exported. 2150 return FuncInfo.isExportedInst(V); 2151 } 2152 2153 // Otherwise, constants can always be exported. 2154 return true; 2155 } 2156 2157 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2158 BranchProbability 2159 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2160 const MachineBasicBlock *Dst) const { 2161 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2162 const BasicBlock *SrcBB = Src->getBasicBlock(); 2163 const BasicBlock *DstBB = Dst->getBasicBlock(); 2164 if (!BPI) { 2165 // If BPI is not available, set the default probability as 1 / N, where N is 2166 // the number of successors. 2167 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2168 return BranchProbability(1, SuccSize); 2169 } 2170 return BPI->getEdgeProbability(SrcBB, DstBB); 2171 } 2172 2173 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2174 MachineBasicBlock *Dst, 2175 BranchProbability Prob) { 2176 if (!FuncInfo.BPI) 2177 Src->addSuccessorWithoutProb(Dst); 2178 else { 2179 if (Prob.isUnknown()) 2180 Prob = getEdgeProbability(Src, Dst); 2181 Src->addSuccessor(Dst, Prob); 2182 } 2183 } 2184 2185 static bool InBlock(const Value *V, const BasicBlock *BB) { 2186 if (const Instruction *I = dyn_cast<Instruction>(V)) 2187 return I->getParent() == BB; 2188 return true; 2189 } 2190 2191 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2192 /// This function emits a branch and is used at the leaves of an OR or an 2193 /// AND operator tree. 2194 void 2195 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2196 MachineBasicBlock *TBB, 2197 MachineBasicBlock *FBB, 2198 MachineBasicBlock *CurBB, 2199 MachineBasicBlock *SwitchBB, 2200 BranchProbability TProb, 2201 BranchProbability FProb, 2202 bool InvertCond) { 2203 const BasicBlock *BB = CurBB->getBasicBlock(); 2204 2205 // If the leaf of the tree is a comparison, merge the condition into 2206 // the caseblock. 2207 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2208 // The operands of the cmp have to be in this block. We don't know 2209 // how to export them from some other block. If this is the first block 2210 // of the sequence, no exporting is needed. 2211 if (CurBB == SwitchBB || 2212 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2213 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2214 ISD::CondCode Condition; 2215 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2216 ICmpInst::Predicate Pred = 2217 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2218 Condition = getICmpCondCode(Pred); 2219 } else { 2220 const FCmpInst *FC = cast<FCmpInst>(Cond); 2221 FCmpInst::Predicate Pred = 2222 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2223 Condition = getFCmpCondCode(Pred); 2224 if (TM.Options.NoNaNsFPMath) 2225 Condition = getFCmpCodeWithoutNaN(Condition); 2226 } 2227 2228 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2229 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2230 SL->SwitchCases.push_back(CB); 2231 return; 2232 } 2233 } 2234 2235 // Create a CaseBlock record representing this branch. 2236 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2237 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2238 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2239 SL->SwitchCases.push_back(CB); 2240 } 2241 2242 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2243 MachineBasicBlock *TBB, 2244 MachineBasicBlock *FBB, 2245 MachineBasicBlock *CurBB, 2246 MachineBasicBlock *SwitchBB, 2247 Instruction::BinaryOps Opc, 2248 BranchProbability TProb, 2249 BranchProbability FProb, 2250 bool InvertCond) { 2251 // Skip over not part of the tree and remember to invert op and operands at 2252 // next level. 2253 Value *NotCond; 2254 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2255 InBlock(NotCond, CurBB->getBasicBlock())) { 2256 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2257 !InvertCond); 2258 return; 2259 } 2260 2261 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2262 const Value *BOpOp0, *BOpOp1; 2263 // Compute the effective opcode for Cond, taking into account whether it needs 2264 // to be inverted, e.g. 2265 // and (not (or A, B)), C 2266 // gets lowered as 2267 // and (and (not A, not B), C) 2268 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2269 if (BOp) { 2270 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2271 ? Instruction::And 2272 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2273 ? Instruction::Or 2274 : (Instruction::BinaryOps)0); 2275 if (InvertCond) { 2276 if (BOpc == Instruction::And) 2277 BOpc = Instruction::Or; 2278 else if (BOpc == Instruction::Or) 2279 BOpc = Instruction::And; 2280 } 2281 } 2282 2283 // If this node is not part of the or/and tree, emit it as a branch. 2284 // Note that all nodes in the tree should have same opcode. 2285 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2286 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2287 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2288 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2289 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2290 TProb, FProb, InvertCond); 2291 return; 2292 } 2293 2294 // Create TmpBB after CurBB. 2295 MachineFunction::iterator BBI(CurBB); 2296 MachineFunction &MF = DAG.getMachineFunction(); 2297 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2298 CurBB->getParent()->insert(++BBI, TmpBB); 2299 2300 if (Opc == Instruction::Or) { 2301 // Codegen X | Y as: 2302 // BB1: 2303 // jmp_if_X TBB 2304 // jmp TmpBB 2305 // TmpBB: 2306 // jmp_if_Y TBB 2307 // jmp FBB 2308 // 2309 2310 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2311 // The requirement is that 2312 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2313 // = TrueProb for original BB. 2314 // Assuming the original probabilities are A and B, one choice is to set 2315 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2316 // A/(1+B) and 2B/(1+B). This choice assumes that 2317 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2318 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2319 // TmpBB, but the math is more complicated. 2320 2321 auto NewTrueProb = TProb / 2; 2322 auto NewFalseProb = TProb / 2 + FProb; 2323 // Emit the LHS condition. 2324 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2325 NewFalseProb, InvertCond); 2326 2327 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2328 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2329 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2330 // Emit the RHS condition into TmpBB. 2331 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2332 Probs[1], InvertCond); 2333 } else { 2334 assert(Opc == Instruction::And && "Unknown merge op!"); 2335 // Codegen X & Y as: 2336 // BB1: 2337 // jmp_if_X TmpBB 2338 // jmp FBB 2339 // TmpBB: 2340 // jmp_if_Y TBB 2341 // jmp FBB 2342 // 2343 // This requires creation of TmpBB after CurBB. 2344 2345 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2346 // The requirement is that 2347 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2348 // = FalseProb for original BB. 2349 // Assuming the original probabilities are A and B, one choice is to set 2350 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2351 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2352 // TrueProb for BB1 * FalseProb for TmpBB. 2353 2354 auto NewTrueProb = TProb + FProb / 2; 2355 auto NewFalseProb = FProb / 2; 2356 // Emit the LHS condition. 2357 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2358 NewFalseProb, InvertCond); 2359 2360 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2361 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2362 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2363 // Emit the RHS condition into TmpBB. 2364 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2365 Probs[1], InvertCond); 2366 } 2367 } 2368 2369 /// If the set of cases should be emitted as a series of branches, return true. 2370 /// If we should emit this as a bunch of and/or'd together conditions, return 2371 /// false. 2372 bool 2373 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2374 if (Cases.size() != 2) return true; 2375 2376 // If this is two comparisons of the same values or'd or and'd together, they 2377 // will get folded into a single comparison, so don't emit two blocks. 2378 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2379 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2380 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2381 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2382 return false; 2383 } 2384 2385 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2386 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2387 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2388 Cases[0].CC == Cases[1].CC && 2389 isa<Constant>(Cases[0].CmpRHS) && 2390 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2391 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2392 return false; 2393 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2394 return false; 2395 } 2396 2397 return true; 2398 } 2399 2400 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2401 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2402 2403 // Update machine-CFG edges. 2404 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2405 2406 if (I.isUnconditional()) { 2407 // Update machine-CFG edges. 2408 BrMBB->addSuccessor(Succ0MBB); 2409 2410 // If this is not a fall-through branch or optimizations are switched off, 2411 // emit the branch. 2412 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2413 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2414 MVT::Other, getControlRoot(), 2415 DAG.getBasicBlock(Succ0MBB))); 2416 2417 return; 2418 } 2419 2420 // If this condition is one of the special cases we handle, do special stuff 2421 // now. 2422 const Value *CondVal = I.getCondition(); 2423 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2424 2425 // If this is a series of conditions that are or'd or and'd together, emit 2426 // this as a sequence of branches instead of setcc's with and/or operations. 2427 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2428 // unpredictable branches, and vector extracts because those jumps are likely 2429 // expensive for any target), this should improve performance. 2430 // For example, instead of something like: 2431 // cmp A, B 2432 // C = seteq 2433 // cmp D, E 2434 // F = setle 2435 // or C, F 2436 // jnz foo 2437 // Emit: 2438 // cmp A, B 2439 // je foo 2440 // cmp D, E 2441 // jle foo 2442 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2443 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2444 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2445 Value *Vec; 2446 const Value *BOp0, *BOp1; 2447 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2448 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2449 Opcode = Instruction::And; 2450 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2451 Opcode = Instruction::Or; 2452 2453 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2454 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2455 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2456 getEdgeProbability(BrMBB, Succ0MBB), 2457 getEdgeProbability(BrMBB, Succ1MBB), 2458 /*InvertCond=*/false); 2459 // If the compares in later blocks need to use values not currently 2460 // exported from this block, export them now. This block should always 2461 // be the first entry. 2462 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2463 2464 // Allow some cases to be rejected. 2465 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2466 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2467 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2468 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2469 } 2470 2471 // Emit the branch for this block. 2472 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2473 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2474 return; 2475 } 2476 2477 // Okay, we decided not to do this, remove any inserted MBB's and clear 2478 // SwitchCases. 2479 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2480 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2481 2482 SL->SwitchCases.clear(); 2483 } 2484 } 2485 2486 // Create a CaseBlock record representing this branch. 2487 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2488 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2489 2490 // Use visitSwitchCase to actually insert the fast branch sequence for this 2491 // cond branch. 2492 visitSwitchCase(CB, BrMBB); 2493 } 2494 2495 /// visitSwitchCase - Emits the necessary code to represent a single node in 2496 /// the binary search tree resulting from lowering a switch instruction. 2497 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2498 MachineBasicBlock *SwitchBB) { 2499 SDValue Cond; 2500 SDValue CondLHS = getValue(CB.CmpLHS); 2501 SDLoc dl = CB.DL; 2502 2503 if (CB.CC == ISD::SETTRUE) { 2504 // Branch or fall through to TrueBB. 2505 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2506 SwitchBB->normalizeSuccProbs(); 2507 if (CB.TrueBB != NextBlock(SwitchBB)) { 2508 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2509 DAG.getBasicBlock(CB.TrueBB))); 2510 } 2511 return; 2512 } 2513 2514 auto &TLI = DAG.getTargetLoweringInfo(); 2515 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2516 2517 // Build the setcc now. 2518 if (!CB.CmpMHS) { 2519 // Fold "(X == true)" to X and "(X == false)" to !X to 2520 // handle common cases produced by branch lowering. 2521 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2522 CB.CC == ISD::SETEQ) 2523 Cond = CondLHS; 2524 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2525 CB.CC == ISD::SETEQ) { 2526 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2527 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2528 } else { 2529 SDValue CondRHS = getValue(CB.CmpRHS); 2530 2531 // If a pointer's DAG type is larger than its memory type then the DAG 2532 // values are zero-extended. This breaks signed comparisons so truncate 2533 // back to the underlying type before doing the compare. 2534 if (CondLHS.getValueType() != MemVT) { 2535 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2536 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2537 } 2538 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2539 } 2540 } else { 2541 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2542 2543 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2544 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2545 2546 SDValue CmpOp = getValue(CB.CmpMHS); 2547 EVT VT = CmpOp.getValueType(); 2548 2549 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2550 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2551 ISD::SETLE); 2552 } else { 2553 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2554 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2555 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2556 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2557 } 2558 } 2559 2560 // Update successor info 2561 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2562 // TrueBB and FalseBB are always different unless the incoming IR is 2563 // degenerate. This only happens when running llc on weird IR. 2564 if (CB.TrueBB != CB.FalseBB) 2565 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2566 SwitchBB->normalizeSuccProbs(); 2567 2568 // If the lhs block is the next block, invert the condition so that we can 2569 // fall through to the lhs instead of the rhs block. 2570 if (CB.TrueBB == NextBlock(SwitchBB)) { 2571 std::swap(CB.TrueBB, CB.FalseBB); 2572 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2573 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2574 } 2575 2576 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2577 MVT::Other, getControlRoot(), Cond, 2578 DAG.getBasicBlock(CB.TrueBB)); 2579 2580 setValue(CurInst, BrCond); 2581 2582 // Insert the false branch. Do this even if it's a fall through branch, 2583 // this makes it easier to do DAG optimizations which require inverting 2584 // the branch condition. 2585 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2586 DAG.getBasicBlock(CB.FalseBB)); 2587 2588 DAG.setRoot(BrCond); 2589 } 2590 2591 /// visitJumpTable - Emit JumpTable node in the current MBB 2592 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2593 // Emit the code for the jump table 2594 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2595 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2596 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2597 JT.Reg, PTy); 2598 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2599 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2600 MVT::Other, Index.getValue(1), 2601 Table, Index); 2602 DAG.setRoot(BrJumpTable); 2603 } 2604 2605 /// visitJumpTableHeader - This function emits necessary code to produce index 2606 /// in the JumpTable from switch case. 2607 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2608 JumpTableHeader &JTH, 2609 MachineBasicBlock *SwitchBB) { 2610 SDLoc dl = getCurSDLoc(); 2611 2612 // Subtract the lowest switch case value from the value being switched on. 2613 SDValue SwitchOp = getValue(JTH.SValue); 2614 EVT VT = SwitchOp.getValueType(); 2615 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2616 DAG.getConstant(JTH.First, dl, VT)); 2617 2618 // The SDNode we just created, which holds the value being switched on minus 2619 // the smallest case value, needs to be copied to a virtual register so it 2620 // can be used as an index into the jump table in a subsequent basic block. 2621 // This value may be smaller or larger than the target's pointer type, and 2622 // therefore require extension or truncating. 2623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2624 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2625 2626 unsigned JumpTableReg = 2627 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2628 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2629 JumpTableReg, SwitchOp); 2630 JT.Reg = JumpTableReg; 2631 2632 if (!JTH.FallthroughUnreachable) { 2633 // Emit the range check for the jump table, and branch to the default block 2634 // for the switch statement if the value being switched on exceeds the 2635 // largest case in the switch. 2636 SDValue CMP = DAG.getSetCC( 2637 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2638 Sub.getValueType()), 2639 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2640 2641 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2642 MVT::Other, CopyTo, CMP, 2643 DAG.getBasicBlock(JT.Default)); 2644 2645 // Avoid emitting unnecessary branches to the next block. 2646 if (JT.MBB != NextBlock(SwitchBB)) 2647 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2648 DAG.getBasicBlock(JT.MBB)); 2649 2650 DAG.setRoot(BrCond); 2651 } else { 2652 // Avoid emitting unnecessary branches to the next block. 2653 if (JT.MBB != NextBlock(SwitchBB)) 2654 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2655 DAG.getBasicBlock(JT.MBB))); 2656 else 2657 DAG.setRoot(CopyTo); 2658 } 2659 } 2660 2661 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2662 /// variable if there exists one. 2663 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2664 SDValue &Chain) { 2665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2666 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2667 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2668 MachineFunction &MF = DAG.getMachineFunction(); 2669 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2670 MachineSDNode *Node = 2671 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2672 if (Global) { 2673 MachinePointerInfo MPInfo(Global); 2674 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2675 MachineMemOperand::MODereferenceable; 2676 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2677 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2678 DAG.setNodeMemRefs(Node, {MemRef}); 2679 } 2680 if (PtrTy != PtrMemTy) 2681 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2682 return SDValue(Node, 0); 2683 } 2684 2685 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2686 /// tail spliced into a stack protector check success bb. 2687 /// 2688 /// For a high level explanation of how this fits into the stack protector 2689 /// generation see the comment on the declaration of class 2690 /// StackProtectorDescriptor. 2691 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2692 MachineBasicBlock *ParentBB) { 2693 2694 // First create the loads to the guard/stack slot for the comparison. 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2697 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2698 2699 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2700 int FI = MFI.getStackProtectorIndex(); 2701 2702 SDValue Guard; 2703 SDLoc dl = getCurSDLoc(); 2704 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2705 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2706 Align Align = 2707 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2708 2709 // Generate code to load the content of the guard slot. 2710 SDValue GuardVal = DAG.getLoad( 2711 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2712 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2713 MachineMemOperand::MOVolatile); 2714 2715 if (TLI.useStackGuardXorFP()) 2716 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2717 2718 // Retrieve guard check function, nullptr if instrumentation is inlined. 2719 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2720 // The target provides a guard check function to validate the guard value. 2721 // Generate a call to that function with the content of the guard slot as 2722 // argument. 2723 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2724 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2725 2726 TargetLowering::ArgListTy Args; 2727 TargetLowering::ArgListEntry Entry; 2728 Entry.Node = GuardVal; 2729 Entry.Ty = FnTy->getParamType(0); 2730 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2731 Entry.IsInReg = true; 2732 Args.push_back(Entry); 2733 2734 TargetLowering::CallLoweringInfo CLI(DAG); 2735 CLI.setDebugLoc(getCurSDLoc()) 2736 .setChain(DAG.getEntryNode()) 2737 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2738 getValue(GuardCheckFn), std::move(Args)); 2739 2740 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2741 DAG.setRoot(Result.second); 2742 return; 2743 } 2744 2745 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2746 // Otherwise, emit a volatile load to retrieve the stack guard value. 2747 SDValue Chain = DAG.getEntryNode(); 2748 if (TLI.useLoadStackGuardNode()) { 2749 Guard = getLoadStackGuard(DAG, dl, Chain); 2750 } else { 2751 const Value *IRGuard = TLI.getSDagStackGuard(M); 2752 SDValue GuardPtr = getValue(IRGuard); 2753 2754 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2755 MachinePointerInfo(IRGuard, 0), Align, 2756 MachineMemOperand::MOVolatile); 2757 } 2758 2759 // Perform the comparison via a getsetcc. 2760 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2761 *DAG.getContext(), 2762 Guard.getValueType()), 2763 Guard, GuardVal, ISD::SETNE); 2764 2765 // If the guard/stackslot do not equal, branch to failure MBB. 2766 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2767 MVT::Other, GuardVal.getOperand(0), 2768 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2769 // Otherwise branch to success MBB. 2770 SDValue Br = DAG.getNode(ISD::BR, dl, 2771 MVT::Other, BrCond, 2772 DAG.getBasicBlock(SPD.getSuccessMBB())); 2773 2774 DAG.setRoot(Br); 2775 } 2776 2777 /// Codegen the failure basic block for a stack protector check. 2778 /// 2779 /// A failure stack protector machine basic block consists simply of a call to 2780 /// __stack_chk_fail(). 2781 /// 2782 /// For a high level explanation of how this fits into the stack protector 2783 /// generation see the comment on the declaration of class 2784 /// StackProtectorDescriptor. 2785 void 2786 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2788 TargetLowering::MakeLibCallOptions CallOptions; 2789 CallOptions.setDiscardResult(true); 2790 SDValue Chain = 2791 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2792 None, CallOptions, getCurSDLoc()).second; 2793 // On PS4/PS5, the "return address" must still be within the calling 2794 // function, even if it's at the very end, so emit an explicit TRAP here. 2795 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2796 if (TM.getTargetTriple().isPS()) 2797 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2798 // WebAssembly needs an unreachable instruction after a non-returning call, 2799 // because the function return type can be different from __stack_chk_fail's 2800 // return type (void). 2801 if (TM.getTargetTriple().isWasm()) 2802 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2803 2804 DAG.setRoot(Chain); 2805 } 2806 2807 /// visitBitTestHeader - This function emits necessary code to produce value 2808 /// suitable for "bit tests" 2809 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2810 MachineBasicBlock *SwitchBB) { 2811 SDLoc dl = getCurSDLoc(); 2812 2813 // Subtract the minimum value. 2814 SDValue SwitchOp = getValue(B.SValue); 2815 EVT VT = SwitchOp.getValueType(); 2816 SDValue RangeSub = 2817 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2818 2819 // Determine the type of the test operands. 2820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2821 bool UsePtrType = false; 2822 if (!TLI.isTypeLegal(VT)) { 2823 UsePtrType = true; 2824 } else { 2825 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2826 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2827 // Switch table case range are encoded into series of masks. 2828 // Just use pointer type, it's guaranteed to fit. 2829 UsePtrType = true; 2830 break; 2831 } 2832 } 2833 SDValue Sub = RangeSub; 2834 if (UsePtrType) { 2835 VT = TLI.getPointerTy(DAG.getDataLayout()); 2836 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2837 } 2838 2839 B.RegVT = VT.getSimpleVT(); 2840 B.Reg = FuncInfo.CreateReg(B.RegVT); 2841 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2842 2843 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2844 2845 if (!B.FallthroughUnreachable) 2846 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2847 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2848 SwitchBB->normalizeSuccProbs(); 2849 2850 SDValue Root = CopyTo; 2851 if (!B.FallthroughUnreachable) { 2852 // Conditional branch to the default block. 2853 SDValue RangeCmp = DAG.getSetCC(dl, 2854 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2855 RangeSub.getValueType()), 2856 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2857 ISD::SETUGT); 2858 2859 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2860 DAG.getBasicBlock(B.Default)); 2861 } 2862 2863 // Avoid emitting unnecessary branches to the next block. 2864 if (MBB != NextBlock(SwitchBB)) 2865 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2866 2867 DAG.setRoot(Root); 2868 } 2869 2870 /// visitBitTestCase - this function produces one "bit test" 2871 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2872 MachineBasicBlock* NextMBB, 2873 BranchProbability BranchProbToNext, 2874 unsigned Reg, 2875 BitTestCase &B, 2876 MachineBasicBlock *SwitchBB) { 2877 SDLoc dl = getCurSDLoc(); 2878 MVT VT = BB.RegVT; 2879 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2880 SDValue Cmp; 2881 unsigned PopCount = countPopulation(B.Mask); 2882 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2883 if (PopCount == 1) { 2884 // Testing for a single bit; just compare the shift count with what it 2885 // would need to be to shift a 1 bit in that position. 2886 Cmp = DAG.getSetCC( 2887 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2888 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2889 ISD::SETEQ); 2890 } else if (PopCount == BB.Range) { 2891 // There is only one zero bit in the range, test for it directly. 2892 Cmp = DAG.getSetCC( 2893 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2894 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2895 ISD::SETNE); 2896 } else { 2897 // Make desired shift 2898 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2899 DAG.getConstant(1, dl, VT), ShiftOp); 2900 2901 // Emit bit tests and jumps 2902 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2903 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2904 Cmp = DAG.getSetCC( 2905 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2906 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2907 } 2908 2909 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2910 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2911 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2912 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2913 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2914 // one as they are relative probabilities (and thus work more like weights), 2915 // and hence we need to normalize them to let the sum of them become one. 2916 SwitchBB->normalizeSuccProbs(); 2917 2918 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2919 MVT::Other, getControlRoot(), 2920 Cmp, DAG.getBasicBlock(B.TargetBB)); 2921 2922 // Avoid emitting unnecessary branches to the next block. 2923 if (NextMBB != NextBlock(SwitchBB)) 2924 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2925 DAG.getBasicBlock(NextMBB)); 2926 2927 DAG.setRoot(BrAnd); 2928 } 2929 2930 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2931 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2932 2933 // Retrieve successors. Look through artificial IR level blocks like 2934 // catchswitch for successors. 2935 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2936 const BasicBlock *EHPadBB = I.getSuccessor(1); 2937 2938 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2939 // have to do anything here to lower funclet bundles. 2940 assert(!I.hasOperandBundlesOtherThan( 2941 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2942 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2943 LLVMContext::OB_cfguardtarget, 2944 LLVMContext::OB_clang_arc_attachedcall}) && 2945 "Cannot lower invokes with arbitrary operand bundles yet!"); 2946 2947 const Value *Callee(I.getCalledOperand()); 2948 const Function *Fn = dyn_cast<Function>(Callee); 2949 if (isa<InlineAsm>(Callee)) 2950 visitInlineAsm(I, EHPadBB); 2951 else if (Fn && Fn->isIntrinsic()) { 2952 switch (Fn->getIntrinsicID()) { 2953 default: 2954 llvm_unreachable("Cannot invoke this intrinsic"); 2955 case Intrinsic::donothing: 2956 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2957 case Intrinsic::seh_try_begin: 2958 case Intrinsic::seh_scope_begin: 2959 case Intrinsic::seh_try_end: 2960 case Intrinsic::seh_scope_end: 2961 break; 2962 case Intrinsic::experimental_patchpoint_void: 2963 case Intrinsic::experimental_patchpoint_i64: 2964 visitPatchpoint(I, EHPadBB); 2965 break; 2966 case Intrinsic::experimental_gc_statepoint: 2967 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2968 break; 2969 case Intrinsic::wasm_rethrow: { 2970 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2971 // special because it can be invoked, so we manually lower it to a DAG 2972 // node here. 2973 SmallVector<SDValue, 8> Ops; 2974 Ops.push_back(getRoot()); // inchain 2975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2976 Ops.push_back( 2977 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2978 TLI.getPointerTy(DAG.getDataLayout()))); 2979 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2980 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2981 break; 2982 } 2983 } 2984 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2985 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2986 // Eventually we will support lowering the @llvm.experimental.deoptimize 2987 // intrinsic, and right now there are no plans to support other intrinsics 2988 // with deopt state. 2989 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2990 } else { 2991 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2992 } 2993 2994 // If the value of the invoke is used outside of its defining block, make it 2995 // available as a virtual register. 2996 // We already took care of the exported value for the statepoint instruction 2997 // during call to the LowerStatepoint. 2998 if (!isa<GCStatepointInst>(I)) { 2999 CopyToExportRegsIfNeeded(&I); 3000 } 3001 3002 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3003 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3004 BranchProbability EHPadBBProb = 3005 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3006 : BranchProbability::getZero(); 3007 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3008 3009 // Update successor info. 3010 addSuccessorWithProb(InvokeMBB, Return); 3011 for (auto &UnwindDest : UnwindDests) { 3012 UnwindDest.first->setIsEHPad(); 3013 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3014 } 3015 InvokeMBB->normalizeSuccProbs(); 3016 3017 // Drop into normal successor. 3018 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3019 DAG.getBasicBlock(Return))); 3020 } 3021 3022 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3023 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3024 3025 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3026 // have to do anything here to lower funclet bundles. 3027 assert(!I.hasOperandBundlesOtherThan( 3028 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3029 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3030 3031 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3032 visitInlineAsm(I); 3033 CopyToExportRegsIfNeeded(&I); 3034 3035 // Retrieve successors. 3036 SmallPtrSet<BasicBlock *, 8> Dests; 3037 Dests.insert(I.getDefaultDest()); 3038 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3039 3040 // Update successor info. 3041 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3042 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3043 BasicBlock *Dest = I.getIndirectDest(i); 3044 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3045 Target->setIsInlineAsmBrIndirectTarget(); 3046 Target->setMachineBlockAddressTaken(); 3047 Target->setLabelMustBeEmitted(); 3048 // Don't add duplicate machine successors. 3049 if (Dests.insert(Dest).second) 3050 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3051 } 3052 CallBrMBB->normalizeSuccProbs(); 3053 3054 // Drop into default successor. 3055 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3056 MVT::Other, getControlRoot(), 3057 DAG.getBasicBlock(Return))); 3058 } 3059 3060 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3061 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3062 } 3063 3064 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3065 assert(FuncInfo.MBB->isEHPad() && 3066 "Call to landingpad not in landing pad!"); 3067 3068 // If there aren't registers to copy the values into (e.g., during SjLj 3069 // exceptions), then don't bother to create these DAG nodes. 3070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3071 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3072 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3073 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3074 return; 3075 3076 // If landingpad's return type is token type, we don't create DAG nodes 3077 // for its exception pointer and selector value. The extraction of exception 3078 // pointer or selector value from token type landingpads is not currently 3079 // supported. 3080 if (LP.getType()->isTokenTy()) 3081 return; 3082 3083 SmallVector<EVT, 2> ValueVTs; 3084 SDLoc dl = getCurSDLoc(); 3085 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3086 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3087 3088 // Get the two live-in registers as SDValues. The physregs have already been 3089 // copied into virtual registers. 3090 SDValue Ops[2]; 3091 if (FuncInfo.ExceptionPointerVirtReg) { 3092 Ops[0] = DAG.getZExtOrTrunc( 3093 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3094 FuncInfo.ExceptionPointerVirtReg, 3095 TLI.getPointerTy(DAG.getDataLayout())), 3096 dl, ValueVTs[0]); 3097 } else { 3098 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3099 } 3100 Ops[1] = DAG.getZExtOrTrunc( 3101 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3102 FuncInfo.ExceptionSelectorVirtReg, 3103 TLI.getPointerTy(DAG.getDataLayout())), 3104 dl, ValueVTs[1]); 3105 3106 // Merge into one. 3107 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3108 DAG.getVTList(ValueVTs), Ops); 3109 setValue(&LP, Res); 3110 } 3111 3112 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3113 MachineBasicBlock *Last) { 3114 // Update JTCases. 3115 for (JumpTableBlock &JTB : SL->JTCases) 3116 if (JTB.first.HeaderBB == First) 3117 JTB.first.HeaderBB = Last; 3118 3119 // Update BitTestCases. 3120 for (BitTestBlock &BTB : SL->BitTestCases) 3121 if (BTB.Parent == First) 3122 BTB.Parent = Last; 3123 } 3124 3125 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3126 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3127 3128 // Update machine-CFG edges with unique successors. 3129 SmallSet<BasicBlock*, 32> Done; 3130 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3131 BasicBlock *BB = I.getSuccessor(i); 3132 bool Inserted = Done.insert(BB).second; 3133 if (!Inserted) 3134 continue; 3135 3136 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3137 addSuccessorWithProb(IndirectBrMBB, Succ); 3138 } 3139 IndirectBrMBB->normalizeSuccProbs(); 3140 3141 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3142 MVT::Other, getControlRoot(), 3143 getValue(I.getAddress()))); 3144 } 3145 3146 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3147 if (!DAG.getTarget().Options.TrapUnreachable) 3148 return; 3149 3150 // We may be able to ignore unreachable behind a noreturn call. 3151 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3152 const BasicBlock &BB = *I.getParent(); 3153 if (&I != &BB.front()) { 3154 BasicBlock::const_iterator PredI = 3155 std::prev(BasicBlock::const_iterator(&I)); 3156 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3157 if (Call->doesNotReturn()) 3158 return; 3159 } 3160 } 3161 } 3162 3163 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3164 } 3165 3166 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3167 SDNodeFlags Flags; 3168 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3169 Flags.copyFMF(*FPOp); 3170 3171 SDValue Op = getValue(I.getOperand(0)); 3172 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3173 Op, Flags); 3174 setValue(&I, UnNodeValue); 3175 } 3176 3177 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3178 SDNodeFlags Flags; 3179 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3180 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3181 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3182 } 3183 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3184 Flags.setExact(ExactOp->isExact()); 3185 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3186 Flags.copyFMF(*FPOp); 3187 3188 SDValue Op1 = getValue(I.getOperand(0)); 3189 SDValue Op2 = getValue(I.getOperand(1)); 3190 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3191 Op1, Op2, Flags); 3192 setValue(&I, BinNodeValue); 3193 } 3194 3195 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3196 SDValue Op1 = getValue(I.getOperand(0)); 3197 SDValue Op2 = getValue(I.getOperand(1)); 3198 3199 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3200 Op1.getValueType(), DAG.getDataLayout()); 3201 3202 // Coerce the shift amount to the right type if we can. This exposes the 3203 // truncate or zext to optimization early. 3204 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3205 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3206 "Unexpected shift type"); 3207 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3208 } 3209 3210 bool nuw = false; 3211 bool nsw = false; 3212 bool exact = false; 3213 3214 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3215 3216 if (const OverflowingBinaryOperator *OFBinOp = 3217 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3218 nuw = OFBinOp->hasNoUnsignedWrap(); 3219 nsw = OFBinOp->hasNoSignedWrap(); 3220 } 3221 if (const PossiblyExactOperator *ExactOp = 3222 dyn_cast<const PossiblyExactOperator>(&I)) 3223 exact = ExactOp->isExact(); 3224 } 3225 SDNodeFlags Flags; 3226 Flags.setExact(exact); 3227 Flags.setNoSignedWrap(nsw); 3228 Flags.setNoUnsignedWrap(nuw); 3229 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3230 Flags); 3231 setValue(&I, Res); 3232 } 3233 3234 void SelectionDAGBuilder::visitSDiv(const User &I) { 3235 SDValue Op1 = getValue(I.getOperand(0)); 3236 SDValue Op2 = getValue(I.getOperand(1)); 3237 3238 SDNodeFlags Flags; 3239 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3240 cast<PossiblyExactOperator>(&I)->isExact()); 3241 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3242 Op2, Flags)); 3243 } 3244 3245 void SelectionDAGBuilder::visitICmp(const User &I) { 3246 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3247 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3248 predicate = IC->getPredicate(); 3249 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3250 predicate = ICmpInst::Predicate(IC->getPredicate()); 3251 SDValue Op1 = getValue(I.getOperand(0)); 3252 SDValue Op2 = getValue(I.getOperand(1)); 3253 ISD::CondCode Opcode = getICmpCondCode(predicate); 3254 3255 auto &TLI = DAG.getTargetLoweringInfo(); 3256 EVT MemVT = 3257 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3258 3259 // If a pointer's DAG type is larger than its memory type then the DAG values 3260 // are zero-extended. This breaks signed comparisons so truncate back to the 3261 // underlying type before doing the compare. 3262 if (Op1.getValueType() != MemVT) { 3263 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3264 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3265 } 3266 3267 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3268 I.getType()); 3269 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3270 } 3271 3272 void SelectionDAGBuilder::visitFCmp(const User &I) { 3273 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3274 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3275 predicate = FC->getPredicate(); 3276 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3277 predicate = FCmpInst::Predicate(FC->getPredicate()); 3278 SDValue Op1 = getValue(I.getOperand(0)); 3279 SDValue Op2 = getValue(I.getOperand(1)); 3280 3281 ISD::CondCode Condition = getFCmpCondCode(predicate); 3282 auto *FPMO = cast<FPMathOperator>(&I); 3283 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3284 Condition = getFCmpCodeWithoutNaN(Condition); 3285 3286 SDNodeFlags Flags; 3287 Flags.copyFMF(*FPMO); 3288 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3289 3290 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3291 I.getType()); 3292 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3293 } 3294 3295 // Check if the condition of the select has one use or two users that are both 3296 // selects with the same condition. 3297 static bool hasOnlySelectUsers(const Value *Cond) { 3298 return llvm::all_of(Cond->users(), [](const Value *V) { 3299 return isa<SelectInst>(V); 3300 }); 3301 } 3302 3303 void SelectionDAGBuilder::visitSelect(const User &I) { 3304 SmallVector<EVT, 4> ValueVTs; 3305 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3306 ValueVTs); 3307 unsigned NumValues = ValueVTs.size(); 3308 if (NumValues == 0) return; 3309 3310 SmallVector<SDValue, 4> Values(NumValues); 3311 SDValue Cond = getValue(I.getOperand(0)); 3312 SDValue LHSVal = getValue(I.getOperand(1)); 3313 SDValue RHSVal = getValue(I.getOperand(2)); 3314 SmallVector<SDValue, 1> BaseOps(1, Cond); 3315 ISD::NodeType OpCode = 3316 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3317 3318 bool IsUnaryAbs = false; 3319 bool Negate = false; 3320 3321 SDNodeFlags Flags; 3322 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3323 Flags.copyFMF(*FPOp); 3324 3325 // Min/max matching is only viable if all output VTs are the same. 3326 if (all_equal(ValueVTs)) { 3327 EVT VT = ValueVTs[0]; 3328 LLVMContext &Ctx = *DAG.getContext(); 3329 auto &TLI = DAG.getTargetLoweringInfo(); 3330 3331 // We care about the legality of the operation after it has been type 3332 // legalized. 3333 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3334 VT = TLI.getTypeToTransformTo(Ctx, VT); 3335 3336 // If the vselect is legal, assume we want to leave this as a vector setcc + 3337 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3338 // min/max is legal on the scalar type. 3339 bool UseScalarMinMax = VT.isVector() && 3340 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3341 3342 Value *LHS, *RHS; 3343 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3344 ISD::NodeType Opc = ISD::DELETED_NODE; 3345 switch (SPR.Flavor) { 3346 case SPF_UMAX: Opc = ISD::UMAX; break; 3347 case SPF_UMIN: Opc = ISD::UMIN; break; 3348 case SPF_SMAX: Opc = ISD::SMAX; break; 3349 case SPF_SMIN: Opc = ISD::SMIN; break; 3350 case SPF_FMINNUM: 3351 switch (SPR.NaNBehavior) { 3352 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3353 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3354 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3355 case SPNB_RETURNS_ANY: { 3356 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3357 Opc = ISD::FMINNUM; 3358 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3359 Opc = ISD::FMINIMUM; 3360 else if (UseScalarMinMax) 3361 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3362 ISD::FMINNUM : ISD::FMINIMUM; 3363 break; 3364 } 3365 } 3366 break; 3367 case SPF_FMAXNUM: 3368 switch (SPR.NaNBehavior) { 3369 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3370 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3371 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3372 case SPNB_RETURNS_ANY: 3373 3374 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3375 Opc = ISD::FMAXNUM; 3376 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3377 Opc = ISD::FMAXIMUM; 3378 else if (UseScalarMinMax) 3379 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3380 ISD::FMAXNUM : ISD::FMAXIMUM; 3381 break; 3382 } 3383 break; 3384 case SPF_NABS: 3385 Negate = true; 3386 [[fallthrough]]; 3387 case SPF_ABS: 3388 IsUnaryAbs = true; 3389 Opc = ISD::ABS; 3390 break; 3391 default: break; 3392 } 3393 3394 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3395 (TLI.isOperationLegalOrCustom(Opc, VT) || 3396 (UseScalarMinMax && 3397 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3398 // If the underlying comparison instruction is used by any other 3399 // instruction, the consumed instructions won't be destroyed, so it is 3400 // not profitable to convert to a min/max. 3401 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3402 OpCode = Opc; 3403 LHSVal = getValue(LHS); 3404 RHSVal = getValue(RHS); 3405 BaseOps.clear(); 3406 } 3407 3408 if (IsUnaryAbs) { 3409 OpCode = Opc; 3410 LHSVal = getValue(LHS); 3411 BaseOps.clear(); 3412 } 3413 } 3414 3415 if (IsUnaryAbs) { 3416 for (unsigned i = 0; i != NumValues; ++i) { 3417 SDLoc dl = getCurSDLoc(); 3418 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3419 Values[i] = 3420 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3421 if (Negate) 3422 Values[i] = DAG.getNegative(Values[i], dl, VT); 3423 } 3424 } else { 3425 for (unsigned i = 0; i != NumValues; ++i) { 3426 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3427 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3428 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3429 Values[i] = DAG.getNode( 3430 OpCode, getCurSDLoc(), 3431 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3432 } 3433 } 3434 3435 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3436 DAG.getVTList(ValueVTs), Values)); 3437 } 3438 3439 void SelectionDAGBuilder::visitTrunc(const User &I) { 3440 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3441 SDValue N = getValue(I.getOperand(0)); 3442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3443 I.getType()); 3444 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3445 } 3446 3447 void SelectionDAGBuilder::visitZExt(const User &I) { 3448 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3449 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3450 SDValue N = getValue(I.getOperand(0)); 3451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3452 I.getType()); 3453 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3454 } 3455 3456 void SelectionDAGBuilder::visitSExt(const User &I) { 3457 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3458 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3459 SDValue N = getValue(I.getOperand(0)); 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3463 } 3464 3465 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3466 // FPTrunc is never a no-op cast, no need to check 3467 SDValue N = getValue(I.getOperand(0)); 3468 SDLoc dl = getCurSDLoc(); 3469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3470 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3471 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3472 DAG.getTargetConstant( 3473 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3474 } 3475 3476 void SelectionDAGBuilder::visitFPExt(const User &I) { 3477 // FPExt is never a no-op cast, no need to check 3478 SDValue N = getValue(I.getOperand(0)); 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3482 } 3483 3484 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3485 // FPToUI is never a no-op cast, no need to check 3486 SDValue N = getValue(I.getOperand(0)); 3487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3488 I.getType()); 3489 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3490 } 3491 3492 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3493 // FPToSI is never a no-op cast, no need to check 3494 SDValue N = getValue(I.getOperand(0)); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3498 } 3499 3500 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3501 // UIToFP is never a no-op cast, no need to check 3502 SDValue N = getValue(I.getOperand(0)); 3503 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3504 I.getType()); 3505 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3506 } 3507 3508 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3509 // SIToFP is never a no-op cast, no need to check 3510 SDValue N = getValue(I.getOperand(0)); 3511 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3512 I.getType()); 3513 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3514 } 3515 3516 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3517 // What to do depends on the size of the integer and the size of the pointer. 3518 // We can either truncate, zero extend, or no-op, accordingly. 3519 SDValue N = getValue(I.getOperand(0)); 3520 auto &TLI = DAG.getTargetLoweringInfo(); 3521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3522 I.getType()); 3523 EVT PtrMemVT = 3524 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3525 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3526 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3527 setValue(&I, N); 3528 } 3529 3530 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3531 // What to do depends on the size of the integer and the size of the pointer. 3532 // We can either truncate, zero extend, or no-op, accordingly. 3533 SDValue N = getValue(I.getOperand(0)); 3534 auto &TLI = DAG.getTargetLoweringInfo(); 3535 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3536 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3537 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3538 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3539 setValue(&I, N); 3540 } 3541 3542 void SelectionDAGBuilder::visitBitCast(const User &I) { 3543 SDValue N = getValue(I.getOperand(0)); 3544 SDLoc dl = getCurSDLoc(); 3545 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3546 I.getType()); 3547 3548 // BitCast assures us that source and destination are the same size so this is 3549 // either a BITCAST or a no-op. 3550 if (DestVT != N.getValueType()) 3551 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3552 DestVT, N)); // convert types. 3553 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3554 // might fold any kind of constant expression to an integer constant and that 3555 // is not what we are looking for. Only recognize a bitcast of a genuine 3556 // constant integer as an opaque constant. 3557 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3558 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3559 /*isOpaque*/true)); 3560 else 3561 setValue(&I, N); // noop cast. 3562 } 3563 3564 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3566 const Value *SV = I.getOperand(0); 3567 SDValue N = getValue(SV); 3568 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3569 3570 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3571 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3572 3573 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3574 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3575 3576 setValue(&I, N); 3577 } 3578 3579 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3581 SDValue InVec = getValue(I.getOperand(0)); 3582 SDValue InVal = getValue(I.getOperand(1)); 3583 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3584 TLI.getVectorIdxTy(DAG.getDataLayout())); 3585 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3586 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3587 InVec, InVal, InIdx)); 3588 } 3589 3590 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3592 SDValue InVec = getValue(I.getOperand(0)); 3593 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3594 TLI.getVectorIdxTy(DAG.getDataLayout())); 3595 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3596 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3597 InVec, InIdx)); 3598 } 3599 3600 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3601 SDValue Src1 = getValue(I.getOperand(0)); 3602 SDValue Src2 = getValue(I.getOperand(1)); 3603 ArrayRef<int> Mask; 3604 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3605 Mask = SVI->getShuffleMask(); 3606 else 3607 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3608 SDLoc DL = getCurSDLoc(); 3609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3610 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3611 EVT SrcVT = Src1.getValueType(); 3612 3613 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3614 VT.isScalableVector()) { 3615 // Canonical splat form of first element of first input vector. 3616 SDValue FirstElt = 3617 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3618 DAG.getVectorIdxConstant(0, DL)); 3619 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3620 return; 3621 } 3622 3623 // For now, we only handle splats for scalable vectors. 3624 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3625 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3626 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3627 3628 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3629 unsigned MaskNumElts = Mask.size(); 3630 3631 if (SrcNumElts == MaskNumElts) { 3632 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3633 return; 3634 } 3635 3636 // Normalize the shuffle vector since mask and vector length don't match. 3637 if (SrcNumElts < MaskNumElts) { 3638 // Mask is longer than the source vectors. We can use concatenate vector to 3639 // make the mask and vectors lengths match. 3640 3641 if (MaskNumElts % SrcNumElts == 0) { 3642 // Mask length is a multiple of the source vector length. 3643 // Check if the shuffle is some kind of concatenation of the input 3644 // vectors. 3645 unsigned NumConcat = MaskNumElts / SrcNumElts; 3646 bool IsConcat = true; 3647 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3648 for (unsigned i = 0; i != MaskNumElts; ++i) { 3649 int Idx = Mask[i]; 3650 if (Idx < 0) 3651 continue; 3652 // Ensure the indices in each SrcVT sized piece are sequential and that 3653 // the same source is used for the whole piece. 3654 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3655 (ConcatSrcs[i / SrcNumElts] >= 0 && 3656 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3657 IsConcat = false; 3658 break; 3659 } 3660 // Remember which source this index came from. 3661 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3662 } 3663 3664 // The shuffle is concatenating multiple vectors together. Just emit 3665 // a CONCAT_VECTORS operation. 3666 if (IsConcat) { 3667 SmallVector<SDValue, 8> ConcatOps; 3668 for (auto Src : ConcatSrcs) { 3669 if (Src < 0) 3670 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3671 else if (Src == 0) 3672 ConcatOps.push_back(Src1); 3673 else 3674 ConcatOps.push_back(Src2); 3675 } 3676 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3677 return; 3678 } 3679 } 3680 3681 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3682 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3683 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3684 PaddedMaskNumElts); 3685 3686 // Pad both vectors with undefs to make them the same length as the mask. 3687 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3688 3689 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3690 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3691 MOps1[0] = Src1; 3692 MOps2[0] = Src2; 3693 3694 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3695 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3696 3697 // Readjust mask for new input vector length. 3698 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3699 for (unsigned i = 0; i != MaskNumElts; ++i) { 3700 int Idx = Mask[i]; 3701 if (Idx >= (int)SrcNumElts) 3702 Idx -= SrcNumElts - PaddedMaskNumElts; 3703 MappedOps[i] = Idx; 3704 } 3705 3706 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3707 3708 // If the concatenated vector was padded, extract a subvector with the 3709 // correct number of elements. 3710 if (MaskNumElts != PaddedMaskNumElts) 3711 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3712 DAG.getVectorIdxConstant(0, DL)); 3713 3714 setValue(&I, Result); 3715 return; 3716 } 3717 3718 if (SrcNumElts > MaskNumElts) { 3719 // Analyze the access pattern of the vector to see if we can extract 3720 // two subvectors and do the shuffle. 3721 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3722 bool CanExtract = true; 3723 for (int Idx : Mask) { 3724 unsigned Input = 0; 3725 if (Idx < 0) 3726 continue; 3727 3728 if (Idx >= (int)SrcNumElts) { 3729 Input = 1; 3730 Idx -= SrcNumElts; 3731 } 3732 3733 // If all the indices come from the same MaskNumElts sized portion of 3734 // the sources we can use extract. Also make sure the extract wouldn't 3735 // extract past the end of the source. 3736 int NewStartIdx = alignDown(Idx, MaskNumElts); 3737 if (NewStartIdx + MaskNumElts > SrcNumElts || 3738 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3739 CanExtract = false; 3740 // Make sure we always update StartIdx as we use it to track if all 3741 // elements are undef. 3742 StartIdx[Input] = NewStartIdx; 3743 } 3744 3745 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3746 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3747 return; 3748 } 3749 if (CanExtract) { 3750 // Extract appropriate subvector and generate a vector shuffle 3751 for (unsigned Input = 0; Input < 2; ++Input) { 3752 SDValue &Src = Input == 0 ? Src1 : Src2; 3753 if (StartIdx[Input] < 0) 3754 Src = DAG.getUNDEF(VT); 3755 else { 3756 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3757 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3758 } 3759 } 3760 3761 // Calculate new mask. 3762 SmallVector<int, 8> MappedOps(Mask); 3763 for (int &Idx : MappedOps) { 3764 if (Idx >= (int)SrcNumElts) 3765 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3766 else if (Idx >= 0) 3767 Idx -= StartIdx[0]; 3768 } 3769 3770 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3771 return; 3772 } 3773 } 3774 3775 // We can't use either concat vectors or extract subvectors so fall back to 3776 // replacing the shuffle with extract and build vector. 3777 // to insert and build vector. 3778 EVT EltVT = VT.getVectorElementType(); 3779 SmallVector<SDValue,8> Ops; 3780 for (int Idx : Mask) { 3781 SDValue Res; 3782 3783 if (Idx < 0) { 3784 Res = DAG.getUNDEF(EltVT); 3785 } else { 3786 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3787 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3788 3789 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3790 DAG.getVectorIdxConstant(Idx, DL)); 3791 } 3792 3793 Ops.push_back(Res); 3794 } 3795 3796 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3797 } 3798 3799 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3800 ArrayRef<unsigned> Indices = I.getIndices(); 3801 const Value *Op0 = I.getOperand(0); 3802 const Value *Op1 = I.getOperand(1); 3803 Type *AggTy = I.getType(); 3804 Type *ValTy = Op1->getType(); 3805 bool IntoUndef = isa<UndefValue>(Op0); 3806 bool FromUndef = isa<UndefValue>(Op1); 3807 3808 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3809 3810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3811 SmallVector<EVT, 4> AggValueVTs; 3812 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3813 SmallVector<EVT, 4> ValValueVTs; 3814 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3815 3816 unsigned NumAggValues = AggValueVTs.size(); 3817 unsigned NumValValues = ValValueVTs.size(); 3818 SmallVector<SDValue, 4> Values(NumAggValues); 3819 3820 // Ignore an insertvalue that produces an empty object 3821 if (!NumAggValues) { 3822 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3823 return; 3824 } 3825 3826 SDValue Agg = getValue(Op0); 3827 unsigned i = 0; 3828 // Copy the beginning value(s) from the original aggregate. 3829 for (; i != LinearIndex; ++i) 3830 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3831 SDValue(Agg.getNode(), Agg.getResNo() + i); 3832 // Copy values from the inserted value(s). 3833 if (NumValValues) { 3834 SDValue Val = getValue(Op1); 3835 for (; i != LinearIndex + NumValValues; ++i) 3836 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3837 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3838 } 3839 // Copy remaining value(s) from the original aggregate. 3840 for (; i != NumAggValues; ++i) 3841 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3842 SDValue(Agg.getNode(), Agg.getResNo() + i); 3843 3844 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3845 DAG.getVTList(AggValueVTs), Values)); 3846 } 3847 3848 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3849 ArrayRef<unsigned> Indices = I.getIndices(); 3850 const Value *Op0 = I.getOperand(0); 3851 Type *AggTy = Op0->getType(); 3852 Type *ValTy = I.getType(); 3853 bool OutOfUndef = isa<UndefValue>(Op0); 3854 3855 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3856 3857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3858 SmallVector<EVT, 4> ValValueVTs; 3859 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3860 3861 unsigned NumValValues = ValValueVTs.size(); 3862 3863 // Ignore a extractvalue that produces an empty object 3864 if (!NumValValues) { 3865 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3866 return; 3867 } 3868 3869 SmallVector<SDValue, 4> Values(NumValValues); 3870 3871 SDValue Agg = getValue(Op0); 3872 // Copy out the selected value(s). 3873 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3874 Values[i - LinearIndex] = 3875 OutOfUndef ? 3876 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3877 SDValue(Agg.getNode(), Agg.getResNo() + i); 3878 3879 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3880 DAG.getVTList(ValValueVTs), Values)); 3881 } 3882 3883 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3884 Value *Op0 = I.getOperand(0); 3885 // Note that the pointer operand may be a vector of pointers. Take the scalar 3886 // element which holds a pointer. 3887 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3888 SDValue N = getValue(Op0); 3889 SDLoc dl = getCurSDLoc(); 3890 auto &TLI = DAG.getTargetLoweringInfo(); 3891 3892 // Normalize Vector GEP - all scalar operands should be converted to the 3893 // splat vector. 3894 bool IsVectorGEP = I.getType()->isVectorTy(); 3895 ElementCount VectorElementCount = 3896 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3897 : ElementCount::getFixed(0); 3898 3899 if (IsVectorGEP && !N.getValueType().isVector()) { 3900 LLVMContext &Context = *DAG.getContext(); 3901 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3902 N = DAG.getSplat(VT, dl, N); 3903 } 3904 3905 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3906 GTI != E; ++GTI) { 3907 const Value *Idx = GTI.getOperand(); 3908 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3909 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3910 if (Field) { 3911 // N = N + Offset 3912 uint64_t Offset = 3913 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3914 3915 // In an inbounds GEP with an offset that is nonnegative even when 3916 // interpreted as signed, assume there is no unsigned overflow. 3917 SDNodeFlags Flags; 3918 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3919 Flags.setNoUnsignedWrap(true); 3920 3921 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3922 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3923 } 3924 } else { 3925 // IdxSize is the width of the arithmetic according to IR semantics. 3926 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3927 // (and fix up the result later). 3928 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3929 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3930 TypeSize ElementSize = 3931 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3932 // We intentionally mask away the high bits here; ElementSize may not 3933 // fit in IdxTy. 3934 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3935 bool ElementScalable = ElementSize.isScalable(); 3936 3937 // If this is a scalar constant or a splat vector of constants, 3938 // handle it quickly. 3939 const auto *C = dyn_cast<Constant>(Idx); 3940 if (C && isa<VectorType>(C->getType())) 3941 C = C->getSplatValue(); 3942 3943 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3944 if (CI && CI->isZero()) 3945 continue; 3946 if (CI && !ElementScalable) { 3947 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3948 LLVMContext &Context = *DAG.getContext(); 3949 SDValue OffsVal; 3950 if (IsVectorGEP) 3951 OffsVal = DAG.getConstant( 3952 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3953 else 3954 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3955 3956 // In an inbounds GEP with an offset that is nonnegative even when 3957 // interpreted as signed, assume there is no unsigned overflow. 3958 SDNodeFlags Flags; 3959 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3960 Flags.setNoUnsignedWrap(true); 3961 3962 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3963 3964 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3965 continue; 3966 } 3967 3968 // N = N + Idx * ElementMul; 3969 SDValue IdxN = getValue(Idx); 3970 3971 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3972 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3973 VectorElementCount); 3974 IdxN = DAG.getSplat(VT, dl, IdxN); 3975 } 3976 3977 // If the index is smaller or larger than intptr_t, truncate or extend 3978 // it. 3979 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3980 3981 if (ElementScalable) { 3982 EVT VScaleTy = N.getValueType().getScalarType(); 3983 SDValue VScale = DAG.getNode( 3984 ISD::VSCALE, dl, VScaleTy, 3985 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3986 if (IsVectorGEP) 3987 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3988 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3989 } else { 3990 // If this is a multiply by a power of two, turn it into a shl 3991 // immediately. This is a very common case. 3992 if (ElementMul != 1) { 3993 if (ElementMul.isPowerOf2()) { 3994 unsigned Amt = ElementMul.logBase2(); 3995 IdxN = DAG.getNode(ISD::SHL, dl, 3996 N.getValueType(), IdxN, 3997 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3998 } else { 3999 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4000 IdxN.getValueType()); 4001 IdxN = DAG.getNode(ISD::MUL, dl, 4002 N.getValueType(), IdxN, Scale); 4003 } 4004 } 4005 } 4006 4007 N = DAG.getNode(ISD::ADD, dl, 4008 N.getValueType(), N, IdxN); 4009 } 4010 } 4011 4012 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4013 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4014 if (IsVectorGEP) { 4015 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4016 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4017 } 4018 4019 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4020 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4021 4022 setValue(&I, N); 4023 } 4024 4025 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4026 // If this is a fixed sized alloca in the entry block of the function, 4027 // allocate it statically on the stack. 4028 if (FuncInfo.StaticAllocaMap.count(&I)) 4029 return; // getValue will auto-populate this. 4030 4031 SDLoc dl = getCurSDLoc(); 4032 Type *Ty = I.getAllocatedType(); 4033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4034 auto &DL = DAG.getDataLayout(); 4035 TypeSize TySize = DL.getTypeAllocSize(Ty); 4036 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4037 4038 SDValue AllocSize = getValue(I.getArraySize()); 4039 4040 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4041 if (AllocSize.getValueType() != IntPtr) 4042 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4043 4044 if (TySize.isScalable()) 4045 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4046 DAG.getVScale(dl, IntPtr, 4047 APInt(IntPtr.getScalarSizeInBits(), 4048 TySize.getKnownMinValue()))); 4049 else 4050 AllocSize = 4051 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4052 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4053 4054 // Handle alignment. If the requested alignment is less than or equal to 4055 // the stack alignment, ignore it. If the size is greater than or equal to 4056 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4057 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4058 if (*Alignment <= StackAlign) 4059 Alignment = None; 4060 4061 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4062 // Round the size of the allocation up to the stack alignment size 4063 // by add SA-1 to the size. This doesn't overflow because we're computing 4064 // an address inside an alloca. 4065 SDNodeFlags Flags; 4066 Flags.setNoUnsignedWrap(true); 4067 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4068 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4069 4070 // Mask out the low bits for alignment purposes. 4071 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4072 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4073 4074 SDValue Ops[] = { 4075 getRoot(), AllocSize, 4076 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4077 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4078 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4079 setValue(&I, DSA); 4080 DAG.setRoot(DSA.getValue(1)); 4081 4082 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4083 } 4084 4085 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4086 if (I.isAtomic()) 4087 return visitAtomicLoad(I); 4088 4089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4090 const Value *SV = I.getOperand(0); 4091 if (TLI.supportSwiftError()) { 4092 // Swifterror values can come from either a function parameter with 4093 // swifterror attribute or an alloca with swifterror attribute. 4094 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4095 if (Arg->hasSwiftErrorAttr()) 4096 return visitLoadFromSwiftError(I); 4097 } 4098 4099 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4100 if (Alloca->isSwiftError()) 4101 return visitLoadFromSwiftError(I); 4102 } 4103 } 4104 4105 SDValue Ptr = getValue(SV); 4106 4107 Type *Ty = I.getType(); 4108 SmallVector<EVT, 4> ValueVTs, MemVTs; 4109 SmallVector<uint64_t, 4> Offsets; 4110 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4111 unsigned NumValues = ValueVTs.size(); 4112 if (NumValues == 0) 4113 return; 4114 4115 Align Alignment = I.getAlign(); 4116 AAMDNodes AAInfo = I.getAAMetadata(); 4117 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4118 bool isVolatile = I.isVolatile(); 4119 MachineMemOperand::Flags MMOFlags = 4120 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4121 4122 SDValue Root; 4123 bool ConstantMemory = false; 4124 if (isVolatile) 4125 // Serialize volatile loads with other side effects. 4126 Root = getRoot(); 4127 else if (NumValues > MaxParallelChains) 4128 Root = getMemoryRoot(); 4129 else if (AA && 4130 AA->pointsToConstantMemory(MemoryLocation( 4131 SV, 4132 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4133 AAInfo))) { 4134 // Do not serialize (non-volatile) loads of constant memory with anything. 4135 Root = DAG.getEntryNode(); 4136 ConstantMemory = true; 4137 MMOFlags |= MachineMemOperand::MOInvariant; 4138 } else { 4139 // Do not serialize non-volatile loads against each other. 4140 Root = DAG.getRoot(); 4141 } 4142 4143 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4144 &I, AC, nullptr, LibInfo)) 4145 MMOFlags |= MachineMemOperand::MODereferenceable; 4146 4147 SDLoc dl = getCurSDLoc(); 4148 4149 if (isVolatile) 4150 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4151 4152 // An aggregate load cannot wrap around the address space, so offsets to its 4153 // parts don't wrap either. 4154 SDNodeFlags Flags; 4155 Flags.setNoUnsignedWrap(true); 4156 4157 SmallVector<SDValue, 4> Values(NumValues); 4158 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4159 EVT PtrVT = Ptr.getValueType(); 4160 4161 unsigned ChainI = 0; 4162 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4163 // Serializing loads here may result in excessive register pressure, and 4164 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4165 // could recover a bit by hoisting nodes upward in the chain by recognizing 4166 // they are side-effect free or do not alias. The optimizer should really 4167 // avoid this case by converting large object/array copies to llvm.memcpy 4168 // (MaxParallelChains should always remain as failsafe). 4169 if (ChainI == MaxParallelChains) { 4170 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4171 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4172 makeArrayRef(Chains.data(), ChainI)); 4173 Root = Chain; 4174 ChainI = 0; 4175 } 4176 SDValue A = DAG.getNode(ISD::ADD, dl, 4177 PtrVT, Ptr, 4178 DAG.getConstant(Offsets[i], dl, PtrVT), 4179 Flags); 4180 4181 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4182 MachinePointerInfo(SV, Offsets[i]), Alignment, 4183 MMOFlags, AAInfo, Ranges); 4184 Chains[ChainI] = L.getValue(1); 4185 4186 if (MemVTs[i] != ValueVTs[i]) 4187 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4188 4189 Values[i] = L; 4190 } 4191 4192 if (!ConstantMemory) { 4193 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4194 makeArrayRef(Chains.data(), ChainI)); 4195 if (isVolatile) 4196 DAG.setRoot(Chain); 4197 else 4198 PendingLoads.push_back(Chain); 4199 } 4200 4201 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4202 DAG.getVTList(ValueVTs), Values)); 4203 } 4204 4205 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4206 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4207 "call visitStoreToSwiftError when backend supports swifterror"); 4208 4209 SmallVector<EVT, 4> ValueVTs; 4210 SmallVector<uint64_t, 4> Offsets; 4211 const Value *SrcV = I.getOperand(0); 4212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4213 SrcV->getType(), ValueVTs, &Offsets); 4214 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4215 "expect a single EVT for swifterror"); 4216 4217 SDValue Src = getValue(SrcV); 4218 // Create a virtual register, then update the virtual register. 4219 Register VReg = 4220 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4221 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4222 // Chain can be getRoot or getControlRoot. 4223 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4224 SDValue(Src.getNode(), Src.getResNo())); 4225 DAG.setRoot(CopyNode); 4226 } 4227 4228 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4229 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4230 "call visitLoadFromSwiftError when backend supports swifterror"); 4231 4232 assert(!I.isVolatile() && 4233 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4234 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4235 "Support volatile, non temporal, invariant for load_from_swift_error"); 4236 4237 const Value *SV = I.getOperand(0); 4238 Type *Ty = I.getType(); 4239 assert( 4240 (!AA || 4241 !AA->pointsToConstantMemory(MemoryLocation( 4242 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4243 I.getAAMetadata()))) && 4244 "load_from_swift_error should not be constant memory"); 4245 4246 SmallVector<EVT, 4> ValueVTs; 4247 SmallVector<uint64_t, 4> Offsets; 4248 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4249 ValueVTs, &Offsets); 4250 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4251 "expect a single EVT for swifterror"); 4252 4253 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4254 SDValue L = DAG.getCopyFromReg( 4255 getRoot(), getCurSDLoc(), 4256 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4257 4258 setValue(&I, L); 4259 } 4260 4261 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4262 if (I.isAtomic()) 4263 return visitAtomicStore(I); 4264 4265 const Value *SrcV = I.getOperand(0); 4266 const Value *PtrV = I.getOperand(1); 4267 4268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4269 if (TLI.supportSwiftError()) { 4270 // Swifterror values can come from either a function parameter with 4271 // swifterror attribute or an alloca with swifterror attribute. 4272 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4273 if (Arg->hasSwiftErrorAttr()) 4274 return visitStoreToSwiftError(I); 4275 } 4276 4277 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4278 if (Alloca->isSwiftError()) 4279 return visitStoreToSwiftError(I); 4280 } 4281 } 4282 4283 SmallVector<EVT, 4> ValueVTs, MemVTs; 4284 SmallVector<uint64_t, 4> Offsets; 4285 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4286 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4287 unsigned NumValues = ValueVTs.size(); 4288 if (NumValues == 0) 4289 return; 4290 4291 // Get the lowered operands. Note that we do this after 4292 // checking if NumResults is zero, because with zero results 4293 // the operands won't have values in the map. 4294 SDValue Src = getValue(SrcV); 4295 SDValue Ptr = getValue(PtrV); 4296 4297 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4298 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4299 SDLoc dl = getCurSDLoc(); 4300 Align Alignment = I.getAlign(); 4301 AAMDNodes AAInfo = I.getAAMetadata(); 4302 4303 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4304 4305 // An aggregate load cannot wrap around the address space, so offsets to its 4306 // parts don't wrap either. 4307 SDNodeFlags Flags; 4308 Flags.setNoUnsignedWrap(true); 4309 4310 unsigned ChainI = 0; 4311 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4312 // See visitLoad comments. 4313 if (ChainI == MaxParallelChains) { 4314 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4315 makeArrayRef(Chains.data(), ChainI)); 4316 Root = Chain; 4317 ChainI = 0; 4318 } 4319 SDValue Add = 4320 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4321 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4322 if (MemVTs[i] != ValueVTs[i]) 4323 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4324 SDValue St = 4325 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4326 Alignment, MMOFlags, AAInfo); 4327 Chains[ChainI] = St; 4328 } 4329 4330 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4331 makeArrayRef(Chains.data(), ChainI)); 4332 setValue(&I, StoreNode); 4333 DAG.setRoot(StoreNode); 4334 } 4335 4336 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4337 bool IsCompressing) { 4338 SDLoc sdl = getCurSDLoc(); 4339 4340 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4341 MaybeAlign &Alignment) { 4342 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4343 Src0 = I.getArgOperand(0); 4344 Ptr = I.getArgOperand(1); 4345 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4346 Mask = I.getArgOperand(3); 4347 }; 4348 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4349 MaybeAlign &Alignment) { 4350 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4351 Src0 = I.getArgOperand(0); 4352 Ptr = I.getArgOperand(1); 4353 Mask = I.getArgOperand(2); 4354 Alignment = None; 4355 }; 4356 4357 Value *PtrOperand, *MaskOperand, *Src0Operand; 4358 MaybeAlign Alignment; 4359 if (IsCompressing) 4360 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4361 else 4362 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4363 4364 SDValue Ptr = getValue(PtrOperand); 4365 SDValue Src0 = getValue(Src0Operand); 4366 SDValue Mask = getValue(MaskOperand); 4367 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4368 4369 EVT VT = Src0.getValueType(); 4370 if (!Alignment) 4371 Alignment = DAG.getEVTAlign(VT); 4372 4373 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4374 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4375 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4376 SDValue StoreNode = 4377 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4378 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4379 DAG.setRoot(StoreNode); 4380 setValue(&I, StoreNode); 4381 } 4382 4383 // Get a uniform base for the Gather/Scatter intrinsic. 4384 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4385 // We try to represent it as a base pointer + vector of indices. 4386 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4387 // The first operand of the GEP may be a single pointer or a vector of pointers 4388 // Example: 4389 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4390 // or 4391 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4392 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4393 // 4394 // When the first GEP operand is a single pointer - it is the uniform base we 4395 // are looking for. If first operand of the GEP is a splat vector - we 4396 // extract the splat value and use it as a uniform base. 4397 // In all other cases the function returns 'false'. 4398 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4399 ISD::MemIndexType &IndexType, SDValue &Scale, 4400 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4401 uint64_t ElemSize) { 4402 SelectionDAG& DAG = SDB->DAG; 4403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4404 const DataLayout &DL = DAG.getDataLayout(); 4405 4406 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4407 4408 // Handle splat constant pointer. 4409 if (auto *C = dyn_cast<Constant>(Ptr)) { 4410 C = C->getSplatValue(); 4411 if (!C) 4412 return false; 4413 4414 Base = SDB->getValue(C); 4415 4416 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4417 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4418 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4419 IndexType = ISD::SIGNED_SCALED; 4420 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4421 return true; 4422 } 4423 4424 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4425 if (!GEP || GEP->getParent() != CurBB) 4426 return false; 4427 4428 if (GEP->getNumOperands() != 2) 4429 return false; 4430 4431 const Value *BasePtr = GEP->getPointerOperand(); 4432 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4433 4434 // Make sure the base is scalar and the index is a vector. 4435 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4436 return false; 4437 4438 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4439 4440 // Target may not support the required addressing mode. 4441 if (ScaleVal != 1 && 4442 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4443 return false; 4444 4445 Base = SDB->getValue(BasePtr); 4446 Index = SDB->getValue(IndexVal); 4447 IndexType = ISD::SIGNED_SCALED; 4448 4449 Scale = 4450 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4451 return true; 4452 } 4453 4454 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4455 SDLoc sdl = getCurSDLoc(); 4456 4457 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4458 const Value *Ptr = I.getArgOperand(1); 4459 SDValue Src0 = getValue(I.getArgOperand(0)); 4460 SDValue Mask = getValue(I.getArgOperand(3)); 4461 EVT VT = Src0.getValueType(); 4462 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4463 ->getMaybeAlignValue() 4464 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4466 4467 SDValue Base; 4468 SDValue Index; 4469 ISD::MemIndexType IndexType; 4470 SDValue Scale; 4471 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4472 I.getParent(), VT.getScalarStoreSize()); 4473 4474 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4475 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4476 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4477 // TODO: Make MachineMemOperands aware of scalable 4478 // vectors. 4479 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4480 if (!UniformBase) { 4481 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4482 Index = getValue(Ptr); 4483 IndexType = ISD::SIGNED_SCALED; 4484 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4485 } 4486 4487 EVT IdxVT = Index.getValueType(); 4488 EVT EltTy = IdxVT.getVectorElementType(); 4489 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4490 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4491 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4492 } 4493 4494 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4495 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4496 Ops, MMO, IndexType, false); 4497 DAG.setRoot(Scatter); 4498 setValue(&I, Scatter); 4499 } 4500 4501 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4502 SDLoc sdl = getCurSDLoc(); 4503 4504 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4505 MaybeAlign &Alignment) { 4506 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4507 Ptr = I.getArgOperand(0); 4508 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4509 Mask = I.getArgOperand(2); 4510 Src0 = I.getArgOperand(3); 4511 }; 4512 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4513 MaybeAlign &Alignment) { 4514 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4515 Ptr = I.getArgOperand(0); 4516 Alignment = None; 4517 Mask = I.getArgOperand(1); 4518 Src0 = I.getArgOperand(2); 4519 }; 4520 4521 Value *PtrOperand, *MaskOperand, *Src0Operand; 4522 MaybeAlign Alignment; 4523 if (IsExpanding) 4524 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4525 else 4526 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4527 4528 SDValue Ptr = getValue(PtrOperand); 4529 SDValue Src0 = getValue(Src0Operand); 4530 SDValue Mask = getValue(MaskOperand); 4531 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4532 4533 EVT VT = Src0.getValueType(); 4534 if (!Alignment) 4535 Alignment = DAG.getEVTAlign(VT); 4536 4537 AAMDNodes AAInfo = I.getAAMetadata(); 4538 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4539 4540 // Do not serialize masked loads of constant memory with anything. 4541 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4542 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4543 4544 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4545 4546 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4547 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4548 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4549 4550 SDValue Load = 4551 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4552 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4553 if (AddToChain) 4554 PendingLoads.push_back(Load.getValue(1)); 4555 setValue(&I, Load); 4556 } 4557 4558 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4559 SDLoc sdl = getCurSDLoc(); 4560 4561 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4562 const Value *Ptr = I.getArgOperand(0); 4563 SDValue Src0 = getValue(I.getArgOperand(3)); 4564 SDValue Mask = getValue(I.getArgOperand(2)); 4565 4566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4567 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4568 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4569 ->getMaybeAlignValue() 4570 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4571 4572 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4573 4574 SDValue Root = DAG.getRoot(); 4575 SDValue Base; 4576 SDValue Index; 4577 ISD::MemIndexType IndexType; 4578 SDValue Scale; 4579 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4580 I.getParent(), VT.getScalarStoreSize()); 4581 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4582 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4583 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4584 // TODO: Make MachineMemOperands aware of scalable 4585 // vectors. 4586 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4587 4588 if (!UniformBase) { 4589 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4590 Index = getValue(Ptr); 4591 IndexType = ISD::SIGNED_SCALED; 4592 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4593 } 4594 4595 EVT IdxVT = Index.getValueType(); 4596 EVT EltTy = IdxVT.getVectorElementType(); 4597 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4598 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4599 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4600 } 4601 4602 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4603 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4604 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4605 4606 PendingLoads.push_back(Gather.getValue(1)); 4607 setValue(&I, Gather); 4608 } 4609 4610 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4611 SDLoc dl = getCurSDLoc(); 4612 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4613 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4614 SyncScope::ID SSID = I.getSyncScopeID(); 4615 4616 SDValue InChain = getRoot(); 4617 4618 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4619 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4620 4621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4622 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4623 4624 MachineFunction &MF = DAG.getMachineFunction(); 4625 MachineMemOperand *MMO = MF.getMachineMemOperand( 4626 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4627 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4628 FailureOrdering); 4629 4630 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4631 dl, MemVT, VTs, InChain, 4632 getValue(I.getPointerOperand()), 4633 getValue(I.getCompareOperand()), 4634 getValue(I.getNewValOperand()), MMO); 4635 4636 SDValue OutChain = L.getValue(2); 4637 4638 setValue(&I, L); 4639 DAG.setRoot(OutChain); 4640 } 4641 4642 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4643 SDLoc dl = getCurSDLoc(); 4644 ISD::NodeType NT; 4645 switch (I.getOperation()) { 4646 default: llvm_unreachable("Unknown atomicrmw operation"); 4647 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4648 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4649 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4650 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4651 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4652 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4653 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4654 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4655 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4656 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4657 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4658 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4659 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4660 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4661 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4662 } 4663 AtomicOrdering Ordering = I.getOrdering(); 4664 SyncScope::ID SSID = I.getSyncScopeID(); 4665 4666 SDValue InChain = getRoot(); 4667 4668 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4670 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4671 4672 MachineFunction &MF = DAG.getMachineFunction(); 4673 MachineMemOperand *MMO = MF.getMachineMemOperand( 4674 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4675 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4676 4677 SDValue L = 4678 DAG.getAtomic(NT, dl, MemVT, InChain, 4679 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4680 MMO); 4681 4682 SDValue OutChain = L.getValue(1); 4683 4684 setValue(&I, L); 4685 DAG.setRoot(OutChain); 4686 } 4687 4688 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4689 SDLoc dl = getCurSDLoc(); 4690 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4691 SDValue Ops[3]; 4692 Ops[0] = getRoot(); 4693 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4694 TLI.getFenceOperandTy(DAG.getDataLayout())); 4695 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4696 TLI.getFenceOperandTy(DAG.getDataLayout())); 4697 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4698 setValue(&I, N); 4699 DAG.setRoot(N); 4700 } 4701 4702 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4703 SDLoc dl = getCurSDLoc(); 4704 AtomicOrdering Order = I.getOrdering(); 4705 SyncScope::ID SSID = I.getSyncScopeID(); 4706 4707 SDValue InChain = getRoot(); 4708 4709 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4710 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4711 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4712 4713 if (!TLI.supportsUnalignedAtomics() && 4714 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4715 report_fatal_error("Cannot generate unaligned atomic load"); 4716 4717 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4718 4719 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4720 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4721 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4722 4723 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4724 4725 SDValue Ptr = getValue(I.getPointerOperand()); 4726 4727 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4728 // TODO: Once this is better exercised by tests, it should be merged with 4729 // the normal path for loads to prevent future divergence. 4730 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4731 if (MemVT != VT) 4732 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4733 4734 setValue(&I, L); 4735 SDValue OutChain = L.getValue(1); 4736 if (!I.isUnordered()) 4737 DAG.setRoot(OutChain); 4738 else 4739 PendingLoads.push_back(OutChain); 4740 return; 4741 } 4742 4743 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4744 Ptr, MMO); 4745 4746 SDValue OutChain = L.getValue(1); 4747 if (MemVT != VT) 4748 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4749 4750 setValue(&I, L); 4751 DAG.setRoot(OutChain); 4752 } 4753 4754 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4755 SDLoc dl = getCurSDLoc(); 4756 4757 AtomicOrdering Ordering = I.getOrdering(); 4758 SyncScope::ID SSID = I.getSyncScopeID(); 4759 4760 SDValue InChain = getRoot(); 4761 4762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4763 EVT MemVT = 4764 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4765 4766 if (!TLI.supportsUnalignedAtomics() && 4767 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4768 report_fatal_error("Cannot generate unaligned atomic store"); 4769 4770 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4771 4772 MachineFunction &MF = DAG.getMachineFunction(); 4773 MachineMemOperand *MMO = MF.getMachineMemOperand( 4774 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4775 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4776 4777 SDValue Val = getValue(I.getValueOperand()); 4778 if (Val.getValueType() != MemVT) 4779 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4780 SDValue Ptr = getValue(I.getPointerOperand()); 4781 4782 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4783 // TODO: Once this is better exercised by tests, it should be merged with 4784 // the normal path for stores to prevent future divergence. 4785 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4786 setValue(&I, S); 4787 DAG.setRoot(S); 4788 return; 4789 } 4790 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4791 Ptr, Val, MMO); 4792 4793 setValue(&I, OutChain); 4794 DAG.setRoot(OutChain); 4795 } 4796 4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4798 /// node. 4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4800 unsigned Intrinsic) { 4801 // Ignore the callsite's attributes. A specific call site may be marked with 4802 // readnone, but the lowering code will expect the chain based on the 4803 // definition. 4804 const Function *F = I.getCalledFunction(); 4805 bool HasChain = !F->doesNotAccessMemory(); 4806 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4807 4808 // Build the operand list. 4809 SmallVector<SDValue, 8> Ops; 4810 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4811 if (OnlyLoad) { 4812 // We don't need to serialize loads against other loads. 4813 Ops.push_back(DAG.getRoot()); 4814 } else { 4815 Ops.push_back(getRoot()); 4816 } 4817 } 4818 4819 // Info is set by getTgtMemIntrinsic 4820 TargetLowering::IntrinsicInfo Info; 4821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4822 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4823 DAG.getMachineFunction(), 4824 Intrinsic); 4825 4826 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4827 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4828 Info.opc == ISD::INTRINSIC_W_CHAIN) 4829 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4830 TLI.getPointerTy(DAG.getDataLayout()))); 4831 4832 // Add all operands of the call to the operand list. 4833 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4834 const Value *Arg = I.getArgOperand(i); 4835 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4836 Ops.push_back(getValue(Arg)); 4837 continue; 4838 } 4839 4840 // Use TargetConstant instead of a regular constant for immarg. 4841 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4842 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4843 assert(CI->getBitWidth() <= 64 && 4844 "large intrinsic immediates not handled"); 4845 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4846 } else { 4847 Ops.push_back( 4848 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4849 } 4850 } 4851 4852 SmallVector<EVT, 4> ValueVTs; 4853 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4854 4855 if (HasChain) 4856 ValueVTs.push_back(MVT::Other); 4857 4858 SDVTList VTs = DAG.getVTList(ValueVTs); 4859 4860 // Propagate fast-math-flags from IR to node(s). 4861 SDNodeFlags Flags; 4862 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4863 Flags.copyFMF(*FPMO); 4864 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4865 4866 // Create the node. 4867 SDValue Result; 4868 // In some cases, custom collection of operands from CallInst I may be needed. 4869 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4870 if (IsTgtIntrinsic) { 4871 // This is target intrinsic that touches memory 4872 Result = 4873 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4874 MachinePointerInfo(Info.ptrVal, Info.offset), 4875 Info.align, Info.flags, Info.size, 4876 I.getAAMetadata()); 4877 } else if (!HasChain) { 4878 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4879 } else if (!I.getType()->isVoidTy()) { 4880 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4881 } else { 4882 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4883 } 4884 4885 if (HasChain) { 4886 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4887 if (OnlyLoad) 4888 PendingLoads.push_back(Chain); 4889 else 4890 DAG.setRoot(Chain); 4891 } 4892 4893 if (!I.getType()->isVoidTy()) { 4894 if (!isa<VectorType>(I.getType())) 4895 Result = lowerRangeToAssertZExt(DAG, I, Result); 4896 4897 MaybeAlign Alignment = I.getRetAlign(); 4898 if (!Alignment) 4899 Alignment = F->getAttributes().getRetAlignment(); 4900 // Insert `assertalign` node if there's an alignment. 4901 if (InsertAssertAlign && Alignment) { 4902 Result = 4903 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4904 } 4905 4906 setValue(&I, Result); 4907 } 4908 } 4909 4910 /// GetSignificand - Get the significand and build it into a floating-point 4911 /// number with exponent of 1: 4912 /// 4913 /// Op = (Op & 0x007fffff) | 0x3f800000; 4914 /// 4915 /// where Op is the hexadecimal representation of floating point value. 4916 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4917 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4918 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4919 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4920 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4921 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4922 } 4923 4924 /// GetExponent - Get the exponent: 4925 /// 4926 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4927 /// 4928 /// where Op is the hexadecimal representation of floating point value. 4929 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4930 const TargetLowering &TLI, const SDLoc &dl) { 4931 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4932 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4933 SDValue t1 = DAG.getNode( 4934 ISD::SRL, dl, MVT::i32, t0, 4935 DAG.getConstant(23, dl, 4936 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4937 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4938 DAG.getConstant(127, dl, MVT::i32)); 4939 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4940 } 4941 4942 /// getF32Constant - Get 32-bit floating point constant. 4943 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4944 const SDLoc &dl) { 4945 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4946 MVT::f32); 4947 } 4948 4949 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4950 SelectionDAG &DAG) { 4951 // TODO: What fast-math-flags should be set on the floating-point nodes? 4952 4953 // IntegerPartOfX = ((int32_t)(t0); 4954 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4955 4956 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4957 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4958 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4959 4960 // IntegerPartOfX <<= 23; 4961 IntegerPartOfX = 4962 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4963 DAG.getConstant(23, dl, 4964 DAG.getTargetLoweringInfo().getShiftAmountTy( 4965 MVT::i32, DAG.getDataLayout()))); 4966 4967 SDValue TwoToFractionalPartOfX; 4968 if (LimitFloatPrecision <= 6) { 4969 // For floating-point precision of 6: 4970 // 4971 // TwoToFractionalPartOfX = 4972 // 0.997535578f + 4973 // (0.735607626f + 0.252464424f * x) * x; 4974 // 4975 // error 0.0144103317, which is 6 bits 4976 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4977 getF32Constant(DAG, 0x3e814304, dl)); 4978 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4979 getF32Constant(DAG, 0x3f3c50c8, dl)); 4980 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4981 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4982 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4983 } else if (LimitFloatPrecision <= 12) { 4984 // For floating-point precision of 12: 4985 // 4986 // TwoToFractionalPartOfX = 4987 // 0.999892986f + 4988 // (0.696457318f + 4989 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4990 // 4991 // error 0.000107046256, which is 13 to 14 bits 4992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4993 getF32Constant(DAG, 0x3da235e3, dl)); 4994 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4995 getF32Constant(DAG, 0x3e65b8f3, dl)); 4996 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4997 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4998 getF32Constant(DAG, 0x3f324b07, dl)); 4999 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5000 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5001 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5002 } else { // LimitFloatPrecision <= 18 5003 // For floating-point precision of 18: 5004 // 5005 // TwoToFractionalPartOfX = 5006 // 0.999999982f + 5007 // (0.693148872f + 5008 // (0.240227044f + 5009 // (0.554906021e-1f + 5010 // (0.961591928e-2f + 5011 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5012 // error 2.47208000*10^(-7), which is better than 18 bits 5013 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5014 getF32Constant(DAG, 0x3924b03e, dl)); 5015 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5016 getF32Constant(DAG, 0x3ab24b87, dl)); 5017 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5018 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5019 getF32Constant(DAG, 0x3c1d8c17, dl)); 5020 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5021 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5022 getF32Constant(DAG, 0x3d634a1d, dl)); 5023 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5024 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5025 getF32Constant(DAG, 0x3e75fe14, dl)); 5026 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5027 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5028 getF32Constant(DAG, 0x3f317234, dl)); 5029 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5030 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5031 getF32Constant(DAG, 0x3f800000, dl)); 5032 } 5033 5034 // Add the exponent into the result in integer domain. 5035 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5036 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5037 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5038 } 5039 5040 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5041 /// limited-precision mode. 5042 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5043 const TargetLowering &TLI, SDNodeFlags Flags) { 5044 if (Op.getValueType() == MVT::f32 && 5045 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5046 5047 // Put the exponent in the right bit position for later addition to the 5048 // final result: 5049 // 5050 // t0 = Op * log2(e) 5051 5052 // TODO: What fast-math-flags should be set here? 5053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5054 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5055 return getLimitedPrecisionExp2(t0, dl, DAG); 5056 } 5057 5058 // No special expansion. 5059 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5060 } 5061 5062 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5063 /// limited-precision mode. 5064 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5065 const TargetLowering &TLI, SDNodeFlags Flags) { 5066 // TODO: What fast-math-flags should be set on the floating-point nodes? 5067 5068 if (Op.getValueType() == MVT::f32 && 5069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5070 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5071 5072 // Scale the exponent by log(2). 5073 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5074 SDValue LogOfExponent = 5075 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5076 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5077 5078 // Get the significand and build it into a floating-point number with 5079 // exponent of 1. 5080 SDValue X = GetSignificand(DAG, Op1, dl); 5081 5082 SDValue LogOfMantissa; 5083 if (LimitFloatPrecision <= 6) { 5084 // For floating-point precision of 6: 5085 // 5086 // LogofMantissa = 5087 // -1.1609546f + 5088 // (1.4034025f - 0.23903021f * x) * x; 5089 // 5090 // error 0.0034276066, which is better than 8 bits 5091 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5092 getF32Constant(DAG, 0xbe74c456, dl)); 5093 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5094 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5095 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5096 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5097 getF32Constant(DAG, 0x3f949a29, dl)); 5098 } else if (LimitFloatPrecision <= 12) { 5099 // For floating-point precision of 12: 5100 // 5101 // LogOfMantissa = 5102 // -1.7417939f + 5103 // (2.8212026f + 5104 // (-1.4699568f + 5105 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5106 // 5107 // error 0.000061011436, which is 14 bits 5108 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5109 getF32Constant(DAG, 0xbd67b6d6, dl)); 5110 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5111 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5112 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5113 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5114 getF32Constant(DAG, 0x3fbc278b, dl)); 5115 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5116 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5117 getF32Constant(DAG, 0x40348e95, dl)); 5118 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5119 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5120 getF32Constant(DAG, 0x3fdef31a, dl)); 5121 } else { // LimitFloatPrecision <= 18 5122 // For floating-point precision of 18: 5123 // 5124 // LogOfMantissa = 5125 // -2.1072184f + 5126 // (4.2372794f + 5127 // (-3.7029485f + 5128 // (2.2781945f + 5129 // (-0.87823314f + 5130 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5131 // 5132 // error 0.0000023660568, which is better than 18 bits 5133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5134 getF32Constant(DAG, 0xbc91e5ac, dl)); 5135 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5136 getF32Constant(DAG, 0x3e4350aa, dl)); 5137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5138 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5139 getF32Constant(DAG, 0x3f60d3e3, dl)); 5140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5141 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5142 getF32Constant(DAG, 0x4011cdf0, dl)); 5143 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5144 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5145 getF32Constant(DAG, 0x406cfd1c, dl)); 5146 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5147 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5148 getF32Constant(DAG, 0x408797cb, dl)); 5149 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5150 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5151 getF32Constant(DAG, 0x4006dcab, dl)); 5152 } 5153 5154 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5155 } 5156 5157 // No special expansion. 5158 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5159 } 5160 5161 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5162 /// limited-precision mode. 5163 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5164 const TargetLowering &TLI, SDNodeFlags Flags) { 5165 // TODO: What fast-math-flags should be set on the floating-point nodes? 5166 5167 if (Op.getValueType() == MVT::f32 && 5168 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5169 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5170 5171 // Get the exponent. 5172 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5173 5174 // Get the significand and build it into a floating-point number with 5175 // exponent of 1. 5176 SDValue X = GetSignificand(DAG, Op1, dl); 5177 5178 // Different possible minimax approximations of significand in 5179 // floating-point for various degrees of accuracy over [1,2]. 5180 SDValue Log2ofMantissa; 5181 if (LimitFloatPrecision <= 6) { 5182 // For floating-point precision of 6: 5183 // 5184 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5185 // 5186 // error 0.0049451742, which is more than 7 bits 5187 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5188 getF32Constant(DAG, 0xbeb08fe0, dl)); 5189 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5190 getF32Constant(DAG, 0x40019463, dl)); 5191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5192 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5193 getF32Constant(DAG, 0x3fd6633d, dl)); 5194 } else if (LimitFloatPrecision <= 12) { 5195 // For floating-point precision of 12: 5196 // 5197 // Log2ofMantissa = 5198 // -2.51285454f + 5199 // (4.07009056f + 5200 // (-2.12067489f + 5201 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5202 // 5203 // error 0.0000876136000, which is better than 13 bits 5204 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5205 getF32Constant(DAG, 0xbda7262e, dl)); 5206 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5207 getF32Constant(DAG, 0x3f25280b, dl)); 5208 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5209 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5210 getF32Constant(DAG, 0x4007b923, dl)); 5211 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5212 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5213 getF32Constant(DAG, 0x40823e2f, dl)); 5214 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5215 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5216 getF32Constant(DAG, 0x4020d29c, dl)); 5217 } else { // LimitFloatPrecision <= 18 5218 // For floating-point precision of 18: 5219 // 5220 // Log2ofMantissa = 5221 // -3.0400495f + 5222 // (6.1129976f + 5223 // (-5.3420409f + 5224 // (3.2865683f + 5225 // (-1.2669343f + 5226 // (0.27515199f - 5227 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5228 // 5229 // error 0.0000018516, which is better than 18 bits 5230 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5231 getF32Constant(DAG, 0xbcd2769e, dl)); 5232 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5233 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5234 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5235 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5236 getF32Constant(DAG, 0x3fa22ae7, dl)); 5237 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5238 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5239 getF32Constant(DAG, 0x40525723, dl)); 5240 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5241 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5242 getF32Constant(DAG, 0x40aaf200, dl)); 5243 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5244 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5245 getF32Constant(DAG, 0x40c39dad, dl)); 5246 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5247 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5248 getF32Constant(DAG, 0x4042902c, dl)); 5249 } 5250 5251 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5252 } 5253 5254 // No special expansion. 5255 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5256 } 5257 5258 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5259 /// limited-precision mode. 5260 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5261 const TargetLowering &TLI, SDNodeFlags Flags) { 5262 // TODO: What fast-math-flags should be set on the floating-point nodes? 5263 5264 if (Op.getValueType() == MVT::f32 && 5265 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5266 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5267 5268 // Scale the exponent by log10(2) [0.30102999f]. 5269 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5270 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5271 getF32Constant(DAG, 0x3e9a209a, dl)); 5272 5273 // Get the significand and build it into a floating-point number with 5274 // exponent of 1. 5275 SDValue X = GetSignificand(DAG, Op1, dl); 5276 5277 SDValue Log10ofMantissa; 5278 if (LimitFloatPrecision <= 6) { 5279 // For floating-point precision of 6: 5280 // 5281 // Log10ofMantissa = 5282 // -0.50419619f + 5283 // (0.60948995f - 0.10380950f * x) * x; 5284 // 5285 // error 0.0014886165, which is 6 bits 5286 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5287 getF32Constant(DAG, 0xbdd49a13, dl)); 5288 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5289 getF32Constant(DAG, 0x3f1c0789, dl)); 5290 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5291 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5292 getF32Constant(DAG, 0x3f011300, dl)); 5293 } else if (LimitFloatPrecision <= 12) { 5294 // For floating-point precision of 12: 5295 // 5296 // Log10ofMantissa = 5297 // -0.64831180f + 5298 // (0.91751397f + 5299 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5300 // 5301 // error 0.00019228036, which is better than 12 bits 5302 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5303 getF32Constant(DAG, 0x3d431f31, dl)); 5304 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5305 getF32Constant(DAG, 0x3ea21fb2, dl)); 5306 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5307 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5308 getF32Constant(DAG, 0x3f6ae232, dl)); 5309 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5310 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5311 getF32Constant(DAG, 0x3f25f7c3, dl)); 5312 } else { // LimitFloatPrecision <= 18 5313 // For floating-point precision of 18: 5314 // 5315 // Log10ofMantissa = 5316 // -0.84299375f + 5317 // (1.5327582f + 5318 // (-1.0688956f + 5319 // (0.49102474f + 5320 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5321 // 5322 // error 0.0000037995730, which is better than 18 bits 5323 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5324 getF32Constant(DAG, 0x3c5d51ce, dl)); 5325 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5326 getF32Constant(DAG, 0x3e00685a, dl)); 5327 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5328 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5329 getF32Constant(DAG, 0x3efb6798, dl)); 5330 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5331 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5332 getF32Constant(DAG, 0x3f88d192, dl)); 5333 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5334 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5335 getF32Constant(DAG, 0x3fc4316c, dl)); 5336 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5337 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5338 getF32Constant(DAG, 0x3f57ce70, dl)); 5339 } 5340 5341 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5342 } 5343 5344 // No special expansion. 5345 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5346 } 5347 5348 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5349 /// limited-precision mode. 5350 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5351 const TargetLowering &TLI, SDNodeFlags Flags) { 5352 if (Op.getValueType() == MVT::f32 && 5353 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5354 return getLimitedPrecisionExp2(Op, dl, DAG); 5355 5356 // No special expansion. 5357 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5358 } 5359 5360 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5361 /// limited-precision mode with x == 10.0f. 5362 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5363 SelectionDAG &DAG, const TargetLowering &TLI, 5364 SDNodeFlags Flags) { 5365 bool IsExp10 = false; 5366 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5367 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5368 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5369 APFloat Ten(10.0f); 5370 IsExp10 = LHSC->isExactlyValue(Ten); 5371 } 5372 } 5373 5374 // TODO: What fast-math-flags should be set on the FMUL node? 5375 if (IsExp10) { 5376 // Put the exponent in the right bit position for later addition to the 5377 // final result: 5378 // 5379 // #define LOG2OF10 3.3219281f 5380 // t0 = Op * LOG2OF10; 5381 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5382 getF32Constant(DAG, 0x40549a78, dl)); 5383 return getLimitedPrecisionExp2(t0, dl, DAG); 5384 } 5385 5386 // No special expansion. 5387 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5388 } 5389 5390 /// ExpandPowI - Expand a llvm.powi intrinsic. 5391 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5392 SelectionDAG &DAG) { 5393 // If RHS is a constant, we can expand this out to a multiplication tree if 5394 // it's beneficial on the target, otherwise we end up lowering to a call to 5395 // __powidf2 (for example). 5396 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5397 unsigned Val = RHSC->getSExtValue(); 5398 5399 // powi(x, 0) -> 1.0 5400 if (Val == 0) 5401 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5402 5403 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5404 Val, DAG.shouldOptForSize())) { 5405 // Get the exponent as a positive value. 5406 if ((int)Val < 0) 5407 Val = -Val; 5408 // We use the simple binary decomposition method to generate the multiply 5409 // sequence. There are more optimal ways to do this (for example, 5410 // powi(x,15) generates one more multiply than it should), but this has 5411 // the benefit of being both really simple and much better than a libcall. 5412 SDValue Res; // Logically starts equal to 1.0 5413 SDValue CurSquare = LHS; 5414 // TODO: Intrinsics should have fast-math-flags that propagate to these 5415 // nodes. 5416 while (Val) { 5417 if (Val & 1) { 5418 if (Res.getNode()) 5419 Res = 5420 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5421 else 5422 Res = CurSquare; // 1.0*CurSquare. 5423 } 5424 5425 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5426 CurSquare, CurSquare); 5427 Val >>= 1; 5428 } 5429 5430 // If the original was negative, invert the result, producing 1/(x*x*x). 5431 if (RHSC->getSExtValue() < 0) 5432 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5433 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5434 return Res; 5435 } 5436 } 5437 5438 // Otherwise, expand to a libcall. 5439 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5440 } 5441 5442 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5443 SDValue LHS, SDValue RHS, SDValue Scale, 5444 SelectionDAG &DAG, const TargetLowering &TLI) { 5445 EVT VT = LHS.getValueType(); 5446 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5447 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5448 LLVMContext &Ctx = *DAG.getContext(); 5449 5450 // If the type is legal but the operation isn't, this node might survive all 5451 // the way to operation legalization. If we end up there and we do not have 5452 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5453 // node. 5454 5455 // Coax the legalizer into expanding the node during type legalization instead 5456 // by bumping the size by one bit. This will force it to Promote, enabling the 5457 // early expansion and avoiding the need to expand later. 5458 5459 // We don't have to do this if Scale is 0; that can always be expanded, unless 5460 // it's a saturating signed operation. Those can experience true integer 5461 // division overflow, a case which we must avoid. 5462 5463 // FIXME: We wouldn't have to do this (or any of the early 5464 // expansion/promotion) if it was possible to expand a libcall of an 5465 // illegal type during operation legalization. But it's not, so things 5466 // get a bit hacky. 5467 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5468 if ((ScaleInt > 0 || (Saturating && Signed)) && 5469 (TLI.isTypeLegal(VT) || 5470 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5471 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5472 Opcode, VT, ScaleInt); 5473 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5474 EVT PromVT; 5475 if (VT.isScalarInteger()) 5476 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5477 else if (VT.isVector()) { 5478 PromVT = VT.getVectorElementType(); 5479 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5480 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5481 } else 5482 llvm_unreachable("Wrong VT for DIVFIX?"); 5483 if (Signed) { 5484 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5485 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5486 } else { 5487 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5488 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5489 } 5490 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5491 // For saturating operations, we need to shift up the LHS to get the 5492 // proper saturation width, and then shift down again afterwards. 5493 if (Saturating) 5494 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5495 DAG.getConstant(1, DL, ShiftTy)); 5496 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5497 if (Saturating) 5498 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5499 DAG.getConstant(1, DL, ShiftTy)); 5500 return DAG.getZExtOrTrunc(Res, DL, VT); 5501 } 5502 } 5503 5504 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5505 } 5506 5507 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5508 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5509 static void 5510 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5511 const SDValue &N) { 5512 switch (N.getOpcode()) { 5513 case ISD::CopyFromReg: { 5514 SDValue Op = N.getOperand(1); 5515 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5516 Op.getValueType().getSizeInBits()); 5517 return; 5518 } 5519 case ISD::BITCAST: 5520 case ISD::AssertZext: 5521 case ISD::AssertSext: 5522 case ISD::TRUNCATE: 5523 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5524 return; 5525 case ISD::BUILD_PAIR: 5526 case ISD::BUILD_VECTOR: 5527 case ISD::CONCAT_VECTORS: 5528 for (SDValue Op : N->op_values()) 5529 getUnderlyingArgRegs(Regs, Op); 5530 return; 5531 default: 5532 return; 5533 } 5534 } 5535 5536 /// If the DbgValueInst is a dbg_value of a function argument, create the 5537 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5538 /// instruction selection, they will be inserted to the entry BB. 5539 /// We don't currently support this for variadic dbg_values, as they shouldn't 5540 /// appear for function arguments or in the prologue. 5541 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5542 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5543 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5544 const Argument *Arg = dyn_cast<Argument>(V); 5545 if (!Arg) 5546 return false; 5547 5548 MachineFunction &MF = DAG.getMachineFunction(); 5549 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5550 5551 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5552 // we've been asked to pursue. 5553 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5554 bool Indirect) { 5555 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5556 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5557 // pointing at the VReg, which will be patched up later. 5558 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5559 auto MIB = BuildMI(MF, DL, Inst); 5560 MIB.addReg(Reg); 5561 MIB.addImm(0); 5562 MIB.addMetadata(Variable); 5563 auto *NewDIExpr = FragExpr; 5564 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5565 // the DIExpression. 5566 if (Indirect) 5567 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5568 MIB.addMetadata(NewDIExpr); 5569 return MIB; 5570 } else { 5571 // Create a completely standard DBG_VALUE. 5572 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5573 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5574 } 5575 }; 5576 5577 if (Kind == FuncArgumentDbgValueKind::Value) { 5578 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5579 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5580 // the entry block. 5581 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5582 if (!IsInEntryBlock) 5583 return false; 5584 5585 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5586 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5587 // variable that also is a param. 5588 // 5589 // Although, if we are at the top of the entry block already, we can still 5590 // emit using ArgDbgValue. This might catch some situations when the 5591 // dbg.value refers to an argument that isn't used in the entry block, so 5592 // any CopyToReg node would be optimized out and the only way to express 5593 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5594 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5595 // we should only emit as ArgDbgValue if the Variable is an argument to the 5596 // current function, and the dbg.value intrinsic is found in the entry 5597 // block. 5598 bool VariableIsFunctionInputArg = Variable->isParameter() && 5599 !DL->getInlinedAt(); 5600 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5601 if (!IsInPrologue && !VariableIsFunctionInputArg) 5602 return false; 5603 5604 // Here we assume that a function argument on IR level only can be used to 5605 // describe one input parameter on source level. If we for example have 5606 // source code like this 5607 // 5608 // struct A { long x, y; }; 5609 // void foo(struct A a, long b) { 5610 // ... 5611 // b = a.x; 5612 // ... 5613 // } 5614 // 5615 // and IR like this 5616 // 5617 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5618 // entry: 5619 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5620 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5621 // call void @llvm.dbg.value(metadata i32 %b, "b", 5622 // ... 5623 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5624 // ... 5625 // 5626 // then the last dbg.value is describing a parameter "b" using a value that 5627 // is an argument. But since we already has used %a1 to describe a parameter 5628 // we should not handle that last dbg.value here (that would result in an 5629 // incorrect hoisting of the DBG_VALUE to the function entry). 5630 // Notice that we allow one dbg.value per IR level argument, to accommodate 5631 // for the situation with fragments above. 5632 if (VariableIsFunctionInputArg) { 5633 unsigned ArgNo = Arg->getArgNo(); 5634 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5635 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5636 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5637 return false; 5638 FuncInfo.DescribedArgs.set(ArgNo); 5639 } 5640 } 5641 5642 bool IsIndirect = false; 5643 Optional<MachineOperand> Op; 5644 // Some arguments' frame index is recorded during argument lowering. 5645 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5646 if (FI != std::numeric_limits<int>::max()) 5647 Op = MachineOperand::CreateFI(FI); 5648 5649 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5650 if (!Op && N.getNode()) { 5651 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5652 Register Reg; 5653 if (ArgRegsAndSizes.size() == 1) 5654 Reg = ArgRegsAndSizes.front().first; 5655 5656 if (Reg && Reg.isVirtual()) { 5657 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5658 Register PR = RegInfo.getLiveInPhysReg(Reg); 5659 if (PR) 5660 Reg = PR; 5661 } 5662 if (Reg) { 5663 Op = MachineOperand::CreateReg(Reg, false); 5664 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5665 } 5666 } 5667 5668 if (!Op && N.getNode()) { 5669 // Check if frame index is available. 5670 SDValue LCandidate = peekThroughBitcasts(N); 5671 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5672 if (FrameIndexSDNode *FINode = 5673 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5674 Op = MachineOperand::CreateFI(FINode->getIndex()); 5675 } 5676 5677 if (!Op) { 5678 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5679 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5680 SplitRegs) { 5681 unsigned Offset = 0; 5682 for (const auto &RegAndSize : SplitRegs) { 5683 // If the expression is already a fragment, the current register 5684 // offset+size might extend beyond the fragment. In this case, only 5685 // the register bits that are inside the fragment are relevant. 5686 int RegFragmentSizeInBits = RegAndSize.second; 5687 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5688 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5689 // The register is entirely outside the expression fragment, 5690 // so is irrelevant for debug info. 5691 if (Offset >= ExprFragmentSizeInBits) 5692 break; 5693 // The register is partially outside the expression fragment, only 5694 // the low bits within the fragment are relevant for debug info. 5695 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5696 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5697 } 5698 } 5699 5700 auto FragmentExpr = DIExpression::createFragmentExpression( 5701 Expr, Offset, RegFragmentSizeInBits); 5702 Offset += RegAndSize.second; 5703 // If a valid fragment expression cannot be created, the variable's 5704 // correct value cannot be determined and so it is set as Undef. 5705 if (!FragmentExpr) { 5706 SDDbgValue *SDV = DAG.getConstantDbgValue( 5707 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5708 DAG.AddDbgValue(SDV, false); 5709 continue; 5710 } 5711 MachineInstr *NewMI = 5712 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5713 Kind != FuncArgumentDbgValueKind::Value); 5714 FuncInfo.ArgDbgValues.push_back(NewMI); 5715 } 5716 }; 5717 5718 // Check if ValueMap has reg number. 5719 DenseMap<const Value *, Register>::const_iterator 5720 VMI = FuncInfo.ValueMap.find(V); 5721 if (VMI != FuncInfo.ValueMap.end()) { 5722 const auto &TLI = DAG.getTargetLoweringInfo(); 5723 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5724 V->getType(), None); 5725 if (RFV.occupiesMultipleRegs()) { 5726 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5727 return true; 5728 } 5729 5730 Op = MachineOperand::CreateReg(VMI->second, false); 5731 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5732 } else if (ArgRegsAndSizes.size() > 1) { 5733 // This was split due to the calling convention, and no virtual register 5734 // mapping exists for the value. 5735 splitMultiRegDbgValue(ArgRegsAndSizes); 5736 return true; 5737 } 5738 } 5739 5740 if (!Op) 5741 return false; 5742 5743 assert(Variable->isValidLocationForIntrinsic(DL) && 5744 "Expected inlined-at fields to agree"); 5745 MachineInstr *NewMI = nullptr; 5746 5747 if (Op->isReg()) 5748 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5749 else 5750 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5751 Variable, Expr); 5752 5753 // Otherwise, use ArgDbgValues. 5754 FuncInfo.ArgDbgValues.push_back(NewMI); 5755 return true; 5756 } 5757 5758 /// Return the appropriate SDDbgValue based on N. 5759 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5760 DILocalVariable *Variable, 5761 DIExpression *Expr, 5762 const DebugLoc &dl, 5763 unsigned DbgSDNodeOrder) { 5764 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5765 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5766 // stack slot locations. 5767 // 5768 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5769 // debug values here after optimization: 5770 // 5771 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5772 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5773 // 5774 // Both describe the direct values of their associated variables. 5775 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5776 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5777 } 5778 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5779 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5780 } 5781 5782 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5783 switch (Intrinsic) { 5784 case Intrinsic::smul_fix: 5785 return ISD::SMULFIX; 5786 case Intrinsic::umul_fix: 5787 return ISD::UMULFIX; 5788 case Intrinsic::smul_fix_sat: 5789 return ISD::SMULFIXSAT; 5790 case Intrinsic::umul_fix_sat: 5791 return ISD::UMULFIXSAT; 5792 case Intrinsic::sdiv_fix: 5793 return ISD::SDIVFIX; 5794 case Intrinsic::udiv_fix: 5795 return ISD::UDIVFIX; 5796 case Intrinsic::sdiv_fix_sat: 5797 return ISD::SDIVFIXSAT; 5798 case Intrinsic::udiv_fix_sat: 5799 return ISD::UDIVFIXSAT; 5800 default: 5801 llvm_unreachable("Unhandled fixed point intrinsic"); 5802 } 5803 } 5804 5805 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5806 const char *FunctionName) { 5807 assert(FunctionName && "FunctionName must not be nullptr"); 5808 SDValue Callee = DAG.getExternalSymbol( 5809 FunctionName, 5810 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5811 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5812 } 5813 5814 /// Given a @llvm.call.preallocated.setup, return the corresponding 5815 /// preallocated call. 5816 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5817 assert(cast<CallBase>(PreallocatedSetup) 5818 ->getCalledFunction() 5819 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5820 "expected call_preallocated_setup Value"); 5821 for (const auto *U : PreallocatedSetup->users()) { 5822 auto *UseCall = cast<CallBase>(U); 5823 const Function *Fn = UseCall->getCalledFunction(); 5824 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5825 return UseCall; 5826 } 5827 } 5828 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5829 } 5830 5831 /// Lower the call to the specified intrinsic function. 5832 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5833 unsigned Intrinsic) { 5834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5835 SDLoc sdl = getCurSDLoc(); 5836 DebugLoc dl = getCurDebugLoc(); 5837 SDValue Res; 5838 5839 SDNodeFlags Flags; 5840 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5841 Flags.copyFMF(*FPOp); 5842 5843 switch (Intrinsic) { 5844 default: 5845 // By default, turn this into a target intrinsic node. 5846 visitTargetIntrinsic(I, Intrinsic); 5847 return; 5848 case Intrinsic::vscale: { 5849 match(&I, m_VScale(DAG.getDataLayout())); 5850 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5851 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5852 return; 5853 } 5854 case Intrinsic::vastart: visitVAStart(I); return; 5855 case Intrinsic::vaend: visitVAEnd(I); return; 5856 case Intrinsic::vacopy: visitVACopy(I); return; 5857 case Intrinsic::returnaddress: 5858 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5859 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5860 getValue(I.getArgOperand(0)))); 5861 return; 5862 case Intrinsic::addressofreturnaddress: 5863 setValue(&I, 5864 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5865 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5866 return; 5867 case Intrinsic::sponentry: 5868 setValue(&I, 5869 DAG.getNode(ISD::SPONENTRY, sdl, 5870 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5871 return; 5872 case Intrinsic::frameaddress: 5873 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5874 TLI.getFrameIndexTy(DAG.getDataLayout()), 5875 getValue(I.getArgOperand(0)))); 5876 return; 5877 case Intrinsic::read_volatile_register: 5878 case Intrinsic::read_register: { 5879 Value *Reg = I.getArgOperand(0); 5880 SDValue Chain = getRoot(); 5881 SDValue RegName = 5882 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5883 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5884 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5885 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5886 setValue(&I, Res); 5887 DAG.setRoot(Res.getValue(1)); 5888 return; 5889 } 5890 case Intrinsic::write_register: { 5891 Value *Reg = I.getArgOperand(0); 5892 Value *RegValue = I.getArgOperand(1); 5893 SDValue Chain = getRoot(); 5894 SDValue RegName = 5895 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5896 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5897 RegName, getValue(RegValue))); 5898 return; 5899 } 5900 case Intrinsic::memcpy: { 5901 const auto &MCI = cast<MemCpyInst>(I); 5902 SDValue Op1 = getValue(I.getArgOperand(0)); 5903 SDValue Op2 = getValue(I.getArgOperand(1)); 5904 SDValue Op3 = getValue(I.getArgOperand(2)); 5905 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5906 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5907 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5908 Align Alignment = std::min(DstAlign, SrcAlign); 5909 bool isVol = MCI.isVolatile(); 5910 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5911 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5912 // node. 5913 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5914 SDValue MC = DAG.getMemcpy( 5915 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5916 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5917 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5918 updateDAGForMaybeTailCall(MC); 5919 return; 5920 } 5921 case Intrinsic::memcpy_inline: { 5922 const auto &MCI = cast<MemCpyInlineInst>(I); 5923 SDValue Dst = getValue(I.getArgOperand(0)); 5924 SDValue Src = getValue(I.getArgOperand(1)); 5925 SDValue Size = getValue(I.getArgOperand(2)); 5926 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5927 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5928 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5929 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5930 Align Alignment = std::min(DstAlign, SrcAlign); 5931 bool isVol = MCI.isVolatile(); 5932 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5933 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5934 // node. 5935 SDValue MC = DAG.getMemcpy( 5936 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5937 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5938 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5939 updateDAGForMaybeTailCall(MC); 5940 return; 5941 } 5942 case Intrinsic::memset: { 5943 const auto &MSI = cast<MemSetInst>(I); 5944 SDValue Op1 = getValue(I.getArgOperand(0)); 5945 SDValue Op2 = getValue(I.getArgOperand(1)); 5946 SDValue Op3 = getValue(I.getArgOperand(2)); 5947 // @llvm.memset defines 0 and 1 to both mean no alignment. 5948 Align Alignment = MSI.getDestAlign().valueOrOne(); 5949 bool isVol = MSI.isVolatile(); 5950 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5951 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5952 SDValue MS = DAG.getMemset( 5953 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5954 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5955 updateDAGForMaybeTailCall(MS); 5956 return; 5957 } 5958 case Intrinsic::memset_inline: { 5959 const auto &MSII = cast<MemSetInlineInst>(I); 5960 SDValue Dst = getValue(I.getArgOperand(0)); 5961 SDValue Value = getValue(I.getArgOperand(1)); 5962 SDValue Size = getValue(I.getArgOperand(2)); 5963 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5964 // @llvm.memset defines 0 and 1 to both mean no alignment. 5965 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5966 bool isVol = MSII.isVolatile(); 5967 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5968 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5969 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5970 /* AlwaysInline */ true, isTC, 5971 MachinePointerInfo(I.getArgOperand(0)), 5972 I.getAAMetadata()); 5973 updateDAGForMaybeTailCall(MC); 5974 return; 5975 } 5976 case Intrinsic::memmove: { 5977 const auto &MMI = cast<MemMoveInst>(I); 5978 SDValue Op1 = getValue(I.getArgOperand(0)); 5979 SDValue Op2 = getValue(I.getArgOperand(1)); 5980 SDValue Op3 = getValue(I.getArgOperand(2)); 5981 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5982 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5983 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5984 Align Alignment = std::min(DstAlign, SrcAlign); 5985 bool isVol = MMI.isVolatile(); 5986 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5987 // FIXME: Support passing different dest/src alignments to the memmove DAG 5988 // node. 5989 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5990 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5991 isTC, MachinePointerInfo(I.getArgOperand(0)), 5992 MachinePointerInfo(I.getArgOperand(1)), 5993 I.getAAMetadata(), AA); 5994 updateDAGForMaybeTailCall(MM); 5995 return; 5996 } 5997 case Intrinsic::memcpy_element_unordered_atomic: { 5998 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5999 SDValue Dst = getValue(MI.getRawDest()); 6000 SDValue Src = getValue(MI.getRawSource()); 6001 SDValue Length = getValue(MI.getLength()); 6002 6003 Type *LengthTy = MI.getLength()->getType(); 6004 unsigned ElemSz = MI.getElementSizeInBytes(); 6005 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6006 SDValue MC = 6007 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6008 isTC, MachinePointerInfo(MI.getRawDest()), 6009 MachinePointerInfo(MI.getRawSource())); 6010 updateDAGForMaybeTailCall(MC); 6011 return; 6012 } 6013 case Intrinsic::memmove_element_unordered_atomic: { 6014 auto &MI = cast<AtomicMemMoveInst>(I); 6015 SDValue Dst = getValue(MI.getRawDest()); 6016 SDValue Src = getValue(MI.getRawSource()); 6017 SDValue Length = getValue(MI.getLength()); 6018 6019 Type *LengthTy = MI.getLength()->getType(); 6020 unsigned ElemSz = MI.getElementSizeInBytes(); 6021 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6022 SDValue MC = 6023 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6024 isTC, MachinePointerInfo(MI.getRawDest()), 6025 MachinePointerInfo(MI.getRawSource())); 6026 updateDAGForMaybeTailCall(MC); 6027 return; 6028 } 6029 case Intrinsic::memset_element_unordered_atomic: { 6030 auto &MI = cast<AtomicMemSetInst>(I); 6031 SDValue Dst = getValue(MI.getRawDest()); 6032 SDValue Val = getValue(MI.getValue()); 6033 SDValue Length = getValue(MI.getLength()); 6034 6035 Type *LengthTy = MI.getLength()->getType(); 6036 unsigned ElemSz = MI.getElementSizeInBytes(); 6037 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6038 SDValue MC = 6039 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6040 isTC, MachinePointerInfo(MI.getRawDest())); 6041 updateDAGForMaybeTailCall(MC); 6042 return; 6043 } 6044 case Intrinsic::call_preallocated_setup: { 6045 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6046 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6047 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6048 getRoot(), SrcValue); 6049 setValue(&I, Res); 6050 DAG.setRoot(Res); 6051 return; 6052 } 6053 case Intrinsic::call_preallocated_arg: { 6054 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6055 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6056 SDValue Ops[3]; 6057 Ops[0] = getRoot(); 6058 Ops[1] = SrcValue; 6059 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6060 MVT::i32); // arg index 6061 SDValue Res = DAG.getNode( 6062 ISD::PREALLOCATED_ARG, sdl, 6063 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6064 setValue(&I, Res); 6065 DAG.setRoot(Res.getValue(1)); 6066 return; 6067 } 6068 case Intrinsic::dbg_addr: 6069 case Intrinsic::dbg_declare: { 6070 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6071 // they are non-variadic. 6072 const auto &DI = cast<DbgVariableIntrinsic>(I); 6073 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6074 DILocalVariable *Variable = DI.getVariable(); 6075 DIExpression *Expression = DI.getExpression(); 6076 dropDanglingDebugInfo(Variable, Expression); 6077 assert(Variable && "Missing variable"); 6078 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6079 << "\n"); 6080 // Check if address has undef value. 6081 const Value *Address = DI.getVariableLocationOp(0); 6082 if (!Address || isa<UndefValue>(Address) || 6083 (Address->use_empty() && !isa<Argument>(Address))) { 6084 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6085 << " (bad/undef/unused-arg address)\n"); 6086 return; 6087 } 6088 6089 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6090 6091 // Check if this variable can be described by a frame index, typically 6092 // either as a static alloca or a byval parameter. 6093 int FI = std::numeric_limits<int>::max(); 6094 if (const auto *AI = 6095 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6096 if (AI->isStaticAlloca()) { 6097 auto I = FuncInfo.StaticAllocaMap.find(AI); 6098 if (I != FuncInfo.StaticAllocaMap.end()) 6099 FI = I->second; 6100 } 6101 } else if (const auto *Arg = dyn_cast<Argument>( 6102 Address->stripInBoundsConstantOffsets())) { 6103 FI = FuncInfo.getArgumentFrameIndex(Arg); 6104 } 6105 6106 // llvm.dbg.addr is control dependent and always generates indirect 6107 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6108 // the MachineFunction variable table. 6109 if (FI != std::numeric_limits<int>::max()) { 6110 if (Intrinsic == Intrinsic::dbg_addr) { 6111 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6112 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6113 dl, SDNodeOrder); 6114 DAG.AddDbgValue(SDV, isParameter); 6115 } else { 6116 LLVM_DEBUG(dbgs() << "Skipping " << DI 6117 << " (variable info stashed in MF side table)\n"); 6118 } 6119 return; 6120 } 6121 6122 SDValue &N = NodeMap[Address]; 6123 if (!N.getNode() && isa<Argument>(Address)) 6124 // Check unused arguments map. 6125 N = UnusedArgNodeMap[Address]; 6126 SDDbgValue *SDV; 6127 if (N.getNode()) { 6128 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6129 Address = BCI->getOperand(0); 6130 // Parameters are handled specially. 6131 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6132 if (isParameter && FINode) { 6133 // Byval parameter. We have a frame index at this point. 6134 SDV = 6135 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6136 /*IsIndirect*/ true, dl, SDNodeOrder); 6137 } else if (isa<Argument>(Address)) { 6138 // Address is an argument, so try to emit its dbg value using 6139 // virtual register info from the FuncInfo.ValueMap. 6140 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6141 FuncArgumentDbgValueKind::Declare, N); 6142 return; 6143 } else { 6144 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6145 true, dl, SDNodeOrder); 6146 } 6147 DAG.AddDbgValue(SDV, isParameter); 6148 } else { 6149 // If Address is an argument then try to emit its dbg value using 6150 // virtual register info from the FuncInfo.ValueMap. 6151 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6152 FuncArgumentDbgValueKind::Declare, N)) { 6153 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6154 << " (could not emit func-arg dbg_value)\n"); 6155 } 6156 } 6157 return; 6158 } 6159 case Intrinsic::dbg_label: { 6160 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6161 DILabel *Label = DI.getLabel(); 6162 assert(Label && "Missing label"); 6163 6164 SDDbgLabel *SDV; 6165 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6166 DAG.AddDbgLabel(SDV); 6167 return; 6168 } 6169 case Intrinsic::dbg_value: { 6170 const DbgValueInst &DI = cast<DbgValueInst>(I); 6171 assert(DI.getVariable() && "Missing variable"); 6172 6173 DILocalVariable *Variable = DI.getVariable(); 6174 DIExpression *Expression = DI.getExpression(); 6175 dropDanglingDebugInfo(Variable, Expression); 6176 SmallVector<Value *, 4> Values(DI.getValues()); 6177 if (Values.empty()) 6178 return; 6179 6180 if (llvm::is_contained(Values, nullptr)) 6181 return; 6182 6183 bool IsVariadic = DI.hasArgList(); 6184 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6185 SDNodeOrder, IsVariadic)) 6186 addDanglingDebugInfo(&DI, DI.getDebugLoc(), SDNodeOrder); 6187 return; 6188 } 6189 6190 case Intrinsic::eh_typeid_for: { 6191 // Find the type id for the given typeinfo. 6192 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6193 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6194 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6195 setValue(&I, Res); 6196 return; 6197 } 6198 6199 case Intrinsic::eh_return_i32: 6200 case Intrinsic::eh_return_i64: 6201 DAG.getMachineFunction().setCallsEHReturn(true); 6202 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6203 MVT::Other, 6204 getControlRoot(), 6205 getValue(I.getArgOperand(0)), 6206 getValue(I.getArgOperand(1)))); 6207 return; 6208 case Intrinsic::eh_unwind_init: 6209 DAG.getMachineFunction().setCallsUnwindInit(true); 6210 return; 6211 case Intrinsic::eh_dwarf_cfa: 6212 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6213 TLI.getPointerTy(DAG.getDataLayout()), 6214 getValue(I.getArgOperand(0)))); 6215 return; 6216 case Intrinsic::eh_sjlj_callsite: { 6217 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6218 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6219 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6220 6221 MMI.setCurrentCallSite(CI->getZExtValue()); 6222 return; 6223 } 6224 case Intrinsic::eh_sjlj_functioncontext: { 6225 // Get and store the index of the function context. 6226 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6227 AllocaInst *FnCtx = 6228 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6229 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6230 MFI.setFunctionContextIndex(FI); 6231 return; 6232 } 6233 case Intrinsic::eh_sjlj_setjmp: { 6234 SDValue Ops[2]; 6235 Ops[0] = getRoot(); 6236 Ops[1] = getValue(I.getArgOperand(0)); 6237 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6238 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6239 setValue(&I, Op.getValue(0)); 6240 DAG.setRoot(Op.getValue(1)); 6241 return; 6242 } 6243 case Intrinsic::eh_sjlj_longjmp: 6244 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6245 getRoot(), getValue(I.getArgOperand(0)))); 6246 return; 6247 case Intrinsic::eh_sjlj_setup_dispatch: 6248 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6249 getRoot())); 6250 return; 6251 case Intrinsic::masked_gather: 6252 visitMaskedGather(I); 6253 return; 6254 case Intrinsic::masked_load: 6255 visitMaskedLoad(I); 6256 return; 6257 case Intrinsic::masked_scatter: 6258 visitMaskedScatter(I); 6259 return; 6260 case Intrinsic::masked_store: 6261 visitMaskedStore(I); 6262 return; 6263 case Intrinsic::masked_expandload: 6264 visitMaskedLoad(I, true /* IsExpanding */); 6265 return; 6266 case Intrinsic::masked_compressstore: 6267 visitMaskedStore(I, true /* IsCompressing */); 6268 return; 6269 case Intrinsic::powi: 6270 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6271 getValue(I.getArgOperand(1)), DAG)); 6272 return; 6273 case Intrinsic::log: 6274 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6275 return; 6276 case Intrinsic::log2: 6277 setValue(&I, 6278 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6279 return; 6280 case Intrinsic::log10: 6281 setValue(&I, 6282 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6283 return; 6284 case Intrinsic::exp: 6285 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6286 return; 6287 case Intrinsic::exp2: 6288 setValue(&I, 6289 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6290 return; 6291 case Intrinsic::pow: 6292 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6293 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6294 return; 6295 case Intrinsic::sqrt: 6296 case Intrinsic::fabs: 6297 case Intrinsic::sin: 6298 case Intrinsic::cos: 6299 case Intrinsic::floor: 6300 case Intrinsic::ceil: 6301 case Intrinsic::trunc: 6302 case Intrinsic::rint: 6303 case Intrinsic::nearbyint: 6304 case Intrinsic::round: 6305 case Intrinsic::roundeven: 6306 case Intrinsic::canonicalize: { 6307 unsigned Opcode; 6308 switch (Intrinsic) { 6309 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6310 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6311 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6312 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6313 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6314 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6315 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6316 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6317 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6318 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6319 case Intrinsic::round: Opcode = ISD::FROUND; break; 6320 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6321 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6322 } 6323 6324 setValue(&I, DAG.getNode(Opcode, sdl, 6325 getValue(I.getArgOperand(0)).getValueType(), 6326 getValue(I.getArgOperand(0)), Flags)); 6327 return; 6328 } 6329 case Intrinsic::lround: 6330 case Intrinsic::llround: 6331 case Intrinsic::lrint: 6332 case Intrinsic::llrint: { 6333 unsigned Opcode; 6334 switch (Intrinsic) { 6335 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6336 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6337 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6338 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6339 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6340 } 6341 6342 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6343 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6344 getValue(I.getArgOperand(0)))); 6345 return; 6346 } 6347 case Intrinsic::minnum: 6348 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6349 getValue(I.getArgOperand(0)).getValueType(), 6350 getValue(I.getArgOperand(0)), 6351 getValue(I.getArgOperand(1)), Flags)); 6352 return; 6353 case Intrinsic::maxnum: 6354 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6355 getValue(I.getArgOperand(0)).getValueType(), 6356 getValue(I.getArgOperand(0)), 6357 getValue(I.getArgOperand(1)), Flags)); 6358 return; 6359 case Intrinsic::minimum: 6360 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6361 getValue(I.getArgOperand(0)).getValueType(), 6362 getValue(I.getArgOperand(0)), 6363 getValue(I.getArgOperand(1)), Flags)); 6364 return; 6365 case Intrinsic::maximum: 6366 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6367 getValue(I.getArgOperand(0)).getValueType(), 6368 getValue(I.getArgOperand(0)), 6369 getValue(I.getArgOperand(1)), Flags)); 6370 return; 6371 case Intrinsic::copysign: 6372 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6373 getValue(I.getArgOperand(0)).getValueType(), 6374 getValue(I.getArgOperand(0)), 6375 getValue(I.getArgOperand(1)), Flags)); 6376 return; 6377 case Intrinsic::arithmetic_fence: { 6378 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6379 getValue(I.getArgOperand(0)).getValueType(), 6380 getValue(I.getArgOperand(0)), Flags)); 6381 return; 6382 } 6383 case Intrinsic::fma: 6384 setValue(&I, DAG.getNode( 6385 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6386 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6387 getValue(I.getArgOperand(2)), Flags)); 6388 return; 6389 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6390 case Intrinsic::INTRINSIC: 6391 #include "llvm/IR/ConstrainedOps.def" 6392 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6393 return; 6394 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6395 #include "llvm/IR/VPIntrinsics.def" 6396 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6397 return; 6398 case Intrinsic::fptrunc_round: { 6399 // Get the last argument, the metadata and convert it to an integer in the 6400 // call 6401 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6402 Optional<RoundingMode> RoundMode = 6403 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6404 6405 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6406 6407 // Propagate fast-math-flags from IR to node(s). 6408 SDNodeFlags Flags; 6409 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6410 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6411 6412 SDValue Result; 6413 Result = DAG.getNode( 6414 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6415 DAG.getTargetConstant((int)*RoundMode, sdl, 6416 TLI.getPointerTy(DAG.getDataLayout()))); 6417 setValue(&I, Result); 6418 6419 return; 6420 } 6421 case Intrinsic::fmuladd: { 6422 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6423 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6424 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6425 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6426 getValue(I.getArgOperand(0)).getValueType(), 6427 getValue(I.getArgOperand(0)), 6428 getValue(I.getArgOperand(1)), 6429 getValue(I.getArgOperand(2)), Flags)); 6430 } else { 6431 // TODO: Intrinsic calls should have fast-math-flags. 6432 SDValue Mul = DAG.getNode( 6433 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6434 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6435 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6436 getValue(I.getArgOperand(0)).getValueType(), 6437 Mul, getValue(I.getArgOperand(2)), Flags); 6438 setValue(&I, Add); 6439 } 6440 return; 6441 } 6442 case Intrinsic::convert_to_fp16: 6443 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6444 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6445 getValue(I.getArgOperand(0)), 6446 DAG.getTargetConstant(0, sdl, 6447 MVT::i32)))); 6448 return; 6449 case Intrinsic::convert_from_fp16: 6450 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6451 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6452 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6453 getValue(I.getArgOperand(0))))); 6454 return; 6455 case Intrinsic::fptosi_sat: { 6456 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6457 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6458 getValue(I.getArgOperand(0)), 6459 DAG.getValueType(VT.getScalarType()))); 6460 return; 6461 } 6462 case Intrinsic::fptoui_sat: { 6463 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6464 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6465 getValue(I.getArgOperand(0)), 6466 DAG.getValueType(VT.getScalarType()))); 6467 return; 6468 } 6469 case Intrinsic::set_rounding: 6470 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6471 {getRoot(), getValue(I.getArgOperand(0))}); 6472 setValue(&I, Res); 6473 DAG.setRoot(Res.getValue(0)); 6474 return; 6475 case Intrinsic::is_fpclass: { 6476 const DataLayout DLayout = DAG.getDataLayout(); 6477 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6478 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6479 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6480 MachineFunction &MF = DAG.getMachineFunction(); 6481 const Function &F = MF.getFunction(); 6482 SDValue Op = getValue(I.getArgOperand(0)); 6483 SDNodeFlags Flags; 6484 Flags.setNoFPExcept( 6485 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6486 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6487 // expansion can use illegal types. Making expansion early allows 6488 // legalizing these types prior to selection. 6489 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6490 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6491 setValue(&I, Result); 6492 return; 6493 } 6494 6495 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6496 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6497 setValue(&I, V); 6498 return; 6499 } 6500 case Intrinsic::pcmarker: { 6501 SDValue Tmp = getValue(I.getArgOperand(0)); 6502 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6503 return; 6504 } 6505 case Intrinsic::readcyclecounter: { 6506 SDValue Op = getRoot(); 6507 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6508 DAG.getVTList(MVT::i64, MVT::Other), Op); 6509 setValue(&I, Res); 6510 DAG.setRoot(Res.getValue(1)); 6511 return; 6512 } 6513 case Intrinsic::bitreverse: 6514 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6515 getValue(I.getArgOperand(0)).getValueType(), 6516 getValue(I.getArgOperand(0)))); 6517 return; 6518 case Intrinsic::bswap: 6519 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6520 getValue(I.getArgOperand(0)).getValueType(), 6521 getValue(I.getArgOperand(0)))); 6522 return; 6523 case Intrinsic::cttz: { 6524 SDValue Arg = getValue(I.getArgOperand(0)); 6525 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6526 EVT Ty = Arg.getValueType(); 6527 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6528 sdl, Ty, Arg)); 6529 return; 6530 } 6531 case Intrinsic::ctlz: { 6532 SDValue Arg = getValue(I.getArgOperand(0)); 6533 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6534 EVT Ty = Arg.getValueType(); 6535 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6536 sdl, Ty, Arg)); 6537 return; 6538 } 6539 case Intrinsic::ctpop: { 6540 SDValue Arg = getValue(I.getArgOperand(0)); 6541 EVT Ty = Arg.getValueType(); 6542 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6543 return; 6544 } 6545 case Intrinsic::fshl: 6546 case Intrinsic::fshr: { 6547 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6548 SDValue X = getValue(I.getArgOperand(0)); 6549 SDValue Y = getValue(I.getArgOperand(1)); 6550 SDValue Z = getValue(I.getArgOperand(2)); 6551 EVT VT = X.getValueType(); 6552 6553 if (X == Y) { 6554 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6555 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6556 } else { 6557 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6558 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6559 } 6560 return; 6561 } 6562 case Intrinsic::sadd_sat: { 6563 SDValue Op1 = getValue(I.getArgOperand(0)); 6564 SDValue Op2 = getValue(I.getArgOperand(1)); 6565 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6566 return; 6567 } 6568 case Intrinsic::uadd_sat: { 6569 SDValue Op1 = getValue(I.getArgOperand(0)); 6570 SDValue Op2 = getValue(I.getArgOperand(1)); 6571 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6572 return; 6573 } 6574 case Intrinsic::ssub_sat: { 6575 SDValue Op1 = getValue(I.getArgOperand(0)); 6576 SDValue Op2 = getValue(I.getArgOperand(1)); 6577 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6578 return; 6579 } 6580 case Intrinsic::usub_sat: { 6581 SDValue Op1 = getValue(I.getArgOperand(0)); 6582 SDValue Op2 = getValue(I.getArgOperand(1)); 6583 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6584 return; 6585 } 6586 case Intrinsic::sshl_sat: { 6587 SDValue Op1 = getValue(I.getArgOperand(0)); 6588 SDValue Op2 = getValue(I.getArgOperand(1)); 6589 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6590 return; 6591 } 6592 case Intrinsic::ushl_sat: { 6593 SDValue Op1 = getValue(I.getArgOperand(0)); 6594 SDValue Op2 = getValue(I.getArgOperand(1)); 6595 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6596 return; 6597 } 6598 case Intrinsic::smul_fix: 6599 case Intrinsic::umul_fix: 6600 case Intrinsic::smul_fix_sat: 6601 case Intrinsic::umul_fix_sat: { 6602 SDValue Op1 = getValue(I.getArgOperand(0)); 6603 SDValue Op2 = getValue(I.getArgOperand(1)); 6604 SDValue Op3 = getValue(I.getArgOperand(2)); 6605 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6606 Op1.getValueType(), Op1, Op2, Op3)); 6607 return; 6608 } 6609 case Intrinsic::sdiv_fix: 6610 case Intrinsic::udiv_fix: 6611 case Intrinsic::sdiv_fix_sat: 6612 case Intrinsic::udiv_fix_sat: { 6613 SDValue Op1 = getValue(I.getArgOperand(0)); 6614 SDValue Op2 = getValue(I.getArgOperand(1)); 6615 SDValue Op3 = getValue(I.getArgOperand(2)); 6616 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6617 Op1, Op2, Op3, DAG, TLI)); 6618 return; 6619 } 6620 case Intrinsic::smax: { 6621 SDValue Op1 = getValue(I.getArgOperand(0)); 6622 SDValue Op2 = getValue(I.getArgOperand(1)); 6623 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6624 return; 6625 } 6626 case Intrinsic::smin: { 6627 SDValue Op1 = getValue(I.getArgOperand(0)); 6628 SDValue Op2 = getValue(I.getArgOperand(1)); 6629 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6630 return; 6631 } 6632 case Intrinsic::umax: { 6633 SDValue Op1 = getValue(I.getArgOperand(0)); 6634 SDValue Op2 = getValue(I.getArgOperand(1)); 6635 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6636 return; 6637 } 6638 case Intrinsic::umin: { 6639 SDValue Op1 = getValue(I.getArgOperand(0)); 6640 SDValue Op2 = getValue(I.getArgOperand(1)); 6641 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6642 return; 6643 } 6644 case Intrinsic::abs: { 6645 // TODO: Preserve "int min is poison" arg in SDAG? 6646 SDValue Op1 = getValue(I.getArgOperand(0)); 6647 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6648 return; 6649 } 6650 case Intrinsic::stacksave: { 6651 SDValue Op = getRoot(); 6652 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6653 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6654 setValue(&I, Res); 6655 DAG.setRoot(Res.getValue(1)); 6656 return; 6657 } 6658 case Intrinsic::stackrestore: 6659 Res = getValue(I.getArgOperand(0)); 6660 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6661 return; 6662 case Intrinsic::get_dynamic_area_offset: { 6663 SDValue Op = getRoot(); 6664 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6665 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6666 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6667 // target. 6668 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6669 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6670 " intrinsic!"); 6671 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6672 Op); 6673 DAG.setRoot(Op); 6674 setValue(&I, Res); 6675 return; 6676 } 6677 case Intrinsic::stackguard: { 6678 MachineFunction &MF = DAG.getMachineFunction(); 6679 const Module &M = *MF.getFunction().getParent(); 6680 SDValue Chain = getRoot(); 6681 if (TLI.useLoadStackGuardNode()) { 6682 Res = getLoadStackGuard(DAG, sdl, Chain); 6683 } else { 6684 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6685 const Value *Global = TLI.getSDagStackGuard(M); 6686 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6687 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6688 MachinePointerInfo(Global, 0), Align, 6689 MachineMemOperand::MOVolatile); 6690 } 6691 if (TLI.useStackGuardXorFP()) 6692 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6693 DAG.setRoot(Chain); 6694 setValue(&I, Res); 6695 return; 6696 } 6697 case Intrinsic::stackprotector: { 6698 // Emit code into the DAG to store the stack guard onto the stack. 6699 MachineFunction &MF = DAG.getMachineFunction(); 6700 MachineFrameInfo &MFI = MF.getFrameInfo(); 6701 SDValue Src, Chain = getRoot(); 6702 6703 if (TLI.useLoadStackGuardNode()) 6704 Src = getLoadStackGuard(DAG, sdl, Chain); 6705 else 6706 Src = getValue(I.getArgOperand(0)); // The guard's value. 6707 6708 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6709 6710 int FI = FuncInfo.StaticAllocaMap[Slot]; 6711 MFI.setStackProtectorIndex(FI); 6712 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6713 6714 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6715 6716 // Store the stack protector onto the stack. 6717 Res = DAG.getStore( 6718 Chain, sdl, Src, FIN, 6719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6720 MaybeAlign(), MachineMemOperand::MOVolatile); 6721 setValue(&I, Res); 6722 DAG.setRoot(Res); 6723 return; 6724 } 6725 case Intrinsic::objectsize: 6726 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6727 6728 case Intrinsic::is_constant: 6729 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6730 6731 case Intrinsic::annotation: 6732 case Intrinsic::ptr_annotation: 6733 case Intrinsic::launder_invariant_group: 6734 case Intrinsic::strip_invariant_group: 6735 // Drop the intrinsic, but forward the value 6736 setValue(&I, getValue(I.getOperand(0))); 6737 return; 6738 6739 case Intrinsic::assume: 6740 case Intrinsic::experimental_noalias_scope_decl: 6741 case Intrinsic::var_annotation: 6742 case Intrinsic::sideeffect: 6743 // Discard annotate attributes, noalias scope declarations, assumptions, and 6744 // artificial side-effects. 6745 return; 6746 6747 case Intrinsic::codeview_annotation: { 6748 // Emit a label associated with this metadata. 6749 MachineFunction &MF = DAG.getMachineFunction(); 6750 MCSymbol *Label = 6751 MF.getMMI().getContext().createTempSymbol("annotation", true); 6752 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6753 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6754 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6755 DAG.setRoot(Res); 6756 return; 6757 } 6758 6759 case Intrinsic::init_trampoline: { 6760 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6761 6762 SDValue Ops[6]; 6763 Ops[0] = getRoot(); 6764 Ops[1] = getValue(I.getArgOperand(0)); 6765 Ops[2] = getValue(I.getArgOperand(1)); 6766 Ops[3] = getValue(I.getArgOperand(2)); 6767 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6768 Ops[5] = DAG.getSrcValue(F); 6769 6770 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6771 6772 DAG.setRoot(Res); 6773 return; 6774 } 6775 case Intrinsic::adjust_trampoline: 6776 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6777 TLI.getPointerTy(DAG.getDataLayout()), 6778 getValue(I.getArgOperand(0)))); 6779 return; 6780 case Intrinsic::gcroot: { 6781 assert(DAG.getMachineFunction().getFunction().hasGC() && 6782 "only valid in functions with gc specified, enforced by Verifier"); 6783 assert(GFI && "implied by previous"); 6784 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6785 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6786 6787 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6788 GFI->addStackRoot(FI->getIndex(), TypeMap); 6789 return; 6790 } 6791 case Intrinsic::gcread: 6792 case Intrinsic::gcwrite: 6793 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6794 case Intrinsic::flt_rounds: 6795 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6796 setValue(&I, Res); 6797 DAG.setRoot(Res.getValue(1)); 6798 return; 6799 6800 case Intrinsic::expect: 6801 // Just replace __builtin_expect(exp, c) with EXP. 6802 setValue(&I, getValue(I.getArgOperand(0))); 6803 return; 6804 6805 case Intrinsic::ubsantrap: 6806 case Intrinsic::debugtrap: 6807 case Intrinsic::trap: { 6808 StringRef TrapFuncName = 6809 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6810 if (TrapFuncName.empty()) { 6811 switch (Intrinsic) { 6812 case Intrinsic::trap: 6813 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6814 break; 6815 case Intrinsic::debugtrap: 6816 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6817 break; 6818 case Intrinsic::ubsantrap: 6819 DAG.setRoot(DAG.getNode( 6820 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6821 DAG.getTargetConstant( 6822 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6823 MVT::i32))); 6824 break; 6825 default: llvm_unreachable("unknown trap intrinsic"); 6826 } 6827 return; 6828 } 6829 TargetLowering::ArgListTy Args; 6830 if (Intrinsic == Intrinsic::ubsantrap) { 6831 Args.push_back(TargetLoweringBase::ArgListEntry()); 6832 Args[0].Val = I.getArgOperand(0); 6833 Args[0].Node = getValue(Args[0].Val); 6834 Args[0].Ty = Args[0].Val->getType(); 6835 } 6836 6837 TargetLowering::CallLoweringInfo CLI(DAG); 6838 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6839 CallingConv::C, I.getType(), 6840 DAG.getExternalSymbol(TrapFuncName.data(), 6841 TLI.getPointerTy(DAG.getDataLayout())), 6842 std::move(Args)); 6843 6844 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6845 DAG.setRoot(Result.second); 6846 return; 6847 } 6848 6849 case Intrinsic::uadd_with_overflow: 6850 case Intrinsic::sadd_with_overflow: 6851 case Intrinsic::usub_with_overflow: 6852 case Intrinsic::ssub_with_overflow: 6853 case Intrinsic::umul_with_overflow: 6854 case Intrinsic::smul_with_overflow: { 6855 ISD::NodeType Op; 6856 switch (Intrinsic) { 6857 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6858 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6859 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6860 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6861 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6862 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6863 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6864 } 6865 SDValue Op1 = getValue(I.getArgOperand(0)); 6866 SDValue Op2 = getValue(I.getArgOperand(1)); 6867 6868 EVT ResultVT = Op1.getValueType(); 6869 EVT OverflowVT = MVT::i1; 6870 if (ResultVT.isVector()) 6871 OverflowVT = EVT::getVectorVT( 6872 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6873 6874 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6875 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6876 return; 6877 } 6878 case Intrinsic::prefetch: { 6879 SDValue Ops[5]; 6880 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6881 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6882 Ops[0] = DAG.getRoot(); 6883 Ops[1] = getValue(I.getArgOperand(0)); 6884 Ops[2] = getValue(I.getArgOperand(1)); 6885 Ops[3] = getValue(I.getArgOperand(2)); 6886 Ops[4] = getValue(I.getArgOperand(3)); 6887 SDValue Result = DAG.getMemIntrinsicNode( 6888 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6889 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6890 /* align */ None, Flags); 6891 6892 // Chain the prefetch in parallell with any pending loads, to stay out of 6893 // the way of later optimizations. 6894 PendingLoads.push_back(Result); 6895 Result = getRoot(); 6896 DAG.setRoot(Result); 6897 return; 6898 } 6899 case Intrinsic::lifetime_start: 6900 case Intrinsic::lifetime_end: { 6901 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6902 // Stack coloring is not enabled in O0, discard region information. 6903 if (TM.getOptLevel() == CodeGenOpt::None) 6904 return; 6905 6906 const int64_t ObjectSize = 6907 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6908 Value *const ObjectPtr = I.getArgOperand(1); 6909 SmallVector<const Value *, 4> Allocas; 6910 getUnderlyingObjects(ObjectPtr, Allocas); 6911 6912 for (const Value *Alloca : Allocas) { 6913 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6914 6915 // Could not find an Alloca. 6916 if (!LifetimeObject) 6917 continue; 6918 6919 // First check that the Alloca is static, otherwise it won't have a 6920 // valid frame index. 6921 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6922 if (SI == FuncInfo.StaticAllocaMap.end()) 6923 return; 6924 6925 const int FrameIndex = SI->second; 6926 int64_t Offset; 6927 if (GetPointerBaseWithConstantOffset( 6928 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6929 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6930 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6931 Offset); 6932 DAG.setRoot(Res); 6933 } 6934 return; 6935 } 6936 case Intrinsic::pseudoprobe: { 6937 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6938 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6939 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6940 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6941 DAG.setRoot(Res); 6942 return; 6943 } 6944 case Intrinsic::invariant_start: 6945 // Discard region information. 6946 setValue(&I, 6947 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6948 return; 6949 case Intrinsic::invariant_end: 6950 // Discard region information. 6951 return; 6952 case Intrinsic::clear_cache: 6953 /// FunctionName may be null. 6954 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6955 lowerCallToExternalSymbol(I, FunctionName); 6956 return; 6957 case Intrinsic::donothing: 6958 case Intrinsic::seh_try_begin: 6959 case Intrinsic::seh_scope_begin: 6960 case Intrinsic::seh_try_end: 6961 case Intrinsic::seh_scope_end: 6962 // ignore 6963 return; 6964 case Intrinsic::experimental_stackmap: 6965 visitStackmap(I); 6966 return; 6967 case Intrinsic::experimental_patchpoint_void: 6968 case Intrinsic::experimental_patchpoint_i64: 6969 visitPatchpoint(I); 6970 return; 6971 case Intrinsic::experimental_gc_statepoint: 6972 LowerStatepoint(cast<GCStatepointInst>(I)); 6973 return; 6974 case Intrinsic::experimental_gc_result: 6975 visitGCResult(cast<GCResultInst>(I)); 6976 return; 6977 case Intrinsic::experimental_gc_relocate: 6978 visitGCRelocate(cast<GCRelocateInst>(I)); 6979 return; 6980 case Intrinsic::instrprof_cover: 6981 llvm_unreachable("instrprof failed to lower a cover"); 6982 case Intrinsic::instrprof_increment: 6983 llvm_unreachable("instrprof failed to lower an increment"); 6984 case Intrinsic::instrprof_value_profile: 6985 llvm_unreachable("instrprof failed to lower a value profiling call"); 6986 case Intrinsic::localescape: { 6987 MachineFunction &MF = DAG.getMachineFunction(); 6988 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6989 6990 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6991 // is the same on all targets. 6992 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6993 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6994 if (isa<ConstantPointerNull>(Arg)) 6995 continue; // Skip null pointers. They represent a hole in index space. 6996 AllocaInst *Slot = cast<AllocaInst>(Arg); 6997 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6998 "can only escape static allocas"); 6999 int FI = FuncInfo.StaticAllocaMap[Slot]; 7000 MCSymbol *FrameAllocSym = 7001 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7002 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7004 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7005 .addSym(FrameAllocSym) 7006 .addFrameIndex(FI); 7007 } 7008 7009 return; 7010 } 7011 7012 case Intrinsic::localrecover: { 7013 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7014 MachineFunction &MF = DAG.getMachineFunction(); 7015 7016 // Get the symbol that defines the frame offset. 7017 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7018 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7019 unsigned IdxVal = 7020 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7021 MCSymbol *FrameAllocSym = 7022 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7023 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7024 7025 Value *FP = I.getArgOperand(1); 7026 SDValue FPVal = getValue(FP); 7027 EVT PtrVT = FPVal.getValueType(); 7028 7029 // Create a MCSymbol for the label to avoid any target lowering 7030 // that would make this PC relative. 7031 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7032 SDValue OffsetVal = 7033 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7034 7035 // Add the offset to the FP. 7036 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7037 setValue(&I, Add); 7038 7039 return; 7040 } 7041 7042 case Intrinsic::eh_exceptionpointer: 7043 case Intrinsic::eh_exceptioncode: { 7044 // Get the exception pointer vreg, copy from it, and resize it to fit. 7045 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7046 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7047 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7048 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7049 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7050 if (Intrinsic == Intrinsic::eh_exceptioncode) 7051 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7052 setValue(&I, N); 7053 return; 7054 } 7055 case Intrinsic::xray_customevent: { 7056 // Here we want to make sure that the intrinsic behaves as if it has a 7057 // specific calling convention, and only for x86_64. 7058 // FIXME: Support other platforms later. 7059 const auto &Triple = DAG.getTarget().getTargetTriple(); 7060 if (Triple.getArch() != Triple::x86_64) 7061 return; 7062 7063 SmallVector<SDValue, 8> Ops; 7064 7065 // We want to say that we always want the arguments in registers. 7066 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7067 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7068 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7069 SDValue Chain = getRoot(); 7070 Ops.push_back(LogEntryVal); 7071 Ops.push_back(StrSizeVal); 7072 Ops.push_back(Chain); 7073 7074 // We need to enforce the calling convention for the callsite, so that 7075 // argument ordering is enforced correctly, and that register allocation can 7076 // see that some registers may be assumed clobbered and have to preserve 7077 // them across calls to the intrinsic. 7078 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7079 sdl, NodeTys, Ops); 7080 SDValue patchableNode = SDValue(MN, 0); 7081 DAG.setRoot(patchableNode); 7082 setValue(&I, patchableNode); 7083 return; 7084 } 7085 case Intrinsic::xray_typedevent: { 7086 // Here we want to make sure that the intrinsic behaves as if it has a 7087 // specific calling convention, and only for x86_64. 7088 // FIXME: Support other platforms later. 7089 const auto &Triple = DAG.getTarget().getTargetTriple(); 7090 if (Triple.getArch() != Triple::x86_64) 7091 return; 7092 7093 SmallVector<SDValue, 8> Ops; 7094 7095 // We want to say that we always want the arguments in registers. 7096 // It's unclear to me how manipulating the selection DAG here forces callers 7097 // to provide arguments in registers instead of on the stack. 7098 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7099 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7100 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7101 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7102 SDValue Chain = getRoot(); 7103 Ops.push_back(LogTypeId); 7104 Ops.push_back(LogEntryVal); 7105 Ops.push_back(StrSizeVal); 7106 Ops.push_back(Chain); 7107 7108 // We need to enforce the calling convention for the callsite, so that 7109 // argument ordering is enforced correctly, and that register allocation can 7110 // see that some registers may be assumed clobbered and have to preserve 7111 // them across calls to the intrinsic. 7112 MachineSDNode *MN = DAG.getMachineNode( 7113 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7114 SDValue patchableNode = SDValue(MN, 0); 7115 DAG.setRoot(patchableNode); 7116 setValue(&I, patchableNode); 7117 return; 7118 } 7119 case Intrinsic::experimental_deoptimize: 7120 LowerDeoptimizeCall(&I); 7121 return; 7122 case Intrinsic::experimental_stepvector: 7123 visitStepVector(I); 7124 return; 7125 case Intrinsic::vector_reduce_fadd: 7126 case Intrinsic::vector_reduce_fmul: 7127 case Intrinsic::vector_reduce_add: 7128 case Intrinsic::vector_reduce_mul: 7129 case Intrinsic::vector_reduce_and: 7130 case Intrinsic::vector_reduce_or: 7131 case Intrinsic::vector_reduce_xor: 7132 case Intrinsic::vector_reduce_smax: 7133 case Intrinsic::vector_reduce_smin: 7134 case Intrinsic::vector_reduce_umax: 7135 case Intrinsic::vector_reduce_umin: 7136 case Intrinsic::vector_reduce_fmax: 7137 case Intrinsic::vector_reduce_fmin: 7138 visitVectorReduce(I, Intrinsic); 7139 return; 7140 7141 case Intrinsic::icall_branch_funnel: { 7142 SmallVector<SDValue, 16> Ops; 7143 Ops.push_back(getValue(I.getArgOperand(0))); 7144 7145 int64_t Offset; 7146 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7147 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7148 if (!Base) 7149 report_fatal_error( 7150 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7151 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7152 7153 struct BranchFunnelTarget { 7154 int64_t Offset; 7155 SDValue Target; 7156 }; 7157 SmallVector<BranchFunnelTarget, 8> Targets; 7158 7159 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7160 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7161 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7162 if (ElemBase != Base) 7163 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7164 "to the same GlobalValue"); 7165 7166 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7167 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7168 if (!GA) 7169 report_fatal_error( 7170 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7171 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7172 GA->getGlobal(), sdl, Val.getValueType(), 7173 GA->getOffset())}); 7174 } 7175 llvm::sort(Targets, 7176 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7177 return T1.Offset < T2.Offset; 7178 }); 7179 7180 for (auto &T : Targets) { 7181 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7182 Ops.push_back(T.Target); 7183 } 7184 7185 Ops.push_back(DAG.getRoot()); // Chain 7186 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7187 MVT::Other, Ops), 7188 0); 7189 DAG.setRoot(N); 7190 setValue(&I, N); 7191 HasTailCall = true; 7192 return; 7193 } 7194 7195 case Intrinsic::wasm_landingpad_index: 7196 // Information this intrinsic contained has been transferred to 7197 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7198 // delete it now. 7199 return; 7200 7201 case Intrinsic::aarch64_settag: 7202 case Intrinsic::aarch64_settag_zero: { 7203 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7204 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7205 SDValue Val = TSI.EmitTargetCodeForSetTag( 7206 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7207 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7208 ZeroMemory); 7209 DAG.setRoot(Val); 7210 setValue(&I, Val); 7211 return; 7212 } 7213 case Intrinsic::ptrmask: { 7214 SDValue Ptr = getValue(I.getOperand(0)); 7215 SDValue Const = getValue(I.getOperand(1)); 7216 7217 EVT PtrVT = Ptr.getValueType(); 7218 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7219 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7220 return; 7221 } 7222 case Intrinsic::threadlocal_address: { 7223 setValue(&I, getValue(I.getOperand(0))); 7224 return; 7225 } 7226 case Intrinsic::get_active_lane_mask: { 7227 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7228 SDValue Index = getValue(I.getOperand(0)); 7229 EVT ElementVT = Index.getValueType(); 7230 7231 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7232 visitTargetIntrinsic(I, Intrinsic); 7233 return; 7234 } 7235 7236 SDValue TripCount = getValue(I.getOperand(1)); 7237 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7238 7239 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7240 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7241 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7242 SDValue VectorInduction = DAG.getNode( 7243 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7244 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7245 VectorTripCount, ISD::CondCode::SETULT); 7246 setValue(&I, SetCC); 7247 return; 7248 } 7249 case Intrinsic::vector_insert: { 7250 SDValue Vec = getValue(I.getOperand(0)); 7251 SDValue SubVec = getValue(I.getOperand(1)); 7252 SDValue Index = getValue(I.getOperand(2)); 7253 7254 // The intrinsic's index type is i64, but the SDNode requires an index type 7255 // suitable for the target. Convert the index as required. 7256 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7257 if (Index.getValueType() != VectorIdxTy) 7258 Index = DAG.getVectorIdxConstant( 7259 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7260 7261 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7262 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7263 Index)); 7264 return; 7265 } 7266 case Intrinsic::vector_extract: { 7267 SDValue Vec = getValue(I.getOperand(0)); 7268 SDValue Index = getValue(I.getOperand(1)); 7269 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7270 7271 // The intrinsic's index type is i64, but the SDNode requires an index type 7272 // suitable for the target. Convert the index as required. 7273 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7274 if (Index.getValueType() != VectorIdxTy) 7275 Index = DAG.getVectorIdxConstant( 7276 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7277 7278 setValue(&I, 7279 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7280 return; 7281 } 7282 case Intrinsic::experimental_vector_reverse: 7283 visitVectorReverse(I); 7284 return; 7285 case Intrinsic::experimental_vector_splice: 7286 visitVectorSplice(I); 7287 return; 7288 } 7289 } 7290 7291 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7292 const ConstrainedFPIntrinsic &FPI) { 7293 SDLoc sdl = getCurSDLoc(); 7294 7295 // We do not need to serialize constrained FP intrinsics against 7296 // each other or against (nonvolatile) loads, so they can be 7297 // chained like loads. 7298 SDValue Chain = DAG.getRoot(); 7299 SmallVector<SDValue, 4> Opers; 7300 Opers.push_back(Chain); 7301 if (FPI.isUnaryOp()) { 7302 Opers.push_back(getValue(FPI.getArgOperand(0))); 7303 } else if (FPI.isTernaryOp()) { 7304 Opers.push_back(getValue(FPI.getArgOperand(0))); 7305 Opers.push_back(getValue(FPI.getArgOperand(1))); 7306 Opers.push_back(getValue(FPI.getArgOperand(2))); 7307 } else { 7308 Opers.push_back(getValue(FPI.getArgOperand(0))); 7309 Opers.push_back(getValue(FPI.getArgOperand(1))); 7310 } 7311 7312 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7313 assert(Result.getNode()->getNumValues() == 2); 7314 7315 // Push node to the appropriate list so that future instructions can be 7316 // chained up correctly. 7317 SDValue OutChain = Result.getValue(1); 7318 switch (EB) { 7319 case fp::ExceptionBehavior::ebIgnore: 7320 // The only reason why ebIgnore nodes still need to be chained is that 7321 // they might depend on the current rounding mode, and therefore must 7322 // not be moved across instruction that may change that mode. 7323 [[fallthrough]]; 7324 case fp::ExceptionBehavior::ebMayTrap: 7325 // These must not be moved across calls or instructions that may change 7326 // floating-point exception masks. 7327 PendingConstrainedFP.push_back(OutChain); 7328 break; 7329 case fp::ExceptionBehavior::ebStrict: 7330 // These must not be moved across calls or instructions that may change 7331 // floating-point exception masks or read floating-point exception flags. 7332 // In addition, they cannot be optimized out even if unused. 7333 PendingConstrainedFPStrict.push_back(OutChain); 7334 break; 7335 } 7336 }; 7337 7338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7339 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7340 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7341 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7342 7343 SDNodeFlags Flags; 7344 if (EB == fp::ExceptionBehavior::ebIgnore) 7345 Flags.setNoFPExcept(true); 7346 7347 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7348 Flags.copyFMF(*FPOp); 7349 7350 unsigned Opcode; 7351 switch (FPI.getIntrinsicID()) { 7352 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7353 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7354 case Intrinsic::INTRINSIC: \ 7355 Opcode = ISD::STRICT_##DAGN; \ 7356 break; 7357 #include "llvm/IR/ConstrainedOps.def" 7358 case Intrinsic::experimental_constrained_fmuladd: { 7359 Opcode = ISD::STRICT_FMA; 7360 // Break fmuladd into fmul and fadd. 7361 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7362 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7363 Opers.pop_back(); 7364 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7365 pushOutChain(Mul, EB); 7366 Opcode = ISD::STRICT_FADD; 7367 Opers.clear(); 7368 Opers.push_back(Mul.getValue(1)); 7369 Opers.push_back(Mul.getValue(0)); 7370 Opers.push_back(getValue(FPI.getArgOperand(2))); 7371 } 7372 break; 7373 } 7374 } 7375 7376 // A few strict DAG nodes carry additional operands that are not 7377 // set up by the default code above. 7378 switch (Opcode) { 7379 default: break; 7380 case ISD::STRICT_FP_ROUND: 7381 Opers.push_back( 7382 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7383 break; 7384 case ISD::STRICT_FSETCC: 7385 case ISD::STRICT_FSETCCS: { 7386 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7387 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7388 if (TM.Options.NoNaNsFPMath) 7389 Condition = getFCmpCodeWithoutNaN(Condition); 7390 Opers.push_back(DAG.getCondCode(Condition)); 7391 break; 7392 } 7393 } 7394 7395 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7396 pushOutChain(Result, EB); 7397 7398 SDValue FPResult = Result.getValue(0); 7399 setValue(&FPI, FPResult); 7400 } 7401 7402 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7403 Optional<unsigned> ResOPC; 7404 switch (VPIntrin.getIntrinsicID()) { 7405 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7406 case Intrinsic::VPID: \ 7407 ResOPC = ISD::VPSD; \ 7408 break; 7409 #include "llvm/IR/VPIntrinsics.def" 7410 } 7411 7412 if (!ResOPC) 7413 llvm_unreachable( 7414 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7415 7416 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7417 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7418 if (VPIntrin.getFastMathFlags().allowReassoc()) 7419 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7420 : ISD::VP_REDUCE_FMUL; 7421 } 7422 7423 return *ResOPC; 7424 } 7425 7426 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7427 SmallVector<SDValue, 7> &OpValues) { 7428 SDLoc DL = getCurSDLoc(); 7429 Value *PtrOperand = VPIntrin.getArgOperand(0); 7430 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7431 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7432 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7433 SDValue LD; 7434 bool AddToChain = true; 7435 // Do not serialize variable-length loads of constant memory with 7436 // anything. 7437 if (!Alignment) 7438 Alignment = DAG.getEVTAlign(VT); 7439 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7440 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7441 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7442 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7443 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7444 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7445 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7446 MMO, false /*IsExpanding */); 7447 if (AddToChain) 7448 PendingLoads.push_back(LD.getValue(1)); 7449 setValue(&VPIntrin, LD); 7450 } 7451 7452 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7453 SmallVector<SDValue, 7> &OpValues) { 7454 SDLoc DL = getCurSDLoc(); 7455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7456 Value *PtrOperand = VPIntrin.getArgOperand(0); 7457 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7458 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7459 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7460 SDValue LD; 7461 if (!Alignment) 7462 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7463 unsigned AS = 7464 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7465 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7466 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7467 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7468 SDValue Base, Index, Scale; 7469 ISD::MemIndexType IndexType; 7470 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7471 this, VPIntrin.getParent(), 7472 VT.getScalarStoreSize()); 7473 if (!UniformBase) { 7474 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7475 Index = getValue(PtrOperand); 7476 IndexType = ISD::SIGNED_SCALED; 7477 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7478 } 7479 EVT IdxVT = Index.getValueType(); 7480 EVT EltTy = IdxVT.getVectorElementType(); 7481 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7482 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7483 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7484 } 7485 LD = DAG.getGatherVP( 7486 DAG.getVTList(VT, MVT::Other), VT, DL, 7487 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7488 IndexType); 7489 PendingLoads.push_back(LD.getValue(1)); 7490 setValue(&VPIntrin, LD); 7491 } 7492 7493 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7494 SmallVector<SDValue, 7> &OpValues) { 7495 SDLoc DL = getCurSDLoc(); 7496 Value *PtrOperand = VPIntrin.getArgOperand(1); 7497 EVT VT = OpValues[0].getValueType(); 7498 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7499 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7500 SDValue ST; 7501 if (!Alignment) 7502 Alignment = DAG.getEVTAlign(VT); 7503 SDValue Ptr = OpValues[1]; 7504 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7505 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7506 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7507 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7508 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7509 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7510 /* IsTruncating */ false, /*IsCompressing*/ false); 7511 DAG.setRoot(ST); 7512 setValue(&VPIntrin, ST); 7513 } 7514 7515 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7516 SmallVector<SDValue, 7> &OpValues) { 7517 SDLoc DL = getCurSDLoc(); 7518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7519 Value *PtrOperand = VPIntrin.getArgOperand(1); 7520 EVT VT = OpValues[0].getValueType(); 7521 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7522 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7523 SDValue ST; 7524 if (!Alignment) 7525 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7526 unsigned AS = 7527 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7528 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7529 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7530 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7531 SDValue Base, Index, Scale; 7532 ISD::MemIndexType IndexType; 7533 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7534 this, VPIntrin.getParent(), 7535 VT.getScalarStoreSize()); 7536 if (!UniformBase) { 7537 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7538 Index = getValue(PtrOperand); 7539 IndexType = ISD::SIGNED_SCALED; 7540 Scale = 7541 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7542 } 7543 EVT IdxVT = Index.getValueType(); 7544 EVT EltTy = IdxVT.getVectorElementType(); 7545 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7546 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7547 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7548 } 7549 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7550 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7551 OpValues[2], OpValues[3]}, 7552 MMO, IndexType); 7553 DAG.setRoot(ST); 7554 setValue(&VPIntrin, ST); 7555 } 7556 7557 void SelectionDAGBuilder::visitVPStridedLoad( 7558 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7559 SDLoc DL = getCurSDLoc(); 7560 Value *PtrOperand = VPIntrin.getArgOperand(0); 7561 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7562 if (!Alignment) 7563 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7564 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7565 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7566 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7567 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7568 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7569 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7570 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7571 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7572 7573 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7574 OpValues[2], OpValues[3], MMO, 7575 false /*IsExpanding*/); 7576 7577 if (AddToChain) 7578 PendingLoads.push_back(LD.getValue(1)); 7579 setValue(&VPIntrin, LD); 7580 } 7581 7582 void SelectionDAGBuilder::visitVPStridedStore( 7583 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7584 SDLoc DL = getCurSDLoc(); 7585 Value *PtrOperand = VPIntrin.getArgOperand(1); 7586 EVT VT = OpValues[0].getValueType(); 7587 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7588 if (!Alignment) 7589 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7590 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7591 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7592 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7593 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7594 7595 SDValue ST = DAG.getStridedStoreVP( 7596 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7597 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7598 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7599 /*IsCompressing*/ false); 7600 7601 DAG.setRoot(ST); 7602 setValue(&VPIntrin, ST); 7603 } 7604 7605 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7607 SDLoc DL = getCurSDLoc(); 7608 7609 ISD::CondCode Condition; 7610 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7611 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7612 if (IsFP) { 7613 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7614 // flags, but calls that don't return floating-point types can't be 7615 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7616 Condition = getFCmpCondCode(CondCode); 7617 if (TM.Options.NoNaNsFPMath) 7618 Condition = getFCmpCodeWithoutNaN(Condition); 7619 } else { 7620 Condition = getICmpCondCode(CondCode); 7621 } 7622 7623 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7624 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7625 // #2 is the condition code 7626 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7627 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7628 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7629 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7630 "Unexpected target EVL type"); 7631 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7632 7633 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7634 VPIntrin.getType()); 7635 setValue(&VPIntrin, 7636 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7637 } 7638 7639 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7640 const VPIntrinsic &VPIntrin) { 7641 SDLoc DL = getCurSDLoc(); 7642 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7643 7644 auto IID = VPIntrin.getIntrinsicID(); 7645 7646 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7647 return visitVPCmp(*CmpI); 7648 7649 SmallVector<EVT, 4> ValueVTs; 7650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7651 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7652 SDVTList VTs = DAG.getVTList(ValueVTs); 7653 7654 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7655 7656 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7657 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7658 "Unexpected target EVL type"); 7659 7660 // Request operands. 7661 SmallVector<SDValue, 7> OpValues; 7662 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7663 auto Op = getValue(VPIntrin.getArgOperand(I)); 7664 if (I == EVLParamPos) 7665 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7666 OpValues.push_back(Op); 7667 } 7668 7669 switch (Opcode) { 7670 default: { 7671 SDNodeFlags SDFlags; 7672 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7673 SDFlags.copyFMF(*FPMO); 7674 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7675 setValue(&VPIntrin, Result); 7676 break; 7677 } 7678 case ISD::VP_LOAD: 7679 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7680 break; 7681 case ISD::VP_GATHER: 7682 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7683 break; 7684 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7685 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7686 break; 7687 case ISD::VP_STORE: 7688 visitVPStore(VPIntrin, OpValues); 7689 break; 7690 case ISD::VP_SCATTER: 7691 visitVPScatter(VPIntrin, OpValues); 7692 break; 7693 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7694 visitVPStridedStore(VPIntrin, OpValues); 7695 break; 7696 case ISD::VP_FMULADD: { 7697 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7698 SDNodeFlags SDFlags; 7699 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7700 SDFlags.copyFMF(*FPMO); 7701 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7702 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7703 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7704 } else { 7705 SDValue Mul = DAG.getNode( 7706 ISD::VP_FMUL, DL, VTs, 7707 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7708 SDValue Add = 7709 DAG.getNode(ISD::VP_FADD, DL, VTs, 7710 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7711 setValue(&VPIntrin, Add); 7712 } 7713 break; 7714 } 7715 } 7716 } 7717 7718 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7719 const BasicBlock *EHPadBB, 7720 MCSymbol *&BeginLabel) { 7721 MachineFunction &MF = DAG.getMachineFunction(); 7722 MachineModuleInfo &MMI = MF.getMMI(); 7723 7724 // Insert a label before the invoke call to mark the try range. This can be 7725 // used to detect deletion of the invoke via the MachineModuleInfo. 7726 BeginLabel = MMI.getContext().createTempSymbol(); 7727 7728 // For SjLj, keep track of which landing pads go with which invokes 7729 // so as to maintain the ordering of pads in the LSDA. 7730 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7731 if (CallSiteIndex) { 7732 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7733 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7734 7735 // Now that the call site is handled, stop tracking it. 7736 MMI.setCurrentCallSite(0); 7737 } 7738 7739 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7740 } 7741 7742 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7743 const BasicBlock *EHPadBB, 7744 MCSymbol *BeginLabel) { 7745 assert(BeginLabel && "BeginLabel should've been set"); 7746 7747 MachineFunction &MF = DAG.getMachineFunction(); 7748 MachineModuleInfo &MMI = MF.getMMI(); 7749 7750 // Insert a label at the end of the invoke call to mark the try range. This 7751 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7752 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7753 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7754 7755 // Inform MachineModuleInfo of range. 7756 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7757 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7758 // actually use outlined funclets and their LSDA info style. 7759 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7760 assert(II && "II should've been set"); 7761 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7762 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7763 } else if (!isScopedEHPersonality(Pers)) { 7764 assert(EHPadBB); 7765 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7766 } 7767 7768 return Chain; 7769 } 7770 7771 std::pair<SDValue, SDValue> 7772 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7773 const BasicBlock *EHPadBB) { 7774 MCSymbol *BeginLabel = nullptr; 7775 7776 if (EHPadBB) { 7777 // Both PendingLoads and PendingExports must be flushed here; 7778 // this call might not return. 7779 (void)getRoot(); 7780 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7781 CLI.setChain(getRoot()); 7782 } 7783 7784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7785 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7786 7787 assert((CLI.IsTailCall || Result.second.getNode()) && 7788 "Non-null chain expected with non-tail call!"); 7789 assert((Result.second.getNode() || !Result.first.getNode()) && 7790 "Null value expected with tail call!"); 7791 7792 if (!Result.second.getNode()) { 7793 // As a special case, a null chain means that a tail call has been emitted 7794 // and the DAG root is already updated. 7795 HasTailCall = true; 7796 7797 // Since there's no actual continuation from this block, nothing can be 7798 // relying on us setting vregs for them. 7799 PendingExports.clear(); 7800 } else { 7801 DAG.setRoot(Result.second); 7802 } 7803 7804 if (EHPadBB) { 7805 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7806 BeginLabel)); 7807 } 7808 7809 return Result; 7810 } 7811 7812 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7813 bool isTailCall, 7814 bool isMustTailCall, 7815 const BasicBlock *EHPadBB) { 7816 auto &DL = DAG.getDataLayout(); 7817 FunctionType *FTy = CB.getFunctionType(); 7818 Type *RetTy = CB.getType(); 7819 7820 TargetLowering::ArgListTy Args; 7821 Args.reserve(CB.arg_size()); 7822 7823 const Value *SwiftErrorVal = nullptr; 7824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7825 7826 if (isTailCall) { 7827 // Avoid emitting tail calls in functions with the disable-tail-calls 7828 // attribute. 7829 auto *Caller = CB.getParent()->getParent(); 7830 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7831 "true" && !isMustTailCall) 7832 isTailCall = false; 7833 7834 // We can't tail call inside a function with a swifterror argument. Lowering 7835 // does not support this yet. It would have to move into the swifterror 7836 // register before the call. 7837 if (TLI.supportSwiftError() && 7838 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7839 isTailCall = false; 7840 } 7841 7842 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7843 TargetLowering::ArgListEntry Entry; 7844 const Value *V = *I; 7845 7846 // Skip empty types 7847 if (V->getType()->isEmptyTy()) 7848 continue; 7849 7850 SDValue ArgNode = getValue(V); 7851 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7852 7853 Entry.setAttributes(&CB, I - CB.arg_begin()); 7854 7855 // Use swifterror virtual register as input to the call. 7856 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7857 SwiftErrorVal = V; 7858 // We find the virtual register for the actual swifterror argument. 7859 // Instead of using the Value, we use the virtual register instead. 7860 Entry.Node = 7861 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7862 EVT(TLI.getPointerTy(DL))); 7863 } 7864 7865 Args.push_back(Entry); 7866 7867 // If we have an explicit sret argument that is an Instruction, (i.e., it 7868 // might point to function-local memory), we can't meaningfully tail-call. 7869 if (Entry.IsSRet && isa<Instruction>(V)) 7870 isTailCall = false; 7871 } 7872 7873 // If call site has a cfguardtarget operand bundle, create and add an 7874 // additional ArgListEntry. 7875 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7876 TargetLowering::ArgListEntry Entry; 7877 Value *V = Bundle->Inputs[0]; 7878 SDValue ArgNode = getValue(V); 7879 Entry.Node = ArgNode; 7880 Entry.Ty = V->getType(); 7881 Entry.IsCFGuardTarget = true; 7882 Args.push_back(Entry); 7883 } 7884 7885 // Check if target-independent constraints permit a tail call here. 7886 // Target-dependent constraints are checked within TLI->LowerCallTo. 7887 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7888 isTailCall = false; 7889 7890 // Disable tail calls if there is an swifterror argument. Targets have not 7891 // been updated to support tail calls. 7892 if (TLI.supportSwiftError() && SwiftErrorVal) 7893 isTailCall = false; 7894 7895 ConstantInt *CFIType = nullptr; 7896 if (CB.isIndirectCall()) { 7897 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7898 if (!TLI.supportKCFIBundles()) 7899 report_fatal_error( 7900 "Target doesn't support calls with kcfi operand bundles."); 7901 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7902 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7903 } 7904 } 7905 7906 TargetLowering::CallLoweringInfo CLI(DAG); 7907 CLI.setDebugLoc(getCurSDLoc()) 7908 .setChain(getRoot()) 7909 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7910 .setTailCall(isTailCall) 7911 .setConvergent(CB.isConvergent()) 7912 .setIsPreallocated( 7913 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7914 .setCFIType(CFIType); 7915 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7916 7917 if (Result.first.getNode()) { 7918 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7919 setValue(&CB, Result.first); 7920 } 7921 7922 // The last element of CLI.InVals has the SDValue for swifterror return. 7923 // Here we copy it to a virtual register and update SwiftErrorMap for 7924 // book-keeping. 7925 if (SwiftErrorVal && TLI.supportSwiftError()) { 7926 // Get the last element of InVals. 7927 SDValue Src = CLI.InVals.back(); 7928 Register VReg = 7929 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7930 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7931 DAG.setRoot(CopyNode); 7932 } 7933 } 7934 7935 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7936 SelectionDAGBuilder &Builder) { 7937 // Check to see if this load can be trivially constant folded, e.g. if the 7938 // input is from a string literal. 7939 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7940 // Cast pointer to the type we really want to load. 7941 Type *LoadTy = 7942 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7943 if (LoadVT.isVector()) 7944 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7945 7946 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7947 PointerType::getUnqual(LoadTy)); 7948 7949 if (const Constant *LoadCst = 7950 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7951 LoadTy, Builder.DAG.getDataLayout())) 7952 return Builder.getValue(LoadCst); 7953 } 7954 7955 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7956 // still constant memory, the input chain can be the entry node. 7957 SDValue Root; 7958 bool ConstantMemory = false; 7959 7960 // Do not serialize (non-volatile) loads of constant memory with anything. 7961 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7962 Root = Builder.DAG.getEntryNode(); 7963 ConstantMemory = true; 7964 } else { 7965 // Do not serialize non-volatile loads against each other. 7966 Root = Builder.DAG.getRoot(); 7967 } 7968 7969 SDValue Ptr = Builder.getValue(PtrVal); 7970 SDValue LoadVal = 7971 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7972 MachinePointerInfo(PtrVal), Align(1)); 7973 7974 if (!ConstantMemory) 7975 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7976 return LoadVal; 7977 } 7978 7979 /// Record the value for an instruction that produces an integer result, 7980 /// converting the type where necessary. 7981 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7982 SDValue Value, 7983 bool IsSigned) { 7984 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7985 I.getType(), true); 7986 if (IsSigned) 7987 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7988 else 7989 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7990 setValue(&I, Value); 7991 } 7992 7993 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7994 /// true and lower it. Otherwise return false, and it will be lowered like a 7995 /// normal call. 7996 /// The caller already checked that \p I calls the appropriate LibFunc with a 7997 /// correct prototype. 7998 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7999 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8000 const Value *Size = I.getArgOperand(2); 8001 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8002 if (CSize && CSize->getZExtValue() == 0) { 8003 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8004 I.getType(), true); 8005 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8006 return true; 8007 } 8008 8009 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8010 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8011 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8012 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8013 if (Res.first.getNode()) { 8014 processIntegerCallValue(I, Res.first, true); 8015 PendingLoads.push_back(Res.second); 8016 return true; 8017 } 8018 8019 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8020 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8021 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8022 return false; 8023 8024 // If the target has a fast compare for the given size, it will return a 8025 // preferred load type for that size. Require that the load VT is legal and 8026 // that the target supports unaligned loads of that type. Otherwise, return 8027 // INVALID. 8028 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8029 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8030 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8031 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8032 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8033 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8034 // TODO: Check alignment of src and dest ptrs. 8035 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8036 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8037 if (!TLI.isTypeLegal(LVT) || 8038 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8039 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8040 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8041 } 8042 8043 return LVT; 8044 }; 8045 8046 // This turns into unaligned loads. We only do this if the target natively 8047 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8048 // we'll only produce a small number of byte loads. 8049 MVT LoadVT; 8050 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8051 switch (NumBitsToCompare) { 8052 default: 8053 return false; 8054 case 16: 8055 LoadVT = MVT::i16; 8056 break; 8057 case 32: 8058 LoadVT = MVT::i32; 8059 break; 8060 case 64: 8061 case 128: 8062 case 256: 8063 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8064 break; 8065 } 8066 8067 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8068 return false; 8069 8070 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8071 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8072 8073 // Bitcast to a wide integer type if the loads are vectors. 8074 if (LoadVT.isVector()) { 8075 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8076 LoadL = DAG.getBitcast(CmpVT, LoadL); 8077 LoadR = DAG.getBitcast(CmpVT, LoadR); 8078 } 8079 8080 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8081 processIntegerCallValue(I, Cmp, false); 8082 return true; 8083 } 8084 8085 /// See if we can lower a memchr call into an optimized form. If so, return 8086 /// true and lower it. Otherwise return false, and it will be lowered like a 8087 /// normal call. 8088 /// The caller already checked that \p I calls the appropriate LibFunc with a 8089 /// correct prototype. 8090 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8091 const Value *Src = I.getArgOperand(0); 8092 const Value *Char = I.getArgOperand(1); 8093 const Value *Length = I.getArgOperand(2); 8094 8095 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8096 std::pair<SDValue, SDValue> Res = 8097 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8098 getValue(Src), getValue(Char), getValue(Length), 8099 MachinePointerInfo(Src)); 8100 if (Res.first.getNode()) { 8101 setValue(&I, Res.first); 8102 PendingLoads.push_back(Res.second); 8103 return true; 8104 } 8105 8106 return false; 8107 } 8108 8109 /// See if we can lower a mempcpy call into an optimized form. If so, return 8110 /// true and lower it. Otherwise return false, and it will be lowered like a 8111 /// normal call. 8112 /// The caller already checked that \p I calls the appropriate LibFunc with a 8113 /// correct prototype. 8114 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8115 SDValue Dst = getValue(I.getArgOperand(0)); 8116 SDValue Src = getValue(I.getArgOperand(1)); 8117 SDValue Size = getValue(I.getArgOperand(2)); 8118 8119 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8120 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8121 // DAG::getMemcpy needs Alignment to be defined. 8122 Align Alignment = std::min(DstAlign, SrcAlign); 8123 8124 bool isVol = false; 8125 SDLoc sdl = getCurSDLoc(); 8126 8127 // In the mempcpy context we need to pass in a false value for isTailCall 8128 // because the return pointer needs to be adjusted by the size of 8129 // the copied memory. 8130 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8131 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8132 /*isTailCall=*/false, 8133 MachinePointerInfo(I.getArgOperand(0)), 8134 MachinePointerInfo(I.getArgOperand(1)), 8135 I.getAAMetadata()); 8136 assert(MC.getNode() != nullptr && 8137 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8138 DAG.setRoot(MC); 8139 8140 // Check if Size needs to be truncated or extended. 8141 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8142 8143 // Adjust return pointer to point just past the last dst byte. 8144 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8145 Dst, Size); 8146 setValue(&I, DstPlusSize); 8147 return true; 8148 } 8149 8150 /// See if we can lower a strcpy call into an optimized form. If so, return 8151 /// true and lower it, otherwise return false and it will be lowered like a 8152 /// normal call. 8153 /// The caller already checked that \p I calls the appropriate LibFunc with a 8154 /// correct prototype. 8155 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8156 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8157 8158 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8159 std::pair<SDValue, SDValue> Res = 8160 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8161 getValue(Arg0), getValue(Arg1), 8162 MachinePointerInfo(Arg0), 8163 MachinePointerInfo(Arg1), isStpcpy); 8164 if (Res.first.getNode()) { 8165 setValue(&I, Res.first); 8166 DAG.setRoot(Res.second); 8167 return true; 8168 } 8169 8170 return false; 8171 } 8172 8173 /// See if we can lower a strcmp call into an optimized form. If so, return 8174 /// true and lower it, otherwise return false and it will be lowered like a 8175 /// normal call. 8176 /// The caller already checked that \p I calls the appropriate LibFunc with a 8177 /// correct prototype. 8178 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8179 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8180 8181 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8182 std::pair<SDValue, SDValue> Res = 8183 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8184 getValue(Arg0), getValue(Arg1), 8185 MachinePointerInfo(Arg0), 8186 MachinePointerInfo(Arg1)); 8187 if (Res.first.getNode()) { 8188 processIntegerCallValue(I, Res.first, true); 8189 PendingLoads.push_back(Res.second); 8190 return true; 8191 } 8192 8193 return false; 8194 } 8195 8196 /// See if we can lower a strlen call into an optimized form. If so, return 8197 /// true and lower it, otherwise return false and it will be lowered like a 8198 /// normal call. 8199 /// The caller already checked that \p I calls the appropriate LibFunc with a 8200 /// correct prototype. 8201 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8202 const Value *Arg0 = I.getArgOperand(0); 8203 8204 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8205 std::pair<SDValue, SDValue> Res = 8206 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8207 getValue(Arg0), MachinePointerInfo(Arg0)); 8208 if (Res.first.getNode()) { 8209 processIntegerCallValue(I, Res.first, false); 8210 PendingLoads.push_back(Res.second); 8211 return true; 8212 } 8213 8214 return false; 8215 } 8216 8217 /// See if we can lower a strnlen call into an optimized form. If so, return 8218 /// true and lower it, otherwise return false and it will be lowered like a 8219 /// normal call. 8220 /// The caller already checked that \p I calls the appropriate LibFunc with a 8221 /// correct prototype. 8222 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8223 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8224 8225 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8226 std::pair<SDValue, SDValue> Res = 8227 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8228 getValue(Arg0), getValue(Arg1), 8229 MachinePointerInfo(Arg0)); 8230 if (Res.first.getNode()) { 8231 processIntegerCallValue(I, Res.first, false); 8232 PendingLoads.push_back(Res.second); 8233 return true; 8234 } 8235 8236 return false; 8237 } 8238 8239 /// See if we can lower a unary floating-point operation into an SDNode with 8240 /// the specified Opcode. If so, return true and lower it, otherwise return 8241 /// false and it will be lowered like a normal call. 8242 /// The caller already checked that \p I calls the appropriate LibFunc with a 8243 /// correct prototype. 8244 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8245 unsigned Opcode) { 8246 // We already checked this call's prototype; verify it doesn't modify errno. 8247 if (!I.onlyReadsMemory()) 8248 return false; 8249 8250 SDNodeFlags Flags; 8251 Flags.copyFMF(cast<FPMathOperator>(I)); 8252 8253 SDValue Tmp = getValue(I.getArgOperand(0)); 8254 setValue(&I, 8255 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8256 return true; 8257 } 8258 8259 /// See if we can lower a binary floating-point operation into an SDNode with 8260 /// the specified Opcode. If so, return true and lower it. Otherwise return 8261 /// false, and it will be lowered like a normal call. 8262 /// The caller already checked that \p I calls the appropriate LibFunc with a 8263 /// correct prototype. 8264 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8265 unsigned Opcode) { 8266 // We already checked this call's prototype; verify it doesn't modify errno. 8267 if (!I.onlyReadsMemory()) 8268 return false; 8269 8270 SDNodeFlags Flags; 8271 Flags.copyFMF(cast<FPMathOperator>(I)); 8272 8273 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8274 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8275 EVT VT = Tmp0.getValueType(); 8276 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8277 return true; 8278 } 8279 8280 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8281 // Handle inline assembly differently. 8282 if (I.isInlineAsm()) { 8283 visitInlineAsm(I); 8284 return; 8285 } 8286 8287 if (Function *F = I.getCalledFunction()) { 8288 diagnoseDontCall(I); 8289 8290 if (F->isDeclaration()) { 8291 // Is this an LLVM intrinsic or a target-specific intrinsic? 8292 unsigned IID = F->getIntrinsicID(); 8293 if (!IID) 8294 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8295 IID = II->getIntrinsicID(F); 8296 8297 if (IID) { 8298 visitIntrinsicCall(I, IID); 8299 return; 8300 } 8301 } 8302 8303 // Check for well-known libc/libm calls. If the function is internal, it 8304 // can't be a library call. Don't do the check if marked as nobuiltin for 8305 // some reason or the call site requires strict floating point semantics. 8306 LibFunc Func; 8307 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8308 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8309 LibInfo->hasOptimizedCodeGen(Func)) { 8310 switch (Func) { 8311 default: break; 8312 case LibFunc_bcmp: 8313 if (visitMemCmpBCmpCall(I)) 8314 return; 8315 break; 8316 case LibFunc_copysign: 8317 case LibFunc_copysignf: 8318 case LibFunc_copysignl: 8319 // We already checked this call's prototype; verify it doesn't modify 8320 // errno. 8321 if (I.onlyReadsMemory()) { 8322 SDValue LHS = getValue(I.getArgOperand(0)); 8323 SDValue RHS = getValue(I.getArgOperand(1)); 8324 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8325 LHS.getValueType(), LHS, RHS)); 8326 return; 8327 } 8328 break; 8329 case LibFunc_fabs: 8330 case LibFunc_fabsf: 8331 case LibFunc_fabsl: 8332 if (visitUnaryFloatCall(I, ISD::FABS)) 8333 return; 8334 break; 8335 case LibFunc_fmin: 8336 case LibFunc_fminf: 8337 case LibFunc_fminl: 8338 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8339 return; 8340 break; 8341 case LibFunc_fmax: 8342 case LibFunc_fmaxf: 8343 case LibFunc_fmaxl: 8344 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8345 return; 8346 break; 8347 case LibFunc_sin: 8348 case LibFunc_sinf: 8349 case LibFunc_sinl: 8350 if (visitUnaryFloatCall(I, ISD::FSIN)) 8351 return; 8352 break; 8353 case LibFunc_cos: 8354 case LibFunc_cosf: 8355 case LibFunc_cosl: 8356 if (visitUnaryFloatCall(I, ISD::FCOS)) 8357 return; 8358 break; 8359 case LibFunc_sqrt: 8360 case LibFunc_sqrtf: 8361 case LibFunc_sqrtl: 8362 case LibFunc_sqrt_finite: 8363 case LibFunc_sqrtf_finite: 8364 case LibFunc_sqrtl_finite: 8365 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8366 return; 8367 break; 8368 case LibFunc_floor: 8369 case LibFunc_floorf: 8370 case LibFunc_floorl: 8371 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8372 return; 8373 break; 8374 case LibFunc_nearbyint: 8375 case LibFunc_nearbyintf: 8376 case LibFunc_nearbyintl: 8377 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8378 return; 8379 break; 8380 case LibFunc_ceil: 8381 case LibFunc_ceilf: 8382 case LibFunc_ceill: 8383 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8384 return; 8385 break; 8386 case LibFunc_rint: 8387 case LibFunc_rintf: 8388 case LibFunc_rintl: 8389 if (visitUnaryFloatCall(I, ISD::FRINT)) 8390 return; 8391 break; 8392 case LibFunc_round: 8393 case LibFunc_roundf: 8394 case LibFunc_roundl: 8395 if (visitUnaryFloatCall(I, ISD::FROUND)) 8396 return; 8397 break; 8398 case LibFunc_trunc: 8399 case LibFunc_truncf: 8400 case LibFunc_truncl: 8401 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8402 return; 8403 break; 8404 case LibFunc_log2: 8405 case LibFunc_log2f: 8406 case LibFunc_log2l: 8407 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8408 return; 8409 break; 8410 case LibFunc_exp2: 8411 case LibFunc_exp2f: 8412 case LibFunc_exp2l: 8413 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8414 return; 8415 break; 8416 case LibFunc_memcmp: 8417 if (visitMemCmpBCmpCall(I)) 8418 return; 8419 break; 8420 case LibFunc_mempcpy: 8421 if (visitMemPCpyCall(I)) 8422 return; 8423 break; 8424 case LibFunc_memchr: 8425 if (visitMemChrCall(I)) 8426 return; 8427 break; 8428 case LibFunc_strcpy: 8429 if (visitStrCpyCall(I, false)) 8430 return; 8431 break; 8432 case LibFunc_stpcpy: 8433 if (visitStrCpyCall(I, true)) 8434 return; 8435 break; 8436 case LibFunc_strcmp: 8437 if (visitStrCmpCall(I)) 8438 return; 8439 break; 8440 case LibFunc_strlen: 8441 if (visitStrLenCall(I)) 8442 return; 8443 break; 8444 case LibFunc_strnlen: 8445 if (visitStrNLenCall(I)) 8446 return; 8447 break; 8448 } 8449 } 8450 } 8451 8452 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8453 // have to do anything here to lower funclet bundles. 8454 // CFGuardTarget bundles are lowered in LowerCallTo. 8455 assert(!I.hasOperandBundlesOtherThan( 8456 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8457 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8458 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8459 "Cannot lower calls with arbitrary operand bundles!"); 8460 8461 SDValue Callee = getValue(I.getCalledOperand()); 8462 8463 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8464 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8465 else 8466 // Check if we can potentially perform a tail call. More detailed checking 8467 // is be done within LowerCallTo, after more information about the call is 8468 // known. 8469 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8470 } 8471 8472 namespace { 8473 8474 /// AsmOperandInfo - This contains information for each constraint that we are 8475 /// lowering. 8476 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8477 public: 8478 /// CallOperand - If this is the result output operand or a clobber 8479 /// this is null, otherwise it is the incoming operand to the CallInst. 8480 /// This gets modified as the asm is processed. 8481 SDValue CallOperand; 8482 8483 /// AssignedRegs - If this is a register or register class operand, this 8484 /// contains the set of register corresponding to the operand. 8485 RegsForValue AssignedRegs; 8486 8487 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8488 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8489 } 8490 8491 /// Whether or not this operand accesses memory 8492 bool hasMemory(const TargetLowering &TLI) const { 8493 // Indirect operand accesses access memory. 8494 if (isIndirect) 8495 return true; 8496 8497 for (const auto &Code : Codes) 8498 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8499 return true; 8500 8501 return false; 8502 } 8503 }; 8504 8505 8506 } // end anonymous namespace 8507 8508 /// Make sure that the output operand \p OpInfo and its corresponding input 8509 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8510 /// out). 8511 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8512 SDISelAsmOperandInfo &MatchingOpInfo, 8513 SelectionDAG &DAG) { 8514 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8515 return; 8516 8517 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8518 const auto &TLI = DAG.getTargetLoweringInfo(); 8519 8520 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8521 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8522 OpInfo.ConstraintVT); 8523 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8524 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8525 MatchingOpInfo.ConstraintVT); 8526 if ((OpInfo.ConstraintVT.isInteger() != 8527 MatchingOpInfo.ConstraintVT.isInteger()) || 8528 (MatchRC.second != InputRC.second)) { 8529 // FIXME: error out in a more elegant fashion 8530 report_fatal_error("Unsupported asm: input constraint" 8531 " with a matching output constraint of" 8532 " incompatible type!"); 8533 } 8534 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8535 } 8536 8537 /// Get a direct memory input to behave well as an indirect operand. 8538 /// This may introduce stores, hence the need for a \p Chain. 8539 /// \return The (possibly updated) chain. 8540 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8541 SDISelAsmOperandInfo &OpInfo, 8542 SelectionDAG &DAG) { 8543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8544 8545 // If we don't have an indirect input, put it in the constpool if we can, 8546 // otherwise spill it to a stack slot. 8547 // TODO: This isn't quite right. We need to handle these according to 8548 // the addressing mode that the constraint wants. Also, this may take 8549 // an additional register for the computation and we don't want that 8550 // either. 8551 8552 // If the operand is a float, integer, or vector constant, spill to a 8553 // constant pool entry to get its address. 8554 const Value *OpVal = OpInfo.CallOperandVal; 8555 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8556 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8557 OpInfo.CallOperand = DAG.getConstantPool( 8558 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8559 return Chain; 8560 } 8561 8562 // Otherwise, create a stack slot and emit a store to it before the asm. 8563 Type *Ty = OpVal->getType(); 8564 auto &DL = DAG.getDataLayout(); 8565 uint64_t TySize = DL.getTypeAllocSize(Ty); 8566 MachineFunction &MF = DAG.getMachineFunction(); 8567 int SSFI = MF.getFrameInfo().CreateStackObject( 8568 TySize, DL.getPrefTypeAlign(Ty), false); 8569 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8570 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8571 MachinePointerInfo::getFixedStack(MF, SSFI), 8572 TLI.getMemValueType(DL, Ty)); 8573 OpInfo.CallOperand = StackSlot; 8574 8575 return Chain; 8576 } 8577 8578 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8579 /// specified operand. We prefer to assign virtual registers, to allow the 8580 /// register allocator to handle the assignment process. However, if the asm 8581 /// uses features that we can't model on machineinstrs, we have SDISel do the 8582 /// allocation. This produces generally horrible, but correct, code. 8583 /// 8584 /// OpInfo describes the operand 8585 /// RefOpInfo describes the matching operand if any, the operand otherwise 8586 static llvm::Optional<unsigned> 8587 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8588 SDISelAsmOperandInfo &OpInfo, 8589 SDISelAsmOperandInfo &RefOpInfo) { 8590 LLVMContext &Context = *DAG.getContext(); 8591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8592 8593 MachineFunction &MF = DAG.getMachineFunction(); 8594 SmallVector<unsigned, 4> Regs; 8595 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8596 8597 // No work to do for memory/address operands. 8598 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8599 OpInfo.ConstraintType == TargetLowering::C_Address) 8600 return None; 8601 8602 // If this is a constraint for a single physreg, or a constraint for a 8603 // register class, find it. 8604 unsigned AssignedReg; 8605 const TargetRegisterClass *RC; 8606 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8607 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8608 // RC is unset only on failure. Return immediately. 8609 if (!RC) 8610 return None; 8611 8612 // Get the actual register value type. This is important, because the user 8613 // may have asked for (e.g.) the AX register in i32 type. We need to 8614 // remember that AX is actually i16 to get the right extension. 8615 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8616 8617 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8618 // If this is an FP operand in an integer register (or visa versa), or more 8619 // generally if the operand value disagrees with the register class we plan 8620 // to stick it in, fix the operand type. 8621 // 8622 // If this is an input value, the bitcast to the new type is done now. 8623 // Bitcast for output value is done at the end of visitInlineAsm(). 8624 if ((OpInfo.Type == InlineAsm::isOutput || 8625 OpInfo.Type == InlineAsm::isInput) && 8626 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8627 // Try to convert to the first EVT that the reg class contains. If the 8628 // types are identical size, use a bitcast to convert (e.g. two differing 8629 // vector types). Note: output bitcast is done at the end of 8630 // visitInlineAsm(). 8631 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8632 // Exclude indirect inputs while they are unsupported because the code 8633 // to perform the load is missing and thus OpInfo.CallOperand still 8634 // refers to the input address rather than the pointed-to value. 8635 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8636 OpInfo.CallOperand = 8637 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8638 OpInfo.ConstraintVT = RegVT; 8639 // If the operand is an FP value and we want it in integer registers, 8640 // use the corresponding integer type. This turns an f64 value into 8641 // i64, which can be passed with two i32 values on a 32-bit machine. 8642 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8643 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8644 if (OpInfo.Type == InlineAsm::isInput) 8645 OpInfo.CallOperand = 8646 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8647 OpInfo.ConstraintVT = VT; 8648 } 8649 } 8650 } 8651 8652 // No need to allocate a matching input constraint since the constraint it's 8653 // matching to has already been allocated. 8654 if (OpInfo.isMatchingInputConstraint()) 8655 return None; 8656 8657 EVT ValueVT = OpInfo.ConstraintVT; 8658 if (OpInfo.ConstraintVT == MVT::Other) 8659 ValueVT = RegVT; 8660 8661 // Initialize NumRegs. 8662 unsigned NumRegs = 1; 8663 if (OpInfo.ConstraintVT != MVT::Other) 8664 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8665 8666 // If this is a constraint for a specific physical register, like {r17}, 8667 // assign it now. 8668 8669 // If this associated to a specific register, initialize iterator to correct 8670 // place. If virtual, make sure we have enough registers 8671 8672 // Initialize iterator if necessary 8673 TargetRegisterClass::iterator I = RC->begin(); 8674 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8675 8676 // Do not check for single registers. 8677 if (AssignedReg) { 8678 I = std::find(I, RC->end(), AssignedReg); 8679 if (I == RC->end()) { 8680 // RC does not contain the selected register, which indicates a 8681 // mismatch between the register and the required type/bitwidth. 8682 return {AssignedReg}; 8683 } 8684 } 8685 8686 for (; NumRegs; --NumRegs, ++I) { 8687 assert(I != RC->end() && "Ran out of registers to allocate!"); 8688 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8689 Regs.push_back(R); 8690 } 8691 8692 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8693 return None; 8694 } 8695 8696 static unsigned 8697 findMatchingInlineAsmOperand(unsigned OperandNo, 8698 const std::vector<SDValue> &AsmNodeOperands) { 8699 // Scan until we find the definition we already emitted of this operand. 8700 unsigned CurOp = InlineAsm::Op_FirstOperand; 8701 for (; OperandNo; --OperandNo) { 8702 // Advance to the next operand. 8703 unsigned OpFlag = 8704 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8705 assert((InlineAsm::isRegDefKind(OpFlag) || 8706 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8707 InlineAsm::isMemKind(OpFlag)) && 8708 "Skipped past definitions?"); 8709 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8710 } 8711 return CurOp; 8712 } 8713 8714 namespace { 8715 8716 class ExtraFlags { 8717 unsigned Flags = 0; 8718 8719 public: 8720 explicit ExtraFlags(const CallBase &Call) { 8721 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8722 if (IA->hasSideEffects()) 8723 Flags |= InlineAsm::Extra_HasSideEffects; 8724 if (IA->isAlignStack()) 8725 Flags |= InlineAsm::Extra_IsAlignStack; 8726 if (Call.isConvergent()) 8727 Flags |= InlineAsm::Extra_IsConvergent; 8728 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8729 } 8730 8731 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8732 // Ideally, we would only check against memory constraints. However, the 8733 // meaning of an Other constraint can be target-specific and we can't easily 8734 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8735 // for Other constraints as well. 8736 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8737 OpInfo.ConstraintType == TargetLowering::C_Other) { 8738 if (OpInfo.Type == InlineAsm::isInput) 8739 Flags |= InlineAsm::Extra_MayLoad; 8740 else if (OpInfo.Type == InlineAsm::isOutput) 8741 Flags |= InlineAsm::Extra_MayStore; 8742 else if (OpInfo.Type == InlineAsm::isClobber) 8743 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8744 } 8745 } 8746 8747 unsigned get() const { return Flags; } 8748 }; 8749 8750 } // end anonymous namespace 8751 8752 static bool isFunction(SDValue Op) { 8753 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8754 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8755 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8756 8757 // In normal "call dllimport func" instruction (non-inlineasm) it force 8758 // indirect access by specifing call opcode. And usually specially print 8759 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8760 // not do in this way now. (In fact, this is similar with "Data Access" 8761 // action). So here we ignore dllimport function. 8762 if (Fn && !Fn->hasDLLImportStorageClass()) 8763 return true; 8764 } 8765 } 8766 return false; 8767 } 8768 8769 /// visitInlineAsm - Handle a call to an InlineAsm object. 8770 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8771 const BasicBlock *EHPadBB) { 8772 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8773 8774 /// ConstraintOperands - Information about all of the constraints. 8775 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8776 8777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8778 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8779 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8780 8781 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8782 // AsmDialect, MayLoad, MayStore). 8783 bool HasSideEffect = IA->hasSideEffects(); 8784 ExtraFlags ExtraInfo(Call); 8785 8786 for (auto &T : TargetConstraints) { 8787 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8788 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8789 8790 if (OpInfo.CallOperandVal) 8791 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8792 8793 if (!HasSideEffect) 8794 HasSideEffect = OpInfo.hasMemory(TLI); 8795 8796 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8797 // FIXME: Could we compute this on OpInfo rather than T? 8798 8799 // Compute the constraint code and ConstraintType to use. 8800 TLI.ComputeConstraintToUse(T, SDValue()); 8801 8802 if (T.ConstraintType == TargetLowering::C_Immediate && 8803 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8804 // We've delayed emitting a diagnostic like the "n" constraint because 8805 // inlining could cause an integer showing up. 8806 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8807 "' expects an integer constant " 8808 "expression"); 8809 8810 ExtraInfo.update(T); 8811 } 8812 8813 // We won't need to flush pending loads if this asm doesn't touch 8814 // memory and is nonvolatile. 8815 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8816 8817 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8818 if (EmitEHLabels) { 8819 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8820 } 8821 bool IsCallBr = isa<CallBrInst>(Call); 8822 8823 if (IsCallBr || EmitEHLabels) { 8824 // If this is a callbr or invoke we need to flush pending exports since 8825 // inlineasm_br and invoke are terminators. 8826 // We need to do this before nodes are glued to the inlineasm_br node. 8827 Chain = getControlRoot(); 8828 } 8829 8830 MCSymbol *BeginLabel = nullptr; 8831 if (EmitEHLabels) { 8832 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8833 } 8834 8835 int OpNo = -1; 8836 SmallVector<StringRef> AsmStrs; 8837 IA->collectAsmStrs(AsmStrs); 8838 8839 // Second pass over the constraints: compute which constraint option to use. 8840 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8841 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8842 OpNo++; 8843 8844 // If this is an output operand with a matching input operand, look up the 8845 // matching input. If their types mismatch, e.g. one is an integer, the 8846 // other is floating point, or their sizes are different, flag it as an 8847 // error. 8848 if (OpInfo.hasMatchingInput()) { 8849 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8850 patchMatchingInput(OpInfo, Input, DAG); 8851 } 8852 8853 // Compute the constraint code and ConstraintType to use. 8854 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8855 8856 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8857 OpInfo.Type == InlineAsm::isClobber) || 8858 OpInfo.ConstraintType == TargetLowering::C_Address) 8859 continue; 8860 8861 // In Linux PIC model, there are 4 cases about value/label addressing: 8862 // 8863 // 1: Function call or Label jmp inside the module. 8864 // 2: Data access (such as global variable, static variable) inside module. 8865 // 3: Function call or Label jmp outside the module. 8866 // 4: Data access (such as global variable) outside the module. 8867 // 8868 // Due to current llvm inline asm architecture designed to not "recognize" 8869 // the asm code, there are quite troubles for us to treat mem addressing 8870 // differently for same value/adress used in different instuctions. 8871 // For example, in pic model, call a func may in plt way or direclty 8872 // pc-related, but lea/mov a function adress may use got. 8873 // 8874 // Here we try to "recognize" function call for the case 1 and case 3 in 8875 // inline asm. And try to adjust the constraint for them. 8876 // 8877 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8878 // label, so here we don't handle jmp function label now, but we need to 8879 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8880 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8881 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8882 TM.getCodeModel() != CodeModel::Large) { 8883 OpInfo.isIndirect = false; 8884 OpInfo.ConstraintType = TargetLowering::C_Address; 8885 } 8886 8887 // If this is a memory input, and if the operand is not indirect, do what we 8888 // need to provide an address for the memory input. 8889 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8890 !OpInfo.isIndirect) { 8891 assert((OpInfo.isMultipleAlternative || 8892 (OpInfo.Type == InlineAsm::isInput)) && 8893 "Can only indirectify direct input operands!"); 8894 8895 // Memory operands really want the address of the value. 8896 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8897 8898 // There is no longer a Value* corresponding to this operand. 8899 OpInfo.CallOperandVal = nullptr; 8900 8901 // It is now an indirect operand. 8902 OpInfo.isIndirect = true; 8903 } 8904 8905 } 8906 8907 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8908 std::vector<SDValue> AsmNodeOperands; 8909 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8910 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8911 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8912 8913 // If we have a !srcloc metadata node associated with it, we want to attach 8914 // this to the ultimately generated inline asm machineinstr. To do this, we 8915 // pass in the third operand as this (potentially null) inline asm MDNode. 8916 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8917 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8918 8919 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8920 // bits as operand 3. 8921 AsmNodeOperands.push_back(DAG.getTargetConstant( 8922 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8923 8924 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8925 // this, assign virtual and physical registers for inputs and otput. 8926 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8927 // Assign Registers. 8928 SDISelAsmOperandInfo &RefOpInfo = 8929 OpInfo.isMatchingInputConstraint() 8930 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8931 : OpInfo; 8932 const auto RegError = 8933 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8934 if (RegError) { 8935 const MachineFunction &MF = DAG.getMachineFunction(); 8936 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8937 const char *RegName = TRI.getName(RegError.value()); 8938 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8939 "' allocated for constraint '" + 8940 Twine(OpInfo.ConstraintCode) + 8941 "' does not match required type"); 8942 return; 8943 } 8944 8945 auto DetectWriteToReservedRegister = [&]() { 8946 const MachineFunction &MF = DAG.getMachineFunction(); 8947 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8948 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8949 if (Register::isPhysicalRegister(Reg) && 8950 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8951 const char *RegName = TRI.getName(Reg); 8952 emitInlineAsmError(Call, "write to reserved register '" + 8953 Twine(RegName) + "'"); 8954 return true; 8955 } 8956 } 8957 return false; 8958 }; 8959 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8960 (OpInfo.Type == InlineAsm::isInput && 8961 !OpInfo.isMatchingInputConstraint())) && 8962 "Only address as input operand is allowed."); 8963 8964 switch (OpInfo.Type) { 8965 case InlineAsm::isOutput: 8966 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8967 unsigned ConstraintID = 8968 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8969 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8970 "Failed to convert memory constraint code to constraint id."); 8971 8972 // Add information to the INLINEASM node to know about this output. 8973 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8974 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8975 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8976 MVT::i32)); 8977 AsmNodeOperands.push_back(OpInfo.CallOperand); 8978 } else { 8979 // Otherwise, this outputs to a register (directly for C_Register / 8980 // C_RegisterClass, and a target-defined fashion for 8981 // C_Immediate/C_Other). Find a register that we can use. 8982 if (OpInfo.AssignedRegs.Regs.empty()) { 8983 emitInlineAsmError( 8984 Call, "couldn't allocate output register for constraint '" + 8985 Twine(OpInfo.ConstraintCode) + "'"); 8986 return; 8987 } 8988 8989 if (DetectWriteToReservedRegister()) 8990 return; 8991 8992 // Add information to the INLINEASM node to know that this register is 8993 // set. 8994 OpInfo.AssignedRegs.AddInlineAsmOperands( 8995 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8996 : InlineAsm::Kind_RegDef, 8997 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8998 } 8999 break; 9000 9001 case InlineAsm::isInput: 9002 case InlineAsm::isLabel: { 9003 SDValue InOperandVal = OpInfo.CallOperand; 9004 9005 if (OpInfo.isMatchingInputConstraint()) { 9006 // If this is required to match an output register we have already set, 9007 // just use its register. 9008 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9009 AsmNodeOperands); 9010 unsigned OpFlag = 9011 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9012 if (InlineAsm::isRegDefKind(OpFlag) || 9013 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9014 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9015 if (OpInfo.isIndirect) { 9016 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9017 emitInlineAsmError(Call, "inline asm not supported yet: " 9018 "don't know how to handle tied " 9019 "indirect register inputs"); 9020 return; 9021 } 9022 9023 SmallVector<unsigned, 4> Regs; 9024 MachineFunction &MF = DAG.getMachineFunction(); 9025 MachineRegisterInfo &MRI = MF.getRegInfo(); 9026 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9027 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9028 Register TiedReg = R->getReg(); 9029 MVT RegVT = R->getSimpleValueType(0); 9030 const TargetRegisterClass *RC = 9031 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9032 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9033 : TRI.getMinimalPhysRegClass(TiedReg); 9034 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9035 for (unsigned i = 0; i != NumRegs; ++i) 9036 Regs.push_back(MRI.createVirtualRegister(RC)); 9037 9038 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9039 9040 SDLoc dl = getCurSDLoc(); 9041 // Use the produced MatchedRegs object to 9042 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9043 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9044 true, OpInfo.getMatchedOperand(), dl, 9045 DAG, AsmNodeOperands); 9046 break; 9047 } 9048 9049 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9050 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9051 "Unexpected number of operands"); 9052 // Add information to the INLINEASM node to know about this input. 9053 // See InlineAsm.h isUseOperandTiedToDef. 9054 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9055 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9056 OpInfo.getMatchedOperand()); 9057 AsmNodeOperands.push_back(DAG.getTargetConstant( 9058 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9059 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9060 break; 9061 } 9062 9063 // Treat indirect 'X' constraint as memory. 9064 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9065 OpInfo.isIndirect) 9066 OpInfo.ConstraintType = TargetLowering::C_Memory; 9067 9068 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9069 OpInfo.ConstraintType == TargetLowering::C_Other) { 9070 std::vector<SDValue> Ops; 9071 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9072 Ops, DAG); 9073 if (Ops.empty()) { 9074 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9075 if (isa<ConstantSDNode>(InOperandVal)) { 9076 emitInlineAsmError(Call, "value out of range for constraint '" + 9077 Twine(OpInfo.ConstraintCode) + "'"); 9078 return; 9079 } 9080 9081 emitInlineAsmError(Call, 9082 "invalid operand for inline asm constraint '" + 9083 Twine(OpInfo.ConstraintCode) + "'"); 9084 return; 9085 } 9086 9087 // Add information to the INLINEASM node to know about this input. 9088 unsigned ResOpType = 9089 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9090 AsmNodeOperands.push_back(DAG.getTargetConstant( 9091 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9092 llvm::append_range(AsmNodeOperands, Ops); 9093 break; 9094 } 9095 9096 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9097 assert((OpInfo.isIndirect || 9098 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9099 "Operand must be indirect to be a mem!"); 9100 assert(InOperandVal.getValueType() == 9101 TLI.getPointerTy(DAG.getDataLayout()) && 9102 "Memory operands expect pointer values"); 9103 9104 unsigned ConstraintID = 9105 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9106 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9107 "Failed to convert memory constraint code to constraint id."); 9108 9109 // Add information to the INLINEASM node to know about this input. 9110 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9111 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9112 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9113 getCurSDLoc(), 9114 MVT::i32)); 9115 AsmNodeOperands.push_back(InOperandVal); 9116 break; 9117 } 9118 9119 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9120 assert(InOperandVal.getValueType() == 9121 TLI.getPointerTy(DAG.getDataLayout()) && 9122 "Address operands expect pointer values"); 9123 9124 unsigned ConstraintID = 9125 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9126 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9127 "Failed to convert memory constraint code to constraint id."); 9128 9129 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9130 9131 SDValue AsmOp = InOperandVal; 9132 if (isFunction(InOperandVal)) { 9133 auto *GA = dyn_cast<GlobalAddressSDNode>(InOperandVal); 9134 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9135 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9136 InOperandVal.getValueType(), 9137 GA->getOffset()); 9138 } 9139 9140 // Add information to the INLINEASM node to know about this input. 9141 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9142 9143 AsmNodeOperands.push_back( 9144 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9145 9146 AsmNodeOperands.push_back(AsmOp); 9147 break; 9148 } 9149 9150 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9151 OpInfo.ConstraintType == TargetLowering::C_Register) && 9152 "Unknown constraint type!"); 9153 9154 // TODO: Support this. 9155 if (OpInfo.isIndirect) { 9156 emitInlineAsmError( 9157 Call, "Don't know how to handle indirect register inputs yet " 9158 "for constraint '" + 9159 Twine(OpInfo.ConstraintCode) + "'"); 9160 return; 9161 } 9162 9163 // Copy the input into the appropriate registers. 9164 if (OpInfo.AssignedRegs.Regs.empty()) { 9165 emitInlineAsmError(Call, 9166 "couldn't allocate input reg for constraint '" + 9167 Twine(OpInfo.ConstraintCode) + "'"); 9168 return; 9169 } 9170 9171 if (DetectWriteToReservedRegister()) 9172 return; 9173 9174 SDLoc dl = getCurSDLoc(); 9175 9176 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9177 &Call); 9178 9179 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9180 dl, DAG, AsmNodeOperands); 9181 break; 9182 } 9183 case InlineAsm::isClobber: 9184 // Add the clobbered value to the operand list, so that the register 9185 // allocator is aware that the physreg got clobbered. 9186 if (!OpInfo.AssignedRegs.Regs.empty()) 9187 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9188 false, 0, getCurSDLoc(), DAG, 9189 AsmNodeOperands); 9190 break; 9191 } 9192 } 9193 9194 // Finish up input operands. Set the input chain and add the flag last. 9195 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9196 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9197 9198 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9199 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9200 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9201 Flag = Chain.getValue(1); 9202 9203 // Do additional work to generate outputs. 9204 9205 SmallVector<EVT, 1> ResultVTs; 9206 SmallVector<SDValue, 1> ResultValues; 9207 SmallVector<SDValue, 8> OutChains; 9208 9209 llvm::Type *CallResultType = Call.getType(); 9210 ArrayRef<Type *> ResultTypes; 9211 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9212 ResultTypes = StructResult->elements(); 9213 else if (!CallResultType->isVoidTy()) 9214 ResultTypes = makeArrayRef(CallResultType); 9215 9216 auto CurResultType = ResultTypes.begin(); 9217 auto handleRegAssign = [&](SDValue V) { 9218 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9219 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9220 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9221 ++CurResultType; 9222 // If the type of the inline asm call site return value is different but has 9223 // same size as the type of the asm output bitcast it. One example of this 9224 // is for vectors with different width / number of elements. This can 9225 // happen for register classes that can contain multiple different value 9226 // types. The preg or vreg allocated may not have the same VT as was 9227 // expected. 9228 // 9229 // This can also happen for a return value that disagrees with the register 9230 // class it is put in, eg. a double in a general-purpose register on a 9231 // 32-bit machine. 9232 if (ResultVT != V.getValueType() && 9233 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9234 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9235 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9236 V.getValueType().isInteger()) { 9237 // If a result value was tied to an input value, the computed result 9238 // may have a wider width than the expected result. Extract the 9239 // relevant portion. 9240 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9241 } 9242 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9243 ResultVTs.push_back(ResultVT); 9244 ResultValues.push_back(V); 9245 }; 9246 9247 // Deal with output operands. 9248 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9249 if (OpInfo.Type == InlineAsm::isOutput) { 9250 SDValue Val; 9251 // Skip trivial output operands. 9252 if (OpInfo.AssignedRegs.Regs.empty()) 9253 continue; 9254 9255 switch (OpInfo.ConstraintType) { 9256 case TargetLowering::C_Register: 9257 case TargetLowering::C_RegisterClass: 9258 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9259 Chain, &Flag, &Call); 9260 break; 9261 case TargetLowering::C_Immediate: 9262 case TargetLowering::C_Other: 9263 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9264 OpInfo, DAG); 9265 break; 9266 case TargetLowering::C_Memory: 9267 break; // Already handled. 9268 case TargetLowering::C_Address: 9269 break; // Silence warning. 9270 case TargetLowering::C_Unknown: 9271 assert(false && "Unexpected unknown constraint"); 9272 } 9273 9274 // Indirect output manifest as stores. Record output chains. 9275 if (OpInfo.isIndirect) { 9276 const Value *Ptr = OpInfo.CallOperandVal; 9277 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9278 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9279 MachinePointerInfo(Ptr)); 9280 OutChains.push_back(Store); 9281 } else { 9282 // generate CopyFromRegs to associated registers. 9283 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9284 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9285 for (const SDValue &V : Val->op_values()) 9286 handleRegAssign(V); 9287 } else 9288 handleRegAssign(Val); 9289 } 9290 } 9291 } 9292 9293 // Set results. 9294 if (!ResultValues.empty()) { 9295 assert(CurResultType == ResultTypes.end() && 9296 "Mismatch in number of ResultTypes"); 9297 assert(ResultValues.size() == ResultTypes.size() && 9298 "Mismatch in number of output operands in asm result"); 9299 9300 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9301 DAG.getVTList(ResultVTs), ResultValues); 9302 setValue(&Call, V); 9303 } 9304 9305 // Collect store chains. 9306 if (!OutChains.empty()) 9307 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9308 9309 if (EmitEHLabels) { 9310 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9311 } 9312 9313 // Only Update Root if inline assembly has a memory effect. 9314 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9315 EmitEHLabels) 9316 DAG.setRoot(Chain); 9317 } 9318 9319 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9320 const Twine &Message) { 9321 LLVMContext &Ctx = *DAG.getContext(); 9322 Ctx.emitError(&Call, Message); 9323 9324 // Make sure we leave the DAG in a valid state 9325 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9326 SmallVector<EVT, 1> ValueVTs; 9327 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9328 9329 if (ValueVTs.empty()) 9330 return; 9331 9332 SmallVector<SDValue, 1> Ops; 9333 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9334 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9335 9336 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9337 } 9338 9339 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9340 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9341 MVT::Other, getRoot(), 9342 getValue(I.getArgOperand(0)), 9343 DAG.getSrcValue(I.getArgOperand(0)))); 9344 } 9345 9346 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9348 const DataLayout &DL = DAG.getDataLayout(); 9349 SDValue V = DAG.getVAArg( 9350 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9351 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9352 DL.getABITypeAlign(I.getType()).value()); 9353 DAG.setRoot(V.getValue(1)); 9354 9355 if (I.getType()->isPointerTy()) 9356 V = DAG.getPtrExtOrTrunc( 9357 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9358 setValue(&I, V); 9359 } 9360 9361 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9362 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9363 MVT::Other, getRoot(), 9364 getValue(I.getArgOperand(0)), 9365 DAG.getSrcValue(I.getArgOperand(0)))); 9366 } 9367 9368 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9369 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9370 MVT::Other, getRoot(), 9371 getValue(I.getArgOperand(0)), 9372 getValue(I.getArgOperand(1)), 9373 DAG.getSrcValue(I.getArgOperand(0)), 9374 DAG.getSrcValue(I.getArgOperand(1)))); 9375 } 9376 9377 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9378 const Instruction &I, 9379 SDValue Op) { 9380 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9381 if (!Range) 9382 return Op; 9383 9384 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9385 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9386 return Op; 9387 9388 APInt Lo = CR.getUnsignedMin(); 9389 if (!Lo.isMinValue()) 9390 return Op; 9391 9392 APInt Hi = CR.getUnsignedMax(); 9393 unsigned Bits = std::max(Hi.getActiveBits(), 9394 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9395 9396 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9397 9398 SDLoc SL = getCurSDLoc(); 9399 9400 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9401 DAG.getValueType(SmallVT)); 9402 unsigned NumVals = Op.getNode()->getNumValues(); 9403 if (NumVals == 1) 9404 return ZExt; 9405 9406 SmallVector<SDValue, 4> Ops; 9407 9408 Ops.push_back(ZExt); 9409 for (unsigned I = 1; I != NumVals; ++I) 9410 Ops.push_back(Op.getValue(I)); 9411 9412 return DAG.getMergeValues(Ops, SL); 9413 } 9414 9415 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9416 /// the call being lowered. 9417 /// 9418 /// This is a helper for lowering intrinsics that follow a target calling 9419 /// convention or require stack pointer adjustment. Only a subset of the 9420 /// intrinsic's operands need to participate in the calling convention. 9421 void SelectionDAGBuilder::populateCallLoweringInfo( 9422 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9423 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9424 bool IsPatchPoint) { 9425 TargetLowering::ArgListTy Args; 9426 Args.reserve(NumArgs); 9427 9428 // Populate the argument list. 9429 // Attributes for args start at offset 1, after the return attribute. 9430 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9431 ArgI != ArgE; ++ArgI) { 9432 const Value *V = Call->getOperand(ArgI); 9433 9434 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9435 9436 TargetLowering::ArgListEntry Entry; 9437 Entry.Node = getValue(V); 9438 Entry.Ty = V->getType(); 9439 Entry.setAttributes(Call, ArgI); 9440 Args.push_back(Entry); 9441 } 9442 9443 CLI.setDebugLoc(getCurSDLoc()) 9444 .setChain(getRoot()) 9445 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9446 .setDiscardResult(Call->use_empty()) 9447 .setIsPatchPoint(IsPatchPoint) 9448 .setIsPreallocated( 9449 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9450 } 9451 9452 /// Add a stack map intrinsic call's live variable operands to a stackmap 9453 /// or patchpoint target node's operand list. 9454 /// 9455 /// Constants are converted to TargetConstants purely as an optimization to 9456 /// avoid constant materialization and register allocation. 9457 /// 9458 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9459 /// generate addess computation nodes, and so FinalizeISel can convert the 9460 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9461 /// address materialization and register allocation, but may also be required 9462 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9463 /// alloca in the entry block, then the runtime may assume that the alloca's 9464 /// StackMap location can be read immediately after compilation and that the 9465 /// location is valid at any point during execution (this is similar to the 9466 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9467 /// only available in a register, then the runtime would need to trap when 9468 /// execution reaches the StackMap in order to read the alloca's location. 9469 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9470 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9471 SelectionDAGBuilder &Builder) { 9472 SelectionDAG &DAG = Builder.DAG; 9473 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9474 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9475 9476 // Things on the stack are pointer-typed, meaning that they are already 9477 // legal and can be emitted directly to target nodes. 9478 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9479 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9480 } else { 9481 // Otherwise emit a target independent node to be legalised. 9482 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9483 } 9484 } 9485 } 9486 9487 /// Lower llvm.experimental.stackmap. 9488 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9489 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9490 // [live variables...]) 9491 9492 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9493 9494 SDValue Chain, InFlag, Callee; 9495 SmallVector<SDValue, 32> Ops; 9496 9497 SDLoc DL = getCurSDLoc(); 9498 Callee = getValue(CI.getCalledOperand()); 9499 9500 // The stackmap intrinsic only records the live variables (the arguments 9501 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9502 // intrinsic, this won't be lowered to a function call. This means we don't 9503 // have to worry about calling conventions and target specific lowering code. 9504 // Instead we perform the call lowering right here. 9505 // 9506 // chain, flag = CALLSEQ_START(chain, 0, 0) 9507 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9508 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9509 // 9510 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9511 InFlag = Chain.getValue(1); 9512 9513 // Add the STACKMAP operands, starting with DAG house-keeping. 9514 Ops.push_back(Chain); 9515 Ops.push_back(InFlag); 9516 9517 // Add the <id>, <numShadowBytes> operands. 9518 // 9519 // These do not require legalisation, and can be emitted directly to target 9520 // constant nodes. 9521 SDValue ID = getValue(CI.getArgOperand(0)); 9522 assert(ID.getValueType() == MVT::i64); 9523 SDValue IDConst = DAG.getTargetConstant( 9524 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9525 Ops.push_back(IDConst); 9526 9527 SDValue Shad = getValue(CI.getArgOperand(1)); 9528 assert(Shad.getValueType() == MVT::i32); 9529 SDValue ShadConst = DAG.getTargetConstant( 9530 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9531 Ops.push_back(ShadConst); 9532 9533 // Add the live variables. 9534 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9535 9536 // Create the STACKMAP node. 9537 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9538 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9539 InFlag = Chain.getValue(1); 9540 9541 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9542 9543 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9544 9545 // Set the root to the target-lowered call chain. 9546 DAG.setRoot(Chain); 9547 9548 // Inform the Frame Information that we have a stackmap in this function. 9549 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9550 } 9551 9552 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9553 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9554 const BasicBlock *EHPadBB) { 9555 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9556 // i32 <numBytes>, 9557 // i8* <target>, 9558 // i32 <numArgs>, 9559 // [Args...], 9560 // [live variables...]) 9561 9562 CallingConv::ID CC = CB.getCallingConv(); 9563 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9564 bool HasDef = !CB.getType()->isVoidTy(); 9565 SDLoc dl = getCurSDLoc(); 9566 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9567 9568 // Handle immediate and symbolic callees. 9569 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9570 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9571 /*isTarget=*/true); 9572 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9573 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9574 SDLoc(SymbolicCallee), 9575 SymbolicCallee->getValueType(0)); 9576 9577 // Get the real number of arguments participating in the call <numArgs> 9578 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9579 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9580 9581 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9582 // Intrinsics include all meta-operands up to but not including CC. 9583 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9584 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9585 "Not enough arguments provided to the patchpoint intrinsic"); 9586 9587 // For AnyRegCC the arguments are lowered later on manually. 9588 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9589 Type *ReturnTy = 9590 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9591 9592 TargetLowering::CallLoweringInfo CLI(DAG); 9593 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9594 ReturnTy, true); 9595 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9596 9597 SDNode *CallEnd = Result.second.getNode(); 9598 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9599 CallEnd = CallEnd->getOperand(0).getNode(); 9600 9601 /// Get a call instruction from the call sequence chain. 9602 /// Tail calls are not allowed. 9603 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9604 "Expected a callseq node."); 9605 SDNode *Call = CallEnd->getOperand(0).getNode(); 9606 bool HasGlue = Call->getGluedNode(); 9607 9608 // Replace the target specific call node with the patchable intrinsic. 9609 SmallVector<SDValue, 8> Ops; 9610 9611 // Push the chain. 9612 Ops.push_back(*(Call->op_begin())); 9613 9614 // Optionally, push the glue (if any). 9615 if (HasGlue) 9616 Ops.push_back(*(Call->op_end() - 1)); 9617 9618 // Push the register mask info. 9619 if (HasGlue) 9620 Ops.push_back(*(Call->op_end() - 2)); 9621 else 9622 Ops.push_back(*(Call->op_end() - 1)); 9623 9624 // Add the <id> and <numBytes> constants. 9625 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9626 Ops.push_back(DAG.getTargetConstant( 9627 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9628 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9629 Ops.push_back(DAG.getTargetConstant( 9630 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9631 MVT::i32)); 9632 9633 // Add the callee. 9634 Ops.push_back(Callee); 9635 9636 // Adjust <numArgs> to account for any arguments that have been passed on the 9637 // stack instead. 9638 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9639 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9640 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9641 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9642 9643 // Add the calling convention 9644 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9645 9646 // Add the arguments we omitted previously. The register allocator should 9647 // place these in any free register. 9648 if (IsAnyRegCC) 9649 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9650 Ops.push_back(getValue(CB.getArgOperand(i))); 9651 9652 // Push the arguments from the call instruction. 9653 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9654 Ops.append(Call->op_begin() + 2, e); 9655 9656 // Push live variables for the stack map. 9657 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9658 9659 SDVTList NodeTys; 9660 if (IsAnyRegCC && HasDef) { 9661 // Create the return types based on the intrinsic definition 9662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9663 SmallVector<EVT, 3> ValueVTs; 9664 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9665 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9666 9667 // There is always a chain and a glue type at the end 9668 ValueVTs.push_back(MVT::Other); 9669 ValueVTs.push_back(MVT::Glue); 9670 NodeTys = DAG.getVTList(ValueVTs); 9671 } else 9672 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9673 9674 // Replace the target specific call node with a PATCHPOINT node. 9675 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9676 9677 // Update the NodeMap. 9678 if (HasDef) { 9679 if (IsAnyRegCC) 9680 setValue(&CB, SDValue(PPV.getNode(), 0)); 9681 else 9682 setValue(&CB, Result.first); 9683 } 9684 9685 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9686 // call sequence. Furthermore the location of the chain and glue can change 9687 // when the AnyReg calling convention is used and the intrinsic returns a 9688 // value. 9689 if (IsAnyRegCC && HasDef) { 9690 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9691 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9692 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9693 } else 9694 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9695 DAG.DeleteNode(Call); 9696 9697 // Inform the Frame Information that we have a patchpoint in this function. 9698 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9699 } 9700 9701 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9702 unsigned Intrinsic) { 9703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9704 SDValue Op1 = getValue(I.getArgOperand(0)); 9705 SDValue Op2; 9706 if (I.arg_size() > 1) 9707 Op2 = getValue(I.getArgOperand(1)); 9708 SDLoc dl = getCurSDLoc(); 9709 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9710 SDValue Res; 9711 SDNodeFlags SDFlags; 9712 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9713 SDFlags.copyFMF(*FPMO); 9714 9715 switch (Intrinsic) { 9716 case Intrinsic::vector_reduce_fadd: 9717 if (SDFlags.hasAllowReassociation()) 9718 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9719 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9720 SDFlags); 9721 else 9722 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9723 break; 9724 case Intrinsic::vector_reduce_fmul: 9725 if (SDFlags.hasAllowReassociation()) 9726 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9727 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9728 SDFlags); 9729 else 9730 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9731 break; 9732 case Intrinsic::vector_reduce_add: 9733 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9734 break; 9735 case Intrinsic::vector_reduce_mul: 9736 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9737 break; 9738 case Intrinsic::vector_reduce_and: 9739 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9740 break; 9741 case Intrinsic::vector_reduce_or: 9742 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9743 break; 9744 case Intrinsic::vector_reduce_xor: 9745 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9746 break; 9747 case Intrinsic::vector_reduce_smax: 9748 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9749 break; 9750 case Intrinsic::vector_reduce_smin: 9751 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9752 break; 9753 case Intrinsic::vector_reduce_umax: 9754 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9755 break; 9756 case Intrinsic::vector_reduce_umin: 9757 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9758 break; 9759 case Intrinsic::vector_reduce_fmax: 9760 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9761 break; 9762 case Intrinsic::vector_reduce_fmin: 9763 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9764 break; 9765 default: 9766 llvm_unreachable("Unhandled vector reduce intrinsic"); 9767 } 9768 setValue(&I, Res); 9769 } 9770 9771 /// Returns an AttributeList representing the attributes applied to the return 9772 /// value of the given call. 9773 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9774 SmallVector<Attribute::AttrKind, 2> Attrs; 9775 if (CLI.RetSExt) 9776 Attrs.push_back(Attribute::SExt); 9777 if (CLI.RetZExt) 9778 Attrs.push_back(Attribute::ZExt); 9779 if (CLI.IsInReg) 9780 Attrs.push_back(Attribute::InReg); 9781 9782 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9783 Attrs); 9784 } 9785 9786 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9787 /// implementation, which just calls LowerCall. 9788 /// FIXME: When all targets are 9789 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9790 std::pair<SDValue, SDValue> 9791 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9792 // Handle the incoming return values from the call. 9793 CLI.Ins.clear(); 9794 Type *OrigRetTy = CLI.RetTy; 9795 SmallVector<EVT, 4> RetTys; 9796 SmallVector<uint64_t, 4> Offsets; 9797 auto &DL = CLI.DAG.getDataLayout(); 9798 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9799 9800 if (CLI.IsPostTypeLegalization) { 9801 // If we are lowering a libcall after legalization, split the return type. 9802 SmallVector<EVT, 4> OldRetTys; 9803 SmallVector<uint64_t, 4> OldOffsets; 9804 RetTys.swap(OldRetTys); 9805 Offsets.swap(OldOffsets); 9806 9807 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9808 EVT RetVT = OldRetTys[i]; 9809 uint64_t Offset = OldOffsets[i]; 9810 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9811 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9812 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9813 RetTys.append(NumRegs, RegisterVT); 9814 for (unsigned j = 0; j != NumRegs; ++j) 9815 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9816 } 9817 } 9818 9819 SmallVector<ISD::OutputArg, 4> Outs; 9820 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9821 9822 bool CanLowerReturn = 9823 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9824 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9825 9826 SDValue DemoteStackSlot; 9827 int DemoteStackIdx = -100; 9828 if (!CanLowerReturn) { 9829 // FIXME: equivalent assert? 9830 // assert(!CS.hasInAllocaArgument() && 9831 // "sret demotion is incompatible with inalloca"); 9832 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9833 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9834 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9835 DemoteStackIdx = 9836 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9837 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9838 DL.getAllocaAddrSpace()); 9839 9840 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9841 ArgListEntry Entry; 9842 Entry.Node = DemoteStackSlot; 9843 Entry.Ty = StackSlotPtrType; 9844 Entry.IsSExt = false; 9845 Entry.IsZExt = false; 9846 Entry.IsInReg = false; 9847 Entry.IsSRet = true; 9848 Entry.IsNest = false; 9849 Entry.IsByVal = false; 9850 Entry.IsByRef = false; 9851 Entry.IsReturned = false; 9852 Entry.IsSwiftSelf = false; 9853 Entry.IsSwiftAsync = false; 9854 Entry.IsSwiftError = false; 9855 Entry.IsCFGuardTarget = false; 9856 Entry.Alignment = Alignment; 9857 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9858 CLI.NumFixedArgs += 1; 9859 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9860 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9861 9862 // sret demotion isn't compatible with tail-calls, since the sret argument 9863 // points into the callers stack frame. 9864 CLI.IsTailCall = false; 9865 } else { 9866 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9867 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9868 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9869 ISD::ArgFlagsTy Flags; 9870 if (NeedsRegBlock) { 9871 Flags.setInConsecutiveRegs(); 9872 if (I == RetTys.size() - 1) 9873 Flags.setInConsecutiveRegsLast(); 9874 } 9875 EVT VT = RetTys[I]; 9876 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9877 CLI.CallConv, VT); 9878 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9879 CLI.CallConv, VT); 9880 for (unsigned i = 0; i != NumRegs; ++i) { 9881 ISD::InputArg MyFlags; 9882 MyFlags.Flags = Flags; 9883 MyFlags.VT = RegisterVT; 9884 MyFlags.ArgVT = VT; 9885 MyFlags.Used = CLI.IsReturnValueUsed; 9886 if (CLI.RetTy->isPointerTy()) { 9887 MyFlags.Flags.setPointer(); 9888 MyFlags.Flags.setPointerAddrSpace( 9889 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9890 } 9891 if (CLI.RetSExt) 9892 MyFlags.Flags.setSExt(); 9893 if (CLI.RetZExt) 9894 MyFlags.Flags.setZExt(); 9895 if (CLI.IsInReg) 9896 MyFlags.Flags.setInReg(); 9897 CLI.Ins.push_back(MyFlags); 9898 } 9899 } 9900 } 9901 9902 // We push in swifterror return as the last element of CLI.Ins. 9903 ArgListTy &Args = CLI.getArgs(); 9904 if (supportSwiftError()) { 9905 for (const ArgListEntry &Arg : Args) { 9906 if (Arg.IsSwiftError) { 9907 ISD::InputArg MyFlags; 9908 MyFlags.VT = getPointerTy(DL); 9909 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9910 MyFlags.Flags.setSwiftError(); 9911 CLI.Ins.push_back(MyFlags); 9912 } 9913 } 9914 } 9915 9916 // Handle all of the outgoing arguments. 9917 CLI.Outs.clear(); 9918 CLI.OutVals.clear(); 9919 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9920 SmallVector<EVT, 4> ValueVTs; 9921 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9922 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9923 Type *FinalType = Args[i].Ty; 9924 if (Args[i].IsByVal) 9925 FinalType = Args[i].IndirectType; 9926 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9927 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9928 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9929 ++Value) { 9930 EVT VT = ValueVTs[Value]; 9931 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9932 SDValue Op = SDValue(Args[i].Node.getNode(), 9933 Args[i].Node.getResNo() + Value); 9934 ISD::ArgFlagsTy Flags; 9935 9936 // Certain targets (such as MIPS), may have a different ABI alignment 9937 // for a type depending on the context. Give the target a chance to 9938 // specify the alignment it wants. 9939 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9940 Flags.setOrigAlign(OriginalAlignment); 9941 9942 if (Args[i].Ty->isPointerTy()) { 9943 Flags.setPointer(); 9944 Flags.setPointerAddrSpace( 9945 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9946 } 9947 if (Args[i].IsZExt) 9948 Flags.setZExt(); 9949 if (Args[i].IsSExt) 9950 Flags.setSExt(); 9951 if (Args[i].IsInReg) { 9952 // If we are using vectorcall calling convention, a structure that is 9953 // passed InReg - is surely an HVA 9954 if (CLI.CallConv == CallingConv::X86_VectorCall && 9955 isa<StructType>(FinalType)) { 9956 // The first value of a structure is marked 9957 if (0 == Value) 9958 Flags.setHvaStart(); 9959 Flags.setHva(); 9960 } 9961 // Set InReg Flag 9962 Flags.setInReg(); 9963 } 9964 if (Args[i].IsSRet) 9965 Flags.setSRet(); 9966 if (Args[i].IsSwiftSelf) 9967 Flags.setSwiftSelf(); 9968 if (Args[i].IsSwiftAsync) 9969 Flags.setSwiftAsync(); 9970 if (Args[i].IsSwiftError) 9971 Flags.setSwiftError(); 9972 if (Args[i].IsCFGuardTarget) 9973 Flags.setCFGuardTarget(); 9974 if (Args[i].IsByVal) 9975 Flags.setByVal(); 9976 if (Args[i].IsByRef) 9977 Flags.setByRef(); 9978 if (Args[i].IsPreallocated) { 9979 Flags.setPreallocated(); 9980 // Set the byval flag for CCAssignFn callbacks that don't know about 9981 // preallocated. This way we can know how many bytes we should've 9982 // allocated and how many bytes a callee cleanup function will pop. If 9983 // we port preallocated to more targets, we'll have to add custom 9984 // preallocated handling in the various CC lowering callbacks. 9985 Flags.setByVal(); 9986 } 9987 if (Args[i].IsInAlloca) { 9988 Flags.setInAlloca(); 9989 // Set the byval flag for CCAssignFn callbacks that don't know about 9990 // inalloca. This way we can know how many bytes we should've allocated 9991 // and how many bytes a callee cleanup function will pop. If we port 9992 // inalloca to more targets, we'll have to add custom inalloca handling 9993 // in the various CC lowering callbacks. 9994 Flags.setByVal(); 9995 } 9996 Align MemAlign; 9997 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9998 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9999 Flags.setByValSize(FrameSize); 10000 10001 // info is not there but there are cases it cannot get right. 10002 if (auto MA = Args[i].Alignment) 10003 MemAlign = *MA; 10004 else 10005 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10006 } else if (auto MA = Args[i].Alignment) { 10007 MemAlign = *MA; 10008 } else { 10009 MemAlign = OriginalAlignment; 10010 } 10011 Flags.setMemAlign(MemAlign); 10012 if (Args[i].IsNest) 10013 Flags.setNest(); 10014 if (NeedsRegBlock) 10015 Flags.setInConsecutiveRegs(); 10016 10017 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10018 CLI.CallConv, VT); 10019 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10020 CLI.CallConv, VT); 10021 SmallVector<SDValue, 4> Parts(NumParts); 10022 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10023 10024 if (Args[i].IsSExt) 10025 ExtendKind = ISD::SIGN_EXTEND; 10026 else if (Args[i].IsZExt) 10027 ExtendKind = ISD::ZERO_EXTEND; 10028 10029 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10030 // for now. 10031 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10032 CanLowerReturn) { 10033 assert((CLI.RetTy == Args[i].Ty || 10034 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10035 CLI.RetTy->getPointerAddressSpace() == 10036 Args[i].Ty->getPointerAddressSpace())) && 10037 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10038 // Before passing 'returned' to the target lowering code, ensure that 10039 // either the register MVT and the actual EVT are the same size or that 10040 // the return value and argument are extended in the same way; in these 10041 // cases it's safe to pass the argument register value unchanged as the 10042 // return register value (although it's at the target's option whether 10043 // to do so) 10044 // TODO: allow code generation to take advantage of partially preserved 10045 // registers rather than clobbering the entire register when the 10046 // parameter extension method is not compatible with the return 10047 // extension method 10048 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10049 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10050 CLI.RetZExt == Args[i].IsZExt)) 10051 Flags.setReturned(); 10052 } 10053 10054 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10055 CLI.CallConv, ExtendKind); 10056 10057 for (unsigned j = 0; j != NumParts; ++j) { 10058 // if it isn't first piece, alignment must be 1 10059 // For scalable vectors the scalable part is currently handled 10060 // by individual targets, so we just use the known minimum size here. 10061 ISD::OutputArg MyFlags( 10062 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10063 i < CLI.NumFixedArgs, i, 10064 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 10065 if (NumParts > 1 && j == 0) 10066 MyFlags.Flags.setSplit(); 10067 else if (j != 0) { 10068 MyFlags.Flags.setOrigAlign(Align(1)); 10069 if (j == NumParts - 1) 10070 MyFlags.Flags.setSplitEnd(); 10071 } 10072 10073 CLI.Outs.push_back(MyFlags); 10074 CLI.OutVals.push_back(Parts[j]); 10075 } 10076 10077 if (NeedsRegBlock && Value == NumValues - 1) 10078 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10079 } 10080 } 10081 10082 SmallVector<SDValue, 4> InVals; 10083 CLI.Chain = LowerCall(CLI, InVals); 10084 10085 // Update CLI.InVals to use outside of this function. 10086 CLI.InVals = InVals; 10087 10088 // Verify that the target's LowerCall behaved as expected. 10089 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10090 "LowerCall didn't return a valid chain!"); 10091 assert((!CLI.IsTailCall || InVals.empty()) && 10092 "LowerCall emitted a return value for a tail call!"); 10093 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10094 "LowerCall didn't emit the correct number of values!"); 10095 10096 // For a tail call, the return value is merely live-out and there aren't 10097 // any nodes in the DAG representing it. Return a special value to 10098 // indicate that a tail call has been emitted and no more Instructions 10099 // should be processed in the current block. 10100 if (CLI.IsTailCall) { 10101 CLI.DAG.setRoot(CLI.Chain); 10102 return std::make_pair(SDValue(), SDValue()); 10103 } 10104 10105 #ifndef NDEBUG 10106 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10107 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10108 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10109 "LowerCall emitted a value with the wrong type!"); 10110 } 10111 #endif 10112 10113 SmallVector<SDValue, 4> ReturnValues; 10114 if (!CanLowerReturn) { 10115 // The instruction result is the result of loading from the 10116 // hidden sret parameter. 10117 SmallVector<EVT, 1> PVTs; 10118 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10119 10120 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10121 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10122 EVT PtrVT = PVTs[0]; 10123 10124 unsigned NumValues = RetTys.size(); 10125 ReturnValues.resize(NumValues); 10126 SmallVector<SDValue, 4> Chains(NumValues); 10127 10128 // An aggregate return value cannot wrap around the address space, so 10129 // offsets to its parts don't wrap either. 10130 SDNodeFlags Flags; 10131 Flags.setNoUnsignedWrap(true); 10132 10133 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10134 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10135 for (unsigned i = 0; i < NumValues; ++i) { 10136 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10137 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10138 PtrVT), Flags); 10139 SDValue L = CLI.DAG.getLoad( 10140 RetTys[i], CLI.DL, CLI.Chain, Add, 10141 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10142 DemoteStackIdx, Offsets[i]), 10143 HiddenSRetAlign); 10144 ReturnValues[i] = L; 10145 Chains[i] = L.getValue(1); 10146 } 10147 10148 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10149 } else { 10150 // Collect the legal value parts into potentially illegal values 10151 // that correspond to the original function's return values. 10152 Optional<ISD::NodeType> AssertOp; 10153 if (CLI.RetSExt) 10154 AssertOp = ISD::AssertSext; 10155 else if (CLI.RetZExt) 10156 AssertOp = ISD::AssertZext; 10157 unsigned CurReg = 0; 10158 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10159 EVT VT = RetTys[I]; 10160 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10161 CLI.CallConv, VT); 10162 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10163 CLI.CallConv, VT); 10164 10165 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10166 NumRegs, RegisterVT, VT, nullptr, 10167 CLI.CallConv, AssertOp)); 10168 CurReg += NumRegs; 10169 } 10170 10171 // For a function returning void, there is no return value. We can't create 10172 // such a node, so we just return a null return value in that case. In 10173 // that case, nothing will actually look at the value. 10174 if (ReturnValues.empty()) 10175 return std::make_pair(SDValue(), CLI.Chain); 10176 } 10177 10178 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10179 CLI.DAG.getVTList(RetTys), ReturnValues); 10180 return std::make_pair(Res, CLI.Chain); 10181 } 10182 10183 /// Places new result values for the node in Results (their number 10184 /// and types must exactly match those of the original return values of 10185 /// the node), or leaves Results empty, which indicates that the node is not 10186 /// to be custom lowered after all. 10187 void TargetLowering::LowerOperationWrapper(SDNode *N, 10188 SmallVectorImpl<SDValue> &Results, 10189 SelectionDAG &DAG) const { 10190 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10191 10192 if (!Res.getNode()) 10193 return; 10194 10195 // If the original node has one result, take the return value from 10196 // LowerOperation as is. It might not be result number 0. 10197 if (N->getNumValues() == 1) { 10198 Results.push_back(Res); 10199 return; 10200 } 10201 10202 // If the original node has multiple results, then the return node should 10203 // have the same number of results. 10204 assert((N->getNumValues() == Res->getNumValues()) && 10205 "Lowering returned the wrong number of results!"); 10206 10207 // Places new result values base on N result number. 10208 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10209 Results.push_back(Res.getValue(I)); 10210 } 10211 10212 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10213 llvm_unreachable("LowerOperation not implemented for this target!"); 10214 } 10215 10216 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10217 unsigned Reg, 10218 ISD::NodeType ExtendType) { 10219 SDValue Op = getNonRegisterValue(V); 10220 assert((Op.getOpcode() != ISD::CopyFromReg || 10221 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10222 "Copy from a reg to the same reg!"); 10223 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10224 10225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10226 // If this is an InlineAsm we have to match the registers required, not the 10227 // notional registers required by the type. 10228 10229 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10230 None); // This is not an ABI copy. 10231 SDValue Chain = DAG.getEntryNode(); 10232 10233 if (ExtendType == ISD::ANY_EXTEND) { 10234 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10235 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10236 ExtendType = PreferredExtendIt->second; 10237 } 10238 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10239 PendingExports.push_back(Chain); 10240 } 10241 10242 #include "llvm/CodeGen/SelectionDAGISel.h" 10243 10244 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10245 /// entry block, return true. This includes arguments used by switches, since 10246 /// the switch may expand into multiple basic blocks. 10247 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10248 // With FastISel active, we may be splitting blocks, so force creation 10249 // of virtual registers for all non-dead arguments. 10250 if (FastISel) 10251 return A->use_empty(); 10252 10253 const BasicBlock &Entry = A->getParent()->front(); 10254 for (const User *U : A->users()) 10255 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10256 return false; // Use not in entry block. 10257 10258 return true; 10259 } 10260 10261 using ArgCopyElisionMapTy = 10262 DenseMap<const Argument *, 10263 std::pair<const AllocaInst *, const StoreInst *>>; 10264 10265 /// Scan the entry block of the function in FuncInfo for arguments that look 10266 /// like copies into a local alloca. Record any copied arguments in 10267 /// ArgCopyElisionCandidates. 10268 static void 10269 findArgumentCopyElisionCandidates(const DataLayout &DL, 10270 FunctionLoweringInfo *FuncInfo, 10271 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10272 // Record the state of every static alloca used in the entry block. Argument 10273 // allocas are all used in the entry block, so we need approximately as many 10274 // entries as we have arguments. 10275 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10276 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10277 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10278 StaticAllocas.reserve(NumArgs * 2); 10279 10280 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10281 if (!V) 10282 return nullptr; 10283 V = V->stripPointerCasts(); 10284 const auto *AI = dyn_cast<AllocaInst>(V); 10285 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10286 return nullptr; 10287 auto Iter = StaticAllocas.insert({AI, Unknown}); 10288 return &Iter.first->second; 10289 }; 10290 10291 // Look for stores of arguments to static allocas. Look through bitcasts and 10292 // GEPs to handle type coercions, as long as the alloca is fully initialized 10293 // by the store. Any non-store use of an alloca escapes it and any subsequent 10294 // unanalyzed store might write it. 10295 // FIXME: Handle structs initialized with multiple stores. 10296 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10297 // Look for stores, and handle non-store uses conservatively. 10298 const auto *SI = dyn_cast<StoreInst>(&I); 10299 if (!SI) { 10300 // We will look through cast uses, so ignore them completely. 10301 if (I.isCast()) 10302 continue; 10303 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10304 // to allocas. 10305 if (I.isDebugOrPseudoInst()) 10306 continue; 10307 // This is an unknown instruction. Assume it escapes or writes to all 10308 // static alloca operands. 10309 for (const Use &U : I.operands()) { 10310 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10311 *Info = StaticAllocaInfo::Clobbered; 10312 } 10313 continue; 10314 } 10315 10316 // If the stored value is a static alloca, mark it as escaped. 10317 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10318 *Info = StaticAllocaInfo::Clobbered; 10319 10320 // Check if the destination is a static alloca. 10321 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10322 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10323 if (!Info) 10324 continue; 10325 const AllocaInst *AI = cast<AllocaInst>(Dst); 10326 10327 // Skip allocas that have been initialized or clobbered. 10328 if (*Info != StaticAllocaInfo::Unknown) 10329 continue; 10330 10331 // Check if the stored value is an argument, and that this store fully 10332 // initializes the alloca. 10333 // If the argument type has padding bits we can't directly forward a pointer 10334 // as the upper bits may contain garbage. 10335 // Don't elide copies from the same argument twice. 10336 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10337 const auto *Arg = dyn_cast<Argument>(Val); 10338 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10339 Arg->getType()->isEmptyTy() || 10340 DL.getTypeStoreSize(Arg->getType()) != 10341 DL.getTypeAllocSize(AI->getAllocatedType()) || 10342 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10343 ArgCopyElisionCandidates.count(Arg)) { 10344 *Info = StaticAllocaInfo::Clobbered; 10345 continue; 10346 } 10347 10348 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10349 << '\n'); 10350 10351 // Mark this alloca and store for argument copy elision. 10352 *Info = StaticAllocaInfo::Elidable; 10353 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10354 10355 // Stop scanning if we've seen all arguments. This will happen early in -O0 10356 // builds, which is useful, because -O0 builds have large entry blocks and 10357 // many allocas. 10358 if (ArgCopyElisionCandidates.size() == NumArgs) 10359 break; 10360 } 10361 } 10362 10363 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10364 /// ArgVal is a load from a suitable fixed stack object. 10365 static void tryToElideArgumentCopy( 10366 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10367 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10368 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10369 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10370 SDValue ArgVal, bool &ArgHasUses) { 10371 // Check if this is a load from a fixed stack object. 10372 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10373 if (!LNode) 10374 return; 10375 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10376 if (!FINode) 10377 return; 10378 10379 // Check that the fixed stack object is the right size and alignment. 10380 // Look at the alignment that the user wrote on the alloca instead of looking 10381 // at the stack object. 10382 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10383 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10384 const AllocaInst *AI = ArgCopyIter->second.first; 10385 int FixedIndex = FINode->getIndex(); 10386 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10387 int OldIndex = AllocaIndex; 10388 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10389 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10390 LLVM_DEBUG( 10391 dbgs() << " argument copy elision failed due to bad fixed stack " 10392 "object size\n"); 10393 return; 10394 } 10395 Align RequiredAlignment = AI->getAlign(); 10396 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10397 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10398 "greater than stack argument alignment (" 10399 << DebugStr(RequiredAlignment) << " vs " 10400 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10401 return; 10402 } 10403 10404 // Perform the elision. Delete the old stack object and replace its only use 10405 // in the variable info map. Mark the stack object as mutable. 10406 LLVM_DEBUG({ 10407 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10408 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10409 << '\n'; 10410 }); 10411 MFI.RemoveStackObject(OldIndex); 10412 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10413 AllocaIndex = FixedIndex; 10414 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10415 Chains.push_back(ArgVal.getValue(1)); 10416 10417 // Avoid emitting code for the store implementing the copy. 10418 const StoreInst *SI = ArgCopyIter->second.second; 10419 ElidedArgCopyInstrs.insert(SI); 10420 10421 // Check for uses of the argument again so that we can avoid exporting ArgVal 10422 // if it is't used by anything other than the store. 10423 for (const Value *U : Arg.users()) { 10424 if (U != SI) { 10425 ArgHasUses = true; 10426 break; 10427 } 10428 } 10429 } 10430 10431 void SelectionDAGISel::LowerArguments(const Function &F) { 10432 SelectionDAG &DAG = SDB->DAG; 10433 SDLoc dl = SDB->getCurSDLoc(); 10434 const DataLayout &DL = DAG.getDataLayout(); 10435 SmallVector<ISD::InputArg, 16> Ins; 10436 10437 // In Naked functions we aren't going to save any registers. 10438 if (F.hasFnAttribute(Attribute::Naked)) 10439 return; 10440 10441 if (!FuncInfo->CanLowerReturn) { 10442 // Put in an sret pointer parameter before all the other parameters. 10443 SmallVector<EVT, 1> ValueVTs; 10444 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10445 F.getReturnType()->getPointerTo( 10446 DAG.getDataLayout().getAllocaAddrSpace()), 10447 ValueVTs); 10448 10449 // NOTE: Assuming that a pointer will never break down to more than one VT 10450 // or one register. 10451 ISD::ArgFlagsTy Flags; 10452 Flags.setSRet(); 10453 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10454 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10455 ISD::InputArg::NoArgIndex, 0); 10456 Ins.push_back(RetArg); 10457 } 10458 10459 // Look for stores of arguments to static allocas. Mark such arguments with a 10460 // flag to ask the target to give us the memory location of that argument if 10461 // available. 10462 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10463 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10464 ArgCopyElisionCandidates); 10465 10466 // Set up the incoming argument description vector. 10467 for (const Argument &Arg : F.args()) { 10468 unsigned ArgNo = Arg.getArgNo(); 10469 SmallVector<EVT, 4> ValueVTs; 10470 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10471 bool isArgValueUsed = !Arg.use_empty(); 10472 unsigned PartBase = 0; 10473 Type *FinalType = Arg.getType(); 10474 if (Arg.hasAttribute(Attribute::ByVal)) 10475 FinalType = Arg.getParamByValType(); 10476 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10477 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10478 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10479 Value != NumValues; ++Value) { 10480 EVT VT = ValueVTs[Value]; 10481 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10482 ISD::ArgFlagsTy Flags; 10483 10484 10485 if (Arg.getType()->isPointerTy()) { 10486 Flags.setPointer(); 10487 Flags.setPointerAddrSpace( 10488 cast<PointerType>(Arg.getType())->getAddressSpace()); 10489 } 10490 if (Arg.hasAttribute(Attribute::ZExt)) 10491 Flags.setZExt(); 10492 if (Arg.hasAttribute(Attribute::SExt)) 10493 Flags.setSExt(); 10494 if (Arg.hasAttribute(Attribute::InReg)) { 10495 // If we are using vectorcall calling convention, a structure that is 10496 // passed InReg - is surely an HVA 10497 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10498 isa<StructType>(Arg.getType())) { 10499 // The first value of a structure is marked 10500 if (0 == Value) 10501 Flags.setHvaStart(); 10502 Flags.setHva(); 10503 } 10504 // Set InReg Flag 10505 Flags.setInReg(); 10506 } 10507 if (Arg.hasAttribute(Attribute::StructRet)) 10508 Flags.setSRet(); 10509 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10510 Flags.setSwiftSelf(); 10511 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10512 Flags.setSwiftAsync(); 10513 if (Arg.hasAttribute(Attribute::SwiftError)) 10514 Flags.setSwiftError(); 10515 if (Arg.hasAttribute(Attribute::ByVal)) 10516 Flags.setByVal(); 10517 if (Arg.hasAttribute(Attribute::ByRef)) 10518 Flags.setByRef(); 10519 if (Arg.hasAttribute(Attribute::InAlloca)) { 10520 Flags.setInAlloca(); 10521 // Set the byval flag for CCAssignFn callbacks that don't know about 10522 // inalloca. This way we can know how many bytes we should've allocated 10523 // and how many bytes a callee cleanup function will pop. If we port 10524 // inalloca to more targets, we'll have to add custom inalloca handling 10525 // in the various CC lowering callbacks. 10526 Flags.setByVal(); 10527 } 10528 if (Arg.hasAttribute(Attribute::Preallocated)) { 10529 Flags.setPreallocated(); 10530 // Set the byval flag for CCAssignFn callbacks that don't know about 10531 // preallocated. This way we can know how many bytes we should've 10532 // allocated and how many bytes a callee cleanup function will pop. If 10533 // we port preallocated to more targets, we'll have to add custom 10534 // preallocated handling in the various CC lowering callbacks. 10535 Flags.setByVal(); 10536 } 10537 10538 // Certain targets (such as MIPS), may have a different ABI alignment 10539 // for a type depending on the context. Give the target a chance to 10540 // specify the alignment it wants. 10541 const Align OriginalAlignment( 10542 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10543 Flags.setOrigAlign(OriginalAlignment); 10544 10545 Align MemAlign; 10546 Type *ArgMemTy = nullptr; 10547 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10548 Flags.isByRef()) { 10549 if (!ArgMemTy) 10550 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10551 10552 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10553 10554 // For in-memory arguments, size and alignment should be passed from FE. 10555 // BE will guess if this info is not there but there are cases it cannot 10556 // get right. 10557 if (auto ParamAlign = Arg.getParamStackAlign()) 10558 MemAlign = *ParamAlign; 10559 else if ((ParamAlign = Arg.getParamAlign())) 10560 MemAlign = *ParamAlign; 10561 else 10562 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10563 if (Flags.isByRef()) 10564 Flags.setByRefSize(MemSize); 10565 else 10566 Flags.setByValSize(MemSize); 10567 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10568 MemAlign = *ParamAlign; 10569 } else { 10570 MemAlign = OriginalAlignment; 10571 } 10572 Flags.setMemAlign(MemAlign); 10573 10574 if (Arg.hasAttribute(Attribute::Nest)) 10575 Flags.setNest(); 10576 if (NeedsRegBlock) 10577 Flags.setInConsecutiveRegs(); 10578 if (ArgCopyElisionCandidates.count(&Arg)) 10579 Flags.setCopyElisionCandidate(); 10580 if (Arg.hasAttribute(Attribute::Returned)) 10581 Flags.setReturned(); 10582 10583 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10584 *CurDAG->getContext(), F.getCallingConv(), VT); 10585 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10586 *CurDAG->getContext(), F.getCallingConv(), VT); 10587 for (unsigned i = 0; i != NumRegs; ++i) { 10588 // For scalable vectors, use the minimum size; individual targets 10589 // are responsible for handling scalable vector arguments and 10590 // return values. 10591 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10592 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10593 if (NumRegs > 1 && i == 0) 10594 MyFlags.Flags.setSplit(); 10595 // if it isn't first piece, alignment must be 1 10596 else if (i > 0) { 10597 MyFlags.Flags.setOrigAlign(Align(1)); 10598 if (i == NumRegs - 1) 10599 MyFlags.Flags.setSplitEnd(); 10600 } 10601 Ins.push_back(MyFlags); 10602 } 10603 if (NeedsRegBlock && Value == NumValues - 1) 10604 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10605 PartBase += VT.getStoreSize().getKnownMinSize(); 10606 } 10607 } 10608 10609 // Call the target to set up the argument values. 10610 SmallVector<SDValue, 8> InVals; 10611 SDValue NewRoot = TLI->LowerFormalArguments( 10612 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10613 10614 // Verify that the target's LowerFormalArguments behaved as expected. 10615 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10616 "LowerFormalArguments didn't return a valid chain!"); 10617 assert(InVals.size() == Ins.size() && 10618 "LowerFormalArguments didn't emit the correct number of values!"); 10619 LLVM_DEBUG({ 10620 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10621 assert(InVals[i].getNode() && 10622 "LowerFormalArguments emitted a null value!"); 10623 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10624 "LowerFormalArguments emitted a value with the wrong type!"); 10625 } 10626 }); 10627 10628 // Update the DAG with the new chain value resulting from argument lowering. 10629 DAG.setRoot(NewRoot); 10630 10631 // Set up the argument values. 10632 unsigned i = 0; 10633 if (!FuncInfo->CanLowerReturn) { 10634 // Create a virtual register for the sret pointer, and put in a copy 10635 // from the sret argument into it. 10636 SmallVector<EVT, 1> ValueVTs; 10637 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10638 F.getReturnType()->getPointerTo( 10639 DAG.getDataLayout().getAllocaAddrSpace()), 10640 ValueVTs); 10641 MVT VT = ValueVTs[0].getSimpleVT(); 10642 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10643 Optional<ISD::NodeType> AssertOp; 10644 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10645 nullptr, F.getCallingConv(), AssertOp); 10646 10647 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10648 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10649 Register SRetReg = 10650 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10651 FuncInfo->DemoteRegister = SRetReg; 10652 NewRoot = 10653 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10654 DAG.setRoot(NewRoot); 10655 10656 // i indexes lowered arguments. Bump it past the hidden sret argument. 10657 ++i; 10658 } 10659 10660 SmallVector<SDValue, 4> Chains; 10661 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10662 for (const Argument &Arg : F.args()) { 10663 SmallVector<SDValue, 4> ArgValues; 10664 SmallVector<EVT, 4> ValueVTs; 10665 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10666 unsigned NumValues = ValueVTs.size(); 10667 if (NumValues == 0) 10668 continue; 10669 10670 bool ArgHasUses = !Arg.use_empty(); 10671 10672 // Elide the copying store if the target loaded this argument from a 10673 // suitable fixed stack object. 10674 if (Ins[i].Flags.isCopyElisionCandidate()) { 10675 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10676 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10677 InVals[i], ArgHasUses); 10678 } 10679 10680 // If this argument is unused then remember its value. It is used to generate 10681 // debugging information. 10682 bool isSwiftErrorArg = 10683 TLI->supportSwiftError() && 10684 Arg.hasAttribute(Attribute::SwiftError); 10685 if (!ArgHasUses && !isSwiftErrorArg) { 10686 SDB->setUnusedArgValue(&Arg, InVals[i]); 10687 10688 // Also remember any frame index for use in FastISel. 10689 if (FrameIndexSDNode *FI = 10690 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10691 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10692 } 10693 10694 for (unsigned Val = 0; Val != NumValues; ++Val) { 10695 EVT VT = ValueVTs[Val]; 10696 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10697 F.getCallingConv(), VT); 10698 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10699 *CurDAG->getContext(), F.getCallingConv(), VT); 10700 10701 // Even an apparent 'unused' swifterror argument needs to be returned. So 10702 // we do generate a copy for it that can be used on return from the 10703 // function. 10704 if (ArgHasUses || isSwiftErrorArg) { 10705 Optional<ISD::NodeType> AssertOp; 10706 if (Arg.hasAttribute(Attribute::SExt)) 10707 AssertOp = ISD::AssertSext; 10708 else if (Arg.hasAttribute(Attribute::ZExt)) 10709 AssertOp = ISD::AssertZext; 10710 10711 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10712 PartVT, VT, nullptr, 10713 F.getCallingConv(), AssertOp)); 10714 } 10715 10716 i += NumParts; 10717 } 10718 10719 // We don't need to do anything else for unused arguments. 10720 if (ArgValues.empty()) 10721 continue; 10722 10723 // Note down frame index. 10724 if (FrameIndexSDNode *FI = 10725 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10726 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10727 10728 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10729 SDB->getCurSDLoc()); 10730 10731 SDB->setValue(&Arg, Res); 10732 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10733 // We want to associate the argument with the frame index, among 10734 // involved operands, that correspond to the lowest address. The 10735 // getCopyFromParts function, called earlier, is swapping the order of 10736 // the operands to BUILD_PAIR depending on endianness. The result of 10737 // that swapping is that the least significant bits of the argument will 10738 // be in the first operand of the BUILD_PAIR node, and the most 10739 // significant bits will be in the second operand. 10740 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10741 if (LoadSDNode *LNode = 10742 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10743 if (FrameIndexSDNode *FI = 10744 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10745 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10746 } 10747 10748 // Analyses past this point are naive and don't expect an assertion. 10749 if (Res.getOpcode() == ISD::AssertZext) 10750 Res = Res.getOperand(0); 10751 10752 // Update the SwiftErrorVRegDefMap. 10753 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10754 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10755 if (Register::isVirtualRegister(Reg)) 10756 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10757 Reg); 10758 } 10759 10760 // If this argument is live outside of the entry block, insert a copy from 10761 // wherever we got it to the vreg that other BB's will reference it as. 10762 if (Res.getOpcode() == ISD::CopyFromReg) { 10763 // If we can, though, try to skip creating an unnecessary vreg. 10764 // FIXME: This isn't very clean... it would be nice to make this more 10765 // general. 10766 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10767 if (Register::isVirtualRegister(Reg)) { 10768 FuncInfo->ValueMap[&Arg] = Reg; 10769 continue; 10770 } 10771 } 10772 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10773 FuncInfo->InitializeRegForValue(&Arg); 10774 SDB->CopyToExportRegsIfNeeded(&Arg); 10775 } 10776 } 10777 10778 if (!Chains.empty()) { 10779 Chains.push_back(NewRoot); 10780 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10781 } 10782 10783 DAG.setRoot(NewRoot); 10784 10785 assert(i == InVals.size() && "Argument register count mismatch!"); 10786 10787 // If any argument copy elisions occurred and we have debug info, update the 10788 // stale frame indices used in the dbg.declare variable info table. 10789 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10790 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10791 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10792 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10793 if (I != ArgCopyElisionFrameIndexMap.end()) 10794 VI.Slot = I->second; 10795 } 10796 } 10797 10798 // Finally, if the target has anything special to do, allow it to do so. 10799 emitFunctionEntryCode(); 10800 } 10801 10802 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10803 /// ensure constants are generated when needed. Remember the virtual registers 10804 /// that need to be added to the Machine PHI nodes as input. We cannot just 10805 /// directly add them, because expansion might result in multiple MBB's for one 10806 /// BB. As such, the start of the BB might correspond to a different MBB than 10807 /// the end. 10808 void 10809 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10811 10812 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10813 10814 // Check PHI nodes in successors that expect a value to be available from this 10815 // block. 10816 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10817 if (!isa<PHINode>(SuccBB->begin())) continue; 10818 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10819 10820 // If this terminator has multiple identical successors (common for 10821 // switches), only handle each succ once. 10822 if (!SuccsHandled.insert(SuccMBB).second) 10823 continue; 10824 10825 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10826 10827 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10828 // nodes and Machine PHI nodes, but the incoming operands have not been 10829 // emitted yet. 10830 for (const PHINode &PN : SuccBB->phis()) { 10831 // Ignore dead phi's. 10832 if (PN.use_empty()) 10833 continue; 10834 10835 // Skip empty types 10836 if (PN.getType()->isEmptyTy()) 10837 continue; 10838 10839 unsigned Reg; 10840 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10841 10842 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10843 unsigned &RegOut = ConstantsOut[C]; 10844 if (RegOut == 0) { 10845 RegOut = FuncInfo.CreateRegs(C); 10846 // We need to zero/sign extend ConstantInt phi operands to match 10847 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10848 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10849 if (auto *CI = dyn_cast<ConstantInt>(C)) 10850 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10851 : ISD::ZERO_EXTEND; 10852 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10853 } 10854 Reg = RegOut; 10855 } else { 10856 DenseMap<const Value *, Register>::iterator I = 10857 FuncInfo.ValueMap.find(PHIOp); 10858 if (I != FuncInfo.ValueMap.end()) 10859 Reg = I->second; 10860 else { 10861 assert(isa<AllocaInst>(PHIOp) && 10862 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10863 "Didn't codegen value into a register!??"); 10864 Reg = FuncInfo.CreateRegs(PHIOp); 10865 CopyValueToVirtualRegister(PHIOp, Reg); 10866 } 10867 } 10868 10869 // Remember that this register needs to added to the machine PHI node as 10870 // the input for this MBB. 10871 SmallVector<EVT, 4> ValueVTs; 10872 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10873 for (EVT VT : ValueVTs) { 10874 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10875 for (unsigned i = 0; i != NumRegisters; ++i) 10876 FuncInfo.PHINodesToUpdate.push_back( 10877 std::make_pair(&*MBBI++, Reg + i)); 10878 Reg += NumRegisters; 10879 } 10880 } 10881 } 10882 10883 ConstantsOut.clear(); 10884 } 10885 10886 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10887 MachineFunction::iterator I(MBB); 10888 if (++I == FuncInfo.MF->end()) 10889 return nullptr; 10890 return &*I; 10891 } 10892 10893 /// During lowering new call nodes can be created (such as memset, etc.). 10894 /// Those will become new roots of the current DAG, but complications arise 10895 /// when they are tail calls. In such cases, the call lowering will update 10896 /// the root, but the builder still needs to know that a tail call has been 10897 /// lowered in order to avoid generating an additional return. 10898 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10899 // If the node is null, we do have a tail call. 10900 if (MaybeTC.getNode() != nullptr) 10901 DAG.setRoot(MaybeTC); 10902 else 10903 HasTailCall = true; 10904 } 10905 10906 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10907 MachineBasicBlock *SwitchMBB, 10908 MachineBasicBlock *DefaultMBB) { 10909 MachineFunction *CurMF = FuncInfo.MF; 10910 MachineBasicBlock *NextMBB = nullptr; 10911 MachineFunction::iterator BBI(W.MBB); 10912 if (++BBI != FuncInfo.MF->end()) 10913 NextMBB = &*BBI; 10914 10915 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10916 10917 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10918 10919 if (Size == 2 && W.MBB == SwitchMBB) { 10920 // If any two of the cases has the same destination, and if one value 10921 // is the same as the other, but has one bit unset that the other has set, 10922 // use bit manipulation to do two compares at once. For example: 10923 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10924 // TODO: This could be extended to merge any 2 cases in switches with 3 10925 // cases. 10926 // TODO: Handle cases where W.CaseBB != SwitchBB. 10927 CaseCluster &Small = *W.FirstCluster; 10928 CaseCluster &Big = *W.LastCluster; 10929 10930 if (Small.Low == Small.High && Big.Low == Big.High && 10931 Small.MBB == Big.MBB) { 10932 const APInt &SmallValue = Small.Low->getValue(); 10933 const APInt &BigValue = Big.Low->getValue(); 10934 10935 // Check that there is only one bit different. 10936 APInt CommonBit = BigValue ^ SmallValue; 10937 if (CommonBit.isPowerOf2()) { 10938 SDValue CondLHS = getValue(Cond); 10939 EVT VT = CondLHS.getValueType(); 10940 SDLoc DL = getCurSDLoc(); 10941 10942 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10943 DAG.getConstant(CommonBit, DL, VT)); 10944 SDValue Cond = DAG.getSetCC( 10945 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10946 ISD::SETEQ); 10947 10948 // Update successor info. 10949 // Both Small and Big will jump to Small.BB, so we sum up the 10950 // probabilities. 10951 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10952 if (BPI) 10953 addSuccessorWithProb( 10954 SwitchMBB, DefaultMBB, 10955 // The default destination is the first successor in IR. 10956 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10957 else 10958 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10959 10960 // Insert the true branch. 10961 SDValue BrCond = 10962 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10963 DAG.getBasicBlock(Small.MBB)); 10964 // Insert the false branch. 10965 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10966 DAG.getBasicBlock(DefaultMBB)); 10967 10968 DAG.setRoot(BrCond); 10969 return; 10970 } 10971 } 10972 } 10973 10974 if (TM.getOptLevel() != CodeGenOpt::None) { 10975 // Here, we order cases by probability so the most likely case will be 10976 // checked first. However, two clusters can have the same probability in 10977 // which case their relative ordering is non-deterministic. So we use Low 10978 // as a tie-breaker as clusters are guaranteed to never overlap. 10979 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10980 [](const CaseCluster &a, const CaseCluster &b) { 10981 return a.Prob != b.Prob ? 10982 a.Prob > b.Prob : 10983 a.Low->getValue().slt(b.Low->getValue()); 10984 }); 10985 10986 // Rearrange the case blocks so that the last one falls through if possible 10987 // without changing the order of probabilities. 10988 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10989 --I; 10990 if (I->Prob > W.LastCluster->Prob) 10991 break; 10992 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10993 std::swap(*I, *W.LastCluster); 10994 break; 10995 } 10996 } 10997 } 10998 10999 // Compute total probability. 11000 BranchProbability DefaultProb = W.DefaultProb; 11001 BranchProbability UnhandledProbs = DefaultProb; 11002 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11003 UnhandledProbs += I->Prob; 11004 11005 MachineBasicBlock *CurMBB = W.MBB; 11006 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11007 bool FallthroughUnreachable = false; 11008 MachineBasicBlock *Fallthrough; 11009 if (I == W.LastCluster) { 11010 // For the last cluster, fall through to the default destination. 11011 Fallthrough = DefaultMBB; 11012 FallthroughUnreachable = isa<UnreachableInst>( 11013 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11014 } else { 11015 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11016 CurMF->insert(BBI, Fallthrough); 11017 // Put Cond in a virtual register to make it available from the new blocks. 11018 ExportFromCurrentBlock(Cond); 11019 } 11020 UnhandledProbs -= I->Prob; 11021 11022 switch (I->Kind) { 11023 case CC_JumpTable: { 11024 // FIXME: Optimize away range check based on pivot comparisons. 11025 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11026 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11027 11028 // The jump block hasn't been inserted yet; insert it here. 11029 MachineBasicBlock *JumpMBB = JT->MBB; 11030 CurMF->insert(BBI, JumpMBB); 11031 11032 auto JumpProb = I->Prob; 11033 auto FallthroughProb = UnhandledProbs; 11034 11035 // If the default statement is a target of the jump table, we evenly 11036 // distribute the default probability to successors of CurMBB. Also 11037 // update the probability on the edge from JumpMBB to Fallthrough. 11038 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11039 SE = JumpMBB->succ_end(); 11040 SI != SE; ++SI) { 11041 if (*SI == DefaultMBB) { 11042 JumpProb += DefaultProb / 2; 11043 FallthroughProb -= DefaultProb / 2; 11044 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11045 JumpMBB->normalizeSuccProbs(); 11046 break; 11047 } 11048 } 11049 11050 if (FallthroughUnreachable) 11051 JTH->FallthroughUnreachable = true; 11052 11053 if (!JTH->FallthroughUnreachable) 11054 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11055 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11056 CurMBB->normalizeSuccProbs(); 11057 11058 // The jump table header will be inserted in our current block, do the 11059 // range check, and fall through to our fallthrough block. 11060 JTH->HeaderBB = CurMBB; 11061 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11062 11063 // If we're in the right place, emit the jump table header right now. 11064 if (CurMBB == SwitchMBB) { 11065 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11066 JTH->Emitted = true; 11067 } 11068 break; 11069 } 11070 case CC_BitTests: { 11071 // FIXME: Optimize away range check based on pivot comparisons. 11072 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11073 11074 // The bit test blocks haven't been inserted yet; insert them here. 11075 for (BitTestCase &BTC : BTB->Cases) 11076 CurMF->insert(BBI, BTC.ThisBB); 11077 11078 // Fill in fields of the BitTestBlock. 11079 BTB->Parent = CurMBB; 11080 BTB->Default = Fallthrough; 11081 11082 BTB->DefaultProb = UnhandledProbs; 11083 // If the cases in bit test don't form a contiguous range, we evenly 11084 // distribute the probability on the edge to Fallthrough to two 11085 // successors of CurMBB. 11086 if (!BTB->ContiguousRange) { 11087 BTB->Prob += DefaultProb / 2; 11088 BTB->DefaultProb -= DefaultProb / 2; 11089 } 11090 11091 if (FallthroughUnreachable) 11092 BTB->FallthroughUnreachable = true; 11093 11094 // If we're in the right place, emit the bit test header right now. 11095 if (CurMBB == SwitchMBB) { 11096 visitBitTestHeader(*BTB, SwitchMBB); 11097 BTB->Emitted = true; 11098 } 11099 break; 11100 } 11101 case CC_Range: { 11102 const Value *RHS, *LHS, *MHS; 11103 ISD::CondCode CC; 11104 if (I->Low == I->High) { 11105 // Check Cond == I->Low. 11106 CC = ISD::SETEQ; 11107 LHS = Cond; 11108 RHS=I->Low; 11109 MHS = nullptr; 11110 } else { 11111 // Check I->Low <= Cond <= I->High. 11112 CC = ISD::SETLE; 11113 LHS = I->Low; 11114 MHS = Cond; 11115 RHS = I->High; 11116 } 11117 11118 // If Fallthrough is unreachable, fold away the comparison. 11119 if (FallthroughUnreachable) 11120 CC = ISD::SETTRUE; 11121 11122 // The false probability is the sum of all unhandled cases. 11123 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11124 getCurSDLoc(), I->Prob, UnhandledProbs); 11125 11126 if (CurMBB == SwitchMBB) 11127 visitSwitchCase(CB, SwitchMBB); 11128 else 11129 SL->SwitchCases.push_back(CB); 11130 11131 break; 11132 } 11133 } 11134 CurMBB = Fallthrough; 11135 } 11136 } 11137 11138 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11139 CaseClusterIt First, 11140 CaseClusterIt Last) { 11141 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11142 if (X.Prob != CC.Prob) 11143 return X.Prob > CC.Prob; 11144 11145 // Ties are broken by comparing the case value. 11146 return X.Low->getValue().slt(CC.Low->getValue()); 11147 }); 11148 } 11149 11150 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11151 const SwitchWorkListItem &W, 11152 Value *Cond, 11153 MachineBasicBlock *SwitchMBB) { 11154 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11155 "Clusters not sorted?"); 11156 11157 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11158 11159 // Balance the tree based on branch probabilities to create a near-optimal (in 11160 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11161 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11162 CaseClusterIt LastLeft = W.FirstCluster; 11163 CaseClusterIt FirstRight = W.LastCluster; 11164 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11165 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11166 11167 // Move LastLeft and FirstRight towards each other from opposite directions to 11168 // find a partitioning of the clusters which balances the probability on both 11169 // sides. If LeftProb and RightProb are equal, alternate which side is 11170 // taken to ensure 0-probability nodes are distributed evenly. 11171 unsigned I = 0; 11172 while (LastLeft + 1 < FirstRight) { 11173 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11174 LeftProb += (++LastLeft)->Prob; 11175 else 11176 RightProb += (--FirstRight)->Prob; 11177 I++; 11178 } 11179 11180 while (true) { 11181 // Our binary search tree differs from a typical BST in that ours can have up 11182 // to three values in each leaf. The pivot selection above doesn't take that 11183 // into account, which means the tree might require more nodes and be less 11184 // efficient. We compensate for this here. 11185 11186 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11187 unsigned NumRight = W.LastCluster - FirstRight + 1; 11188 11189 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11190 // If one side has less than 3 clusters, and the other has more than 3, 11191 // consider taking a cluster from the other side. 11192 11193 if (NumLeft < NumRight) { 11194 // Consider moving the first cluster on the right to the left side. 11195 CaseCluster &CC = *FirstRight; 11196 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11197 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11198 if (LeftSideRank <= RightSideRank) { 11199 // Moving the cluster to the left does not demote it. 11200 ++LastLeft; 11201 ++FirstRight; 11202 continue; 11203 } 11204 } else { 11205 assert(NumRight < NumLeft); 11206 // Consider moving the last element on the left to the right side. 11207 CaseCluster &CC = *LastLeft; 11208 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11209 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11210 if (RightSideRank <= LeftSideRank) { 11211 // Moving the cluster to the right does not demot it. 11212 --LastLeft; 11213 --FirstRight; 11214 continue; 11215 } 11216 } 11217 } 11218 break; 11219 } 11220 11221 assert(LastLeft + 1 == FirstRight); 11222 assert(LastLeft >= W.FirstCluster); 11223 assert(FirstRight <= W.LastCluster); 11224 11225 // Use the first element on the right as pivot since we will make less-than 11226 // comparisons against it. 11227 CaseClusterIt PivotCluster = FirstRight; 11228 assert(PivotCluster > W.FirstCluster); 11229 assert(PivotCluster <= W.LastCluster); 11230 11231 CaseClusterIt FirstLeft = W.FirstCluster; 11232 CaseClusterIt LastRight = W.LastCluster; 11233 11234 const ConstantInt *Pivot = PivotCluster->Low; 11235 11236 // New blocks will be inserted immediately after the current one. 11237 MachineFunction::iterator BBI(W.MBB); 11238 ++BBI; 11239 11240 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11241 // we can branch to its destination directly if it's squeezed exactly in 11242 // between the known lower bound and Pivot - 1. 11243 MachineBasicBlock *LeftMBB; 11244 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11245 FirstLeft->Low == W.GE && 11246 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11247 LeftMBB = FirstLeft->MBB; 11248 } else { 11249 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11250 FuncInfo.MF->insert(BBI, LeftMBB); 11251 WorkList.push_back( 11252 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11253 // Put Cond in a virtual register to make it available from the new blocks. 11254 ExportFromCurrentBlock(Cond); 11255 } 11256 11257 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11258 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11259 // directly if RHS.High equals the current upper bound. 11260 MachineBasicBlock *RightMBB; 11261 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11262 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11263 RightMBB = FirstRight->MBB; 11264 } else { 11265 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11266 FuncInfo.MF->insert(BBI, RightMBB); 11267 WorkList.push_back( 11268 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11269 // Put Cond in a virtual register to make it available from the new blocks. 11270 ExportFromCurrentBlock(Cond); 11271 } 11272 11273 // Create the CaseBlock record that will be used to lower the branch. 11274 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11275 getCurSDLoc(), LeftProb, RightProb); 11276 11277 if (W.MBB == SwitchMBB) 11278 visitSwitchCase(CB, SwitchMBB); 11279 else 11280 SL->SwitchCases.push_back(CB); 11281 } 11282 11283 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11284 // from the swith statement. 11285 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11286 BranchProbability PeeledCaseProb) { 11287 if (PeeledCaseProb == BranchProbability::getOne()) 11288 return BranchProbability::getZero(); 11289 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11290 11291 uint32_t Numerator = CaseProb.getNumerator(); 11292 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11293 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11294 } 11295 11296 // Try to peel the top probability case if it exceeds the threshold. 11297 // Return current MachineBasicBlock for the switch statement if the peeling 11298 // does not occur. 11299 // If the peeling is performed, return the newly created MachineBasicBlock 11300 // for the peeled switch statement. Also update Clusters to remove the peeled 11301 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11302 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11303 const SwitchInst &SI, CaseClusterVector &Clusters, 11304 BranchProbability &PeeledCaseProb) { 11305 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11306 // Don't perform if there is only one cluster or optimizing for size. 11307 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11308 TM.getOptLevel() == CodeGenOpt::None || 11309 SwitchMBB->getParent()->getFunction().hasMinSize()) 11310 return SwitchMBB; 11311 11312 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11313 unsigned PeeledCaseIndex = 0; 11314 bool SwitchPeeled = false; 11315 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11316 CaseCluster &CC = Clusters[Index]; 11317 if (CC.Prob < TopCaseProb) 11318 continue; 11319 TopCaseProb = CC.Prob; 11320 PeeledCaseIndex = Index; 11321 SwitchPeeled = true; 11322 } 11323 if (!SwitchPeeled) 11324 return SwitchMBB; 11325 11326 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11327 << TopCaseProb << "\n"); 11328 11329 // Record the MBB for the peeled switch statement. 11330 MachineFunction::iterator BBI(SwitchMBB); 11331 ++BBI; 11332 MachineBasicBlock *PeeledSwitchMBB = 11333 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11334 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11335 11336 ExportFromCurrentBlock(SI.getCondition()); 11337 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11338 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11339 nullptr, nullptr, TopCaseProb.getCompl()}; 11340 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11341 11342 Clusters.erase(PeeledCaseIt); 11343 for (CaseCluster &CC : Clusters) { 11344 LLVM_DEBUG( 11345 dbgs() << "Scale the probablity for one cluster, before scaling: " 11346 << CC.Prob << "\n"); 11347 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11348 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11349 } 11350 PeeledCaseProb = TopCaseProb; 11351 return PeeledSwitchMBB; 11352 } 11353 11354 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11355 // Extract cases from the switch. 11356 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11357 CaseClusterVector Clusters; 11358 Clusters.reserve(SI.getNumCases()); 11359 for (auto I : SI.cases()) { 11360 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11361 const ConstantInt *CaseVal = I.getCaseValue(); 11362 BranchProbability Prob = 11363 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11364 : BranchProbability(1, SI.getNumCases() + 1); 11365 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11366 } 11367 11368 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11369 11370 // Cluster adjacent cases with the same destination. We do this at all 11371 // optimization levels because it's cheap to do and will make codegen faster 11372 // if there are many clusters. 11373 sortAndRangeify(Clusters); 11374 11375 // The branch probablity of the peeled case. 11376 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11377 MachineBasicBlock *PeeledSwitchMBB = 11378 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11379 11380 // If there is only the default destination, jump there directly. 11381 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11382 if (Clusters.empty()) { 11383 assert(PeeledSwitchMBB == SwitchMBB); 11384 SwitchMBB->addSuccessor(DefaultMBB); 11385 if (DefaultMBB != NextBlock(SwitchMBB)) { 11386 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11387 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11388 } 11389 return; 11390 } 11391 11392 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11393 SL->findBitTestClusters(Clusters, &SI); 11394 11395 LLVM_DEBUG({ 11396 dbgs() << "Case clusters: "; 11397 for (const CaseCluster &C : Clusters) { 11398 if (C.Kind == CC_JumpTable) 11399 dbgs() << "JT:"; 11400 if (C.Kind == CC_BitTests) 11401 dbgs() << "BT:"; 11402 11403 C.Low->getValue().print(dbgs(), true); 11404 if (C.Low != C.High) { 11405 dbgs() << '-'; 11406 C.High->getValue().print(dbgs(), true); 11407 } 11408 dbgs() << ' '; 11409 } 11410 dbgs() << '\n'; 11411 }); 11412 11413 assert(!Clusters.empty()); 11414 SwitchWorkList WorkList; 11415 CaseClusterIt First = Clusters.begin(); 11416 CaseClusterIt Last = Clusters.end() - 1; 11417 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11418 // Scale the branchprobability for DefaultMBB if the peel occurs and 11419 // DefaultMBB is not replaced. 11420 if (PeeledCaseProb != BranchProbability::getZero() && 11421 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11422 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11423 WorkList.push_back( 11424 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11425 11426 while (!WorkList.empty()) { 11427 SwitchWorkListItem W = WorkList.pop_back_val(); 11428 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11429 11430 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11431 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11432 // For optimized builds, lower large range as a balanced binary tree. 11433 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11434 continue; 11435 } 11436 11437 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11438 } 11439 } 11440 11441 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11443 auto DL = getCurSDLoc(); 11444 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11445 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11446 } 11447 11448 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11450 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11451 11452 SDLoc DL = getCurSDLoc(); 11453 SDValue V = getValue(I.getOperand(0)); 11454 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11455 11456 if (VT.isScalableVector()) { 11457 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11458 return; 11459 } 11460 11461 // Use VECTOR_SHUFFLE for the fixed-length vector 11462 // to maintain existing behavior. 11463 SmallVector<int, 8> Mask; 11464 unsigned NumElts = VT.getVectorMinNumElements(); 11465 for (unsigned i = 0; i != NumElts; ++i) 11466 Mask.push_back(NumElts - 1 - i); 11467 11468 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11469 } 11470 11471 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11472 SmallVector<EVT, 4> ValueVTs; 11473 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11474 ValueVTs); 11475 unsigned NumValues = ValueVTs.size(); 11476 if (NumValues == 0) return; 11477 11478 SmallVector<SDValue, 4> Values(NumValues); 11479 SDValue Op = getValue(I.getOperand(0)); 11480 11481 for (unsigned i = 0; i != NumValues; ++i) 11482 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11483 SDValue(Op.getNode(), Op.getResNo() + i)); 11484 11485 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11486 DAG.getVTList(ValueVTs), Values)); 11487 } 11488 11489 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11491 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11492 11493 SDLoc DL = getCurSDLoc(); 11494 SDValue V1 = getValue(I.getOperand(0)); 11495 SDValue V2 = getValue(I.getOperand(1)); 11496 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11497 11498 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11499 if (VT.isScalableVector()) { 11500 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11501 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11502 DAG.getConstant(Imm, DL, IdxVT))); 11503 return; 11504 } 11505 11506 unsigned NumElts = VT.getVectorNumElements(); 11507 11508 uint64_t Idx = (NumElts + Imm) % NumElts; 11509 11510 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11511 SmallVector<int, 8> Mask; 11512 for (unsigned i = 0; i < NumElts; ++i) 11513 Mask.push_back(Idx + i); 11514 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11515 } 11516