xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 954cb187e00da9c4b72887d057f46c8bc46c6666)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuilder.h"
16 #include "FunctionLoweringInfo.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Constants.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Function.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Module.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/GCStrategy.h"
33 #include "llvm/CodeGen/GCMetadata.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/CodeGen/SelectionDAG.h"
42 #include "llvm/CodeGen/DwarfWriter.h"
43 #include "llvm/Analysis/DebugInfo.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetFrameInfo.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetIntrinsicInfo.h"
49 #include "llvm/Target/TargetLowering.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 using namespace llvm;
59 
60 /// LimitFloatPrecision - Generate low-precision inline sequences for
61 /// some float libcalls (6, 8 or 12 bits).
62 static unsigned LimitFloatPrecision;
63 
64 static cl::opt<unsigned, true>
65 LimitFPPrecision("limit-float-precision",
66                  cl::desc("Generate low-precision inline sequences "
67                           "for some float libcalls"),
68                  cl::location(LimitFloatPrecision),
69                  cl::init(0));
70 
71 namespace {
72   /// RegsForValue - This struct represents the registers (physical or virtual)
73   /// that a particular set of values is assigned, and the type information
74   /// about the value. The most common situation is to represent one value at a
75   /// time, but struct or array values are handled element-wise as multiple
76   /// values.  The splitting of aggregates is performed recursively, so that we
77   /// never have aggregate-typed registers. The values at this point do not
78   /// necessarily have legal types, so each value may require one or more
79   /// registers of some legal type.
80   ///
81   struct RegsForValue {
82     /// TLI - The TargetLowering object.
83     ///
84     const TargetLowering *TLI;
85 
86     /// ValueVTs - The value types of the values, which may not be legal, and
87     /// may need be promoted or synthesized from one or more registers.
88     ///
89     SmallVector<EVT, 4> ValueVTs;
90 
91     /// RegVTs - The value types of the registers. This is the same size as
92     /// ValueVTs and it records, for each value, what the type of the assigned
93     /// register or registers are. (Individual values are never synthesized
94     /// from more than one type of register.)
95     ///
96     /// With virtual registers, the contents of RegVTs is redundant with TLI's
97     /// getRegisterType member function, however when with physical registers
98     /// it is necessary to have a separate record of the types.
99     ///
100     SmallVector<EVT, 4> RegVTs;
101 
102     /// Regs - This list holds the registers assigned to the values.
103     /// Each legal or promoted value requires one register, and each
104     /// expanded value requires multiple registers.
105     ///
106     SmallVector<unsigned, 4> Regs;
107 
108     RegsForValue() : TLI(0) {}
109 
110     RegsForValue(const TargetLowering &tli,
111                  const SmallVector<unsigned, 4> &regs,
112                  EVT regvt, EVT valuevt)
113       : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114     RegsForValue(const TargetLowering &tli,
115                  const SmallVector<unsigned, 4> &regs,
116                  const SmallVector<EVT, 4> &regvts,
117                  const SmallVector<EVT, 4> &valuevts)
118       : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                  unsigned Reg, const Type *Ty) : TLI(&tli) {
121       ComputeValueVTs(tli, Ty, ValueVTs);
122 
123       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124         EVT ValueVT = ValueVTs[Value];
125         unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126         EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127         for (unsigned i = 0; i != NumRegs; ++i)
128           Regs.push_back(Reg + i);
129         RegVTs.push_back(RegisterVT);
130         Reg += NumRegs;
131       }
132     }
133 
134     /// append - Add the specified values to this one.
135     void append(const RegsForValue &RHS) {
136       TLI = RHS.TLI;
137       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
138       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
139       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
140     }
141 
142 
143     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
144     /// this value and returns the result as a ValueVTs value.  This uses
145     /// Chain/Flag as the input and updates them for the output Chain/Flag.
146     /// If the Flag pointer is NULL, no flag is used.
147     SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
148                             SDValue &Chain, SDValue *Flag) const;
149 
150     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
151     /// specified value into the registers specified by this object.  This uses
152     /// Chain/Flag as the input and updates them for the output Chain/Flag.
153     /// If the Flag pointer is NULL, no flag is used.
154     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
155                        unsigned Order, SDValue &Chain, SDValue *Flag) const;
156 
157     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
158     /// operand list.  This adds the code marker, matching input operand index
159     /// (if applicable), and includes the number of values added into it.
160     void AddInlineAsmOperands(unsigned Code,
161                               bool HasMatching, unsigned MatchingIdx,
162                               SelectionDAG &DAG, unsigned Order,
163                               std::vector<SDValue> &Ops) const;
164   };
165 }
166 
167 /// getCopyFromParts - Create a value that contains the specified legal parts
168 /// combined into the value they represent.  If the parts combine to a type
169 /// larger then ValueVT then AssertOp can be used to specify whether the extra
170 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
171 /// (ISD::AssertSext).
172 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
173                                 const SDValue *Parts,
174                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
175                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
176   assert(NumParts > 0 && "No parts to assemble!");
177   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
178   SDValue Val = Parts[0];
179 
180   if (NumParts > 1) {
181     // Assemble the value from multiple parts.
182     if (!ValueVT.isVector() && ValueVT.isInteger()) {
183       unsigned PartBits = PartVT.getSizeInBits();
184       unsigned ValueBits = ValueVT.getSizeInBits();
185 
186       // Assemble the power of 2 part.
187       unsigned RoundParts = NumParts & (NumParts - 1) ?
188         1 << Log2_32(NumParts) : NumParts;
189       unsigned RoundBits = PartBits * RoundParts;
190       EVT RoundVT = RoundBits == ValueBits ?
191         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
192       SDValue Lo, Hi;
193 
194       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
195 
196       if (RoundParts > 2) {
197         Lo = getCopyFromParts(DAG, dl, Order, Parts, RoundParts / 2,
198                               PartVT, HalfVT);
199         Hi = getCopyFromParts(DAG, dl, Order, Parts + RoundParts / 2,
200                               RoundParts / 2, PartVT, HalfVT);
201       } else {
202         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
203         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
204       }
205 
206       if (TLI.isBigEndian())
207         std::swap(Lo, Hi);
208 
209       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
210 
211       if (RoundParts < NumParts) {
212         // Assemble the trailing non-power-of-2 part.
213         unsigned OddParts = NumParts - RoundParts;
214         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
215         Hi = getCopyFromParts(DAG, dl, Order,
216                               Parts + RoundParts, OddParts, PartVT, OddVT);
217 
218         // Combine the round and odd parts.
219         Lo = Val;
220         if (TLI.isBigEndian())
221           std::swap(Lo, Hi);
222         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
223         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
224         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
225                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
226                                          TLI.getPointerTy()));
227         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
228         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
229       }
230     } else if (ValueVT.isVector()) {
231       // Handle a multi-element vector.
232       EVT IntermediateVT, RegisterVT;
233       unsigned NumIntermediates;
234       unsigned NumRegs =
235         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236                                    NumIntermediates, RegisterVT);
237       assert(NumRegs == NumParts
238              && "Part count doesn't match vector breakdown!");
239       NumParts = NumRegs; // Silence a compiler warning.
240       assert(RegisterVT == PartVT
241              && "Part type doesn't match vector breakdown!");
242       assert(RegisterVT == Parts[0].getValueType() &&
243              "Part type doesn't match part!");
244 
245       // Assemble the parts into intermediate operands.
246       SmallVector<SDValue, 8> Ops(NumIntermediates);
247       if (NumIntermediates == NumParts) {
248         // If the register was not expanded, truncate or copy the value,
249         // as appropriate.
250         for (unsigned i = 0; i != NumParts; ++i)
251           Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i], 1,
252                                     PartVT, IntermediateVT);
253       } else if (NumParts > 0) {
254         // If the intermediate type was expanded, build the intermediate
255         // operands from the parts.
256         assert(NumParts % NumIntermediates == 0 &&
257                "Must expand into a divisible number of parts!");
258         unsigned Factor = NumParts / NumIntermediates;
259         for (unsigned i = 0; i != NumIntermediates; ++i)
260           Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i * Factor], Factor,
261                                     PartVT, IntermediateVT);
262       }
263 
264       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
265       // intermediate operands.
266       Val = DAG.getNode(IntermediateVT.isVector() ?
267                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
268                         ValueVT, &Ops[0], NumIntermediates);
269     } else if (PartVT.isFloatingPoint()) {
270       // FP split into multiple FP parts (for ppcf128)
271       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
272              "Unexpected split");
273       SDValue Lo, Hi;
274       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
275       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
276       if (TLI.isBigEndian())
277         std::swap(Lo, Hi);
278       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
279     } else {
280       // FP split into integer parts (soft fp)
281       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
282              !PartVT.isVector() && "Unexpected split");
283       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
284       Val = getCopyFromParts(DAG, dl, Order, Parts, NumParts, PartVT, IntVT);
285     }
286   }
287 
288   // There is now one part, held in Val.  Correct it to match ValueVT.
289   PartVT = Val.getValueType();
290 
291   if (PartVT == ValueVT)
292     return Val;
293 
294   if (PartVT.isVector()) {
295     assert(ValueVT.isVector() && "Unknown vector conversion!");
296     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
297   }
298 
299   if (ValueVT.isVector()) {
300     assert(ValueVT.getVectorElementType() == PartVT &&
301            ValueVT.getVectorNumElements() == 1 &&
302            "Only trivial scalar-to-vector conversions should get here!");
303     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
304   }
305 
306   if (PartVT.isInteger() &&
307       ValueVT.isInteger()) {
308     if (ValueVT.bitsLT(PartVT)) {
309       // For a truncate, see if we have any information to
310       // indicate whether the truncated bits will always be
311       // zero or sign-extension.
312       if (AssertOp != ISD::DELETED_NODE)
313         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
314                           DAG.getValueType(ValueVT));
315       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
316     } else {
317       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
318     }
319   }
320 
321   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     if (ValueVT.bitsLT(Val.getValueType())) {
323       // FP_ROUND's are always exact here.
324       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
325                          DAG.getIntPtrConstant(1));
326     }
327 
328     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
329   }
330 
331   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
332     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
333 
334   llvm_unreachable("Unknown mismatch!");
335   return SDValue();
336 }
337 
338 /// getCopyToParts - Create a series of nodes that contain the specified value
339 /// split into legal parts.  If the parts contain more bits than Val, then, for
340 /// integers, ExtendKind can be used to specify how to generate the extra bits.
341 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
342                            SDValue Val, SDValue *Parts, unsigned NumParts,
343                            EVT PartVT,
344                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
346   EVT PtrVT = TLI.getPointerTy();
347   EVT ValueVT = Val.getValueType();
348   unsigned PartBits = PartVT.getSizeInBits();
349   unsigned OrigNumParts = NumParts;
350   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351 
352   if (!NumParts)
353     return;
354 
355   if (!ValueVT.isVector()) {
356     if (PartVT == ValueVT) {
357       assert(NumParts == 1 && "No-op copy with multiple parts!");
358       Parts[0] = Val;
359       return;
360     }
361 
362     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
363       // If the parts cover more bits than the value has, promote the value.
364       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
365         assert(NumParts == 1 && "Do not know what to promote to!");
366         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
367       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
368         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
369         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
370       } else {
371         llvm_unreachable("Unknown mismatch!");
372       }
373     } else if (PartBits == ValueVT.getSizeInBits()) {
374       // Different types of the same size.
375       assert(NumParts == 1 && PartVT != ValueVT);
376       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
377     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
378       // If the parts cover less bits than value has, truncate the value.
379       if (PartVT.isInteger() && ValueVT.isInteger()) {
380         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
381         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
382       } else {
383         llvm_unreachable("Unknown mismatch!");
384       }
385     }
386 
387     // The value may have changed - recompute ValueVT.
388     ValueVT = Val.getValueType();
389     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
390            "Failed to tile the value with PartVT!");
391 
392     if (NumParts == 1) {
393       assert(PartVT == ValueVT && "Type conversion failed!");
394       Parts[0] = Val;
395       return;
396     }
397 
398     // Expand the value into multiple parts.
399     if (NumParts & (NumParts - 1)) {
400       // The number of parts is not a power of 2.  Split off and copy the tail.
401       assert(PartVT.isInteger() && ValueVT.isInteger() &&
402              "Do not know what to expand to!");
403       unsigned RoundParts = 1 << Log2_32(NumParts);
404       unsigned RoundBits = RoundParts * PartBits;
405       unsigned OddParts = NumParts - RoundParts;
406       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
407                                    DAG.getConstant(RoundBits,
408                                                    TLI.getPointerTy()));
409       getCopyToParts(DAG, dl, Order, OddVal, Parts + RoundParts,
410                      OddParts, PartVT);
411 
412       if (TLI.isBigEndian())
413         // The odd parts were reversed by getCopyToParts - unreverse them.
414         std::reverse(Parts + RoundParts, Parts + NumParts);
415 
416       NumParts = RoundParts;
417       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
418       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
419     }
420 
421     // The number of parts is a power of 2.  Repeatedly bisect the value using
422     // EXTRACT_ELEMENT.
423     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
424                            EVT::getIntegerVT(*DAG.getContext(),
425                                              ValueVT.getSizeInBits()),
426                            Val);
427 
428     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
429       for (unsigned i = 0; i < NumParts; i += StepSize) {
430         unsigned ThisBits = StepSize * PartBits / 2;
431         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
432         SDValue &Part0 = Parts[i];
433         SDValue &Part1 = Parts[i+StepSize/2];
434 
435         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
436                             ThisVT, Part0,
437                             DAG.getConstant(1, PtrVT));
438         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
439                             ThisVT, Part0,
440                             DAG.getConstant(0, PtrVT));
441 
442         if (ThisBits == PartBits && ThisVT != PartVT) {
443           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
444                                                 PartVT, Part0);
445           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
446                                                 PartVT, Part1);
447         }
448       }
449     }
450 
451     if (TLI.isBigEndian())
452       std::reverse(Parts, Parts + OrigNumParts);
453 
454     return;
455   }
456 
457   // Vector ValueVT.
458   if (NumParts == 1) {
459     if (PartVT != ValueVT) {
460       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
461         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
462       } else {
463         assert(ValueVT.getVectorElementType() == PartVT &&
464                ValueVT.getVectorNumElements() == 1 &&
465                "Only trivial vector-to-scalar conversions should get here!");
466         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
467                           PartVT, Val,
468                           DAG.getConstant(0, PtrVT));
469       }
470     }
471 
472     Parts[0] = Val;
473     return;
474   }
475 
476   // Handle a multi-element vector.
477   EVT IntermediateVT, RegisterVT;
478   unsigned NumIntermediates;
479   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
480                               IntermediateVT, NumIntermediates, RegisterVT);
481   unsigned NumElements = ValueVT.getVectorNumElements();
482 
483   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
484   NumParts = NumRegs; // Silence a compiler warning.
485   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
486 
487   // Split the vector into intermediate operands.
488   SmallVector<SDValue, 8> Ops(NumIntermediates);
489   for (unsigned i = 0; i != NumIntermediates; ++i) {
490     if (IntermediateVT.isVector())
491       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
492                            IntermediateVT, Val,
493                            DAG.getConstant(i * (NumElements / NumIntermediates),
494                                            PtrVT));
495     else
496       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
497                            IntermediateVT, Val,
498                            DAG.getConstant(i, PtrVT));
499   }
500 
501   // Split the intermediate operands into legal parts.
502   if (NumParts == NumIntermediates) {
503     // If the register was not expanded, promote or copy the value,
504     // as appropriate.
505     for (unsigned i = 0; i != NumParts; ++i)
506       getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i], 1, PartVT);
507   } else if (NumParts > 0) {
508     // If the intermediate type was expanded, split each the value into
509     // legal parts.
510     assert(NumParts % NumIntermediates == 0 &&
511            "Must expand into a divisible number of parts!");
512     unsigned Factor = NumParts / NumIntermediates;
513     for (unsigned i = 0; i != NumIntermediates; ++i)
514       getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i*Factor], Factor, PartVT);
515   }
516 }
517 
518 
519 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
520   AA = &aa;
521   GFI = gfi;
522   TD = DAG.getTarget().getTargetData();
523 }
524 
525 /// clear - Clear out the curret SelectionDAG and the associated
526 /// state and prepare this SelectionDAGBuilder object to be used
527 /// for a new block. This doesn't clear out information about
528 /// additional blocks that are needed to complete switch lowering
529 /// or PHI node updating; that information is cleared out as it is
530 /// consumed.
531 void SelectionDAGBuilder::clear() {
532   NodeMap.clear();
533   PendingLoads.clear();
534   PendingExports.clear();
535   EdgeMapping.clear();
536   DAG.clear();
537   CurDebugLoc = DebugLoc::getUnknownLoc();
538   HasTailCall = false;
539 }
540 
541 /// getRoot - Return the current virtual root of the Selection DAG,
542 /// flushing any PendingLoad items. This must be done before emitting
543 /// a store or any other node that may need to be ordered after any
544 /// prior load instructions.
545 ///
546 SDValue SelectionDAGBuilder::getRoot() {
547   if (PendingLoads.empty())
548     return DAG.getRoot();
549 
550   if (PendingLoads.size() == 1) {
551     SDValue Root = PendingLoads[0];
552     DAG.setRoot(Root);
553     PendingLoads.clear();
554     return Root;
555   }
556 
557   // Otherwise, we have to make a token factor node.
558   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
559                                &PendingLoads[0], PendingLoads.size());
560   PendingLoads.clear();
561   DAG.setRoot(Root);
562   return Root;
563 }
564 
565 /// getControlRoot - Similar to getRoot, but instead of flushing all the
566 /// PendingLoad items, flush all the PendingExports items. It is necessary
567 /// to do this before emitting a terminator instruction.
568 ///
569 SDValue SelectionDAGBuilder::getControlRoot() {
570   SDValue Root = DAG.getRoot();
571 
572   if (PendingExports.empty())
573     return Root;
574 
575   // Turn all of the CopyToReg chains into one factored node.
576   if (Root.getOpcode() != ISD::EntryToken) {
577     unsigned i = 0, e = PendingExports.size();
578     for (; i != e; ++i) {
579       assert(PendingExports[i].getNode()->getNumOperands() > 1);
580       if (PendingExports[i].getNode()->getOperand(0) == Root)
581         break;  // Don't add the root if we already indirectly depend on it.
582     }
583 
584     if (i == e)
585       PendingExports.push_back(Root);
586   }
587 
588   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
589                      &PendingExports[0],
590                      PendingExports.size());
591   PendingExports.clear();
592   DAG.setRoot(Root);
593   return Root;
594 }
595 
596 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
597   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
598   DAG.AssignOrdering(Node, SDNodeOrder);
599 
600   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
601     AssignOrderingToNode(Node->getOperand(I).getNode());
602 }
603 
604 void SelectionDAGBuilder::visit(Instruction &I) {
605   visit(I.getOpcode(), I);
606 }
607 
608 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
609   // Note: this doesn't use InstVisitor, because it has to work with
610   // ConstantExpr's in addition to instructions.
611   switch (Opcode) {
612   default: llvm_unreachable("Unknown instruction type encountered!");
613     // Build the switch statement using the Instruction.def file.
614 #define HANDLE_INST(NUM, OPCODE, CLASS) \
615     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
616 #include "llvm/Instruction.def"
617   }
618 
619   // Assign the ordering to the freshly created DAG nodes.
620   if (NodeMap.count(&I)) {
621     ++SDNodeOrder;
622     AssignOrderingToNode(getValue(&I).getNode());
623   }
624 }
625 
626 SDValue SelectionDAGBuilder::getValue(const Value *V) {
627   SDValue &N = NodeMap[V];
628   if (N.getNode()) return N;
629 
630   if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
631     EVT VT = TLI.getValueType(V->getType(), true);
632 
633     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
634       return N = DAG.getConstant(*CI, VT);
635 
636     if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
637       return N = DAG.getGlobalAddress(GV, VT);
638 
639     if (isa<ConstantPointerNull>(C))
640       return N = DAG.getConstant(0, TLI.getPointerTy());
641 
642     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
643       return N = DAG.getConstantFP(*CFP, VT);
644 
645     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
646       return N = DAG.getUNDEF(VT);
647 
648     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
649       visit(CE->getOpcode(), *CE);
650       SDValue N1 = NodeMap[V];
651       assert(N1.getNode() && "visit didn't populate the ValueMap!");
652       return N1;
653     }
654 
655     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
656       SmallVector<SDValue, 4> Constants;
657       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
658            OI != OE; ++OI) {
659         SDNode *Val = getValue(*OI).getNode();
660         // If the operand is an empty aggregate, there are no values.
661         if (!Val) continue;
662         // Add each leaf value from the operand to the Constants list
663         // to form a flattened list of all the values.
664         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
665           Constants.push_back(SDValue(Val, i));
666       }
667 
668       return DAG.getMergeValues(&Constants[0], Constants.size(),
669                                 getCurDebugLoc());
670     }
671 
672     if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
673       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
674              "Unknown struct or array constant!");
675 
676       SmallVector<EVT, 4> ValueVTs;
677       ComputeValueVTs(TLI, C->getType(), ValueVTs);
678       unsigned NumElts = ValueVTs.size();
679       if (NumElts == 0)
680         return SDValue(); // empty struct
681       SmallVector<SDValue, 4> Constants(NumElts);
682       for (unsigned i = 0; i != NumElts; ++i) {
683         EVT EltVT = ValueVTs[i];
684         if (isa<UndefValue>(C))
685           Constants[i] = DAG.getUNDEF(EltVT);
686         else if (EltVT.isFloatingPoint())
687           Constants[i] = DAG.getConstantFP(0, EltVT);
688         else
689           Constants[i] = DAG.getConstant(0, EltVT);
690       }
691 
692       return DAG.getMergeValues(&Constants[0], NumElts,
693                                 getCurDebugLoc());
694     }
695 
696     if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
697       return DAG.getBlockAddress(BA, VT);
698 
699     const VectorType *VecTy = cast<VectorType>(V->getType());
700     unsigned NumElements = VecTy->getNumElements();
701 
702     // Now that we know the number and type of the elements, get that number of
703     // elements into the Ops array based on what kind of constant it is.
704     SmallVector<SDValue, 16> Ops;
705     if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
706       for (unsigned i = 0; i != NumElements; ++i)
707         Ops.push_back(getValue(CP->getOperand(i)));
708     } else {
709       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
710       EVT EltVT = TLI.getValueType(VecTy->getElementType());
711 
712       SDValue Op;
713       if (EltVT.isFloatingPoint())
714         Op = DAG.getConstantFP(0, EltVT);
715       else
716         Op = DAG.getConstant(0, EltVT);
717       Ops.assign(NumElements, Op);
718     }
719 
720     // Create a BUILD_VECTOR node.
721     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
722                                     VT, &Ops[0], Ops.size());
723   }
724 
725   // If this is a static alloca, generate it as the frameindex instead of
726   // computation.
727   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
728     DenseMap<const AllocaInst*, int>::iterator SI =
729       FuncInfo.StaticAllocaMap.find(AI);
730     if (SI != FuncInfo.StaticAllocaMap.end())
731       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
732   }
733 
734   unsigned InReg = FuncInfo.ValueMap[V];
735   assert(InReg && "Value not in map!");
736 
737   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
738   SDValue Chain = DAG.getEntryNode();
739   return RFV.getCopyFromRegs(DAG, getCurDebugLoc(),
740                              SDNodeOrder, Chain, NULL);
741 }
742 
743 /// Get the EVTs and ArgFlags collections that represent the legalized return
744 /// type of the given function.  This does not require a DAG or a return value,
745 /// and is suitable for use before any DAGs for the function are constructed.
746 static void getReturnInfo(const Type* ReturnType,
747                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
748                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
749                    TargetLowering &TLI,
750                    SmallVectorImpl<uint64_t> *Offsets = 0) {
751   SmallVector<EVT, 4> ValueVTs;
752   ComputeValueVTs(TLI, ReturnType, ValueVTs);
753   unsigned NumValues = ValueVTs.size();
754   if (NumValues == 0) return;
755   unsigned Offset = 0;
756 
757   for (unsigned j = 0, f = NumValues; j != f; ++j) {
758     EVT VT = ValueVTs[j];
759     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
760 
761     if (attr & Attribute::SExt)
762       ExtendKind = ISD::SIGN_EXTEND;
763     else if (attr & Attribute::ZExt)
764       ExtendKind = ISD::ZERO_EXTEND;
765 
766     // FIXME: C calling convention requires the return type to be promoted to
767     // at least 32-bit. But this is not necessary for non-C calling
768     // conventions. The frontend should mark functions whose return values
769     // require promoting with signext or zeroext attributes.
770     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
771       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
772       if (VT.bitsLT(MinVT))
773         VT = MinVT;
774     }
775 
776     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
777     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
778     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
779                         PartVT.getTypeForEVT(ReturnType->getContext()));
780 
781     // 'inreg' on function refers to return value
782     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
783     if (attr & Attribute::InReg)
784       Flags.setInReg();
785 
786     // Propagate extension type if any
787     if (attr & Attribute::SExt)
788       Flags.setSExt();
789     else if (attr & Attribute::ZExt)
790       Flags.setZExt();
791 
792     for (unsigned i = 0; i < NumParts; ++i) {
793       OutVTs.push_back(PartVT);
794       OutFlags.push_back(Flags);
795       if (Offsets)
796       {
797         Offsets->push_back(Offset);
798         Offset += PartSize;
799       }
800     }
801   }
802 }
803 
804 void SelectionDAGBuilder::visitRet(ReturnInst &I) {
805   SDValue Chain = getControlRoot();
806   SmallVector<ISD::OutputArg, 8> Outs;
807   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
808 
809   if (!FLI.CanLowerReturn) {
810     unsigned DemoteReg = FLI.DemoteRegister;
811     const Function *F = I.getParent()->getParent();
812 
813     // Emit a store of the return value through the virtual register.
814     // Leave Outs empty so that LowerReturn won't try to load return
815     // registers the usual way.
816     SmallVector<EVT, 1> PtrValueVTs;
817     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
818                     PtrValueVTs);
819 
820     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
821     SDValue RetOp = getValue(I.getOperand(0));
822 
823     SmallVector<EVT, 4> ValueVTs;
824     SmallVector<uint64_t, 4> Offsets;
825     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
826     unsigned NumValues = ValueVTs.size();
827 
828     SmallVector<SDValue, 4> Chains(NumValues);
829     EVT PtrVT = PtrValueVTs[0];
830     for (unsigned i = 0; i != NumValues; ++i) {
831       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
832                                 DAG.getConstant(Offsets[i], PtrVT));
833       Chains[i] =
834         DAG.getStore(Chain, getCurDebugLoc(),
835                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
836                      Add, NULL, Offsets[i], false, 0);
837     }
838 
839     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
840                         MVT::Other, &Chains[0], NumValues);
841   } else {
842     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
843       SmallVector<EVT, 4> ValueVTs;
844       ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
845       unsigned NumValues = ValueVTs.size();
846       if (NumValues == 0) continue;
847 
848       SDValue RetOp = getValue(I.getOperand(i));
849       for (unsigned j = 0, f = NumValues; j != f; ++j) {
850         EVT VT = ValueVTs[j];
851 
852         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
853 
854         const Function *F = I.getParent()->getParent();
855         if (F->paramHasAttr(0, Attribute::SExt))
856           ExtendKind = ISD::SIGN_EXTEND;
857         else if (F->paramHasAttr(0, Attribute::ZExt))
858           ExtendKind = ISD::ZERO_EXTEND;
859 
860         // FIXME: C calling convention requires the return type to be promoted
861         // to at least 32-bit. But this is not necessary for non-C calling
862         // conventions. The frontend should mark functions whose return values
863         // require promoting with signext or zeroext attributes.
864         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
865           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
866           if (VT.bitsLT(MinVT))
867             VT = MinVT;
868         }
869 
870         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
871         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
872         SmallVector<SDValue, 4> Parts(NumParts);
873         getCopyToParts(DAG, getCurDebugLoc(), SDNodeOrder,
874                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
875                        &Parts[0], NumParts, PartVT, ExtendKind);
876 
877         // 'inreg' on function refers to return value
878         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
879         if (F->paramHasAttr(0, Attribute::InReg))
880           Flags.setInReg();
881 
882         // Propagate extension type if any
883         if (F->paramHasAttr(0, Attribute::SExt))
884           Flags.setSExt();
885         else if (F->paramHasAttr(0, Attribute::ZExt))
886           Flags.setZExt();
887 
888         for (unsigned i = 0; i < NumParts; ++i)
889           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
890       }
891     }
892   }
893 
894   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
895   CallingConv::ID CallConv =
896     DAG.getMachineFunction().getFunction()->getCallingConv();
897   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
898                           Outs, getCurDebugLoc(), DAG);
899 
900   // Verify that the target's LowerReturn behaved as expected.
901   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
902          "LowerReturn didn't return a valid chain!");
903 
904   // Update the DAG with the new chain value resulting from return lowering.
905   DAG.setRoot(Chain);
906 }
907 
908 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
909 /// created for it, emit nodes to copy the value into the virtual
910 /// registers.
911 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
912   if (!V->use_empty()) {
913     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
914     if (VMI != FuncInfo.ValueMap.end())
915       CopyValueToVirtualRegister(V, VMI->second);
916   }
917 }
918 
919 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
920 /// the current basic block, add it to ValueMap now so that we'll get a
921 /// CopyTo/FromReg.
922 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
923   // No need to export constants.
924   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
925 
926   // Already exported?
927   if (FuncInfo.isExportedInst(V)) return;
928 
929   unsigned Reg = FuncInfo.InitializeRegForValue(V);
930   CopyValueToVirtualRegister(V, Reg);
931 }
932 
933 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
934                                                      const BasicBlock *FromBB) {
935   // The operands of the setcc have to be in this block.  We don't know
936   // how to export them from some other block.
937   if (Instruction *VI = dyn_cast<Instruction>(V)) {
938     // Can export from current BB.
939     if (VI->getParent() == FromBB)
940       return true;
941 
942     // Is already exported, noop.
943     return FuncInfo.isExportedInst(V);
944   }
945 
946   // If this is an argument, we can export it if the BB is the entry block or
947   // if it is already exported.
948   if (isa<Argument>(V)) {
949     if (FromBB == &FromBB->getParent()->getEntryBlock())
950       return true;
951 
952     // Otherwise, can only export this if it is already exported.
953     return FuncInfo.isExportedInst(V);
954   }
955 
956   // Otherwise, constants can always be exported.
957   return true;
958 }
959 
960 static bool InBlock(const Value *V, const BasicBlock *BB) {
961   if (const Instruction *I = dyn_cast<Instruction>(V))
962     return I->getParent() == BB;
963   return true;
964 }
965 
966 /// getFCmpCondCode - Return the ISD condition code corresponding to
967 /// the given LLVM IR floating-point condition code.  This includes
968 /// consideration of global floating-point math flags.
969 ///
970 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
971   ISD::CondCode FPC, FOC;
972   switch (Pred) {
973   case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
974   case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
975   case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
976   case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
977   case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
978   case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
979   case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
980   case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
981   case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
982   case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
983   case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
984   case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
985   case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
986   case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
987   case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
988   case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
989   default:
990     llvm_unreachable("Invalid FCmp predicate opcode!");
991     FOC = FPC = ISD::SETFALSE;
992     break;
993   }
994   if (FiniteOnlyFPMath())
995     return FOC;
996   else
997     return FPC;
998 }
999 
1000 /// getICmpCondCode - Return the ISD condition code corresponding to
1001 /// the given LLVM IR integer condition code.
1002 ///
1003 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1004   switch (Pred) {
1005   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1006   case ICmpInst::ICMP_NE:  return ISD::SETNE;
1007   case ICmpInst::ICMP_SLE: return ISD::SETLE;
1008   case ICmpInst::ICMP_ULE: return ISD::SETULE;
1009   case ICmpInst::ICMP_SGE: return ISD::SETGE;
1010   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1011   case ICmpInst::ICMP_SLT: return ISD::SETLT;
1012   case ICmpInst::ICMP_ULT: return ISD::SETULT;
1013   case ICmpInst::ICMP_SGT: return ISD::SETGT;
1014   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1015   default:
1016     llvm_unreachable("Invalid ICmp predicate opcode!");
1017     return ISD::SETNE;
1018   }
1019 }
1020 
1021 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1022 /// This function emits a branch and is used at the leaves of an OR or an
1023 /// AND operator tree.
1024 ///
1025 void
1026 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1027                                                   MachineBasicBlock *TBB,
1028                                                   MachineBasicBlock *FBB,
1029                                                   MachineBasicBlock *CurBB) {
1030   const BasicBlock *BB = CurBB->getBasicBlock();
1031 
1032   // If the leaf of the tree is a comparison, merge the condition into
1033   // the caseblock.
1034   if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1035     // The operands of the cmp have to be in this block.  We don't know
1036     // how to export them from some other block.  If this is the first block
1037     // of the sequence, no exporting is needed.
1038     if (CurBB == CurMBB ||
1039         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1040          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1041       ISD::CondCode Condition;
1042       if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1043         Condition = getICmpCondCode(IC->getPredicate());
1044       } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1045         Condition = getFCmpCondCode(FC->getPredicate());
1046       } else {
1047         Condition = ISD::SETEQ; // silence warning.
1048         llvm_unreachable("Unknown compare instruction");
1049       }
1050 
1051       CaseBlock CB(Condition, BOp->getOperand(0),
1052                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1053       SwitchCases.push_back(CB);
1054       return;
1055     }
1056   }
1057 
1058   // Create a CaseBlock record representing this branch.
1059   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1060                NULL, TBB, FBB, CurBB);
1061   SwitchCases.push_back(CB);
1062 }
1063 
1064 /// FindMergedConditions - If Cond is an expression like
1065 void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1066                                                MachineBasicBlock *TBB,
1067                                                MachineBasicBlock *FBB,
1068                                                MachineBasicBlock *CurBB,
1069                                                unsigned Opc) {
1070   // If this node is not part of the or/and tree, emit it as a branch.
1071   Instruction *BOp = dyn_cast<Instruction>(Cond);
1072   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1073       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1074       BOp->getParent() != CurBB->getBasicBlock() ||
1075       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1076       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1077     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1078     return;
1079   }
1080 
1081   //  Create TmpBB after CurBB.
1082   MachineFunction::iterator BBI = CurBB;
1083   MachineFunction &MF = DAG.getMachineFunction();
1084   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1085   CurBB->getParent()->insert(++BBI, TmpBB);
1086 
1087   if (Opc == Instruction::Or) {
1088     // Codegen X | Y as:
1089     //   jmp_if_X TBB
1090     //   jmp TmpBB
1091     // TmpBB:
1092     //   jmp_if_Y TBB
1093     //   jmp FBB
1094     //
1095 
1096     // Emit the LHS condition.
1097     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1098 
1099     // Emit the RHS condition into TmpBB.
1100     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1101   } else {
1102     assert(Opc == Instruction::And && "Unknown merge op!");
1103     // Codegen X & Y as:
1104     //   jmp_if_X TmpBB
1105     //   jmp FBB
1106     // TmpBB:
1107     //   jmp_if_Y TBB
1108     //   jmp FBB
1109     //
1110     //  This requires creation of TmpBB after CurBB.
1111 
1112     // Emit the LHS condition.
1113     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1114 
1115     // Emit the RHS condition into TmpBB.
1116     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1117   }
1118 }
1119 
1120 /// If the set of cases should be emitted as a series of branches, return true.
1121 /// If we should emit this as a bunch of and/or'd together conditions, return
1122 /// false.
1123 bool
1124 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1125   if (Cases.size() != 2) return true;
1126 
1127   // If this is two comparisons of the same values or'd or and'd together, they
1128   // will get folded into a single comparison, so don't emit two blocks.
1129   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1130        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1131       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1132        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1133     return false;
1134   }
1135 
1136   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1137   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1138   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1139       Cases[0].CC == Cases[1].CC &&
1140       isa<Constant>(Cases[0].CmpRHS) &&
1141       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1142     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1143       return false;
1144     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1145       return false;
1146   }
1147 
1148   return true;
1149 }
1150 
1151 void SelectionDAGBuilder::visitBr(BranchInst &I) {
1152   // Update machine-CFG edges.
1153   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1154 
1155   // Figure out which block is immediately after the current one.
1156   MachineBasicBlock *NextBlock = 0;
1157   MachineFunction::iterator BBI = CurMBB;
1158   if (++BBI != FuncInfo.MF->end())
1159     NextBlock = BBI;
1160 
1161   if (I.isUnconditional()) {
1162     // Update machine-CFG edges.
1163     CurMBB->addSuccessor(Succ0MBB);
1164 
1165     // If this is not a fall-through branch, emit the branch.
1166     if (Succ0MBB != NextBlock)
1167       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1168                               MVT::Other, getControlRoot(),
1169                               DAG.getBasicBlock(Succ0MBB)));
1170 
1171     return;
1172   }
1173 
1174   // If this condition is one of the special cases we handle, do special stuff
1175   // now.
1176   Value *CondVal = I.getCondition();
1177   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1178 
1179   // If this is a series of conditions that are or'd or and'd together, emit
1180   // this as a sequence of branches instead of setcc's with and/or operations.
1181   // For example, instead of something like:
1182   //     cmp A, B
1183   //     C = seteq
1184   //     cmp D, E
1185   //     F = setle
1186   //     or C, F
1187   //     jnz foo
1188   // Emit:
1189   //     cmp A, B
1190   //     je foo
1191   //     cmp D, E
1192   //     jle foo
1193   //
1194   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1195     if (BOp->hasOneUse() &&
1196         (BOp->getOpcode() == Instruction::And ||
1197          BOp->getOpcode() == Instruction::Or)) {
1198       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1199       // If the compares in later blocks need to use values not currently
1200       // exported from this block, export them now.  This block should always
1201       // be the first entry.
1202       assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1203 
1204       // Allow some cases to be rejected.
1205       if (ShouldEmitAsBranches(SwitchCases)) {
1206         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1207           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1208           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1209         }
1210 
1211         // Emit the branch for this block.
1212         visitSwitchCase(SwitchCases[0]);
1213         SwitchCases.erase(SwitchCases.begin());
1214         return;
1215       }
1216 
1217       // Okay, we decided not to do this, remove any inserted MBB's and clear
1218       // SwitchCases.
1219       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1220         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1221 
1222       SwitchCases.clear();
1223     }
1224   }
1225 
1226   // Create a CaseBlock record representing this branch.
1227   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1228                NULL, Succ0MBB, Succ1MBB, CurMBB);
1229 
1230   // Use visitSwitchCase to actually insert the fast branch sequence for this
1231   // cond branch.
1232   visitSwitchCase(CB);
1233 }
1234 
1235 /// visitSwitchCase - Emits the necessary code to represent a single node in
1236 /// the binary search tree resulting from lowering a switch instruction.
1237 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1238   SDValue Cond;
1239   SDValue CondLHS = getValue(CB.CmpLHS);
1240   DebugLoc dl = getCurDebugLoc();
1241 
1242   // Build the setcc now.
1243   if (CB.CmpMHS == NULL) {
1244     // Fold "(X == true)" to X and "(X == false)" to !X to
1245     // handle common cases produced by branch lowering.
1246     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1247         CB.CC == ISD::SETEQ)
1248       Cond = CondLHS;
1249     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1250              CB.CC == ISD::SETEQ) {
1251       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1252       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1253     } else
1254       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1255   } else {
1256     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1257 
1258     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1259     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1260 
1261     SDValue CmpOp = getValue(CB.CmpMHS);
1262     EVT VT = CmpOp.getValueType();
1263 
1264     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1265       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1266                           ISD::SETLE);
1267     } else {
1268       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1269                                 VT, CmpOp, DAG.getConstant(Low, VT));
1270       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1271                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1272     }
1273   }
1274 
1275   // Update successor info
1276   CurMBB->addSuccessor(CB.TrueBB);
1277   CurMBB->addSuccessor(CB.FalseBB);
1278 
1279   // Set NextBlock to be the MBB immediately after the current one, if any.
1280   // This is used to avoid emitting unnecessary branches to the next block.
1281   MachineBasicBlock *NextBlock = 0;
1282   MachineFunction::iterator BBI = CurMBB;
1283   if (++BBI != FuncInfo.MF->end())
1284     NextBlock = BBI;
1285 
1286   // If the lhs block is the next block, invert the condition so that we can
1287   // fall through to the lhs instead of the rhs block.
1288   if (CB.TrueBB == NextBlock) {
1289     std::swap(CB.TrueBB, CB.FalseBB);
1290     SDValue True = DAG.getConstant(1, Cond.getValueType());
1291     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1292   }
1293 
1294   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1295                                MVT::Other, getControlRoot(), Cond,
1296                                DAG.getBasicBlock(CB.TrueBB));
1297 
1298   // If the branch was constant folded, fix up the CFG.
1299   if (BrCond.getOpcode() == ISD::BR) {
1300     CurMBB->removeSuccessor(CB.FalseBB);
1301   } else {
1302     // Otherwise, go ahead and insert the false branch.
1303     if (BrCond == getControlRoot())
1304       CurMBB->removeSuccessor(CB.TrueBB);
1305 
1306     if (CB.FalseBB != NextBlock)
1307       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1308                            DAG.getBasicBlock(CB.FalseBB));
1309   }
1310 
1311   DAG.setRoot(BrCond);
1312 }
1313 
1314 /// visitJumpTable - Emit JumpTable node in the current MBB
1315 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1316   // Emit the code for the jump table
1317   assert(JT.Reg != -1U && "Should lower JT Header first!");
1318   EVT PTy = TLI.getPointerTy();
1319   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1320                                      JT.Reg, PTy);
1321   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1322   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1323                                     MVT::Other, Index.getValue(1),
1324                                     Table, Index);
1325   DAG.setRoot(BrJumpTable);
1326 }
1327 
1328 /// visitJumpTableHeader - This function emits necessary code to produce index
1329 /// in the JumpTable from switch case.
1330 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1331                                                JumpTableHeader &JTH) {
1332   // Subtract the lowest switch case value from the value being switched on and
1333   // conditional branch to default mbb if the result is greater than the
1334   // difference between smallest and largest cases.
1335   SDValue SwitchOp = getValue(JTH.SValue);
1336   EVT VT = SwitchOp.getValueType();
1337   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1338                             DAG.getConstant(JTH.First, VT));
1339 
1340   // The SDNode we just created, which holds the value being switched on minus
1341   // the the smallest case value, needs to be copied to a virtual register so it
1342   // can be used as an index into the jump table in a subsequent basic block.
1343   // This value may be smaller or larger than the target's pointer type, and
1344   // therefore require extension or truncating.
1345   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1346 
1347   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1348   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1349                                     JumpTableReg, SwitchOp);
1350   JT.Reg = JumpTableReg;
1351 
1352   // Emit the range check for the jump table, and branch to the default block
1353   // for the switch statement if the value being switched on exceeds the largest
1354   // case in the switch.
1355   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1356                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1357                              DAG.getConstant(JTH.Last-JTH.First,VT),
1358                              ISD::SETUGT);
1359 
1360   // Set NextBlock to be the MBB immediately after the current one, if any.
1361   // This is used to avoid emitting unnecessary branches to the next block.
1362   MachineBasicBlock *NextBlock = 0;
1363   MachineFunction::iterator BBI = CurMBB;
1364 
1365   if (++BBI != FuncInfo.MF->end())
1366     NextBlock = BBI;
1367 
1368   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1369                                MVT::Other, CopyTo, CMP,
1370                                DAG.getBasicBlock(JT.Default));
1371 
1372   if (JT.MBB != NextBlock)
1373     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1374                          DAG.getBasicBlock(JT.MBB));
1375 
1376   DAG.setRoot(BrCond);
1377 }
1378 
1379 /// visitBitTestHeader - This function emits necessary code to produce value
1380 /// suitable for "bit tests"
1381 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1382   // Subtract the minimum value
1383   SDValue SwitchOp = getValue(B.SValue);
1384   EVT VT = SwitchOp.getValueType();
1385   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1386                             DAG.getConstant(B.First, VT));
1387 
1388   // Check range
1389   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1390                                   TLI.getSetCCResultType(Sub.getValueType()),
1391                                   Sub, DAG.getConstant(B.Range, VT),
1392                                   ISD::SETUGT);
1393 
1394   SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1395                                        TLI.getPointerTy());
1396 
1397   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1398   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1399                                     B.Reg, ShiftOp);
1400 
1401   // Set NextBlock to be the MBB immediately after the current one, if any.
1402   // This is used to avoid emitting unnecessary branches to the next block.
1403   MachineBasicBlock *NextBlock = 0;
1404   MachineFunction::iterator BBI = CurMBB;
1405   if (++BBI != FuncInfo.MF->end())
1406     NextBlock = BBI;
1407 
1408   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1409 
1410   CurMBB->addSuccessor(B.Default);
1411   CurMBB->addSuccessor(MBB);
1412 
1413   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1414                                 MVT::Other, CopyTo, RangeCmp,
1415                                 DAG.getBasicBlock(B.Default));
1416 
1417   if (MBB != NextBlock)
1418     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1419                           DAG.getBasicBlock(MBB));
1420 
1421   DAG.setRoot(BrRange);
1422 }
1423 
1424 /// visitBitTestCase - this function produces one "bit test"
1425 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1426                                            unsigned Reg,
1427                                            BitTestCase &B) {
1428   // Make desired shift
1429   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1430                                        TLI.getPointerTy());
1431   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1432                                   TLI.getPointerTy(),
1433                                   DAG.getConstant(1, TLI.getPointerTy()),
1434                                   ShiftOp);
1435 
1436   // Emit bit tests and jumps
1437   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1438                               TLI.getPointerTy(), SwitchVal,
1439                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1440   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1441                                 TLI.getSetCCResultType(AndOp.getValueType()),
1442                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1443                                 ISD::SETNE);
1444 
1445   CurMBB->addSuccessor(B.TargetBB);
1446   CurMBB->addSuccessor(NextMBB);
1447 
1448   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1449                               MVT::Other, getControlRoot(),
1450                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1451 
1452   // Set NextBlock to be the MBB immediately after the current one, if any.
1453   // This is used to avoid emitting unnecessary branches to the next block.
1454   MachineBasicBlock *NextBlock = 0;
1455   MachineFunction::iterator BBI = CurMBB;
1456   if (++BBI != FuncInfo.MF->end())
1457     NextBlock = BBI;
1458 
1459   if (NextMBB != NextBlock)
1460     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1461                         DAG.getBasicBlock(NextMBB));
1462 
1463   DAG.setRoot(BrAnd);
1464 }
1465 
1466 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1467   // Retrieve successors.
1468   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1469   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1470 
1471   const Value *Callee(I.getCalledValue());
1472   if (isa<InlineAsm>(Callee))
1473     visitInlineAsm(&I);
1474   else
1475     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1476 
1477   // If the value of the invoke is used outside of its defining block, make it
1478   // available as a virtual register.
1479   CopyToExportRegsIfNeeded(&I);
1480 
1481   // Update successor info
1482   CurMBB->addSuccessor(Return);
1483   CurMBB->addSuccessor(LandingPad);
1484 
1485   // Drop into normal successor.
1486   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1487                           MVT::Other, getControlRoot(),
1488                           DAG.getBasicBlock(Return)));
1489 }
1490 
1491 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1492 }
1493 
1494 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1495 /// small case ranges).
1496 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1497                                                  CaseRecVector& WorkList,
1498                                                  Value* SV,
1499                                                  MachineBasicBlock* Default) {
1500   Case& BackCase  = *(CR.Range.second-1);
1501 
1502   // Size is the number of Cases represented by this range.
1503   size_t Size = CR.Range.second - CR.Range.first;
1504   if (Size > 3)
1505     return false;
1506 
1507   // Get the MachineFunction which holds the current MBB.  This is used when
1508   // inserting any additional MBBs necessary to represent the switch.
1509   MachineFunction *CurMF = FuncInfo.MF;
1510 
1511   // Figure out which block is immediately after the current one.
1512   MachineBasicBlock *NextBlock = 0;
1513   MachineFunction::iterator BBI = CR.CaseBB;
1514 
1515   if (++BBI != FuncInfo.MF->end())
1516     NextBlock = BBI;
1517 
1518   // TODO: If any two of the cases has the same destination, and if one value
1519   // is the same as the other, but has one bit unset that the other has set,
1520   // use bit manipulation to do two compares at once.  For example:
1521   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1522 
1523   // Rearrange the case blocks so that the last one falls through if possible.
1524   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1525     // The last case block won't fall through into 'NextBlock' if we emit the
1526     // branches in this order.  See if rearranging a case value would help.
1527     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1528       if (I->BB == NextBlock) {
1529         std::swap(*I, BackCase);
1530         break;
1531       }
1532     }
1533   }
1534 
1535   // Create a CaseBlock record representing a conditional branch to
1536   // the Case's target mbb if the value being switched on SV is equal
1537   // to C.
1538   MachineBasicBlock *CurBlock = CR.CaseBB;
1539   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1540     MachineBasicBlock *FallThrough;
1541     if (I != E-1) {
1542       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1543       CurMF->insert(BBI, FallThrough);
1544 
1545       // Put SV in a virtual register to make it available from the new blocks.
1546       ExportFromCurrentBlock(SV);
1547     } else {
1548       // If the last case doesn't match, go to the default block.
1549       FallThrough = Default;
1550     }
1551 
1552     Value *RHS, *LHS, *MHS;
1553     ISD::CondCode CC;
1554     if (I->High == I->Low) {
1555       // This is just small small case range :) containing exactly 1 case
1556       CC = ISD::SETEQ;
1557       LHS = SV; RHS = I->High; MHS = NULL;
1558     } else {
1559       CC = ISD::SETLE;
1560       LHS = I->Low; MHS = SV; RHS = I->High;
1561     }
1562     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1563 
1564     // If emitting the first comparison, just call visitSwitchCase to emit the
1565     // code into the current block.  Otherwise, push the CaseBlock onto the
1566     // vector to be later processed by SDISel, and insert the node's MBB
1567     // before the next MBB.
1568     if (CurBlock == CurMBB)
1569       visitSwitchCase(CB);
1570     else
1571       SwitchCases.push_back(CB);
1572 
1573     CurBlock = FallThrough;
1574   }
1575 
1576   return true;
1577 }
1578 
1579 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1580   return !DisableJumpTables &&
1581           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1582            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1583 }
1584 
1585 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1586   APInt LastExt(Last), FirstExt(First);
1587   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1588   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1589   return (LastExt - FirstExt + 1ULL);
1590 }
1591 
1592 /// handleJTSwitchCase - Emit jumptable for current switch case range
1593 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1594                                              CaseRecVector& WorkList,
1595                                              Value* SV,
1596                                              MachineBasicBlock* Default) {
1597   Case& FrontCase = *CR.Range.first;
1598   Case& BackCase  = *(CR.Range.second-1);
1599 
1600   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1601   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1602 
1603   APInt TSize(First.getBitWidth(), 0);
1604   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1605        I!=E; ++I)
1606     TSize += I->size();
1607 
1608   if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1609     return false;
1610 
1611   APInt Range = ComputeRange(First, Last);
1612   double Density = TSize.roundToDouble() / Range.roundToDouble();
1613   if (Density < 0.4)
1614     return false;
1615 
1616   DEBUG(dbgs() << "Lowering jump table\n"
1617                << "First entry: " << First << ". Last entry: " << Last << '\n'
1618                << "Range: " << Range
1619                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1620 
1621   // Get the MachineFunction which holds the current MBB.  This is used when
1622   // inserting any additional MBBs necessary to represent the switch.
1623   MachineFunction *CurMF = FuncInfo.MF;
1624 
1625   // Figure out which block is immediately after the current one.
1626   MachineFunction::iterator BBI = CR.CaseBB;
1627   ++BBI;
1628 
1629   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1630 
1631   // Create a new basic block to hold the code for loading the address
1632   // of the jump table, and jumping to it.  Update successor information;
1633   // we will either branch to the default case for the switch, or the jump
1634   // table.
1635   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1636   CurMF->insert(BBI, JumpTableBB);
1637   CR.CaseBB->addSuccessor(Default);
1638   CR.CaseBB->addSuccessor(JumpTableBB);
1639 
1640   // Build a vector of destination BBs, corresponding to each target
1641   // of the jump table. If the value of the jump table slot corresponds to
1642   // a case statement, push the case's BB onto the vector, otherwise, push
1643   // the default BB.
1644   std::vector<MachineBasicBlock*> DestBBs;
1645   APInt TEI = First;
1646   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1647     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1648     const APInt &High = cast<ConstantInt>(I->High)->getValue();
1649 
1650     if (Low.sle(TEI) && TEI.sle(High)) {
1651       DestBBs.push_back(I->BB);
1652       if (TEI==High)
1653         ++I;
1654     } else {
1655       DestBBs.push_back(Default);
1656     }
1657   }
1658 
1659   // Update successor info. Add one edge to each unique successor.
1660   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1661   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1662          E = DestBBs.end(); I != E; ++I) {
1663     if (!SuccsHandled[(*I)->getNumber()]) {
1664       SuccsHandled[(*I)->getNumber()] = true;
1665       JumpTableBB->addSuccessor(*I);
1666     }
1667   }
1668 
1669   // Create a jump table index for this jump table, or return an existing
1670   // one.
1671   unsigned JTEncoding = TLI.getJumpTableEncoding();
1672   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1673                        ->getJumpTableIndex(DestBBs);
1674 
1675   // Set the jump table information so that we can codegen it as a second
1676   // MachineBasicBlock
1677   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1678   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1679   if (CR.CaseBB == CurMBB)
1680     visitJumpTableHeader(JT, JTH);
1681 
1682   JTCases.push_back(JumpTableBlock(JTH, JT));
1683 
1684   return true;
1685 }
1686 
1687 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1688 /// 2 subtrees.
1689 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1690                                                   CaseRecVector& WorkList,
1691                                                   Value* SV,
1692                                                   MachineBasicBlock* Default) {
1693   // Get the MachineFunction which holds the current MBB.  This is used when
1694   // inserting any additional MBBs necessary to represent the switch.
1695   MachineFunction *CurMF = FuncInfo.MF;
1696 
1697   // Figure out which block is immediately after the current one.
1698   MachineFunction::iterator BBI = CR.CaseBB;
1699   ++BBI;
1700 
1701   Case& FrontCase = *CR.Range.first;
1702   Case& BackCase  = *(CR.Range.second-1);
1703   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1704 
1705   // Size is the number of Cases represented by this range.
1706   unsigned Size = CR.Range.second - CR.Range.first;
1707 
1708   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1709   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1710   double FMetric = 0;
1711   CaseItr Pivot = CR.Range.first + Size/2;
1712 
1713   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1714   // (heuristically) allow us to emit JumpTable's later.
1715   APInt TSize(First.getBitWidth(), 0);
1716   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1717        I!=E; ++I)
1718     TSize += I->size();
1719 
1720   APInt LSize = FrontCase.size();
1721   APInt RSize = TSize-LSize;
1722   DEBUG(dbgs() << "Selecting best pivot: \n"
1723                << "First: " << First << ", Last: " << Last <<'\n'
1724                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1725   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1726        J!=E; ++I, ++J) {
1727     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1728     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1729     APInt Range = ComputeRange(LEnd, RBegin);
1730     assert((Range - 2ULL).isNonNegative() &&
1731            "Invalid case distance");
1732     double LDensity = (double)LSize.roundToDouble() /
1733                            (LEnd - First + 1ULL).roundToDouble();
1734     double RDensity = (double)RSize.roundToDouble() /
1735                            (Last - RBegin + 1ULL).roundToDouble();
1736     double Metric = Range.logBase2()*(LDensity+RDensity);
1737     // Should always split in some non-trivial place
1738     DEBUG(dbgs() <<"=>Step\n"
1739                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1740                  << "LDensity: " << LDensity
1741                  << ", RDensity: " << RDensity << '\n'
1742                  << "Metric: " << Metric << '\n');
1743     if (FMetric < Metric) {
1744       Pivot = J;
1745       FMetric = Metric;
1746       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1747     }
1748 
1749     LSize += J->size();
1750     RSize -= J->size();
1751   }
1752   if (areJTsAllowed(TLI)) {
1753     // If our case is dense we *really* should handle it earlier!
1754     assert((FMetric > 0) && "Should handle dense range earlier!");
1755   } else {
1756     Pivot = CR.Range.first + Size/2;
1757   }
1758 
1759   CaseRange LHSR(CR.Range.first, Pivot);
1760   CaseRange RHSR(Pivot, CR.Range.second);
1761   Constant *C = Pivot->Low;
1762   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1763 
1764   // We know that we branch to the LHS if the Value being switched on is
1765   // less than the Pivot value, C.  We use this to optimize our binary
1766   // tree a bit, by recognizing that if SV is greater than or equal to the
1767   // LHS's Case Value, and that Case Value is exactly one less than the
1768   // Pivot's Value, then we can branch directly to the LHS's Target,
1769   // rather than creating a leaf node for it.
1770   if ((LHSR.second - LHSR.first) == 1 &&
1771       LHSR.first->High == CR.GE &&
1772       cast<ConstantInt>(C)->getValue() ==
1773       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1774     TrueBB = LHSR.first->BB;
1775   } else {
1776     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1777     CurMF->insert(BBI, TrueBB);
1778     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1779 
1780     // Put SV in a virtual register to make it available from the new blocks.
1781     ExportFromCurrentBlock(SV);
1782   }
1783 
1784   // Similar to the optimization above, if the Value being switched on is
1785   // known to be less than the Constant CR.LT, and the current Case Value
1786   // is CR.LT - 1, then we can branch directly to the target block for
1787   // the current Case Value, rather than emitting a RHS leaf node for it.
1788   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1789       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1790       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1791     FalseBB = RHSR.first->BB;
1792   } else {
1793     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1794     CurMF->insert(BBI, FalseBB);
1795     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1796 
1797     // Put SV in a virtual register to make it available from the new blocks.
1798     ExportFromCurrentBlock(SV);
1799   }
1800 
1801   // Create a CaseBlock record representing a conditional branch to
1802   // the LHS node if the value being switched on SV is less than C.
1803   // Otherwise, branch to LHS.
1804   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1805 
1806   if (CR.CaseBB == CurMBB)
1807     visitSwitchCase(CB);
1808   else
1809     SwitchCases.push_back(CB);
1810 
1811   return true;
1812 }
1813 
1814 /// handleBitTestsSwitchCase - if current case range has few destination and
1815 /// range span less, than machine word bitwidth, encode case range into series
1816 /// of masks and emit bit tests with these masks.
1817 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1818                                                    CaseRecVector& WorkList,
1819                                                    Value* SV,
1820                                                    MachineBasicBlock* Default){
1821   EVT PTy = TLI.getPointerTy();
1822   unsigned IntPtrBits = PTy.getSizeInBits();
1823 
1824   Case& FrontCase = *CR.Range.first;
1825   Case& BackCase  = *(CR.Range.second-1);
1826 
1827   // Get the MachineFunction which holds the current MBB.  This is used when
1828   // inserting any additional MBBs necessary to represent the switch.
1829   MachineFunction *CurMF = FuncInfo.MF;
1830 
1831   // If target does not have legal shift left, do not emit bit tests at all.
1832   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1833     return false;
1834 
1835   size_t numCmps = 0;
1836   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1837        I!=E; ++I) {
1838     // Single case counts one, case range - two.
1839     numCmps += (I->Low == I->High ? 1 : 2);
1840   }
1841 
1842   // Count unique destinations
1843   SmallSet<MachineBasicBlock*, 4> Dests;
1844   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1845     Dests.insert(I->BB);
1846     if (Dests.size() > 3)
1847       // Don't bother the code below, if there are too much unique destinations
1848       return false;
1849   }
1850   DEBUG(dbgs() << "Total number of unique destinations: "
1851         << Dests.size() << '\n'
1852         << "Total number of comparisons: " << numCmps << '\n');
1853 
1854   // Compute span of values.
1855   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1856   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1857   APInt cmpRange = maxValue - minValue;
1858 
1859   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1860                << "Low bound: " << minValue << '\n'
1861                << "High bound: " << maxValue << '\n');
1862 
1863   if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1864       (!(Dests.size() == 1 && numCmps >= 3) &&
1865        !(Dests.size() == 2 && numCmps >= 5) &&
1866        !(Dests.size() >= 3 && numCmps >= 6)))
1867     return false;
1868 
1869   DEBUG(dbgs() << "Emitting bit tests\n");
1870   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1871 
1872   // Optimize the case where all the case values fit in a
1873   // word without having to subtract minValue. In this case,
1874   // we can optimize away the subtraction.
1875   if (minValue.isNonNegative() &&
1876       maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1877     cmpRange = maxValue;
1878   } else {
1879     lowBound = minValue;
1880   }
1881 
1882   CaseBitsVector CasesBits;
1883   unsigned i, count = 0;
1884 
1885   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1886     MachineBasicBlock* Dest = I->BB;
1887     for (i = 0; i < count; ++i)
1888       if (Dest == CasesBits[i].BB)
1889         break;
1890 
1891     if (i == count) {
1892       assert((count < 3) && "Too much destinations to test!");
1893       CasesBits.push_back(CaseBits(0, Dest, 0));
1894       count++;
1895     }
1896 
1897     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1898     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1899 
1900     uint64_t lo = (lowValue - lowBound).getZExtValue();
1901     uint64_t hi = (highValue - lowBound).getZExtValue();
1902 
1903     for (uint64_t j = lo; j <= hi; j++) {
1904       CasesBits[i].Mask |=  1ULL << j;
1905       CasesBits[i].Bits++;
1906     }
1907 
1908   }
1909   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1910 
1911   BitTestInfo BTC;
1912 
1913   // Figure out which block is immediately after the current one.
1914   MachineFunction::iterator BBI = CR.CaseBB;
1915   ++BBI;
1916 
1917   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1918 
1919   DEBUG(dbgs() << "Cases:\n");
1920   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1921     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1922                  << ", Bits: " << CasesBits[i].Bits
1923                  << ", BB: " << CasesBits[i].BB << '\n');
1924 
1925     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1926     CurMF->insert(BBI, CaseBB);
1927     BTC.push_back(BitTestCase(CasesBits[i].Mask,
1928                               CaseBB,
1929                               CasesBits[i].BB));
1930 
1931     // Put SV in a virtual register to make it available from the new blocks.
1932     ExportFromCurrentBlock(SV);
1933   }
1934 
1935   BitTestBlock BTB(lowBound, cmpRange, SV,
1936                    -1U, (CR.CaseBB == CurMBB),
1937                    CR.CaseBB, Default, BTC);
1938 
1939   if (CR.CaseBB == CurMBB)
1940     visitBitTestHeader(BTB);
1941 
1942   BitTestCases.push_back(BTB);
1943 
1944   return true;
1945 }
1946 
1947 /// Clusterify - Transform simple list of Cases into list of CaseRange's
1948 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1949                                        const SwitchInst& SI) {
1950   size_t numCmps = 0;
1951 
1952   // Start with "simple" cases
1953   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1954     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1955     Cases.push_back(Case(SI.getSuccessorValue(i),
1956                          SI.getSuccessorValue(i),
1957                          SMBB));
1958   }
1959   std::sort(Cases.begin(), Cases.end(), CaseCmp());
1960 
1961   // Merge case into clusters
1962   if (Cases.size() >= 2)
1963     // Must recompute end() each iteration because it may be
1964     // invalidated by erase if we hold on to it
1965     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1966       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1967       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1968       MachineBasicBlock* nextBB = J->BB;
1969       MachineBasicBlock* currentBB = I->BB;
1970 
1971       // If the two neighboring cases go to the same destination, merge them
1972       // into a single case.
1973       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1974         I->High = J->High;
1975         J = Cases.erase(J);
1976       } else {
1977         I = J++;
1978       }
1979     }
1980 
1981   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1982     if (I->Low != I->High)
1983       // A range counts double, since it requires two compares.
1984       ++numCmps;
1985   }
1986 
1987   return numCmps;
1988 }
1989 
1990 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
1991   // Figure out which block is immediately after the current one.
1992   MachineBasicBlock *NextBlock = 0;
1993   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1994 
1995   // If there is only the default destination, branch to it if it is not the
1996   // next basic block.  Otherwise, just fall through.
1997   if (SI.getNumOperands() == 2) {
1998     // Update machine-CFG edges.
1999 
2000     // If this is not a fall-through branch, emit the branch.
2001     CurMBB->addSuccessor(Default);
2002     if (Default != NextBlock)
2003       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2004                               MVT::Other, getControlRoot(),
2005                               DAG.getBasicBlock(Default)));
2006 
2007     return;
2008   }
2009 
2010   // If there are any non-default case statements, create a vector of Cases
2011   // representing each one, and sort the vector so that we can efficiently
2012   // create a binary search tree from them.
2013   CaseVector Cases;
2014   size_t numCmps = Clusterify(Cases, SI);
2015   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2016                << ". Total compares: " << numCmps << '\n');
2017   numCmps = 0;
2018 
2019   // Get the Value to be switched on and default basic blocks, which will be
2020   // inserted into CaseBlock records, representing basic blocks in the binary
2021   // search tree.
2022   Value *SV = SI.getOperand(0);
2023 
2024   // Push the initial CaseRec onto the worklist
2025   CaseRecVector WorkList;
2026   WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2027 
2028   while (!WorkList.empty()) {
2029     // Grab a record representing a case range to process off the worklist
2030     CaseRec CR = WorkList.back();
2031     WorkList.pop_back();
2032 
2033     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2034       continue;
2035 
2036     // If the range has few cases (two or less) emit a series of specific
2037     // tests.
2038     if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2039       continue;
2040 
2041     // If the switch has more than 5 blocks, and at least 40% dense, and the
2042     // target supports indirect branches, then emit a jump table rather than
2043     // lowering the switch to a binary tree of conditional branches.
2044     if (handleJTSwitchCase(CR, WorkList, SV, Default))
2045       continue;
2046 
2047     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2048     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2049     handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2050   }
2051 }
2052 
2053 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2054   // Update machine-CFG edges.
2055   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2056     CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
2057 
2058   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2059                           MVT::Other, getControlRoot(),
2060                           getValue(I.getAddress())));
2061 }
2062 
2063 void SelectionDAGBuilder::visitFSub(User &I) {
2064   // -0.0 - X --> fneg
2065   const Type *Ty = I.getType();
2066   if (isa<VectorType>(Ty)) {
2067     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2068       const VectorType *DestTy = cast<VectorType>(I.getType());
2069       const Type *ElTy = DestTy->getElementType();
2070       unsigned VL = DestTy->getNumElements();
2071       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2072       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2073       if (CV == CNZ) {
2074         SDValue Op2 = getValue(I.getOperand(1));
2075         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2076                                  Op2.getValueType(), Op2));
2077         return;
2078       }
2079     }
2080   }
2081 
2082   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2083     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2084       SDValue Op2 = getValue(I.getOperand(1));
2085       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2086                                Op2.getValueType(), Op2));
2087       return;
2088     }
2089 
2090   visitBinary(I, ISD::FSUB);
2091 }
2092 
2093 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2094   SDValue Op1 = getValue(I.getOperand(0));
2095   SDValue Op2 = getValue(I.getOperand(1));
2096   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2097                            Op1.getValueType(), Op1, Op2));
2098 }
2099 
2100 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2101   SDValue Op1 = getValue(I.getOperand(0));
2102   SDValue Op2 = getValue(I.getOperand(1));
2103   if (!isa<VectorType>(I.getType()) &&
2104       Op2.getValueType() != TLI.getShiftAmountTy()) {
2105     // If the operand is smaller than the shift count type, promote it.
2106     EVT PTy = TLI.getPointerTy();
2107     EVT STy = TLI.getShiftAmountTy();
2108     if (STy.bitsGT(Op2.getValueType()))
2109       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2110                         TLI.getShiftAmountTy(), Op2);
2111     // If the operand is larger than the shift count type but the shift
2112     // count type has enough bits to represent any shift value, truncate
2113     // it now. This is a common case and it exposes the truncate to
2114     // optimization early.
2115     else if (STy.getSizeInBits() >=
2116              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2117       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2118                         TLI.getShiftAmountTy(), Op2);
2119     // Otherwise we'll need to temporarily settle for some other
2120     // convenient type; type legalization will make adjustments as
2121     // needed.
2122     else if (PTy.bitsLT(Op2.getValueType()))
2123       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2124                         TLI.getPointerTy(), Op2);
2125     else if (PTy.bitsGT(Op2.getValueType()))
2126       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2127                         TLI.getPointerTy(), Op2);
2128   }
2129 
2130   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2131                            Op1.getValueType(), Op1, Op2));
2132 }
2133 
2134 void SelectionDAGBuilder::visitICmp(User &I) {
2135   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2136   if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2137     predicate = IC->getPredicate();
2138   else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2139     predicate = ICmpInst::Predicate(IC->getPredicate());
2140   SDValue Op1 = getValue(I.getOperand(0));
2141   SDValue Op2 = getValue(I.getOperand(1));
2142   ISD::CondCode Opcode = getICmpCondCode(predicate);
2143 
2144   EVT DestVT = TLI.getValueType(I.getType());
2145   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2146 }
2147 
2148 void SelectionDAGBuilder::visitFCmp(User &I) {
2149   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2150   if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2151     predicate = FC->getPredicate();
2152   else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2153     predicate = FCmpInst::Predicate(FC->getPredicate());
2154   SDValue Op1 = getValue(I.getOperand(0));
2155   SDValue Op2 = getValue(I.getOperand(1));
2156   ISD::CondCode Condition = getFCmpCondCode(predicate);
2157   EVT DestVT = TLI.getValueType(I.getType());
2158   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2159 }
2160 
2161 void SelectionDAGBuilder::visitSelect(User &I) {
2162   SmallVector<EVT, 4> ValueVTs;
2163   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2164   unsigned NumValues = ValueVTs.size();
2165   if (NumValues == 0) return;
2166 
2167   SmallVector<SDValue, 4> Values(NumValues);
2168   SDValue Cond     = getValue(I.getOperand(0));
2169   SDValue TrueVal  = getValue(I.getOperand(1));
2170   SDValue FalseVal = getValue(I.getOperand(2));
2171 
2172   for (unsigned i = 0; i != NumValues; ++i)
2173     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2174                             TrueVal.getNode()->getValueType(i), Cond,
2175                             SDValue(TrueVal.getNode(),
2176                                     TrueVal.getResNo() + i),
2177                             SDValue(FalseVal.getNode(),
2178                                     FalseVal.getResNo() + i));
2179 
2180   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2181                            DAG.getVTList(&ValueVTs[0], NumValues),
2182                            &Values[0], NumValues));
2183 }
2184 
2185 void SelectionDAGBuilder::visitTrunc(User &I) {
2186   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2187   SDValue N = getValue(I.getOperand(0));
2188   EVT DestVT = TLI.getValueType(I.getType());
2189   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2190 }
2191 
2192 void SelectionDAGBuilder::visitZExt(User &I) {
2193   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2194   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2195   SDValue N = getValue(I.getOperand(0));
2196   EVT DestVT = TLI.getValueType(I.getType());
2197   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2198 }
2199 
2200 void SelectionDAGBuilder::visitSExt(User &I) {
2201   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2202   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2203   SDValue N = getValue(I.getOperand(0));
2204   EVT DestVT = TLI.getValueType(I.getType());
2205   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2206 }
2207 
2208 void SelectionDAGBuilder::visitFPTrunc(User &I) {
2209   // FPTrunc is never a no-op cast, no need to check
2210   SDValue N = getValue(I.getOperand(0));
2211   EVT DestVT = TLI.getValueType(I.getType());
2212   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2213                            DestVT, N, DAG.getIntPtrConstant(0)));
2214 }
2215 
2216 void SelectionDAGBuilder::visitFPExt(User &I){
2217   // FPTrunc is never a no-op cast, no need to check
2218   SDValue N = getValue(I.getOperand(0));
2219   EVT DestVT = TLI.getValueType(I.getType());
2220   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2221 }
2222 
2223 void SelectionDAGBuilder::visitFPToUI(User &I) {
2224   // FPToUI is never a no-op cast, no need to check
2225   SDValue N = getValue(I.getOperand(0));
2226   EVT DestVT = TLI.getValueType(I.getType());
2227   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2228 }
2229 
2230 void SelectionDAGBuilder::visitFPToSI(User &I) {
2231   // FPToSI is never a no-op cast, no need to check
2232   SDValue N = getValue(I.getOperand(0));
2233   EVT DestVT = TLI.getValueType(I.getType());
2234   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2235 }
2236 
2237 void SelectionDAGBuilder::visitUIToFP(User &I) {
2238   // UIToFP is never a no-op cast, no need to check
2239   SDValue N = getValue(I.getOperand(0));
2240   EVT DestVT = TLI.getValueType(I.getType());
2241   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2242 }
2243 
2244 void SelectionDAGBuilder::visitSIToFP(User &I){
2245   // SIToFP is never a no-op cast, no need to check
2246   SDValue N = getValue(I.getOperand(0));
2247   EVT DestVT = TLI.getValueType(I.getType());
2248   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2249 }
2250 
2251 void SelectionDAGBuilder::visitPtrToInt(User &I) {
2252   // What to do depends on the size of the integer and the size of the pointer.
2253   // We can either truncate, zero extend, or no-op, accordingly.
2254   SDValue N = getValue(I.getOperand(0));
2255   EVT SrcVT = N.getValueType();
2256   EVT DestVT = TLI.getValueType(I.getType());
2257   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2258 }
2259 
2260 void SelectionDAGBuilder::visitIntToPtr(User &I) {
2261   // What to do depends on the size of the integer and the size of the pointer.
2262   // We can either truncate, zero extend, or no-op, accordingly.
2263   SDValue N = getValue(I.getOperand(0));
2264   EVT SrcVT = N.getValueType();
2265   EVT DestVT = TLI.getValueType(I.getType());
2266   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2267 }
2268 
2269 void SelectionDAGBuilder::visitBitCast(User &I) {
2270   SDValue N = getValue(I.getOperand(0));
2271   EVT DestVT = TLI.getValueType(I.getType());
2272 
2273   // BitCast assures us that source and destination are the same size so this is
2274   // either a BIT_CONVERT or a no-op.
2275   if (DestVT != N.getValueType())
2276     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2277                              DestVT, N)); // convert types.
2278   else
2279     setValue(&I, N);            // noop cast.
2280 }
2281 
2282 void SelectionDAGBuilder::visitInsertElement(User &I) {
2283   SDValue InVec = getValue(I.getOperand(0));
2284   SDValue InVal = getValue(I.getOperand(1));
2285   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2286                               TLI.getPointerTy(),
2287                               getValue(I.getOperand(2)));
2288   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2289                            TLI.getValueType(I.getType()),
2290                            InVec, InVal, InIdx));
2291 }
2292 
2293 void SelectionDAGBuilder::visitExtractElement(User &I) {
2294   SDValue InVec = getValue(I.getOperand(0));
2295   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2296                               TLI.getPointerTy(),
2297                               getValue(I.getOperand(1)));
2298   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2299                            TLI.getValueType(I.getType()), InVec, InIdx));
2300 }
2301 
2302 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2303 // from SIndx and increasing to the element length (undefs are allowed).
2304 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2305   unsigned MaskNumElts = Mask.size();
2306   for (unsigned i = 0; i != MaskNumElts; ++i)
2307     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2308       return false;
2309   return true;
2310 }
2311 
2312 void SelectionDAGBuilder::visitShuffleVector(User &I) {
2313   SmallVector<int, 8> Mask;
2314   SDValue Src1 = getValue(I.getOperand(0));
2315   SDValue Src2 = getValue(I.getOperand(1));
2316 
2317   // Convert the ConstantVector mask operand into an array of ints, with -1
2318   // representing undef values.
2319   SmallVector<Constant*, 8> MaskElts;
2320   cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
2321                                                      MaskElts);
2322   unsigned MaskNumElts = MaskElts.size();
2323   for (unsigned i = 0; i != MaskNumElts; ++i) {
2324     if (isa<UndefValue>(MaskElts[i]))
2325       Mask.push_back(-1);
2326     else
2327       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2328   }
2329 
2330   EVT VT = TLI.getValueType(I.getType());
2331   EVT SrcVT = Src1.getValueType();
2332   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2333 
2334   if (SrcNumElts == MaskNumElts) {
2335     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2336                                       &Mask[0]));
2337     return;
2338   }
2339 
2340   // Normalize the shuffle vector since mask and vector length don't match.
2341   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2342     // Mask is longer than the source vectors and is a multiple of the source
2343     // vectors.  We can use concatenate vector to make the mask and vectors
2344     // lengths match.
2345     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2346       // The shuffle is concatenating two vectors together.
2347       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2348                                VT, Src1, Src2));
2349       return;
2350     }
2351 
2352     // Pad both vectors with undefs to make them the same length as the mask.
2353     unsigned NumConcat = MaskNumElts / SrcNumElts;
2354     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2355     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2356     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2357 
2358     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2359     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2360     MOps1[0] = Src1;
2361     MOps2[0] = Src2;
2362 
2363     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2364                                                   getCurDebugLoc(), VT,
2365                                                   &MOps1[0], NumConcat);
2366     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2367                                                   getCurDebugLoc(), VT,
2368                                                   &MOps2[0], NumConcat);
2369 
2370     // Readjust mask for new input vector length.
2371     SmallVector<int, 8> MappedOps;
2372     for (unsigned i = 0; i != MaskNumElts; ++i) {
2373       int Idx = Mask[i];
2374       if (Idx < (int)SrcNumElts)
2375         MappedOps.push_back(Idx);
2376       else
2377         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2378     }
2379 
2380     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2381                                       &MappedOps[0]));
2382     return;
2383   }
2384 
2385   if (SrcNumElts > MaskNumElts) {
2386     // Analyze the access pattern of the vector to see if we can extract
2387     // two subvectors and do the shuffle. The analysis is done by calculating
2388     // the range of elements the mask access on both vectors.
2389     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2390     int MaxRange[2] = {-1, -1};
2391 
2392     for (unsigned i = 0; i != MaskNumElts; ++i) {
2393       int Idx = Mask[i];
2394       int Input = 0;
2395       if (Idx < 0)
2396         continue;
2397 
2398       if (Idx >= (int)SrcNumElts) {
2399         Input = 1;
2400         Idx -= SrcNumElts;
2401       }
2402       if (Idx > MaxRange[Input])
2403         MaxRange[Input] = Idx;
2404       if (Idx < MinRange[Input])
2405         MinRange[Input] = Idx;
2406     }
2407 
2408     // Check if the access is smaller than the vector size and can we find
2409     // a reasonable extract index.
2410     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2411                                  // Extract.
2412     int StartIdx[2];  // StartIdx to extract from
2413     for (int Input=0; Input < 2; ++Input) {
2414       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2415         RangeUse[Input] = 0; // Unused
2416         StartIdx[Input] = 0;
2417       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2418         // Fits within range but we should see if we can find a good
2419         // start index that is a multiple of the mask length.
2420         if (MaxRange[Input] < (int)MaskNumElts) {
2421           RangeUse[Input] = 1; // Extract from beginning of the vector
2422           StartIdx[Input] = 0;
2423         } else {
2424           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2425           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2426               StartIdx[Input] + MaskNumElts < SrcNumElts)
2427             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2428         }
2429       }
2430     }
2431 
2432     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2433       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2434       return;
2435     }
2436     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2437       // Extract appropriate subvector and generate a vector shuffle
2438       for (int Input=0; Input < 2; ++Input) {
2439         SDValue &Src = Input == 0 ? Src1 : Src2;
2440         if (RangeUse[Input] == 0)
2441           Src = DAG.getUNDEF(VT);
2442         else
2443           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2444                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2445       }
2446 
2447       // Calculate new mask.
2448       SmallVector<int, 8> MappedOps;
2449       for (unsigned i = 0; i != MaskNumElts; ++i) {
2450         int Idx = Mask[i];
2451         if (Idx < 0)
2452           MappedOps.push_back(Idx);
2453         else if (Idx < (int)SrcNumElts)
2454           MappedOps.push_back(Idx - StartIdx[0]);
2455         else
2456           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2457       }
2458 
2459       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2460                                         &MappedOps[0]));
2461       return;
2462     }
2463   }
2464 
2465   // We can't use either concat vectors or extract subvectors so fall back to
2466   // replacing the shuffle with extract and build vector.
2467   // to insert and build vector.
2468   EVT EltVT = VT.getVectorElementType();
2469   EVT PtrVT = TLI.getPointerTy();
2470   SmallVector<SDValue,8> Ops;
2471   for (unsigned i = 0; i != MaskNumElts; ++i) {
2472     if (Mask[i] < 0) {
2473       Ops.push_back(DAG.getUNDEF(EltVT));
2474     } else {
2475       int Idx = Mask[i];
2476       SDValue Res;
2477 
2478       if (Idx < (int)SrcNumElts)
2479         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2480                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2481       else
2482         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2483                           EltVT, Src2,
2484                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2485 
2486       Ops.push_back(Res);
2487     }
2488   }
2489 
2490   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2491                            VT, &Ops[0], Ops.size()));
2492 }
2493 
2494 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2495   const Value *Op0 = I.getOperand(0);
2496   const Value *Op1 = I.getOperand(1);
2497   const Type *AggTy = I.getType();
2498   const Type *ValTy = Op1->getType();
2499   bool IntoUndef = isa<UndefValue>(Op0);
2500   bool FromUndef = isa<UndefValue>(Op1);
2501 
2502   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2503                                             I.idx_begin(), I.idx_end());
2504 
2505   SmallVector<EVT, 4> AggValueVTs;
2506   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2507   SmallVector<EVT, 4> ValValueVTs;
2508   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2509 
2510   unsigned NumAggValues = AggValueVTs.size();
2511   unsigned NumValValues = ValValueVTs.size();
2512   SmallVector<SDValue, 4> Values(NumAggValues);
2513 
2514   SDValue Agg = getValue(Op0);
2515   SDValue Val = getValue(Op1);
2516   unsigned i = 0;
2517   // Copy the beginning value(s) from the original aggregate.
2518   for (; i != LinearIndex; ++i)
2519     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2520                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2521   // Copy values from the inserted value(s).
2522   for (; i != LinearIndex + NumValValues; ++i)
2523     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2524                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2525   // Copy remaining value(s) from the original aggregate.
2526   for (; i != NumAggValues; ++i)
2527     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2528                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2529 
2530   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2531                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2532                            &Values[0], NumAggValues));
2533 }
2534 
2535 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2536   const Value *Op0 = I.getOperand(0);
2537   const Type *AggTy = Op0->getType();
2538   const Type *ValTy = I.getType();
2539   bool OutOfUndef = isa<UndefValue>(Op0);
2540 
2541   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2542                                             I.idx_begin(), I.idx_end());
2543 
2544   SmallVector<EVT, 4> ValValueVTs;
2545   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2546 
2547   unsigned NumValValues = ValValueVTs.size();
2548   SmallVector<SDValue, 4> Values(NumValValues);
2549 
2550   SDValue Agg = getValue(Op0);
2551   // Copy out the selected value(s).
2552   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2553     Values[i - LinearIndex] =
2554       OutOfUndef ?
2555         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2556         SDValue(Agg.getNode(), Agg.getResNo() + i);
2557 
2558   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2559                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2560                            &Values[0], NumValValues));
2561 }
2562 
2563 void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2564   SDValue N = getValue(I.getOperand(0));
2565   const Type *Ty = I.getOperand(0)->getType();
2566 
2567   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2568        OI != E; ++OI) {
2569     Value *Idx = *OI;
2570     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2571       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2572       if (Field) {
2573         // N = N + Offset
2574         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2575         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2576                         DAG.getIntPtrConstant(Offset));
2577       }
2578 
2579       Ty = StTy->getElementType(Field);
2580     } else {
2581       Ty = cast<SequentialType>(Ty)->getElementType();
2582 
2583       // If this is a constant subscript, handle it quickly.
2584       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2585         if (CI->getZExtValue() == 0) continue;
2586         uint64_t Offs =
2587             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2588         SDValue OffsVal;
2589         EVT PTy = TLI.getPointerTy();
2590         unsigned PtrBits = PTy.getSizeInBits();
2591         if (PtrBits < 64)
2592           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2593                                 TLI.getPointerTy(),
2594                                 DAG.getConstant(Offs, MVT::i64));
2595         else
2596           OffsVal = DAG.getIntPtrConstant(Offs);
2597 
2598         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2599                         OffsVal);
2600         continue;
2601       }
2602 
2603       // N = N + Idx * ElementSize;
2604       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2605                                 TD->getTypeAllocSize(Ty));
2606       SDValue IdxN = getValue(Idx);
2607 
2608       // If the index is smaller or larger than intptr_t, truncate or extend
2609       // it.
2610       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2611 
2612       // If this is a multiply by a power of two, turn it into a shl
2613       // immediately.  This is a very common case.
2614       if (ElementSize != 1) {
2615         if (ElementSize.isPowerOf2()) {
2616           unsigned Amt = ElementSize.logBase2();
2617           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2618                              N.getValueType(), IdxN,
2619                              DAG.getConstant(Amt, TLI.getPointerTy()));
2620         } else {
2621           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2622           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2623                              N.getValueType(), IdxN, Scale);
2624         }
2625       }
2626 
2627       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2628                       N.getValueType(), N, IdxN);
2629     }
2630   }
2631 
2632   setValue(&I, N);
2633 }
2634 
2635 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2636   // If this is a fixed sized alloca in the entry block of the function,
2637   // allocate it statically on the stack.
2638   if (FuncInfo.StaticAllocaMap.count(&I))
2639     return;   // getValue will auto-populate this.
2640 
2641   const Type *Ty = I.getAllocatedType();
2642   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2643   unsigned Align =
2644     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2645              I.getAlignment());
2646 
2647   SDValue AllocSize = getValue(I.getArraySize());
2648 
2649   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2650                           AllocSize,
2651                           DAG.getConstant(TySize, AllocSize.getValueType()));
2652 
2653   EVT IntPtr = TLI.getPointerTy();
2654   AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2655 
2656   // Handle alignment.  If the requested alignment is less than or equal to
2657   // the stack alignment, ignore it.  If the size is greater than or equal to
2658   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2659   unsigned StackAlign =
2660     TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2661   if (Align <= StackAlign)
2662     Align = 0;
2663 
2664   // Round the size of the allocation up to the stack alignment size
2665   // by add SA-1 to the size.
2666   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2667                           AllocSize.getValueType(), AllocSize,
2668                           DAG.getIntPtrConstant(StackAlign-1));
2669 
2670   // Mask out the low bits for alignment purposes.
2671   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2672                           AllocSize.getValueType(), AllocSize,
2673                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2674 
2675   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2676   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2677   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2678                             VTs, Ops, 3);
2679   setValue(&I, DSA);
2680   DAG.setRoot(DSA.getValue(1));
2681 
2682   // Inform the Frame Information that we have just allocated a variable-sized
2683   // object.
2684   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2685 }
2686 
2687 void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2688   const Value *SV = I.getOperand(0);
2689   SDValue Ptr = getValue(SV);
2690 
2691   const Type *Ty = I.getType();
2692   bool isVolatile = I.isVolatile();
2693   unsigned Alignment = I.getAlignment();
2694 
2695   SmallVector<EVT, 4> ValueVTs;
2696   SmallVector<uint64_t, 4> Offsets;
2697   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2698   unsigned NumValues = ValueVTs.size();
2699   if (NumValues == 0)
2700     return;
2701 
2702   SDValue Root;
2703   bool ConstantMemory = false;
2704   if (I.isVolatile())
2705     // Serialize volatile loads with other side effects.
2706     Root = getRoot();
2707   else if (AA->pointsToConstantMemory(SV)) {
2708     // Do not serialize (non-volatile) loads of constant memory with anything.
2709     Root = DAG.getEntryNode();
2710     ConstantMemory = true;
2711   } else {
2712     // Do not serialize non-volatile loads against each other.
2713     Root = DAG.getRoot();
2714   }
2715 
2716   SmallVector<SDValue, 4> Values(NumValues);
2717   SmallVector<SDValue, 4> Chains(NumValues);
2718   EVT PtrVT = Ptr.getValueType();
2719   for (unsigned i = 0; i != NumValues; ++i) {
2720     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2721                             PtrVT, Ptr,
2722                             DAG.getConstant(Offsets[i], PtrVT));
2723     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2724                             A, SV, Offsets[i], isVolatile, Alignment);
2725 
2726     Values[i] = L;
2727     Chains[i] = L.getValue(1);
2728   }
2729 
2730   if (!ConstantMemory) {
2731     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2732                                 MVT::Other, &Chains[0], NumValues);
2733     if (isVolatile)
2734       DAG.setRoot(Chain);
2735     else
2736       PendingLoads.push_back(Chain);
2737   }
2738 
2739   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2740                            DAG.getVTList(&ValueVTs[0], NumValues),
2741                            &Values[0], NumValues));
2742 }
2743 
2744 void SelectionDAGBuilder::visitStore(StoreInst &I) {
2745   Value *SrcV = I.getOperand(0);
2746   Value *PtrV = I.getOperand(1);
2747 
2748   SmallVector<EVT, 4> ValueVTs;
2749   SmallVector<uint64_t, 4> Offsets;
2750   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2751   unsigned NumValues = ValueVTs.size();
2752   if (NumValues == 0)
2753     return;
2754 
2755   // Get the lowered operands. Note that we do this after
2756   // checking if NumResults is zero, because with zero results
2757   // the operands won't have values in the map.
2758   SDValue Src = getValue(SrcV);
2759   SDValue Ptr = getValue(PtrV);
2760 
2761   SDValue Root = getRoot();
2762   SmallVector<SDValue, 4> Chains(NumValues);
2763   EVT PtrVT = Ptr.getValueType();
2764   bool isVolatile = I.isVolatile();
2765   unsigned Alignment = I.getAlignment();
2766 
2767   for (unsigned i = 0; i != NumValues; ++i) {
2768     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2769                               DAG.getConstant(Offsets[i], PtrVT));
2770     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2771                              SDValue(Src.getNode(), Src.getResNo() + i),
2772                              Add, PtrV, Offsets[i], isVolatile, Alignment);
2773   }
2774 
2775   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2776                           MVT::Other, &Chains[0], NumValues));
2777 }
2778 
2779 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2780 /// node.
2781 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2782                                                unsigned Intrinsic) {
2783   bool HasChain = !I.doesNotAccessMemory();
2784   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2785 
2786   // Build the operand list.
2787   SmallVector<SDValue, 8> Ops;
2788   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2789     if (OnlyLoad) {
2790       // We don't need to serialize loads against other loads.
2791       Ops.push_back(DAG.getRoot());
2792     } else {
2793       Ops.push_back(getRoot());
2794     }
2795   }
2796 
2797   // Info is set by getTgtMemInstrinsic
2798   TargetLowering::IntrinsicInfo Info;
2799   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2800 
2801   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2802   if (!IsTgtIntrinsic)
2803     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2804 
2805   // Add all operands of the call to the operand list.
2806   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2807     SDValue Op = getValue(I.getOperand(i));
2808     assert(TLI.isTypeLegal(Op.getValueType()) &&
2809            "Intrinsic uses a non-legal type?");
2810     Ops.push_back(Op);
2811   }
2812 
2813   SmallVector<EVT, 4> ValueVTs;
2814   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2815 #ifndef NDEBUG
2816   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2817     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2818            "Intrinsic uses a non-legal type?");
2819   }
2820 #endif // NDEBUG
2821 
2822   if (HasChain)
2823     ValueVTs.push_back(MVT::Other);
2824 
2825   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2826 
2827   // Create the node.
2828   SDValue Result;
2829   if (IsTgtIntrinsic) {
2830     // This is target intrinsic that touches memory
2831     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2832                                      VTs, &Ops[0], Ops.size(),
2833                                      Info.memVT, Info.ptrVal, Info.offset,
2834                                      Info.align, Info.vol,
2835                                      Info.readMem, Info.writeMem);
2836   } else if (!HasChain) {
2837     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2838                          VTs, &Ops[0], Ops.size());
2839   } else if (!I.getType()->isVoidTy()) {
2840     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2841                          VTs, &Ops[0], Ops.size());
2842   } else {
2843     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2844                          VTs, &Ops[0], Ops.size());
2845   }
2846 
2847   if (HasChain) {
2848     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2849     if (OnlyLoad)
2850       PendingLoads.push_back(Chain);
2851     else
2852       DAG.setRoot(Chain);
2853   }
2854 
2855   if (!I.getType()->isVoidTy()) {
2856     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2857       EVT VT = TLI.getValueType(PTy);
2858       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2859     }
2860 
2861     setValue(&I, Result);
2862   }
2863 }
2864 
2865 /// GetSignificand - Get the significand and build it into a floating-point
2866 /// number with exponent of 1:
2867 ///
2868 ///   Op = (Op & 0x007fffff) | 0x3f800000;
2869 ///
2870 /// where Op is the hexidecimal representation of floating point value.
2871 static SDValue
2872 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl, unsigned Order) {
2873   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2874                            DAG.getConstant(0x007fffff, MVT::i32));
2875   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2876                            DAG.getConstant(0x3f800000, MVT::i32));
2877   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2878 }
2879 
2880 /// GetExponent - Get the exponent:
2881 ///
2882 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2883 ///
2884 /// where Op is the hexidecimal representation of floating point value.
2885 static SDValue
2886 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2887             DebugLoc dl, unsigned Order) {
2888   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2889                            DAG.getConstant(0x7f800000, MVT::i32));
2890   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2891                            DAG.getConstant(23, TLI.getPointerTy()));
2892   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2893                            DAG.getConstant(127, MVT::i32));
2894   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2895 }
2896 
2897 /// getF32Constant - Get 32-bit floating point constant.
2898 static SDValue
2899 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2900   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2901 }
2902 
2903 /// Inlined utility function to implement binary input atomic intrinsics for
2904 /// visitIntrinsicCall: I is a call instruction
2905 ///                     Op is the associated NodeType for I
2906 const char *
2907 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2908   SDValue Root = getRoot();
2909   SDValue L =
2910     DAG.getAtomic(Op, getCurDebugLoc(),
2911                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2912                   Root,
2913                   getValue(I.getOperand(1)),
2914                   getValue(I.getOperand(2)),
2915                   I.getOperand(1));
2916   setValue(&I, L);
2917   DAG.setRoot(L.getValue(1));
2918   return 0;
2919 }
2920 
2921 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2922 const char *
2923 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
2924   SDValue Op1 = getValue(I.getOperand(1));
2925   SDValue Op2 = getValue(I.getOperand(2));
2926 
2927   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2928   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2929   return 0;
2930 }
2931 
2932 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
2933 /// limited-precision mode.
2934 void
2935 SelectionDAGBuilder::visitExp(CallInst &I) {
2936   SDValue result;
2937   DebugLoc dl = getCurDebugLoc();
2938 
2939   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2940       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2941     SDValue Op = getValue(I.getOperand(1));
2942 
2943     // Put the exponent in the right bit position for later addition to the
2944     // final result:
2945     //
2946     //   #define LOG2OFe 1.4426950f
2947     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2948     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2949                              getF32Constant(DAG, 0x3fb8aa3b));
2950     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2951 
2952     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2953     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2954     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2955 
2956     //   IntegerPartOfX <<= 23;
2957     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2958                                  DAG.getConstant(23, TLI.getPointerTy()));
2959 
2960     if (LimitFloatPrecision <= 6) {
2961       // For floating-point precision of 6:
2962       //
2963       //   TwoToFractionalPartOfX =
2964       //     0.997535578f +
2965       //       (0.735607626f + 0.252464424f * x) * x;
2966       //
2967       // error 0.0144103317, which is 6 bits
2968       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2969                                getF32Constant(DAG, 0x3e814304));
2970       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2971                                getF32Constant(DAG, 0x3f3c50c8));
2972       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2973       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2974                                getF32Constant(DAG, 0x3f7f5e7e));
2975       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2976 
2977       // Add the exponent into the result in integer domain.
2978       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2979                                TwoToFracPartOfX, IntegerPartOfX);
2980 
2981       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2982     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2983       // For floating-point precision of 12:
2984       //
2985       //   TwoToFractionalPartOfX =
2986       //     0.999892986f +
2987       //       (0.696457318f +
2988       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2989       //
2990       // 0.000107046256 error, which is 13 to 14 bits
2991       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2992                                getF32Constant(DAG, 0x3da235e3));
2993       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2994                                getF32Constant(DAG, 0x3e65b8f3));
2995       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2996       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2997                                getF32Constant(DAG, 0x3f324b07));
2998       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
2999       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3000                                getF32Constant(DAG, 0x3f7ff8fd));
3001       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3002 
3003       // Add the exponent into the result in integer domain.
3004       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3005                                TwoToFracPartOfX, IntegerPartOfX);
3006 
3007       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3008     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3009       // For floating-point precision of 18:
3010       //
3011       //   TwoToFractionalPartOfX =
3012       //     0.999999982f +
3013       //       (0.693148872f +
3014       //         (0.240227044f +
3015       //           (0.554906021e-1f +
3016       //             (0.961591928e-2f +
3017       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3018       //
3019       // error 2.47208000*10^(-7), which is better than 18 bits
3020       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3021                                getF32Constant(DAG, 0x3924b03e));
3022       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3023                                getF32Constant(DAG, 0x3ab24b87));
3024       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3025       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3026                                getF32Constant(DAG, 0x3c1d8c17));
3027       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3028       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3029                                getF32Constant(DAG, 0x3d634a1d));
3030       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3031       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3032                                getF32Constant(DAG, 0x3e75fe14));
3033       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3034       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3035                                 getF32Constant(DAG, 0x3f317234));
3036       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3037       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3038                                 getF32Constant(DAG, 0x3f800000));
3039       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3040                                              MVT::i32, t13);
3041 
3042       // Add the exponent into the result in integer domain.
3043       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3044                                 TwoToFracPartOfX, IntegerPartOfX);
3045 
3046       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3047     }
3048   } else {
3049     // No special expansion.
3050     result = DAG.getNode(ISD::FEXP, dl,
3051                          getValue(I.getOperand(1)).getValueType(),
3052                          getValue(I.getOperand(1)));
3053   }
3054 
3055   setValue(&I, result);
3056 }
3057 
3058 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3059 /// limited-precision mode.
3060 void
3061 SelectionDAGBuilder::visitLog(CallInst &I) {
3062   SDValue result;
3063   DebugLoc dl = getCurDebugLoc();
3064 
3065   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3066       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3067     SDValue Op = getValue(I.getOperand(1));
3068     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3069 
3070     // Scale the exponent by log(2) [0.69314718f].
3071     SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3072     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3073                                         getF32Constant(DAG, 0x3f317218));
3074 
3075     // Get the significand and build it into a floating-point number with
3076     // exponent of 1.
3077     SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3078 
3079     if (LimitFloatPrecision <= 6) {
3080       // For floating-point precision of 6:
3081       //
3082       //   LogofMantissa =
3083       //     -1.1609546f +
3084       //       (1.4034025f - 0.23903021f * x) * x;
3085       //
3086       // error 0.0034276066, which is better than 8 bits
3087       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3088                                getF32Constant(DAG, 0xbe74c456));
3089       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3090                                getF32Constant(DAG, 0x3fb3a2b1));
3091       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3092       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3093                                           getF32Constant(DAG, 0x3f949a29));
3094 
3095       result = DAG.getNode(ISD::FADD, dl,
3096                            MVT::f32, LogOfExponent, LogOfMantissa);
3097     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3098       // For floating-point precision of 12:
3099       //
3100       //   LogOfMantissa =
3101       //     -1.7417939f +
3102       //       (2.8212026f +
3103       //         (-1.4699568f +
3104       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3105       //
3106       // error 0.000061011436, which is 14 bits
3107       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3108                                getF32Constant(DAG, 0xbd67b6d6));
3109       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3110                                getF32Constant(DAG, 0x3ee4f4b8));
3111       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3112       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3113                                getF32Constant(DAG, 0x3fbc278b));
3114       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3115       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3116                                getF32Constant(DAG, 0x40348e95));
3117       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3118       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3119                                           getF32Constant(DAG, 0x3fdef31a));
3120 
3121       result = DAG.getNode(ISD::FADD, dl,
3122                            MVT::f32, LogOfExponent, LogOfMantissa);
3123     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3124       // For floating-point precision of 18:
3125       //
3126       //   LogOfMantissa =
3127       //     -2.1072184f +
3128       //       (4.2372794f +
3129       //         (-3.7029485f +
3130       //           (2.2781945f +
3131       //             (-0.87823314f +
3132       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3133       //
3134       // error 0.0000023660568, which is better than 18 bits
3135       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3136                                getF32Constant(DAG, 0xbc91e5ac));
3137       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3138                                getF32Constant(DAG, 0x3e4350aa));
3139       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3140       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3141                                getF32Constant(DAG, 0x3f60d3e3));
3142       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3143       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3144                                getF32Constant(DAG, 0x4011cdf0));
3145       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3146       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3147                                getF32Constant(DAG, 0x406cfd1c));
3148       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3149       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3150                                getF32Constant(DAG, 0x408797cb));
3151       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3152       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3153                                           getF32Constant(DAG, 0x4006dcab));
3154 
3155       result = DAG.getNode(ISD::FADD, dl,
3156                            MVT::f32, LogOfExponent, LogOfMantissa);
3157     }
3158   } else {
3159     // No special expansion.
3160     result = DAG.getNode(ISD::FLOG, dl,
3161                          getValue(I.getOperand(1)).getValueType(),
3162                          getValue(I.getOperand(1)));
3163   }
3164 
3165   setValue(&I, result);
3166 }
3167 
3168 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3169 /// limited-precision mode.
3170 void
3171 SelectionDAGBuilder::visitLog2(CallInst &I) {
3172   SDValue result;
3173   DebugLoc dl = getCurDebugLoc();
3174 
3175   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3176       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3177     SDValue Op = getValue(I.getOperand(1));
3178     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3179 
3180     // Get the exponent.
3181     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3182 
3183     // Get the significand and build it into a floating-point number with
3184     // exponent of 1.
3185     SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3186 
3187     // Different possible minimax approximations of significand in
3188     // floating-point for various degrees of accuracy over [1,2].
3189     if (LimitFloatPrecision <= 6) {
3190       // For floating-point precision of 6:
3191       //
3192       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3193       //
3194       // error 0.0049451742, which is more than 7 bits
3195       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3196                                getF32Constant(DAG, 0xbeb08fe0));
3197       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3198                                getF32Constant(DAG, 0x40019463));
3199       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3200       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3201                                            getF32Constant(DAG, 0x3fd6633d));
3202 
3203       result = DAG.getNode(ISD::FADD, dl,
3204                            MVT::f32, LogOfExponent, Log2ofMantissa);
3205     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3206       // For floating-point precision of 12:
3207       //
3208       //   Log2ofMantissa =
3209       //     -2.51285454f +
3210       //       (4.07009056f +
3211       //         (-2.12067489f +
3212       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3213       //
3214       // error 0.0000876136000, which is better than 13 bits
3215       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3216                                getF32Constant(DAG, 0xbda7262e));
3217       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3218                                getF32Constant(DAG, 0x3f25280b));
3219       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3220       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3221                                getF32Constant(DAG, 0x4007b923));
3222       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3223       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3224                                getF32Constant(DAG, 0x40823e2f));
3225       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3226       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3227                                            getF32Constant(DAG, 0x4020d29c));
3228 
3229       result = DAG.getNode(ISD::FADD, dl,
3230                            MVT::f32, LogOfExponent, Log2ofMantissa);
3231     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3232       // For floating-point precision of 18:
3233       //
3234       //   Log2ofMantissa =
3235       //     -3.0400495f +
3236       //       (6.1129976f +
3237       //         (-5.3420409f +
3238       //           (3.2865683f +
3239       //             (-1.2669343f +
3240       //               (0.27515199f -
3241       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3242       //
3243       // error 0.0000018516, which is better than 18 bits
3244       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3245                                getF32Constant(DAG, 0xbcd2769e));
3246       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3247                                getF32Constant(DAG, 0x3e8ce0b9));
3248       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3249       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3250                                getF32Constant(DAG, 0x3fa22ae7));
3251       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3252       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3253                                getF32Constant(DAG, 0x40525723));
3254       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3255       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3256                                getF32Constant(DAG, 0x40aaf200));
3257       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3258       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3259                                getF32Constant(DAG, 0x40c39dad));
3260       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3261       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3262                                            getF32Constant(DAG, 0x4042902c));
3263 
3264       result = DAG.getNode(ISD::FADD, dl,
3265                            MVT::f32, LogOfExponent, Log2ofMantissa);
3266     }
3267   } else {
3268     // No special expansion.
3269     result = DAG.getNode(ISD::FLOG2, dl,
3270                          getValue(I.getOperand(1)).getValueType(),
3271                          getValue(I.getOperand(1)));
3272   }
3273 
3274   setValue(&I, result);
3275 }
3276 
3277 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3278 /// limited-precision mode.
3279 void
3280 SelectionDAGBuilder::visitLog10(CallInst &I) {
3281   SDValue result;
3282   DebugLoc dl = getCurDebugLoc();
3283 
3284   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3285       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3286     SDValue Op = getValue(I.getOperand(1));
3287     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3288 
3289     // Scale the exponent by log10(2) [0.30102999f].
3290     SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3291     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3292                                         getF32Constant(DAG, 0x3e9a209a));
3293 
3294     // Get the significand and build it into a floating-point number with
3295     // exponent of 1.
3296     SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3297 
3298     if (LimitFloatPrecision <= 6) {
3299       // For floating-point precision of 6:
3300       //
3301       //   Log10ofMantissa =
3302       //     -0.50419619f +
3303       //       (0.60948995f - 0.10380950f * x) * x;
3304       //
3305       // error 0.0014886165, which is 6 bits
3306       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3307                                getF32Constant(DAG, 0xbdd49a13));
3308       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3309                                getF32Constant(DAG, 0x3f1c0789));
3310       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3311       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3312                                             getF32Constant(DAG, 0x3f011300));
3313 
3314       result = DAG.getNode(ISD::FADD, dl,
3315                            MVT::f32, LogOfExponent, Log10ofMantissa);
3316     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3317       // For floating-point precision of 12:
3318       //
3319       //   Log10ofMantissa =
3320       //     -0.64831180f +
3321       //       (0.91751397f +
3322       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3323       //
3324       // error 0.00019228036, which is better than 12 bits
3325       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3326                                getF32Constant(DAG, 0x3d431f31));
3327       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3328                                getF32Constant(DAG, 0x3ea21fb2));
3329       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3330       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3331                                getF32Constant(DAG, 0x3f6ae232));
3332       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3333       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3334                                             getF32Constant(DAG, 0x3f25f7c3));
3335 
3336       result = DAG.getNode(ISD::FADD, dl,
3337                            MVT::f32, LogOfExponent, Log10ofMantissa);
3338     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3339       // For floating-point precision of 18:
3340       //
3341       //   Log10ofMantissa =
3342       //     -0.84299375f +
3343       //       (1.5327582f +
3344       //         (-1.0688956f +
3345       //           (0.49102474f +
3346       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3347       //
3348       // error 0.0000037995730, which is better than 18 bits
3349       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3350                                getF32Constant(DAG, 0x3c5d51ce));
3351       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3352                                getF32Constant(DAG, 0x3e00685a));
3353       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3354       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3355                                getF32Constant(DAG, 0x3efb6798));
3356       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3357       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3358                                getF32Constant(DAG, 0x3f88d192));
3359       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3360       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3361                                getF32Constant(DAG, 0x3fc4316c));
3362       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3363       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3364                                             getF32Constant(DAG, 0x3f57ce70));
3365 
3366       result = DAG.getNode(ISD::FADD, dl,
3367                            MVT::f32, LogOfExponent, Log10ofMantissa);
3368     }
3369   } else {
3370     // No special expansion.
3371     result = DAG.getNode(ISD::FLOG10, dl,
3372                          getValue(I.getOperand(1)).getValueType(),
3373                          getValue(I.getOperand(1)));
3374   }
3375 
3376   setValue(&I, result);
3377 }
3378 
3379 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3380 /// limited-precision mode.
3381 void
3382 SelectionDAGBuilder::visitExp2(CallInst &I) {
3383   SDValue result;
3384   DebugLoc dl = getCurDebugLoc();
3385 
3386   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3387       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3388     SDValue Op = getValue(I.getOperand(1));
3389 
3390     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3391 
3392     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3393     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3394     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3395 
3396     //   IntegerPartOfX <<= 23;
3397     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3398                                  DAG.getConstant(23, TLI.getPointerTy()));
3399 
3400     if (LimitFloatPrecision <= 6) {
3401       // For floating-point precision of 6:
3402       //
3403       //   TwoToFractionalPartOfX =
3404       //     0.997535578f +
3405       //       (0.735607626f + 0.252464424f * x) * x;
3406       //
3407       // error 0.0144103317, which is 6 bits
3408       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3409                                getF32Constant(DAG, 0x3e814304));
3410       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3411                                getF32Constant(DAG, 0x3f3c50c8));
3412       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3413       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3414                                getF32Constant(DAG, 0x3f7f5e7e));
3415       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3416       SDValue TwoToFractionalPartOfX =
3417         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3418 
3419       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3420                            MVT::f32, TwoToFractionalPartOfX);
3421     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3422       // For floating-point precision of 12:
3423       //
3424       //   TwoToFractionalPartOfX =
3425       //     0.999892986f +
3426       //       (0.696457318f +
3427       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3428       //
3429       // error 0.000107046256, which is 13 to 14 bits
3430       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3431                                getF32Constant(DAG, 0x3da235e3));
3432       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3433                                getF32Constant(DAG, 0x3e65b8f3));
3434       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3435       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3436                                getF32Constant(DAG, 0x3f324b07));
3437       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3438       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3439                                getF32Constant(DAG, 0x3f7ff8fd));
3440       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3441       SDValue TwoToFractionalPartOfX =
3442         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3443 
3444       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3445                            MVT::f32, TwoToFractionalPartOfX);
3446     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3447       // For floating-point precision of 18:
3448       //
3449       //   TwoToFractionalPartOfX =
3450       //     0.999999982f +
3451       //       (0.693148872f +
3452       //         (0.240227044f +
3453       //           (0.554906021e-1f +
3454       //             (0.961591928e-2f +
3455       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3456       // error 2.47208000*10^(-7), which is better than 18 bits
3457       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3458                                getF32Constant(DAG, 0x3924b03e));
3459       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3460                                getF32Constant(DAG, 0x3ab24b87));
3461       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3462       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3463                                getF32Constant(DAG, 0x3c1d8c17));
3464       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3465       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3466                                getF32Constant(DAG, 0x3d634a1d));
3467       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3468       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3469                                getF32Constant(DAG, 0x3e75fe14));
3470       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3471       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3472                                 getF32Constant(DAG, 0x3f317234));
3473       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3474       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3475                                 getF32Constant(DAG, 0x3f800000));
3476       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3477       SDValue TwoToFractionalPartOfX =
3478         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3479 
3480       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3481                            MVT::f32, TwoToFractionalPartOfX);
3482     }
3483   } else {
3484     // No special expansion.
3485     result = DAG.getNode(ISD::FEXP2, dl,
3486                          getValue(I.getOperand(1)).getValueType(),
3487                          getValue(I.getOperand(1)));
3488   }
3489 
3490   setValue(&I, result);
3491 }
3492 
3493 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3494 /// limited-precision mode with x == 10.0f.
3495 void
3496 SelectionDAGBuilder::visitPow(CallInst &I) {
3497   SDValue result;
3498   Value *Val = I.getOperand(1);
3499   DebugLoc dl = getCurDebugLoc();
3500   bool IsExp10 = false;
3501 
3502   if (getValue(Val).getValueType() == MVT::f32 &&
3503       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3504       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3505     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3506       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3507         APFloat Ten(10.0f);
3508         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3509       }
3510     }
3511   }
3512 
3513   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3514     SDValue Op = getValue(I.getOperand(2));
3515 
3516     // Put the exponent in the right bit position for later addition to the
3517     // final result:
3518     //
3519     //   #define LOG2OF10 3.3219281f
3520     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3521     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3522                              getF32Constant(DAG, 0x40549a78));
3523     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3524 
3525     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3526     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3527     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3528 
3529     //   IntegerPartOfX <<= 23;
3530     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3531                                  DAG.getConstant(23, TLI.getPointerTy()));
3532 
3533     if (LimitFloatPrecision <= 6) {
3534       // For floating-point precision of 6:
3535       //
3536       //   twoToFractionalPartOfX =
3537       //     0.997535578f +
3538       //       (0.735607626f + 0.252464424f * x) * x;
3539       //
3540       // error 0.0144103317, which is 6 bits
3541       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3542                                getF32Constant(DAG, 0x3e814304));
3543       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3544                                getF32Constant(DAG, 0x3f3c50c8));
3545       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3546       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3547                                getF32Constant(DAG, 0x3f7f5e7e));
3548       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3549       SDValue TwoToFractionalPartOfX =
3550         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3551 
3552       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3553                            MVT::f32, TwoToFractionalPartOfX);
3554     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3555       // For floating-point precision of 12:
3556       //
3557       //   TwoToFractionalPartOfX =
3558       //     0.999892986f +
3559       //       (0.696457318f +
3560       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3561       //
3562       // error 0.000107046256, which is 13 to 14 bits
3563       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3564                                getF32Constant(DAG, 0x3da235e3));
3565       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3566                                getF32Constant(DAG, 0x3e65b8f3));
3567       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3568       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3569                                getF32Constant(DAG, 0x3f324b07));
3570       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3571       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3572                                getF32Constant(DAG, 0x3f7ff8fd));
3573       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3574       SDValue TwoToFractionalPartOfX =
3575         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3576 
3577       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3578                            MVT::f32, TwoToFractionalPartOfX);
3579     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3580       // For floating-point precision of 18:
3581       //
3582       //   TwoToFractionalPartOfX =
3583       //     0.999999982f +
3584       //       (0.693148872f +
3585       //         (0.240227044f +
3586       //           (0.554906021e-1f +
3587       //             (0.961591928e-2f +
3588       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3589       // error 2.47208000*10^(-7), which is better than 18 bits
3590       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3591                                getF32Constant(DAG, 0x3924b03e));
3592       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3593                                getF32Constant(DAG, 0x3ab24b87));
3594       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3595       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3596                                getF32Constant(DAG, 0x3c1d8c17));
3597       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3598       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3599                                getF32Constant(DAG, 0x3d634a1d));
3600       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3601       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3602                                getF32Constant(DAG, 0x3e75fe14));
3603       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3604       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3605                                 getF32Constant(DAG, 0x3f317234));
3606       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3607       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3608                                 getF32Constant(DAG, 0x3f800000));
3609       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3610       SDValue TwoToFractionalPartOfX =
3611         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3612 
3613       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3614                            MVT::f32, TwoToFractionalPartOfX);
3615     }
3616   } else {
3617     // No special expansion.
3618     result = DAG.getNode(ISD::FPOW, dl,
3619                          getValue(I.getOperand(1)).getValueType(),
3620                          getValue(I.getOperand(1)),
3621                          getValue(I.getOperand(2)));
3622   }
3623 
3624   setValue(&I, result);
3625 }
3626 
3627 
3628 /// ExpandPowI - Expand a llvm.powi intrinsic.
3629 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3630                           SelectionDAG &DAG) {
3631   // If RHS is a constant, we can expand this out to a multiplication tree,
3632   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3633   // optimizing for size, we only want to do this if the expansion would produce
3634   // a small number of multiplies, otherwise we do the full expansion.
3635   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3636     // Get the exponent as a positive value.
3637     unsigned Val = RHSC->getSExtValue();
3638     if ((int)Val < 0) Val = -Val;
3639 
3640     // powi(x, 0) -> 1.0
3641     if (Val == 0)
3642       return DAG.getConstantFP(1.0, LHS.getValueType());
3643 
3644     Function *F = DAG.getMachineFunction().getFunction();
3645     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3646         // If optimizing for size, don't insert too many multiplies.  This
3647         // inserts up to 5 multiplies.
3648         CountPopulation_32(Val)+Log2_32(Val) < 7) {
3649       // We use the simple binary decomposition method to generate the multiply
3650       // sequence.  There are more optimal ways to do this (for example,
3651       // powi(x,15) generates one more multiply than it should), but this has
3652       // the benefit of being both really simple and much better than a libcall.
3653       SDValue Res;  // Logically starts equal to 1.0
3654       SDValue CurSquare = LHS;
3655       while (Val) {
3656         if (Val & 1) {
3657           if (Res.getNode())
3658             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3659           else
3660             Res = CurSquare;  // 1.0*CurSquare.
3661         }
3662 
3663         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3664                                 CurSquare, CurSquare);
3665         Val >>= 1;
3666       }
3667 
3668       // If the original was negative, invert the result, producing 1/(x*x*x).
3669       if (RHSC->getSExtValue() < 0)
3670         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3671                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3672       return Res;
3673     }
3674   }
3675 
3676   // Otherwise, expand to a libcall.
3677   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3678 }
3679 
3680 
3681 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3682 /// we want to emit this as a call to a named external function, return the name
3683 /// otherwise lower it and return null.
3684 const char *
3685 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3686   DebugLoc dl = getCurDebugLoc();
3687   SDValue Res;
3688 
3689   switch (Intrinsic) {
3690   default:
3691     // By default, turn this into a target intrinsic node.
3692     visitTargetIntrinsic(I, Intrinsic);
3693     return 0;
3694   case Intrinsic::vastart:  visitVAStart(I); return 0;
3695   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3696   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3697   case Intrinsic::returnaddress:
3698     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3699                              getValue(I.getOperand(1))));
3700     return 0;
3701   case Intrinsic::frameaddress:
3702     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3703                              getValue(I.getOperand(1))));
3704     return 0;
3705   case Intrinsic::setjmp:
3706     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3707   case Intrinsic::longjmp:
3708     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3709   case Intrinsic::memcpy: {
3710     SDValue Op1 = getValue(I.getOperand(1));
3711     SDValue Op2 = getValue(I.getOperand(2));
3712     SDValue Op3 = getValue(I.getOperand(3));
3713     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3714     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3715                               I.getOperand(1), 0, I.getOperand(2), 0));
3716     return 0;
3717   }
3718   case Intrinsic::memset: {
3719     SDValue Op1 = getValue(I.getOperand(1));
3720     SDValue Op2 = getValue(I.getOperand(2));
3721     SDValue Op3 = getValue(I.getOperand(3));
3722     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3723     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
3724                               I.getOperand(1), 0));
3725     return 0;
3726   }
3727   case Intrinsic::memmove: {
3728     SDValue Op1 = getValue(I.getOperand(1));
3729     SDValue Op2 = getValue(I.getOperand(2));
3730     SDValue Op3 = getValue(I.getOperand(3));
3731     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3732 
3733     // If the source and destination are known to not be aliases, we can
3734     // lower memmove as memcpy.
3735     uint64_t Size = -1ULL;
3736     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3737       Size = C->getZExtValue();
3738     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3739         AliasAnalysis::NoAlias) {
3740       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3741                                 I.getOperand(1), 0, I.getOperand(2), 0));
3742       return 0;
3743     }
3744 
3745     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
3746                                I.getOperand(1), 0, I.getOperand(2), 0));
3747     return 0;
3748   }
3749   case Intrinsic::dbg_declare: {
3750     if (OptLevel != CodeGenOpt::None)
3751       // FIXME: Variable debug info is not supported here.
3752       return 0;
3753     DwarfWriter *DW = DAG.getDwarfWriter();
3754     if (!DW)
3755       return 0;
3756     DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3757     if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3758       return 0;
3759 
3760     MDNode *Variable = DI.getVariable();
3761     Value *Address = DI.getAddress();
3762     if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3763       Address = BCI->getOperand(0);
3764     AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3765     // Don't handle byval struct arguments or VLAs, for example.
3766     if (!AI)
3767       return 0;
3768     DenseMap<const AllocaInst*, int>::iterator SI =
3769       FuncInfo.StaticAllocaMap.find(AI);
3770     if (SI == FuncInfo.StaticAllocaMap.end())
3771       return 0; // VLAs.
3772     int FI = SI->second;
3773 
3774     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
3775       if (MDNode *Dbg = DI.getMetadata("dbg"))
3776         MMI->setVariableDbgInfo(Variable, FI, Dbg);
3777     return 0;
3778   }
3779   case Intrinsic::eh_exception: {
3780     // Insert the EXCEPTIONADDR instruction.
3781     assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3782     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3783     SDValue Ops[1];
3784     Ops[0] = DAG.getRoot();
3785     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3786     setValue(&I, Op);
3787     DAG.setRoot(Op.getValue(1));
3788     return 0;
3789   }
3790 
3791   case Intrinsic::eh_selector: {
3792     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3793 
3794     if (CurMBB->isLandingPad())
3795       AddCatchInfo(I, MMI, CurMBB);
3796     else {
3797 #ifndef NDEBUG
3798       FuncInfo.CatchInfoLost.insert(&I);
3799 #endif
3800       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3801       unsigned Reg = TLI.getExceptionSelectorRegister();
3802       if (Reg) CurMBB->addLiveIn(Reg);
3803     }
3804 
3805     // Insert the EHSELECTION instruction.
3806     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3807     SDValue Ops[2];
3808     Ops[0] = getValue(I.getOperand(1));
3809     Ops[1] = getRoot();
3810     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3811     DAG.setRoot(Op.getValue(1));
3812     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3813     return 0;
3814   }
3815 
3816   case Intrinsic::eh_typeid_for: {
3817     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3818 
3819     if (MMI) {
3820       // Find the type id for the given typeinfo.
3821       GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3822       unsigned TypeID = MMI->getTypeIDFor(GV);
3823       Res = DAG.getConstant(TypeID, MVT::i32);
3824     } else {
3825       // Return something different to eh_selector.
3826       Res = DAG.getConstant(1, MVT::i32);
3827     }
3828 
3829     setValue(&I, Res);
3830     return 0;
3831   }
3832 
3833   case Intrinsic::eh_return_i32:
3834   case Intrinsic::eh_return_i64:
3835     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3836       MMI->setCallsEHReturn(true);
3837       DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3838                               MVT::Other,
3839                               getControlRoot(),
3840                               getValue(I.getOperand(1)),
3841                               getValue(I.getOperand(2))));
3842     } else {
3843       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3844     }
3845 
3846     return 0;
3847   case Intrinsic::eh_unwind_init:
3848     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3849       MMI->setCallsUnwindInit(true);
3850     }
3851     return 0;
3852   case Intrinsic::eh_dwarf_cfa: {
3853     EVT VT = getValue(I.getOperand(1)).getValueType();
3854     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3855                                         TLI.getPointerTy());
3856     SDValue Offset = DAG.getNode(ISD::ADD, dl,
3857                                  TLI.getPointerTy(),
3858                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3859                                              TLI.getPointerTy()),
3860                                  CfaArg);
3861     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3862                              TLI.getPointerTy(),
3863                              DAG.getConstant(0, TLI.getPointerTy()));
3864     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3865                              FA, Offset));
3866     return 0;
3867   }
3868   case Intrinsic::eh_sjlj_callsite: {
3869     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3870     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3871     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3872     assert(MMI->getCurrentCallSite() == 0 && "Overlapping call sites!");
3873 
3874     MMI->setCurrentCallSite(CI->getZExtValue());
3875     return 0;
3876   }
3877 
3878   case Intrinsic::convertff:
3879   case Intrinsic::convertfsi:
3880   case Intrinsic::convertfui:
3881   case Intrinsic::convertsif:
3882   case Intrinsic::convertuif:
3883   case Intrinsic::convertss:
3884   case Intrinsic::convertsu:
3885   case Intrinsic::convertus:
3886   case Intrinsic::convertuu: {
3887     ISD::CvtCode Code = ISD::CVT_INVALID;
3888     switch (Intrinsic) {
3889     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3890     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3891     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3892     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3893     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3894     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3895     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3896     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3897     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3898     }
3899     EVT DestVT = TLI.getValueType(I.getType());
3900     Value *Op1 = I.getOperand(1);
3901     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3902                                DAG.getValueType(DestVT),
3903                                DAG.getValueType(getValue(Op1).getValueType()),
3904                                getValue(I.getOperand(2)),
3905                                getValue(I.getOperand(3)),
3906                                Code);
3907     setValue(&I, Res);
3908     return 0;
3909   }
3910   case Intrinsic::sqrt:
3911     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
3912                              getValue(I.getOperand(1)).getValueType(),
3913                              getValue(I.getOperand(1))));
3914     return 0;
3915   case Intrinsic::powi:
3916     setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
3917                             getValue(I.getOperand(2)), DAG));
3918     return 0;
3919   case Intrinsic::sin:
3920     setValue(&I, DAG.getNode(ISD::FSIN, dl,
3921                              getValue(I.getOperand(1)).getValueType(),
3922                              getValue(I.getOperand(1))));
3923     return 0;
3924   case Intrinsic::cos:
3925     setValue(&I, DAG.getNode(ISD::FCOS, dl,
3926                              getValue(I.getOperand(1)).getValueType(),
3927                              getValue(I.getOperand(1))));
3928     return 0;
3929   case Intrinsic::log:
3930     visitLog(I);
3931     return 0;
3932   case Intrinsic::log2:
3933     visitLog2(I);
3934     return 0;
3935   case Intrinsic::log10:
3936     visitLog10(I);
3937     return 0;
3938   case Intrinsic::exp:
3939     visitExp(I);
3940     return 0;
3941   case Intrinsic::exp2:
3942     visitExp2(I);
3943     return 0;
3944   case Intrinsic::pow:
3945     visitPow(I);
3946     return 0;
3947   case Intrinsic::pcmarker: {
3948     SDValue Tmp = getValue(I.getOperand(1));
3949     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
3950     return 0;
3951   }
3952   case Intrinsic::readcyclecounter: {
3953     SDValue Op = getRoot();
3954     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
3955                       DAG.getVTList(MVT::i64, MVT::Other),
3956                       &Op, 1);
3957     setValue(&I, Res);
3958     DAG.setRoot(Res.getValue(1));
3959     return 0;
3960   }
3961   case Intrinsic::bswap:
3962     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
3963                              getValue(I.getOperand(1)).getValueType(),
3964                              getValue(I.getOperand(1))));
3965     return 0;
3966   case Intrinsic::cttz: {
3967     SDValue Arg = getValue(I.getOperand(1));
3968     EVT Ty = Arg.getValueType();
3969     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
3970     return 0;
3971   }
3972   case Intrinsic::ctlz: {
3973     SDValue Arg = getValue(I.getOperand(1));
3974     EVT Ty = Arg.getValueType();
3975     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
3976     return 0;
3977   }
3978   case Intrinsic::ctpop: {
3979     SDValue Arg = getValue(I.getOperand(1));
3980     EVT Ty = Arg.getValueType();
3981     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
3982     return 0;
3983   }
3984   case Intrinsic::stacksave: {
3985     SDValue Op = getRoot();
3986     Res = DAG.getNode(ISD::STACKSAVE, dl,
3987                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
3988     setValue(&I, Res);
3989     DAG.setRoot(Res.getValue(1));
3990     return 0;
3991   }
3992   case Intrinsic::stackrestore: {
3993     Res = getValue(I.getOperand(1));
3994     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
3995     return 0;
3996   }
3997   case Intrinsic::stackprotector: {
3998     // Emit code into the DAG to store the stack guard onto the stack.
3999     MachineFunction &MF = DAG.getMachineFunction();
4000     MachineFrameInfo *MFI = MF.getFrameInfo();
4001     EVT PtrTy = TLI.getPointerTy();
4002 
4003     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4004     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4005 
4006     int FI = FuncInfo.StaticAllocaMap[Slot];
4007     MFI->setStackProtectorIndex(FI);
4008 
4009     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4010 
4011     // Store the stack protector onto the stack.
4012     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4013                        PseudoSourceValue::getFixedStack(FI),
4014                        0, true);
4015     setValue(&I, Res);
4016     DAG.setRoot(Res);
4017     return 0;
4018   }
4019   case Intrinsic::objectsize: {
4020     // If we don't know by now, we're never going to know.
4021     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4022 
4023     assert(CI && "Non-constant type in __builtin_object_size?");
4024 
4025     SDValue Arg = getValue(I.getOperand(0));
4026     EVT Ty = Arg.getValueType();
4027 
4028     if (CI->getZExtValue() == 0)
4029       Res = DAG.getConstant(-1ULL, Ty);
4030     else
4031       Res = DAG.getConstant(0, Ty);
4032 
4033     setValue(&I, Res);
4034     return 0;
4035   }
4036   case Intrinsic::var_annotation:
4037     // Discard annotate attributes
4038     return 0;
4039 
4040   case Intrinsic::init_trampoline: {
4041     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4042 
4043     SDValue Ops[6];
4044     Ops[0] = getRoot();
4045     Ops[1] = getValue(I.getOperand(1));
4046     Ops[2] = getValue(I.getOperand(2));
4047     Ops[3] = getValue(I.getOperand(3));
4048     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4049     Ops[5] = DAG.getSrcValue(F);
4050 
4051     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4052                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4053                       Ops, 6);
4054 
4055     setValue(&I, Res);
4056     DAG.setRoot(Res.getValue(1));
4057     return 0;
4058   }
4059   case Intrinsic::gcroot:
4060     if (GFI) {
4061       Value *Alloca = I.getOperand(1);
4062       Constant *TypeMap = cast<Constant>(I.getOperand(2));
4063 
4064       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4065       GFI->addStackRoot(FI->getIndex(), TypeMap);
4066     }
4067     return 0;
4068   case Intrinsic::gcread:
4069   case Intrinsic::gcwrite:
4070     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4071     return 0;
4072   case Intrinsic::flt_rounds:
4073     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4074     return 0;
4075   case Intrinsic::trap:
4076     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4077     return 0;
4078   case Intrinsic::uadd_with_overflow:
4079     return implVisitAluOverflow(I, ISD::UADDO);
4080   case Intrinsic::sadd_with_overflow:
4081     return implVisitAluOverflow(I, ISD::SADDO);
4082   case Intrinsic::usub_with_overflow:
4083     return implVisitAluOverflow(I, ISD::USUBO);
4084   case Intrinsic::ssub_with_overflow:
4085     return implVisitAluOverflow(I, ISD::SSUBO);
4086   case Intrinsic::umul_with_overflow:
4087     return implVisitAluOverflow(I, ISD::UMULO);
4088   case Intrinsic::smul_with_overflow:
4089     return implVisitAluOverflow(I, ISD::SMULO);
4090 
4091   case Intrinsic::prefetch: {
4092     SDValue Ops[4];
4093     Ops[0] = getRoot();
4094     Ops[1] = getValue(I.getOperand(1));
4095     Ops[2] = getValue(I.getOperand(2));
4096     Ops[3] = getValue(I.getOperand(3));
4097     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4098     return 0;
4099   }
4100 
4101   case Intrinsic::memory_barrier: {
4102     SDValue Ops[6];
4103     Ops[0] = getRoot();
4104     for (int x = 1; x < 6; ++x)
4105       Ops[x] = getValue(I.getOperand(x));
4106 
4107     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4108     return 0;
4109   }
4110   case Intrinsic::atomic_cmp_swap: {
4111     SDValue Root = getRoot();
4112     SDValue L =
4113       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4114                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4115                     Root,
4116                     getValue(I.getOperand(1)),
4117                     getValue(I.getOperand(2)),
4118                     getValue(I.getOperand(3)),
4119                     I.getOperand(1));
4120     setValue(&I, L);
4121     DAG.setRoot(L.getValue(1));
4122     return 0;
4123   }
4124   case Intrinsic::atomic_load_add:
4125     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4126   case Intrinsic::atomic_load_sub:
4127     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4128   case Intrinsic::atomic_load_or:
4129     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4130   case Intrinsic::atomic_load_xor:
4131     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4132   case Intrinsic::atomic_load_and:
4133     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4134   case Intrinsic::atomic_load_nand:
4135     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4136   case Intrinsic::atomic_load_max:
4137     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4138   case Intrinsic::atomic_load_min:
4139     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4140   case Intrinsic::atomic_load_umin:
4141     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4142   case Intrinsic::atomic_load_umax:
4143     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4144   case Intrinsic::atomic_swap:
4145     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4146 
4147   case Intrinsic::invariant_start:
4148   case Intrinsic::lifetime_start:
4149     // Discard region information.
4150     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4151     return 0;
4152   case Intrinsic::invariant_end:
4153   case Intrinsic::lifetime_end:
4154     // Discard region information.
4155     return 0;
4156   }
4157 }
4158 
4159 /// Test if the given instruction is in a position to be optimized
4160 /// with a tail-call. This roughly means that it's in a block with
4161 /// a return and there's nothing that needs to be scheduled
4162 /// between it and the return.
4163 ///
4164 /// This function only tests target-independent requirements.
4165 static bool
4166 isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
4167                      const TargetLowering &TLI) {
4168   const BasicBlock *ExitBB = I->getParent();
4169   const TerminatorInst *Term = ExitBB->getTerminator();
4170   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4171   const Function *F = ExitBB->getParent();
4172 
4173   // The block must end in a return statement or an unreachable.
4174   if (!Ret && !isa<UnreachableInst>(Term)) return false;
4175 
4176   // If I will have a chain, make sure no other instruction that will have a
4177   // chain interposes between I and the return.
4178   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4179       !I->isSafeToSpeculativelyExecute())
4180     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4181          --BBI) {
4182       if (&*BBI == I)
4183         break;
4184       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4185           !BBI->isSafeToSpeculativelyExecute())
4186         return false;
4187     }
4188 
4189   // If the block ends with a void return or unreachable, it doesn't matter
4190   // what the call's return type is.
4191   if (!Ret || Ret->getNumOperands() == 0) return true;
4192 
4193   // If the return value is undef, it doesn't matter what the call's
4194   // return type is.
4195   if (isa<UndefValue>(Ret->getOperand(0))) return true;
4196 
4197   // Conservatively require the attributes of the call to match those of
4198   // the return. Ignore noalias because it doesn't affect the call sequence.
4199   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4200   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4201     return false;
4202 
4203   // Otherwise, make sure the unmodified return value of I is the return value.
4204   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4205        U = dyn_cast<Instruction>(U->getOperand(0))) {
4206     if (!U)
4207       return false;
4208     if (!U->hasOneUse())
4209       return false;
4210     if (U == I)
4211       break;
4212     // Check for a truly no-op truncate.
4213     if (isa<TruncInst>(U) &&
4214         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4215       continue;
4216     // Check for a truly no-op bitcast.
4217     if (isa<BitCastInst>(U) &&
4218         (U->getOperand(0)->getType() == U->getType() ||
4219          (isa<PointerType>(U->getOperand(0)->getType()) &&
4220           isa<PointerType>(U->getType()))))
4221       continue;
4222     // Otherwise it's not a true no-op.
4223     return false;
4224   }
4225 
4226   return true;
4227 }
4228 
4229 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4230                                       bool isTailCall,
4231                                       MachineBasicBlock *LandingPad) {
4232   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4233   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4234   const Type *RetTy = FTy->getReturnType();
4235   MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4236   unsigned BeginLabel = 0, EndLabel = 0;
4237 
4238   TargetLowering::ArgListTy Args;
4239   TargetLowering::ArgListEntry Entry;
4240   Args.reserve(CS.arg_size());
4241 
4242   // Check whether the function can return without sret-demotion.
4243   SmallVector<EVT, 4> OutVTs;
4244   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4245   SmallVector<uint64_t, 4> Offsets;
4246   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4247                 OutVTs, OutsFlags, TLI, &Offsets);
4248 
4249   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4250                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4251 
4252   SDValue DemoteStackSlot;
4253 
4254   if (!CanLowerReturn) {
4255     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4256                       FTy->getReturnType());
4257     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4258                       FTy->getReturnType());
4259     MachineFunction &MF = DAG.getMachineFunction();
4260     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4261     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4262 
4263     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4264     Entry.Node = DemoteStackSlot;
4265     Entry.Ty = StackSlotPtrType;
4266     Entry.isSExt = false;
4267     Entry.isZExt = false;
4268     Entry.isInReg = false;
4269     Entry.isSRet = true;
4270     Entry.isNest = false;
4271     Entry.isByVal = false;
4272     Entry.Alignment = Align;
4273     Args.push_back(Entry);
4274     RetTy = Type::getVoidTy(FTy->getContext());
4275   }
4276 
4277   for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4278        i != e; ++i) {
4279     SDValue ArgNode = getValue(*i);
4280     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4281 
4282     unsigned attrInd = i - CS.arg_begin() + 1;
4283     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4284     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4285     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4286     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4287     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4288     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4289     Entry.Alignment = CS.getParamAlignment(attrInd);
4290     Args.push_back(Entry);
4291   }
4292 
4293   if (LandingPad && MMI) {
4294     // Insert a label before the invoke call to mark the try range.  This can be
4295     // used to detect deletion of the invoke via the MachineModuleInfo.
4296     BeginLabel = MMI->NextLabelID();
4297 
4298     // For SjLj, keep track of which landing pads go with which invokes
4299     // so as to maintain the ordering of pads in the LSDA.
4300     unsigned CallSiteIndex = MMI->getCurrentCallSite();
4301     if (CallSiteIndex) {
4302       MMI->setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4303       // Now that the call site is handled, stop tracking it.
4304       MMI->setCurrentCallSite(0);
4305     }
4306 
4307     // Both PendingLoads and PendingExports must be flushed here;
4308     // this call might not return.
4309     (void)getRoot();
4310     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4311                              getControlRoot(), BeginLabel));
4312   }
4313 
4314   // Check if target-independent constraints permit a tail call here.
4315   // Target-dependent constraints are checked within TLI.LowerCallTo.
4316   if (isTailCall &&
4317       !isInTailCallPosition(CS.getInstruction(),
4318                             CS.getAttributes().getRetAttributes(),
4319                             TLI))
4320     isTailCall = false;
4321 
4322   std::pair<SDValue,SDValue> Result =
4323     TLI.LowerCallTo(getRoot(), RetTy,
4324                     CS.paramHasAttr(0, Attribute::SExt),
4325                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4326                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4327                     CS.getCallingConv(),
4328                     isTailCall,
4329                     !CS.getInstruction()->use_empty(),
4330                     Callee, Args, DAG, getCurDebugLoc(), SDNodeOrder);
4331   assert((isTailCall || Result.second.getNode()) &&
4332          "Non-null chain expected with non-tail call!");
4333   assert((Result.second.getNode() || !Result.first.getNode()) &&
4334          "Null value expected with tail call!");
4335   if (Result.first.getNode()) {
4336     setValue(CS.getInstruction(), Result.first);
4337   } else if (!CanLowerReturn && Result.second.getNode()) {
4338     // The instruction result is the result of loading from the
4339     // hidden sret parameter.
4340     SmallVector<EVT, 1> PVTs;
4341     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4342 
4343     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4344     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4345     EVT PtrVT = PVTs[0];
4346     unsigned NumValues = OutVTs.size();
4347     SmallVector<SDValue, 4> Values(NumValues);
4348     SmallVector<SDValue, 4> Chains(NumValues);
4349 
4350     for (unsigned i = 0; i < NumValues; ++i) {
4351       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4352                                 DemoteStackSlot,
4353                                 DAG.getConstant(Offsets[i], PtrVT));
4354       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4355                               Add, NULL, Offsets[i], false, 1);
4356       Values[i] = L;
4357       Chains[i] = L.getValue(1);
4358     }
4359 
4360     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4361                                 MVT::Other, &Chains[0], NumValues);
4362     PendingLoads.push_back(Chain);
4363 
4364     // Collect the legal value parts into potentially illegal values
4365     // that correspond to the original function's return values.
4366     SmallVector<EVT, 4> RetTys;
4367     RetTy = FTy->getReturnType();
4368     ComputeValueVTs(TLI, RetTy, RetTys);
4369     ISD::NodeType AssertOp = ISD::DELETED_NODE;
4370     SmallVector<SDValue, 4> ReturnValues;
4371     unsigned CurReg = 0;
4372     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4373       EVT VT = RetTys[I];
4374       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4375       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4376 
4377       SDValue ReturnValue =
4378         getCopyFromParts(DAG, getCurDebugLoc(), SDNodeOrder, &Values[CurReg], NumRegs,
4379                          RegisterVT, VT, AssertOp);
4380       ReturnValues.push_back(ReturnValue);
4381       CurReg += NumRegs;
4382     }
4383 
4384     setValue(CS.getInstruction(),
4385              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4386                          DAG.getVTList(&RetTys[0], RetTys.size()),
4387                          &ReturnValues[0], ReturnValues.size()));
4388 
4389   }
4390 
4391   // As a special case, a null chain means that a tail call has been emitted and
4392   // the DAG root is already updated.
4393   if (Result.second.getNode())
4394     DAG.setRoot(Result.second);
4395   else
4396     HasTailCall = true;
4397 
4398   if (LandingPad && MMI) {
4399     // Insert a label at the end of the invoke call to mark the try range.  This
4400     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4401     EndLabel = MMI->NextLabelID();
4402     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4403                              getRoot(), EndLabel));
4404 
4405     // Inform MachineModuleInfo of range.
4406     MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4407   }
4408 }
4409 
4410 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4411 /// value is equal or not-equal to zero.
4412 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
4413   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
4414        UI != E; ++UI) {
4415     if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4416       if (IC->isEquality())
4417         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4418           if (C->isNullValue())
4419             continue;
4420     // Unknown instruction.
4421     return false;
4422   }
4423   return true;
4424 }
4425 
4426 static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
4427                              SelectionDAGBuilder &Builder) {
4428 
4429   // Check to see if this load can be trivially constant folded, e.g. if the
4430   // input is from a string literal.
4431   if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4432     // Cast pointer to the type we really want to load.
4433     LoadInput = ConstantExpr::getBitCast(LoadInput,
4434                                          PointerType::getUnqual(LoadTy));
4435 
4436     if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
4437       return Builder.getValue(LoadCst);
4438   }
4439 
4440   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4441   // still constant memory, the input chain can be the entry node.
4442   SDValue Root;
4443   bool ConstantMemory = false;
4444 
4445   // Do not serialize (non-volatile) loads of constant memory with anything.
4446   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4447     Root = Builder.DAG.getEntryNode();
4448     ConstantMemory = true;
4449   } else {
4450     // Do not serialize non-volatile loads against each other.
4451     Root = Builder.DAG.getRoot();
4452   }
4453 
4454   SDValue Ptr = Builder.getValue(PtrVal);
4455   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4456                                         Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4457                                         false /*volatile*/, 1 /* align=1 */);
4458 
4459   if (!ConstantMemory)
4460     Builder.PendingLoads.push_back(LoadVal.getValue(1));
4461   return LoadVal;
4462 }
4463 
4464 
4465 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4466 /// If so, return true and lower it, otherwise return false and it will be
4467 /// lowered like a normal call.
4468 bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
4469   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4470   if (I.getNumOperands() != 4)
4471     return false;
4472 
4473   Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4474   if (!isa<PointerType>(LHS->getType()) || !isa<PointerType>(RHS->getType()) ||
4475       !isa<IntegerType>(I.getOperand(3)->getType()) ||
4476       !isa<IntegerType>(I.getType()))
4477     return false;
4478 
4479   ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4480 
4481   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4482   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4483   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4484     bool ActuallyDoIt = true;
4485     MVT LoadVT;
4486     const Type *LoadTy;
4487     switch (Size->getZExtValue()) {
4488     default:
4489       LoadVT = MVT::Other;
4490       LoadTy = 0;
4491       ActuallyDoIt = false;
4492       break;
4493     case 2:
4494       LoadVT = MVT::i16;
4495       LoadTy = Type::getInt16Ty(Size->getContext());
4496       break;
4497     case 4:
4498       LoadVT = MVT::i32;
4499       LoadTy = Type::getInt32Ty(Size->getContext());
4500       break;
4501     case 8:
4502       LoadVT = MVT::i64;
4503       LoadTy = Type::getInt64Ty(Size->getContext());
4504       break;
4505         /*
4506     case 16:
4507       LoadVT = MVT::v4i32;
4508       LoadTy = Type::getInt32Ty(Size->getContext());
4509       LoadTy = VectorType::get(LoadTy, 4);
4510       break;
4511          */
4512     }
4513 
4514     // This turns into unaligned loads.  We only do this if the target natively
4515     // supports the MVT we'll be loading or if it is small enough (<= 4) that
4516     // we'll only produce a small number of byte loads.
4517 
4518     // Require that we can find a legal MVT, and only do this if the target
4519     // supports unaligned loads of that type.  Expanding into byte loads would
4520     // bloat the code.
4521     if (ActuallyDoIt && Size->getZExtValue() > 4) {
4522       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4523       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4524       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4525         ActuallyDoIt = false;
4526     }
4527 
4528     if (ActuallyDoIt) {
4529       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4530       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4531 
4532       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4533                                  ISD::SETNE);
4534       EVT CallVT = TLI.getValueType(I.getType(), true);
4535       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4536       return true;
4537     }
4538   }
4539 
4540 
4541   return false;
4542 }
4543 
4544 
4545 void SelectionDAGBuilder::visitCall(CallInst &I) {
4546   const char *RenameFn = 0;
4547   if (Function *F = I.getCalledFunction()) {
4548     if (F->isDeclaration()) {
4549       const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4550       if (II) {
4551         if (unsigned IID = II->getIntrinsicID(F)) {
4552           RenameFn = visitIntrinsicCall(I, IID);
4553           if (!RenameFn)
4554             return;
4555         }
4556       }
4557       if (unsigned IID = F->getIntrinsicID()) {
4558         RenameFn = visitIntrinsicCall(I, IID);
4559         if (!RenameFn)
4560           return;
4561       }
4562     }
4563 
4564     // Check for well-known libc/libm calls.  If the function is internal, it
4565     // can't be a library call.
4566     if (!F->hasLocalLinkage() && F->hasName()) {
4567       StringRef Name = F->getName();
4568       if (Name == "copysign" || Name == "copysignf") {
4569         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4570             I.getOperand(1)->getType()->isFloatingPoint() &&
4571             I.getType() == I.getOperand(1)->getType() &&
4572             I.getType() == I.getOperand(2)->getType()) {
4573           SDValue LHS = getValue(I.getOperand(1));
4574           SDValue RHS = getValue(I.getOperand(2));
4575           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4576                                    LHS.getValueType(), LHS, RHS));
4577           return;
4578         }
4579       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4580         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4581             I.getOperand(1)->getType()->isFloatingPoint() &&
4582             I.getType() == I.getOperand(1)->getType()) {
4583           SDValue Tmp = getValue(I.getOperand(1));
4584           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4585                                    Tmp.getValueType(), Tmp));
4586           return;
4587         }
4588       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4589         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4590             I.getOperand(1)->getType()->isFloatingPoint() &&
4591             I.getType() == I.getOperand(1)->getType() &&
4592             I.onlyReadsMemory()) {
4593           SDValue Tmp = getValue(I.getOperand(1));
4594           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4595                                    Tmp.getValueType(), Tmp));
4596           return;
4597         }
4598       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4599         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4600             I.getOperand(1)->getType()->isFloatingPoint() &&
4601             I.getType() == I.getOperand(1)->getType() &&
4602             I.onlyReadsMemory()) {
4603           SDValue Tmp = getValue(I.getOperand(1));
4604           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4605                                    Tmp.getValueType(), Tmp));
4606           return;
4607         }
4608       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4609         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4610             I.getOperand(1)->getType()->isFloatingPoint() &&
4611             I.getType() == I.getOperand(1)->getType() &&
4612             I.onlyReadsMemory()) {
4613           SDValue Tmp = getValue(I.getOperand(1));
4614           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4615                                    Tmp.getValueType(), Tmp));
4616           return;
4617         }
4618       } else if (Name == "memcmp") {
4619         if (visitMemCmpCall(I))
4620           return;
4621       }
4622     }
4623   } else if (isa<InlineAsm>(I.getOperand(0))) {
4624     visitInlineAsm(&I);
4625     return;
4626   }
4627 
4628   SDValue Callee;
4629   if (!RenameFn)
4630     Callee = getValue(I.getOperand(0));
4631   else
4632     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4633 
4634   // Check if we can potentially perform a tail call. More detailed checking is
4635   // be done within LowerCallTo, after more information about the call is known.
4636   LowerCallTo(&I, Callee, I.isTailCall());
4637 }
4638 
4639 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4640 /// this value and returns the result as a ValueVT value.  This uses
4641 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4642 /// If the Flag pointer is NULL, no flag is used.
4643 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4644                                       unsigned Order, SDValue &Chain,
4645                                       SDValue *Flag) const {
4646   // Assemble the legal parts into the final values.
4647   SmallVector<SDValue, 4> Values(ValueVTs.size());
4648   SmallVector<SDValue, 8> Parts;
4649   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4650     // Copy the legal parts from the registers.
4651     EVT ValueVT = ValueVTs[Value];
4652     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4653     EVT RegisterVT = RegVTs[Value];
4654 
4655     Parts.resize(NumRegs);
4656     for (unsigned i = 0; i != NumRegs; ++i) {
4657       SDValue P;
4658       if (Flag == 0) {
4659         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4660       } else {
4661         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4662         *Flag = P.getValue(2);
4663       }
4664 
4665       Chain = P.getValue(1);
4666 
4667       // If the source register was virtual and if we know something about it,
4668       // add an assert node.
4669       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4670           RegisterVT.isInteger() && !RegisterVT.isVector()) {
4671         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4672         FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4673         if (FLI.LiveOutRegInfo.size() > SlotNo) {
4674           FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4675 
4676           unsigned RegSize = RegisterVT.getSizeInBits();
4677           unsigned NumSignBits = LOI.NumSignBits;
4678           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4679 
4680           // FIXME: We capture more information than the dag can represent.  For
4681           // now, just use the tightest assertzext/assertsext possible.
4682           bool isSExt = true;
4683           EVT FromVT(MVT::Other);
4684           if (NumSignBits == RegSize)
4685             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4686           else if (NumZeroBits >= RegSize-1)
4687             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4688           else if (NumSignBits > RegSize-8)
4689             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4690           else if (NumZeroBits >= RegSize-8)
4691             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4692           else if (NumSignBits > RegSize-16)
4693             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4694           else if (NumZeroBits >= RegSize-16)
4695             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4696           else if (NumSignBits > RegSize-32)
4697             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4698           else if (NumZeroBits >= RegSize-32)
4699             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4700 
4701           if (FromVT != MVT::Other)
4702             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4703                             RegisterVT, P, DAG.getValueType(FromVT));
4704         }
4705       }
4706 
4707       Parts[i] = P;
4708     }
4709 
4710     Values[Value] = getCopyFromParts(DAG, dl, Order, Parts.begin(),
4711                                      NumRegs, RegisterVT, ValueVT);
4712     Part += NumRegs;
4713     Parts.clear();
4714   }
4715 
4716   return DAG.getNode(ISD::MERGE_VALUES, dl,
4717                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4718                      &Values[0], ValueVTs.size());
4719 }
4720 
4721 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4722 /// specified value into the registers specified by this object.  This uses
4723 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4724 /// If the Flag pointer is NULL, no flag is used.
4725 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4726                                  unsigned Order, SDValue &Chain,
4727                                  SDValue *Flag) const {
4728   // Get the list of the values's legal parts.
4729   unsigned NumRegs = Regs.size();
4730   SmallVector<SDValue, 8> Parts(NumRegs);
4731   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4732     EVT ValueVT = ValueVTs[Value];
4733     unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4734     EVT RegisterVT = RegVTs[Value];
4735 
4736     getCopyToParts(DAG, dl, Order,
4737                    Val.getValue(Val.getResNo() + Value),
4738                    &Parts[Part], NumParts, RegisterVT);
4739     Part += NumParts;
4740   }
4741 
4742   // Copy the parts into the registers.
4743   SmallVector<SDValue, 8> Chains(NumRegs);
4744   for (unsigned i = 0; i != NumRegs; ++i) {
4745     SDValue Part;
4746     if (Flag == 0) {
4747       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4748     } else {
4749       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4750       *Flag = Part.getValue(1);
4751     }
4752 
4753     Chains[i] = Part.getValue(0);
4754   }
4755 
4756   if (NumRegs == 1 || Flag)
4757     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4758     // flagged to it. That is the CopyToReg nodes and the user are considered
4759     // a single scheduling unit. If we create a TokenFactor and return it as
4760     // chain, then the TokenFactor is both a predecessor (operand) of the
4761     // user as well as a successor (the TF operands are flagged to the user).
4762     // c1, f1 = CopyToReg
4763     // c2, f2 = CopyToReg
4764     // c3     = TokenFactor c1, c2
4765     // ...
4766     //        = op c3, ..., f2
4767     Chain = Chains[NumRegs-1];
4768   else
4769     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4770 }
4771 
4772 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4773 /// operand list.  This adds the code marker and includes the number of
4774 /// values added into it.
4775 void RegsForValue::AddInlineAsmOperands(unsigned Code,
4776                                         bool HasMatching,unsigned MatchingIdx,
4777                                         SelectionDAG &DAG, unsigned Order,
4778                                         std::vector<SDValue> &Ops) const {
4779   assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
4780   unsigned Flag = Code | (Regs.size() << 3);
4781   if (HasMatching)
4782     Flag |= 0x80000000 | (MatchingIdx << 16);
4783   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4784   Ops.push_back(Res);
4785 
4786   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4787     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4788     EVT RegisterVT = RegVTs[Value];
4789     for (unsigned i = 0; i != NumRegs; ++i) {
4790       assert(Reg < Regs.size() && "Mismatch in # registers expected");
4791       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4792     }
4793   }
4794 }
4795 
4796 /// isAllocatableRegister - If the specified register is safe to allocate,
4797 /// i.e. it isn't a stack pointer or some other special register, return the
4798 /// register class for the register.  Otherwise, return null.
4799 static const TargetRegisterClass *
4800 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4801                       const TargetLowering &TLI,
4802                       const TargetRegisterInfo *TRI) {
4803   EVT FoundVT = MVT::Other;
4804   const TargetRegisterClass *FoundRC = 0;
4805   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4806        E = TRI->regclass_end(); RCI != E; ++RCI) {
4807     EVT ThisVT = MVT::Other;
4808 
4809     const TargetRegisterClass *RC = *RCI;
4810     // If none of the the value types for this register class are valid, we
4811     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4812     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4813          I != E; ++I) {
4814       if (TLI.isTypeLegal(*I)) {
4815         // If we have already found this register in a different register class,
4816         // choose the one with the largest VT specified.  For example, on
4817         // PowerPC, we favor f64 register classes over f32.
4818         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4819           ThisVT = *I;
4820           break;
4821         }
4822       }
4823     }
4824 
4825     if (ThisVT == MVT::Other) continue;
4826 
4827     // NOTE: This isn't ideal.  In particular, this might allocate the
4828     // frame pointer in functions that need it (due to them not being taken
4829     // out of allocation, because a variable sized allocation hasn't been seen
4830     // yet).  This is a slight code pessimization, but should still work.
4831     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4832          E = RC->allocation_order_end(MF); I != E; ++I)
4833       if (*I == Reg) {
4834         // We found a matching register class.  Keep looking at others in case
4835         // we find one with larger registers that this physreg is also in.
4836         FoundRC = RC;
4837         FoundVT = ThisVT;
4838         break;
4839       }
4840   }
4841   return FoundRC;
4842 }
4843 
4844 
4845 namespace llvm {
4846 /// AsmOperandInfo - This contains information for each constraint that we are
4847 /// lowering.
4848 class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4849     public TargetLowering::AsmOperandInfo {
4850 public:
4851   /// CallOperand - If this is the result output operand or a clobber
4852   /// this is null, otherwise it is the incoming operand to the CallInst.
4853   /// This gets modified as the asm is processed.
4854   SDValue CallOperand;
4855 
4856   /// AssignedRegs - If this is a register or register class operand, this
4857   /// contains the set of register corresponding to the operand.
4858   RegsForValue AssignedRegs;
4859 
4860   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4861     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4862   }
4863 
4864   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4865   /// busy in OutputRegs/InputRegs.
4866   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4867                          std::set<unsigned> &OutputRegs,
4868                          std::set<unsigned> &InputRegs,
4869                          const TargetRegisterInfo &TRI) const {
4870     if (isOutReg) {
4871       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4872         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4873     }
4874     if (isInReg) {
4875       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4876         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4877     }
4878   }
4879 
4880   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4881   /// corresponds to.  If there is no Value* for this operand, it returns
4882   /// MVT::Other.
4883   EVT getCallOperandValEVT(LLVMContext &Context,
4884                            const TargetLowering &TLI,
4885                            const TargetData *TD) const {
4886     if (CallOperandVal == 0) return MVT::Other;
4887 
4888     if (isa<BasicBlock>(CallOperandVal))
4889       return TLI.getPointerTy();
4890 
4891     const llvm::Type *OpTy = CallOperandVal->getType();
4892 
4893     // If this is an indirect operand, the operand is a pointer to the
4894     // accessed type.
4895     if (isIndirect) {
4896       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4897       if (!PtrTy)
4898         llvm_report_error("Indirect operand for inline asm not a pointer!");
4899       OpTy = PtrTy->getElementType();
4900     }
4901 
4902     // If OpTy is not a single value, it may be a struct/union that we
4903     // can tile with integers.
4904     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4905       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4906       switch (BitSize) {
4907       default: break;
4908       case 1:
4909       case 8:
4910       case 16:
4911       case 32:
4912       case 64:
4913       case 128:
4914         OpTy = IntegerType::get(Context, BitSize);
4915         break;
4916       }
4917     }
4918 
4919     return TLI.getValueType(OpTy, true);
4920   }
4921 
4922 private:
4923   /// MarkRegAndAliases - Mark the specified register and all aliases in the
4924   /// specified set.
4925   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4926                                 const TargetRegisterInfo &TRI) {
4927     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4928     Regs.insert(Reg);
4929     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4930       for (; *Aliases; ++Aliases)
4931         Regs.insert(*Aliases);
4932   }
4933 };
4934 } // end llvm namespace.
4935 
4936 
4937 /// GetRegistersForValue - Assign registers (virtual or physical) for the
4938 /// specified operand.  We prefer to assign virtual registers, to allow the
4939 /// register allocator to handle the assignment process.  However, if the asm
4940 /// uses features that we can't model on machineinstrs, we have SDISel do the
4941 /// allocation.  This produces generally horrible, but correct, code.
4942 ///
4943 ///   OpInfo describes the operand.
4944 ///   Input and OutputRegs are the set of already allocated physical registers.
4945 ///
4946 void SelectionDAGBuilder::
4947 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
4948                      std::set<unsigned> &OutputRegs,
4949                      std::set<unsigned> &InputRegs) {
4950   LLVMContext &Context = FuncInfo.Fn->getContext();
4951 
4952   // Compute whether this value requires an input register, an output register,
4953   // or both.
4954   bool isOutReg = false;
4955   bool isInReg = false;
4956   switch (OpInfo.Type) {
4957   case InlineAsm::isOutput:
4958     isOutReg = true;
4959 
4960     // If there is an input constraint that matches this, we need to reserve
4961     // the input register so no other inputs allocate to it.
4962     isInReg = OpInfo.hasMatchingInput();
4963     break;
4964   case InlineAsm::isInput:
4965     isInReg = true;
4966     isOutReg = false;
4967     break;
4968   case InlineAsm::isClobber:
4969     isOutReg = true;
4970     isInReg = true;
4971     break;
4972   }
4973 
4974 
4975   MachineFunction &MF = DAG.getMachineFunction();
4976   SmallVector<unsigned, 4> Regs;
4977 
4978   // If this is a constraint for a single physreg, or a constraint for a
4979   // register class, find it.
4980   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4981     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4982                                      OpInfo.ConstraintVT);
4983 
4984   unsigned NumRegs = 1;
4985   if (OpInfo.ConstraintVT != MVT::Other) {
4986     // If this is a FP input in an integer register (or visa versa) insert a bit
4987     // cast of the input value.  More generally, handle any case where the input
4988     // value disagrees with the register class we plan to stick this in.
4989     if (OpInfo.Type == InlineAsm::isInput &&
4990         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
4991       // Try to convert to the first EVT that the reg class contains.  If the
4992       // types are identical size, use a bitcast to convert (e.g. two differing
4993       // vector types).
4994       EVT RegVT = *PhysReg.second->vt_begin();
4995       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
4996         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
4997                                          RegVT, OpInfo.CallOperand);
4998         OpInfo.ConstraintVT = RegVT;
4999       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5000         // If the input is a FP value and we want it in FP registers, do a
5001         // bitcast to the corresponding integer type.  This turns an f64 value
5002         // into i64, which can be passed with two i32 values on a 32-bit
5003         // machine.
5004         RegVT = EVT::getIntegerVT(Context,
5005                                   OpInfo.ConstraintVT.getSizeInBits());
5006         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5007                                          RegVT, OpInfo.CallOperand);
5008         OpInfo.ConstraintVT = RegVT;
5009       }
5010     }
5011 
5012     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5013   }
5014 
5015   EVT RegVT;
5016   EVT ValueVT = OpInfo.ConstraintVT;
5017 
5018   // If this is a constraint for a specific physical register, like {r17},
5019   // assign it now.
5020   if (unsigned AssignedReg = PhysReg.first) {
5021     const TargetRegisterClass *RC = PhysReg.second;
5022     if (OpInfo.ConstraintVT == MVT::Other)
5023       ValueVT = *RC->vt_begin();
5024 
5025     // Get the actual register value type.  This is important, because the user
5026     // may have asked for (e.g.) the AX register in i32 type.  We need to
5027     // remember that AX is actually i16 to get the right extension.
5028     RegVT = *RC->vt_begin();
5029 
5030     // This is a explicit reference to a physical register.
5031     Regs.push_back(AssignedReg);
5032 
5033     // If this is an expanded reference, add the rest of the regs to Regs.
5034     if (NumRegs != 1) {
5035       TargetRegisterClass::iterator I = RC->begin();
5036       for (; *I != AssignedReg; ++I)
5037         assert(I != RC->end() && "Didn't find reg!");
5038 
5039       // Already added the first reg.
5040       --NumRegs; ++I;
5041       for (; NumRegs; --NumRegs, ++I) {
5042         assert(I != RC->end() && "Ran out of registers to allocate!");
5043         Regs.push_back(*I);
5044       }
5045     }
5046 
5047     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5048     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5049     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5050     return;
5051   }
5052 
5053   // Otherwise, if this was a reference to an LLVM register class, create vregs
5054   // for this reference.
5055   if (const TargetRegisterClass *RC = PhysReg.second) {
5056     RegVT = *RC->vt_begin();
5057     if (OpInfo.ConstraintVT == MVT::Other)
5058       ValueVT = RegVT;
5059 
5060     // Create the appropriate number of virtual registers.
5061     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5062     for (; NumRegs; --NumRegs)
5063       Regs.push_back(RegInfo.createVirtualRegister(RC));
5064 
5065     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5066     return;
5067   }
5068 
5069   // This is a reference to a register class that doesn't directly correspond
5070   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5071   // registers from the class.
5072   std::vector<unsigned> RegClassRegs
5073     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5074                                             OpInfo.ConstraintVT);
5075 
5076   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5077   unsigned NumAllocated = 0;
5078   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5079     unsigned Reg = RegClassRegs[i];
5080     // See if this register is available.
5081     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5082         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5083       // Make sure we find consecutive registers.
5084       NumAllocated = 0;
5085       continue;
5086     }
5087 
5088     // Check to see if this register is allocatable (i.e. don't give out the
5089     // stack pointer).
5090     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5091     if (!RC) {        // Couldn't allocate this register.
5092       // Reset NumAllocated to make sure we return consecutive registers.
5093       NumAllocated = 0;
5094       continue;
5095     }
5096 
5097     // Okay, this register is good, we can use it.
5098     ++NumAllocated;
5099 
5100     // If we allocated enough consecutive registers, succeed.
5101     if (NumAllocated == NumRegs) {
5102       unsigned RegStart = (i-NumAllocated)+1;
5103       unsigned RegEnd   = i+1;
5104       // Mark all of the allocated registers used.
5105       for (unsigned i = RegStart; i != RegEnd; ++i)
5106         Regs.push_back(RegClassRegs[i]);
5107 
5108       OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5109                                          OpInfo.ConstraintVT);
5110       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5111       return;
5112     }
5113   }
5114 
5115   // Otherwise, we couldn't allocate enough registers for this.
5116 }
5117 
5118 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5119 /// processed uses a memory 'm' constraint.
5120 static bool
5121 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5122                           const TargetLowering &TLI) {
5123   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5124     InlineAsm::ConstraintInfo &CI = CInfos[i];
5125     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5126       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5127       if (CType == TargetLowering::C_Memory)
5128         return true;
5129     }
5130 
5131     // Indirect operand accesses access memory.
5132     if (CI.isIndirect)
5133       return true;
5134   }
5135 
5136   return false;
5137 }
5138 
5139 /// visitInlineAsm - Handle a call to an InlineAsm object.
5140 ///
5141 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5142   InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5143 
5144   /// ConstraintOperands - Information about all of the constraints.
5145   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5146 
5147   std::set<unsigned> OutputRegs, InputRegs;
5148 
5149   // Do a prepass over the constraints, canonicalizing them, and building up the
5150   // ConstraintOperands list.
5151   std::vector<InlineAsm::ConstraintInfo>
5152     ConstraintInfos = IA->ParseConstraints();
5153 
5154   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5155 
5156   SDValue Chain, Flag;
5157 
5158   // We won't need to flush pending loads if this asm doesn't touch
5159   // memory and is nonvolatile.
5160   if (hasMemory || IA->hasSideEffects())
5161     Chain = getRoot();
5162   else
5163     Chain = DAG.getRoot();
5164 
5165   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5166   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5167   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5168     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5169     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5170 
5171     EVT OpVT = MVT::Other;
5172 
5173     // Compute the value type for each operand.
5174     switch (OpInfo.Type) {
5175     case InlineAsm::isOutput:
5176       // Indirect outputs just consume an argument.
5177       if (OpInfo.isIndirect) {
5178         OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5179         break;
5180       }
5181 
5182       // The return value of the call is this value.  As such, there is no
5183       // corresponding argument.
5184       assert(!CS.getType()->isVoidTy() &&
5185              "Bad inline asm!");
5186       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5187         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5188       } else {
5189         assert(ResNo == 0 && "Asm only has one result!");
5190         OpVT = TLI.getValueType(CS.getType());
5191       }
5192       ++ResNo;
5193       break;
5194     case InlineAsm::isInput:
5195       OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5196       break;
5197     case InlineAsm::isClobber:
5198       // Nothing to do.
5199       break;
5200     }
5201 
5202     // If this is an input or an indirect output, process the call argument.
5203     // BasicBlocks are labels, currently appearing only in asm's.
5204     if (OpInfo.CallOperandVal) {
5205       // Strip bitcasts, if any.  This mostly comes up for functions.
5206       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5207 
5208       if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5209         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5210       } else {
5211         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5212       }
5213 
5214       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5215     }
5216 
5217     OpInfo.ConstraintVT = OpVT;
5218   }
5219 
5220   // Second pass over the constraints: compute which constraint option to use
5221   // and assign registers to constraints that want a specific physreg.
5222   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5223     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5224 
5225     // If this is an output operand with a matching input operand, look up the
5226     // matching input. If their types mismatch, e.g. one is an integer, the
5227     // other is floating point, or their sizes are different, flag it as an
5228     // error.
5229     if (OpInfo.hasMatchingInput()) {
5230       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5231       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5232         if ((OpInfo.ConstraintVT.isInteger() !=
5233              Input.ConstraintVT.isInteger()) ||
5234             (OpInfo.ConstraintVT.getSizeInBits() !=
5235              Input.ConstraintVT.getSizeInBits())) {
5236           llvm_report_error("Unsupported asm: input constraint"
5237                             " with a matching output constraint of incompatible"
5238                             " type!");
5239         }
5240         Input.ConstraintVT = OpInfo.ConstraintVT;
5241       }
5242     }
5243 
5244     // Compute the constraint code and ConstraintType to use.
5245     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5246 
5247     // If this is a memory input, and if the operand is not indirect, do what we
5248     // need to to provide an address for the memory input.
5249     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5250         !OpInfo.isIndirect) {
5251       assert(OpInfo.Type == InlineAsm::isInput &&
5252              "Can only indirectify direct input operands!");
5253 
5254       // Memory operands really want the address of the value.  If we don't have
5255       // an indirect input, put it in the constpool if we can, otherwise spill
5256       // it to a stack slot.
5257 
5258       // If the operand is a float, integer, or vector constant, spill to a
5259       // constant pool entry to get its address.
5260       Value *OpVal = OpInfo.CallOperandVal;
5261       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5262           isa<ConstantVector>(OpVal)) {
5263         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5264                                                  TLI.getPointerTy());
5265       } else {
5266         // Otherwise, create a stack slot and emit a store to it before the
5267         // asm.
5268         const Type *Ty = OpVal->getType();
5269         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5270         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5271         MachineFunction &MF = DAG.getMachineFunction();
5272         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5273         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5274         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5275                              OpInfo.CallOperand, StackSlot, NULL, 0);
5276         OpInfo.CallOperand = StackSlot;
5277       }
5278 
5279       // There is no longer a Value* corresponding to this operand.
5280       OpInfo.CallOperandVal = 0;
5281 
5282       // It is now an indirect operand.
5283       OpInfo.isIndirect = true;
5284     }
5285 
5286     // If this constraint is for a specific register, allocate it before
5287     // anything else.
5288     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5289       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5290   }
5291 
5292   ConstraintInfos.clear();
5293 
5294   // Second pass - Loop over all of the operands, assigning virtual or physregs
5295   // to register class operands.
5296   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5297     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5298 
5299     // C_Register operands have already been allocated, Other/Memory don't need
5300     // to be.
5301     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5302       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5303   }
5304 
5305   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5306   std::vector<SDValue> AsmNodeOperands;
5307   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5308   AsmNodeOperands.push_back(
5309           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5310                                       TLI.getPointerTy()));
5311 
5312 
5313   // Loop over all of the inputs, copying the operand values into the
5314   // appropriate registers and processing the output regs.
5315   RegsForValue RetValRegs;
5316 
5317   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5318   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5319 
5320   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5321     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5322 
5323     switch (OpInfo.Type) {
5324     case InlineAsm::isOutput: {
5325       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5326           OpInfo.ConstraintType != TargetLowering::C_Register) {
5327         // Memory output, or 'other' output (e.g. 'X' constraint).
5328         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5329 
5330         // Add information to the INLINEASM node to know about this output.
5331         unsigned ResOpType = 4/*MEM*/ | (1<<3);
5332         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5333                                                         TLI.getPointerTy()));
5334         AsmNodeOperands.push_back(OpInfo.CallOperand);
5335         break;
5336       }
5337 
5338       // Otherwise, this is a register or register class output.
5339 
5340       // Copy the output from the appropriate register.  Find a register that
5341       // we can use.
5342       if (OpInfo.AssignedRegs.Regs.empty()) {
5343         llvm_report_error("Couldn't allocate output reg for"
5344                           " constraint '" + OpInfo.ConstraintCode + "'!");
5345       }
5346 
5347       // If this is an indirect operand, store through the pointer after the
5348       // asm.
5349       if (OpInfo.isIndirect) {
5350         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5351                                                       OpInfo.CallOperandVal));
5352       } else {
5353         // This is the result value of the call.
5354         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5355         // Concatenate this output onto the outputs list.
5356         RetValRegs.append(OpInfo.AssignedRegs);
5357       }
5358 
5359       // Add information to the INLINEASM node to know that this register is
5360       // set.
5361       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5362                                                6 /* EARLYCLOBBER REGDEF */ :
5363                                                2 /* REGDEF */ ,
5364                                                false,
5365                                                0,
5366                                                DAG, SDNodeOrder,
5367                                                AsmNodeOperands);
5368       break;
5369     }
5370     case InlineAsm::isInput: {
5371       SDValue InOperandVal = OpInfo.CallOperand;
5372 
5373       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5374         // If this is required to match an output register we have already set,
5375         // just use its register.
5376         unsigned OperandNo = OpInfo.getMatchedOperand();
5377 
5378         // Scan until we find the definition we already emitted of this operand.
5379         // When we find it, create a RegsForValue operand.
5380         unsigned CurOp = 2;  // The first operand.
5381         for (; OperandNo; --OperandNo) {
5382           // Advance to the next operand.
5383           unsigned OpFlag =
5384             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5385           assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5386                   (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5387                   (OpFlag & 7) == 4 /*MEM*/) &&
5388                  "Skipped past definitions?");
5389           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5390         }
5391 
5392         unsigned OpFlag =
5393           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5394         if ((OpFlag & 7) == 2 /*REGDEF*/
5395             || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5396           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5397           if (OpInfo.isIndirect) {
5398             llvm_report_error("Don't know how to handle tied indirect "
5399                               "register inputs yet!");
5400           }
5401           RegsForValue MatchedRegs;
5402           MatchedRegs.TLI = &TLI;
5403           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5404           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5405           MatchedRegs.RegVTs.push_back(RegVT);
5406           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5407           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5408                i != e; ++i)
5409             MatchedRegs.Regs.push_back
5410               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5411 
5412           // Use the produced MatchedRegs object to
5413           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5414                                     SDNodeOrder, Chain, &Flag);
5415           MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
5416                                            true, OpInfo.getMatchedOperand(),
5417                                            DAG, SDNodeOrder, AsmNodeOperands);
5418           break;
5419         } else {
5420           assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
5421           assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
5422                  "Unexpected number of operands");
5423           // Add information to the INLINEASM node to know about this input.
5424           // See InlineAsm.h isUseOperandTiedToDef.
5425           OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
5426           AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5427                                                           TLI.getPointerTy()));
5428           AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5429           break;
5430         }
5431       }
5432 
5433       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5434         assert(!OpInfo.isIndirect &&
5435                "Don't know how to handle indirect other inputs yet!");
5436 
5437         std::vector<SDValue> Ops;
5438         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5439                                          hasMemory, Ops, DAG);
5440         if (Ops.empty()) {
5441           llvm_report_error("Invalid operand for inline asm"
5442                             " constraint '" + OpInfo.ConstraintCode + "'!");
5443         }
5444 
5445         // Add information to the INLINEASM node to know about this input.
5446         unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5447         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5448                                                         TLI.getPointerTy()));
5449         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5450         break;
5451       } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5452         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5453         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5454                "Memory operands expect pointer values");
5455 
5456         // Add information to the INLINEASM node to know about this input.
5457         unsigned ResOpType = 4/*MEM*/ | (1<<3);
5458         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5459                                                         TLI.getPointerTy()));
5460         AsmNodeOperands.push_back(InOperandVal);
5461         break;
5462       }
5463 
5464       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5465               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5466              "Unknown constraint type!");
5467       assert(!OpInfo.isIndirect &&
5468              "Don't know how to handle indirect register inputs yet!");
5469 
5470       // Copy the input into the appropriate registers.
5471       if (OpInfo.AssignedRegs.Regs.empty()) {
5472         llvm_report_error("Couldn't allocate input reg for"
5473                           " constraint '"+ OpInfo.ConstraintCode +"'!");
5474       }
5475 
5476       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5477                                         SDNodeOrder, Chain, &Flag);
5478 
5479       OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5480                                                DAG, SDNodeOrder,
5481                                                AsmNodeOperands);
5482       break;
5483     }
5484     case InlineAsm::isClobber: {
5485       // Add the clobbered value to the operand list, so that the register
5486       // allocator is aware that the physreg got clobbered.
5487       if (!OpInfo.AssignedRegs.Regs.empty())
5488         OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5489                                                  false, 0, DAG, SDNodeOrder,
5490                                                  AsmNodeOperands);
5491       break;
5492     }
5493     }
5494   }
5495 
5496   // Finish up input operands.
5497   AsmNodeOperands[0] = Chain;
5498   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5499 
5500   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5501                       DAG.getVTList(MVT::Other, MVT::Flag),
5502                       &AsmNodeOperands[0], AsmNodeOperands.size());
5503   Flag = Chain.getValue(1);
5504 
5505   // If this asm returns a register value, copy the result from that register
5506   // and set it as the value of the call.
5507   if (!RetValRegs.Regs.empty()) {
5508     SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5509                                              SDNodeOrder, Chain, &Flag);
5510 
5511     // FIXME: Why don't we do this for inline asms with MRVs?
5512     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5513       EVT ResultType = TLI.getValueType(CS.getType());
5514 
5515       // If any of the results of the inline asm is a vector, it may have the
5516       // wrong width/num elts.  This can happen for register classes that can
5517       // contain multiple different value types.  The preg or vreg allocated may
5518       // not have the same VT as was expected.  Convert it to the right type
5519       // with bit_convert.
5520       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5521         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5522                           ResultType, Val);
5523 
5524       } else if (ResultType != Val.getValueType() &&
5525                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5526         // If a result value was tied to an input value, the computed result may
5527         // have a wider width than the expected result.  Extract the relevant
5528         // portion.
5529         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5530       }
5531 
5532       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5533     }
5534 
5535     setValue(CS.getInstruction(), Val);
5536     // Don't need to use this as a chain in this case.
5537     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5538       return;
5539   }
5540 
5541   std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5542 
5543   // Process indirect outputs, first output all of the flagged copies out of
5544   // physregs.
5545   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5546     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5547     Value *Ptr = IndirectStoresToEmit[i].second;
5548     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5549                                              SDNodeOrder, Chain, &Flag);
5550     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5551 
5552   }
5553 
5554   // Emit the non-flagged stores from the physregs.
5555   SmallVector<SDValue, 8> OutChains;
5556   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5557     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5558                                StoresToEmit[i].first,
5559                                getValue(StoresToEmit[i].second),
5560                                StoresToEmit[i].second, 0);
5561     OutChains.push_back(Val);
5562   }
5563 
5564   if (!OutChains.empty())
5565     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5566                         &OutChains[0], OutChains.size());
5567 
5568   DAG.setRoot(Chain);
5569 }
5570 
5571 void SelectionDAGBuilder::visitVAStart(CallInst &I) {
5572   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5573                           MVT::Other, getRoot(),
5574                           getValue(I.getOperand(1)),
5575                           DAG.getSrcValue(I.getOperand(1))));
5576 }
5577 
5578 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
5579   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5580                            getRoot(), getValue(I.getOperand(0)),
5581                            DAG.getSrcValue(I.getOperand(0)));
5582   setValue(&I, V);
5583   DAG.setRoot(V.getValue(1));
5584 }
5585 
5586 void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
5587   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5588                           MVT::Other, getRoot(),
5589                           getValue(I.getOperand(1)),
5590                           DAG.getSrcValue(I.getOperand(1))));
5591 }
5592 
5593 void SelectionDAGBuilder::visitVACopy(CallInst &I) {
5594   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5595                           MVT::Other, getRoot(),
5596                           getValue(I.getOperand(1)),
5597                           getValue(I.getOperand(2)),
5598                           DAG.getSrcValue(I.getOperand(1)),
5599                           DAG.getSrcValue(I.getOperand(2))));
5600 }
5601 
5602 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5603 /// implementation, which just calls LowerCall.
5604 /// FIXME: When all targets are
5605 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5606 std::pair<SDValue, SDValue>
5607 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5608                             bool RetSExt, bool RetZExt, bool isVarArg,
5609                             bool isInreg, unsigned NumFixedArgs,
5610                             CallingConv::ID CallConv, bool isTailCall,
5611                             bool isReturnValueUsed,
5612                             SDValue Callee,
5613                             ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl,
5614                             unsigned Order) {
5615   // Handle all of the outgoing arguments.
5616   SmallVector<ISD::OutputArg, 32> Outs;
5617   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5618     SmallVector<EVT, 4> ValueVTs;
5619     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5620     for (unsigned Value = 0, NumValues = ValueVTs.size();
5621          Value != NumValues; ++Value) {
5622       EVT VT = ValueVTs[Value];
5623       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5624       SDValue Op = SDValue(Args[i].Node.getNode(),
5625                            Args[i].Node.getResNo() + Value);
5626       ISD::ArgFlagsTy Flags;
5627       unsigned OriginalAlignment =
5628         getTargetData()->getABITypeAlignment(ArgTy);
5629 
5630       if (Args[i].isZExt)
5631         Flags.setZExt();
5632       if (Args[i].isSExt)
5633         Flags.setSExt();
5634       if (Args[i].isInReg)
5635         Flags.setInReg();
5636       if (Args[i].isSRet)
5637         Flags.setSRet();
5638       if (Args[i].isByVal) {
5639         Flags.setByVal();
5640         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5641         const Type *ElementTy = Ty->getElementType();
5642         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5643         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5644         // For ByVal, alignment should come from FE.  BE will guess if this
5645         // info is not there but there are cases it cannot get right.
5646         if (Args[i].Alignment)
5647           FrameAlign = Args[i].Alignment;
5648         Flags.setByValAlign(FrameAlign);
5649         Flags.setByValSize(FrameSize);
5650       }
5651       if (Args[i].isNest)
5652         Flags.setNest();
5653       Flags.setOrigAlign(OriginalAlignment);
5654 
5655       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5656       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5657       SmallVector<SDValue, 4> Parts(NumParts);
5658       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5659 
5660       if (Args[i].isSExt)
5661         ExtendKind = ISD::SIGN_EXTEND;
5662       else if (Args[i].isZExt)
5663         ExtendKind = ISD::ZERO_EXTEND;
5664 
5665       getCopyToParts(DAG, dl, Order, Op, &Parts[0], NumParts,
5666                      PartVT, ExtendKind);
5667 
5668       for (unsigned j = 0; j != NumParts; ++j) {
5669         // if it isn't first piece, alignment must be 1
5670         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5671         if (NumParts > 1 && j == 0)
5672           MyFlags.Flags.setSplit();
5673         else if (j != 0)
5674           MyFlags.Flags.setOrigAlign(1);
5675 
5676         Outs.push_back(MyFlags);
5677       }
5678     }
5679   }
5680 
5681   // Handle the incoming return values from the call.
5682   SmallVector<ISD::InputArg, 32> Ins;
5683   SmallVector<EVT, 4> RetTys;
5684   ComputeValueVTs(*this, RetTy, RetTys);
5685   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5686     EVT VT = RetTys[I];
5687     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5688     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5689     for (unsigned i = 0; i != NumRegs; ++i) {
5690       ISD::InputArg MyFlags;
5691       MyFlags.VT = RegisterVT;
5692       MyFlags.Used = isReturnValueUsed;
5693       if (RetSExt)
5694         MyFlags.Flags.setSExt();
5695       if (RetZExt)
5696         MyFlags.Flags.setZExt();
5697       if (isInreg)
5698         MyFlags.Flags.setInReg();
5699       Ins.push_back(MyFlags);
5700     }
5701   }
5702 
5703   SmallVector<SDValue, 4> InVals;
5704   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5705                     Outs, Ins, dl, DAG, InVals);
5706 
5707   // Verify that the target's LowerCall behaved as expected.
5708   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5709          "LowerCall didn't return a valid chain!");
5710   assert((!isTailCall || InVals.empty()) &&
5711          "LowerCall emitted a return value for a tail call!");
5712   assert((isTailCall || InVals.size() == Ins.size()) &&
5713          "LowerCall didn't emit the correct number of values!");
5714   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5715           assert(InVals[i].getNode() &&
5716                  "LowerCall emitted a null value!");
5717           assert(Ins[i].VT == InVals[i].getValueType() &&
5718                  "LowerCall emitted a value with the wrong type!");
5719         });
5720 
5721   // For a tail call, the return value is merely live-out and there aren't
5722   // any nodes in the DAG representing it. Return a special value to
5723   // indicate that a tail call has been emitted and no more Instructions
5724   // should be processed in the current block.
5725   if (isTailCall) {
5726     DAG.setRoot(Chain);
5727     return std::make_pair(SDValue(), SDValue());
5728   }
5729 
5730   // Collect the legal value parts into potentially illegal values
5731   // that correspond to the original function's return values.
5732   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5733   if (RetSExt)
5734     AssertOp = ISD::AssertSext;
5735   else if (RetZExt)
5736     AssertOp = ISD::AssertZext;
5737   SmallVector<SDValue, 4> ReturnValues;
5738   unsigned CurReg = 0;
5739   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5740     EVT VT = RetTys[I];
5741     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5742     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5743 
5744     ReturnValues.push_back(getCopyFromParts(DAG, dl, Order, &InVals[CurReg],
5745                                             NumRegs, RegisterVT, VT,
5746                                             AssertOp));
5747     CurReg += NumRegs;
5748   }
5749 
5750   // For a function returning void, there is no return value. We can't create
5751   // such a node, so we just return a null return value in that case. In
5752   // that case, nothing will actualy look at the value.
5753   if (ReturnValues.empty())
5754     return std::make_pair(SDValue(), Chain);
5755 
5756   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5757                             DAG.getVTList(&RetTys[0], RetTys.size()),
5758                             &ReturnValues[0], ReturnValues.size());
5759   return std::make_pair(Res, Chain);
5760 }
5761 
5762 void TargetLowering::LowerOperationWrapper(SDNode *N,
5763                                            SmallVectorImpl<SDValue> &Results,
5764                                            SelectionDAG &DAG) {
5765   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5766   if (Res.getNode())
5767     Results.push_back(Res);
5768 }
5769 
5770 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5771   llvm_unreachable("LowerOperation not implemented for this target!");
5772   return SDValue();
5773 }
5774 
5775 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5776   SDValue Op = getValue(V);
5777   assert((Op.getOpcode() != ISD::CopyFromReg ||
5778           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5779          "Copy from a reg to the same reg!");
5780   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5781 
5782   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5783   SDValue Chain = DAG.getEntryNode();
5784   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), SDNodeOrder, Chain, 0);
5785   PendingExports.push_back(Chain);
5786 }
5787 
5788 #include "llvm/CodeGen/SelectionDAGISel.h"
5789 
5790 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
5791   // If this is the entry block, emit arguments.
5792   Function &F = *LLVMBB->getParent();
5793   SelectionDAG &DAG = SDB->DAG;
5794   SDValue OldRoot = DAG.getRoot();
5795   DebugLoc dl = SDB->getCurDebugLoc();
5796   const TargetData *TD = TLI.getTargetData();
5797   SmallVector<ISD::InputArg, 16> Ins;
5798 
5799   // Check whether the function can return without sret-demotion.
5800   SmallVector<EVT, 4> OutVTs;
5801   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5802   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5803                 OutVTs, OutsFlags, TLI);
5804   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5805 
5806   FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5807                                           OutVTs, OutsFlags, DAG);
5808   if (!FLI.CanLowerReturn) {
5809     // Put in an sret pointer parameter before all the other parameters.
5810     SmallVector<EVT, 1> ValueVTs;
5811     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5812 
5813     // NOTE: Assuming that a pointer will never break down to more than one VT
5814     // or one register.
5815     ISD::ArgFlagsTy Flags;
5816     Flags.setSRet();
5817     EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5818     ISD::InputArg RetArg(Flags, RegisterVT, true);
5819     Ins.push_back(RetArg);
5820   }
5821 
5822   // Set up the incoming argument description vector.
5823   unsigned Idx = 1;
5824   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5825        I != E; ++I, ++Idx) {
5826     SmallVector<EVT, 4> ValueVTs;
5827     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5828     bool isArgValueUsed = !I->use_empty();
5829     for (unsigned Value = 0, NumValues = ValueVTs.size();
5830          Value != NumValues; ++Value) {
5831       EVT VT = ValueVTs[Value];
5832       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5833       ISD::ArgFlagsTy Flags;
5834       unsigned OriginalAlignment =
5835         TD->getABITypeAlignment(ArgTy);
5836 
5837       if (F.paramHasAttr(Idx, Attribute::ZExt))
5838         Flags.setZExt();
5839       if (F.paramHasAttr(Idx, Attribute::SExt))
5840         Flags.setSExt();
5841       if (F.paramHasAttr(Idx, Attribute::InReg))
5842         Flags.setInReg();
5843       if (F.paramHasAttr(Idx, Attribute::StructRet))
5844         Flags.setSRet();
5845       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5846         Flags.setByVal();
5847         const PointerType *Ty = cast<PointerType>(I->getType());
5848         const Type *ElementTy = Ty->getElementType();
5849         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5850         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5851         // For ByVal, alignment should be passed from FE.  BE will guess if
5852         // this info is not there but there are cases it cannot get right.
5853         if (F.getParamAlignment(Idx))
5854           FrameAlign = F.getParamAlignment(Idx);
5855         Flags.setByValAlign(FrameAlign);
5856         Flags.setByValSize(FrameSize);
5857       }
5858       if (F.paramHasAttr(Idx, Attribute::Nest))
5859         Flags.setNest();
5860       Flags.setOrigAlign(OriginalAlignment);
5861 
5862       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5863       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5864       for (unsigned i = 0; i != NumRegs; ++i) {
5865         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5866         if (NumRegs > 1 && i == 0)
5867           MyFlags.Flags.setSplit();
5868         // if it isn't first piece, alignment must be 1
5869         else if (i > 0)
5870           MyFlags.Flags.setOrigAlign(1);
5871         Ins.push_back(MyFlags);
5872       }
5873     }
5874   }
5875 
5876   // Call the target to set up the argument values.
5877   SmallVector<SDValue, 8> InVals;
5878   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5879                                              F.isVarArg(), Ins,
5880                                              dl, DAG, InVals);
5881 
5882   // Verify that the target's LowerFormalArguments behaved as expected.
5883   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5884          "LowerFormalArguments didn't return a valid chain!");
5885   assert(InVals.size() == Ins.size() &&
5886          "LowerFormalArguments didn't emit the correct number of values!");
5887   DEBUG({
5888       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5889         assert(InVals[i].getNode() &&
5890                "LowerFormalArguments emitted a null value!");
5891         assert(Ins[i].VT == InVals[i].getValueType() &&
5892                "LowerFormalArguments emitted a value with the wrong type!");
5893       }
5894     });
5895 
5896   // Update the DAG with the new chain value resulting from argument lowering.
5897   DAG.setRoot(NewRoot);
5898 
5899   // Set up the argument values.
5900   unsigned i = 0;
5901   Idx = 1;
5902   if (!FLI.CanLowerReturn) {
5903     // Create a virtual register for the sret pointer, and put in a copy
5904     // from the sret argument into it.
5905     SmallVector<EVT, 1> ValueVTs;
5906     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5907     EVT VT = ValueVTs[0];
5908     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5909     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5910     SDValue ArgValue = getCopyFromParts(DAG, dl, 0, &InVals[0], 1,
5911                                         RegVT, VT, AssertOp);
5912 
5913     MachineFunction& MF = SDB->DAG.getMachineFunction();
5914     MachineRegisterInfo& RegInfo = MF.getRegInfo();
5915     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5916     FLI.DemoteRegister = SRetReg;
5917     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5918                                     SRetReg, ArgValue);
5919     DAG.setRoot(NewRoot);
5920 
5921     // i indexes lowered arguments.  Bump it past the hidden sret argument.
5922     // Idx indexes LLVM arguments.  Don't touch it.
5923     ++i;
5924   }
5925 
5926   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5927       ++I, ++Idx) {
5928     SmallVector<SDValue, 4> ArgValues;
5929     SmallVector<EVT, 4> ValueVTs;
5930     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5931     unsigned NumValues = ValueVTs.size();
5932     for (unsigned Value = 0; Value != NumValues; ++Value) {
5933       EVT VT = ValueVTs[Value];
5934       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5935       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5936 
5937       if (!I->use_empty()) {
5938         ISD::NodeType AssertOp = ISD::DELETED_NODE;
5939         if (F.paramHasAttr(Idx, Attribute::SExt))
5940           AssertOp = ISD::AssertSext;
5941         else if (F.paramHasAttr(Idx, Attribute::ZExt))
5942           AssertOp = ISD::AssertZext;
5943 
5944         ArgValues.push_back(getCopyFromParts(DAG, dl, 0, &InVals[i],
5945                                              NumParts, PartVT, VT,
5946                                              AssertOp));
5947       }
5948 
5949       i += NumParts;
5950     }
5951 
5952     if (!I->use_empty()) {
5953       SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
5954                                        SDB->getCurDebugLoc());
5955       SDB->setValue(I, Res);
5956 
5957       // If this argument is live outside of the entry block, insert a copy from
5958       // whereever we got it to the vreg that other BB's will reference it as.
5959       SDB->CopyToExportRegsIfNeeded(I);
5960     }
5961   }
5962 
5963   assert(i == InVals.size() && "Argument register count mismatch!");
5964 
5965   // Finally, if the target has anything special to do, allow it to do so.
5966   // FIXME: this should insert code into the DAG!
5967   EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
5968 }
5969 
5970 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5971 /// ensure constants are generated when needed.  Remember the virtual registers
5972 /// that need to be added to the Machine PHI nodes as input.  We cannot just
5973 /// directly add them, because expansion might result in multiple MBB's for one
5974 /// BB.  As such, the start of the BB might correspond to a different MBB than
5975 /// the end.
5976 ///
5977 void
5978 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5979   TerminatorInst *TI = LLVMBB->getTerminator();
5980 
5981   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5982 
5983   // Check successor nodes' PHI nodes that expect a constant to be available
5984   // from this block.
5985   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5986     BasicBlock *SuccBB = TI->getSuccessor(succ);
5987     if (!isa<PHINode>(SuccBB->begin())) continue;
5988     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5989 
5990     // If this terminator has multiple identical successors (common for
5991     // switches), only handle each succ once.
5992     if (!SuccsHandled.insert(SuccMBB)) continue;
5993 
5994     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5995     PHINode *PN;
5996 
5997     // At this point we know that there is a 1-1 correspondence between LLVM PHI
5998     // nodes and Machine PHI nodes, but the incoming operands have not been
5999     // emitted yet.
6000     for (BasicBlock::iterator I = SuccBB->begin();
6001          (PN = dyn_cast<PHINode>(I)); ++I) {
6002       // Ignore dead phi's.
6003       if (PN->use_empty()) continue;
6004 
6005       unsigned Reg;
6006       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6007 
6008       if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6009         unsigned &RegOut = SDB->ConstantsOut[C];
6010         if (RegOut == 0) {
6011           RegOut = FuncInfo->CreateRegForValue(C);
6012           SDB->CopyValueToVirtualRegister(C, RegOut);
6013         }
6014         Reg = RegOut;
6015       } else {
6016         Reg = FuncInfo->ValueMap[PHIOp];
6017         if (Reg == 0) {
6018           assert(isa<AllocaInst>(PHIOp) &&
6019                  FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6020                  "Didn't codegen value into a register!??");
6021           Reg = FuncInfo->CreateRegForValue(PHIOp);
6022           SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6023         }
6024       }
6025 
6026       // Remember that this register needs to added to the machine PHI node as
6027       // the input for this MBB.
6028       SmallVector<EVT, 4> ValueVTs;
6029       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6030       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6031         EVT VT = ValueVTs[vti];
6032         unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6033         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6034           SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6035         Reg += NumRegisters;
6036       }
6037     }
6038   }
6039   SDB->ConstantsOut.clear();
6040 }
6041 
6042 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6043 /// supports legal types, and it emits MachineInstrs directly instead of
6044 /// creating SelectionDAG nodes.
6045 ///
6046 bool
6047 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6048                                                       FastISel *F) {
6049   TerminatorInst *TI = LLVMBB->getTerminator();
6050 
6051   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6052   unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6053 
6054   // Check successor nodes' PHI nodes that expect a constant to be available
6055   // from this block.
6056   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6057     BasicBlock *SuccBB = TI->getSuccessor(succ);
6058     if (!isa<PHINode>(SuccBB->begin())) continue;
6059     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6060 
6061     // If this terminator has multiple identical successors (common for
6062     // switches), only handle each succ once.
6063     if (!SuccsHandled.insert(SuccMBB)) continue;
6064 
6065     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6066     PHINode *PN;
6067 
6068     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6069     // nodes and Machine PHI nodes, but the incoming operands have not been
6070     // emitted yet.
6071     for (BasicBlock::iterator I = SuccBB->begin();
6072          (PN = dyn_cast<PHINode>(I)); ++I) {
6073       // Ignore dead phi's.
6074       if (PN->use_empty()) continue;
6075 
6076       // Only handle legal types. Two interesting things to note here. First,
6077       // by bailing out early, we may leave behind some dead instructions,
6078       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6079       // own moves. Second, this check is necessary becuase FastISel doesn't
6080       // use CreateRegForValue to create registers, so it always creates
6081       // exactly one register for each non-void instruction.
6082       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6083       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6084         // Promote MVT::i1.
6085         if (VT == MVT::i1)
6086           VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6087         else {
6088           SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6089           return false;
6090         }
6091       }
6092 
6093       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6094 
6095       unsigned Reg = F->getRegForValue(PHIOp);
6096       if (Reg == 0) {
6097         SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6098         return false;
6099       }
6100       SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6101     }
6102   }
6103 
6104   return true;
6105 }
6106