1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 74 const SDValue *Parts, unsigned NumParts, 75 EVT PartVT, EVT ValueVT); 76 77 /// getCopyFromParts - Create a value that contains the specified legal parts 78 /// combined into the value they represent. If the parts combine to a type 79 /// larger then ValueVT then AssertOp can be used to specify whether the extra 80 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 81 /// (ISD::AssertSext). 82 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 83 const SDValue *Parts, 84 unsigned NumParts, EVT PartVT, EVT ValueVT, 85 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 86 if (ValueVT.isVector()) 87 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 88 89 assert(NumParts > 0 && "No parts to assemble!"); 90 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 91 SDValue Val = Parts[0]; 92 93 if (NumParts > 1) { 94 // Assemble the value from multiple parts. 95 if (ValueVT.isInteger()) { 96 unsigned PartBits = PartVT.getSizeInBits(); 97 unsigned ValueBits = ValueVT.getSizeInBits(); 98 99 // Assemble the power of 2 part. 100 unsigned RoundParts = NumParts & (NumParts - 1) ? 101 1 << Log2_32(NumParts) : NumParts; 102 unsigned RoundBits = PartBits * RoundParts; 103 EVT RoundVT = RoundBits == ValueBits ? 104 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 105 SDValue Lo, Hi; 106 107 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 108 109 if (RoundParts > 2) { 110 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 111 PartVT, HalfVT); 112 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 113 RoundParts / 2, PartVT, HalfVT); 114 } else { 115 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 116 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 117 } 118 119 if (TLI.isBigEndian()) 120 std::swap(Lo, Hi); 121 122 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 123 124 if (RoundParts < NumParts) { 125 // Assemble the trailing non-power-of-2 part. 126 unsigned OddParts = NumParts - RoundParts; 127 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 128 Hi = getCopyFromParts(DAG, DL, 129 Parts + RoundParts, OddParts, PartVT, OddVT); 130 131 // Combine the round and odd parts. 132 Lo = Val; 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 136 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 137 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 138 DAG.getConstant(Lo.getValueType().getSizeInBits(), 139 TLI.getPointerTy())); 140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 141 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 142 } 143 } else if (PartVT.isFloatingPoint()) { 144 // FP split into multiple FP parts (for ppcf128) 145 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 146 "Unexpected split"); 147 SDValue Lo, Hi; 148 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 149 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 153 } else { 154 // FP split into integer parts (soft fp) 155 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 156 !PartVT.isVector() && "Unexpected split"); 157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 158 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 159 } 160 } 161 162 // There is now one part, held in Val. Correct it to match ValueVT. 163 PartVT = Val.getValueType(); 164 165 if (PartVT == ValueVT) 166 return Val; 167 168 if (PartVT.isInteger() && ValueVT.isInteger()) { 169 if (ValueVT.bitsLT(PartVT)) { 170 // For a truncate, see if we have any information to 171 // indicate whether the truncated bits will always be 172 // zero or sign-extension. 173 if (AssertOp != ISD::DELETED_NODE) 174 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 175 DAG.getValueType(ValueVT)); 176 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 177 } 178 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 179 } 180 181 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 182 // FP_ROUND's are always exact here. 183 if (ValueVT.bitsLT(Val.getValueType())) 184 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 185 DAG.getIntPtrConstant(1)); 186 187 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 188 } 189 190 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 191 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 192 193 llvm_unreachable("Unknown mismatch!"); 194 return SDValue(); 195 } 196 197 /// getCopyFromParts - Create a value that contains the specified legal parts 198 /// combined into the value they represent. If the parts combine to a type 199 /// larger then ValueVT then AssertOp can be used to specify whether the extra 200 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 201 /// (ISD::AssertSext). 202 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 203 const SDValue *Parts, unsigned NumParts, 204 EVT PartVT, EVT ValueVT) { 205 assert(ValueVT.isVector() && "Not a vector value"); 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 // Handle a multi-element vector. 211 if (NumParts > 1) { 212 EVT IntermediateVT, RegisterVT; 213 unsigned NumIntermediates; 214 unsigned NumRegs = 215 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 216 NumIntermediates, RegisterVT); 217 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 218 NumParts = NumRegs; // Silence a compiler warning. 219 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 220 assert(RegisterVT == Parts[0].getValueType() && 221 "Part type doesn't match part!"); 222 223 // Assemble the parts into intermediate operands. 224 SmallVector<SDValue, 8> Ops(NumIntermediates); 225 if (NumIntermediates == NumParts) { 226 // If the register was not expanded, truncate or copy the value, 227 // as appropriate. 228 for (unsigned i = 0; i != NumParts; ++i) 229 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 230 PartVT, IntermediateVT); 231 } else if (NumParts > 0) { 232 // If the intermediate type was expanded, build the intermediate 233 // operands from the parts. 234 assert(NumParts % NumIntermediates == 0 && 235 "Must expand into a divisible number of parts!"); 236 unsigned Factor = NumParts / NumIntermediates; 237 for (unsigned i = 0; i != NumIntermediates; ++i) 238 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 239 PartVT, IntermediateVT); 240 } 241 242 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 243 // intermediate operands. 244 Val = DAG.getNode(IntermediateVT.isVector() ? 245 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 246 ValueVT, &Ops[0], NumIntermediates); 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 PartVT = Val.getValueType(); 251 252 if (PartVT == ValueVT) 253 return Val; 254 255 if (PartVT.isVector()) { 256 // If the element type of the source/dest vectors are the same, but the 257 // parts vector has more elements than the value vector, then we have a 258 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 259 // elements we want. 260 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 261 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 262 "Cannot narrow, it would be a lossy transformation"); 263 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 264 DAG.getIntPtrConstant(0)); 265 } 266 267 // Vector/Vector bitcast. 268 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 269 } 270 271 assert(ValueVT.getVectorElementType() == PartVT && 272 ValueVT.getVectorNumElements() == 1 && 273 "Only trivial scalar-to-vector conversions should get here!"); 274 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 275 } 276 277 278 279 280 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 281 SDValue Val, SDValue *Parts, unsigned NumParts, 282 EVT PartVT); 283 284 /// getCopyToParts - Create a series of nodes that contain the specified value 285 /// split into legal parts. If the parts contain more bits than Val, then, for 286 /// integers, ExtendKind can be used to specify how to generate the extra bits. 287 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 288 SDValue Val, SDValue *Parts, unsigned NumParts, 289 EVT PartVT, 290 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 291 EVT ValueVT = Val.getValueType(); 292 293 // Handle the vector case separately. 294 if (ValueVT.isVector()) 295 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 296 297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 298 unsigned PartBits = PartVT.getSizeInBits(); 299 unsigned OrigNumParts = NumParts; 300 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 301 302 if (NumParts == 0) 303 return; 304 305 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 306 if (PartVT == ValueVT) { 307 assert(NumParts == 1 && "No-op copy with multiple parts!"); 308 Parts[0] = Val; 309 return; 310 } 311 312 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 313 // If the parts cover more bits than the value has, promote the value. 314 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 assert(NumParts == 1 && "Do not know what to promote to!"); 316 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 317 } else { 318 assert(PartVT.isInteger() && ValueVT.isInteger() && 319 "Unknown mismatch!"); 320 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 321 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 322 } 323 } else if (PartBits == ValueVT.getSizeInBits()) { 324 // Different types of the same size. 325 assert(NumParts == 1 && PartVT != ValueVT); 326 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 327 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 328 // If the parts cover less bits than value has, truncate the value. 329 assert(PartVT.isInteger() && ValueVT.isInteger() && 330 "Unknown mismatch!"); 331 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 332 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 // The value may have changed - recompute ValueVT. 336 ValueVT = Val.getValueType(); 337 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 338 "Failed to tile the value with PartVT!"); 339 340 if (NumParts == 1) { 341 assert(PartVT == ValueVT && "Type conversion failed!"); 342 Parts[0] = Val; 343 return; 344 } 345 346 // Expand the value into multiple parts. 347 if (NumParts & (NumParts - 1)) { 348 // The number of parts is not a power of 2. Split off and copy the tail. 349 assert(PartVT.isInteger() && ValueVT.isInteger() && 350 "Do not know what to expand to!"); 351 unsigned RoundParts = 1 << Log2_32(NumParts); 352 unsigned RoundBits = RoundParts * PartBits; 353 unsigned OddParts = NumParts - RoundParts; 354 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 355 DAG.getIntPtrConstant(RoundBits)); 356 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 357 358 if (TLI.isBigEndian()) 359 // The odd parts were reversed by getCopyToParts - unreverse them. 360 std::reverse(Parts + RoundParts, Parts + NumParts); 361 362 NumParts = RoundParts; 363 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 364 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 365 } 366 367 // The number of parts is a power of 2. Repeatedly bisect the value using 368 // EXTRACT_ELEMENT. 369 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 370 EVT::getIntegerVT(*DAG.getContext(), 371 ValueVT.getSizeInBits()), 372 Val); 373 374 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 375 for (unsigned i = 0; i < NumParts; i += StepSize) { 376 unsigned ThisBits = StepSize * PartBits / 2; 377 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 378 SDValue &Part0 = Parts[i]; 379 SDValue &Part1 = Parts[i+StepSize/2]; 380 381 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 382 ThisVT, Part0, DAG.getIntPtrConstant(1)); 383 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 384 ThisVT, Part0, DAG.getIntPtrConstant(0)); 385 386 if (ThisBits == PartBits && ThisVT != PartVT) { 387 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 388 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 389 } 390 } 391 } 392 393 if (TLI.isBigEndian()) 394 std::reverse(Parts, Parts + OrigNumParts); 395 } 396 397 398 /// getCopyToPartsVector - Create a series of nodes that contain the specified 399 /// value split into legal parts. 400 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 401 SDValue Val, SDValue *Parts, unsigned NumParts, 402 EVT PartVT) { 403 EVT ValueVT = Val.getValueType(); 404 assert(ValueVT.isVector() && "Not a vector"); 405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 406 407 if (NumParts == 1) { 408 if (PartVT == ValueVT) { 409 // Nothing to do. 410 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 411 // Bitconvert vector->vector case. 412 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 413 } else if (PartVT.isVector() && 414 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 415 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 416 EVT ElementVT = PartVT.getVectorElementType(); 417 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 418 // undef elements. 419 SmallVector<SDValue, 16> Ops; 420 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 422 ElementVT, Val, DAG.getIntPtrConstant(i))); 423 424 for (unsigned i = ValueVT.getVectorNumElements(), 425 e = PartVT.getVectorNumElements(); i != e; ++i) 426 Ops.push_back(DAG.getUNDEF(ElementVT)); 427 428 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 429 430 // FIXME: Use CONCAT for 2x -> 4x. 431 432 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 433 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 434 } else { 435 // Vector -> scalar conversion. 436 assert(ValueVT.getVectorElementType() == PartVT && 437 ValueVT.getVectorNumElements() == 1 && 438 "Only trivial vector-to-scalar conversions should get here!"); 439 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 440 PartVT, Val, DAG.getIntPtrConstant(0)); 441 } 442 443 Parts[0] = Val; 444 return; 445 } 446 447 // Handle a multi-element vector. 448 EVT IntermediateVT, RegisterVT; 449 unsigned NumIntermediates; 450 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 451 IntermediateVT, 452 NumIntermediates, RegisterVT); 453 unsigned NumElements = ValueVT.getVectorNumElements(); 454 455 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 456 NumParts = NumRegs; // Silence a compiler warning. 457 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 458 459 // Split the vector into intermediate operands. 460 SmallVector<SDValue, 8> Ops(NumIntermediates); 461 for (unsigned i = 0; i != NumIntermediates; ++i) { 462 if (IntermediateVT.isVector()) 463 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 464 IntermediateVT, Val, 465 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 466 else 467 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 468 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 469 } 470 471 // Split the intermediate operands into legal parts. 472 if (NumParts == NumIntermediates) { 473 // If the register was not expanded, promote or copy the value, 474 // as appropriate. 475 for (unsigned i = 0; i != NumParts; ++i) 476 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 477 } else if (NumParts > 0) { 478 // If the intermediate type was expanded, split each the value into 479 // legal parts. 480 assert(NumParts % NumIntermediates == 0 && 481 "Must expand into a divisible number of parts!"); 482 unsigned Factor = NumParts / NumIntermediates; 483 for (unsigned i = 0; i != NumIntermediates; ++i) 484 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 485 } 486 } 487 488 489 490 491 namespace { 492 /// RegsForValue - This struct represents the registers (physical or virtual) 493 /// that a particular set of values is assigned, and the type information 494 /// about the value. The most common situation is to represent one value at a 495 /// time, but struct or array values are handled element-wise as multiple 496 /// values. The splitting of aggregates is performed recursively, so that we 497 /// never have aggregate-typed registers. The values at this point do not 498 /// necessarily have legal types, so each value may require one or more 499 /// registers of some legal type. 500 /// 501 struct RegsForValue { 502 /// ValueVTs - The value types of the values, which may not be legal, and 503 /// may need be promoted or synthesized from one or more registers. 504 /// 505 SmallVector<EVT, 4> ValueVTs; 506 507 /// RegVTs - The value types of the registers. This is the same size as 508 /// ValueVTs and it records, for each value, what the type of the assigned 509 /// register or registers are. (Individual values are never synthesized 510 /// from more than one type of register.) 511 /// 512 /// With virtual registers, the contents of RegVTs is redundant with TLI's 513 /// getRegisterType member function, however when with physical registers 514 /// it is necessary to have a separate record of the types. 515 /// 516 SmallVector<EVT, 4> RegVTs; 517 518 /// Regs - This list holds the registers assigned to the values. 519 /// Each legal or promoted value requires one register, and each 520 /// expanded value requires multiple registers. 521 /// 522 SmallVector<unsigned, 4> Regs; 523 524 RegsForValue() {} 525 526 RegsForValue(const SmallVector<unsigned, 4> ®s, 527 EVT regvt, EVT valuevt) 528 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 529 530 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 531 unsigned Reg, const Type *Ty) { 532 ComputeValueVTs(tli, Ty, ValueVTs); 533 534 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 535 EVT ValueVT = ValueVTs[Value]; 536 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 537 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 538 for (unsigned i = 0; i != NumRegs; ++i) 539 Regs.push_back(Reg + i); 540 RegVTs.push_back(RegisterVT); 541 Reg += NumRegs; 542 } 543 } 544 545 /// areValueTypesLegal - Return true if types of all the values are legal. 546 bool areValueTypesLegal(const TargetLowering &TLI) { 547 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 548 EVT RegisterVT = RegVTs[Value]; 549 if (!TLI.isTypeLegal(RegisterVT)) 550 return false; 551 } 552 return true; 553 } 554 555 /// append - Add the specified values to this one. 556 void append(const RegsForValue &RHS) { 557 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 558 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 559 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 560 } 561 562 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 563 /// this value and returns the result as a ValueVTs value. This uses 564 /// Chain/Flag as the input and updates them for the output Chain/Flag. 565 /// If the Flag pointer is NULL, no flag is used. 566 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 567 DebugLoc dl, 568 SDValue &Chain, SDValue *Flag) const; 569 570 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 571 /// specified value into the registers specified by this object. This uses 572 /// Chain/Flag as the input and updates them for the output Chain/Flag. 573 /// If the Flag pointer is NULL, no flag is used. 574 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 575 SDValue &Chain, SDValue *Flag) const; 576 577 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 578 /// operand list. This adds the code marker, matching input operand index 579 /// (if applicable), and includes the number of values added into it. 580 void AddInlineAsmOperands(unsigned Kind, 581 bool HasMatching, unsigned MatchingIdx, 582 SelectionDAG &DAG, 583 std::vector<SDValue> &Ops) const; 584 }; 585 } 586 587 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 588 /// this value and returns the result as a ValueVT value. This uses 589 /// Chain/Flag as the input and updates them for the output Chain/Flag. 590 /// If the Flag pointer is NULL, no flag is used. 591 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 592 FunctionLoweringInfo &FuncInfo, 593 DebugLoc dl, 594 SDValue &Chain, SDValue *Flag) const { 595 // A Value with type {} or [0 x %t] needs no registers. 596 if (ValueVTs.empty()) 597 return SDValue(); 598 599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 600 601 // Assemble the legal parts into the final values. 602 SmallVector<SDValue, 4> Values(ValueVTs.size()); 603 SmallVector<SDValue, 8> Parts; 604 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 605 // Copy the legal parts from the registers. 606 EVT ValueVT = ValueVTs[Value]; 607 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 608 EVT RegisterVT = RegVTs[Value]; 609 610 Parts.resize(NumRegs); 611 for (unsigned i = 0; i != NumRegs; ++i) { 612 SDValue P; 613 if (Flag == 0) { 614 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 615 } else { 616 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 617 *Flag = P.getValue(2); 618 } 619 620 Chain = P.getValue(1); 621 622 // If the source register was virtual and if we know something about it, 623 // add an assert node. 624 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 625 RegisterVT.isInteger() && !RegisterVT.isVector()) { 626 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 627 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 628 const FunctionLoweringInfo::LiveOutInfo &LOI = 629 FuncInfo.LiveOutRegInfo[SlotNo]; 630 631 unsigned RegSize = RegisterVT.getSizeInBits(); 632 unsigned NumSignBits = LOI.NumSignBits; 633 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 634 635 // FIXME: We capture more information than the dag can represent. For 636 // now, just use the tightest assertzext/assertsext possible. 637 bool isSExt = true; 638 EVT FromVT(MVT::Other); 639 if (NumSignBits == RegSize) 640 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 641 else if (NumZeroBits >= RegSize-1) 642 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 643 else if (NumSignBits > RegSize-8) 644 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 645 else if (NumZeroBits >= RegSize-8) 646 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 647 else if (NumSignBits > RegSize-16) 648 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 649 else if (NumZeroBits >= RegSize-16) 650 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 651 else if (NumSignBits > RegSize-32) 652 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 653 else if (NumZeroBits >= RegSize-32) 654 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 655 656 if (FromVT != MVT::Other) 657 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 658 RegisterVT, P, DAG.getValueType(FromVT)); 659 } 660 } 661 662 Parts[i] = P; 663 } 664 665 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 666 NumRegs, RegisterVT, ValueVT); 667 Part += NumRegs; 668 Parts.clear(); 669 } 670 671 return DAG.getNode(ISD::MERGE_VALUES, dl, 672 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 673 &Values[0], ValueVTs.size()); 674 } 675 676 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 677 /// specified value into the registers specified by this object. This uses 678 /// Chain/Flag as the input and updates them for the output Chain/Flag. 679 /// If the Flag pointer is NULL, no flag is used. 680 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 681 SDValue &Chain, SDValue *Flag) const { 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Get the list of the values's legal parts. 685 unsigned NumRegs = Regs.size(); 686 SmallVector<SDValue, 8> Parts(NumRegs); 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 EVT RegisterVT = RegVTs[Value]; 691 692 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 693 &Parts[Part], NumParts, RegisterVT); 694 Part += NumParts; 695 } 696 697 // Copy the parts into the registers. 698 SmallVector<SDValue, 8> Chains(NumRegs); 699 for (unsigned i = 0; i != NumRegs; ++i) { 700 SDValue Part; 701 if (Flag == 0) { 702 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 703 } else { 704 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 705 *Flag = Part.getValue(1); 706 } 707 708 Chains[i] = Part.getValue(0); 709 } 710 711 if (NumRegs == 1 || Flag) 712 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 713 // flagged to it. That is the CopyToReg nodes and the user are considered 714 // a single scheduling unit. If we create a TokenFactor and return it as 715 // chain, then the TokenFactor is both a predecessor (operand) of the 716 // user as well as a successor (the TF operands are flagged to the user). 717 // c1, f1 = CopyToReg 718 // c2, f2 = CopyToReg 719 // c3 = TokenFactor c1, c2 720 // ... 721 // = op c3, ..., f2 722 Chain = Chains[NumRegs-1]; 723 else 724 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 725 } 726 727 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 728 /// operand list. This adds the code marker and includes the number of 729 /// values added into it. 730 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 731 unsigned MatchingIdx, 732 SelectionDAG &DAG, 733 std::vector<SDValue> &Ops) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 737 if (HasMatching) 738 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 739 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 740 Ops.push_back(Res); 741 742 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 743 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 744 EVT RegisterVT = RegVTs[Value]; 745 for (unsigned i = 0; i != NumRegs; ++i) { 746 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 747 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 748 } 749 } 750 } 751 752 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 753 AA = &aa; 754 GFI = gfi; 755 TD = DAG.getTarget().getTargetData(); 756 } 757 758 /// clear - Clear out the current SelectionDAG and the associated 759 /// state and prepare this SelectionDAGBuilder object to be used 760 /// for a new block. This doesn't clear out information about 761 /// additional blocks that are needed to complete switch lowering 762 /// or PHI node updating; that information is cleared out as it is 763 /// consumed. 764 void SelectionDAGBuilder::clear() { 765 NodeMap.clear(); 766 UnusedArgNodeMap.clear(); 767 PendingLoads.clear(); 768 PendingExports.clear(); 769 DanglingDebugInfoMap.clear(); 770 CurDebugLoc = DebugLoc(); 771 HasTailCall = false; 772 } 773 774 /// getRoot - Return the current virtual root of the Selection DAG, 775 /// flushing any PendingLoad items. This must be done before emitting 776 /// a store or any other node that may need to be ordered after any 777 /// prior load instructions. 778 /// 779 SDValue SelectionDAGBuilder::getRoot() { 780 if (PendingLoads.empty()) 781 return DAG.getRoot(); 782 783 if (PendingLoads.size() == 1) { 784 SDValue Root = PendingLoads[0]; 785 DAG.setRoot(Root); 786 PendingLoads.clear(); 787 return Root; 788 } 789 790 // Otherwise, we have to make a token factor node. 791 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 792 &PendingLoads[0], PendingLoads.size()); 793 PendingLoads.clear(); 794 DAG.setRoot(Root); 795 return Root; 796 } 797 798 /// getControlRoot - Similar to getRoot, but instead of flushing all the 799 /// PendingLoad items, flush all the PendingExports items. It is necessary 800 /// to do this before emitting a terminator instruction. 801 /// 802 SDValue SelectionDAGBuilder::getControlRoot() { 803 SDValue Root = DAG.getRoot(); 804 805 if (PendingExports.empty()) 806 return Root; 807 808 // Turn all of the CopyToReg chains into one factored node. 809 if (Root.getOpcode() != ISD::EntryToken) { 810 unsigned i = 0, e = PendingExports.size(); 811 for (; i != e; ++i) { 812 assert(PendingExports[i].getNode()->getNumOperands() > 1); 813 if (PendingExports[i].getNode()->getOperand(0) == Root) 814 break; // Don't add the root if we already indirectly depend on it. 815 } 816 817 if (i == e) 818 PendingExports.push_back(Root); 819 } 820 821 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 822 &PendingExports[0], 823 PendingExports.size()); 824 PendingExports.clear(); 825 DAG.setRoot(Root); 826 return Root; 827 } 828 829 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 830 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 831 DAG.AssignOrdering(Node, SDNodeOrder); 832 833 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 834 AssignOrderingToNode(Node->getOperand(I).getNode()); 835 } 836 837 void SelectionDAGBuilder::visit(const Instruction &I) { 838 // Set up outgoing PHI node register values before emitting the terminator. 839 if (isa<TerminatorInst>(&I)) 840 HandlePHINodesInSuccessorBlocks(I.getParent()); 841 842 CurDebugLoc = I.getDebugLoc(); 843 844 visit(I.getOpcode(), I); 845 846 if (!isa<TerminatorInst>(&I) && !HasTailCall) 847 CopyToExportRegsIfNeeded(&I); 848 849 CurDebugLoc = DebugLoc(); 850 } 851 852 void SelectionDAGBuilder::visitPHI(const PHINode &) { 853 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 854 } 855 856 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 857 // Note: this doesn't use InstVisitor, because it has to work with 858 // ConstantExpr's in addition to instructions. 859 switch (Opcode) { 860 default: llvm_unreachable("Unknown instruction type encountered!"); 861 // Build the switch statement using the Instruction.def file. 862 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 863 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 864 #include "llvm/Instruction.def" 865 } 866 867 // Assign the ordering to the freshly created DAG nodes. 868 if (NodeMap.count(&I)) { 869 ++SDNodeOrder; 870 AssignOrderingToNode(getValue(&I).getNode()); 871 } 872 } 873 874 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 875 // generate the debug data structures now that we've seen its definition. 876 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 877 SDValue Val) { 878 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 879 MDNode *Variable = NULL; 880 uint64_t Offset = 0; 881 882 if (const DbgValueInst *DI = dyn_cast_or_null<DbgValueInst>(DDI.getDI())) { 883 Variable = DI->getVariable(); 884 Offset = DI->getOffset(); 885 } else if (const DbgDeclareInst *DI = 886 dyn_cast_or_null<DbgDeclareInst>(DDI.getDI())) 887 Variable = DI->getVariable(); 888 else { 889 assert (DDI.getDI() == NULL && "Invalid debug info intrinsic!"); 890 return; 891 } 892 893 if (Variable) { 894 DebugLoc dl = DDI.getdl(); 895 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 896 SDDbgValue *SDV; 897 if (Val.getNode()) { 898 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 899 SDV = DAG.getDbgValue(Variable, Val.getNode(), 900 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 901 DAG.AddDbgValue(SDV, Val.getNode(), false); 902 } 903 } else { 904 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 905 Offset, dl, SDNodeOrder); 906 DAG.AddDbgValue(SDV, 0, false); 907 } 908 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 909 } 910 } 911 912 // getValue - Return an SDValue for the given Value. 913 SDValue SelectionDAGBuilder::getValue(const Value *V) { 914 // If we already have an SDValue for this value, use it. It's important 915 // to do this first, so that we don't create a CopyFromReg if we already 916 // have a regular SDValue. 917 SDValue &N = NodeMap[V]; 918 if (N.getNode()) return N; 919 920 // If there's a virtual register allocated and initialized for this 921 // value, use it. 922 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 923 if (It != FuncInfo.ValueMap.end()) { 924 unsigned InReg = It->second; 925 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 926 SDValue Chain = DAG.getEntryNode(); 927 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 928 resolveDanglingDebugInfo(V, N); 929 return N; 930 } 931 932 // Otherwise create a new SDValue and remember it. 933 SDValue Val = getValueImpl(V); 934 NodeMap[V] = Val; 935 resolveDanglingDebugInfo(V, Val); 936 return Val; 937 } 938 939 /// getNonRegisterValue - Return an SDValue for the given Value, but 940 /// don't look in FuncInfo.ValueMap for a virtual register. 941 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 942 // If we already have an SDValue for this value, use it. 943 SDValue &N = NodeMap[V]; 944 if (N.getNode()) return N; 945 946 // Otherwise create a new SDValue and remember it. 947 SDValue Val = getValueImpl(V); 948 NodeMap[V] = Val; 949 resolveDanglingDebugInfo(V, Val); 950 return Val; 951 } 952 953 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 954 /// Create an SDValue for the given value. 955 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 956 if (const Constant *C = dyn_cast<Constant>(V)) { 957 EVT VT = TLI.getValueType(V->getType(), true); 958 959 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 960 return DAG.getConstant(*CI, VT); 961 962 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 963 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 964 965 if (isa<ConstantPointerNull>(C)) 966 return DAG.getConstant(0, TLI.getPointerTy()); 967 968 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 969 return DAG.getConstantFP(*CFP, VT); 970 971 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 972 return DAG.getUNDEF(VT); 973 974 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 975 visit(CE->getOpcode(), *CE); 976 SDValue N1 = NodeMap[V]; 977 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 978 return N1; 979 } 980 981 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 982 SmallVector<SDValue, 4> Constants; 983 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 984 OI != OE; ++OI) { 985 SDNode *Val = getValue(*OI).getNode(); 986 // If the operand is an empty aggregate, there are no values. 987 if (!Val) continue; 988 // Add each leaf value from the operand to the Constants list 989 // to form a flattened list of all the values. 990 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 991 Constants.push_back(SDValue(Val, i)); 992 } 993 994 return DAG.getMergeValues(&Constants[0], Constants.size(), 995 getCurDebugLoc()); 996 } 997 998 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 999 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1000 "Unknown struct or array constant!"); 1001 1002 SmallVector<EVT, 4> ValueVTs; 1003 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1004 unsigned NumElts = ValueVTs.size(); 1005 if (NumElts == 0) 1006 return SDValue(); // empty struct 1007 SmallVector<SDValue, 4> Constants(NumElts); 1008 for (unsigned i = 0; i != NumElts; ++i) { 1009 EVT EltVT = ValueVTs[i]; 1010 if (isa<UndefValue>(C)) 1011 Constants[i] = DAG.getUNDEF(EltVT); 1012 else if (EltVT.isFloatingPoint()) 1013 Constants[i] = DAG.getConstantFP(0, EltVT); 1014 else 1015 Constants[i] = DAG.getConstant(0, EltVT); 1016 } 1017 1018 return DAG.getMergeValues(&Constants[0], NumElts, 1019 getCurDebugLoc()); 1020 } 1021 1022 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1023 return DAG.getBlockAddress(BA, VT); 1024 1025 const VectorType *VecTy = cast<VectorType>(V->getType()); 1026 unsigned NumElements = VecTy->getNumElements(); 1027 1028 // Now that we know the number and type of the elements, get that number of 1029 // elements into the Ops array based on what kind of constant it is. 1030 SmallVector<SDValue, 16> Ops; 1031 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1032 for (unsigned i = 0; i != NumElements; ++i) 1033 Ops.push_back(getValue(CP->getOperand(i))); 1034 } else { 1035 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1036 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1037 1038 SDValue Op; 1039 if (EltVT.isFloatingPoint()) 1040 Op = DAG.getConstantFP(0, EltVT); 1041 else 1042 Op = DAG.getConstant(0, EltVT); 1043 Ops.assign(NumElements, Op); 1044 } 1045 1046 // Create a BUILD_VECTOR node. 1047 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1048 VT, &Ops[0], Ops.size()); 1049 } 1050 1051 // If this is a static alloca, generate it as the frameindex instead of 1052 // computation. 1053 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1054 DenseMap<const AllocaInst*, int>::iterator SI = 1055 FuncInfo.StaticAllocaMap.find(AI); 1056 if (SI != FuncInfo.StaticAllocaMap.end()) 1057 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1058 } 1059 1060 // If this is an instruction which fast-isel has deferred, select it now. 1061 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1062 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1063 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1064 SDValue Chain = DAG.getEntryNode(); 1065 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1066 } 1067 1068 llvm_unreachable("Can't get register for value!"); 1069 return SDValue(); 1070 } 1071 1072 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1073 SDValue Chain = getControlRoot(); 1074 SmallVector<ISD::OutputArg, 8> Outs; 1075 SmallVector<SDValue, 8> OutVals; 1076 1077 if (!FuncInfo.CanLowerReturn) { 1078 unsigned DemoteReg = FuncInfo.DemoteRegister; 1079 const Function *F = I.getParent()->getParent(); 1080 1081 // Emit a store of the return value through the virtual register. 1082 // Leave Outs empty so that LowerReturn won't try to load return 1083 // registers the usual way. 1084 SmallVector<EVT, 1> PtrValueVTs; 1085 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1086 PtrValueVTs); 1087 1088 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1089 SDValue RetOp = getValue(I.getOperand(0)); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 SmallVector<uint64_t, 4> Offsets; 1093 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1094 unsigned NumValues = ValueVTs.size(); 1095 1096 SmallVector<SDValue, 4> Chains(NumValues); 1097 for (unsigned i = 0; i != NumValues; ++i) { 1098 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1099 RetPtr.getValueType(), RetPtr, 1100 DAG.getIntPtrConstant(Offsets[i])); 1101 Chains[i] = 1102 DAG.getStore(Chain, getCurDebugLoc(), 1103 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1104 Add, NULL, Offsets[i], false, false, 0); 1105 } 1106 1107 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1108 MVT::Other, &Chains[0], NumValues); 1109 } else if (I.getNumOperands() != 0) { 1110 SmallVector<EVT, 4> ValueVTs; 1111 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1112 unsigned NumValues = ValueVTs.size(); 1113 if (NumValues) { 1114 SDValue RetOp = getValue(I.getOperand(0)); 1115 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1116 EVT VT = ValueVTs[j]; 1117 1118 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1119 1120 const Function *F = I.getParent()->getParent(); 1121 if (F->paramHasAttr(0, Attribute::SExt)) 1122 ExtendKind = ISD::SIGN_EXTEND; 1123 else if (F->paramHasAttr(0, Attribute::ZExt)) 1124 ExtendKind = ISD::ZERO_EXTEND; 1125 1126 // FIXME: C calling convention requires the return type to be promoted 1127 // to at least 32-bit. But this is not necessary for non-C calling 1128 // conventions. The frontend should mark functions whose return values 1129 // require promoting with signext or zeroext attributes. 1130 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1131 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1132 if (VT.bitsLT(MinVT)) 1133 VT = MinVT; 1134 } 1135 1136 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1137 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1138 SmallVector<SDValue, 4> Parts(NumParts); 1139 getCopyToParts(DAG, getCurDebugLoc(), 1140 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1141 &Parts[0], NumParts, PartVT, ExtendKind); 1142 1143 // 'inreg' on function refers to return value 1144 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1145 if (F->paramHasAttr(0, Attribute::InReg)) 1146 Flags.setInReg(); 1147 1148 // Propagate extension type if any 1149 if (F->paramHasAttr(0, Attribute::SExt)) 1150 Flags.setSExt(); 1151 else if (F->paramHasAttr(0, Attribute::ZExt)) 1152 Flags.setZExt(); 1153 1154 for (unsigned i = 0; i < NumParts; ++i) { 1155 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1156 /*isfixed=*/true)); 1157 OutVals.push_back(Parts[i]); 1158 } 1159 } 1160 } 1161 } 1162 1163 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1164 CallingConv::ID CallConv = 1165 DAG.getMachineFunction().getFunction()->getCallingConv(); 1166 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1167 Outs, OutVals, getCurDebugLoc(), DAG); 1168 1169 // Verify that the target's LowerReturn behaved as expected. 1170 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1171 "LowerReturn didn't return a valid chain!"); 1172 1173 // Update the DAG with the new chain value resulting from return lowering. 1174 DAG.setRoot(Chain); 1175 } 1176 1177 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1178 /// created for it, emit nodes to copy the value into the virtual 1179 /// registers. 1180 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1181 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1182 if (VMI != FuncInfo.ValueMap.end()) { 1183 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1184 CopyValueToVirtualRegister(V, VMI->second); 1185 } 1186 } 1187 1188 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1189 /// the current basic block, add it to ValueMap now so that we'll get a 1190 /// CopyTo/FromReg. 1191 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1192 // No need to export constants. 1193 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1194 1195 // Already exported? 1196 if (FuncInfo.isExportedInst(V)) return; 1197 1198 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1199 CopyValueToVirtualRegister(V, Reg); 1200 } 1201 1202 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1203 const BasicBlock *FromBB) { 1204 // The operands of the setcc have to be in this block. We don't know 1205 // how to export them from some other block. 1206 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1207 // Can export from current BB. 1208 if (VI->getParent() == FromBB) 1209 return true; 1210 1211 // Is already exported, noop. 1212 return FuncInfo.isExportedInst(V); 1213 } 1214 1215 // If this is an argument, we can export it if the BB is the entry block or 1216 // if it is already exported. 1217 if (isa<Argument>(V)) { 1218 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1219 return true; 1220 1221 // Otherwise, can only export this if it is already exported. 1222 return FuncInfo.isExportedInst(V); 1223 } 1224 1225 // Otherwise, constants can always be exported. 1226 return true; 1227 } 1228 1229 static bool InBlock(const Value *V, const BasicBlock *BB) { 1230 if (const Instruction *I = dyn_cast<Instruction>(V)) 1231 return I->getParent() == BB; 1232 return true; 1233 } 1234 1235 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1236 /// This function emits a branch and is used at the leaves of an OR or an 1237 /// AND operator tree. 1238 /// 1239 void 1240 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1241 MachineBasicBlock *TBB, 1242 MachineBasicBlock *FBB, 1243 MachineBasicBlock *CurBB, 1244 MachineBasicBlock *SwitchBB) { 1245 const BasicBlock *BB = CurBB->getBasicBlock(); 1246 1247 // If the leaf of the tree is a comparison, merge the condition into 1248 // the caseblock. 1249 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1250 // The operands of the cmp have to be in this block. We don't know 1251 // how to export them from some other block. If this is the first block 1252 // of the sequence, no exporting is needed. 1253 if (CurBB == SwitchBB || 1254 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1255 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1256 ISD::CondCode Condition; 1257 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1258 Condition = getICmpCondCode(IC->getPredicate()); 1259 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1260 Condition = getFCmpCondCode(FC->getPredicate()); 1261 } else { 1262 Condition = ISD::SETEQ; // silence warning. 1263 llvm_unreachable("Unknown compare instruction"); 1264 } 1265 1266 CaseBlock CB(Condition, BOp->getOperand(0), 1267 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1268 SwitchCases.push_back(CB); 1269 return; 1270 } 1271 } 1272 1273 // Create a CaseBlock record representing this branch. 1274 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1275 NULL, TBB, FBB, CurBB); 1276 SwitchCases.push_back(CB); 1277 } 1278 1279 /// FindMergedConditions - If Cond is an expression like 1280 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1281 MachineBasicBlock *TBB, 1282 MachineBasicBlock *FBB, 1283 MachineBasicBlock *CurBB, 1284 MachineBasicBlock *SwitchBB, 1285 unsigned Opc) { 1286 // If this node is not part of the or/and tree, emit it as a branch. 1287 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1288 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1289 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1290 BOp->getParent() != CurBB->getBasicBlock() || 1291 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1292 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1293 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1294 return; 1295 } 1296 1297 // Create TmpBB after CurBB. 1298 MachineFunction::iterator BBI = CurBB; 1299 MachineFunction &MF = DAG.getMachineFunction(); 1300 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1301 CurBB->getParent()->insert(++BBI, TmpBB); 1302 1303 if (Opc == Instruction::Or) { 1304 // Codegen X | Y as: 1305 // jmp_if_X TBB 1306 // jmp TmpBB 1307 // TmpBB: 1308 // jmp_if_Y TBB 1309 // jmp FBB 1310 // 1311 1312 // Emit the LHS condition. 1313 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1314 1315 // Emit the RHS condition into TmpBB. 1316 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1317 } else { 1318 assert(Opc == Instruction::And && "Unknown merge op!"); 1319 // Codegen X & Y as: 1320 // jmp_if_X TmpBB 1321 // jmp FBB 1322 // TmpBB: 1323 // jmp_if_Y TBB 1324 // jmp FBB 1325 // 1326 // This requires creation of TmpBB after CurBB. 1327 1328 // Emit the LHS condition. 1329 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1330 1331 // Emit the RHS condition into TmpBB. 1332 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1333 } 1334 } 1335 1336 /// If the set of cases should be emitted as a series of branches, return true. 1337 /// If we should emit this as a bunch of and/or'd together conditions, return 1338 /// false. 1339 bool 1340 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1341 if (Cases.size() != 2) return true; 1342 1343 // If this is two comparisons of the same values or'd or and'd together, they 1344 // will get folded into a single comparison, so don't emit two blocks. 1345 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1346 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1347 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1348 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1349 return false; 1350 } 1351 1352 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1353 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1354 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1355 Cases[0].CC == Cases[1].CC && 1356 isa<Constant>(Cases[0].CmpRHS) && 1357 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1358 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1359 return false; 1360 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1361 return false; 1362 } 1363 1364 return true; 1365 } 1366 1367 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1368 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1369 1370 // Update machine-CFG edges. 1371 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1372 1373 // Figure out which block is immediately after the current one. 1374 MachineBasicBlock *NextBlock = 0; 1375 MachineFunction::iterator BBI = BrMBB; 1376 if (++BBI != FuncInfo.MF->end()) 1377 NextBlock = BBI; 1378 1379 if (I.isUnconditional()) { 1380 // Update machine-CFG edges. 1381 BrMBB->addSuccessor(Succ0MBB); 1382 1383 // If this is not a fall-through branch, emit the branch. 1384 if (Succ0MBB != NextBlock) 1385 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1386 MVT::Other, getControlRoot(), 1387 DAG.getBasicBlock(Succ0MBB))); 1388 1389 return; 1390 } 1391 1392 // If this condition is one of the special cases we handle, do special stuff 1393 // now. 1394 const Value *CondVal = I.getCondition(); 1395 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1396 1397 // If this is a series of conditions that are or'd or and'd together, emit 1398 // this as a sequence of branches instead of setcc's with and/or operations. 1399 // For example, instead of something like: 1400 // cmp A, B 1401 // C = seteq 1402 // cmp D, E 1403 // F = setle 1404 // or C, F 1405 // jnz foo 1406 // Emit: 1407 // cmp A, B 1408 // je foo 1409 // cmp D, E 1410 // jle foo 1411 // 1412 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1413 if (BOp->hasOneUse() && 1414 (BOp->getOpcode() == Instruction::And || 1415 BOp->getOpcode() == Instruction::Or)) { 1416 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1417 BOp->getOpcode()); 1418 // If the compares in later blocks need to use values not currently 1419 // exported from this block, export them now. This block should always 1420 // be the first entry. 1421 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1422 1423 // Allow some cases to be rejected. 1424 if (ShouldEmitAsBranches(SwitchCases)) { 1425 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1426 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1427 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1428 } 1429 1430 // Emit the branch for this block. 1431 visitSwitchCase(SwitchCases[0], BrMBB); 1432 SwitchCases.erase(SwitchCases.begin()); 1433 return; 1434 } 1435 1436 // Okay, we decided not to do this, remove any inserted MBB's and clear 1437 // SwitchCases. 1438 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1439 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1440 1441 SwitchCases.clear(); 1442 } 1443 } 1444 1445 // Create a CaseBlock record representing this branch. 1446 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1447 NULL, Succ0MBB, Succ1MBB, BrMBB); 1448 1449 // Use visitSwitchCase to actually insert the fast branch sequence for this 1450 // cond branch. 1451 visitSwitchCase(CB, BrMBB); 1452 } 1453 1454 /// visitSwitchCase - Emits the necessary code to represent a single node in 1455 /// the binary search tree resulting from lowering a switch instruction. 1456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1457 MachineBasicBlock *SwitchBB) { 1458 SDValue Cond; 1459 SDValue CondLHS = getValue(CB.CmpLHS); 1460 DebugLoc dl = getCurDebugLoc(); 1461 1462 // Build the setcc now. 1463 if (CB.CmpMHS == NULL) { 1464 // Fold "(X == true)" to X and "(X == false)" to !X to 1465 // handle common cases produced by branch lowering. 1466 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1467 CB.CC == ISD::SETEQ) 1468 Cond = CondLHS; 1469 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1470 CB.CC == ISD::SETEQ) { 1471 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1472 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1473 } else 1474 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1475 } else { 1476 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1477 1478 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1479 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1480 1481 SDValue CmpOp = getValue(CB.CmpMHS); 1482 EVT VT = CmpOp.getValueType(); 1483 1484 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1485 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1486 ISD::SETLE); 1487 } else { 1488 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1489 VT, CmpOp, DAG.getConstant(Low, VT)); 1490 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1491 DAG.getConstant(High-Low, VT), ISD::SETULE); 1492 } 1493 } 1494 1495 // Update successor info 1496 SwitchBB->addSuccessor(CB.TrueBB); 1497 SwitchBB->addSuccessor(CB.FalseBB); 1498 1499 // Set NextBlock to be the MBB immediately after the current one, if any. 1500 // This is used to avoid emitting unnecessary branches to the next block. 1501 MachineBasicBlock *NextBlock = 0; 1502 MachineFunction::iterator BBI = SwitchBB; 1503 if (++BBI != FuncInfo.MF->end()) 1504 NextBlock = BBI; 1505 1506 // If the lhs block is the next block, invert the condition so that we can 1507 // fall through to the lhs instead of the rhs block. 1508 if (CB.TrueBB == NextBlock) { 1509 std::swap(CB.TrueBB, CB.FalseBB); 1510 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1511 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1512 } 1513 1514 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1515 MVT::Other, getControlRoot(), Cond, 1516 DAG.getBasicBlock(CB.TrueBB)); 1517 1518 // Insert the false branch. 1519 if (CB.FalseBB != NextBlock) 1520 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1521 DAG.getBasicBlock(CB.FalseBB)); 1522 1523 DAG.setRoot(BrCond); 1524 } 1525 1526 /// visitJumpTable - Emit JumpTable node in the current MBB 1527 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1528 // Emit the code for the jump table 1529 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1530 EVT PTy = TLI.getPointerTy(); 1531 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1532 JT.Reg, PTy); 1533 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1534 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1535 MVT::Other, Index.getValue(1), 1536 Table, Index); 1537 DAG.setRoot(BrJumpTable); 1538 } 1539 1540 /// visitJumpTableHeader - This function emits necessary code to produce index 1541 /// in the JumpTable from switch case. 1542 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1543 JumpTableHeader &JTH, 1544 MachineBasicBlock *SwitchBB) { 1545 // Subtract the lowest switch case value from the value being switched on and 1546 // conditional branch to default mbb if the result is greater than the 1547 // difference between smallest and largest cases. 1548 SDValue SwitchOp = getValue(JTH.SValue); 1549 EVT VT = SwitchOp.getValueType(); 1550 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1551 DAG.getConstant(JTH.First, VT)); 1552 1553 // The SDNode we just created, which holds the value being switched on minus 1554 // the smallest case value, needs to be copied to a virtual register so it 1555 // can be used as an index into the jump table in a subsequent basic block. 1556 // This value may be smaller or larger than the target's pointer type, and 1557 // therefore require extension or truncating. 1558 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1559 1560 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1561 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1562 JumpTableReg, SwitchOp); 1563 JT.Reg = JumpTableReg; 1564 1565 // Emit the range check for the jump table, and branch to the default block 1566 // for the switch statement if the value being switched on exceeds the largest 1567 // case in the switch. 1568 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1569 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1570 DAG.getConstant(JTH.Last-JTH.First,VT), 1571 ISD::SETUGT); 1572 1573 // Set NextBlock to be the MBB immediately after the current one, if any. 1574 // This is used to avoid emitting unnecessary branches to the next block. 1575 MachineBasicBlock *NextBlock = 0; 1576 MachineFunction::iterator BBI = SwitchBB; 1577 1578 if (++BBI != FuncInfo.MF->end()) 1579 NextBlock = BBI; 1580 1581 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1582 MVT::Other, CopyTo, CMP, 1583 DAG.getBasicBlock(JT.Default)); 1584 1585 if (JT.MBB != NextBlock) 1586 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1587 DAG.getBasicBlock(JT.MBB)); 1588 1589 DAG.setRoot(BrCond); 1590 } 1591 1592 /// visitBitTestHeader - This function emits necessary code to produce value 1593 /// suitable for "bit tests" 1594 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1595 MachineBasicBlock *SwitchBB) { 1596 // Subtract the minimum value 1597 SDValue SwitchOp = getValue(B.SValue); 1598 EVT VT = SwitchOp.getValueType(); 1599 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1600 DAG.getConstant(B.First, VT)); 1601 1602 // Check range 1603 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1604 TLI.getSetCCResultType(Sub.getValueType()), 1605 Sub, DAG.getConstant(B.Range, VT), 1606 ISD::SETUGT); 1607 1608 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1609 TLI.getPointerTy()); 1610 1611 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1612 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1613 B.Reg, ShiftOp); 1614 1615 // Set NextBlock to be the MBB immediately after the current one, if any. 1616 // This is used to avoid emitting unnecessary branches to the next block. 1617 MachineBasicBlock *NextBlock = 0; 1618 MachineFunction::iterator BBI = SwitchBB; 1619 if (++BBI != FuncInfo.MF->end()) 1620 NextBlock = BBI; 1621 1622 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1623 1624 SwitchBB->addSuccessor(B.Default); 1625 SwitchBB->addSuccessor(MBB); 1626 1627 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1628 MVT::Other, CopyTo, RangeCmp, 1629 DAG.getBasicBlock(B.Default)); 1630 1631 if (MBB != NextBlock) 1632 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1633 DAG.getBasicBlock(MBB)); 1634 1635 DAG.setRoot(BrRange); 1636 } 1637 1638 /// visitBitTestCase - this function produces one "bit test" 1639 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1640 unsigned Reg, 1641 BitTestCase &B, 1642 MachineBasicBlock *SwitchBB) { 1643 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1644 TLI.getPointerTy()); 1645 SDValue Cmp; 1646 if (CountPopulation_64(B.Mask) == 1) { 1647 // Testing for a single bit; just compare the shift count with what it 1648 // would need to be to shift a 1 bit in that position. 1649 Cmp = DAG.getSetCC(getCurDebugLoc(), 1650 TLI.getSetCCResultType(ShiftOp.getValueType()), 1651 ShiftOp, 1652 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1653 TLI.getPointerTy()), 1654 ISD::SETEQ); 1655 } else { 1656 // Make desired shift 1657 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1658 TLI.getPointerTy(), 1659 DAG.getConstant(1, TLI.getPointerTy()), 1660 ShiftOp); 1661 1662 // Emit bit tests and jumps 1663 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1664 TLI.getPointerTy(), SwitchVal, 1665 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1666 Cmp = DAG.getSetCC(getCurDebugLoc(), 1667 TLI.getSetCCResultType(AndOp.getValueType()), 1668 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1669 ISD::SETNE); 1670 } 1671 1672 SwitchBB->addSuccessor(B.TargetBB); 1673 SwitchBB->addSuccessor(NextMBB); 1674 1675 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1676 MVT::Other, getControlRoot(), 1677 Cmp, DAG.getBasicBlock(B.TargetBB)); 1678 1679 // Set NextBlock to be the MBB immediately after the current one, if any. 1680 // This is used to avoid emitting unnecessary branches to the next block. 1681 MachineBasicBlock *NextBlock = 0; 1682 MachineFunction::iterator BBI = SwitchBB; 1683 if (++BBI != FuncInfo.MF->end()) 1684 NextBlock = BBI; 1685 1686 if (NextMBB != NextBlock) 1687 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1688 DAG.getBasicBlock(NextMBB)); 1689 1690 DAG.setRoot(BrAnd); 1691 } 1692 1693 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1694 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1695 1696 // Retrieve successors. 1697 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1698 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1699 1700 const Value *Callee(I.getCalledValue()); 1701 if (isa<InlineAsm>(Callee)) 1702 visitInlineAsm(&I); 1703 else 1704 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1705 1706 // If the value of the invoke is used outside of its defining block, make it 1707 // available as a virtual register. 1708 CopyToExportRegsIfNeeded(&I); 1709 1710 // Update successor info 1711 InvokeMBB->addSuccessor(Return); 1712 InvokeMBB->addSuccessor(LandingPad); 1713 1714 // Drop into normal successor. 1715 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1716 MVT::Other, getControlRoot(), 1717 DAG.getBasicBlock(Return))); 1718 } 1719 1720 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1721 } 1722 1723 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1724 /// small case ranges). 1725 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1726 CaseRecVector& WorkList, 1727 const Value* SV, 1728 MachineBasicBlock *Default, 1729 MachineBasicBlock *SwitchBB) { 1730 Case& BackCase = *(CR.Range.second-1); 1731 1732 // Size is the number of Cases represented by this range. 1733 size_t Size = CR.Range.second - CR.Range.first; 1734 if (Size > 3) 1735 return false; 1736 1737 // Get the MachineFunction which holds the current MBB. This is used when 1738 // inserting any additional MBBs necessary to represent the switch. 1739 MachineFunction *CurMF = FuncInfo.MF; 1740 1741 // Figure out which block is immediately after the current one. 1742 MachineBasicBlock *NextBlock = 0; 1743 MachineFunction::iterator BBI = CR.CaseBB; 1744 1745 if (++BBI != FuncInfo.MF->end()) 1746 NextBlock = BBI; 1747 1748 // TODO: If any two of the cases has the same destination, and if one value 1749 // is the same as the other, but has one bit unset that the other has set, 1750 // use bit manipulation to do two compares at once. For example: 1751 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1752 1753 // Rearrange the case blocks so that the last one falls through if possible. 1754 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1755 // The last case block won't fall through into 'NextBlock' if we emit the 1756 // branches in this order. See if rearranging a case value would help. 1757 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1758 if (I->BB == NextBlock) { 1759 std::swap(*I, BackCase); 1760 break; 1761 } 1762 } 1763 } 1764 1765 // Create a CaseBlock record representing a conditional branch to 1766 // the Case's target mbb if the value being switched on SV is equal 1767 // to C. 1768 MachineBasicBlock *CurBlock = CR.CaseBB; 1769 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1770 MachineBasicBlock *FallThrough; 1771 if (I != E-1) { 1772 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1773 CurMF->insert(BBI, FallThrough); 1774 1775 // Put SV in a virtual register to make it available from the new blocks. 1776 ExportFromCurrentBlock(SV); 1777 } else { 1778 // If the last case doesn't match, go to the default block. 1779 FallThrough = Default; 1780 } 1781 1782 const Value *RHS, *LHS, *MHS; 1783 ISD::CondCode CC; 1784 if (I->High == I->Low) { 1785 // This is just small small case range :) containing exactly 1 case 1786 CC = ISD::SETEQ; 1787 LHS = SV; RHS = I->High; MHS = NULL; 1788 } else { 1789 CC = ISD::SETLE; 1790 LHS = I->Low; MHS = SV; RHS = I->High; 1791 } 1792 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1793 1794 // If emitting the first comparison, just call visitSwitchCase to emit the 1795 // code into the current block. Otherwise, push the CaseBlock onto the 1796 // vector to be later processed by SDISel, and insert the node's MBB 1797 // before the next MBB. 1798 if (CurBlock == SwitchBB) 1799 visitSwitchCase(CB, SwitchBB); 1800 else 1801 SwitchCases.push_back(CB); 1802 1803 CurBlock = FallThrough; 1804 } 1805 1806 return true; 1807 } 1808 1809 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1810 return !DisableJumpTables && 1811 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1812 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1813 } 1814 1815 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1816 APInt LastExt(Last), FirstExt(First); 1817 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1818 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1819 return (LastExt - FirstExt + 1ULL); 1820 } 1821 1822 /// handleJTSwitchCase - Emit jumptable for current switch case range 1823 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1824 CaseRecVector& WorkList, 1825 const Value* SV, 1826 MachineBasicBlock* Default, 1827 MachineBasicBlock *SwitchBB) { 1828 Case& FrontCase = *CR.Range.first; 1829 Case& BackCase = *(CR.Range.second-1); 1830 1831 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1832 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1833 1834 APInt TSize(First.getBitWidth(), 0); 1835 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1836 I!=E; ++I) 1837 TSize += I->size(); 1838 1839 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1840 return false; 1841 1842 APInt Range = ComputeRange(First, Last); 1843 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1844 if (Density < 0.4) 1845 return false; 1846 1847 DEBUG(dbgs() << "Lowering jump table\n" 1848 << "First entry: " << First << ". Last entry: " << Last << '\n' 1849 << "Range: " << Range 1850 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1851 1852 // Get the MachineFunction which holds the current MBB. This is used when 1853 // inserting any additional MBBs necessary to represent the switch. 1854 MachineFunction *CurMF = FuncInfo.MF; 1855 1856 // Figure out which block is immediately after the current one. 1857 MachineFunction::iterator BBI = CR.CaseBB; 1858 ++BBI; 1859 1860 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1861 1862 // Create a new basic block to hold the code for loading the address 1863 // of the jump table, and jumping to it. Update successor information; 1864 // we will either branch to the default case for the switch, or the jump 1865 // table. 1866 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1867 CurMF->insert(BBI, JumpTableBB); 1868 CR.CaseBB->addSuccessor(Default); 1869 CR.CaseBB->addSuccessor(JumpTableBB); 1870 1871 // Build a vector of destination BBs, corresponding to each target 1872 // of the jump table. If the value of the jump table slot corresponds to 1873 // a case statement, push the case's BB onto the vector, otherwise, push 1874 // the default BB. 1875 std::vector<MachineBasicBlock*> DestBBs; 1876 APInt TEI = First; 1877 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1878 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1879 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1880 1881 if (Low.sle(TEI) && TEI.sle(High)) { 1882 DestBBs.push_back(I->BB); 1883 if (TEI==High) 1884 ++I; 1885 } else { 1886 DestBBs.push_back(Default); 1887 } 1888 } 1889 1890 // Update successor info. Add one edge to each unique successor. 1891 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1892 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1893 E = DestBBs.end(); I != E; ++I) { 1894 if (!SuccsHandled[(*I)->getNumber()]) { 1895 SuccsHandled[(*I)->getNumber()] = true; 1896 JumpTableBB->addSuccessor(*I); 1897 } 1898 } 1899 1900 // Create a jump table index for this jump table. 1901 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1902 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1903 ->createJumpTableIndex(DestBBs); 1904 1905 // Set the jump table information so that we can codegen it as a second 1906 // MachineBasicBlock 1907 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1908 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1909 if (CR.CaseBB == SwitchBB) 1910 visitJumpTableHeader(JT, JTH, SwitchBB); 1911 1912 JTCases.push_back(JumpTableBlock(JTH, JT)); 1913 1914 return true; 1915 } 1916 1917 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1918 /// 2 subtrees. 1919 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1920 CaseRecVector& WorkList, 1921 const Value* SV, 1922 MachineBasicBlock *Default, 1923 MachineBasicBlock *SwitchBB) { 1924 // Get the MachineFunction which holds the current MBB. This is used when 1925 // inserting any additional MBBs necessary to represent the switch. 1926 MachineFunction *CurMF = FuncInfo.MF; 1927 1928 // Figure out which block is immediately after the current one. 1929 MachineFunction::iterator BBI = CR.CaseBB; 1930 ++BBI; 1931 1932 Case& FrontCase = *CR.Range.first; 1933 Case& BackCase = *(CR.Range.second-1); 1934 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1935 1936 // Size is the number of Cases represented by this range. 1937 unsigned Size = CR.Range.second - CR.Range.first; 1938 1939 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1940 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1941 double FMetric = 0; 1942 CaseItr Pivot = CR.Range.first + Size/2; 1943 1944 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1945 // (heuristically) allow us to emit JumpTable's later. 1946 APInt TSize(First.getBitWidth(), 0); 1947 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1948 I!=E; ++I) 1949 TSize += I->size(); 1950 1951 APInt LSize = FrontCase.size(); 1952 APInt RSize = TSize-LSize; 1953 DEBUG(dbgs() << "Selecting best pivot: \n" 1954 << "First: " << First << ", Last: " << Last <<'\n' 1955 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1956 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1957 J!=E; ++I, ++J) { 1958 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1959 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1960 APInt Range = ComputeRange(LEnd, RBegin); 1961 assert((Range - 2ULL).isNonNegative() && 1962 "Invalid case distance"); 1963 double LDensity = (double)LSize.roundToDouble() / 1964 (LEnd - First + 1ULL).roundToDouble(); 1965 double RDensity = (double)RSize.roundToDouble() / 1966 (Last - RBegin + 1ULL).roundToDouble(); 1967 double Metric = Range.logBase2()*(LDensity+RDensity); 1968 // Should always split in some non-trivial place 1969 DEBUG(dbgs() <<"=>Step\n" 1970 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1971 << "LDensity: " << LDensity 1972 << ", RDensity: " << RDensity << '\n' 1973 << "Metric: " << Metric << '\n'); 1974 if (FMetric < Metric) { 1975 Pivot = J; 1976 FMetric = Metric; 1977 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1978 } 1979 1980 LSize += J->size(); 1981 RSize -= J->size(); 1982 } 1983 if (areJTsAllowed(TLI)) { 1984 // If our case is dense we *really* should handle it earlier! 1985 assert((FMetric > 0) && "Should handle dense range earlier!"); 1986 } else { 1987 Pivot = CR.Range.first + Size/2; 1988 } 1989 1990 CaseRange LHSR(CR.Range.first, Pivot); 1991 CaseRange RHSR(Pivot, CR.Range.second); 1992 Constant *C = Pivot->Low; 1993 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1994 1995 // We know that we branch to the LHS if the Value being switched on is 1996 // less than the Pivot value, C. We use this to optimize our binary 1997 // tree a bit, by recognizing that if SV is greater than or equal to the 1998 // LHS's Case Value, and that Case Value is exactly one less than the 1999 // Pivot's Value, then we can branch directly to the LHS's Target, 2000 // rather than creating a leaf node for it. 2001 if ((LHSR.second - LHSR.first) == 1 && 2002 LHSR.first->High == CR.GE && 2003 cast<ConstantInt>(C)->getValue() == 2004 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2005 TrueBB = LHSR.first->BB; 2006 } else { 2007 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2008 CurMF->insert(BBI, TrueBB); 2009 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2010 2011 // Put SV in a virtual register to make it available from the new blocks. 2012 ExportFromCurrentBlock(SV); 2013 } 2014 2015 // Similar to the optimization above, if the Value being switched on is 2016 // known to be less than the Constant CR.LT, and the current Case Value 2017 // is CR.LT - 1, then we can branch directly to the target block for 2018 // the current Case Value, rather than emitting a RHS leaf node for it. 2019 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2020 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2021 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2022 FalseBB = RHSR.first->BB; 2023 } else { 2024 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2025 CurMF->insert(BBI, FalseBB); 2026 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2027 2028 // Put SV in a virtual register to make it available from the new blocks. 2029 ExportFromCurrentBlock(SV); 2030 } 2031 2032 // Create a CaseBlock record representing a conditional branch to 2033 // the LHS node if the value being switched on SV is less than C. 2034 // Otherwise, branch to LHS. 2035 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2036 2037 if (CR.CaseBB == SwitchBB) 2038 visitSwitchCase(CB, SwitchBB); 2039 else 2040 SwitchCases.push_back(CB); 2041 2042 return true; 2043 } 2044 2045 /// handleBitTestsSwitchCase - if current case range has few destination and 2046 /// range span less, than machine word bitwidth, encode case range into series 2047 /// of masks and emit bit tests with these masks. 2048 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2049 CaseRecVector& WorkList, 2050 const Value* SV, 2051 MachineBasicBlock* Default, 2052 MachineBasicBlock *SwitchBB){ 2053 EVT PTy = TLI.getPointerTy(); 2054 unsigned IntPtrBits = PTy.getSizeInBits(); 2055 2056 Case& FrontCase = *CR.Range.first; 2057 Case& BackCase = *(CR.Range.second-1); 2058 2059 // Get the MachineFunction which holds the current MBB. This is used when 2060 // inserting any additional MBBs necessary to represent the switch. 2061 MachineFunction *CurMF = FuncInfo.MF; 2062 2063 // If target does not have legal shift left, do not emit bit tests at all. 2064 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2065 return false; 2066 2067 size_t numCmps = 0; 2068 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2069 I!=E; ++I) { 2070 // Single case counts one, case range - two. 2071 numCmps += (I->Low == I->High ? 1 : 2); 2072 } 2073 2074 // Count unique destinations 2075 SmallSet<MachineBasicBlock*, 4> Dests; 2076 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2077 Dests.insert(I->BB); 2078 if (Dests.size() > 3) 2079 // Don't bother the code below, if there are too much unique destinations 2080 return false; 2081 } 2082 DEBUG(dbgs() << "Total number of unique destinations: " 2083 << Dests.size() << '\n' 2084 << "Total number of comparisons: " << numCmps << '\n'); 2085 2086 // Compute span of values. 2087 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2088 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2089 APInt cmpRange = maxValue - minValue; 2090 2091 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2092 << "Low bound: " << minValue << '\n' 2093 << "High bound: " << maxValue << '\n'); 2094 2095 if (cmpRange.uge(IntPtrBits) || 2096 (!(Dests.size() == 1 && numCmps >= 3) && 2097 !(Dests.size() == 2 && numCmps >= 5) && 2098 !(Dests.size() >= 3 && numCmps >= 6))) 2099 return false; 2100 2101 DEBUG(dbgs() << "Emitting bit tests\n"); 2102 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2103 2104 // Optimize the case where all the case values fit in a 2105 // word without having to subtract minValue. In this case, 2106 // we can optimize away the subtraction. 2107 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2108 cmpRange = maxValue; 2109 } else { 2110 lowBound = minValue; 2111 } 2112 2113 CaseBitsVector CasesBits; 2114 unsigned i, count = 0; 2115 2116 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2117 MachineBasicBlock* Dest = I->BB; 2118 for (i = 0; i < count; ++i) 2119 if (Dest == CasesBits[i].BB) 2120 break; 2121 2122 if (i == count) { 2123 assert((count < 3) && "Too much destinations to test!"); 2124 CasesBits.push_back(CaseBits(0, Dest, 0)); 2125 count++; 2126 } 2127 2128 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2129 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2130 2131 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2132 uint64_t hi = (highValue - lowBound).getZExtValue(); 2133 2134 for (uint64_t j = lo; j <= hi; j++) { 2135 CasesBits[i].Mask |= 1ULL << j; 2136 CasesBits[i].Bits++; 2137 } 2138 2139 } 2140 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2141 2142 BitTestInfo BTC; 2143 2144 // Figure out which block is immediately after the current one. 2145 MachineFunction::iterator BBI = CR.CaseBB; 2146 ++BBI; 2147 2148 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2149 2150 DEBUG(dbgs() << "Cases:\n"); 2151 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2152 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2153 << ", Bits: " << CasesBits[i].Bits 2154 << ", BB: " << CasesBits[i].BB << '\n'); 2155 2156 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2157 CurMF->insert(BBI, CaseBB); 2158 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2159 CaseBB, 2160 CasesBits[i].BB)); 2161 2162 // Put SV in a virtual register to make it available from the new blocks. 2163 ExportFromCurrentBlock(SV); 2164 } 2165 2166 BitTestBlock BTB(lowBound, cmpRange, SV, 2167 -1U, (CR.CaseBB == SwitchBB), 2168 CR.CaseBB, Default, BTC); 2169 2170 if (CR.CaseBB == SwitchBB) 2171 visitBitTestHeader(BTB, SwitchBB); 2172 2173 BitTestCases.push_back(BTB); 2174 2175 return true; 2176 } 2177 2178 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2179 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2180 const SwitchInst& SI) { 2181 size_t numCmps = 0; 2182 2183 // Start with "simple" cases 2184 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2185 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2186 Cases.push_back(Case(SI.getSuccessorValue(i), 2187 SI.getSuccessorValue(i), 2188 SMBB)); 2189 } 2190 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2191 2192 // Merge case into clusters 2193 if (Cases.size() >= 2) 2194 // Must recompute end() each iteration because it may be 2195 // invalidated by erase if we hold on to it 2196 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2197 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2198 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2199 MachineBasicBlock* nextBB = J->BB; 2200 MachineBasicBlock* currentBB = I->BB; 2201 2202 // If the two neighboring cases go to the same destination, merge them 2203 // into a single case. 2204 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2205 I->High = J->High; 2206 J = Cases.erase(J); 2207 } else { 2208 I = J++; 2209 } 2210 } 2211 2212 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2213 if (I->Low != I->High) 2214 // A range counts double, since it requires two compares. 2215 ++numCmps; 2216 } 2217 2218 return numCmps; 2219 } 2220 2221 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2222 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2223 2224 // Figure out which block is immediately after the current one. 2225 MachineBasicBlock *NextBlock = 0; 2226 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2227 2228 // If there is only the default destination, branch to it if it is not the 2229 // next basic block. Otherwise, just fall through. 2230 if (SI.getNumOperands() == 2) { 2231 // Update machine-CFG edges. 2232 2233 // If this is not a fall-through branch, emit the branch. 2234 SwitchMBB->addSuccessor(Default); 2235 if (Default != NextBlock) 2236 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2237 MVT::Other, getControlRoot(), 2238 DAG.getBasicBlock(Default))); 2239 2240 return; 2241 } 2242 2243 // If there are any non-default case statements, create a vector of Cases 2244 // representing each one, and sort the vector so that we can efficiently 2245 // create a binary search tree from them. 2246 CaseVector Cases; 2247 size_t numCmps = Clusterify(Cases, SI); 2248 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2249 << ". Total compares: " << numCmps << '\n'); 2250 numCmps = 0; 2251 2252 // Get the Value to be switched on and default basic blocks, which will be 2253 // inserted into CaseBlock records, representing basic blocks in the binary 2254 // search tree. 2255 const Value *SV = SI.getOperand(0); 2256 2257 // Push the initial CaseRec onto the worklist 2258 CaseRecVector WorkList; 2259 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2260 CaseRange(Cases.begin(),Cases.end()))); 2261 2262 while (!WorkList.empty()) { 2263 // Grab a record representing a case range to process off the worklist 2264 CaseRec CR = WorkList.back(); 2265 WorkList.pop_back(); 2266 2267 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2268 continue; 2269 2270 // If the range has few cases (two or less) emit a series of specific 2271 // tests. 2272 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2273 continue; 2274 2275 // If the switch has more than 5 blocks, and at least 40% dense, and the 2276 // target supports indirect branches, then emit a jump table rather than 2277 // lowering the switch to a binary tree of conditional branches. 2278 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2279 continue; 2280 2281 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2282 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2283 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2284 } 2285 } 2286 2287 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2288 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2289 2290 // Update machine-CFG edges with unique successors. 2291 SmallVector<BasicBlock*, 32> succs; 2292 succs.reserve(I.getNumSuccessors()); 2293 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2294 succs.push_back(I.getSuccessor(i)); 2295 array_pod_sort(succs.begin(), succs.end()); 2296 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2297 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2298 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2299 2300 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2301 MVT::Other, getControlRoot(), 2302 getValue(I.getAddress()))); 2303 } 2304 2305 void SelectionDAGBuilder::visitFSub(const User &I) { 2306 // -0.0 - X --> fneg 2307 const Type *Ty = I.getType(); 2308 if (Ty->isVectorTy()) { 2309 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2310 const VectorType *DestTy = cast<VectorType>(I.getType()); 2311 const Type *ElTy = DestTy->getElementType(); 2312 unsigned VL = DestTy->getNumElements(); 2313 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2314 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2315 if (CV == CNZ) { 2316 SDValue Op2 = getValue(I.getOperand(1)); 2317 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2318 Op2.getValueType(), Op2)); 2319 return; 2320 } 2321 } 2322 } 2323 2324 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2325 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2326 SDValue Op2 = getValue(I.getOperand(1)); 2327 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2328 Op2.getValueType(), Op2)); 2329 return; 2330 } 2331 2332 visitBinary(I, ISD::FSUB); 2333 } 2334 2335 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2336 SDValue Op1 = getValue(I.getOperand(0)); 2337 SDValue Op2 = getValue(I.getOperand(1)); 2338 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2339 Op1.getValueType(), Op1, Op2)); 2340 } 2341 2342 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2343 SDValue Op1 = getValue(I.getOperand(0)); 2344 SDValue Op2 = getValue(I.getOperand(1)); 2345 if (!I.getType()->isVectorTy() && 2346 Op2.getValueType() != TLI.getShiftAmountTy()) { 2347 // If the operand is smaller than the shift count type, promote it. 2348 EVT PTy = TLI.getPointerTy(); 2349 EVT STy = TLI.getShiftAmountTy(); 2350 if (STy.bitsGT(Op2.getValueType())) 2351 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2352 TLI.getShiftAmountTy(), Op2); 2353 // If the operand is larger than the shift count type but the shift 2354 // count type has enough bits to represent any shift value, truncate 2355 // it now. This is a common case and it exposes the truncate to 2356 // optimization early. 2357 else if (STy.getSizeInBits() >= 2358 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2359 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2360 TLI.getShiftAmountTy(), Op2); 2361 // Otherwise we'll need to temporarily settle for some other 2362 // convenient type; type legalization will make adjustments as 2363 // needed. 2364 else if (PTy.bitsLT(Op2.getValueType())) 2365 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2366 TLI.getPointerTy(), Op2); 2367 else if (PTy.bitsGT(Op2.getValueType())) 2368 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2369 TLI.getPointerTy(), Op2); 2370 } 2371 2372 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2373 Op1.getValueType(), Op1, Op2)); 2374 } 2375 2376 void SelectionDAGBuilder::visitICmp(const User &I) { 2377 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2378 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2379 predicate = IC->getPredicate(); 2380 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2381 predicate = ICmpInst::Predicate(IC->getPredicate()); 2382 SDValue Op1 = getValue(I.getOperand(0)); 2383 SDValue Op2 = getValue(I.getOperand(1)); 2384 ISD::CondCode Opcode = getICmpCondCode(predicate); 2385 2386 EVT DestVT = TLI.getValueType(I.getType()); 2387 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2388 } 2389 2390 void SelectionDAGBuilder::visitFCmp(const User &I) { 2391 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2392 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2393 predicate = FC->getPredicate(); 2394 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2395 predicate = FCmpInst::Predicate(FC->getPredicate()); 2396 SDValue Op1 = getValue(I.getOperand(0)); 2397 SDValue Op2 = getValue(I.getOperand(1)); 2398 ISD::CondCode Condition = getFCmpCondCode(predicate); 2399 EVT DestVT = TLI.getValueType(I.getType()); 2400 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2401 } 2402 2403 void SelectionDAGBuilder::visitSelect(const User &I) { 2404 SmallVector<EVT, 4> ValueVTs; 2405 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2406 unsigned NumValues = ValueVTs.size(); 2407 if (NumValues == 0) return; 2408 2409 SmallVector<SDValue, 4> Values(NumValues); 2410 SDValue Cond = getValue(I.getOperand(0)); 2411 SDValue TrueVal = getValue(I.getOperand(1)); 2412 SDValue FalseVal = getValue(I.getOperand(2)); 2413 2414 for (unsigned i = 0; i != NumValues; ++i) 2415 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2416 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2417 Cond, 2418 SDValue(TrueVal.getNode(), 2419 TrueVal.getResNo() + i), 2420 SDValue(FalseVal.getNode(), 2421 FalseVal.getResNo() + i)); 2422 2423 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2424 DAG.getVTList(&ValueVTs[0], NumValues), 2425 &Values[0], NumValues)); 2426 } 2427 2428 void SelectionDAGBuilder::visitTrunc(const User &I) { 2429 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2430 SDValue N = getValue(I.getOperand(0)); 2431 EVT DestVT = TLI.getValueType(I.getType()); 2432 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2433 } 2434 2435 void SelectionDAGBuilder::visitZExt(const User &I) { 2436 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2437 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2438 SDValue N = getValue(I.getOperand(0)); 2439 EVT DestVT = TLI.getValueType(I.getType()); 2440 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2441 } 2442 2443 void SelectionDAGBuilder::visitSExt(const User &I) { 2444 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2445 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2446 SDValue N = getValue(I.getOperand(0)); 2447 EVT DestVT = TLI.getValueType(I.getType()); 2448 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2449 } 2450 2451 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2452 // FPTrunc is never a no-op cast, no need to check 2453 SDValue N = getValue(I.getOperand(0)); 2454 EVT DestVT = TLI.getValueType(I.getType()); 2455 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2456 DestVT, N, DAG.getIntPtrConstant(0))); 2457 } 2458 2459 void SelectionDAGBuilder::visitFPExt(const User &I){ 2460 // FPTrunc is never a no-op cast, no need to check 2461 SDValue N = getValue(I.getOperand(0)); 2462 EVT DestVT = TLI.getValueType(I.getType()); 2463 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2464 } 2465 2466 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2467 // FPToUI is never a no-op cast, no need to check 2468 SDValue N = getValue(I.getOperand(0)); 2469 EVT DestVT = TLI.getValueType(I.getType()); 2470 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2471 } 2472 2473 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2474 // FPToSI is never a no-op cast, no need to check 2475 SDValue N = getValue(I.getOperand(0)); 2476 EVT DestVT = TLI.getValueType(I.getType()); 2477 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2478 } 2479 2480 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2481 // UIToFP is never a no-op cast, no need to check 2482 SDValue N = getValue(I.getOperand(0)); 2483 EVT DestVT = TLI.getValueType(I.getType()); 2484 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2485 } 2486 2487 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2488 // SIToFP is never a no-op cast, no need to check 2489 SDValue N = getValue(I.getOperand(0)); 2490 EVT DestVT = TLI.getValueType(I.getType()); 2491 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2492 } 2493 2494 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2495 // What to do depends on the size of the integer and the size of the pointer. 2496 // We can either truncate, zero extend, or no-op, accordingly. 2497 SDValue N = getValue(I.getOperand(0)); 2498 EVT DestVT = TLI.getValueType(I.getType()); 2499 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2500 } 2501 2502 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2503 // What to do depends on the size of the integer and the size of the pointer. 2504 // We can either truncate, zero extend, or no-op, accordingly. 2505 SDValue N = getValue(I.getOperand(0)); 2506 EVT DestVT = TLI.getValueType(I.getType()); 2507 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2508 } 2509 2510 void SelectionDAGBuilder::visitBitCast(const User &I) { 2511 SDValue N = getValue(I.getOperand(0)); 2512 EVT DestVT = TLI.getValueType(I.getType()); 2513 2514 // BitCast assures us that source and destination are the same size so this is 2515 // either a BIT_CONVERT or a no-op. 2516 if (DestVT != N.getValueType()) 2517 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2518 DestVT, N)); // convert types. 2519 else 2520 setValue(&I, N); // noop cast. 2521 } 2522 2523 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2524 SDValue InVec = getValue(I.getOperand(0)); 2525 SDValue InVal = getValue(I.getOperand(1)); 2526 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2527 TLI.getPointerTy(), 2528 getValue(I.getOperand(2))); 2529 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2530 TLI.getValueType(I.getType()), 2531 InVec, InVal, InIdx)); 2532 } 2533 2534 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2535 SDValue InVec = getValue(I.getOperand(0)); 2536 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2537 TLI.getPointerTy(), 2538 getValue(I.getOperand(1))); 2539 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2540 TLI.getValueType(I.getType()), InVec, InIdx)); 2541 } 2542 2543 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2544 // from SIndx and increasing to the element length (undefs are allowed). 2545 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2546 unsigned MaskNumElts = Mask.size(); 2547 for (unsigned i = 0; i != MaskNumElts; ++i) 2548 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2549 return false; 2550 return true; 2551 } 2552 2553 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2554 SmallVector<int, 8> Mask; 2555 SDValue Src1 = getValue(I.getOperand(0)); 2556 SDValue Src2 = getValue(I.getOperand(1)); 2557 2558 // Convert the ConstantVector mask operand into an array of ints, with -1 2559 // representing undef values. 2560 SmallVector<Constant*, 8> MaskElts; 2561 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2562 unsigned MaskNumElts = MaskElts.size(); 2563 for (unsigned i = 0; i != MaskNumElts; ++i) { 2564 if (isa<UndefValue>(MaskElts[i])) 2565 Mask.push_back(-1); 2566 else 2567 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2568 } 2569 2570 EVT VT = TLI.getValueType(I.getType()); 2571 EVT SrcVT = Src1.getValueType(); 2572 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2573 2574 if (SrcNumElts == MaskNumElts) { 2575 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2576 &Mask[0])); 2577 return; 2578 } 2579 2580 // Normalize the shuffle vector since mask and vector length don't match. 2581 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2582 // Mask is longer than the source vectors and is a multiple of the source 2583 // vectors. We can use concatenate vector to make the mask and vectors 2584 // lengths match. 2585 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2586 // The shuffle is concatenating two vectors together. 2587 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2588 VT, Src1, Src2)); 2589 return; 2590 } 2591 2592 // Pad both vectors with undefs to make them the same length as the mask. 2593 unsigned NumConcat = MaskNumElts / SrcNumElts; 2594 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2595 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2596 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2597 2598 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2599 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2600 MOps1[0] = Src1; 2601 MOps2[0] = Src2; 2602 2603 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2604 getCurDebugLoc(), VT, 2605 &MOps1[0], NumConcat); 2606 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2607 getCurDebugLoc(), VT, 2608 &MOps2[0], NumConcat); 2609 2610 // Readjust mask for new input vector length. 2611 SmallVector<int, 8> MappedOps; 2612 for (unsigned i = 0; i != MaskNumElts; ++i) { 2613 int Idx = Mask[i]; 2614 if (Idx < (int)SrcNumElts) 2615 MappedOps.push_back(Idx); 2616 else 2617 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2618 } 2619 2620 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2621 &MappedOps[0])); 2622 return; 2623 } 2624 2625 if (SrcNumElts > MaskNumElts) { 2626 // Analyze the access pattern of the vector to see if we can extract 2627 // two subvectors and do the shuffle. The analysis is done by calculating 2628 // the range of elements the mask access on both vectors. 2629 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2630 int MaxRange[2] = {-1, -1}; 2631 2632 for (unsigned i = 0; i != MaskNumElts; ++i) { 2633 int Idx = Mask[i]; 2634 int Input = 0; 2635 if (Idx < 0) 2636 continue; 2637 2638 if (Idx >= (int)SrcNumElts) { 2639 Input = 1; 2640 Idx -= SrcNumElts; 2641 } 2642 if (Idx > MaxRange[Input]) 2643 MaxRange[Input] = Idx; 2644 if (Idx < MinRange[Input]) 2645 MinRange[Input] = Idx; 2646 } 2647 2648 // Check if the access is smaller than the vector size and can we find 2649 // a reasonable extract index. 2650 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2651 // Extract. 2652 int StartIdx[2]; // StartIdx to extract from 2653 for (int Input=0; Input < 2; ++Input) { 2654 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2655 RangeUse[Input] = 0; // Unused 2656 StartIdx[Input] = 0; 2657 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2658 // Fits within range but we should see if we can find a good 2659 // start index that is a multiple of the mask length. 2660 if (MaxRange[Input] < (int)MaskNumElts) { 2661 RangeUse[Input] = 1; // Extract from beginning of the vector 2662 StartIdx[Input] = 0; 2663 } else { 2664 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2665 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2666 StartIdx[Input] + MaskNumElts < SrcNumElts) 2667 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2668 } 2669 } 2670 } 2671 2672 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2673 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2674 return; 2675 } 2676 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2677 // Extract appropriate subvector and generate a vector shuffle 2678 for (int Input=0; Input < 2; ++Input) { 2679 SDValue &Src = Input == 0 ? Src1 : Src2; 2680 if (RangeUse[Input] == 0) 2681 Src = DAG.getUNDEF(VT); 2682 else 2683 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2684 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2685 } 2686 2687 // Calculate new mask. 2688 SmallVector<int, 8> MappedOps; 2689 for (unsigned i = 0; i != MaskNumElts; ++i) { 2690 int Idx = Mask[i]; 2691 if (Idx < 0) 2692 MappedOps.push_back(Idx); 2693 else if (Idx < (int)SrcNumElts) 2694 MappedOps.push_back(Idx - StartIdx[0]); 2695 else 2696 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2697 } 2698 2699 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2700 &MappedOps[0])); 2701 return; 2702 } 2703 } 2704 2705 // We can't use either concat vectors or extract subvectors so fall back to 2706 // replacing the shuffle with extract and build vector. 2707 // to insert and build vector. 2708 EVT EltVT = VT.getVectorElementType(); 2709 EVT PtrVT = TLI.getPointerTy(); 2710 SmallVector<SDValue,8> Ops; 2711 for (unsigned i = 0; i != MaskNumElts; ++i) { 2712 if (Mask[i] < 0) { 2713 Ops.push_back(DAG.getUNDEF(EltVT)); 2714 } else { 2715 int Idx = Mask[i]; 2716 SDValue Res; 2717 2718 if (Idx < (int)SrcNumElts) 2719 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2720 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2721 else 2722 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2723 EltVT, Src2, 2724 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2725 2726 Ops.push_back(Res); 2727 } 2728 } 2729 2730 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2731 VT, &Ops[0], Ops.size())); 2732 } 2733 2734 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2735 const Value *Op0 = I.getOperand(0); 2736 const Value *Op1 = I.getOperand(1); 2737 const Type *AggTy = I.getType(); 2738 const Type *ValTy = Op1->getType(); 2739 bool IntoUndef = isa<UndefValue>(Op0); 2740 bool FromUndef = isa<UndefValue>(Op1); 2741 2742 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2743 I.idx_begin(), I.idx_end()); 2744 2745 SmallVector<EVT, 4> AggValueVTs; 2746 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2747 SmallVector<EVT, 4> ValValueVTs; 2748 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2749 2750 unsigned NumAggValues = AggValueVTs.size(); 2751 unsigned NumValValues = ValValueVTs.size(); 2752 SmallVector<SDValue, 4> Values(NumAggValues); 2753 2754 SDValue Agg = getValue(Op0); 2755 SDValue Val = getValue(Op1); 2756 unsigned i = 0; 2757 // Copy the beginning value(s) from the original aggregate. 2758 for (; i != LinearIndex; ++i) 2759 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2760 SDValue(Agg.getNode(), Agg.getResNo() + i); 2761 // Copy values from the inserted value(s). 2762 for (; i != LinearIndex + NumValValues; ++i) 2763 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2764 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2765 // Copy remaining value(s) from the original aggregate. 2766 for (; i != NumAggValues; ++i) 2767 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2768 SDValue(Agg.getNode(), Agg.getResNo() + i); 2769 2770 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2771 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2772 &Values[0], NumAggValues)); 2773 } 2774 2775 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2776 const Value *Op0 = I.getOperand(0); 2777 const Type *AggTy = Op0->getType(); 2778 const Type *ValTy = I.getType(); 2779 bool OutOfUndef = isa<UndefValue>(Op0); 2780 2781 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2782 I.idx_begin(), I.idx_end()); 2783 2784 SmallVector<EVT, 4> ValValueVTs; 2785 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2786 2787 unsigned NumValValues = ValValueVTs.size(); 2788 SmallVector<SDValue, 4> Values(NumValValues); 2789 2790 SDValue Agg = getValue(Op0); 2791 // Copy out the selected value(s). 2792 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2793 Values[i - LinearIndex] = 2794 OutOfUndef ? 2795 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2796 SDValue(Agg.getNode(), Agg.getResNo() + i); 2797 2798 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2799 DAG.getVTList(&ValValueVTs[0], NumValValues), 2800 &Values[0], NumValValues)); 2801 } 2802 2803 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2804 SDValue N = getValue(I.getOperand(0)); 2805 const Type *Ty = I.getOperand(0)->getType(); 2806 2807 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2808 OI != E; ++OI) { 2809 const Value *Idx = *OI; 2810 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2811 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2812 if (Field) { 2813 // N = N + Offset 2814 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2815 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2816 DAG.getIntPtrConstant(Offset)); 2817 } 2818 2819 Ty = StTy->getElementType(Field); 2820 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2821 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2822 2823 // Offset canonically 0 for unions, but type changes 2824 Ty = UnTy->getElementType(Field); 2825 } else { 2826 Ty = cast<SequentialType>(Ty)->getElementType(); 2827 2828 // If this is a constant subscript, handle it quickly. 2829 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2830 if (CI->isZero()) continue; 2831 uint64_t Offs = 2832 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2833 SDValue OffsVal; 2834 EVT PTy = TLI.getPointerTy(); 2835 unsigned PtrBits = PTy.getSizeInBits(); 2836 if (PtrBits < 64) 2837 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2838 TLI.getPointerTy(), 2839 DAG.getConstant(Offs, MVT::i64)); 2840 else 2841 OffsVal = DAG.getIntPtrConstant(Offs); 2842 2843 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2844 OffsVal); 2845 continue; 2846 } 2847 2848 // N = N + Idx * ElementSize; 2849 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2850 TD->getTypeAllocSize(Ty)); 2851 SDValue IdxN = getValue(Idx); 2852 2853 // If the index is smaller or larger than intptr_t, truncate or extend 2854 // it. 2855 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2856 2857 // If this is a multiply by a power of two, turn it into a shl 2858 // immediately. This is a very common case. 2859 if (ElementSize != 1) { 2860 if (ElementSize.isPowerOf2()) { 2861 unsigned Amt = ElementSize.logBase2(); 2862 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2863 N.getValueType(), IdxN, 2864 DAG.getConstant(Amt, TLI.getPointerTy())); 2865 } else { 2866 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2867 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2868 N.getValueType(), IdxN, Scale); 2869 } 2870 } 2871 2872 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2873 N.getValueType(), N, IdxN); 2874 } 2875 } 2876 2877 setValue(&I, N); 2878 } 2879 2880 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2881 // If this is a fixed sized alloca in the entry block of the function, 2882 // allocate it statically on the stack. 2883 if (FuncInfo.StaticAllocaMap.count(&I)) 2884 return; // getValue will auto-populate this. 2885 2886 const Type *Ty = I.getAllocatedType(); 2887 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2888 unsigned Align = 2889 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2890 I.getAlignment()); 2891 2892 SDValue AllocSize = getValue(I.getArraySize()); 2893 2894 EVT IntPtr = TLI.getPointerTy(); 2895 if (AllocSize.getValueType() != IntPtr) 2896 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2897 2898 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2899 AllocSize, 2900 DAG.getConstant(TySize, IntPtr)); 2901 2902 // Handle alignment. If the requested alignment is less than or equal to 2903 // the stack alignment, ignore it. If the size is greater than or equal to 2904 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2905 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2906 if (Align <= StackAlign) 2907 Align = 0; 2908 2909 // Round the size of the allocation up to the stack alignment size 2910 // by add SA-1 to the size. 2911 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2912 AllocSize.getValueType(), AllocSize, 2913 DAG.getIntPtrConstant(StackAlign-1)); 2914 2915 // Mask out the low bits for alignment purposes. 2916 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2917 AllocSize.getValueType(), AllocSize, 2918 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2919 2920 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2921 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2922 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2923 VTs, Ops, 3); 2924 setValue(&I, DSA); 2925 DAG.setRoot(DSA.getValue(1)); 2926 2927 // Inform the Frame Information that we have just allocated a variable-sized 2928 // object. 2929 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2930 } 2931 2932 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2933 const Value *SV = I.getOperand(0); 2934 SDValue Ptr = getValue(SV); 2935 2936 const Type *Ty = I.getType(); 2937 2938 bool isVolatile = I.isVolatile(); 2939 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2940 unsigned Alignment = I.getAlignment(); 2941 2942 SmallVector<EVT, 4> ValueVTs; 2943 SmallVector<uint64_t, 4> Offsets; 2944 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2945 unsigned NumValues = ValueVTs.size(); 2946 if (NumValues == 0) 2947 return; 2948 2949 SDValue Root; 2950 bool ConstantMemory = false; 2951 if (I.isVolatile()) 2952 // Serialize volatile loads with other side effects. 2953 Root = getRoot(); 2954 else if (AA->pointsToConstantMemory(SV)) { 2955 // Do not serialize (non-volatile) loads of constant memory with anything. 2956 Root = DAG.getEntryNode(); 2957 ConstantMemory = true; 2958 } else { 2959 // Do not serialize non-volatile loads against each other. 2960 Root = DAG.getRoot(); 2961 } 2962 2963 SmallVector<SDValue, 4> Values(NumValues); 2964 SmallVector<SDValue, 4> Chains(NumValues); 2965 EVT PtrVT = Ptr.getValueType(); 2966 for (unsigned i = 0; i != NumValues; ++i) { 2967 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2968 PtrVT, Ptr, 2969 DAG.getConstant(Offsets[i], PtrVT)); 2970 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2971 A, SV, Offsets[i], isVolatile, 2972 isNonTemporal, Alignment); 2973 2974 Values[i] = L; 2975 Chains[i] = L.getValue(1); 2976 } 2977 2978 if (!ConstantMemory) { 2979 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2980 MVT::Other, &Chains[0], NumValues); 2981 if (isVolatile) 2982 DAG.setRoot(Chain); 2983 else 2984 PendingLoads.push_back(Chain); 2985 } 2986 2987 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2988 DAG.getVTList(&ValueVTs[0], NumValues), 2989 &Values[0], NumValues)); 2990 } 2991 2992 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2993 const Value *SrcV = I.getOperand(0); 2994 const Value *PtrV = I.getOperand(1); 2995 2996 SmallVector<EVT, 4> ValueVTs; 2997 SmallVector<uint64_t, 4> Offsets; 2998 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2999 unsigned NumValues = ValueVTs.size(); 3000 if (NumValues == 0) 3001 return; 3002 3003 // Get the lowered operands. Note that we do this after 3004 // checking if NumResults is zero, because with zero results 3005 // the operands won't have values in the map. 3006 SDValue Src = getValue(SrcV); 3007 SDValue Ptr = getValue(PtrV); 3008 3009 SDValue Root = getRoot(); 3010 SmallVector<SDValue, 4> Chains(NumValues); 3011 EVT PtrVT = Ptr.getValueType(); 3012 bool isVolatile = I.isVolatile(); 3013 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3014 unsigned Alignment = I.getAlignment(); 3015 3016 for (unsigned i = 0; i != NumValues; ++i) { 3017 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3018 DAG.getConstant(Offsets[i], PtrVT)); 3019 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3020 SDValue(Src.getNode(), Src.getResNo() + i), 3021 Add, PtrV, Offsets[i], isVolatile, 3022 isNonTemporal, Alignment); 3023 } 3024 3025 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3026 MVT::Other, &Chains[0], NumValues)); 3027 } 3028 3029 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3030 /// node. 3031 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3032 unsigned Intrinsic) { 3033 bool HasChain = !I.doesNotAccessMemory(); 3034 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3035 3036 // Build the operand list. 3037 SmallVector<SDValue, 8> Ops; 3038 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3039 if (OnlyLoad) { 3040 // We don't need to serialize loads against other loads. 3041 Ops.push_back(DAG.getRoot()); 3042 } else { 3043 Ops.push_back(getRoot()); 3044 } 3045 } 3046 3047 // Info is set by getTgtMemInstrinsic 3048 TargetLowering::IntrinsicInfo Info; 3049 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3050 3051 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3052 if (!IsTgtIntrinsic) 3053 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3054 3055 // Add all operands of the call to the operand list. 3056 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3057 SDValue Op = getValue(I.getArgOperand(i)); 3058 assert(TLI.isTypeLegal(Op.getValueType()) && 3059 "Intrinsic uses a non-legal type?"); 3060 Ops.push_back(Op); 3061 } 3062 3063 SmallVector<EVT, 4> ValueVTs; 3064 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3065 #ifndef NDEBUG 3066 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3067 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3068 "Intrinsic uses a non-legal type?"); 3069 } 3070 #endif // NDEBUG 3071 3072 if (HasChain) 3073 ValueVTs.push_back(MVT::Other); 3074 3075 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3076 3077 // Create the node. 3078 SDValue Result; 3079 if (IsTgtIntrinsic) { 3080 // This is target intrinsic that touches memory 3081 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3082 VTs, &Ops[0], Ops.size(), 3083 Info.memVT, Info.ptrVal, Info.offset, 3084 Info.align, Info.vol, 3085 Info.readMem, Info.writeMem); 3086 } else if (!HasChain) { 3087 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3088 VTs, &Ops[0], Ops.size()); 3089 } else if (!I.getType()->isVoidTy()) { 3090 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3091 VTs, &Ops[0], Ops.size()); 3092 } else { 3093 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3094 VTs, &Ops[0], Ops.size()); 3095 } 3096 3097 if (HasChain) { 3098 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3099 if (OnlyLoad) 3100 PendingLoads.push_back(Chain); 3101 else 3102 DAG.setRoot(Chain); 3103 } 3104 3105 if (!I.getType()->isVoidTy()) { 3106 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3107 EVT VT = TLI.getValueType(PTy); 3108 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3109 } 3110 3111 setValue(&I, Result); 3112 } 3113 } 3114 3115 /// GetSignificand - Get the significand and build it into a floating-point 3116 /// number with exponent of 1: 3117 /// 3118 /// Op = (Op & 0x007fffff) | 0x3f800000; 3119 /// 3120 /// where Op is the hexidecimal representation of floating point value. 3121 static SDValue 3122 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3123 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3124 DAG.getConstant(0x007fffff, MVT::i32)); 3125 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3126 DAG.getConstant(0x3f800000, MVT::i32)); 3127 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3128 } 3129 3130 /// GetExponent - Get the exponent: 3131 /// 3132 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3133 /// 3134 /// where Op is the hexidecimal representation of floating point value. 3135 static SDValue 3136 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3137 DebugLoc dl) { 3138 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3139 DAG.getConstant(0x7f800000, MVT::i32)); 3140 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3141 DAG.getConstant(23, TLI.getPointerTy())); 3142 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3143 DAG.getConstant(127, MVT::i32)); 3144 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3145 } 3146 3147 /// getF32Constant - Get 32-bit floating point constant. 3148 static SDValue 3149 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3150 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3151 } 3152 3153 /// Inlined utility function to implement binary input atomic intrinsics for 3154 /// visitIntrinsicCall: I is a call instruction 3155 /// Op is the associated NodeType for I 3156 const char * 3157 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3158 ISD::NodeType Op) { 3159 SDValue Root = getRoot(); 3160 SDValue L = 3161 DAG.getAtomic(Op, getCurDebugLoc(), 3162 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3163 Root, 3164 getValue(I.getArgOperand(0)), 3165 getValue(I.getArgOperand(1)), 3166 I.getArgOperand(0)); 3167 setValue(&I, L); 3168 DAG.setRoot(L.getValue(1)); 3169 return 0; 3170 } 3171 3172 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3173 const char * 3174 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3175 SDValue Op1 = getValue(I.getArgOperand(0)); 3176 SDValue Op2 = getValue(I.getArgOperand(1)); 3177 3178 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3179 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3180 return 0; 3181 } 3182 3183 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3184 /// limited-precision mode. 3185 void 3186 SelectionDAGBuilder::visitExp(const CallInst &I) { 3187 SDValue result; 3188 DebugLoc dl = getCurDebugLoc(); 3189 3190 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3191 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3192 SDValue Op = getValue(I.getArgOperand(0)); 3193 3194 // Put the exponent in the right bit position for later addition to the 3195 // final result: 3196 // 3197 // #define LOG2OFe 1.4426950f 3198 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3200 getF32Constant(DAG, 0x3fb8aa3b)); 3201 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3202 3203 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3204 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3205 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3206 3207 // IntegerPartOfX <<= 23; 3208 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3209 DAG.getConstant(23, TLI.getPointerTy())); 3210 3211 if (LimitFloatPrecision <= 6) { 3212 // For floating-point precision of 6: 3213 // 3214 // TwoToFractionalPartOfX = 3215 // 0.997535578f + 3216 // (0.735607626f + 0.252464424f * x) * x; 3217 // 3218 // error 0.0144103317, which is 6 bits 3219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3220 getF32Constant(DAG, 0x3e814304)); 3221 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3222 getF32Constant(DAG, 0x3f3c50c8)); 3223 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3224 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3225 getF32Constant(DAG, 0x3f7f5e7e)); 3226 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3227 3228 // Add the exponent into the result in integer domain. 3229 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3230 TwoToFracPartOfX, IntegerPartOfX); 3231 3232 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3233 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3234 // For floating-point precision of 12: 3235 // 3236 // TwoToFractionalPartOfX = 3237 // 0.999892986f + 3238 // (0.696457318f + 3239 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3240 // 3241 // 0.000107046256 error, which is 13 to 14 bits 3242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3243 getF32Constant(DAG, 0x3da235e3)); 3244 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3245 getF32Constant(DAG, 0x3e65b8f3)); 3246 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3247 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3248 getF32Constant(DAG, 0x3f324b07)); 3249 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3250 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3251 getF32Constant(DAG, 0x3f7ff8fd)); 3252 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3253 3254 // Add the exponent into the result in integer domain. 3255 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3256 TwoToFracPartOfX, IntegerPartOfX); 3257 3258 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3259 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3260 // For floating-point precision of 18: 3261 // 3262 // TwoToFractionalPartOfX = 3263 // 0.999999982f + 3264 // (0.693148872f + 3265 // (0.240227044f + 3266 // (0.554906021e-1f + 3267 // (0.961591928e-2f + 3268 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3269 // 3270 // error 2.47208000*10^(-7), which is better than 18 bits 3271 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3272 getF32Constant(DAG, 0x3924b03e)); 3273 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3274 getF32Constant(DAG, 0x3ab24b87)); 3275 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3276 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3277 getF32Constant(DAG, 0x3c1d8c17)); 3278 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3279 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3280 getF32Constant(DAG, 0x3d634a1d)); 3281 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3282 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3283 getF32Constant(DAG, 0x3e75fe14)); 3284 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3285 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3286 getF32Constant(DAG, 0x3f317234)); 3287 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3288 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3289 getF32Constant(DAG, 0x3f800000)); 3290 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3291 MVT::i32, t13); 3292 3293 // Add the exponent into the result in integer domain. 3294 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3295 TwoToFracPartOfX, IntegerPartOfX); 3296 3297 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3298 } 3299 } else { 3300 // No special expansion. 3301 result = DAG.getNode(ISD::FEXP, dl, 3302 getValue(I.getArgOperand(0)).getValueType(), 3303 getValue(I.getArgOperand(0))); 3304 } 3305 3306 setValue(&I, result); 3307 } 3308 3309 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3310 /// limited-precision mode. 3311 void 3312 SelectionDAGBuilder::visitLog(const CallInst &I) { 3313 SDValue result; 3314 DebugLoc dl = getCurDebugLoc(); 3315 3316 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3317 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3318 SDValue Op = getValue(I.getArgOperand(0)); 3319 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3320 3321 // Scale the exponent by log(2) [0.69314718f]. 3322 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3323 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3324 getF32Constant(DAG, 0x3f317218)); 3325 3326 // Get the significand and build it into a floating-point number with 3327 // exponent of 1. 3328 SDValue X = GetSignificand(DAG, Op1, dl); 3329 3330 if (LimitFloatPrecision <= 6) { 3331 // For floating-point precision of 6: 3332 // 3333 // LogofMantissa = 3334 // -1.1609546f + 3335 // (1.4034025f - 0.23903021f * x) * x; 3336 // 3337 // error 0.0034276066, which is better than 8 bits 3338 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3339 getF32Constant(DAG, 0xbe74c456)); 3340 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3341 getF32Constant(DAG, 0x3fb3a2b1)); 3342 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3343 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3344 getF32Constant(DAG, 0x3f949a29)); 3345 3346 result = DAG.getNode(ISD::FADD, dl, 3347 MVT::f32, LogOfExponent, LogOfMantissa); 3348 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3349 // For floating-point precision of 12: 3350 // 3351 // LogOfMantissa = 3352 // -1.7417939f + 3353 // (2.8212026f + 3354 // (-1.4699568f + 3355 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3356 // 3357 // error 0.000061011436, which is 14 bits 3358 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3359 getF32Constant(DAG, 0xbd67b6d6)); 3360 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3361 getF32Constant(DAG, 0x3ee4f4b8)); 3362 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3363 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3364 getF32Constant(DAG, 0x3fbc278b)); 3365 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3366 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3367 getF32Constant(DAG, 0x40348e95)); 3368 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3369 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3370 getF32Constant(DAG, 0x3fdef31a)); 3371 3372 result = DAG.getNode(ISD::FADD, dl, 3373 MVT::f32, LogOfExponent, LogOfMantissa); 3374 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3375 // For floating-point precision of 18: 3376 // 3377 // LogOfMantissa = 3378 // -2.1072184f + 3379 // (4.2372794f + 3380 // (-3.7029485f + 3381 // (2.2781945f + 3382 // (-0.87823314f + 3383 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3384 // 3385 // error 0.0000023660568, which is better than 18 bits 3386 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3387 getF32Constant(DAG, 0xbc91e5ac)); 3388 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3389 getF32Constant(DAG, 0x3e4350aa)); 3390 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3391 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3392 getF32Constant(DAG, 0x3f60d3e3)); 3393 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3394 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3395 getF32Constant(DAG, 0x4011cdf0)); 3396 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3397 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3398 getF32Constant(DAG, 0x406cfd1c)); 3399 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3400 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3401 getF32Constant(DAG, 0x408797cb)); 3402 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3403 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3404 getF32Constant(DAG, 0x4006dcab)); 3405 3406 result = DAG.getNode(ISD::FADD, dl, 3407 MVT::f32, LogOfExponent, LogOfMantissa); 3408 } 3409 } else { 3410 // No special expansion. 3411 result = DAG.getNode(ISD::FLOG, dl, 3412 getValue(I.getArgOperand(0)).getValueType(), 3413 getValue(I.getArgOperand(0))); 3414 } 3415 3416 setValue(&I, result); 3417 } 3418 3419 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3420 /// limited-precision mode. 3421 void 3422 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3423 SDValue result; 3424 DebugLoc dl = getCurDebugLoc(); 3425 3426 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3427 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3428 SDValue Op = getValue(I.getArgOperand(0)); 3429 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3430 3431 // Get the exponent. 3432 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3433 3434 // Get the significand and build it into a floating-point number with 3435 // exponent of 1. 3436 SDValue X = GetSignificand(DAG, Op1, dl); 3437 3438 // Different possible minimax approximations of significand in 3439 // floating-point for various degrees of accuracy over [1,2]. 3440 if (LimitFloatPrecision <= 6) { 3441 // For floating-point precision of 6: 3442 // 3443 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3444 // 3445 // error 0.0049451742, which is more than 7 bits 3446 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3447 getF32Constant(DAG, 0xbeb08fe0)); 3448 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3449 getF32Constant(DAG, 0x40019463)); 3450 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3451 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3452 getF32Constant(DAG, 0x3fd6633d)); 3453 3454 result = DAG.getNode(ISD::FADD, dl, 3455 MVT::f32, LogOfExponent, Log2ofMantissa); 3456 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3457 // For floating-point precision of 12: 3458 // 3459 // Log2ofMantissa = 3460 // -2.51285454f + 3461 // (4.07009056f + 3462 // (-2.12067489f + 3463 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3464 // 3465 // error 0.0000876136000, which is better than 13 bits 3466 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3467 getF32Constant(DAG, 0xbda7262e)); 3468 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3469 getF32Constant(DAG, 0x3f25280b)); 3470 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3471 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3472 getF32Constant(DAG, 0x4007b923)); 3473 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3474 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3475 getF32Constant(DAG, 0x40823e2f)); 3476 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3477 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3478 getF32Constant(DAG, 0x4020d29c)); 3479 3480 result = DAG.getNode(ISD::FADD, dl, 3481 MVT::f32, LogOfExponent, Log2ofMantissa); 3482 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3483 // For floating-point precision of 18: 3484 // 3485 // Log2ofMantissa = 3486 // -3.0400495f + 3487 // (6.1129976f + 3488 // (-5.3420409f + 3489 // (3.2865683f + 3490 // (-1.2669343f + 3491 // (0.27515199f - 3492 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3493 // 3494 // error 0.0000018516, which is better than 18 bits 3495 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3496 getF32Constant(DAG, 0xbcd2769e)); 3497 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3498 getF32Constant(DAG, 0x3e8ce0b9)); 3499 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3500 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3501 getF32Constant(DAG, 0x3fa22ae7)); 3502 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3503 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3504 getF32Constant(DAG, 0x40525723)); 3505 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3506 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3507 getF32Constant(DAG, 0x40aaf200)); 3508 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3509 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3510 getF32Constant(DAG, 0x40c39dad)); 3511 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3512 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3513 getF32Constant(DAG, 0x4042902c)); 3514 3515 result = DAG.getNode(ISD::FADD, dl, 3516 MVT::f32, LogOfExponent, Log2ofMantissa); 3517 } 3518 } else { 3519 // No special expansion. 3520 result = DAG.getNode(ISD::FLOG2, dl, 3521 getValue(I.getArgOperand(0)).getValueType(), 3522 getValue(I.getArgOperand(0))); 3523 } 3524 3525 setValue(&I, result); 3526 } 3527 3528 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3529 /// limited-precision mode. 3530 void 3531 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3532 SDValue result; 3533 DebugLoc dl = getCurDebugLoc(); 3534 3535 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3536 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3537 SDValue Op = getValue(I.getArgOperand(0)); 3538 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3539 3540 // Scale the exponent by log10(2) [0.30102999f]. 3541 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3542 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3543 getF32Constant(DAG, 0x3e9a209a)); 3544 3545 // Get the significand and build it into a floating-point number with 3546 // exponent of 1. 3547 SDValue X = GetSignificand(DAG, Op1, dl); 3548 3549 if (LimitFloatPrecision <= 6) { 3550 // For floating-point precision of 6: 3551 // 3552 // Log10ofMantissa = 3553 // -0.50419619f + 3554 // (0.60948995f - 0.10380950f * x) * x; 3555 // 3556 // error 0.0014886165, which is 6 bits 3557 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3558 getF32Constant(DAG, 0xbdd49a13)); 3559 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3560 getF32Constant(DAG, 0x3f1c0789)); 3561 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3562 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3563 getF32Constant(DAG, 0x3f011300)); 3564 3565 result = DAG.getNode(ISD::FADD, dl, 3566 MVT::f32, LogOfExponent, Log10ofMantissa); 3567 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3568 // For floating-point precision of 12: 3569 // 3570 // Log10ofMantissa = 3571 // -0.64831180f + 3572 // (0.91751397f + 3573 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3574 // 3575 // error 0.00019228036, which is better than 12 bits 3576 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3577 getF32Constant(DAG, 0x3d431f31)); 3578 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3579 getF32Constant(DAG, 0x3ea21fb2)); 3580 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3581 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3582 getF32Constant(DAG, 0x3f6ae232)); 3583 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3584 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3585 getF32Constant(DAG, 0x3f25f7c3)); 3586 3587 result = DAG.getNode(ISD::FADD, dl, 3588 MVT::f32, LogOfExponent, Log10ofMantissa); 3589 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3590 // For floating-point precision of 18: 3591 // 3592 // Log10ofMantissa = 3593 // -0.84299375f + 3594 // (1.5327582f + 3595 // (-1.0688956f + 3596 // (0.49102474f + 3597 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3598 // 3599 // error 0.0000037995730, which is better than 18 bits 3600 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3601 getF32Constant(DAG, 0x3c5d51ce)); 3602 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3603 getF32Constant(DAG, 0x3e00685a)); 3604 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3605 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3606 getF32Constant(DAG, 0x3efb6798)); 3607 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3608 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3609 getF32Constant(DAG, 0x3f88d192)); 3610 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3611 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3612 getF32Constant(DAG, 0x3fc4316c)); 3613 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3614 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3615 getF32Constant(DAG, 0x3f57ce70)); 3616 3617 result = DAG.getNode(ISD::FADD, dl, 3618 MVT::f32, LogOfExponent, Log10ofMantissa); 3619 } 3620 } else { 3621 // No special expansion. 3622 result = DAG.getNode(ISD::FLOG10, dl, 3623 getValue(I.getArgOperand(0)).getValueType(), 3624 getValue(I.getArgOperand(0))); 3625 } 3626 3627 setValue(&I, result); 3628 } 3629 3630 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3631 /// limited-precision mode. 3632 void 3633 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3634 SDValue result; 3635 DebugLoc dl = getCurDebugLoc(); 3636 3637 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3638 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3639 SDValue Op = getValue(I.getArgOperand(0)); 3640 3641 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3642 3643 // FractionalPartOfX = x - (float)IntegerPartOfX; 3644 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3645 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3646 3647 // IntegerPartOfX <<= 23; 3648 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3649 DAG.getConstant(23, TLI.getPointerTy())); 3650 3651 if (LimitFloatPrecision <= 6) { 3652 // For floating-point precision of 6: 3653 // 3654 // TwoToFractionalPartOfX = 3655 // 0.997535578f + 3656 // (0.735607626f + 0.252464424f * x) * x; 3657 // 3658 // error 0.0144103317, which is 6 bits 3659 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3660 getF32Constant(DAG, 0x3e814304)); 3661 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3662 getF32Constant(DAG, 0x3f3c50c8)); 3663 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3664 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3665 getF32Constant(DAG, 0x3f7f5e7e)); 3666 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3667 SDValue TwoToFractionalPartOfX = 3668 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3669 3670 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3671 MVT::f32, TwoToFractionalPartOfX); 3672 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3673 // For floating-point precision of 12: 3674 // 3675 // TwoToFractionalPartOfX = 3676 // 0.999892986f + 3677 // (0.696457318f + 3678 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3679 // 3680 // error 0.000107046256, which is 13 to 14 bits 3681 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3682 getF32Constant(DAG, 0x3da235e3)); 3683 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3684 getF32Constant(DAG, 0x3e65b8f3)); 3685 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3686 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3687 getF32Constant(DAG, 0x3f324b07)); 3688 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3689 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3690 getF32Constant(DAG, 0x3f7ff8fd)); 3691 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3692 SDValue TwoToFractionalPartOfX = 3693 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3694 3695 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3696 MVT::f32, TwoToFractionalPartOfX); 3697 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3698 // For floating-point precision of 18: 3699 // 3700 // TwoToFractionalPartOfX = 3701 // 0.999999982f + 3702 // (0.693148872f + 3703 // (0.240227044f + 3704 // (0.554906021e-1f + 3705 // (0.961591928e-2f + 3706 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3707 // error 2.47208000*10^(-7), which is better than 18 bits 3708 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3709 getF32Constant(DAG, 0x3924b03e)); 3710 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3711 getF32Constant(DAG, 0x3ab24b87)); 3712 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3713 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3714 getF32Constant(DAG, 0x3c1d8c17)); 3715 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3716 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3717 getF32Constant(DAG, 0x3d634a1d)); 3718 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3719 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3720 getF32Constant(DAG, 0x3e75fe14)); 3721 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3722 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3723 getF32Constant(DAG, 0x3f317234)); 3724 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3725 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3726 getF32Constant(DAG, 0x3f800000)); 3727 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3728 SDValue TwoToFractionalPartOfX = 3729 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3730 3731 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3732 MVT::f32, TwoToFractionalPartOfX); 3733 } 3734 } else { 3735 // No special expansion. 3736 result = DAG.getNode(ISD::FEXP2, dl, 3737 getValue(I.getArgOperand(0)).getValueType(), 3738 getValue(I.getArgOperand(0))); 3739 } 3740 3741 setValue(&I, result); 3742 } 3743 3744 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3745 /// limited-precision mode with x == 10.0f. 3746 void 3747 SelectionDAGBuilder::visitPow(const CallInst &I) { 3748 SDValue result; 3749 const Value *Val = I.getArgOperand(0); 3750 DebugLoc dl = getCurDebugLoc(); 3751 bool IsExp10 = false; 3752 3753 if (getValue(Val).getValueType() == MVT::f32 && 3754 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3755 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3756 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3757 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3758 APFloat Ten(10.0f); 3759 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3760 } 3761 } 3762 } 3763 3764 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3765 SDValue Op = getValue(I.getArgOperand(1)); 3766 3767 // Put the exponent in the right bit position for later addition to the 3768 // final result: 3769 // 3770 // #define LOG2OF10 3.3219281f 3771 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3772 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3773 getF32Constant(DAG, 0x40549a78)); 3774 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3775 3776 // FractionalPartOfX = x - (float)IntegerPartOfX; 3777 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3778 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3779 3780 // IntegerPartOfX <<= 23; 3781 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3782 DAG.getConstant(23, TLI.getPointerTy())); 3783 3784 if (LimitFloatPrecision <= 6) { 3785 // For floating-point precision of 6: 3786 // 3787 // twoToFractionalPartOfX = 3788 // 0.997535578f + 3789 // (0.735607626f + 0.252464424f * x) * x; 3790 // 3791 // error 0.0144103317, which is 6 bits 3792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3793 getF32Constant(DAG, 0x3e814304)); 3794 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3795 getF32Constant(DAG, 0x3f3c50c8)); 3796 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3797 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3798 getF32Constant(DAG, 0x3f7f5e7e)); 3799 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3800 SDValue TwoToFractionalPartOfX = 3801 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3802 3803 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3804 MVT::f32, TwoToFractionalPartOfX); 3805 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3806 // For floating-point precision of 12: 3807 // 3808 // TwoToFractionalPartOfX = 3809 // 0.999892986f + 3810 // (0.696457318f + 3811 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3812 // 3813 // error 0.000107046256, which is 13 to 14 bits 3814 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3815 getF32Constant(DAG, 0x3da235e3)); 3816 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3817 getF32Constant(DAG, 0x3e65b8f3)); 3818 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3819 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3820 getF32Constant(DAG, 0x3f324b07)); 3821 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3822 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3823 getF32Constant(DAG, 0x3f7ff8fd)); 3824 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3825 SDValue TwoToFractionalPartOfX = 3826 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3827 3828 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3829 MVT::f32, TwoToFractionalPartOfX); 3830 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3831 // For floating-point precision of 18: 3832 // 3833 // TwoToFractionalPartOfX = 3834 // 0.999999982f + 3835 // (0.693148872f + 3836 // (0.240227044f + 3837 // (0.554906021e-1f + 3838 // (0.961591928e-2f + 3839 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3840 // error 2.47208000*10^(-7), which is better than 18 bits 3841 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3842 getF32Constant(DAG, 0x3924b03e)); 3843 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3844 getF32Constant(DAG, 0x3ab24b87)); 3845 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3846 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3847 getF32Constant(DAG, 0x3c1d8c17)); 3848 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3849 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3850 getF32Constant(DAG, 0x3d634a1d)); 3851 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3852 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3853 getF32Constant(DAG, 0x3e75fe14)); 3854 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3855 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3856 getF32Constant(DAG, 0x3f317234)); 3857 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3858 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3859 getF32Constant(DAG, 0x3f800000)); 3860 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3861 SDValue TwoToFractionalPartOfX = 3862 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3863 3864 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3865 MVT::f32, TwoToFractionalPartOfX); 3866 } 3867 } else { 3868 // No special expansion. 3869 result = DAG.getNode(ISD::FPOW, dl, 3870 getValue(I.getArgOperand(0)).getValueType(), 3871 getValue(I.getArgOperand(0)), 3872 getValue(I.getArgOperand(1))); 3873 } 3874 3875 setValue(&I, result); 3876 } 3877 3878 3879 /// ExpandPowI - Expand a llvm.powi intrinsic. 3880 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3881 SelectionDAG &DAG) { 3882 // If RHS is a constant, we can expand this out to a multiplication tree, 3883 // otherwise we end up lowering to a call to __powidf2 (for example). When 3884 // optimizing for size, we only want to do this if the expansion would produce 3885 // a small number of multiplies, otherwise we do the full expansion. 3886 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3887 // Get the exponent as a positive value. 3888 unsigned Val = RHSC->getSExtValue(); 3889 if ((int)Val < 0) Val = -Val; 3890 3891 // powi(x, 0) -> 1.0 3892 if (Val == 0) 3893 return DAG.getConstantFP(1.0, LHS.getValueType()); 3894 3895 const Function *F = DAG.getMachineFunction().getFunction(); 3896 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3897 // If optimizing for size, don't insert too many multiplies. This 3898 // inserts up to 5 multiplies. 3899 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3900 // We use the simple binary decomposition method to generate the multiply 3901 // sequence. There are more optimal ways to do this (for example, 3902 // powi(x,15) generates one more multiply than it should), but this has 3903 // the benefit of being both really simple and much better than a libcall. 3904 SDValue Res; // Logically starts equal to 1.0 3905 SDValue CurSquare = LHS; 3906 while (Val) { 3907 if (Val & 1) { 3908 if (Res.getNode()) 3909 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3910 else 3911 Res = CurSquare; // 1.0*CurSquare. 3912 } 3913 3914 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3915 CurSquare, CurSquare); 3916 Val >>= 1; 3917 } 3918 3919 // If the original was negative, invert the result, producing 1/(x*x*x). 3920 if (RHSC->getSExtValue() < 0) 3921 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3922 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3923 return Res; 3924 } 3925 } 3926 3927 // Otherwise, expand to a libcall. 3928 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3929 } 3930 3931 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3932 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3933 /// At the end of instruction selection, they will be inserted to the entry BB. 3934 bool 3935 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3936 uint64_t Offset, 3937 const SDValue &N) { 3938 if (!isa<Argument>(V)) 3939 return false; 3940 3941 MachineFunction &MF = DAG.getMachineFunction(); 3942 // Ignore inlined function arguments here. 3943 DIVariable DV(Variable); 3944 if (DV.isInlinedFnArgument(MF.getFunction())) 3945 return false; 3946 3947 MachineBasicBlock *MBB = FuncInfo.MBB; 3948 if (MBB != &MF.front()) 3949 return false; 3950 3951 unsigned Reg = 0; 3952 if (N.getOpcode() == ISD::CopyFromReg) { 3953 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3954 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3955 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3956 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3957 if (PR) 3958 Reg = PR; 3959 } 3960 } 3961 3962 if (!Reg) { 3963 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3964 if (VMI == FuncInfo.ValueMap.end()) 3965 return false; 3966 Reg = VMI->second; 3967 } 3968 3969 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3970 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3971 TII->get(TargetOpcode::DBG_VALUE)) 3972 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3973 FuncInfo.ArgDbgValues.push_back(&*MIB); 3974 return true; 3975 } 3976 3977 // VisualStudio defines setjmp as _setjmp 3978 #if defined(_MSC_VER) && defined(setjmp) 3979 #define setjmp_undefined_for_visual_studio 3980 #undef setjmp 3981 #endif 3982 3983 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3984 /// we want to emit this as a call to a named external function, return the name 3985 /// otherwise lower it and return null. 3986 const char * 3987 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3988 DebugLoc dl = getCurDebugLoc(); 3989 SDValue Res; 3990 3991 switch (Intrinsic) { 3992 default: 3993 // By default, turn this into a target intrinsic node. 3994 visitTargetIntrinsic(I, Intrinsic); 3995 return 0; 3996 case Intrinsic::vastart: visitVAStart(I); return 0; 3997 case Intrinsic::vaend: visitVAEnd(I); return 0; 3998 case Intrinsic::vacopy: visitVACopy(I); return 0; 3999 case Intrinsic::returnaddress: 4000 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4001 getValue(I.getArgOperand(0)))); 4002 return 0; 4003 case Intrinsic::frameaddress: 4004 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4005 getValue(I.getArgOperand(0)))); 4006 return 0; 4007 case Intrinsic::setjmp: 4008 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4009 case Intrinsic::longjmp: 4010 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4011 case Intrinsic::memcpy: { 4012 // Assert for address < 256 since we support only user defined address 4013 // spaces. 4014 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4015 < 256 && 4016 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4017 < 256 && 4018 "Unknown address space"); 4019 SDValue Op1 = getValue(I.getArgOperand(0)); 4020 SDValue Op2 = getValue(I.getArgOperand(1)); 4021 SDValue Op3 = getValue(I.getArgOperand(2)); 4022 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4023 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4024 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4025 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4026 return 0; 4027 } 4028 case Intrinsic::memset: { 4029 // Assert for address < 256 since we support only user defined address 4030 // spaces. 4031 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4032 < 256 && 4033 "Unknown address space"); 4034 SDValue Op1 = getValue(I.getArgOperand(0)); 4035 SDValue Op2 = getValue(I.getArgOperand(1)); 4036 SDValue Op3 = getValue(I.getArgOperand(2)); 4037 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4038 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4039 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4040 I.getArgOperand(0), 0)); 4041 return 0; 4042 } 4043 case Intrinsic::memmove: { 4044 // Assert for address < 256 since we support only user defined address 4045 // spaces. 4046 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4047 < 256 && 4048 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4049 < 256 && 4050 "Unknown address space"); 4051 SDValue Op1 = getValue(I.getArgOperand(0)); 4052 SDValue Op2 = getValue(I.getArgOperand(1)); 4053 SDValue Op3 = getValue(I.getArgOperand(2)); 4054 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4055 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4056 4057 // If the source and destination are known to not be aliases, we can 4058 // lower memmove as memcpy. 4059 uint64_t Size = -1ULL; 4060 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4061 Size = C->getZExtValue(); 4062 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4063 AliasAnalysis::NoAlias) { 4064 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4065 false, I.getArgOperand(0), 0, 4066 I.getArgOperand(1), 0)); 4067 return 0; 4068 } 4069 4070 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4071 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4072 return 0; 4073 } 4074 case Intrinsic::dbg_declare: { 4075 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4076 if (!DIVariable(DI.getVariable()).Verify()) 4077 return 0; 4078 4079 MDNode *Variable = DI.getVariable(); 4080 // Parameters are handled specially. 4081 bool isParameter = 4082 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4083 const Value *Address = DI.getAddress(); 4084 if (!Address) 4085 return 0; 4086 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4087 Address = BCI->getOperand(0); 4088 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4089 4090 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4091 // but do not always have a corresponding SDNode built. The SDNodeOrder 4092 // absolute, but not relative, values are different depending on whether 4093 // debug info exists. 4094 ++SDNodeOrder; 4095 SDValue &N = NodeMap[Address]; 4096 SDDbgValue *SDV; 4097 if (N.getNode()) { 4098 if (isParameter && !AI) { 4099 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4100 if (FINode) 4101 // Byval parameter. We have a frame index at this point. 4102 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4103 0, dl, SDNodeOrder); 4104 else 4105 // Can't do anything with other non-AI cases yet. This might be a 4106 // parameter of a callee function that got inlined, for example. 4107 return 0; 4108 } else if (AI) 4109 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4110 0, dl, SDNodeOrder); 4111 else 4112 // Can't do anything with other non-AI cases yet. 4113 return 0; 4114 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4115 } else { 4116 // This isn't useful, but it shows what we're missing. 4117 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4118 0, dl, SDNodeOrder); 4119 DAG.AddDbgValue(SDV, 0, isParameter); 4120 } 4121 return 0; 4122 } 4123 case Intrinsic::dbg_value: { 4124 const DbgValueInst &DI = cast<DbgValueInst>(I); 4125 if (!DIVariable(DI.getVariable()).Verify()) 4126 return 0; 4127 4128 MDNode *Variable = DI.getVariable(); 4129 uint64_t Offset = DI.getOffset(); 4130 const Value *V = DI.getValue(); 4131 if (!V) 4132 return 0; 4133 4134 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4135 // but do not always have a corresponding SDNode built. The SDNodeOrder 4136 // absolute, but not relative, values are different depending on whether 4137 // debug info exists. 4138 ++SDNodeOrder; 4139 SDDbgValue *SDV; 4140 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4141 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4142 DAG.AddDbgValue(SDV, 0, false); 4143 } else { 4144 bool createUndef = false; 4145 // Do not use getValue() in here; we don't want to generate code at 4146 // this point if it hasn't been done yet. 4147 SDValue N = NodeMap[V]; 4148 if (!N.getNode() && isa<Argument>(V)) 4149 // Check unused arguments map. 4150 N = UnusedArgNodeMap[V]; 4151 if (N.getNode()) { 4152 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4153 SDV = DAG.getDbgValue(Variable, N.getNode(), 4154 N.getResNo(), Offset, dl, SDNodeOrder); 4155 DAG.AddDbgValue(SDV, N.getNode(), false); 4156 } 4157 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4158 // Do not call getValue(V) yet, as we don't want to generate code. 4159 // Remember it for later. 4160 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4161 DanglingDebugInfoMap[V] = DDI; 4162 } else 4163 createUndef = true; 4164 if (createUndef) { 4165 // We may expand this to cover more cases. One case where we have no 4166 // data available is an unreferenced parameter; we need this fallback. 4167 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4168 Offset, dl, SDNodeOrder); 4169 DAG.AddDbgValue(SDV, 0, false); 4170 } 4171 } 4172 4173 // Build a debug info table entry. 4174 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4175 V = BCI->getOperand(0); 4176 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4177 // Don't handle byval struct arguments or VLAs, for example. 4178 if (!AI) 4179 return 0; 4180 DenseMap<const AllocaInst*, int>::iterator SI = 4181 FuncInfo.StaticAllocaMap.find(AI); 4182 if (SI == FuncInfo.StaticAllocaMap.end()) 4183 return 0; // VLAs. 4184 int FI = SI->second; 4185 4186 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4187 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4188 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4189 return 0; 4190 } 4191 case Intrinsic::eh_exception: { 4192 // Insert the EXCEPTIONADDR instruction. 4193 assert(FuncInfo.MBB->isLandingPad() && 4194 "Call to eh.exception not in landing pad!"); 4195 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4196 SDValue Ops[1]; 4197 Ops[0] = DAG.getRoot(); 4198 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4199 setValue(&I, Op); 4200 DAG.setRoot(Op.getValue(1)); 4201 return 0; 4202 } 4203 4204 case Intrinsic::eh_selector: { 4205 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4206 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4207 if (CallMBB->isLandingPad()) 4208 AddCatchInfo(I, &MMI, CallMBB); 4209 else { 4210 #ifndef NDEBUG 4211 FuncInfo.CatchInfoLost.insert(&I); 4212 #endif 4213 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4214 unsigned Reg = TLI.getExceptionSelectorRegister(); 4215 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4216 } 4217 4218 // Insert the EHSELECTION instruction. 4219 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4220 SDValue Ops[2]; 4221 Ops[0] = getValue(I.getArgOperand(0)); 4222 Ops[1] = getRoot(); 4223 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4224 DAG.setRoot(Op.getValue(1)); 4225 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4226 return 0; 4227 } 4228 4229 case Intrinsic::eh_typeid_for: { 4230 // Find the type id for the given typeinfo. 4231 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4232 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4233 Res = DAG.getConstant(TypeID, MVT::i32); 4234 setValue(&I, Res); 4235 return 0; 4236 } 4237 4238 case Intrinsic::eh_return_i32: 4239 case Intrinsic::eh_return_i64: 4240 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4241 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4242 MVT::Other, 4243 getControlRoot(), 4244 getValue(I.getArgOperand(0)), 4245 getValue(I.getArgOperand(1)))); 4246 return 0; 4247 case Intrinsic::eh_unwind_init: 4248 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4249 return 0; 4250 case Intrinsic::eh_dwarf_cfa: { 4251 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4252 TLI.getPointerTy()); 4253 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4254 TLI.getPointerTy(), 4255 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4256 TLI.getPointerTy()), 4257 CfaArg); 4258 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4259 TLI.getPointerTy(), 4260 DAG.getConstant(0, TLI.getPointerTy())); 4261 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4262 FA, Offset)); 4263 return 0; 4264 } 4265 case Intrinsic::eh_sjlj_callsite: { 4266 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4267 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4268 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4269 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4270 4271 MMI.setCurrentCallSite(CI->getZExtValue()); 4272 return 0; 4273 } 4274 case Intrinsic::eh_sjlj_setjmp: { 4275 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4276 getValue(I.getArgOperand(0)))); 4277 return 0; 4278 } 4279 case Intrinsic::eh_sjlj_longjmp: { 4280 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4281 getRoot(), 4282 getValue(I.getArgOperand(0)))); 4283 return 0; 4284 } 4285 4286 case Intrinsic::convertff: 4287 case Intrinsic::convertfsi: 4288 case Intrinsic::convertfui: 4289 case Intrinsic::convertsif: 4290 case Intrinsic::convertuif: 4291 case Intrinsic::convertss: 4292 case Intrinsic::convertsu: 4293 case Intrinsic::convertus: 4294 case Intrinsic::convertuu: { 4295 ISD::CvtCode Code = ISD::CVT_INVALID; 4296 switch (Intrinsic) { 4297 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4298 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4299 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4300 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4301 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4302 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4303 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4304 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4305 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4306 } 4307 EVT DestVT = TLI.getValueType(I.getType()); 4308 const Value *Op1 = I.getArgOperand(0); 4309 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4310 DAG.getValueType(DestVT), 4311 DAG.getValueType(getValue(Op1).getValueType()), 4312 getValue(I.getArgOperand(1)), 4313 getValue(I.getArgOperand(2)), 4314 Code); 4315 setValue(&I, Res); 4316 return 0; 4317 } 4318 case Intrinsic::sqrt: 4319 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4320 getValue(I.getArgOperand(0)).getValueType(), 4321 getValue(I.getArgOperand(0)))); 4322 return 0; 4323 case Intrinsic::powi: 4324 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4325 getValue(I.getArgOperand(1)), DAG)); 4326 return 0; 4327 case Intrinsic::sin: 4328 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4329 getValue(I.getArgOperand(0)).getValueType(), 4330 getValue(I.getArgOperand(0)))); 4331 return 0; 4332 case Intrinsic::cos: 4333 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4334 getValue(I.getArgOperand(0)).getValueType(), 4335 getValue(I.getArgOperand(0)))); 4336 return 0; 4337 case Intrinsic::log: 4338 visitLog(I); 4339 return 0; 4340 case Intrinsic::log2: 4341 visitLog2(I); 4342 return 0; 4343 case Intrinsic::log10: 4344 visitLog10(I); 4345 return 0; 4346 case Intrinsic::exp: 4347 visitExp(I); 4348 return 0; 4349 case Intrinsic::exp2: 4350 visitExp2(I); 4351 return 0; 4352 case Intrinsic::pow: 4353 visitPow(I); 4354 return 0; 4355 case Intrinsic::convert_to_fp16: 4356 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4357 MVT::i16, getValue(I.getArgOperand(0)))); 4358 return 0; 4359 case Intrinsic::convert_from_fp16: 4360 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4361 MVT::f32, getValue(I.getArgOperand(0)))); 4362 return 0; 4363 case Intrinsic::pcmarker: { 4364 SDValue Tmp = getValue(I.getArgOperand(0)); 4365 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4366 return 0; 4367 } 4368 case Intrinsic::readcyclecounter: { 4369 SDValue Op = getRoot(); 4370 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4371 DAG.getVTList(MVT::i64, MVT::Other), 4372 &Op, 1); 4373 setValue(&I, Res); 4374 DAG.setRoot(Res.getValue(1)); 4375 return 0; 4376 } 4377 case Intrinsic::bswap: 4378 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4379 getValue(I.getArgOperand(0)).getValueType(), 4380 getValue(I.getArgOperand(0)))); 4381 return 0; 4382 case Intrinsic::cttz: { 4383 SDValue Arg = getValue(I.getArgOperand(0)); 4384 EVT Ty = Arg.getValueType(); 4385 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4386 return 0; 4387 } 4388 case Intrinsic::ctlz: { 4389 SDValue Arg = getValue(I.getArgOperand(0)); 4390 EVT Ty = Arg.getValueType(); 4391 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4392 return 0; 4393 } 4394 case Intrinsic::ctpop: { 4395 SDValue Arg = getValue(I.getArgOperand(0)); 4396 EVT Ty = Arg.getValueType(); 4397 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4398 return 0; 4399 } 4400 case Intrinsic::stacksave: { 4401 SDValue Op = getRoot(); 4402 Res = DAG.getNode(ISD::STACKSAVE, dl, 4403 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4404 setValue(&I, Res); 4405 DAG.setRoot(Res.getValue(1)); 4406 return 0; 4407 } 4408 case Intrinsic::stackrestore: { 4409 Res = getValue(I.getArgOperand(0)); 4410 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4411 return 0; 4412 } 4413 case Intrinsic::stackprotector: { 4414 // Emit code into the DAG to store the stack guard onto the stack. 4415 MachineFunction &MF = DAG.getMachineFunction(); 4416 MachineFrameInfo *MFI = MF.getFrameInfo(); 4417 EVT PtrTy = TLI.getPointerTy(); 4418 4419 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4420 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4421 4422 int FI = FuncInfo.StaticAllocaMap[Slot]; 4423 MFI->setStackProtectorIndex(FI); 4424 4425 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4426 4427 // Store the stack protector onto the stack. 4428 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4429 PseudoSourceValue::getFixedStack(FI), 4430 0, true, false, 0); 4431 setValue(&I, Res); 4432 DAG.setRoot(Res); 4433 return 0; 4434 } 4435 case Intrinsic::objectsize: { 4436 // If we don't know by now, we're never going to know. 4437 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4438 4439 assert(CI && "Non-constant type in __builtin_object_size?"); 4440 4441 SDValue Arg = getValue(I.getCalledValue()); 4442 EVT Ty = Arg.getValueType(); 4443 4444 if (CI->isZero()) 4445 Res = DAG.getConstant(-1ULL, Ty); 4446 else 4447 Res = DAG.getConstant(0, Ty); 4448 4449 setValue(&I, Res); 4450 return 0; 4451 } 4452 case Intrinsic::var_annotation: 4453 // Discard annotate attributes 4454 return 0; 4455 4456 case Intrinsic::init_trampoline: { 4457 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4458 4459 SDValue Ops[6]; 4460 Ops[0] = getRoot(); 4461 Ops[1] = getValue(I.getArgOperand(0)); 4462 Ops[2] = getValue(I.getArgOperand(1)); 4463 Ops[3] = getValue(I.getArgOperand(2)); 4464 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4465 Ops[5] = DAG.getSrcValue(F); 4466 4467 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4468 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4469 Ops, 6); 4470 4471 setValue(&I, Res); 4472 DAG.setRoot(Res.getValue(1)); 4473 return 0; 4474 } 4475 case Intrinsic::gcroot: 4476 if (GFI) { 4477 const Value *Alloca = I.getArgOperand(0); 4478 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4479 4480 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4481 GFI->addStackRoot(FI->getIndex(), TypeMap); 4482 } 4483 return 0; 4484 case Intrinsic::gcread: 4485 case Intrinsic::gcwrite: 4486 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4487 return 0; 4488 case Intrinsic::flt_rounds: 4489 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4490 return 0; 4491 case Intrinsic::trap: 4492 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4493 return 0; 4494 case Intrinsic::uadd_with_overflow: 4495 return implVisitAluOverflow(I, ISD::UADDO); 4496 case Intrinsic::sadd_with_overflow: 4497 return implVisitAluOverflow(I, ISD::SADDO); 4498 case Intrinsic::usub_with_overflow: 4499 return implVisitAluOverflow(I, ISD::USUBO); 4500 case Intrinsic::ssub_with_overflow: 4501 return implVisitAluOverflow(I, ISD::SSUBO); 4502 case Intrinsic::umul_with_overflow: 4503 return implVisitAluOverflow(I, ISD::UMULO); 4504 case Intrinsic::smul_with_overflow: 4505 return implVisitAluOverflow(I, ISD::SMULO); 4506 4507 case Intrinsic::prefetch: { 4508 SDValue Ops[4]; 4509 Ops[0] = getRoot(); 4510 Ops[1] = getValue(I.getArgOperand(0)); 4511 Ops[2] = getValue(I.getArgOperand(1)); 4512 Ops[3] = getValue(I.getArgOperand(2)); 4513 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4514 return 0; 4515 } 4516 4517 case Intrinsic::memory_barrier: { 4518 SDValue Ops[6]; 4519 Ops[0] = getRoot(); 4520 for (int x = 1; x < 6; ++x) 4521 Ops[x] = getValue(I.getArgOperand(x - 1)); 4522 4523 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4524 return 0; 4525 } 4526 case Intrinsic::atomic_cmp_swap: { 4527 SDValue Root = getRoot(); 4528 SDValue L = 4529 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4530 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4531 Root, 4532 getValue(I.getArgOperand(0)), 4533 getValue(I.getArgOperand(1)), 4534 getValue(I.getArgOperand(2)), 4535 I.getArgOperand(0)); 4536 setValue(&I, L); 4537 DAG.setRoot(L.getValue(1)); 4538 return 0; 4539 } 4540 case Intrinsic::atomic_load_add: 4541 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4542 case Intrinsic::atomic_load_sub: 4543 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4544 case Intrinsic::atomic_load_or: 4545 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4546 case Intrinsic::atomic_load_xor: 4547 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4548 case Intrinsic::atomic_load_and: 4549 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4550 case Intrinsic::atomic_load_nand: 4551 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4552 case Intrinsic::atomic_load_max: 4553 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4554 case Intrinsic::atomic_load_min: 4555 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4556 case Intrinsic::atomic_load_umin: 4557 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4558 case Intrinsic::atomic_load_umax: 4559 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4560 case Intrinsic::atomic_swap: 4561 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4562 4563 case Intrinsic::invariant_start: 4564 case Intrinsic::lifetime_start: 4565 // Discard region information. 4566 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4567 return 0; 4568 case Intrinsic::invariant_end: 4569 case Intrinsic::lifetime_end: 4570 // Discard region information. 4571 return 0; 4572 } 4573 } 4574 4575 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4576 bool isTailCall, 4577 MachineBasicBlock *LandingPad) { 4578 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4579 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4580 const Type *RetTy = FTy->getReturnType(); 4581 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4582 MCSymbol *BeginLabel = 0; 4583 4584 TargetLowering::ArgListTy Args; 4585 TargetLowering::ArgListEntry Entry; 4586 Args.reserve(CS.arg_size()); 4587 4588 // Check whether the function can return without sret-demotion. 4589 SmallVector<ISD::OutputArg, 4> Outs; 4590 SmallVector<uint64_t, 4> Offsets; 4591 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4592 Outs, TLI, &Offsets); 4593 4594 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4595 FTy->isVarArg(), Outs, FTy->getContext()); 4596 4597 SDValue DemoteStackSlot; 4598 4599 if (!CanLowerReturn) { 4600 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4601 FTy->getReturnType()); 4602 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4603 FTy->getReturnType()); 4604 MachineFunction &MF = DAG.getMachineFunction(); 4605 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4606 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4607 4608 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4609 Entry.Node = DemoteStackSlot; 4610 Entry.Ty = StackSlotPtrType; 4611 Entry.isSExt = false; 4612 Entry.isZExt = false; 4613 Entry.isInReg = false; 4614 Entry.isSRet = true; 4615 Entry.isNest = false; 4616 Entry.isByVal = false; 4617 Entry.Alignment = Align; 4618 Args.push_back(Entry); 4619 RetTy = Type::getVoidTy(FTy->getContext()); 4620 } 4621 4622 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4623 i != e; ++i) { 4624 SDValue ArgNode = getValue(*i); 4625 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4626 4627 unsigned attrInd = i - CS.arg_begin() + 1; 4628 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4629 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4630 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4631 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4632 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4633 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4634 Entry.Alignment = CS.getParamAlignment(attrInd); 4635 Args.push_back(Entry); 4636 } 4637 4638 if (LandingPad) { 4639 // Insert a label before the invoke call to mark the try range. This can be 4640 // used to detect deletion of the invoke via the MachineModuleInfo. 4641 BeginLabel = MMI.getContext().CreateTempSymbol(); 4642 4643 // For SjLj, keep track of which landing pads go with which invokes 4644 // so as to maintain the ordering of pads in the LSDA. 4645 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4646 if (CallSiteIndex) { 4647 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4648 // Now that the call site is handled, stop tracking it. 4649 MMI.setCurrentCallSite(0); 4650 } 4651 4652 // Both PendingLoads and PendingExports must be flushed here; 4653 // this call might not return. 4654 (void)getRoot(); 4655 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4656 } 4657 4658 // Check if target-independent constraints permit a tail call here. 4659 // Target-dependent constraints are checked within TLI.LowerCallTo. 4660 if (isTailCall && 4661 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4662 isTailCall = false; 4663 4664 std::pair<SDValue,SDValue> Result = 4665 TLI.LowerCallTo(getRoot(), RetTy, 4666 CS.paramHasAttr(0, Attribute::SExt), 4667 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4668 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4669 CS.getCallingConv(), 4670 isTailCall, 4671 !CS.getInstruction()->use_empty(), 4672 Callee, Args, DAG, getCurDebugLoc()); 4673 assert((isTailCall || Result.second.getNode()) && 4674 "Non-null chain expected with non-tail call!"); 4675 assert((Result.second.getNode() || !Result.first.getNode()) && 4676 "Null value expected with tail call!"); 4677 if (Result.first.getNode()) { 4678 setValue(CS.getInstruction(), Result.first); 4679 } else if (!CanLowerReturn && Result.second.getNode()) { 4680 // The instruction result is the result of loading from the 4681 // hidden sret parameter. 4682 SmallVector<EVT, 1> PVTs; 4683 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4684 4685 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4686 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4687 EVT PtrVT = PVTs[0]; 4688 unsigned NumValues = Outs.size(); 4689 SmallVector<SDValue, 4> Values(NumValues); 4690 SmallVector<SDValue, 4> Chains(NumValues); 4691 4692 for (unsigned i = 0; i < NumValues; ++i) { 4693 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4694 DemoteStackSlot, 4695 DAG.getConstant(Offsets[i], PtrVT)); 4696 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4697 Add, NULL, Offsets[i], false, false, 1); 4698 Values[i] = L; 4699 Chains[i] = L.getValue(1); 4700 } 4701 4702 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4703 MVT::Other, &Chains[0], NumValues); 4704 PendingLoads.push_back(Chain); 4705 4706 // Collect the legal value parts into potentially illegal values 4707 // that correspond to the original function's return values. 4708 SmallVector<EVT, 4> RetTys; 4709 RetTy = FTy->getReturnType(); 4710 ComputeValueVTs(TLI, RetTy, RetTys); 4711 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4712 SmallVector<SDValue, 4> ReturnValues; 4713 unsigned CurReg = 0; 4714 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4715 EVT VT = RetTys[I]; 4716 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4717 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4718 4719 SDValue ReturnValue = 4720 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4721 RegisterVT, VT, AssertOp); 4722 ReturnValues.push_back(ReturnValue); 4723 CurReg += NumRegs; 4724 } 4725 4726 setValue(CS.getInstruction(), 4727 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4728 DAG.getVTList(&RetTys[0], RetTys.size()), 4729 &ReturnValues[0], ReturnValues.size())); 4730 4731 } 4732 4733 // As a special case, a null chain means that a tail call has been emitted and 4734 // the DAG root is already updated. 4735 if (Result.second.getNode()) 4736 DAG.setRoot(Result.second); 4737 else 4738 HasTailCall = true; 4739 4740 if (LandingPad) { 4741 // Insert a label at the end of the invoke call to mark the try range. This 4742 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4743 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4744 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4745 4746 // Inform MachineModuleInfo of range. 4747 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4748 } 4749 } 4750 4751 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4752 /// value is equal or not-equal to zero. 4753 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4754 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4755 UI != E; ++UI) { 4756 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4757 if (IC->isEquality()) 4758 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4759 if (C->isNullValue()) 4760 continue; 4761 // Unknown instruction. 4762 return false; 4763 } 4764 return true; 4765 } 4766 4767 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4768 const Type *LoadTy, 4769 SelectionDAGBuilder &Builder) { 4770 4771 // Check to see if this load can be trivially constant folded, e.g. if the 4772 // input is from a string literal. 4773 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4774 // Cast pointer to the type we really want to load. 4775 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4776 PointerType::getUnqual(LoadTy)); 4777 4778 if (const Constant *LoadCst = 4779 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4780 Builder.TD)) 4781 return Builder.getValue(LoadCst); 4782 } 4783 4784 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4785 // still constant memory, the input chain can be the entry node. 4786 SDValue Root; 4787 bool ConstantMemory = false; 4788 4789 // Do not serialize (non-volatile) loads of constant memory with anything. 4790 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4791 Root = Builder.DAG.getEntryNode(); 4792 ConstantMemory = true; 4793 } else { 4794 // Do not serialize non-volatile loads against each other. 4795 Root = Builder.DAG.getRoot(); 4796 } 4797 4798 SDValue Ptr = Builder.getValue(PtrVal); 4799 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4800 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4801 false /*volatile*/, 4802 false /*nontemporal*/, 1 /* align=1 */); 4803 4804 if (!ConstantMemory) 4805 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4806 return LoadVal; 4807 } 4808 4809 4810 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4811 /// If so, return true and lower it, otherwise return false and it will be 4812 /// lowered like a normal call. 4813 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4814 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4815 if (I.getNumArgOperands() != 3) 4816 return false; 4817 4818 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4819 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4820 !I.getArgOperand(2)->getType()->isIntegerTy() || 4821 !I.getType()->isIntegerTy()) 4822 return false; 4823 4824 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4825 4826 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4827 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4828 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4829 bool ActuallyDoIt = true; 4830 MVT LoadVT; 4831 const Type *LoadTy; 4832 switch (Size->getZExtValue()) { 4833 default: 4834 LoadVT = MVT::Other; 4835 LoadTy = 0; 4836 ActuallyDoIt = false; 4837 break; 4838 case 2: 4839 LoadVT = MVT::i16; 4840 LoadTy = Type::getInt16Ty(Size->getContext()); 4841 break; 4842 case 4: 4843 LoadVT = MVT::i32; 4844 LoadTy = Type::getInt32Ty(Size->getContext()); 4845 break; 4846 case 8: 4847 LoadVT = MVT::i64; 4848 LoadTy = Type::getInt64Ty(Size->getContext()); 4849 break; 4850 /* 4851 case 16: 4852 LoadVT = MVT::v4i32; 4853 LoadTy = Type::getInt32Ty(Size->getContext()); 4854 LoadTy = VectorType::get(LoadTy, 4); 4855 break; 4856 */ 4857 } 4858 4859 // This turns into unaligned loads. We only do this if the target natively 4860 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4861 // we'll only produce a small number of byte loads. 4862 4863 // Require that we can find a legal MVT, and only do this if the target 4864 // supports unaligned loads of that type. Expanding into byte loads would 4865 // bloat the code. 4866 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4867 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4868 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4869 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4870 ActuallyDoIt = false; 4871 } 4872 4873 if (ActuallyDoIt) { 4874 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4875 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4876 4877 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4878 ISD::SETNE); 4879 EVT CallVT = TLI.getValueType(I.getType(), true); 4880 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4881 return true; 4882 } 4883 } 4884 4885 4886 return false; 4887 } 4888 4889 4890 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4891 // Handle inline assembly differently. 4892 if (isa<InlineAsm>(I.getCalledValue())) { 4893 visitInlineAsm(&I); 4894 return; 4895 } 4896 4897 const char *RenameFn = 0; 4898 if (Function *F = I.getCalledFunction()) { 4899 if (F->isDeclaration()) { 4900 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4901 if (unsigned IID = II->getIntrinsicID(F)) { 4902 RenameFn = visitIntrinsicCall(I, IID); 4903 if (!RenameFn) 4904 return; 4905 } 4906 } 4907 if (unsigned IID = F->getIntrinsicID()) { 4908 RenameFn = visitIntrinsicCall(I, IID); 4909 if (!RenameFn) 4910 return; 4911 } 4912 } 4913 4914 // Check for well-known libc/libm calls. If the function is internal, it 4915 // can't be a library call. 4916 if (!F->hasLocalLinkage() && F->hasName()) { 4917 StringRef Name = F->getName(); 4918 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4919 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4920 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4921 I.getType() == I.getArgOperand(0)->getType() && 4922 I.getType() == I.getArgOperand(1)->getType()) { 4923 SDValue LHS = getValue(I.getArgOperand(0)); 4924 SDValue RHS = getValue(I.getArgOperand(1)); 4925 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4926 LHS.getValueType(), LHS, RHS)); 4927 return; 4928 } 4929 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4930 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4931 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4932 I.getType() == I.getArgOperand(0)->getType()) { 4933 SDValue Tmp = getValue(I.getArgOperand(0)); 4934 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4935 Tmp.getValueType(), Tmp)); 4936 return; 4937 } 4938 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4939 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4940 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4941 I.getType() == I.getArgOperand(0)->getType() && 4942 I.onlyReadsMemory()) { 4943 SDValue Tmp = getValue(I.getArgOperand(0)); 4944 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4945 Tmp.getValueType(), Tmp)); 4946 return; 4947 } 4948 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4949 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4950 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4951 I.getType() == I.getArgOperand(0)->getType() && 4952 I.onlyReadsMemory()) { 4953 SDValue Tmp = getValue(I.getArgOperand(0)); 4954 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4955 Tmp.getValueType(), Tmp)); 4956 return; 4957 } 4958 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4959 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4960 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4961 I.getType() == I.getArgOperand(0)->getType() && 4962 I.onlyReadsMemory()) { 4963 SDValue Tmp = getValue(I.getArgOperand(0)); 4964 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4965 Tmp.getValueType(), Tmp)); 4966 return; 4967 } 4968 } else if (Name == "memcmp") { 4969 if (visitMemCmpCall(I)) 4970 return; 4971 } 4972 } 4973 } 4974 4975 SDValue Callee; 4976 if (!RenameFn) 4977 Callee = getValue(I.getCalledValue()); 4978 else 4979 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4980 4981 // Check if we can potentially perform a tail call. More detailed checking is 4982 // be done within LowerCallTo, after more information about the call is known. 4983 LowerCallTo(&I, Callee, I.isTailCall()); 4984 } 4985 4986 namespace llvm { 4987 4988 /// AsmOperandInfo - This contains information for each constraint that we are 4989 /// lowering. 4990 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 4991 public TargetLowering::AsmOperandInfo { 4992 public: 4993 /// CallOperand - If this is the result output operand or a clobber 4994 /// this is null, otherwise it is the incoming operand to the CallInst. 4995 /// This gets modified as the asm is processed. 4996 SDValue CallOperand; 4997 4998 /// AssignedRegs - If this is a register or register class operand, this 4999 /// contains the set of register corresponding to the operand. 5000 RegsForValue AssignedRegs; 5001 5002 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 5003 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5004 } 5005 5006 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5007 /// busy in OutputRegs/InputRegs. 5008 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5009 std::set<unsigned> &OutputRegs, 5010 std::set<unsigned> &InputRegs, 5011 const TargetRegisterInfo &TRI) const { 5012 if (isOutReg) { 5013 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5014 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5015 } 5016 if (isInReg) { 5017 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5018 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5019 } 5020 } 5021 5022 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5023 /// corresponds to. If there is no Value* for this operand, it returns 5024 /// MVT::Other. 5025 EVT getCallOperandValEVT(LLVMContext &Context, 5026 const TargetLowering &TLI, 5027 const TargetData *TD) const { 5028 if (CallOperandVal == 0) return MVT::Other; 5029 5030 if (isa<BasicBlock>(CallOperandVal)) 5031 return TLI.getPointerTy(); 5032 5033 const llvm::Type *OpTy = CallOperandVal->getType(); 5034 5035 // If this is an indirect operand, the operand is a pointer to the 5036 // accessed type. 5037 if (isIndirect) { 5038 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5039 if (!PtrTy) 5040 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5041 OpTy = PtrTy->getElementType(); 5042 } 5043 5044 // If OpTy is not a single value, it may be a struct/union that we 5045 // can tile with integers. 5046 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5047 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5048 switch (BitSize) { 5049 default: break; 5050 case 1: 5051 case 8: 5052 case 16: 5053 case 32: 5054 case 64: 5055 case 128: 5056 OpTy = IntegerType::get(Context, BitSize); 5057 break; 5058 } 5059 } 5060 5061 return TLI.getValueType(OpTy, true); 5062 } 5063 5064 private: 5065 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5066 /// specified set. 5067 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5068 const TargetRegisterInfo &TRI) { 5069 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5070 Regs.insert(Reg); 5071 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5072 for (; *Aliases; ++Aliases) 5073 Regs.insert(*Aliases); 5074 } 5075 }; 5076 5077 } // end llvm namespace. 5078 5079 /// isAllocatableRegister - If the specified register is safe to allocate, 5080 /// i.e. it isn't a stack pointer or some other special register, return the 5081 /// register class for the register. Otherwise, return null. 5082 static const TargetRegisterClass * 5083 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5084 const TargetLowering &TLI, 5085 const TargetRegisterInfo *TRI) { 5086 EVT FoundVT = MVT::Other; 5087 const TargetRegisterClass *FoundRC = 0; 5088 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5089 E = TRI->regclass_end(); RCI != E; ++RCI) { 5090 EVT ThisVT = MVT::Other; 5091 5092 const TargetRegisterClass *RC = *RCI; 5093 // If none of the value types for this register class are valid, we 5094 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5095 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5096 I != E; ++I) { 5097 if (TLI.isTypeLegal(*I)) { 5098 // If we have already found this register in a different register class, 5099 // choose the one with the largest VT specified. For example, on 5100 // PowerPC, we favor f64 register classes over f32. 5101 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5102 ThisVT = *I; 5103 break; 5104 } 5105 } 5106 } 5107 5108 if (ThisVT == MVT::Other) continue; 5109 5110 // NOTE: This isn't ideal. In particular, this might allocate the 5111 // frame pointer in functions that need it (due to them not being taken 5112 // out of allocation, because a variable sized allocation hasn't been seen 5113 // yet). This is a slight code pessimization, but should still work. 5114 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5115 E = RC->allocation_order_end(MF); I != E; ++I) 5116 if (*I == Reg) { 5117 // We found a matching register class. Keep looking at others in case 5118 // we find one with larger registers that this physreg is also in. 5119 FoundRC = RC; 5120 FoundVT = ThisVT; 5121 break; 5122 } 5123 } 5124 return FoundRC; 5125 } 5126 5127 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5128 /// specified operand. We prefer to assign virtual registers, to allow the 5129 /// register allocator to handle the assignment process. However, if the asm 5130 /// uses features that we can't model on machineinstrs, we have SDISel do the 5131 /// allocation. This produces generally horrible, but correct, code. 5132 /// 5133 /// OpInfo describes the operand. 5134 /// Input and OutputRegs are the set of already allocated physical registers. 5135 /// 5136 void SelectionDAGBuilder:: 5137 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5138 std::set<unsigned> &OutputRegs, 5139 std::set<unsigned> &InputRegs) { 5140 LLVMContext &Context = FuncInfo.Fn->getContext(); 5141 5142 // Compute whether this value requires an input register, an output register, 5143 // or both. 5144 bool isOutReg = false; 5145 bool isInReg = false; 5146 switch (OpInfo.Type) { 5147 case InlineAsm::isOutput: 5148 isOutReg = true; 5149 5150 // If there is an input constraint that matches this, we need to reserve 5151 // the input register so no other inputs allocate to it. 5152 isInReg = OpInfo.hasMatchingInput(); 5153 break; 5154 case InlineAsm::isInput: 5155 isInReg = true; 5156 isOutReg = false; 5157 break; 5158 case InlineAsm::isClobber: 5159 isOutReg = true; 5160 isInReg = true; 5161 break; 5162 } 5163 5164 5165 MachineFunction &MF = DAG.getMachineFunction(); 5166 SmallVector<unsigned, 4> Regs; 5167 5168 // If this is a constraint for a single physreg, or a constraint for a 5169 // register class, find it. 5170 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5171 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5172 OpInfo.ConstraintVT); 5173 5174 unsigned NumRegs = 1; 5175 if (OpInfo.ConstraintVT != MVT::Other) { 5176 // If this is a FP input in an integer register (or visa versa) insert a bit 5177 // cast of the input value. More generally, handle any case where the input 5178 // value disagrees with the register class we plan to stick this in. 5179 if (OpInfo.Type == InlineAsm::isInput && 5180 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5181 // Try to convert to the first EVT that the reg class contains. If the 5182 // types are identical size, use a bitcast to convert (e.g. two differing 5183 // vector types). 5184 EVT RegVT = *PhysReg.second->vt_begin(); 5185 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5186 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5187 RegVT, OpInfo.CallOperand); 5188 OpInfo.ConstraintVT = RegVT; 5189 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5190 // If the input is a FP value and we want it in FP registers, do a 5191 // bitcast to the corresponding integer type. This turns an f64 value 5192 // into i64, which can be passed with two i32 values on a 32-bit 5193 // machine. 5194 RegVT = EVT::getIntegerVT(Context, 5195 OpInfo.ConstraintVT.getSizeInBits()); 5196 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5197 RegVT, OpInfo.CallOperand); 5198 OpInfo.ConstraintVT = RegVT; 5199 } 5200 } 5201 5202 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5203 } 5204 5205 EVT RegVT; 5206 EVT ValueVT = OpInfo.ConstraintVT; 5207 5208 // If this is a constraint for a specific physical register, like {r17}, 5209 // assign it now. 5210 if (unsigned AssignedReg = PhysReg.first) { 5211 const TargetRegisterClass *RC = PhysReg.second; 5212 if (OpInfo.ConstraintVT == MVT::Other) 5213 ValueVT = *RC->vt_begin(); 5214 5215 // Get the actual register value type. This is important, because the user 5216 // may have asked for (e.g.) the AX register in i32 type. We need to 5217 // remember that AX is actually i16 to get the right extension. 5218 RegVT = *RC->vt_begin(); 5219 5220 // This is a explicit reference to a physical register. 5221 Regs.push_back(AssignedReg); 5222 5223 // If this is an expanded reference, add the rest of the regs to Regs. 5224 if (NumRegs != 1) { 5225 TargetRegisterClass::iterator I = RC->begin(); 5226 for (; *I != AssignedReg; ++I) 5227 assert(I != RC->end() && "Didn't find reg!"); 5228 5229 // Already added the first reg. 5230 --NumRegs; ++I; 5231 for (; NumRegs; --NumRegs, ++I) { 5232 assert(I != RC->end() && "Ran out of registers to allocate!"); 5233 Regs.push_back(*I); 5234 } 5235 } 5236 5237 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5238 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5239 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5240 return; 5241 } 5242 5243 // Otherwise, if this was a reference to an LLVM register class, create vregs 5244 // for this reference. 5245 if (const TargetRegisterClass *RC = PhysReg.second) { 5246 RegVT = *RC->vt_begin(); 5247 if (OpInfo.ConstraintVT == MVT::Other) 5248 ValueVT = RegVT; 5249 5250 // Create the appropriate number of virtual registers. 5251 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5252 for (; NumRegs; --NumRegs) 5253 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5254 5255 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5256 return; 5257 } 5258 5259 // This is a reference to a register class that doesn't directly correspond 5260 // to an LLVM register class. Allocate NumRegs consecutive, available, 5261 // registers from the class. 5262 std::vector<unsigned> RegClassRegs 5263 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5264 OpInfo.ConstraintVT); 5265 5266 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5267 unsigned NumAllocated = 0; 5268 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5269 unsigned Reg = RegClassRegs[i]; 5270 // See if this register is available. 5271 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5272 (isInReg && InputRegs.count(Reg))) { // Already used. 5273 // Make sure we find consecutive registers. 5274 NumAllocated = 0; 5275 continue; 5276 } 5277 5278 // Check to see if this register is allocatable (i.e. don't give out the 5279 // stack pointer). 5280 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5281 if (!RC) { // Couldn't allocate this register. 5282 // Reset NumAllocated to make sure we return consecutive registers. 5283 NumAllocated = 0; 5284 continue; 5285 } 5286 5287 // Okay, this register is good, we can use it. 5288 ++NumAllocated; 5289 5290 // If we allocated enough consecutive registers, succeed. 5291 if (NumAllocated == NumRegs) { 5292 unsigned RegStart = (i-NumAllocated)+1; 5293 unsigned RegEnd = i+1; 5294 // Mark all of the allocated registers used. 5295 for (unsigned i = RegStart; i != RegEnd; ++i) 5296 Regs.push_back(RegClassRegs[i]); 5297 5298 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5299 OpInfo.ConstraintVT); 5300 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5301 return; 5302 } 5303 } 5304 5305 // Otherwise, we couldn't allocate enough registers for this. 5306 } 5307 5308 /// visitInlineAsm - Handle a call to an InlineAsm object. 5309 /// 5310 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5311 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5312 5313 /// ConstraintOperands - Information about all of the constraints. 5314 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5315 5316 std::set<unsigned> OutputRegs, InputRegs; 5317 5318 // Do a prepass over the constraints, canonicalizing them, and building up the 5319 // ConstraintOperands list. 5320 std::vector<InlineAsm::ConstraintInfo> 5321 ConstraintInfos = IA->ParseConstraints(); 5322 5323 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5324 5325 SDValue Chain, Flag; 5326 5327 // We won't need to flush pending loads if this asm doesn't touch 5328 // memory and is nonvolatile. 5329 if (hasMemory || IA->hasSideEffects()) 5330 Chain = getRoot(); 5331 else 5332 Chain = DAG.getRoot(); 5333 5334 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5335 unsigned ResNo = 0; // ResNo - The result number of the next output. 5336 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5337 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5338 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5339 5340 EVT OpVT = MVT::Other; 5341 5342 // Compute the value type for each operand. 5343 switch (OpInfo.Type) { 5344 case InlineAsm::isOutput: 5345 // Indirect outputs just consume an argument. 5346 if (OpInfo.isIndirect) { 5347 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5348 break; 5349 } 5350 5351 // The return value of the call is this value. As such, there is no 5352 // corresponding argument. 5353 assert(!CS.getType()->isVoidTy() && 5354 "Bad inline asm!"); 5355 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5356 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5357 } else { 5358 assert(ResNo == 0 && "Asm only has one result!"); 5359 OpVT = TLI.getValueType(CS.getType()); 5360 } 5361 ++ResNo; 5362 break; 5363 case InlineAsm::isInput: 5364 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5365 break; 5366 case InlineAsm::isClobber: 5367 // Nothing to do. 5368 break; 5369 } 5370 5371 // If this is an input or an indirect output, process the call argument. 5372 // BasicBlocks are labels, currently appearing only in asm's. 5373 if (OpInfo.CallOperandVal) { 5374 // Strip bitcasts, if any. This mostly comes up for functions. 5375 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5376 5377 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5378 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5379 } else { 5380 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5381 } 5382 5383 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5384 } 5385 5386 OpInfo.ConstraintVT = OpVT; 5387 } 5388 5389 // Second pass over the constraints: compute which constraint option to use 5390 // and assign registers to constraints that want a specific physreg. 5391 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5392 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5393 5394 // If this is an output operand with a matching input operand, look up the 5395 // matching input. If their types mismatch, e.g. one is an integer, the 5396 // other is floating point, or their sizes are different, flag it as an 5397 // error. 5398 if (OpInfo.hasMatchingInput()) { 5399 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5400 5401 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5402 if ((OpInfo.ConstraintVT.isInteger() != 5403 Input.ConstraintVT.isInteger()) || 5404 (OpInfo.ConstraintVT.getSizeInBits() != 5405 Input.ConstraintVT.getSizeInBits())) { 5406 report_fatal_error("Unsupported asm: input constraint" 5407 " with a matching output constraint of" 5408 " incompatible type!"); 5409 } 5410 Input.ConstraintVT = OpInfo.ConstraintVT; 5411 } 5412 } 5413 5414 // Compute the constraint code and ConstraintType to use. 5415 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5416 5417 // If this is a memory input, and if the operand is not indirect, do what we 5418 // need to to provide an address for the memory input. 5419 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5420 !OpInfo.isIndirect) { 5421 assert(OpInfo.Type == InlineAsm::isInput && 5422 "Can only indirectify direct input operands!"); 5423 5424 // Memory operands really want the address of the value. If we don't have 5425 // an indirect input, put it in the constpool if we can, otherwise spill 5426 // it to a stack slot. 5427 5428 // If the operand is a float, integer, or vector constant, spill to a 5429 // constant pool entry to get its address. 5430 const Value *OpVal = OpInfo.CallOperandVal; 5431 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5432 isa<ConstantVector>(OpVal)) { 5433 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5434 TLI.getPointerTy()); 5435 } else { 5436 // Otherwise, create a stack slot and emit a store to it before the 5437 // asm. 5438 const Type *Ty = OpVal->getType(); 5439 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5440 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5441 MachineFunction &MF = DAG.getMachineFunction(); 5442 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5443 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5444 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5445 OpInfo.CallOperand, StackSlot, NULL, 0, 5446 false, false, 0); 5447 OpInfo.CallOperand = StackSlot; 5448 } 5449 5450 // There is no longer a Value* corresponding to this operand. 5451 OpInfo.CallOperandVal = 0; 5452 5453 // It is now an indirect operand. 5454 OpInfo.isIndirect = true; 5455 } 5456 5457 // If this constraint is for a specific register, allocate it before 5458 // anything else. 5459 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5460 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5461 } 5462 5463 ConstraintInfos.clear(); 5464 5465 // Second pass - Loop over all of the operands, assigning virtual or physregs 5466 // to register class operands. 5467 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5468 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5469 5470 // C_Register operands have already been allocated, Other/Memory don't need 5471 // to be. 5472 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5473 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5474 } 5475 5476 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5477 std::vector<SDValue> AsmNodeOperands; 5478 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5479 AsmNodeOperands.push_back( 5480 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5481 TLI.getPointerTy())); 5482 5483 // If we have a !srcloc metadata node associated with it, we want to attach 5484 // this to the ultimately generated inline asm machineinstr. To do this, we 5485 // pass in the third operand as this (potentially null) inline asm MDNode. 5486 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5487 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5488 5489 // Remember the AlignStack bit as operand 3. 5490 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5491 MVT::i1)); 5492 5493 // Loop over all of the inputs, copying the operand values into the 5494 // appropriate registers and processing the output regs. 5495 RegsForValue RetValRegs; 5496 5497 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5498 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5499 5500 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5501 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5502 5503 switch (OpInfo.Type) { 5504 case InlineAsm::isOutput: { 5505 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5506 OpInfo.ConstraintType != TargetLowering::C_Register) { 5507 // Memory output, or 'other' output (e.g. 'X' constraint). 5508 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5509 5510 // Add information to the INLINEASM node to know about this output. 5511 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5512 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5513 TLI.getPointerTy())); 5514 AsmNodeOperands.push_back(OpInfo.CallOperand); 5515 break; 5516 } 5517 5518 // Otherwise, this is a register or register class output. 5519 5520 // Copy the output from the appropriate register. Find a register that 5521 // we can use. 5522 if (OpInfo.AssignedRegs.Regs.empty()) 5523 report_fatal_error("Couldn't allocate output reg for constraint '" + 5524 Twine(OpInfo.ConstraintCode) + "'!"); 5525 5526 // If this is an indirect operand, store through the pointer after the 5527 // asm. 5528 if (OpInfo.isIndirect) { 5529 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5530 OpInfo.CallOperandVal)); 5531 } else { 5532 // This is the result value of the call. 5533 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5534 // Concatenate this output onto the outputs list. 5535 RetValRegs.append(OpInfo.AssignedRegs); 5536 } 5537 5538 // Add information to the INLINEASM node to know that this register is 5539 // set. 5540 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5541 InlineAsm::Kind_RegDefEarlyClobber : 5542 InlineAsm::Kind_RegDef, 5543 false, 5544 0, 5545 DAG, 5546 AsmNodeOperands); 5547 break; 5548 } 5549 case InlineAsm::isInput: { 5550 SDValue InOperandVal = OpInfo.CallOperand; 5551 5552 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5553 // If this is required to match an output register we have already set, 5554 // just use its register. 5555 unsigned OperandNo = OpInfo.getMatchedOperand(); 5556 5557 // Scan until we find the definition we already emitted of this operand. 5558 // When we find it, create a RegsForValue operand. 5559 unsigned CurOp = InlineAsm::Op_FirstOperand; 5560 for (; OperandNo; --OperandNo) { 5561 // Advance to the next operand. 5562 unsigned OpFlag = 5563 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5564 assert((InlineAsm::isRegDefKind(OpFlag) || 5565 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5566 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5567 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5568 } 5569 5570 unsigned OpFlag = 5571 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5572 if (InlineAsm::isRegDefKind(OpFlag) || 5573 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5574 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5575 if (OpInfo.isIndirect) { 5576 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5577 LLVMContext &Ctx = *DAG.getContext(); 5578 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5579 " don't know how to handle tied " 5580 "indirect register inputs"); 5581 } 5582 5583 RegsForValue MatchedRegs; 5584 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5585 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5586 MatchedRegs.RegVTs.push_back(RegVT); 5587 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5588 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5589 i != e; ++i) 5590 MatchedRegs.Regs.push_back 5591 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5592 5593 // Use the produced MatchedRegs object to 5594 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5595 Chain, &Flag); 5596 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5597 true, OpInfo.getMatchedOperand(), 5598 DAG, AsmNodeOperands); 5599 break; 5600 } 5601 5602 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5603 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5604 "Unexpected number of operands"); 5605 // Add information to the INLINEASM node to know about this input. 5606 // See InlineAsm.h isUseOperandTiedToDef. 5607 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5608 OpInfo.getMatchedOperand()); 5609 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5610 TLI.getPointerTy())); 5611 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5612 break; 5613 } 5614 5615 // Treat indirect 'X' constraint as memory. 5616 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5617 OpInfo.isIndirect) 5618 OpInfo.ConstraintType = TargetLowering::C_Memory; 5619 5620 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5621 std::vector<SDValue> Ops; 5622 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5623 Ops, DAG); 5624 if (Ops.empty()) 5625 report_fatal_error("Invalid operand for inline asm constraint '" + 5626 Twine(OpInfo.ConstraintCode) + "'!"); 5627 5628 // Add information to the INLINEASM node to know about this input. 5629 unsigned ResOpType = 5630 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5631 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5632 TLI.getPointerTy())); 5633 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5634 break; 5635 } 5636 5637 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5638 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5639 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5640 "Memory operands expect pointer values"); 5641 5642 // Add information to the INLINEASM node to know about this input. 5643 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5644 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5645 TLI.getPointerTy())); 5646 AsmNodeOperands.push_back(InOperandVal); 5647 break; 5648 } 5649 5650 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5651 OpInfo.ConstraintType == TargetLowering::C_Register) && 5652 "Unknown constraint type!"); 5653 assert(!OpInfo.isIndirect && 5654 "Don't know how to handle indirect register inputs yet!"); 5655 5656 // Copy the input into the appropriate registers. 5657 if (OpInfo.AssignedRegs.Regs.empty() || 5658 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5659 report_fatal_error("Couldn't allocate input reg for constraint '" + 5660 Twine(OpInfo.ConstraintCode) + "'!"); 5661 5662 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5663 Chain, &Flag); 5664 5665 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5666 DAG, AsmNodeOperands); 5667 break; 5668 } 5669 case InlineAsm::isClobber: { 5670 // Add the clobbered value to the operand list, so that the register 5671 // allocator is aware that the physreg got clobbered. 5672 if (!OpInfo.AssignedRegs.Regs.empty()) 5673 OpInfo.AssignedRegs.AddInlineAsmOperands( 5674 InlineAsm::Kind_RegDefEarlyClobber, 5675 false, 0, DAG, 5676 AsmNodeOperands); 5677 break; 5678 } 5679 } 5680 } 5681 5682 // Finish up input operands. Set the input chain and add the flag last. 5683 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5684 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5685 5686 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5687 DAG.getVTList(MVT::Other, MVT::Flag), 5688 &AsmNodeOperands[0], AsmNodeOperands.size()); 5689 Flag = Chain.getValue(1); 5690 5691 // If this asm returns a register value, copy the result from that register 5692 // and set it as the value of the call. 5693 if (!RetValRegs.Regs.empty()) { 5694 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5695 Chain, &Flag); 5696 5697 // FIXME: Why don't we do this for inline asms with MRVs? 5698 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5699 EVT ResultType = TLI.getValueType(CS.getType()); 5700 5701 // If any of the results of the inline asm is a vector, it may have the 5702 // wrong width/num elts. This can happen for register classes that can 5703 // contain multiple different value types. The preg or vreg allocated may 5704 // not have the same VT as was expected. Convert it to the right type 5705 // with bit_convert. 5706 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5707 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5708 ResultType, Val); 5709 5710 } else if (ResultType != Val.getValueType() && 5711 ResultType.isInteger() && Val.getValueType().isInteger()) { 5712 // If a result value was tied to an input value, the computed result may 5713 // have a wider width than the expected result. Extract the relevant 5714 // portion. 5715 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5716 } 5717 5718 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5719 } 5720 5721 setValue(CS.getInstruction(), Val); 5722 // Don't need to use this as a chain in this case. 5723 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5724 return; 5725 } 5726 5727 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5728 5729 // Process indirect outputs, first output all of the flagged copies out of 5730 // physregs. 5731 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5732 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5733 const Value *Ptr = IndirectStoresToEmit[i].second; 5734 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5735 Chain, &Flag); 5736 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5737 } 5738 5739 // Emit the non-flagged stores from the physregs. 5740 SmallVector<SDValue, 8> OutChains; 5741 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5742 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5743 StoresToEmit[i].first, 5744 getValue(StoresToEmit[i].second), 5745 StoresToEmit[i].second, 0, 5746 false, false, 0); 5747 OutChains.push_back(Val); 5748 } 5749 5750 if (!OutChains.empty()) 5751 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5752 &OutChains[0], OutChains.size()); 5753 5754 DAG.setRoot(Chain); 5755 } 5756 5757 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5758 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5759 MVT::Other, getRoot(), 5760 getValue(I.getArgOperand(0)), 5761 DAG.getSrcValue(I.getArgOperand(0)))); 5762 } 5763 5764 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5765 const TargetData &TD = *TLI.getTargetData(); 5766 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5767 getRoot(), getValue(I.getOperand(0)), 5768 DAG.getSrcValue(I.getOperand(0)), 5769 TD.getABITypeAlignment(I.getType())); 5770 setValue(&I, V); 5771 DAG.setRoot(V.getValue(1)); 5772 } 5773 5774 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5775 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5776 MVT::Other, getRoot(), 5777 getValue(I.getArgOperand(0)), 5778 DAG.getSrcValue(I.getArgOperand(0)))); 5779 } 5780 5781 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5782 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5783 MVT::Other, getRoot(), 5784 getValue(I.getArgOperand(0)), 5785 getValue(I.getArgOperand(1)), 5786 DAG.getSrcValue(I.getArgOperand(0)), 5787 DAG.getSrcValue(I.getArgOperand(1)))); 5788 } 5789 5790 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5791 /// implementation, which just calls LowerCall. 5792 /// FIXME: When all targets are 5793 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5794 std::pair<SDValue, SDValue> 5795 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5796 bool RetSExt, bool RetZExt, bool isVarArg, 5797 bool isInreg, unsigned NumFixedArgs, 5798 CallingConv::ID CallConv, bool isTailCall, 5799 bool isReturnValueUsed, 5800 SDValue Callee, 5801 ArgListTy &Args, SelectionDAG &DAG, 5802 DebugLoc dl) const { 5803 // Handle all of the outgoing arguments. 5804 SmallVector<ISD::OutputArg, 32> Outs; 5805 SmallVector<SDValue, 32> OutVals; 5806 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5807 SmallVector<EVT, 4> ValueVTs; 5808 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5809 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5810 Value != NumValues; ++Value) { 5811 EVT VT = ValueVTs[Value]; 5812 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5813 SDValue Op = SDValue(Args[i].Node.getNode(), 5814 Args[i].Node.getResNo() + Value); 5815 ISD::ArgFlagsTy Flags; 5816 unsigned OriginalAlignment = 5817 getTargetData()->getABITypeAlignment(ArgTy); 5818 5819 if (Args[i].isZExt) 5820 Flags.setZExt(); 5821 if (Args[i].isSExt) 5822 Flags.setSExt(); 5823 if (Args[i].isInReg) 5824 Flags.setInReg(); 5825 if (Args[i].isSRet) 5826 Flags.setSRet(); 5827 if (Args[i].isByVal) { 5828 Flags.setByVal(); 5829 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5830 const Type *ElementTy = Ty->getElementType(); 5831 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5832 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5833 // For ByVal, alignment should come from FE. BE will guess if this 5834 // info is not there but there are cases it cannot get right. 5835 if (Args[i].Alignment) 5836 FrameAlign = Args[i].Alignment; 5837 Flags.setByValAlign(FrameAlign); 5838 Flags.setByValSize(FrameSize); 5839 } 5840 if (Args[i].isNest) 5841 Flags.setNest(); 5842 Flags.setOrigAlign(OriginalAlignment); 5843 5844 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5845 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5846 SmallVector<SDValue, 4> Parts(NumParts); 5847 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5848 5849 if (Args[i].isSExt) 5850 ExtendKind = ISD::SIGN_EXTEND; 5851 else if (Args[i].isZExt) 5852 ExtendKind = ISD::ZERO_EXTEND; 5853 5854 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5855 PartVT, ExtendKind); 5856 5857 for (unsigned j = 0; j != NumParts; ++j) { 5858 // if it isn't first piece, alignment must be 1 5859 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5860 i < NumFixedArgs); 5861 if (NumParts > 1 && j == 0) 5862 MyFlags.Flags.setSplit(); 5863 else if (j != 0) 5864 MyFlags.Flags.setOrigAlign(1); 5865 5866 Outs.push_back(MyFlags); 5867 OutVals.push_back(Parts[j]); 5868 } 5869 } 5870 } 5871 5872 // Handle the incoming return values from the call. 5873 SmallVector<ISD::InputArg, 32> Ins; 5874 SmallVector<EVT, 4> RetTys; 5875 ComputeValueVTs(*this, RetTy, RetTys); 5876 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5877 EVT VT = RetTys[I]; 5878 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5879 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5880 for (unsigned i = 0; i != NumRegs; ++i) { 5881 ISD::InputArg MyFlags; 5882 MyFlags.VT = RegisterVT; 5883 MyFlags.Used = isReturnValueUsed; 5884 if (RetSExt) 5885 MyFlags.Flags.setSExt(); 5886 if (RetZExt) 5887 MyFlags.Flags.setZExt(); 5888 if (isInreg) 5889 MyFlags.Flags.setInReg(); 5890 Ins.push_back(MyFlags); 5891 } 5892 } 5893 5894 SmallVector<SDValue, 4> InVals; 5895 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5896 Outs, OutVals, Ins, dl, DAG, InVals); 5897 5898 // Verify that the target's LowerCall behaved as expected. 5899 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5900 "LowerCall didn't return a valid chain!"); 5901 assert((!isTailCall || InVals.empty()) && 5902 "LowerCall emitted a return value for a tail call!"); 5903 assert((isTailCall || InVals.size() == Ins.size()) && 5904 "LowerCall didn't emit the correct number of values!"); 5905 5906 // For a tail call, the return value is merely live-out and there aren't 5907 // any nodes in the DAG representing it. Return a special value to 5908 // indicate that a tail call has been emitted and no more Instructions 5909 // should be processed in the current block. 5910 if (isTailCall) { 5911 DAG.setRoot(Chain); 5912 return std::make_pair(SDValue(), SDValue()); 5913 } 5914 5915 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5916 assert(InVals[i].getNode() && 5917 "LowerCall emitted a null value!"); 5918 assert(Ins[i].VT == InVals[i].getValueType() && 5919 "LowerCall emitted a value with the wrong type!"); 5920 }); 5921 5922 // Collect the legal value parts into potentially illegal values 5923 // that correspond to the original function's return values. 5924 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5925 if (RetSExt) 5926 AssertOp = ISD::AssertSext; 5927 else if (RetZExt) 5928 AssertOp = ISD::AssertZext; 5929 SmallVector<SDValue, 4> ReturnValues; 5930 unsigned CurReg = 0; 5931 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5932 EVT VT = RetTys[I]; 5933 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5934 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5935 5936 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5937 NumRegs, RegisterVT, VT, 5938 AssertOp)); 5939 CurReg += NumRegs; 5940 } 5941 5942 // For a function returning void, there is no return value. We can't create 5943 // such a node, so we just return a null return value in that case. In 5944 // that case, nothing will actualy look at the value. 5945 if (ReturnValues.empty()) 5946 return std::make_pair(SDValue(), Chain); 5947 5948 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5949 DAG.getVTList(&RetTys[0], RetTys.size()), 5950 &ReturnValues[0], ReturnValues.size()); 5951 return std::make_pair(Res, Chain); 5952 } 5953 5954 void TargetLowering::LowerOperationWrapper(SDNode *N, 5955 SmallVectorImpl<SDValue> &Results, 5956 SelectionDAG &DAG) const { 5957 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5958 if (Res.getNode()) 5959 Results.push_back(Res); 5960 } 5961 5962 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5963 llvm_unreachable("LowerOperation not implemented for this target!"); 5964 return SDValue(); 5965 } 5966 5967 void 5968 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5969 SDValue Op = getNonRegisterValue(V); 5970 assert((Op.getOpcode() != ISD::CopyFromReg || 5971 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5972 "Copy from a reg to the same reg!"); 5973 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5974 5975 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5976 SDValue Chain = DAG.getEntryNode(); 5977 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5978 PendingExports.push_back(Chain); 5979 } 5980 5981 #include "llvm/CodeGen/SelectionDAGISel.h" 5982 5983 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5984 // If this is the entry block, emit arguments. 5985 const Function &F = *LLVMBB->getParent(); 5986 SelectionDAG &DAG = SDB->DAG; 5987 DebugLoc dl = SDB->getCurDebugLoc(); 5988 const TargetData *TD = TLI.getTargetData(); 5989 SmallVector<ISD::InputArg, 16> Ins; 5990 5991 // Check whether the function can return without sret-demotion. 5992 SmallVector<ISD::OutputArg, 4> Outs; 5993 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5994 Outs, TLI); 5995 5996 if (!FuncInfo->CanLowerReturn) { 5997 // Put in an sret pointer parameter before all the other parameters. 5998 SmallVector<EVT, 1> ValueVTs; 5999 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6000 6001 // NOTE: Assuming that a pointer will never break down to more than one VT 6002 // or one register. 6003 ISD::ArgFlagsTy Flags; 6004 Flags.setSRet(); 6005 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6006 ISD::InputArg RetArg(Flags, RegisterVT, true); 6007 Ins.push_back(RetArg); 6008 } 6009 6010 // Set up the incoming argument description vector. 6011 unsigned Idx = 1; 6012 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6013 I != E; ++I, ++Idx) { 6014 SmallVector<EVT, 4> ValueVTs; 6015 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6016 bool isArgValueUsed = !I->use_empty(); 6017 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6018 Value != NumValues; ++Value) { 6019 EVT VT = ValueVTs[Value]; 6020 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6021 ISD::ArgFlagsTy Flags; 6022 unsigned OriginalAlignment = 6023 TD->getABITypeAlignment(ArgTy); 6024 6025 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6026 Flags.setZExt(); 6027 if (F.paramHasAttr(Idx, Attribute::SExt)) 6028 Flags.setSExt(); 6029 if (F.paramHasAttr(Idx, Attribute::InReg)) 6030 Flags.setInReg(); 6031 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6032 Flags.setSRet(); 6033 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6034 Flags.setByVal(); 6035 const PointerType *Ty = cast<PointerType>(I->getType()); 6036 const Type *ElementTy = Ty->getElementType(); 6037 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6038 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6039 // For ByVal, alignment should be passed from FE. BE will guess if 6040 // this info is not there but there are cases it cannot get right. 6041 if (F.getParamAlignment(Idx)) 6042 FrameAlign = F.getParamAlignment(Idx); 6043 Flags.setByValAlign(FrameAlign); 6044 Flags.setByValSize(FrameSize); 6045 } 6046 if (F.paramHasAttr(Idx, Attribute::Nest)) 6047 Flags.setNest(); 6048 Flags.setOrigAlign(OriginalAlignment); 6049 6050 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6051 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6052 for (unsigned i = 0; i != NumRegs; ++i) { 6053 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6054 if (NumRegs > 1 && i == 0) 6055 MyFlags.Flags.setSplit(); 6056 // if it isn't first piece, alignment must be 1 6057 else if (i > 0) 6058 MyFlags.Flags.setOrigAlign(1); 6059 Ins.push_back(MyFlags); 6060 } 6061 } 6062 } 6063 6064 // Call the target to set up the argument values. 6065 SmallVector<SDValue, 8> InVals; 6066 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6067 F.isVarArg(), Ins, 6068 dl, DAG, InVals); 6069 6070 // Verify that the target's LowerFormalArguments behaved as expected. 6071 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6072 "LowerFormalArguments didn't return a valid chain!"); 6073 assert(InVals.size() == Ins.size() && 6074 "LowerFormalArguments didn't emit the correct number of values!"); 6075 DEBUG({ 6076 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6077 assert(InVals[i].getNode() && 6078 "LowerFormalArguments emitted a null value!"); 6079 assert(Ins[i].VT == InVals[i].getValueType() && 6080 "LowerFormalArguments emitted a value with the wrong type!"); 6081 } 6082 }); 6083 6084 // Update the DAG with the new chain value resulting from argument lowering. 6085 DAG.setRoot(NewRoot); 6086 6087 // Set up the argument values. 6088 unsigned i = 0; 6089 Idx = 1; 6090 if (!FuncInfo->CanLowerReturn) { 6091 // Create a virtual register for the sret pointer, and put in a copy 6092 // from the sret argument into it. 6093 SmallVector<EVT, 1> ValueVTs; 6094 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6095 EVT VT = ValueVTs[0]; 6096 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6097 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6098 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6099 RegVT, VT, AssertOp); 6100 6101 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6102 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6103 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6104 FuncInfo->DemoteRegister = SRetReg; 6105 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6106 SRetReg, ArgValue); 6107 DAG.setRoot(NewRoot); 6108 6109 // i indexes lowered arguments. Bump it past the hidden sret argument. 6110 // Idx indexes LLVM arguments. Don't touch it. 6111 ++i; 6112 } 6113 6114 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6115 ++I, ++Idx) { 6116 SmallVector<SDValue, 4> ArgValues; 6117 SmallVector<EVT, 4> ValueVTs; 6118 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6119 unsigned NumValues = ValueVTs.size(); 6120 6121 // If this argument is unused then remember its value. It is used to generate 6122 // debugging information. 6123 if (I->use_empty() && NumValues) 6124 SDB->setUnusedArgValue(I, InVals[i]); 6125 6126 for (unsigned Value = 0; Value != NumValues; ++Value) { 6127 EVT VT = ValueVTs[Value]; 6128 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6129 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6130 6131 if (!I->use_empty()) { 6132 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6133 if (F.paramHasAttr(Idx, Attribute::SExt)) 6134 AssertOp = ISD::AssertSext; 6135 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6136 AssertOp = ISD::AssertZext; 6137 6138 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6139 NumParts, PartVT, VT, 6140 AssertOp)); 6141 } 6142 6143 i += NumParts; 6144 } 6145 6146 if (!I->use_empty()) { 6147 SDValue Res; 6148 if (!ArgValues.empty()) 6149 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6150 SDB->getCurDebugLoc()); 6151 SDB->setValue(I, Res); 6152 6153 // If this argument is live outside of the entry block, insert a copy from 6154 // whereever we got it to the vreg that other BB's will reference it as. 6155 SDB->CopyToExportRegsIfNeeded(I); 6156 } 6157 } 6158 6159 assert(i == InVals.size() && "Argument register count mismatch!"); 6160 6161 // Finally, if the target has anything special to do, allow it to do so. 6162 // FIXME: this should insert code into the DAG! 6163 EmitFunctionEntryCode(); 6164 } 6165 6166 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6167 /// ensure constants are generated when needed. Remember the virtual registers 6168 /// that need to be added to the Machine PHI nodes as input. We cannot just 6169 /// directly add them, because expansion might result in multiple MBB's for one 6170 /// BB. As such, the start of the BB might correspond to a different MBB than 6171 /// the end. 6172 /// 6173 void 6174 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6175 const TerminatorInst *TI = LLVMBB->getTerminator(); 6176 6177 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6178 6179 // Check successor nodes' PHI nodes that expect a constant to be available 6180 // from this block. 6181 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6182 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6183 if (!isa<PHINode>(SuccBB->begin())) continue; 6184 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6185 6186 // If this terminator has multiple identical successors (common for 6187 // switches), only handle each succ once. 6188 if (!SuccsHandled.insert(SuccMBB)) continue; 6189 6190 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6191 6192 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6193 // nodes and Machine PHI nodes, but the incoming operands have not been 6194 // emitted yet. 6195 for (BasicBlock::const_iterator I = SuccBB->begin(); 6196 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6197 // Ignore dead phi's. 6198 if (PN->use_empty()) continue; 6199 6200 unsigned Reg; 6201 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6202 6203 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6204 unsigned &RegOut = ConstantsOut[C]; 6205 if (RegOut == 0) { 6206 RegOut = FuncInfo.CreateRegs(C->getType()); 6207 CopyValueToVirtualRegister(C, RegOut); 6208 } 6209 Reg = RegOut; 6210 } else { 6211 DenseMap<const Value *, unsigned>::iterator I = 6212 FuncInfo.ValueMap.find(PHIOp); 6213 if (I != FuncInfo.ValueMap.end()) 6214 Reg = I->second; 6215 else { 6216 assert(isa<AllocaInst>(PHIOp) && 6217 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6218 "Didn't codegen value into a register!??"); 6219 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6220 CopyValueToVirtualRegister(PHIOp, Reg); 6221 } 6222 } 6223 6224 // Remember that this register needs to added to the machine PHI node as 6225 // the input for this MBB. 6226 SmallVector<EVT, 4> ValueVTs; 6227 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6228 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6229 EVT VT = ValueVTs[vti]; 6230 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6231 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6232 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6233 Reg += NumRegisters; 6234 } 6235 } 6236 } 6237 ConstantsOut.clear(); 6238 } 6239