xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 9525af7b916a0f706c3646946a5c4cd7cf41cb55)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446                           DAG.getVectorIdxConstant(0, DL));
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isFixedLengthVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   unsigned PartNumElts = PartVT.getVectorNumElements();
620   unsigned ValueNumElts = ValueVT.getVectorNumElements();
621   if (PartNumElts > ValueNumElts &&
622       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623     EVT ElementVT = PartVT.getVectorElementType();
624     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
625     // undef elements.
626     SmallVector<SDValue, 16> Ops;
627     DAG.ExtractVectorElements(Val, Ops);
628     SDValue EltUndef = DAG.getUNDEF(ElementVT);
629     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630       Ops.push_back(EltUndef);
631 
632     // FIXME: Use CONCAT for 2x -> 4x.
633     return DAG.getBuildVector(PartVT, DL, Ops);
634   }
635 
636   return SDValue();
637 }
638 
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642                                  SDValue Val, SDValue *Parts, unsigned NumParts,
643                                  MVT PartVT, const Value *V,
644                                  Optional<CallingConv::ID> CallConv) {
645   EVT ValueVT = Val.getValueType();
646   assert(ValueVT.isVector() && "Not a vector");
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648   const bool IsABIRegCopy = CallConv.hasValue();
649 
650   if (NumParts == 1) {
651     EVT PartEVT = PartVT;
652     if (PartEVT == ValueVT) {
653       // Nothing to do.
654     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655       // Bitconvert vector->vector case.
656       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658       Val = Widened;
659     } else if (PartVT.isVector() &&
660                PartEVT.getVectorElementType().bitsGE(
661                    ValueVT.getVectorElementType()) &&
662                PartEVT.getVectorElementCount() ==
663                    ValueVT.getVectorElementCount()) {
664 
665       // Promoted vector extract
666       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667     } else {
668       if (ValueVT.getVectorElementCount().isScalar()) {
669         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670                           DAG.getVectorIdxConstant(0, DL));
671       } else {
672         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
673         assert(PartVT.getFixedSizeInBits() > ValueSize &&
674                "lossy conversion of vector to scalar type");
675         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
676         Val = DAG.getBitcast(IntermediateType, Val);
677         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
678       }
679     }
680 
681     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682     Parts[0] = Val;
683     return;
684   }
685 
686   // Handle a multi-element vector.
687   EVT IntermediateVT;
688   MVT RegisterVT;
689   unsigned NumIntermediates;
690   unsigned NumRegs;
691   if (IsABIRegCopy) {
692     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694         NumIntermediates, RegisterVT);
695   } else {
696     NumRegs =
697         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698                                    NumIntermediates, RegisterVT);
699   }
700 
701   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702   NumParts = NumRegs; // Silence a compiler warning.
703   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
704 
705   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706          "Mixing scalable and fixed vectors when copying in parts");
707 
708   Optional<ElementCount> DestEltCnt;
709 
710   if (IntermediateVT.isVector())
711     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712   else
713     DestEltCnt = ElementCount::getFixed(NumIntermediates);
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717   if (ValueVT != BuiltVectorTy) {
718     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719       Val = Widened;
720 
721     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
722   }
723 
724   // Split the vector into intermediate operands.
725   SmallVector<SDValue, 8> Ops(NumIntermediates);
726   for (unsigned i = 0; i != NumIntermediates; ++i) {
727     if (IntermediateVT.isVector()) {
728       // This does something sensible for scalable vectors - see the
729       // definition of EXTRACT_SUBVECTOR for further details.
730       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731       Ops[i] =
732           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734     } else {
735       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736                            DAG.getVectorIdxConstant(i, DL));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!Register::isVirtualRegister(Regs[Part + i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     Register SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, TypeSize>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     TypeSize RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   PendingConstrainedFP.clear();
1014   PendingConstrainedFPStrict.clear();
1015   CurInst = nullptr;
1016   HasTailCall = false;
1017   SDNodeOrder = LowestSDNodeOrder;
1018   StatepointLowering.clear();
1019 }
1020 
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022   DanglingDebugInfoMap.clear();
1023 }
1024 
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027   SDValue Root = DAG.getRoot();
1028 
1029   if (Pending.empty())
1030     return Root;
1031 
1032   // Add current root to PendingChains, unless we already indirectly
1033   // depend on it.
1034   if (Root.getOpcode() != ISD::EntryToken) {
1035     unsigned i = 0, e = Pending.size();
1036     for (; i != e; ++i) {
1037       assert(Pending[i].getNode()->getNumOperands() > 1);
1038       if (Pending[i].getNode()->getOperand(0) == Root)
1039         break;  // Don't add the root if we already indirectly depend on it.
1040     }
1041 
1042     if (i == e)
1043       Pending.push_back(Root);
1044   }
1045 
1046   if (Pending.size() == 1)
1047     Root = Pending[0];
1048   else
1049     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1050 
1051   DAG.setRoot(Root);
1052   Pending.clear();
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057   return updateRoot(PendingLoads);
1058 }
1059 
1060 SDValue SelectionDAGBuilder::getRoot() {
1061   // Chain up all pending constrained intrinsics together with all
1062   // pending loads, by simply appending them to PendingLoads and
1063   // then calling getMemoryRoot().
1064   PendingLoads.reserve(PendingLoads.size() +
1065                        PendingConstrainedFP.size() +
1066                        PendingConstrainedFPStrict.size());
1067   PendingLoads.append(PendingConstrainedFP.begin(),
1068                       PendingConstrainedFP.end());
1069   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070                       PendingConstrainedFPStrict.end());
1071   PendingConstrainedFP.clear();
1072   PendingConstrainedFPStrict.clear();
1073   return getMemoryRoot();
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077   // We need to emit pending fpexcept.strict constrained intrinsics,
1078   // so append them to the PendingExports list.
1079   PendingExports.append(PendingConstrainedFPStrict.begin(),
1080                         PendingConstrainedFPStrict.end());
1081   PendingConstrainedFPStrict.clear();
1082   return updateRoot(PendingExports);
1083 }
1084 
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086   // Set up outgoing PHI node register values before emitting the terminator.
1087   if (I.isTerminator()) {
1088     HandlePHINodesInSuccessorBlocks(I.getParent());
1089   }
1090 
1091   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092   if (!isa<DbgInfoIntrinsic>(I))
1093     ++SDNodeOrder;
1094 
1095   CurInst = &I;
1096 
1097   visit(I.getOpcode(), I);
1098 
1099   if (!I.isTerminator() && !HasTailCall &&
1100       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101     CopyToExportRegsIfNeeded(&I);
1102 
1103   CurInst = nullptr;
1104 }
1105 
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 }
1109 
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111   // Note: this doesn't use InstVisitor, because it has to work with
1112   // ConstantExpr's in addition to instructions.
1113   switch (Opcode) {
1114   default: llvm_unreachable("Unknown instruction type encountered!");
1115     // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1119   }
1120 }
1121 
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1123                                                 const DIExpression *Expr) {
1124   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1125     const DbgValueInst *DI = DDI.getDI();
1126     DIVariable *DanglingVariable = DI->getVariable();
1127     DIExpression *DanglingExpr = DI->getExpression();
1128     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1129       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1130       return true;
1131     }
1132     return false;
1133   };
1134 
1135   for (auto &DDIMI : DanglingDebugInfoMap) {
1136     DanglingDebugInfoVector &DDIV = DDIMI.second;
1137 
1138     // If debug info is to be dropped, run it through final checks to see
1139     // whether it can be salvaged.
1140     for (auto &DDI : DDIV)
1141       if (isMatchingDbgValue(DDI))
1142         salvageUnresolvedDbgValue(DDI);
1143 
1144     erase_if(DDIV, isMatchingDbgValue);
1145   }
1146 }
1147 
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1151                                                    SDValue Val) {
1152   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1153   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1154     return;
1155 
1156   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1157   for (auto &DDI : DDIV) {
1158     const DbgValueInst *DI = DDI.getDI();
1159     assert(DI && "Ill-formed DanglingDebugInfo");
1160     assert(!DDI.getDI()->hasArgList() &&
1161            "Variadic dbg.values should not yet be left dangling.");
1162     DebugLoc dl = DDI.getdl();
1163     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1164     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1165     DILocalVariable *Variable = DI->getVariable();
1166     DIExpression *Expr = DI->getExpression();
1167     assert(Variable->isValidLocationForIntrinsic(dl) &&
1168            "Expected inlined-at fields to agree");
1169     SDDbgValue *SDV;
1170     if (Val.getNode()) {
1171       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1172       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1173       // we couldn't resolve it directly when examining the DbgValue intrinsic
1174       // in the first place we should not be more successful here). Unless we
1175       // have some test case that prove this to be correct we should avoid
1176       // calling EmitFuncArgumentDbgValue here.
1177       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1178         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1179                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1180         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1181         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1182         // inserted after the definition of Val when emitting the instructions
1183         // after ISel. An alternative could be to teach
1184         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1185         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1186                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1187                    << ValSDNodeOrder << "\n");
1188         SDV = getDbgValue(Val, Variable, Expr, dl,
1189                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1190         DAG.AddDbgValue(SDV, Val.getNode(), false);
1191       } else
1192         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1193                           << "in EmitFuncArgumentDbgValue\n");
1194     } else {
1195       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1196       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1197       auto SDV =
1198           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1199       DAG.AddDbgValue(SDV, nullptr, false);
1200     }
1201   }
1202   DDIV.clear();
1203 }
1204 
1205 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1206   assert(!DDI.getDI()->hasArgList() &&
1207          "Variadic dbg.values should not yet be left dangling.");
1208   Value *V = DDI.getDI()->getValue(0);
1209   DILocalVariable *Var = DDI.getDI()->getVariable();
1210   DIExpression *Expr = DDI.getDI()->getExpression();
1211   DebugLoc DL = DDI.getdl();
1212   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1213   unsigned SDOrder = DDI.getSDNodeOrder();
1214 
1215   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1216   // that DW_OP_stack_value is desired.
1217   assert(isa<DbgValueInst>(DDI.getDI()));
1218   bool StackValue = true;
1219 
1220   // Can this Value can be encoded without any further work?
1221   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1222     return;
1223 
1224   // Attempt to salvage back through as many instructions as possible. Bail if
1225   // a non-instruction is seen, such as a constant expression or global
1226   // variable. FIXME: Further work could recover those too.
1227   while (isa<Instruction>(V)) {
1228     Instruction &VAsInst = *cast<Instruction>(V);
1229     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1230 
1231     // If we cannot salvage any further, and haven't yet found a suitable debug
1232     // expression, bail out.
1233     if (!NewExpr)
1234       break;
1235 
1236     // New value and expr now represent this debuginfo.
1237     V = VAsInst.getOperand(0);
1238     Expr = NewExpr;
1239 
1240     // Some kind of simplification occurred: check whether the operand of the
1241     // salvaged debug expression can be encoded in this DAG.
1242     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1243       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1244                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1245       return;
1246     }
1247   }
1248 
1249   // This was the final opportunity to salvage this debug information, and it
1250   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1251   // any earlier variable location.
1252   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1253   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1254   DAG.AddDbgValue(SDV, nullptr, false);
1255 
1256   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1257                     << "\n");
1258   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1259                     << "\n");
1260 }
1261 
1262 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1263                                            DIExpression *Expr, DebugLoc dl,
1264                                            DebugLoc InstDL, unsigned Order) {
1265   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1266   SDDbgValue *SDV;
1267   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1268       isa<ConstantPointerNull>(V)) {
1269     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1270     DAG.AddDbgValue(SDV, nullptr, false);
1271     return true;
1272   }
1273 
1274   // If the Value is a frame index, we can create a FrameIndex debug value
1275   // without relying on the DAG at all.
1276   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1277     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1278     if (SI != FuncInfo.StaticAllocaMap.end()) {
1279       auto SDV =
1280           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1281                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1282       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1283       // is still available even if the SDNode gets optimized out.
1284       DAG.AddDbgValue(SDV, nullptr, false);
1285       return true;
1286     }
1287   }
1288 
1289   // Do not use getValue() in here; we don't want to generate code at
1290   // this point if it hasn't been done yet.
1291   SDValue N = NodeMap[V];
1292   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1293     N = UnusedArgNodeMap[V];
1294   if (N.getNode()) {
1295     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1296       return true;
1297     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1298     DAG.AddDbgValue(SDV, N.getNode(), false);
1299     return true;
1300   }
1301 
1302   // Special rules apply for the first dbg.values of parameter variables in a
1303   // function. Identify them by the fact they reference Argument Values, that
1304   // they're parameters, and they are parameters of the current function. We
1305   // need to let them dangle until they get an SDNode.
1306   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1307                        !InstDL.getInlinedAt();
1308   if (!IsParamOfFunc) {
1309     // The value is not used in this block yet (or it would have an SDNode).
1310     // We still want the value to appear for the user if possible -- if it has
1311     // an associated VReg, we can refer to that instead.
1312     auto VMI = FuncInfo.ValueMap.find(V);
1313     if (VMI != FuncInfo.ValueMap.end()) {
1314       unsigned Reg = VMI->second;
1315       // If this is a PHI node, it may be split up into several MI PHI nodes
1316       // (in FunctionLoweringInfo::set).
1317       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1318                        V->getType(), None);
1319       if (RFV.occupiesMultipleRegs()) {
1320         unsigned Offset = 0;
1321         unsigned BitsToDescribe = 0;
1322         if (auto VarSize = Var->getSizeInBits())
1323           BitsToDescribe = *VarSize;
1324         if (auto Fragment = Expr->getFragmentInfo())
1325           BitsToDescribe = Fragment->SizeInBits;
1326         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1327           // Bail out if all bits are described already.
1328           if (Offset >= BitsToDescribe)
1329             break;
1330           // TODO: handle scalable vectors.
1331           unsigned RegisterSize = RegAndSize.second;
1332           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1333               ? BitsToDescribe - Offset
1334               : RegisterSize;
1335           auto FragmentExpr = DIExpression::createFragmentExpression(
1336               Expr, Offset, FragmentSize);
1337           if (!FragmentExpr)
1338               continue;
1339           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1340                                     false, dl, SDNodeOrder);
1341           DAG.AddDbgValue(SDV, nullptr, false);
1342           Offset += RegisterSize;
1343         }
1344       } else {
1345         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1346         DAG.AddDbgValue(SDV, nullptr, false);
1347       }
1348       return true;
1349     }
1350   }
1351 
1352   return false;
1353 }
1354 
1355 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1356   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1357   for (auto &Pair : DanglingDebugInfoMap)
1358     for (auto &DDI : Pair.second)
1359       salvageUnresolvedDbgValue(DDI);
1360   clearDanglingDebugInfo();
1361 }
1362 
1363 /// getCopyFromRegs - If there was virtual register allocated for the value V
1364 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1365 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1366   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1367   SDValue Result;
1368 
1369   if (It != FuncInfo.ValueMap.end()) {
1370     Register InReg = It->second;
1371 
1372     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1373                      DAG.getDataLayout(), InReg, Ty,
1374                      None); // This is not an ABI copy.
1375     SDValue Chain = DAG.getEntryNode();
1376     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1377                                  V);
1378     resolveDanglingDebugInfo(V, Result);
1379   }
1380 
1381   return Result;
1382 }
1383 
1384 /// getValue - Return an SDValue for the given Value.
1385 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1386   // If we already have an SDValue for this value, use it. It's important
1387   // to do this first, so that we don't create a CopyFromReg if we already
1388   // have a regular SDValue.
1389   SDValue &N = NodeMap[V];
1390   if (N.getNode()) return N;
1391 
1392   // If there's a virtual register allocated and initialized for this
1393   // value, use it.
1394   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1395     return copyFromReg;
1396 
1397   // Otherwise create a new SDValue and remember it.
1398   SDValue Val = getValueImpl(V);
1399   NodeMap[V] = Val;
1400   resolveDanglingDebugInfo(V, Val);
1401   return Val;
1402 }
1403 
1404 /// getNonRegisterValue - Return an SDValue for the given Value, but
1405 /// don't look in FuncInfo.ValueMap for a virtual register.
1406 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1407   // If we already have an SDValue for this value, use it.
1408   SDValue &N = NodeMap[V];
1409   if (N.getNode()) {
1410     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1411       // Remove the debug location from the node as the node is about to be used
1412       // in a location which may differ from the original debug location.  This
1413       // is relevant to Constant and ConstantFP nodes because they can appear
1414       // as constant expressions inside PHI nodes.
1415       N->setDebugLoc(DebugLoc());
1416     }
1417     return N;
1418   }
1419 
1420   // Otherwise create a new SDValue and remember it.
1421   SDValue Val = getValueImpl(V);
1422   NodeMap[V] = Val;
1423   resolveDanglingDebugInfo(V, Val);
1424   return Val;
1425 }
1426 
1427 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1428 /// Create an SDValue for the given value.
1429 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1431 
1432   if (const Constant *C = dyn_cast<Constant>(V)) {
1433     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1434 
1435     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1436       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1437 
1438     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1439       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1440 
1441     if (isa<ConstantPointerNull>(C)) {
1442       unsigned AS = V->getType()->getPointerAddressSpace();
1443       return DAG.getConstant(0, getCurSDLoc(),
1444                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1445     }
1446 
1447     if (match(C, m_VScale(DAG.getDataLayout())))
1448       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1449 
1450     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1451       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1452 
1453     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1454       return DAG.getUNDEF(VT);
1455 
1456     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1457       visit(CE->getOpcode(), *CE);
1458       SDValue N1 = NodeMap[V];
1459       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1460       return N1;
1461     }
1462 
1463     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1464       SmallVector<SDValue, 4> Constants;
1465       for (const Use &U : C->operands()) {
1466         SDNode *Val = getValue(U).getNode();
1467         // If the operand is an empty aggregate, there are no values.
1468         if (!Val) continue;
1469         // Add each leaf value from the operand to the Constants list
1470         // to form a flattened list of all the values.
1471         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1472           Constants.push_back(SDValue(Val, i));
1473       }
1474 
1475       return DAG.getMergeValues(Constants, getCurSDLoc());
1476     }
1477 
1478     if (const ConstantDataSequential *CDS =
1479           dyn_cast<ConstantDataSequential>(C)) {
1480       SmallVector<SDValue, 4> Ops;
1481       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1482         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1483         // Add each leaf value from the operand to the Constants list
1484         // to form a flattened list of all the values.
1485         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1486           Ops.push_back(SDValue(Val, i));
1487       }
1488 
1489       if (isa<ArrayType>(CDS->getType()))
1490         return DAG.getMergeValues(Ops, getCurSDLoc());
1491       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1492     }
1493 
1494     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1495       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1496              "Unknown struct or array constant!");
1497 
1498       SmallVector<EVT, 4> ValueVTs;
1499       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1500       unsigned NumElts = ValueVTs.size();
1501       if (NumElts == 0)
1502         return SDValue(); // empty struct
1503       SmallVector<SDValue, 4> Constants(NumElts);
1504       for (unsigned i = 0; i != NumElts; ++i) {
1505         EVT EltVT = ValueVTs[i];
1506         if (isa<UndefValue>(C))
1507           Constants[i] = DAG.getUNDEF(EltVT);
1508         else if (EltVT.isFloatingPoint())
1509           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1510         else
1511           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1512       }
1513 
1514       return DAG.getMergeValues(Constants, getCurSDLoc());
1515     }
1516 
1517     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1518       return DAG.getBlockAddress(BA, VT);
1519 
1520     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1521       return getValue(Equiv->getGlobalValue());
1522 
1523     VectorType *VecTy = cast<VectorType>(V->getType());
1524 
1525     // Now that we know the number and type of the elements, get that number of
1526     // elements into the Ops array based on what kind of constant it is.
1527     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1528       SmallVector<SDValue, 16> Ops;
1529       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1530       for (unsigned i = 0; i != NumElements; ++i)
1531         Ops.push_back(getValue(CV->getOperand(i)));
1532 
1533       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1534     } else if (isa<ConstantAggregateZero>(C)) {
1535       EVT EltVT =
1536           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1537 
1538       SDValue Op;
1539       if (EltVT.isFloatingPoint())
1540         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1541       else
1542         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1543 
1544       if (isa<ScalableVectorType>(VecTy))
1545         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1546       else {
1547         SmallVector<SDValue, 16> Ops;
1548         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1549         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1550       }
1551     }
1552     llvm_unreachable("Unknown vector constant");
1553   }
1554 
1555   // If this is a static alloca, generate it as the frameindex instead of
1556   // computation.
1557   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558     DenseMap<const AllocaInst*, int>::iterator SI =
1559       FuncInfo.StaticAllocaMap.find(AI);
1560     if (SI != FuncInfo.StaticAllocaMap.end())
1561       return DAG.getFrameIndex(SI->second,
1562                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1563   }
1564 
1565   // If this is an instruction which fast-isel has deferred, select it now.
1566   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1568 
1569     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570                      Inst->getType(), None);
1571     SDValue Chain = DAG.getEntryNode();
1572     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1573   }
1574 
1575   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1576     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1577   }
1578   llvm_unreachable("Can't get register for value!");
1579 }
1580 
1581 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1582   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1583   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1584   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1585   bool IsSEH = isAsynchronousEHPersonality(Pers);
1586   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1587   if (!IsSEH)
1588     CatchPadMBB->setIsEHScopeEntry();
1589   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1590   if (IsMSVCCXX || IsCoreCLR)
1591     CatchPadMBB->setIsEHFuncletEntry();
1592 }
1593 
1594 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1595   // Update machine-CFG edge.
1596   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1597   FuncInfo.MBB->addSuccessor(TargetMBB);
1598   TargetMBB->setIsEHCatchretTarget(true);
1599   DAG.getMachineFunction().setHasEHCatchret(true);
1600 
1601   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602   bool IsSEH = isAsynchronousEHPersonality(Pers);
1603   if (IsSEH) {
1604     // If this is not a fall-through branch or optimizations are switched off,
1605     // emit the branch.
1606     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607         TM.getOptLevel() == CodeGenOpt::None)
1608       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610     return;
1611   }
1612 
1613   // Figure out the funclet membership for the catchret's successor.
1614   // This will be used by the FuncletLayout pass to determine how to order the
1615   // BB's.
1616   // A 'catchret' returns to the outer scope's color.
1617   Value *ParentPad = I.getCatchSwitchParentPad();
1618   const BasicBlock *SuccessorColor;
1619   if (isa<ConstantTokenNone>(ParentPad))
1620     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621   else
1622     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623   assert(SuccessorColor && "No parent funclet for catchret!");
1624   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1626 
1627   // Create the terminator node.
1628   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630                             DAG.getBasicBlock(SuccessorColorMBB));
1631   DAG.setRoot(Ret);
1632 }
1633 
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635   // Don't emit any special code for the cleanuppad instruction. It just marks
1636   // the start of an EH scope/funclet.
1637   FuncInfo.MBB->setIsEHScopeEntry();
1638   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639   if (Pers != EHPersonality::Wasm_CXX) {
1640     FuncInfo.MBB->setIsEHFuncletEntry();
1641     FuncInfo.MBB->setIsCleanupFuncletEntry();
1642   }
1643 }
1644 
1645 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1646 // not match, it is OK to add only the first unwind destination catchpad to the
1647 // successors, because there will be at least one invoke instruction within the
1648 // catch scope that points to the next unwind destination, if one exists, so
1649 // CFGSort cannot mess up with BB sorting order.
1650 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1651 // call within them, and catchpads only consisting of 'catch (...)' have a
1652 // '__cxa_end_catch' call within them, both of which generate invokes in case
1653 // the next unwind destination exists, i.e., the next unwind destination is not
1654 // the caller.)
1655 //
1656 // Having at most one EH pad successor is also simpler and helps later
1657 // transformations.
1658 //
1659 // For example,
1660 // current:
1661 //   invoke void @foo to ... unwind label %catch.dispatch
1662 // catch.dispatch:
1663 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1664 // catch.start:
1665 //   ...
1666 //   ... in this BB or some other child BB dominated by this BB there will be an
1667 //   invoke that points to 'next' BB as an unwind destination
1668 //
1669 // next: ; We don't need to add this to 'current' BB's successor
1670 //   ...
1671 static void findWasmUnwindDestinations(
1672     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1673     BranchProbability Prob,
1674     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1675         &UnwindDests) {
1676   while (EHPadBB) {
1677     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1678     if (isa<CleanupPadInst>(Pad)) {
1679       // Stop on cleanup pads.
1680       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1681       UnwindDests.back().first->setIsEHScopeEntry();
1682       break;
1683     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1684       // Add the catchpad handlers to the possible destinations. We don't
1685       // continue to the unwind destination of the catchswitch for wasm.
1686       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1687         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1688         UnwindDests.back().first->setIsEHScopeEntry();
1689       }
1690       break;
1691     } else {
1692       continue;
1693     }
1694   }
1695 }
1696 
1697 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1698 /// many places it could ultimately go. In the IR, we have a single unwind
1699 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1700 /// This function skips over imaginary basic blocks that hold catchswitch
1701 /// instructions, and finds all the "real" machine
1702 /// basic block destinations. As those destinations may not be successors of
1703 /// EHPadBB, here we also calculate the edge probability to those destinations.
1704 /// The passed-in Prob is the edge probability to EHPadBB.
1705 static void findUnwindDestinations(
1706     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1707     BranchProbability Prob,
1708     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1709         &UnwindDests) {
1710   EHPersonality Personality =
1711     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1712   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1713   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1714   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1715   bool IsSEH = isAsynchronousEHPersonality(Personality);
1716 
1717   if (IsWasmCXX) {
1718     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1719     assert(UnwindDests.size() <= 1 &&
1720            "There should be at most one unwind destination for wasm");
1721     return;
1722   }
1723 
1724   while (EHPadBB) {
1725     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1726     BasicBlock *NewEHPadBB = nullptr;
1727     if (isa<LandingPadInst>(Pad)) {
1728       // Stop on landingpads. They are not funclets.
1729       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1730       break;
1731     } else if (isa<CleanupPadInst>(Pad)) {
1732       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1733       // personalities.
1734       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1735       UnwindDests.back().first->setIsEHScopeEntry();
1736       UnwindDests.back().first->setIsEHFuncletEntry();
1737       break;
1738     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1739       // Add the catchpad handlers to the possible destinations.
1740       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1741         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1742         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1743         if (IsMSVCCXX || IsCoreCLR)
1744           UnwindDests.back().first->setIsEHFuncletEntry();
1745         if (!IsSEH)
1746           UnwindDests.back().first->setIsEHScopeEntry();
1747       }
1748       NewEHPadBB = CatchSwitch->getUnwindDest();
1749     } else {
1750       continue;
1751     }
1752 
1753     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1754     if (BPI && NewEHPadBB)
1755       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1756     EHPadBB = NewEHPadBB;
1757   }
1758 }
1759 
1760 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1761   // Update successor info.
1762   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1763   auto UnwindDest = I.getUnwindDest();
1764   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1765   BranchProbability UnwindDestProb =
1766       (BPI && UnwindDest)
1767           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1768           : BranchProbability::getZero();
1769   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1770   for (auto &UnwindDest : UnwindDests) {
1771     UnwindDest.first->setIsEHPad();
1772     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1773   }
1774   FuncInfo.MBB->normalizeSuccProbs();
1775 
1776   // Create the terminator node.
1777   SDValue Ret =
1778       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1779   DAG.setRoot(Ret);
1780 }
1781 
1782 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1783   report_fatal_error("visitCatchSwitch not yet implemented!");
1784 }
1785 
1786 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1788   auto &DL = DAG.getDataLayout();
1789   SDValue Chain = getControlRoot();
1790   SmallVector<ISD::OutputArg, 8> Outs;
1791   SmallVector<SDValue, 8> OutVals;
1792 
1793   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1794   // lower
1795   //
1796   //   %val = call <ty> @llvm.experimental.deoptimize()
1797   //   ret <ty> %val
1798   //
1799   // differently.
1800   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1801     LowerDeoptimizingReturn();
1802     return;
1803   }
1804 
1805   if (!FuncInfo.CanLowerReturn) {
1806     unsigned DemoteReg = FuncInfo.DemoteRegister;
1807     const Function *F = I.getParent()->getParent();
1808 
1809     // Emit a store of the return value through the virtual register.
1810     // Leave Outs empty so that LowerReturn won't try to load return
1811     // registers the usual way.
1812     SmallVector<EVT, 1> PtrValueVTs;
1813     ComputeValueVTs(TLI, DL,
1814                     F->getReturnType()->getPointerTo(
1815                         DAG.getDataLayout().getAllocaAddrSpace()),
1816                     PtrValueVTs);
1817 
1818     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1819                                         DemoteReg, PtrValueVTs[0]);
1820     SDValue RetOp = getValue(I.getOperand(0));
1821 
1822     SmallVector<EVT, 4> ValueVTs, MemVTs;
1823     SmallVector<uint64_t, 4> Offsets;
1824     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1825                     &Offsets);
1826     unsigned NumValues = ValueVTs.size();
1827 
1828     SmallVector<SDValue, 4> Chains(NumValues);
1829     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1830     for (unsigned i = 0; i != NumValues; ++i) {
1831       // An aggregate return value cannot wrap around the address space, so
1832       // offsets to its parts don't wrap either.
1833       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1834                                            TypeSize::Fixed(Offsets[i]));
1835 
1836       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1837       if (MemVTs[i] != ValueVTs[i])
1838         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1839       Chains[i] = DAG.getStore(
1840           Chain, getCurSDLoc(), Val,
1841           // FIXME: better loc info would be nice.
1842           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1843           commonAlignment(BaseAlign, Offsets[i]));
1844     }
1845 
1846     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1847                         MVT::Other, Chains);
1848   } else if (I.getNumOperands() != 0) {
1849     SmallVector<EVT, 4> ValueVTs;
1850     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1851     unsigned NumValues = ValueVTs.size();
1852     if (NumValues) {
1853       SDValue RetOp = getValue(I.getOperand(0));
1854 
1855       const Function *F = I.getParent()->getParent();
1856 
1857       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1858           I.getOperand(0)->getType(), F->getCallingConv(),
1859           /*IsVarArg*/ false);
1860 
1861       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1862       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1863                                           Attribute::SExt))
1864         ExtendKind = ISD::SIGN_EXTEND;
1865       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1866                                                Attribute::ZExt))
1867         ExtendKind = ISD::ZERO_EXTEND;
1868 
1869       LLVMContext &Context = F->getContext();
1870       bool RetInReg = F->getAttributes().hasAttribute(
1871           AttributeList::ReturnIndex, Attribute::InReg);
1872 
1873       for (unsigned j = 0; j != NumValues; ++j) {
1874         EVT VT = ValueVTs[j];
1875 
1876         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1877           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1878 
1879         CallingConv::ID CC = F->getCallingConv();
1880 
1881         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1882         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1883         SmallVector<SDValue, 4> Parts(NumParts);
1884         getCopyToParts(DAG, getCurSDLoc(),
1885                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1886                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1887 
1888         // 'inreg' on function refers to return value
1889         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1890         if (RetInReg)
1891           Flags.setInReg();
1892 
1893         if (I.getOperand(0)->getType()->isPointerTy()) {
1894           Flags.setPointer();
1895           Flags.setPointerAddrSpace(
1896               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1897         }
1898 
1899         if (NeedsRegBlock) {
1900           Flags.setInConsecutiveRegs();
1901           if (j == NumValues - 1)
1902             Flags.setInConsecutiveRegsLast();
1903         }
1904 
1905         // Propagate extension type if any
1906         if (ExtendKind == ISD::SIGN_EXTEND)
1907           Flags.setSExt();
1908         else if (ExtendKind == ISD::ZERO_EXTEND)
1909           Flags.setZExt();
1910 
1911         for (unsigned i = 0; i < NumParts; ++i) {
1912           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1913                                         VT, /*isfixed=*/true, 0, 0));
1914           OutVals.push_back(Parts[i]);
1915         }
1916       }
1917     }
1918   }
1919 
1920   // Push in swifterror virtual register as the last element of Outs. This makes
1921   // sure swifterror virtual register will be returned in the swifterror
1922   // physical register.
1923   const Function *F = I.getParent()->getParent();
1924   if (TLI.supportSwiftError() &&
1925       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1926     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1927     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1928     Flags.setSwiftError();
1929     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1930                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1931                                   true /*isfixed*/, 1 /*origidx*/,
1932                                   0 /*partOffs*/));
1933     // Create SDNode for the swifterror virtual register.
1934     OutVals.push_back(
1935         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1936                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1937                         EVT(TLI.getPointerTy(DL))));
1938   }
1939 
1940   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1941   CallingConv::ID CallConv =
1942     DAG.getMachineFunction().getFunction().getCallingConv();
1943   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1944       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1945 
1946   // Verify that the target's LowerReturn behaved as expected.
1947   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1948          "LowerReturn didn't return a valid chain!");
1949 
1950   // Update the DAG with the new chain value resulting from return lowering.
1951   DAG.setRoot(Chain);
1952 }
1953 
1954 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1955 /// created for it, emit nodes to copy the value into the virtual
1956 /// registers.
1957 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1958   // Skip empty types
1959   if (V->getType()->isEmptyTy())
1960     return;
1961 
1962   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1963   if (VMI != FuncInfo.ValueMap.end()) {
1964     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1965     CopyValueToVirtualRegister(V, VMI->second);
1966   }
1967 }
1968 
1969 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1970 /// the current basic block, add it to ValueMap now so that we'll get a
1971 /// CopyTo/FromReg.
1972 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1973   // No need to export constants.
1974   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1975 
1976   // Already exported?
1977   if (FuncInfo.isExportedInst(V)) return;
1978 
1979   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1980   CopyValueToVirtualRegister(V, Reg);
1981 }
1982 
1983 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1984                                                      const BasicBlock *FromBB) {
1985   // The operands of the setcc have to be in this block.  We don't know
1986   // how to export them from some other block.
1987   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1988     // Can export from current BB.
1989     if (VI->getParent() == FromBB)
1990       return true;
1991 
1992     // Is already exported, noop.
1993     return FuncInfo.isExportedInst(V);
1994   }
1995 
1996   // If this is an argument, we can export it if the BB is the entry block or
1997   // if it is already exported.
1998   if (isa<Argument>(V)) {
1999     if (FromBB == &FromBB->getParent()->getEntryBlock())
2000       return true;
2001 
2002     // Otherwise, can only export this if it is already exported.
2003     return FuncInfo.isExportedInst(V);
2004   }
2005 
2006   // Otherwise, constants can always be exported.
2007   return true;
2008 }
2009 
2010 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2011 BranchProbability
2012 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2013                                         const MachineBasicBlock *Dst) const {
2014   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2015   const BasicBlock *SrcBB = Src->getBasicBlock();
2016   const BasicBlock *DstBB = Dst->getBasicBlock();
2017   if (!BPI) {
2018     // If BPI is not available, set the default probability as 1 / N, where N is
2019     // the number of successors.
2020     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2021     return BranchProbability(1, SuccSize);
2022   }
2023   return BPI->getEdgeProbability(SrcBB, DstBB);
2024 }
2025 
2026 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2027                                                MachineBasicBlock *Dst,
2028                                                BranchProbability Prob) {
2029   if (!FuncInfo.BPI)
2030     Src->addSuccessorWithoutProb(Dst);
2031   else {
2032     if (Prob.isUnknown())
2033       Prob = getEdgeProbability(Src, Dst);
2034     Src->addSuccessor(Dst, Prob);
2035   }
2036 }
2037 
2038 static bool InBlock(const Value *V, const BasicBlock *BB) {
2039   if (const Instruction *I = dyn_cast<Instruction>(V))
2040     return I->getParent() == BB;
2041   return true;
2042 }
2043 
2044 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2045 /// This function emits a branch and is used at the leaves of an OR or an
2046 /// AND operator tree.
2047 void
2048 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2049                                                   MachineBasicBlock *TBB,
2050                                                   MachineBasicBlock *FBB,
2051                                                   MachineBasicBlock *CurBB,
2052                                                   MachineBasicBlock *SwitchBB,
2053                                                   BranchProbability TProb,
2054                                                   BranchProbability FProb,
2055                                                   bool InvertCond) {
2056   const BasicBlock *BB = CurBB->getBasicBlock();
2057 
2058   // If the leaf of the tree is a comparison, merge the condition into
2059   // the caseblock.
2060   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2061     // The operands of the cmp have to be in this block.  We don't know
2062     // how to export them from some other block.  If this is the first block
2063     // of the sequence, no exporting is needed.
2064     if (CurBB == SwitchBB ||
2065         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2066          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2067       ISD::CondCode Condition;
2068       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2069         ICmpInst::Predicate Pred =
2070             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2071         Condition = getICmpCondCode(Pred);
2072       } else {
2073         const FCmpInst *FC = cast<FCmpInst>(Cond);
2074         FCmpInst::Predicate Pred =
2075             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2076         Condition = getFCmpCondCode(Pred);
2077         if (TM.Options.NoNaNsFPMath)
2078           Condition = getFCmpCodeWithoutNaN(Condition);
2079       }
2080 
2081       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2082                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2083       SL->SwitchCases.push_back(CB);
2084       return;
2085     }
2086   }
2087 
2088   // Create a CaseBlock record representing this branch.
2089   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2090   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2091                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2092   SL->SwitchCases.push_back(CB);
2093 }
2094 
2095 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2096                                                MachineBasicBlock *TBB,
2097                                                MachineBasicBlock *FBB,
2098                                                MachineBasicBlock *CurBB,
2099                                                MachineBasicBlock *SwitchBB,
2100                                                Instruction::BinaryOps Opc,
2101                                                BranchProbability TProb,
2102                                                BranchProbability FProb,
2103                                                bool InvertCond) {
2104   // Skip over not part of the tree and remember to invert op and operands at
2105   // next level.
2106   Value *NotCond;
2107   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2108       InBlock(NotCond, CurBB->getBasicBlock())) {
2109     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2110                          !InvertCond);
2111     return;
2112   }
2113 
2114   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2115   const Value *BOpOp0, *BOpOp1;
2116   // Compute the effective opcode for Cond, taking into account whether it needs
2117   // to be inverted, e.g.
2118   //   and (not (or A, B)), C
2119   // gets lowered as
2120   //   and (and (not A, not B), C)
2121   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2122   if (BOp) {
2123     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2124                ? Instruction::And
2125                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2126                       ? Instruction::Or
2127                       : (Instruction::BinaryOps)0);
2128     if (InvertCond) {
2129       if (BOpc == Instruction::And)
2130         BOpc = Instruction::Or;
2131       else if (BOpc == Instruction::Or)
2132         BOpc = Instruction::And;
2133     }
2134   }
2135 
2136   // If this node is not part of the or/and tree, emit it as a branch.
2137   // Note that all nodes in the tree should have same opcode.
2138   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2139   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2140       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2141       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2142     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2143                                  TProb, FProb, InvertCond);
2144     return;
2145   }
2146 
2147   //  Create TmpBB after CurBB.
2148   MachineFunction::iterator BBI(CurBB);
2149   MachineFunction &MF = DAG.getMachineFunction();
2150   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2151   CurBB->getParent()->insert(++BBI, TmpBB);
2152 
2153   if (Opc == Instruction::Or) {
2154     // Codegen X | Y as:
2155     // BB1:
2156     //   jmp_if_X TBB
2157     //   jmp TmpBB
2158     // TmpBB:
2159     //   jmp_if_Y TBB
2160     //   jmp FBB
2161     //
2162 
2163     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2164     // The requirement is that
2165     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2166     //     = TrueProb for original BB.
2167     // Assuming the original probabilities are A and B, one choice is to set
2168     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2169     // A/(1+B) and 2B/(1+B). This choice assumes that
2170     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2171     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2172     // TmpBB, but the math is more complicated.
2173 
2174     auto NewTrueProb = TProb / 2;
2175     auto NewFalseProb = TProb / 2 + FProb;
2176     // Emit the LHS condition.
2177     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2178                          NewFalseProb, InvertCond);
2179 
2180     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2181     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2182     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2183     // Emit the RHS condition into TmpBB.
2184     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2185                          Probs[1], InvertCond);
2186   } else {
2187     assert(Opc == Instruction::And && "Unknown merge op!");
2188     // Codegen X & Y as:
2189     // BB1:
2190     //   jmp_if_X TmpBB
2191     //   jmp FBB
2192     // TmpBB:
2193     //   jmp_if_Y TBB
2194     //   jmp FBB
2195     //
2196     //  This requires creation of TmpBB after CurBB.
2197 
2198     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2199     // The requirement is that
2200     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2201     //     = FalseProb for original BB.
2202     // Assuming the original probabilities are A and B, one choice is to set
2203     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2204     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2205     // TrueProb for BB1 * FalseProb for TmpBB.
2206 
2207     auto NewTrueProb = TProb + FProb / 2;
2208     auto NewFalseProb = FProb / 2;
2209     // Emit the LHS condition.
2210     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2211                          NewFalseProb, InvertCond);
2212 
2213     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2214     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2215     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2216     // Emit the RHS condition into TmpBB.
2217     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2218                          Probs[1], InvertCond);
2219   }
2220 }
2221 
2222 /// If the set of cases should be emitted as a series of branches, return true.
2223 /// If we should emit this as a bunch of and/or'd together conditions, return
2224 /// false.
2225 bool
2226 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2227   if (Cases.size() != 2) return true;
2228 
2229   // If this is two comparisons of the same values or'd or and'd together, they
2230   // will get folded into a single comparison, so don't emit two blocks.
2231   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2232        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2233       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2234        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2235     return false;
2236   }
2237 
2238   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2239   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2240   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2241       Cases[0].CC == Cases[1].CC &&
2242       isa<Constant>(Cases[0].CmpRHS) &&
2243       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2244     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2245       return false;
2246     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2247       return false;
2248   }
2249 
2250   return true;
2251 }
2252 
2253 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2254   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2255 
2256   // Update machine-CFG edges.
2257   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2258 
2259   if (I.isUnconditional()) {
2260     // Update machine-CFG edges.
2261     BrMBB->addSuccessor(Succ0MBB);
2262 
2263     // If this is not a fall-through branch or optimizations are switched off,
2264     // emit the branch.
2265     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2266       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2267                               MVT::Other, getControlRoot(),
2268                               DAG.getBasicBlock(Succ0MBB)));
2269 
2270     return;
2271   }
2272 
2273   // If this condition is one of the special cases we handle, do special stuff
2274   // now.
2275   const Value *CondVal = I.getCondition();
2276   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2277 
2278   // If this is a series of conditions that are or'd or and'd together, emit
2279   // this as a sequence of branches instead of setcc's with and/or operations.
2280   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2281   // unpredictable branches, and vector extracts because those jumps are likely
2282   // expensive for any target), this should improve performance.
2283   // For example, instead of something like:
2284   //     cmp A, B
2285   //     C = seteq
2286   //     cmp D, E
2287   //     F = setle
2288   //     or C, F
2289   //     jnz foo
2290   // Emit:
2291   //     cmp A, B
2292   //     je foo
2293   //     cmp D, E
2294   //     jle foo
2295   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2296   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2297       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2298     Value *Vec;
2299     const Value *BOp0, *BOp1;
2300     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2301     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2302       Opcode = Instruction::And;
2303     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2304       Opcode = Instruction::Or;
2305 
2306     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2307                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2308       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2309                            getEdgeProbability(BrMBB, Succ0MBB),
2310                            getEdgeProbability(BrMBB, Succ1MBB),
2311                            /*InvertCond=*/false);
2312       // If the compares in later blocks need to use values not currently
2313       // exported from this block, export them now.  This block should always
2314       // be the first entry.
2315       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2316 
2317       // Allow some cases to be rejected.
2318       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2319         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2320           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2321           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2322         }
2323 
2324         // Emit the branch for this block.
2325         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2326         SL->SwitchCases.erase(SL->SwitchCases.begin());
2327         return;
2328       }
2329 
2330       // Okay, we decided not to do this, remove any inserted MBB's and clear
2331       // SwitchCases.
2332       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2333         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2334 
2335       SL->SwitchCases.clear();
2336     }
2337   }
2338 
2339   // Create a CaseBlock record representing this branch.
2340   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2341                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2342 
2343   // Use visitSwitchCase to actually insert the fast branch sequence for this
2344   // cond branch.
2345   visitSwitchCase(CB, BrMBB);
2346 }
2347 
2348 /// visitSwitchCase - Emits the necessary code to represent a single node in
2349 /// the binary search tree resulting from lowering a switch instruction.
2350 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2351                                           MachineBasicBlock *SwitchBB) {
2352   SDValue Cond;
2353   SDValue CondLHS = getValue(CB.CmpLHS);
2354   SDLoc dl = CB.DL;
2355 
2356   if (CB.CC == ISD::SETTRUE) {
2357     // Branch or fall through to TrueBB.
2358     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2359     SwitchBB->normalizeSuccProbs();
2360     if (CB.TrueBB != NextBlock(SwitchBB)) {
2361       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2362                               DAG.getBasicBlock(CB.TrueBB)));
2363     }
2364     return;
2365   }
2366 
2367   auto &TLI = DAG.getTargetLoweringInfo();
2368   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2369 
2370   // Build the setcc now.
2371   if (!CB.CmpMHS) {
2372     // Fold "(X == true)" to X and "(X == false)" to !X to
2373     // handle common cases produced by branch lowering.
2374     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2375         CB.CC == ISD::SETEQ)
2376       Cond = CondLHS;
2377     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2378              CB.CC == ISD::SETEQ) {
2379       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2380       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2381     } else {
2382       SDValue CondRHS = getValue(CB.CmpRHS);
2383 
2384       // If a pointer's DAG type is larger than its memory type then the DAG
2385       // values are zero-extended. This breaks signed comparisons so truncate
2386       // back to the underlying type before doing the compare.
2387       if (CondLHS.getValueType() != MemVT) {
2388         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2389         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2390       }
2391       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2392     }
2393   } else {
2394     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2395 
2396     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2397     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2398 
2399     SDValue CmpOp = getValue(CB.CmpMHS);
2400     EVT VT = CmpOp.getValueType();
2401 
2402     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2403       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2404                           ISD::SETLE);
2405     } else {
2406       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2407                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2408       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2409                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2410     }
2411   }
2412 
2413   // Update successor info
2414   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2415   // TrueBB and FalseBB are always different unless the incoming IR is
2416   // degenerate. This only happens when running llc on weird IR.
2417   if (CB.TrueBB != CB.FalseBB)
2418     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2419   SwitchBB->normalizeSuccProbs();
2420 
2421   // If the lhs block is the next block, invert the condition so that we can
2422   // fall through to the lhs instead of the rhs block.
2423   if (CB.TrueBB == NextBlock(SwitchBB)) {
2424     std::swap(CB.TrueBB, CB.FalseBB);
2425     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2426     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2427   }
2428 
2429   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2430                                MVT::Other, getControlRoot(), Cond,
2431                                DAG.getBasicBlock(CB.TrueBB));
2432 
2433   // Insert the false branch. Do this even if it's a fall through branch,
2434   // this makes it easier to do DAG optimizations which require inverting
2435   // the branch condition.
2436   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2437                        DAG.getBasicBlock(CB.FalseBB));
2438 
2439   DAG.setRoot(BrCond);
2440 }
2441 
2442 /// visitJumpTable - Emit JumpTable node in the current MBB
2443 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2444   // Emit the code for the jump table
2445   assert(JT.Reg != -1U && "Should lower JT Header first!");
2446   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2447   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2448                                      JT.Reg, PTy);
2449   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2450   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2451                                     MVT::Other, Index.getValue(1),
2452                                     Table, Index);
2453   DAG.setRoot(BrJumpTable);
2454 }
2455 
2456 /// visitJumpTableHeader - This function emits necessary code to produce index
2457 /// in the JumpTable from switch case.
2458 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2459                                                JumpTableHeader &JTH,
2460                                                MachineBasicBlock *SwitchBB) {
2461   SDLoc dl = getCurSDLoc();
2462 
2463   // Subtract the lowest switch case value from the value being switched on.
2464   SDValue SwitchOp = getValue(JTH.SValue);
2465   EVT VT = SwitchOp.getValueType();
2466   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2467                             DAG.getConstant(JTH.First, dl, VT));
2468 
2469   // The SDNode we just created, which holds the value being switched on minus
2470   // the smallest case value, needs to be copied to a virtual register so it
2471   // can be used as an index into the jump table in a subsequent basic block.
2472   // This value may be smaller or larger than the target's pointer type, and
2473   // therefore require extension or truncating.
2474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2475   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2476 
2477   unsigned JumpTableReg =
2478       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2479   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2480                                     JumpTableReg, SwitchOp);
2481   JT.Reg = JumpTableReg;
2482 
2483   if (!JTH.OmitRangeCheck) {
2484     // Emit the range check for the jump table, and branch to the default block
2485     // for the switch statement if the value being switched on exceeds the
2486     // largest case in the switch.
2487     SDValue CMP = DAG.getSetCC(
2488         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2489                                    Sub.getValueType()),
2490         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2491 
2492     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2493                                  MVT::Other, CopyTo, CMP,
2494                                  DAG.getBasicBlock(JT.Default));
2495 
2496     // Avoid emitting unnecessary branches to the next block.
2497     if (JT.MBB != NextBlock(SwitchBB))
2498       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2499                            DAG.getBasicBlock(JT.MBB));
2500 
2501     DAG.setRoot(BrCond);
2502   } else {
2503     // Avoid emitting unnecessary branches to the next block.
2504     if (JT.MBB != NextBlock(SwitchBB))
2505       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2506                               DAG.getBasicBlock(JT.MBB)));
2507     else
2508       DAG.setRoot(CopyTo);
2509   }
2510 }
2511 
2512 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2513 /// variable if there exists one.
2514 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2515                                  SDValue &Chain) {
2516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2517   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2518   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2519   MachineFunction &MF = DAG.getMachineFunction();
2520   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2521   MachineSDNode *Node =
2522       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2523   if (Global) {
2524     MachinePointerInfo MPInfo(Global);
2525     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2526                  MachineMemOperand::MODereferenceable;
2527     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2528         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2529     DAG.setNodeMemRefs(Node, {MemRef});
2530   }
2531   if (PtrTy != PtrMemTy)
2532     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2533   return SDValue(Node, 0);
2534 }
2535 
2536 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2537 /// tail spliced into a stack protector check success bb.
2538 ///
2539 /// For a high level explanation of how this fits into the stack protector
2540 /// generation see the comment on the declaration of class
2541 /// StackProtectorDescriptor.
2542 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2543                                                   MachineBasicBlock *ParentBB) {
2544 
2545   // First create the loads to the guard/stack slot for the comparison.
2546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2547   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2548   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2549 
2550   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2551   int FI = MFI.getStackProtectorIndex();
2552 
2553   SDValue Guard;
2554   SDLoc dl = getCurSDLoc();
2555   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2556   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2557   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2558 
2559   // Generate code to load the content of the guard slot.
2560   SDValue GuardVal = DAG.getLoad(
2561       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2562       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2563       MachineMemOperand::MOVolatile);
2564 
2565   if (TLI.useStackGuardXorFP())
2566     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2567 
2568   // Retrieve guard check function, nullptr if instrumentation is inlined.
2569   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2570     // The target provides a guard check function to validate the guard value.
2571     // Generate a call to that function with the content of the guard slot as
2572     // argument.
2573     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2574     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2575 
2576     TargetLowering::ArgListTy Args;
2577     TargetLowering::ArgListEntry Entry;
2578     Entry.Node = GuardVal;
2579     Entry.Ty = FnTy->getParamType(0);
2580     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2581       Entry.IsInReg = true;
2582     Args.push_back(Entry);
2583 
2584     TargetLowering::CallLoweringInfo CLI(DAG);
2585     CLI.setDebugLoc(getCurSDLoc())
2586         .setChain(DAG.getEntryNode())
2587         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2588                    getValue(GuardCheckFn), std::move(Args));
2589 
2590     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2591     DAG.setRoot(Result.second);
2592     return;
2593   }
2594 
2595   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2596   // Otherwise, emit a volatile load to retrieve the stack guard value.
2597   SDValue Chain = DAG.getEntryNode();
2598   if (TLI.useLoadStackGuardNode()) {
2599     Guard = getLoadStackGuard(DAG, dl, Chain);
2600   } else {
2601     const Value *IRGuard = TLI.getSDagStackGuard(M);
2602     SDValue GuardPtr = getValue(IRGuard);
2603 
2604     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2605                         MachinePointerInfo(IRGuard, 0), Align,
2606                         MachineMemOperand::MOVolatile);
2607   }
2608 
2609   // Perform the comparison via a getsetcc.
2610   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2611                                                         *DAG.getContext(),
2612                                                         Guard.getValueType()),
2613                              Guard, GuardVal, ISD::SETNE);
2614 
2615   // If the guard/stackslot do not equal, branch to failure MBB.
2616   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2617                                MVT::Other, GuardVal.getOperand(0),
2618                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2619   // Otherwise branch to success MBB.
2620   SDValue Br = DAG.getNode(ISD::BR, dl,
2621                            MVT::Other, BrCond,
2622                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2623 
2624   DAG.setRoot(Br);
2625 }
2626 
2627 /// Codegen the failure basic block for a stack protector check.
2628 ///
2629 /// A failure stack protector machine basic block consists simply of a call to
2630 /// __stack_chk_fail().
2631 ///
2632 /// For a high level explanation of how this fits into the stack protector
2633 /// generation see the comment on the declaration of class
2634 /// StackProtectorDescriptor.
2635 void
2636 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2638   TargetLowering::MakeLibCallOptions CallOptions;
2639   CallOptions.setDiscardResult(true);
2640   SDValue Chain =
2641       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2642                       None, CallOptions, getCurSDLoc()).second;
2643   // On PS4, the "return address" must still be within the calling function,
2644   // even if it's at the very end, so emit an explicit TRAP here.
2645   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2646   if (TM.getTargetTriple().isPS4CPU())
2647     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2648   // WebAssembly needs an unreachable instruction after a non-returning call,
2649   // because the function return type can be different from __stack_chk_fail's
2650   // return type (void).
2651   if (TM.getTargetTriple().isWasm())
2652     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2653 
2654   DAG.setRoot(Chain);
2655 }
2656 
2657 /// visitBitTestHeader - This function emits necessary code to produce value
2658 /// suitable for "bit tests"
2659 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2660                                              MachineBasicBlock *SwitchBB) {
2661   SDLoc dl = getCurSDLoc();
2662 
2663   // Subtract the minimum value.
2664   SDValue SwitchOp = getValue(B.SValue);
2665   EVT VT = SwitchOp.getValueType();
2666   SDValue RangeSub =
2667       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2668 
2669   // Determine the type of the test operands.
2670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2671   bool UsePtrType = false;
2672   if (!TLI.isTypeLegal(VT)) {
2673     UsePtrType = true;
2674   } else {
2675     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2676       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2677         // Switch table case range are encoded into series of masks.
2678         // Just use pointer type, it's guaranteed to fit.
2679         UsePtrType = true;
2680         break;
2681       }
2682   }
2683   SDValue Sub = RangeSub;
2684   if (UsePtrType) {
2685     VT = TLI.getPointerTy(DAG.getDataLayout());
2686     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2687   }
2688 
2689   B.RegVT = VT.getSimpleVT();
2690   B.Reg = FuncInfo.CreateReg(B.RegVT);
2691   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2692 
2693   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2694 
2695   if (!B.OmitRangeCheck)
2696     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2697   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2698   SwitchBB->normalizeSuccProbs();
2699 
2700   SDValue Root = CopyTo;
2701   if (!B.OmitRangeCheck) {
2702     // Conditional branch to the default block.
2703     SDValue RangeCmp = DAG.getSetCC(dl,
2704         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2705                                RangeSub.getValueType()),
2706         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2707         ISD::SETUGT);
2708 
2709     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2710                        DAG.getBasicBlock(B.Default));
2711   }
2712 
2713   // Avoid emitting unnecessary branches to the next block.
2714   if (MBB != NextBlock(SwitchBB))
2715     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2716 
2717   DAG.setRoot(Root);
2718 }
2719 
2720 /// visitBitTestCase - this function produces one "bit test"
2721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2722                                            MachineBasicBlock* NextMBB,
2723                                            BranchProbability BranchProbToNext,
2724                                            unsigned Reg,
2725                                            BitTestCase &B,
2726                                            MachineBasicBlock *SwitchBB) {
2727   SDLoc dl = getCurSDLoc();
2728   MVT VT = BB.RegVT;
2729   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2730   SDValue Cmp;
2731   unsigned PopCount = countPopulation(B.Mask);
2732   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2733   if (PopCount == 1) {
2734     // Testing for a single bit; just compare the shift count with what it
2735     // would need to be to shift a 1 bit in that position.
2736     Cmp = DAG.getSetCC(
2737         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2738         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2739         ISD::SETEQ);
2740   } else if (PopCount == BB.Range) {
2741     // There is only one zero bit in the range, test for it directly.
2742     Cmp = DAG.getSetCC(
2743         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2744         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2745         ISD::SETNE);
2746   } else {
2747     // Make desired shift
2748     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2749                                     DAG.getConstant(1, dl, VT), ShiftOp);
2750 
2751     // Emit bit tests and jumps
2752     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2753                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2754     Cmp = DAG.getSetCC(
2755         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2756         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2757   }
2758 
2759   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2760   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2761   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2762   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2763   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2764   // one as they are relative probabilities (and thus work more like weights),
2765   // and hence we need to normalize them to let the sum of them become one.
2766   SwitchBB->normalizeSuccProbs();
2767 
2768   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2769                               MVT::Other, getControlRoot(),
2770                               Cmp, DAG.getBasicBlock(B.TargetBB));
2771 
2772   // Avoid emitting unnecessary branches to the next block.
2773   if (NextMBB != NextBlock(SwitchBB))
2774     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2775                         DAG.getBasicBlock(NextMBB));
2776 
2777   DAG.setRoot(BrAnd);
2778 }
2779 
2780 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2781   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2782 
2783   // Retrieve successors. Look through artificial IR level blocks like
2784   // catchswitch for successors.
2785   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2786   const BasicBlock *EHPadBB = I.getSuccessor(1);
2787 
2788   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2789   // have to do anything here to lower funclet bundles.
2790   assert(!I.hasOperandBundlesOtherThan(
2791              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2792               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2793               LLVMContext::OB_cfguardtarget,
2794               LLVMContext::OB_clang_arc_attachedcall}) &&
2795          "Cannot lower invokes with arbitrary operand bundles yet!");
2796 
2797   const Value *Callee(I.getCalledOperand());
2798   const Function *Fn = dyn_cast<Function>(Callee);
2799   if (isa<InlineAsm>(Callee))
2800     visitInlineAsm(I);
2801   else if (Fn && Fn->isIntrinsic()) {
2802     switch (Fn->getIntrinsicID()) {
2803     default:
2804       llvm_unreachable("Cannot invoke this intrinsic");
2805     case Intrinsic::donothing:
2806       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2807       break;
2808     case Intrinsic::experimental_patchpoint_void:
2809     case Intrinsic::experimental_patchpoint_i64:
2810       visitPatchpoint(I, EHPadBB);
2811       break;
2812     case Intrinsic::experimental_gc_statepoint:
2813       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2814       break;
2815     case Intrinsic::wasm_rethrow: {
2816       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2817       // special because it can be invoked, so we manually lower it to a DAG
2818       // node here.
2819       SmallVector<SDValue, 8> Ops;
2820       Ops.push_back(getRoot()); // inchain
2821       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2822       Ops.push_back(
2823           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2824                                 TLI.getPointerTy(DAG.getDataLayout())));
2825       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2826       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2827       break;
2828     }
2829     }
2830   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2831     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2832     // Eventually we will support lowering the @llvm.experimental.deoptimize
2833     // intrinsic, and right now there are no plans to support other intrinsics
2834     // with deopt state.
2835     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2836   } else {
2837     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2838   }
2839 
2840   // If the value of the invoke is used outside of its defining block, make it
2841   // available as a virtual register.
2842   // We already took care of the exported value for the statepoint instruction
2843   // during call to the LowerStatepoint.
2844   if (!isa<GCStatepointInst>(I)) {
2845     CopyToExportRegsIfNeeded(&I);
2846   }
2847 
2848   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2849   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2850   BranchProbability EHPadBBProb =
2851       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2852           : BranchProbability::getZero();
2853   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2854 
2855   // Update successor info.
2856   addSuccessorWithProb(InvokeMBB, Return);
2857   for (auto &UnwindDest : UnwindDests) {
2858     UnwindDest.first->setIsEHPad();
2859     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2860   }
2861   InvokeMBB->normalizeSuccProbs();
2862 
2863   // Drop into normal successor.
2864   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2865                           DAG.getBasicBlock(Return)));
2866 }
2867 
2868 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2869   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2870 
2871   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2872   // have to do anything here to lower funclet bundles.
2873   assert(!I.hasOperandBundlesOtherThan(
2874              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2875          "Cannot lower callbrs with arbitrary operand bundles yet!");
2876 
2877   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2878   visitInlineAsm(I);
2879   CopyToExportRegsIfNeeded(&I);
2880 
2881   // Retrieve successors.
2882   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2883 
2884   // Update successor info.
2885   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2886   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2887     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2888     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2889     Target->setIsInlineAsmBrIndirectTarget();
2890   }
2891   CallBrMBB->normalizeSuccProbs();
2892 
2893   // Drop into default successor.
2894   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2895                           MVT::Other, getControlRoot(),
2896                           DAG.getBasicBlock(Return)));
2897 }
2898 
2899 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2900   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2901 }
2902 
2903 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2904   assert(FuncInfo.MBB->isEHPad() &&
2905          "Call to landingpad not in landing pad!");
2906 
2907   // If there aren't registers to copy the values into (e.g., during SjLj
2908   // exceptions), then don't bother to create these DAG nodes.
2909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2910   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2911   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2912       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2913     return;
2914 
2915   // If landingpad's return type is token type, we don't create DAG nodes
2916   // for its exception pointer and selector value. The extraction of exception
2917   // pointer or selector value from token type landingpads is not currently
2918   // supported.
2919   if (LP.getType()->isTokenTy())
2920     return;
2921 
2922   SmallVector<EVT, 2> ValueVTs;
2923   SDLoc dl = getCurSDLoc();
2924   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2925   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2926 
2927   // Get the two live-in registers as SDValues. The physregs have already been
2928   // copied into virtual registers.
2929   SDValue Ops[2];
2930   if (FuncInfo.ExceptionPointerVirtReg) {
2931     Ops[0] = DAG.getZExtOrTrunc(
2932         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2933                            FuncInfo.ExceptionPointerVirtReg,
2934                            TLI.getPointerTy(DAG.getDataLayout())),
2935         dl, ValueVTs[0]);
2936   } else {
2937     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2938   }
2939   Ops[1] = DAG.getZExtOrTrunc(
2940       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2941                          FuncInfo.ExceptionSelectorVirtReg,
2942                          TLI.getPointerTy(DAG.getDataLayout())),
2943       dl, ValueVTs[1]);
2944 
2945   // Merge into one.
2946   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2947                             DAG.getVTList(ValueVTs), Ops);
2948   setValue(&LP, Res);
2949 }
2950 
2951 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2952                                            MachineBasicBlock *Last) {
2953   // Update JTCases.
2954   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2955     if (SL->JTCases[i].first.HeaderBB == First)
2956       SL->JTCases[i].first.HeaderBB = Last;
2957 
2958   // Update BitTestCases.
2959   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2960     if (SL->BitTestCases[i].Parent == First)
2961       SL->BitTestCases[i].Parent = Last;
2962 }
2963 
2964 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2965   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2966 
2967   // Update machine-CFG edges with unique successors.
2968   SmallSet<BasicBlock*, 32> Done;
2969   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2970     BasicBlock *BB = I.getSuccessor(i);
2971     bool Inserted = Done.insert(BB).second;
2972     if (!Inserted)
2973         continue;
2974 
2975     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2976     addSuccessorWithProb(IndirectBrMBB, Succ);
2977   }
2978   IndirectBrMBB->normalizeSuccProbs();
2979 
2980   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2981                           MVT::Other, getControlRoot(),
2982                           getValue(I.getAddress())));
2983 }
2984 
2985 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2986   if (!DAG.getTarget().Options.TrapUnreachable)
2987     return;
2988 
2989   // We may be able to ignore unreachable behind a noreturn call.
2990   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2991     const BasicBlock &BB = *I.getParent();
2992     if (&I != &BB.front()) {
2993       BasicBlock::const_iterator PredI =
2994         std::prev(BasicBlock::const_iterator(&I));
2995       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2996         if (Call->doesNotReturn())
2997           return;
2998       }
2999     }
3000   }
3001 
3002   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3003 }
3004 
3005 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3006   SDNodeFlags Flags;
3007 
3008   SDValue Op = getValue(I.getOperand(0));
3009   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3010                                     Op, Flags);
3011   setValue(&I, UnNodeValue);
3012 }
3013 
3014 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3015   SDNodeFlags Flags;
3016   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3017     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3018     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3019   }
3020   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3021     Flags.setExact(ExactOp->isExact());
3022   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3023     Flags.copyFMF(*FPOp);
3024 
3025   SDValue Op1 = getValue(I.getOperand(0));
3026   SDValue Op2 = getValue(I.getOperand(1));
3027   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3028                                      Op1, Op2, Flags);
3029   setValue(&I, BinNodeValue);
3030 }
3031 
3032 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3033   SDValue Op1 = getValue(I.getOperand(0));
3034   SDValue Op2 = getValue(I.getOperand(1));
3035 
3036   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3037       Op1.getValueType(), DAG.getDataLayout());
3038 
3039   // Coerce the shift amount to the right type if we can.
3040   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3041     unsigned ShiftSize = ShiftTy.getSizeInBits();
3042     unsigned Op2Size = Op2.getValueSizeInBits();
3043     SDLoc DL = getCurSDLoc();
3044 
3045     // If the operand is smaller than the shift count type, promote it.
3046     if (ShiftSize > Op2Size)
3047       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3048 
3049     // If the operand is larger than the shift count type but the shift
3050     // count type has enough bits to represent any shift value, truncate
3051     // it now. This is a common case and it exposes the truncate to
3052     // optimization early.
3053     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3054       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3055     // Otherwise we'll need to temporarily settle for some other convenient
3056     // type.  Type legalization will make adjustments once the shiftee is split.
3057     else
3058       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3059   }
3060 
3061   bool nuw = false;
3062   bool nsw = false;
3063   bool exact = false;
3064 
3065   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3066 
3067     if (const OverflowingBinaryOperator *OFBinOp =
3068             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3069       nuw = OFBinOp->hasNoUnsignedWrap();
3070       nsw = OFBinOp->hasNoSignedWrap();
3071     }
3072     if (const PossiblyExactOperator *ExactOp =
3073             dyn_cast<const PossiblyExactOperator>(&I))
3074       exact = ExactOp->isExact();
3075   }
3076   SDNodeFlags Flags;
3077   Flags.setExact(exact);
3078   Flags.setNoSignedWrap(nsw);
3079   Flags.setNoUnsignedWrap(nuw);
3080   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3081                             Flags);
3082   setValue(&I, Res);
3083 }
3084 
3085 void SelectionDAGBuilder::visitSDiv(const User &I) {
3086   SDValue Op1 = getValue(I.getOperand(0));
3087   SDValue Op2 = getValue(I.getOperand(1));
3088 
3089   SDNodeFlags Flags;
3090   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3091                  cast<PossiblyExactOperator>(&I)->isExact());
3092   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3093                            Op2, Flags));
3094 }
3095 
3096 void SelectionDAGBuilder::visitICmp(const User &I) {
3097   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3098   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3099     predicate = IC->getPredicate();
3100   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3101     predicate = ICmpInst::Predicate(IC->getPredicate());
3102   SDValue Op1 = getValue(I.getOperand(0));
3103   SDValue Op2 = getValue(I.getOperand(1));
3104   ISD::CondCode Opcode = getICmpCondCode(predicate);
3105 
3106   auto &TLI = DAG.getTargetLoweringInfo();
3107   EVT MemVT =
3108       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3109 
3110   // If a pointer's DAG type is larger than its memory type then the DAG values
3111   // are zero-extended. This breaks signed comparisons so truncate back to the
3112   // underlying type before doing the compare.
3113   if (Op1.getValueType() != MemVT) {
3114     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3115     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3116   }
3117 
3118   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3119                                                         I.getType());
3120   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3121 }
3122 
3123 void SelectionDAGBuilder::visitFCmp(const User &I) {
3124   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3125   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3126     predicate = FC->getPredicate();
3127   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3128     predicate = FCmpInst::Predicate(FC->getPredicate());
3129   SDValue Op1 = getValue(I.getOperand(0));
3130   SDValue Op2 = getValue(I.getOperand(1));
3131 
3132   ISD::CondCode Condition = getFCmpCondCode(predicate);
3133   auto *FPMO = cast<FPMathOperator>(&I);
3134   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3135     Condition = getFCmpCodeWithoutNaN(Condition);
3136 
3137   SDNodeFlags Flags;
3138   Flags.copyFMF(*FPMO);
3139   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3140 
3141   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3142                                                         I.getType());
3143   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3144 }
3145 
3146 // Check if the condition of the select has one use or two users that are both
3147 // selects with the same condition.
3148 static bool hasOnlySelectUsers(const Value *Cond) {
3149   return llvm::all_of(Cond->users(), [](const Value *V) {
3150     return isa<SelectInst>(V);
3151   });
3152 }
3153 
3154 void SelectionDAGBuilder::visitSelect(const User &I) {
3155   SmallVector<EVT, 4> ValueVTs;
3156   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3157                   ValueVTs);
3158   unsigned NumValues = ValueVTs.size();
3159   if (NumValues == 0) return;
3160 
3161   SmallVector<SDValue, 4> Values(NumValues);
3162   SDValue Cond     = getValue(I.getOperand(0));
3163   SDValue LHSVal   = getValue(I.getOperand(1));
3164   SDValue RHSVal   = getValue(I.getOperand(2));
3165   SmallVector<SDValue, 1> BaseOps(1, Cond);
3166   ISD::NodeType OpCode =
3167       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3168 
3169   bool IsUnaryAbs = false;
3170   bool Negate = false;
3171 
3172   SDNodeFlags Flags;
3173   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3174     Flags.copyFMF(*FPOp);
3175 
3176   // Min/max matching is only viable if all output VTs are the same.
3177   if (is_splat(ValueVTs)) {
3178     EVT VT = ValueVTs[0];
3179     LLVMContext &Ctx = *DAG.getContext();
3180     auto &TLI = DAG.getTargetLoweringInfo();
3181 
3182     // We care about the legality of the operation after it has been type
3183     // legalized.
3184     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3185       VT = TLI.getTypeToTransformTo(Ctx, VT);
3186 
3187     // If the vselect is legal, assume we want to leave this as a vector setcc +
3188     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3189     // min/max is legal on the scalar type.
3190     bool UseScalarMinMax = VT.isVector() &&
3191       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3192 
3193     Value *LHS, *RHS;
3194     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3195     ISD::NodeType Opc = ISD::DELETED_NODE;
3196     switch (SPR.Flavor) {
3197     case SPF_UMAX:    Opc = ISD::UMAX; break;
3198     case SPF_UMIN:    Opc = ISD::UMIN; break;
3199     case SPF_SMAX:    Opc = ISD::SMAX; break;
3200     case SPF_SMIN:    Opc = ISD::SMIN; break;
3201     case SPF_FMINNUM:
3202       switch (SPR.NaNBehavior) {
3203       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3204       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3205       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3206       case SPNB_RETURNS_ANY: {
3207         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3208           Opc = ISD::FMINNUM;
3209         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3210           Opc = ISD::FMINIMUM;
3211         else if (UseScalarMinMax)
3212           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3213             ISD::FMINNUM : ISD::FMINIMUM;
3214         break;
3215       }
3216       }
3217       break;
3218     case SPF_FMAXNUM:
3219       switch (SPR.NaNBehavior) {
3220       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3221       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3222       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3223       case SPNB_RETURNS_ANY:
3224 
3225         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3226           Opc = ISD::FMAXNUM;
3227         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3228           Opc = ISD::FMAXIMUM;
3229         else if (UseScalarMinMax)
3230           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3231             ISD::FMAXNUM : ISD::FMAXIMUM;
3232         break;
3233       }
3234       break;
3235     case SPF_NABS:
3236       Negate = true;
3237       LLVM_FALLTHROUGH;
3238     case SPF_ABS:
3239       IsUnaryAbs = true;
3240       Opc = ISD::ABS;
3241       break;
3242     default: break;
3243     }
3244 
3245     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3246         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3247          (UseScalarMinMax &&
3248           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3249         // If the underlying comparison instruction is used by any other
3250         // instruction, the consumed instructions won't be destroyed, so it is
3251         // not profitable to convert to a min/max.
3252         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3253       OpCode = Opc;
3254       LHSVal = getValue(LHS);
3255       RHSVal = getValue(RHS);
3256       BaseOps.clear();
3257     }
3258 
3259     if (IsUnaryAbs) {
3260       OpCode = Opc;
3261       LHSVal = getValue(LHS);
3262       BaseOps.clear();
3263     }
3264   }
3265 
3266   if (IsUnaryAbs) {
3267     for (unsigned i = 0; i != NumValues; ++i) {
3268       SDLoc dl = getCurSDLoc();
3269       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3270       Values[i] =
3271           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3272       if (Negate)
3273         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3274                                 Values[i]);
3275     }
3276   } else {
3277     for (unsigned i = 0; i != NumValues; ++i) {
3278       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3279       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3280       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3281       Values[i] = DAG.getNode(
3282           OpCode, getCurSDLoc(),
3283           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3284     }
3285   }
3286 
3287   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3288                            DAG.getVTList(ValueVTs), Values));
3289 }
3290 
3291 void SelectionDAGBuilder::visitTrunc(const User &I) {
3292   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3293   SDValue N = getValue(I.getOperand(0));
3294   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3295                                                         I.getType());
3296   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3297 }
3298 
3299 void SelectionDAGBuilder::visitZExt(const User &I) {
3300   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3301   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3302   SDValue N = getValue(I.getOperand(0));
3303   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3304                                                         I.getType());
3305   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3306 }
3307 
3308 void SelectionDAGBuilder::visitSExt(const User &I) {
3309   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3310   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3311   SDValue N = getValue(I.getOperand(0));
3312   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3313                                                         I.getType());
3314   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3315 }
3316 
3317 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3318   // FPTrunc is never a no-op cast, no need to check
3319   SDValue N = getValue(I.getOperand(0));
3320   SDLoc dl = getCurSDLoc();
3321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3322   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3323   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3324                            DAG.getTargetConstant(
3325                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3326 }
3327 
3328 void SelectionDAGBuilder::visitFPExt(const User &I) {
3329   // FPExt is never a no-op cast, no need to check
3330   SDValue N = getValue(I.getOperand(0));
3331   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3332                                                         I.getType());
3333   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3334 }
3335 
3336 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3337   // FPToUI is never a no-op cast, no need to check
3338   SDValue N = getValue(I.getOperand(0));
3339   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3340                                                         I.getType());
3341   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3342 }
3343 
3344 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3345   // FPToSI is never a no-op cast, no need to check
3346   SDValue N = getValue(I.getOperand(0));
3347   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3348                                                         I.getType());
3349   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3350 }
3351 
3352 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3353   // UIToFP is never a no-op cast, no need to check
3354   SDValue N = getValue(I.getOperand(0));
3355   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3356                                                         I.getType());
3357   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3358 }
3359 
3360 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3361   // SIToFP is never a no-op cast, no need to check
3362   SDValue N = getValue(I.getOperand(0));
3363   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3364                                                         I.getType());
3365   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3366 }
3367 
3368 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3369   // What to do depends on the size of the integer and the size of the pointer.
3370   // We can either truncate, zero extend, or no-op, accordingly.
3371   SDValue N = getValue(I.getOperand(0));
3372   auto &TLI = DAG.getTargetLoweringInfo();
3373   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3374                                                         I.getType());
3375   EVT PtrMemVT =
3376       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3377   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3378   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3379   setValue(&I, N);
3380 }
3381 
3382 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3383   // What to do depends on the size of the integer and the size of the pointer.
3384   // We can either truncate, zero extend, or no-op, accordingly.
3385   SDValue N = getValue(I.getOperand(0));
3386   auto &TLI = DAG.getTargetLoweringInfo();
3387   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3388   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3389   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3390   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3391   setValue(&I, N);
3392 }
3393 
3394 void SelectionDAGBuilder::visitBitCast(const User &I) {
3395   SDValue N = getValue(I.getOperand(0));
3396   SDLoc dl = getCurSDLoc();
3397   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3398                                                         I.getType());
3399 
3400   // BitCast assures us that source and destination are the same size so this is
3401   // either a BITCAST or a no-op.
3402   if (DestVT != N.getValueType())
3403     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3404                              DestVT, N)); // convert types.
3405   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3406   // might fold any kind of constant expression to an integer constant and that
3407   // is not what we are looking for. Only recognize a bitcast of a genuine
3408   // constant integer as an opaque constant.
3409   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3410     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3411                                  /*isOpaque*/true));
3412   else
3413     setValue(&I, N);            // noop cast.
3414 }
3415 
3416 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3417   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3418   const Value *SV = I.getOperand(0);
3419   SDValue N = getValue(SV);
3420   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3421 
3422   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3423   unsigned DestAS = I.getType()->getPointerAddressSpace();
3424 
3425   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3426     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3427 
3428   setValue(&I, N);
3429 }
3430 
3431 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3433   SDValue InVec = getValue(I.getOperand(0));
3434   SDValue InVal = getValue(I.getOperand(1));
3435   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3436                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3437   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3438                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3439                            InVec, InVal, InIdx));
3440 }
3441 
3442 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3444   SDValue InVec = getValue(I.getOperand(0));
3445   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3446                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3447   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3448                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3449                            InVec, InIdx));
3450 }
3451 
3452 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3453   SDValue Src1 = getValue(I.getOperand(0));
3454   SDValue Src2 = getValue(I.getOperand(1));
3455   ArrayRef<int> Mask;
3456   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3457     Mask = SVI->getShuffleMask();
3458   else
3459     Mask = cast<ConstantExpr>(I).getShuffleMask();
3460   SDLoc DL = getCurSDLoc();
3461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3462   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3463   EVT SrcVT = Src1.getValueType();
3464 
3465   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3466       VT.isScalableVector()) {
3467     // Canonical splat form of first element of first input vector.
3468     SDValue FirstElt =
3469         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3470                     DAG.getVectorIdxConstant(0, DL));
3471     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3472     return;
3473   }
3474 
3475   // For now, we only handle splats for scalable vectors.
3476   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3477   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3478   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3479 
3480   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3481   unsigned MaskNumElts = Mask.size();
3482 
3483   if (SrcNumElts == MaskNumElts) {
3484     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3485     return;
3486   }
3487 
3488   // Normalize the shuffle vector since mask and vector length don't match.
3489   if (SrcNumElts < MaskNumElts) {
3490     // Mask is longer than the source vectors. We can use concatenate vector to
3491     // make the mask and vectors lengths match.
3492 
3493     if (MaskNumElts % SrcNumElts == 0) {
3494       // Mask length is a multiple of the source vector length.
3495       // Check if the shuffle is some kind of concatenation of the input
3496       // vectors.
3497       unsigned NumConcat = MaskNumElts / SrcNumElts;
3498       bool IsConcat = true;
3499       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3500       for (unsigned i = 0; i != MaskNumElts; ++i) {
3501         int Idx = Mask[i];
3502         if (Idx < 0)
3503           continue;
3504         // Ensure the indices in each SrcVT sized piece are sequential and that
3505         // the same source is used for the whole piece.
3506         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3507             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3508              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3509           IsConcat = false;
3510           break;
3511         }
3512         // Remember which source this index came from.
3513         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3514       }
3515 
3516       // The shuffle is concatenating multiple vectors together. Just emit
3517       // a CONCAT_VECTORS operation.
3518       if (IsConcat) {
3519         SmallVector<SDValue, 8> ConcatOps;
3520         for (auto Src : ConcatSrcs) {
3521           if (Src < 0)
3522             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3523           else if (Src == 0)
3524             ConcatOps.push_back(Src1);
3525           else
3526             ConcatOps.push_back(Src2);
3527         }
3528         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3529         return;
3530       }
3531     }
3532 
3533     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3534     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3535     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3536                                     PaddedMaskNumElts);
3537 
3538     // Pad both vectors with undefs to make them the same length as the mask.
3539     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3540 
3541     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3542     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3543     MOps1[0] = Src1;
3544     MOps2[0] = Src2;
3545 
3546     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3547     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3548 
3549     // Readjust mask for new input vector length.
3550     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3551     for (unsigned i = 0; i != MaskNumElts; ++i) {
3552       int Idx = Mask[i];
3553       if (Idx >= (int)SrcNumElts)
3554         Idx -= SrcNumElts - PaddedMaskNumElts;
3555       MappedOps[i] = Idx;
3556     }
3557 
3558     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3559 
3560     // If the concatenated vector was padded, extract a subvector with the
3561     // correct number of elements.
3562     if (MaskNumElts != PaddedMaskNumElts)
3563       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3564                            DAG.getVectorIdxConstant(0, DL));
3565 
3566     setValue(&I, Result);
3567     return;
3568   }
3569 
3570   if (SrcNumElts > MaskNumElts) {
3571     // Analyze the access pattern of the vector to see if we can extract
3572     // two subvectors and do the shuffle.
3573     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3574     bool CanExtract = true;
3575     for (int Idx : Mask) {
3576       unsigned Input = 0;
3577       if (Idx < 0)
3578         continue;
3579 
3580       if (Idx >= (int)SrcNumElts) {
3581         Input = 1;
3582         Idx -= SrcNumElts;
3583       }
3584 
3585       // If all the indices come from the same MaskNumElts sized portion of
3586       // the sources we can use extract. Also make sure the extract wouldn't
3587       // extract past the end of the source.
3588       int NewStartIdx = alignDown(Idx, MaskNumElts);
3589       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3590           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3591         CanExtract = false;
3592       // Make sure we always update StartIdx as we use it to track if all
3593       // elements are undef.
3594       StartIdx[Input] = NewStartIdx;
3595     }
3596 
3597     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3598       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3599       return;
3600     }
3601     if (CanExtract) {
3602       // Extract appropriate subvector and generate a vector shuffle
3603       for (unsigned Input = 0; Input < 2; ++Input) {
3604         SDValue &Src = Input == 0 ? Src1 : Src2;
3605         if (StartIdx[Input] < 0)
3606           Src = DAG.getUNDEF(VT);
3607         else {
3608           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3609                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3610         }
3611       }
3612 
3613       // Calculate new mask.
3614       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3615       for (int &Idx : MappedOps) {
3616         if (Idx >= (int)SrcNumElts)
3617           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3618         else if (Idx >= 0)
3619           Idx -= StartIdx[0];
3620       }
3621 
3622       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3623       return;
3624     }
3625   }
3626 
3627   // We can't use either concat vectors or extract subvectors so fall back to
3628   // replacing the shuffle with extract and build vector.
3629   // to insert and build vector.
3630   EVT EltVT = VT.getVectorElementType();
3631   SmallVector<SDValue,8> Ops;
3632   for (int Idx : Mask) {
3633     SDValue Res;
3634 
3635     if (Idx < 0) {
3636       Res = DAG.getUNDEF(EltVT);
3637     } else {
3638       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3639       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3640 
3641       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3642                         DAG.getVectorIdxConstant(Idx, DL));
3643     }
3644 
3645     Ops.push_back(Res);
3646   }
3647 
3648   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3649 }
3650 
3651 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3652   ArrayRef<unsigned> Indices;
3653   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3654     Indices = IV->getIndices();
3655   else
3656     Indices = cast<ConstantExpr>(&I)->getIndices();
3657 
3658   const Value *Op0 = I.getOperand(0);
3659   const Value *Op1 = I.getOperand(1);
3660   Type *AggTy = I.getType();
3661   Type *ValTy = Op1->getType();
3662   bool IntoUndef = isa<UndefValue>(Op0);
3663   bool FromUndef = isa<UndefValue>(Op1);
3664 
3665   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3666 
3667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3668   SmallVector<EVT, 4> AggValueVTs;
3669   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3670   SmallVector<EVT, 4> ValValueVTs;
3671   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3672 
3673   unsigned NumAggValues = AggValueVTs.size();
3674   unsigned NumValValues = ValValueVTs.size();
3675   SmallVector<SDValue, 4> Values(NumAggValues);
3676 
3677   // Ignore an insertvalue that produces an empty object
3678   if (!NumAggValues) {
3679     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3680     return;
3681   }
3682 
3683   SDValue Agg = getValue(Op0);
3684   unsigned i = 0;
3685   // Copy the beginning value(s) from the original aggregate.
3686   for (; i != LinearIndex; ++i)
3687     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3688                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3689   // Copy values from the inserted value(s).
3690   if (NumValValues) {
3691     SDValue Val = getValue(Op1);
3692     for (; i != LinearIndex + NumValValues; ++i)
3693       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3694                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3695   }
3696   // Copy remaining value(s) from the original aggregate.
3697   for (; i != NumAggValues; ++i)
3698     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3699                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3700 
3701   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3702                            DAG.getVTList(AggValueVTs), Values));
3703 }
3704 
3705 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3706   ArrayRef<unsigned> Indices;
3707   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3708     Indices = EV->getIndices();
3709   else
3710     Indices = cast<ConstantExpr>(&I)->getIndices();
3711 
3712   const Value *Op0 = I.getOperand(0);
3713   Type *AggTy = Op0->getType();
3714   Type *ValTy = I.getType();
3715   bool OutOfUndef = isa<UndefValue>(Op0);
3716 
3717   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3718 
3719   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3720   SmallVector<EVT, 4> ValValueVTs;
3721   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3722 
3723   unsigned NumValValues = ValValueVTs.size();
3724 
3725   // Ignore a extractvalue that produces an empty object
3726   if (!NumValValues) {
3727     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3728     return;
3729   }
3730 
3731   SmallVector<SDValue, 4> Values(NumValValues);
3732 
3733   SDValue Agg = getValue(Op0);
3734   // Copy out the selected value(s).
3735   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3736     Values[i - LinearIndex] =
3737       OutOfUndef ?
3738         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3739         SDValue(Agg.getNode(), Agg.getResNo() + i);
3740 
3741   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3742                            DAG.getVTList(ValValueVTs), Values));
3743 }
3744 
3745 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3746   Value *Op0 = I.getOperand(0);
3747   // Note that the pointer operand may be a vector of pointers. Take the scalar
3748   // element which holds a pointer.
3749   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3750   SDValue N = getValue(Op0);
3751   SDLoc dl = getCurSDLoc();
3752   auto &TLI = DAG.getTargetLoweringInfo();
3753 
3754   // Normalize Vector GEP - all scalar operands should be converted to the
3755   // splat vector.
3756   bool IsVectorGEP = I.getType()->isVectorTy();
3757   ElementCount VectorElementCount =
3758       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3759                   : ElementCount::getFixed(0);
3760 
3761   if (IsVectorGEP && !N.getValueType().isVector()) {
3762     LLVMContext &Context = *DAG.getContext();
3763     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3764     if (VectorElementCount.isScalable())
3765       N = DAG.getSplatVector(VT, dl, N);
3766     else
3767       N = DAG.getSplatBuildVector(VT, dl, N);
3768   }
3769 
3770   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3771        GTI != E; ++GTI) {
3772     const Value *Idx = GTI.getOperand();
3773     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3774       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3775       if (Field) {
3776         // N = N + Offset
3777         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3778 
3779         // In an inbounds GEP with an offset that is nonnegative even when
3780         // interpreted as signed, assume there is no unsigned overflow.
3781         SDNodeFlags Flags;
3782         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3783           Flags.setNoUnsignedWrap(true);
3784 
3785         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3786                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3787       }
3788     } else {
3789       // IdxSize is the width of the arithmetic according to IR semantics.
3790       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3791       // (and fix up the result later).
3792       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3793       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3794       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3795       // We intentionally mask away the high bits here; ElementSize may not
3796       // fit in IdxTy.
3797       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3798       bool ElementScalable = ElementSize.isScalable();
3799 
3800       // If this is a scalar constant or a splat vector of constants,
3801       // handle it quickly.
3802       const auto *C = dyn_cast<Constant>(Idx);
3803       if (C && isa<VectorType>(C->getType()))
3804         C = C->getSplatValue();
3805 
3806       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3807       if (CI && CI->isZero())
3808         continue;
3809       if (CI && !ElementScalable) {
3810         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3811         LLVMContext &Context = *DAG.getContext();
3812         SDValue OffsVal;
3813         if (IsVectorGEP)
3814           OffsVal = DAG.getConstant(
3815               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3816         else
3817           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3818 
3819         // In an inbounds GEP with an offset that is nonnegative even when
3820         // interpreted as signed, assume there is no unsigned overflow.
3821         SDNodeFlags Flags;
3822         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3823           Flags.setNoUnsignedWrap(true);
3824 
3825         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3826 
3827         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3828         continue;
3829       }
3830 
3831       // N = N + Idx * ElementMul;
3832       SDValue IdxN = getValue(Idx);
3833 
3834       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3835         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3836                                   VectorElementCount);
3837         if (VectorElementCount.isScalable())
3838           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3839         else
3840           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3841       }
3842 
3843       // If the index is smaller or larger than intptr_t, truncate or extend
3844       // it.
3845       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3846 
3847       if (ElementScalable) {
3848         EVT VScaleTy = N.getValueType().getScalarType();
3849         SDValue VScale = DAG.getNode(
3850             ISD::VSCALE, dl, VScaleTy,
3851             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3852         if (IsVectorGEP)
3853           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3854         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3855       } else {
3856         // If this is a multiply by a power of two, turn it into a shl
3857         // immediately.  This is a very common case.
3858         if (ElementMul != 1) {
3859           if (ElementMul.isPowerOf2()) {
3860             unsigned Amt = ElementMul.logBase2();
3861             IdxN = DAG.getNode(ISD::SHL, dl,
3862                                N.getValueType(), IdxN,
3863                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3864           } else {
3865             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3866                                             IdxN.getValueType());
3867             IdxN = DAG.getNode(ISD::MUL, dl,
3868                                N.getValueType(), IdxN, Scale);
3869           }
3870         }
3871       }
3872 
3873       N = DAG.getNode(ISD::ADD, dl,
3874                       N.getValueType(), N, IdxN);
3875     }
3876   }
3877 
3878   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3879   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3880   if (IsVectorGEP) {
3881     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3882     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3883   }
3884 
3885   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3886     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3887 
3888   setValue(&I, N);
3889 }
3890 
3891 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3892   // If this is a fixed sized alloca in the entry block of the function,
3893   // allocate it statically on the stack.
3894   if (FuncInfo.StaticAllocaMap.count(&I))
3895     return;   // getValue will auto-populate this.
3896 
3897   SDLoc dl = getCurSDLoc();
3898   Type *Ty = I.getAllocatedType();
3899   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3900   auto &DL = DAG.getDataLayout();
3901   uint64_t TySize = DL.getTypeAllocSize(Ty);
3902   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3903 
3904   SDValue AllocSize = getValue(I.getArraySize());
3905 
3906   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3907   if (AllocSize.getValueType() != IntPtr)
3908     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3909 
3910   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3911                           AllocSize,
3912                           DAG.getConstant(TySize, dl, IntPtr));
3913 
3914   // Handle alignment.  If the requested alignment is less than or equal to
3915   // the stack alignment, ignore it.  If the size is greater than or equal to
3916   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3917   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3918   if (*Alignment <= StackAlign)
3919     Alignment = None;
3920 
3921   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3922   // Round the size of the allocation up to the stack alignment size
3923   // by add SA-1 to the size. This doesn't overflow because we're computing
3924   // an address inside an alloca.
3925   SDNodeFlags Flags;
3926   Flags.setNoUnsignedWrap(true);
3927   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3928                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3929 
3930   // Mask out the low bits for alignment purposes.
3931   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3932                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3933 
3934   SDValue Ops[] = {
3935       getRoot(), AllocSize,
3936       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3937   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3938   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3939   setValue(&I, DSA);
3940   DAG.setRoot(DSA.getValue(1));
3941 
3942   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3943 }
3944 
3945 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3946   if (I.isAtomic())
3947     return visitAtomicLoad(I);
3948 
3949   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3950   const Value *SV = I.getOperand(0);
3951   if (TLI.supportSwiftError()) {
3952     // Swifterror values can come from either a function parameter with
3953     // swifterror attribute or an alloca with swifterror attribute.
3954     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3955       if (Arg->hasSwiftErrorAttr())
3956         return visitLoadFromSwiftError(I);
3957     }
3958 
3959     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3960       if (Alloca->isSwiftError())
3961         return visitLoadFromSwiftError(I);
3962     }
3963   }
3964 
3965   SDValue Ptr = getValue(SV);
3966 
3967   Type *Ty = I.getType();
3968   Align Alignment = I.getAlign();
3969 
3970   AAMDNodes AAInfo;
3971   I.getAAMetadata(AAInfo);
3972   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3973 
3974   SmallVector<EVT, 4> ValueVTs, MemVTs;
3975   SmallVector<uint64_t, 4> Offsets;
3976   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3977   unsigned NumValues = ValueVTs.size();
3978   if (NumValues == 0)
3979     return;
3980 
3981   bool isVolatile = I.isVolatile();
3982 
3983   SDValue Root;
3984   bool ConstantMemory = false;
3985   if (isVolatile)
3986     // Serialize volatile loads with other side effects.
3987     Root = getRoot();
3988   else if (NumValues > MaxParallelChains)
3989     Root = getMemoryRoot();
3990   else if (AA &&
3991            AA->pointsToConstantMemory(MemoryLocation(
3992                SV,
3993                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3994                AAInfo))) {
3995     // Do not serialize (non-volatile) loads of constant memory with anything.
3996     Root = DAG.getEntryNode();
3997     ConstantMemory = true;
3998   } else {
3999     // Do not serialize non-volatile loads against each other.
4000     Root = DAG.getRoot();
4001   }
4002 
4003   SDLoc dl = getCurSDLoc();
4004 
4005   if (isVolatile)
4006     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4007 
4008   // An aggregate load cannot wrap around the address space, so offsets to its
4009   // parts don't wrap either.
4010   SDNodeFlags Flags;
4011   Flags.setNoUnsignedWrap(true);
4012 
4013   SmallVector<SDValue, 4> Values(NumValues);
4014   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4015   EVT PtrVT = Ptr.getValueType();
4016 
4017   MachineMemOperand::Flags MMOFlags
4018     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4019 
4020   unsigned ChainI = 0;
4021   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4022     // Serializing loads here may result in excessive register pressure, and
4023     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4024     // could recover a bit by hoisting nodes upward in the chain by recognizing
4025     // they are side-effect free or do not alias. The optimizer should really
4026     // avoid this case by converting large object/array copies to llvm.memcpy
4027     // (MaxParallelChains should always remain as failsafe).
4028     if (ChainI == MaxParallelChains) {
4029       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4030       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4031                                   makeArrayRef(Chains.data(), ChainI));
4032       Root = Chain;
4033       ChainI = 0;
4034     }
4035     SDValue A = DAG.getNode(ISD::ADD, dl,
4036                             PtrVT, Ptr,
4037                             DAG.getConstant(Offsets[i], dl, PtrVT),
4038                             Flags);
4039 
4040     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4041                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4042                             MMOFlags, AAInfo, Ranges);
4043     Chains[ChainI] = L.getValue(1);
4044 
4045     if (MemVTs[i] != ValueVTs[i])
4046       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4047 
4048     Values[i] = L;
4049   }
4050 
4051   if (!ConstantMemory) {
4052     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4053                                 makeArrayRef(Chains.data(), ChainI));
4054     if (isVolatile)
4055       DAG.setRoot(Chain);
4056     else
4057       PendingLoads.push_back(Chain);
4058   }
4059 
4060   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4061                            DAG.getVTList(ValueVTs), Values));
4062 }
4063 
4064 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4065   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4066          "call visitStoreToSwiftError when backend supports swifterror");
4067 
4068   SmallVector<EVT, 4> ValueVTs;
4069   SmallVector<uint64_t, 4> Offsets;
4070   const Value *SrcV = I.getOperand(0);
4071   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4072                   SrcV->getType(), ValueVTs, &Offsets);
4073   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4074          "expect a single EVT for swifterror");
4075 
4076   SDValue Src = getValue(SrcV);
4077   // Create a virtual register, then update the virtual register.
4078   Register VReg =
4079       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4080   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4081   // Chain can be getRoot or getControlRoot.
4082   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4083                                       SDValue(Src.getNode(), Src.getResNo()));
4084   DAG.setRoot(CopyNode);
4085 }
4086 
4087 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4088   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4089          "call visitLoadFromSwiftError when backend supports swifterror");
4090 
4091   assert(!I.isVolatile() &&
4092          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4093          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4094          "Support volatile, non temporal, invariant for load_from_swift_error");
4095 
4096   const Value *SV = I.getOperand(0);
4097   Type *Ty = I.getType();
4098   AAMDNodes AAInfo;
4099   I.getAAMetadata(AAInfo);
4100   assert(
4101       (!AA ||
4102        !AA->pointsToConstantMemory(MemoryLocation(
4103            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4104            AAInfo))) &&
4105       "load_from_swift_error should not be constant memory");
4106 
4107   SmallVector<EVT, 4> ValueVTs;
4108   SmallVector<uint64_t, 4> Offsets;
4109   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4110                   ValueVTs, &Offsets);
4111   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4112          "expect a single EVT for swifterror");
4113 
4114   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4115   SDValue L = DAG.getCopyFromReg(
4116       getRoot(), getCurSDLoc(),
4117       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4118 
4119   setValue(&I, L);
4120 }
4121 
4122 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4123   if (I.isAtomic())
4124     return visitAtomicStore(I);
4125 
4126   const Value *SrcV = I.getOperand(0);
4127   const Value *PtrV = I.getOperand(1);
4128 
4129   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4130   if (TLI.supportSwiftError()) {
4131     // Swifterror values can come from either a function parameter with
4132     // swifterror attribute or an alloca with swifterror attribute.
4133     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4134       if (Arg->hasSwiftErrorAttr())
4135         return visitStoreToSwiftError(I);
4136     }
4137 
4138     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4139       if (Alloca->isSwiftError())
4140         return visitStoreToSwiftError(I);
4141     }
4142   }
4143 
4144   SmallVector<EVT, 4> ValueVTs, MemVTs;
4145   SmallVector<uint64_t, 4> Offsets;
4146   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4147                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4148   unsigned NumValues = ValueVTs.size();
4149   if (NumValues == 0)
4150     return;
4151 
4152   // Get the lowered operands. Note that we do this after
4153   // checking if NumResults is zero, because with zero results
4154   // the operands won't have values in the map.
4155   SDValue Src = getValue(SrcV);
4156   SDValue Ptr = getValue(PtrV);
4157 
4158   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4159   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4160   SDLoc dl = getCurSDLoc();
4161   Align Alignment = I.getAlign();
4162   AAMDNodes AAInfo;
4163   I.getAAMetadata(AAInfo);
4164 
4165   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4166 
4167   // An aggregate load cannot wrap around the address space, so offsets to its
4168   // parts don't wrap either.
4169   SDNodeFlags Flags;
4170   Flags.setNoUnsignedWrap(true);
4171 
4172   unsigned ChainI = 0;
4173   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4174     // See visitLoad comments.
4175     if (ChainI == MaxParallelChains) {
4176       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4177                                   makeArrayRef(Chains.data(), ChainI));
4178       Root = Chain;
4179       ChainI = 0;
4180     }
4181     SDValue Add =
4182         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4183     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4184     if (MemVTs[i] != ValueVTs[i])
4185       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4186     SDValue St =
4187         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4188                      Alignment, MMOFlags, AAInfo);
4189     Chains[ChainI] = St;
4190   }
4191 
4192   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4193                                   makeArrayRef(Chains.data(), ChainI));
4194   DAG.setRoot(StoreNode);
4195 }
4196 
4197 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4198                                            bool IsCompressing) {
4199   SDLoc sdl = getCurSDLoc();
4200 
4201   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4202                                MaybeAlign &Alignment) {
4203     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4204     Src0 = I.getArgOperand(0);
4205     Ptr = I.getArgOperand(1);
4206     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4207     Mask = I.getArgOperand(3);
4208   };
4209   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4210                                     MaybeAlign &Alignment) {
4211     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4212     Src0 = I.getArgOperand(0);
4213     Ptr = I.getArgOperand(1);
4214     Mask = I.getArgOperand(2);
4215     Alignment = None;
4216   };
4217 
4218   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4219   MaybeAlign Alignment;
4220   if (IsCompressing)
4221     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4222   else
4223     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4224 
4225   SDValue Ptr = getValue(PtrOperand);
4226   SDValue Src0 = getValue(Src0Operand);
4227   SDValue Mask = getValue(MaskOperand);
4228   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4229 
4230   EVT VT = Src0.getValueType();
4231   if (!Alignment)
4232     Alignment = DAG.getEVTAlign(VT);
4233 
4234   AAMDNodes AAInfo;
4235   I.getAAMetadata(AAInfo);
4236 
4237   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4238       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4239       // TODO: Make MachineMemOperands aware of scalable
4240       // vectors.
4241       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4242   SDValue StoreNode =
4243       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4244                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4245   DAG.setRoot(StoreNode);
4246   setValue(&I, StoreNode);
4247 }
4248 
4249 // Get a uniform base for the Gather/Scatter intrinsic.
4250 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4251 // We try to represent it as a base pointer + vector of indices.
4252 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4253 // The first operand of the GEP may be a single pointer or a vector of pointers
4254 // Example:
4255 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4256 //  or
4257 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4258 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4259 //
4260 // When the first GEP operand is a single pointer - it is the uniform base we
4261 // are looking for. If first operand of the GEP is a splat vector - we
4262 // extract the splat value and use it as a uniform base.
4263 // In all other cases the function returns 'false'.
4264 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4265                            ISD::MemIndexType &IndexType, SDValue &Scale,
4266                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4267   SelectionDAG& DAG = SDB->DAG;
4268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4269   const DataLayout &DL = DAG.getDataLayout();
4270 
4271   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4272 
4273   // Handle splat constant pointer.
4274   if (auto *C = dyn_cast<Constant>(Ptr)) {
4275     C = C->getSplatValue();
4276     if (!C)
4277       return false;
4278 
4279     Base = SDB->getValue(C);
4280 
4281     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4282     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4283     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4284     IndexType = ISD::SIGNED_SCALED;
4285     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4286     return true;
4287   }
4288 
4289   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4290   if (!GEP || GEP->getParent() != CurBB)
4291     return false;
4292 
4293   if (GEP->getNumOperands() != 2)
4294     return false;
4295 
4296   const Value *BasePtr = GEP->getPointerOperand();
4297   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4298 
4299   // Make sure the base is scalar and the index is a vector.
4300   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4301     return false;
4302 
4303   Base = SDB->getValue(BasePtr);
4304   Index = SDB->getValue(IndexVal);
4305   IndexType = ISD::SIGNED_SCALED;
4306   Scale = DAG.getTargetConstant(
4307               DL.getTypeAllocSize(GEP->getResultElementType()),
4308               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4309   return true;
4310 }
4311 
4312 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4313   SDLoc sdl = getCurSDLoc();
4314 
4315   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4316   const Value *Ptr = I.getArgOperand(1);
4317   SDValue Src0 = getValue(I.getArgOperand(0));
4318   SDValue Mask = getValue(I.getArgOperand(3));
4319   EVT VT = Src0.getValueType();
4320   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4321                         ->getMaybeAlignValue()
4322                         .getValueOr(DAG.getEVTAlign(VT));
4323   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4324 
4325   AAMDNodes AAInfo;
4326   I.getAAMetadata(AAInfo);
4327 
4328   SDValue Base;
4329   SDValue Index;
4330   ISD::MemIndexType IndexType;
4331   SDValue Scale;
4332   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4333                                     I.getParent());
4334 
4335   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4336   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4337       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4338       // TODO: Make MachineMemOperands aware of scalable
4339       // vectors.
4340       MemoryLocation::UnknownSize, Alignment, AAInfo);
4341   if (!UniformBase) {
4342     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4343     Index = getValue(Ptr);
4344     IndexType = ISD::SIGNED_UNSCALED;
4345     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4346   }
4347 
4348   EVT IdxVT = Index.getValueType();
4349   EVT EltTy = IdxVT.getVectorElementType();
4350   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4351     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4352     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4353   }
4354 
4355   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4356   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4357                                          Ops, MMO, IndexType, false);
4358   DAG.setRoot(Scatter);
4359   setValue(&I, Scatter);
4360 }
4361 
4362 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4363   SDLoc sdl = getCurSDLoc();
4364 
4365   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4366                               MaybeAlign &Alignment) {
4367     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4368     Ptr = I.getArgOperand(0);
4369     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4370     Mask = I.getArgOperand(2);
4371     Src0 = I.getArgOperand(3);
4372   };
4373   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4374                                  MaybeAlign &Alignment) {
4375     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4376     Ptr = I.getArgOperand(0);
4377     Alignment = None;
4378     Mask = I.getArgOperand(1);
4379     Src0 = I.getArgOperand(2);
4380   };
4381 
4382   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4383   MaybeAlign Alignment;
4384   if (IsExpanding)
4385     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4386   else
4387     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4388 
4389   SDValue Ptr = getValue(PtrOperand);
4390   SDValue Src0 = getValue(Src0Operand);
4391   SDValue Mask = getValue(MaskOperand);
4392   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4393 
4394   EVT VT = Src0.getValueType();
4395   if (!Alignment)
4396     Alignment = DAG.getEVTAlign(VT);
4397 
4398   AAMDNodes AAInfo;
4399   I.getAAMetadata(AAInfo);
4400   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4401 
4402   // Do not serialize masked loads of constant memory with anything.
4403   MemoryLocation ML;
4404   if (VT.isScalableVector())
4405     ML = MemoryLocation::getAfter(PtrOperand);
4406   else
4407     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4408                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4409                            AAInfo);
4410   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4411 
4412   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4413 
4414   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4415       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4416       // TODO: Make MachineMemOperands aware of scalable
4417       // vectors.
4418       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4419 
4420   SDValue Load =
4421       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4422                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4423   if (AddToChain)
4424     PendingLoads.push_back(Load.getValue(1));
4425   setValue(&I, Load);
4426 }
4427 
4428 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4429   SDLoc sdl = getCurSDLoc();
4430 
4431   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4432   const Value *Ptr = I.getArgOperand(0);
4433   SDValue Src0 = getValue(I.getArgOperand(3));
4434   SDValue Mask = getValue(I.getArgOperand(2));
4435 
4436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4437   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4438   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4439                         ->getMaybeAlignValue()
4440                         .getValueOr(DAG.getEVTAlign(VT));
4441 
4442   AAMDNodes AAInfo;
4443   I.getAAMetadata(AAInfo);
4444   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4445 
4446   SDValue Root = DAG.getRoot();
4447   SDValue Base;
4448   SDValue Index;
4449   ISD::MemIndexType IndexType;
4450   SDValue Scale;
4451   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4452                                     I.getParent());
4453   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4454   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4455       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4456       // TODO: Make MachineMemOperands aware of scalable
4457       // vectors.
4458       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4459 
4460   if (!UniformBase) {
4461     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4462     Index = getValue(Ptr);
4463     IndexType = ISD::SIGNED_UNSCALED;
4464     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4465   }
4466 
4467   EVT IdxVT = Index.getValueType();
4468   EVT EltTy = IdxVT.getVectorElementType();
4469   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4470     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4471     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4472   }
4473 
4474   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4475   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4476                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4477 
4478   PendingLoads.push_back(Gather.getValue(1));
4479   setValue(&I, Gather);
4480 }
4481 
4482 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4483   SDLoc dl = getCurSDLoc();
4484   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4485   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4486   SyncScope::ID SSID = I.getSyncScopeID();
4487 
4488   SDValue InChain = getRoot();
4489 
4490   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4491   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4492 
4493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4494   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4495 
4496   MachineFunction &MF = DAG.getMachineFunction();
4497   MachineMemOperand *MMO = MF.getMachineMemOperand(
4498       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4499       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4500       FailureOrdering);
4501 
4502   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4503                                    dl, MemVT, VTs, InChain,
4504                                    getValue(I.getPointerOperand()),
4505                                    getValue(I.getCompareOperand()),
4506                                    getValue(I.getNewValOperand()), MMO);
4507 
4508   SDValue OutChain = L.getValue(2);
4509 
4510   setValue(&I, L);
4511   DAG.setRoot(OutChain);
4512 }
4513 
4514 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4515   SDLoc dl = getCurSDLoc();
4516   ISD::NodeType NT;
4517   switch (I.getOperation()) {
4518   default: llvm_unreachable("Unknown atomicrmw operation");
4519   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4520   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4521   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4522   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4523   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4524   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4525   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4526   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4527   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4528   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4529   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4530   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4531   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4532   }
4533   AtomicOrdering Ordering = I.getOrdering();
4534   SyncScope::ID SSID = I.getSyncScopeID();
4535 
4536   SDValue InChain = getRoot();
4537 
4538   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4540   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4541 
4542   MachineFunction &MF = DAG.getMachineFunction();
4543   MachineMemOperand *MMO = MF.getMachineMemOperand(
4544       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4545       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4546 
4547   SDValue L =
4548     DAG.getAtomic(NT, dl, MemVT, InChain,
4549                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4550                   MMO);
4551 
4552   SDValue OutChain = L.getValue(1);
4553 
4554   setValue(&I, L);
4555   DAG.setRoot(OutChain);
4556 }
4557 
4558 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4559   SDLoc dl = getCurSDLoc();
4560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4561   SDValue Ops[3];
4562   Ops[0] = getRoot();
4563   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4564                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4565   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4566                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4567   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4568 }
4569 
4570 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4571   SDLoc dl = getCurSDLoc();
4572   AtomicOrdering Order = I.getOrdering();
4573   SyncScope::ID SSID = I.getSyncScopeID();
4574 
4575   SDValue InChain = getRoot();
4576 
4577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4578   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4579   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4580 
4581   if (!TLI.supportsUnalignedAtomics() &&
4582       I.getAlignment() < MemVT.getSizeInBits() / 8)
4583     report_fatal_error("Cannot generate unaligned atomic load");
4584 
4585   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4586 
4587   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4588       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4589       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4590 
4591   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4592 
4593   SDValue Ptr = getValue(I.getPointerOperand());
4594 
4595   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4596     // TODO: Once this is better exercised by tests, it should be merged with
4597     // the normal path for loads to prevent future divergence.
4598     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4599     if (MemVT != VT)
4600       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4601 
4602     setValue(&I, L);
4603     SDValue OutChain = L.getValue(1);
4604     if (!I.isUnordered())
4605       DAG.setRoot(OutChain);
4606     else
4607       PendingLoads.push_back(OutChain);
4608     return;
4609   }
4610 
4611   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4612                             Ptr, MMO);
4613 
4614   SDValue OutChain = L.getValue(1);
4615   if (MemVT != VT)
4616     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4617 
4618   setValue(&I, L);
4619   DAG.setRoot(OutChain);
4620 }
4621 
4622 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4623   SDLoc dl = getCurSDLoc();
4624 
4625   AtomicOrdering Ordering = I.getOrdering();
4626   SyncScope::ID SSID = I.getSyncScopeID();
4627 
4628   SDValue InChain = getRoot();
4629 
4630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4631   EVT MemVT =
4632       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4633 
4634   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4635     report_fatal_error("Cannot generate unaligned atomic store");
4636 
4637   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4638 
4639   MachineFunction &MF = DAG.getMachineFunction();
4640   MachineMemOperand *MMO = MF.getMachineMemOperand(
4641       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4642       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4643 
4644   SDValue Val = getValue(I.getValueOperand());
4645   if (Val.getValueType() != MemVT)
4646     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4647   SDValue Ptr = getValue(I.getPointerOperand());
4648 
4649   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4650     // TODO: Once this is better exercised by tests, it should be merged with
4651     // the normal path for stores to prevent future divergence.
4652     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4653     DAG.setRoot(S);
4654     return;
4655   }
4656   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4657                                    Ptr, Val, MMO);
4658 
4659 
4660   DAG.setRoot(OutChain);
4661 }
4662 
4663 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4664 /// node.
4665 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4666                                                unsigned Intrinsic) {
4667   // Ignore the callsite's attributes. A specific call site may be marked with
4668   // readnone, but the lowering code will expect the chain based on the
4669   // definition.
4670   const Function *F = I.getCalledFunction();
4671   bool HasChain = !F->doesNotAccessMemory();
4672   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4673 
4674   // Build the operand list.
4675   SmallVector<SDValue, 8> Ops;
4676   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4677     if (OnlyLoad) {
4678       // We don't need to serialize loads against other loads.
4679       Ops.push_back(DAG.getRoot());
4680     } else {
4681       Ops.push_back(getRoot());
4682     }
4683   }
4684 
4685   // Info is set by getTgtMemInstrinsic
4686   TargetLowering::IntrinsicInfo Info;
4687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4688   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4689                                                DAG.getMachineFunction(),
4690                                                Intrinsic);
4691 
4692   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4693   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4694       Info.opc == ISD::INTRINSIC_W_CHAIN)
4695     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4696                                         TLI.getPointerTy(DAG.getDataLayout())));
4697 
4698   // Add all operands of the call to the operand list.
4699   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4700     const Value *Arg = I.getArgOperand(i);
4701     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4702       Ops.push_back(getValue(Arg));
4703       continue;
4704     }
4705 
4706     // Use TargetConstant instead of a regular constant for immarg.
4707     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4708     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4709       assert(CI->getBitWidth() <= 64 &&
4710              "large intrinsic immediates not handled");
4711       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4712     } else {
4713       Ops.push_back(
4714           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4715     }
4716   }
4717 
4718   SmallVector<EVT, 4> ValueVTs;
4719   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4720 
4721   if (HasChain)
4722     ValueVTs.push_back(MVT::Other);
4723 
4724   SDVTList VTs = DAG.getVTList(ValueVTs);
4725 
4726   // Create the node.
4727   SDValue Result;
4728   if (IsTgtIntrinsic) {
4729     // This is target intrinsic that touches memory
4730     AAMDNodes AAInfo;
4731     I.getAAMetadata(AAInfo);
4732     Result =
4733         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4734                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4735                                 Info.align, Info.flags, Info.size, AAInfo);
4736   } else if (!HasChain) {
4737     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4738   } else if (!I.getType()->isVoidTy()) {
4739     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4740   } else {
4741     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4742   }
4743 
4744   if (HasChain) {
4745     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4746     if (OnlyLoad)
4747       PendingLoads.push_back(Chain);
4748     else
4749       DAG.setRoot(Chain);
4750   }
4751 
4752   if (!I.getType()->isVoidTy()) {
4753     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4754       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4755       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4756     } else
4757       Result = lowerRangeToAssertZExt(DAG, I, Result);
4758 
4759     MaybeAlign Alignment = I.getRetAlign();
4760     if (!Alignment)
4761       Alignment = F->getAttributes().getRetAlignment();
4762     // Insert `assertalign` node if there's an alignment.
4763     if (InsertAssertAlign && Alignment) {
4764       Result =
4765           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4766     }
4767 
4768     setValue(&I, Result);
4769   }
4770 }
4771 
4772 /// GetSignificand - Get the significand and build it into a floating-point
4773 /// number with exponent of 1:
4774 ///
4775 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4776 ///
4777 /// where Op is the hexadecimal representation of floating point value.
4778 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4779   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4780                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4781   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4782                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4783   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4784 }
4785 
4786 /// GetExponent - Get the exponent:
4787 ///
4788 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4789 ///
4790 /// where Op is the hexadecimal representation of floating point value.
4791 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4792                            const TargetLowering &TLI, const SDLoc &dl) {
4793   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4794                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4795   SDValue t1 = DAG.getNode(
4796       ISD::SRL, dl, MVT::i32, t0,
4797       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4798   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4799                            DAG.getConstant(127, dl, MVT::i32));
4800   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4801 }
4802 
4803 /// getF32Constant - Get 32-bit floating point constant.
4804 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4805                               const SDLoc &dl) {
4806   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4807                            MVT::f32);
4808 }
4809 
4810 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4811                                        SelectionDAG &DAG) {
4812   // TODO: What fast-math-flags should be set on the floating-point nodes?
4813 
4814   //   IntegerPartOfX = ((int32_t)(t0);
4815   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4816 
4817   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4818   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4819   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4820 
4821   //   IntegerPartOfX <<= 23;
4822   IntegerPartOfX = DAG.getNode(
4823       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4824       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4825                                   DAG.getDataLayout())));
4826 
4827   SDValue TwoToFractionalPartOfX;
4828   if (LimitFloatPrecision <= 6) {
4829     // For floating-point precision of 6:
4830     //
4831     //   TwoToFractionalPartOfX =
4832     //     0.997535578f +
4833     //       (0.735607626f + 0.252464424f * x) * x;
4834     //
4835     // error 0.0144103317, which is 6 bits
4836     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4837                              getF32Constant(DAG, 0x3e814304, dl));
4838     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4839                              getF32Constant(DAG, 0x3f3c50c8, dl));
4840     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4841     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4842                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4843   } else if (LimitFloatPrecision <= 12) {
4844     // For floating-point precision of 12:
4845     //
4846     //   TwoToFractionalPartOfX =
4847     //     0.999892986f +
4848     //       (0.696457318f +
4849     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4850     //
4851     // error 0.000107046256, which is 13 to 14 bits
4852     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4853                              getF32Constant(DAG, 0x3da235e3, dl));
4854     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4855                              getF32Constant(DAG, 0x3e65b8f3, dl));
4856     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4857     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4858                              getF32Constant(DAG, 0x3f324b07, dl));
4859     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4860     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4861                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4862   } else { // LimitFloatPrecision <= 18
4863     // For floating-point precision of 18:
4864     //
4865     //   TwoToFractionalPartOfX =
4866     //     0.999999982f +
4867     //       (0.693148872f +
4868     //         (0.240227044f +
4869     //           (0.554906021e-1f +
4870     //             (0.961591928e-2f +
4871     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4872     // error 2.47208000*10^(-7), which is better than 18 bits
4873     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4874                              getF32Constant(DAG, 0x3924b03e, dl));
4875     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4876                              getF32Constant(DAG, 0x3ab24b87, dl));
4877     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4878     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4879                              getF32Constant(DAG, 0x3c1d8c17, dl));
4880     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4881     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4882                              getF32Constant(DAG, 0x3d634a1d, dl));
4883     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4884     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4885                              getF32Constant(DAG, 0x3e75fe14, dl));
4886     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4887     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4888                               getF32Constant(DAG, 0x3f317234, dl));
4889     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4890     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4891                                          getF32Constant(DAG, 0x3f800000, dl));
4892   }
4893 
4894   // Add the exponent into the result in integer domain.
4895   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4896   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4897                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4898 }
4899 
4900 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4901 /// limited-precision mode.
4902 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4903                          const TargetLowering &TLI, SDNodeFlags Flags) {
4904   if (Op.getValueType() == MVT::f32 &&
4905       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4906 
4907     // Put the exponent in the right bit position for later addition to the
4908     // final result:
4909     //
4910     // t0 = Op * log2(e)
4911 
4912     // TODO: What fast-math-flags should be set here?
4913     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4914                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4915     return getLimitedPrecisionExp2(t0, dl, DAG);
4916   }
4917 
4918   // No special expansion.
4919   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4920 }
4921 
4922 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4923 /// limited-precision mode.
4924 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4925                          const TargetLowering &TLI, SDNodeFlags Flags) {
4926   // TODO: What fast-math-flags should be set on the floating-point nodes?
4927 
4928   if (Op.getValueType() == MVT::f32 &&
4929       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4930     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4931 
4932     // Scale the exponent by log(2).
4933     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4934     SDValue LogOfExponent =
4935         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4936                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4937 
4938     // Get the significand and build it into a floating-point number with
4939     // exponent of 1.
4940     SDValue X = GetSignificand(DAG, Op1, dl);
4941 
4942     SDValue LogOfMantissa;
4943     if (LimitFloatPrecision <= 6) {
4944       // For floating-point precision of 6:
4945       //
4946       //   LogofMantissa =
4947       //     -1.1609546f +
4948       //       (1.4034025f - 0.23903021f * x) * x;
4949       //
4950       // error 0.0034276066, which is better than 8 bits
4951       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4952                                getF32Constant(DAG, 0xbe74c456, dl));
4953       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4954                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4955       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4956       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4957                                   getF32Constant(DAG, 0x3f949a29, dl));
4958     } else if (LimitFloatPrecision <= 12) {
4959       // For floating-point precision of 12:
4960       //
4961       //   LogOfMantissa =
4962       //     -1.7417939f +
4963       //       (2.8212026f +
4964       //         (-1.4699568f +
4965       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4966       //
4967       // error 0.000061011436, which is 14 bits
4968       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4969                                getF32Constant(DAG, 0xbd67b6d6, dl));
4970       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4971                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4972       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4973       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4974                                getF32Constant(DAG, 0x3fbc278b, dl));
4975       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4976       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4977                                getF32Constant(DAG, 0x40348e95, dl));
4978       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4979       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4980                                   getF32Constant(DAG, 0x3fdef31a, dl));
4981     } else { // LimitFloatPrecision <= 18
4982       // For floating-point precision of 18:
4983       //
4984       //   LogOfMantissa =
4985       //     -2.1072184f +
4986       //       (4.2372794f +
4987       //         (-3.7029485f +
4988       //           (2.2781945f +
4989       //             (-0.87823314f +
4990       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4991       //
4992       // error 0.0000023660568, which is better than 18 bits
4993       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4994                                getF32Constant(DAG, 0xbc91e5ac, dl));
4995       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4996                                getF32Constant(DAG, 0x3e4350aa, dl));
4997       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4998       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4999                                getF32Constant(DAG, 0x3f60d3e3, dl));
5000       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5001       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5002                                getF32Constant(DAG, 0x4011cdf0, dl));
5003       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5004       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5005                                getF32Constant(DAG, 0x406cfd1c, dl));
5006       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5007       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5008                                getF32Constant(DAG, 0x408797cb, dl));
5009       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5010       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5011                                   getF32Constant(DAG, 0x4006dcab, dl));
5012     }
5013 
5014     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5015   }
5016 
5017   // No special expansion.
5018   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5019 }
5020 
5021 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5022 /// limited-precision mode.
5023 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5024                           const TargetLowering &TLI, SDNodeFlags Flags) {
5025   // TODO: What fast-math-flags should be set on the floating-point nodes?
5026 
5027   if (Op.getValueType() == MVT::f32 &&
5028       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5029     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5030 
5031     // Get the exponent.
5032     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5033 
5034     // Get the significand and build it into a floating-point number with
5035     // exponent of 1.
5036     SDValue X = GetSignificand(DAG, Op1, dl);
5037 
5038     // Different possible minimax approximations of significand in
5039     // floating-point for various degrees of accuracy over [1,2].
5040     SDValue Log2ofMantissa;
5041     if (LimitFloatPrecision <= 6) {
5042       // For floating-point precision of 6:
5043       //
5044       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5045       //
5046       // error 0.0049451742, which is more than 7 bits
5047       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5048                                getF32Constant(DAG, 0xbeb08fe0, dl));
5049       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5050                                getF32Constant(DAG, 0x40019463, dl));
5051       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5052       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5053                                    getF32Constant(DAG, 0x3fd6633d, dl));
5054     } else if (LimitFloatPrecision <= 12) {
5055       // For floating-point precision of 12:
5056       //
5057       //   Log2ofMantissa =
5058       //     -2.51285454f +
5059       //       (4.07009056f +
5060       //         (-2.12067489f +
5061       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5062       //
5063       // error 0.0000876136000, which is better than 13 bits
5064       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5065                                getF32Constant(DAG, 0xbda7262e, dl));
5066       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5067                                getF32Constant(DAG, 0x3f25280b, dl));
5068       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5069       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5070                                getF32Constant(DAG, 0x4007b923, dl));
5071       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5072       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5073                                getF32Constant(DAG, 0x40823e2f, dl));
5074       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5075       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5076                                    getF32Constant(DAG, 0x4020d29c, dl));
5077     } else { // LimitFloatPrecision <= 18
5078       // For floating-point precision of 18:
5079       //
5080       //   Log2ofMantissa =
5081       //     -3.0400495f +
5082       //       (6.1129976f +
5083       //         (-5.3420409f +
5084       //           (3.2865683f +
5085       //             (-1.2669343f +
5086       //               (0.27515199f -
5087       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5088       //
5089       // error 0.0000018516, which is better than 18 bits
5090       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5091                                getF32Constant(DAG, 0xbcd2769e, dl));
5092       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5093                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5094       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5095       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5096                                getF32Constant(DAG, 0x3fa22ae7, dl));
5097       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5098       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5099                                getF32Constant(DAG, 0x40525723, dl));
5100       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5101       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5102                                getF32Constant(DAG, 0x40aaf200, dl));
5103       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5104       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5105                                getF32Constant(DAG, 0x40c39dad, dl));
5106       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5107       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5108                                    getF32Constant(DAG, 0x4042902c, dl));
5109     }
5110 
5111     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5112   }
5113 
5114   // No special expansion.
5115   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5116 }
5117 
5118 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5119 /// limited-precision mode.
5120 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5121                            const TargetLowering &TLI, SDNodeFlags Flags) {
5122   // TODO: What fast-math-flags should be set on the floating-point nodes?
5123 
5124   if (Op.getValueType() == MVT::f32 &&
5125       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5126     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5127 
5128     // Scale the exponent by log10(2) [0.30102999f].
5129     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5130     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5131                                         getF32Constant(DAG, 0x3e9a209a, dl));
5132 
5133     // Get the significand and build it into a floating-point number with
5134     // exponent of 1.
5135     SDValue X = GetSignificand(DAG, Op1, dl);
5136 
5137     SDValue Log10ofMantissa;
5138     if (LimitFloatPrecision <= 6) {
5139       // For floating-point precision of 6:
5140       //
5141       //   Log10ofMantissa =
5142       //     -0.50419619f +
5143       //       (0.60948995f - 0.10380950f * x) * x;
5144       //
5145       // error 0.0014886165, which is 6 bits
5146       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5147                                getF32Constant(DAG, 0xbdd49a13, dl));
5148       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5149                                getF32Constant(DAG, 0x3f1c0789, dl));
5150       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5151       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5152                                     getF32Constant(DAG, 0x3f011300, dl));
5153     } else if (LimitFloatPrecision <= 12) {
5154       // For floating-point precision of 12:
5155       //
5156       //   Log10ofMantissa =
5157       //     -0.64831180f +
5158       //       (0.91751397f +
5159       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5160       //
5161       // error 0.00019228036, which is better than 12 bits
5162       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5163                                getF32Constant(DAG, 0x3d431f31, dl));
5164       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5165                                getF32Constant(DAG, 0x3ea21fb2, dl));
5166       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5167       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5168                                getF32Constant(DAG, 0x3f6ae232, dl));
5169       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5170       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5171                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5172     } else { // LimitFloatPrecision <= 18
5173       // For floating-point precision of 18:
5174       //
5175       //   Log10ofMantissa =
5176       //     -0.84299375f +
5177       //       (1.5327582f +
5178       //         (-1.0688956f +
5179       //           (0.49102474f +
5180       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5181       //
5182       // error 0.0000037995730, which is better than 18 bits
5183       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5184                                getF32Constant(DAG, 0x3c5d51ce, dl));
5185       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5186                                getF32Constant(DAG, 0x3e00685a, dl));
5187       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5188       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5189                                getF32Constant(DAG, 0x3efb6798, dl));
5190       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5191       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5192                                getF32Constant(DAG, 0x3f88d192, dl));
5193       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5194       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5195                                getF32Constant(DAG, 0x3fc4316c, dl));
5196       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5197       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5198                                     getF32Constant(DAG, 0x3f57ce70, dl));
5199     }
5200 
5201     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5202   }
5203 
5204   // No special expansion.
5205   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5206 }
5207 
5208 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5209 /// limited-precision mode.
5210 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5211                           const TargetLowering &TLI, SDNodeFlags Flags) {
5212   if (Op.getValueType() == MVT::f32 &&
5213       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5214     return getLimitedPrecisionExp2(Op, dl, DAG);
5215 
5216   // No special expansion.
5217   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5218 }
5219 
5220 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5221 /// limited-precision mode with x == 10.0f.
5222 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5223                          SelectionDAG &DAG, const TargetLowering &TLI,
5224                          SDNodeFlags Flags) {
5225   bool IsExp10 = false;
5226   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5227       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5228     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5229       APFloat Ten(10.0f);
5230       IsExp10 = LHSC->isExactlyValue(Ten);
5231     }
5232   }
5233 
5234   // TODO: What fast-math-flags should be set on the FMUL node?
5235   if (IsExp10) {
5236     // Put the exponent in the right bit position for later addition to the
5237     // final result:
5238     //
5239     //   #define LOG2OF10 3.3219281f
5240     //   t0 = Op * LOG2OF10;
5241     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5242                              getF32Constant(DAG, 0x40549a78, dl));
5243     return getLimitedPrecisionExp2(t0, dl, DAG);
5244   }
5245 
5246   // No special expansion.
5247   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5248 }
5249 
5250 /// ExpandPowI - Expand a llvm.powi intrinsic.
5251 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5252                           SelectionDAG &DAG) {
5253   // If RHS is a constant, we can expand this out to a multiplication tree,
5254   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5255   // optimizing for size, we only want to do this if the expansion would produce
5256   // a small number of multiplies, otherwise we do the full expansion.
5257   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5258     // Get the exponent as a positive value.
5259     unsigned Val = RHSC->getSExtValue();
5260     if ((int)Val < 0) Val = -Val;
5261 
5262     // powi(x, 0) -> 1.0
5263     if (Val == 0)
5264       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5265 
5266     bool OptForSize = DAG.shouldOptForSize();
5267     if (!OptForSize ||
5268         // If optimizing for size, don't insert too many multiplies.
5269         // This inserts up to 5 multiplies.
5270         countPopulation(Val) + Log2_32(Val) < 7) {
5271       // We use the simple binary decomposition method to generate the multiply
5272       // sequence.  There are more optimal ways to do this (for example,
5273       // powi(x,15) generates one more multiply than it should), but this has
5274       // the benefit of being both really simple and much better than a libcall.
5275       SDValue Res;  // Logically starts equal to 1.0
5276       SDValue CurSquare = LHS;
5277       // TODO: Intrinsics should have fast-math-flags that propagate to these
5278       // nodes.
5279       while (Val) {
5280         if (Val & 1) {
5281           if (Res.getNode())
5282             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5283           else
5284             Res = CurSquare;  // 1.0*CurSquare.
5285         }
5286 
5287         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5288                                 CurSquare, CurSquare);
5289         Val >>= 1;
5290       }
5291 
5292       // If the original was negative, invert the result, producing 1/(x*x*x).
5293       if (RHSC->getSExtValue() < 0)
5294         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5295                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5296       return Res;
5297     }
5298   }
5299 
5300   // Otherwise, expand to a libcall.
5301   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5302 }
5303 
5304 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5305                             SDValue LHS, SDValue RHS, SDValue Scale,
5306                             SelectionDAG &DAG, const TargetLowering &TLI) {
5307   EVT VT = LHS.getValueType();
5308   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5309   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5310   LLVMContext &Ctx = *DAG.getContext();
5311 
5312   // If the type is legal but the operation isn't, this node might survive all
5313   // the way to operation legalization. If we end up there and we do not have
5314   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5315   // node.
5316 
5317   // Coax the legalizer into expanding the node during type legalization instead
5318   // by bumping the size by one bit. This will force it to Promote, enabling the
5319   // early expansion and avoiding the need to expand later.
5320 
5321   // We don't have to do this if Scale is 0; that can always be expanded, unless
5322   // it's a saturating signed operation. Those can experience true integer
5323   // division overflow, a case which we must avoid.
5324 
5325   // FIXME: We wouldn't have to do this (or any of the early
5326   // expansion/promotion) if it was possible to expand a libcall of an
5327   // illegal type during operation legalization. But it's not, so things
5328   // get a bit hacky.
5329   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5330   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5331       (TLI.isTypeLegal(VT) ||
5332        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5333     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5334         Opcode, VT, ScaleInt);
5335     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5336       EVT PromVT;
5337       if (VT.isScalarInteger())
5338         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5339       else if (VT.isVector()) {
5340         PromVT = VT.getVectorElementType();
5341         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5342         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5343       } else
5344         llvm_unreachable("Wrong VT for DIVFIX?");
5345       if (Signed) {
5346         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5347         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5348       } else {
5349         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5350         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5351       }
5352       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5353       // For saturating operations, we need to shift up the LHS to get the
5354       // proper saturation width, and then shift down again afterwards.
5355       if (Saturating)
5356         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5357                           DAG.getConstant(1, DL, ShiftTy));
5358       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5359       if (Saturating)
5360         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5361                           DAG.getConstant(1, DL, ShiftTy));
5362       return DAG.getZExtOrTrunc(Res, DL, VT);
5363     }
5364   }
5365 
5366   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5367 }
5368 
5369 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5370 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5371 static void
5372 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5373                      const SDValue &N) {
5374   switch (N.getOpcode()) {
5375   case ISD::CopyFromReg: {
5376     SDValue Op = N.getOperand(1);
5377     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5378                       Op.getValueType().getSizeInBits());
5379     return;
5380   }
5381   case ISD::BITCAST:
5382   case ISD::AssertZext:
5383   case ISD::AssertSext:
5384   case ISD::TRUNCATE:
5385     getUnderlyingArgRegs(Regs, N.getOperand(0));
5386     return;
5387   case ISD::BUILD_PAIR:
5388   case ISD::BUILD_VECTOR:
5389   case ISD::CONCAT_VECTORS:
5390     for (SDValue Op : N->op_values())
5391       getUnderlyingArgRegs(Regs, Op);
5392     return;
5393   default:
5394     return;
5395   }
5396 }
5397 
5398 /// If the DbgValueInst is a dbg_value of a function argument, create the
5399 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5400 /// instruction selection, they will be inserted to the entry BB.
5401 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5402     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5403     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5404   const Argument *Arg = dyn_cast<Argument>(V);
5405   if (!Arg)
5406     return false;
5407 
5408   if (!IsDbgDeclare) {
5409     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5410     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5411     // the entry block.
5412     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5413     if (!IsInEntryBlock)
5414       return false;
5415 
5416     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5417     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5418     // variable that also is a param.
5419     //
5420     // Although, if we are at the top of the entry block already, we can still
5421     // emit using ArgDbgValue. This might catch some situations when the
5422     // dbg.value refers to an argument that isn't used in the entry block, so
5423     // any CopyToReg node would be optimized out and the only way to express
5424     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5425     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5426     // we should only emit as ArgDbgValue if the Variable is an argument to the
5427     // current function, and the dbg.value intrinsic is found in the entry
5428     // block.
5429     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5430         !DL->getInlinedAt();
5431     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5432     if (!IsInPrologue && !VariableIsFunctionInputArg)
5433       return false;
5434 
5435     // Here we assume that a function argument on IR level only can be used to
5436     // describe one input parameter on source level. If we for example have
5437     // source code like this
5438     //
5439     //    struct A { long x, y; };
5440     //    void foo(struct A a, long b) {
5441     //      ...
5442     //      b = a.x;
5443     //      ...
5444     //    }
5445     //
5446     // and IR like this
5447     //
5448     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5449     //  entry:
5450     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5451     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5452     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5453     //    ...
5454     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5455     //    ...
5456     //
5457     // then the last dbg.value is describing a parameter "b" using a value that
5458     // is an argument. But since we already has used %a1 to describe a parameter
5459     // we should not handle that last dbg.value here (that would result in an
5460     // incorrect hoisting of the DBG_VALUE to the function entry).
5461     // Notice that we allow one dbg.value per IR level argument, to accommodate
5462     // for the situation with fragments above.
5463     if (VariableIsFunctionInputArg) {
5464       unsigned ArgNo = Arg->getArgNo();
5465       if (ArgNo >= FuncInfo.DescribedArgs.size())
5466         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5467       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5468         return false;
5469       FuncInfo.DescribedArgs.set(ArgNo);
5470     }
5471   }
5472 
5473   MachineFunction &MF = DAG.getMachineFunction();
5474   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5475 
5476   bool IsIndirect = false;
5477   Optional<MachineOperand> Op;
5478   // Some arguments' frame index is recorded during argument lowering.
5479   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5480   if (FI != std::numeric_limits<int>::max())
5481     Op = MachineOperand::CreateFI(FI);
5482 
5483   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5484   if (!Op && N.getNode()) {
5485     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5486     Register Reg;
5487     if (ArgRegsAndSizes.size() == 1)
5488       Reg = ArgRegsAndSizes.front().first;
5489 
5490     if (Reg && Reg.isVirtual()) {
5491       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5492       Register PR = RegInfo.getLiveInPhysReg(Reg);
5493       if (PR)
5494         Reg = PR;
5495     }
5496     if (Reg) {
5497       Op = MachineOperand::CreateReg(Reg, false);
5498       IsIndirect = IsDbgDeclare;
5499     }
5500   }
5501 
5502   if (!Op && N.getNode()) {
5503     // Check if frame index is available.
5504     SDValue LCandidate = peekThroughBitcasts(N);
5505     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5506       if (FrameIndexSDNode *FINode =
5507           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5508         Op = MachineOperand::CreateFI(FINode->getIndex());
5509   }
5510 
5511   if (!Op) {
5512     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5513     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5514                                          SplitRegs) {
5515       unsigned Offset = 0;
5516       for (auto RegAndSize : SplitRegs) {
5517         // If the expression is already a fragment, the current register
5518         // offset+size might extend beyond the fragment. In this case, only
5519         // the register bits that are inside the fragment are relevant.
5520         int RegFragmentSizeInBits = RegAndSize.second;
5521         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5522           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5523           // The register is entirely outside the expression fragment,
5524           // so is irrelevant for debug info.
5525           if (Offset >= ExprFragmentSizeInBits)
5526             break;
5527           // The register is partially outside the expression fragment, only
5528           // the low bits within the fragment are relevant for debug info.
5529           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5530             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5531           }
5532         }
5533 
5534         auto FragmentExpr = DIExpression::createFragmentExpression(
5535             Expr, Offset, RegFragmentSizeInBits);
5536         Offset += RegAndSize.second;
5537         // If a valid fragment expression cannot be created, the variable's
5538         // correct value cannot be determined and so it is set as Undef.
5539         if (!FragmentExpr) {
5540           SDDbgValue *SDV = DAG.getConstantDbgValue(
5541               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5542           DAG.AddDbgValue(SDV, nullptr, false);
5543           continue;
5544         }
5545         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5546         FuncInfo.ArgDbgValues.push_back(
5547           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5548                   RegAndSize.first, Variable, *FragmentExpr));
5549       }
5550     };
5551 
5552     // Check if ValueMap has reg number.
5553     DenseMap<const Value *, Register>::const_iterator
5554       VMI = FuncInfo.ValueMap.find(V);
5555     if (VMI != FuncInfo.ValueMap.end()) {
5556       const auto &TLI = DAG.getTargetLoweringInfo();
5557       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5558                        V->getType(), None);
5559       if (RFV.occupiesMultipleRegs()) {
5560         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5561         return true;
5562       }
5563 
5564       Op = MachineOperand::CreateReg(VMI->second, false);
5565       IsIndirect = IsDbgDeclare;
5566     } else if (ArgRegsAndSizes.size() > 1) {
5567       // This was split due to the calling convention, and no virtual register
5568       // mapping exists for the value.
5569       splitMultiRegDbgValue(ArgRegsAndSizes);
5570       return true;
5571     }
5572   }
5573 
5574   if (!Op)
5575     return false;
5576 
5577   assert(Variable->isValidLocationForIntrinsic(DL) &&
5578          "Expected inlined-at fields to agree");
5579   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5580   FuncInfo.ArgDbgValues.push_back(
5581       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5582               *Op, Variable, Expr));
5583 
5584   return true;
5585 }
5586 
5587 /// Return the appropriate SDDbgValue based on N.
5588 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5589                                              DILocalVariable *Variable,
5590                                              DIExpression *Expr,
5591                                              const DebugLoc &dl,
5592                                              unsigned DbgSDNodeOrder) {
5593   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5594     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5595     // stack slot locations.
5596     //
5597     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5598     // debug values here after optimization:
5599     //
5600     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5601     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5602     //
5603     // Both describe the direct values of their associated variables.
5604     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5605                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5606   }
5607   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5608                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5609 }
5610 
5611 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5612   switch (Intrinsic) {
5613   case Intrinsic::smul_fix:
5614     return ISD::SMULFIX;
5615   case Intrinsic::umul_fix:
5616     return ISD::UMULFIX;
5617   case Intrinsic::smul_fix_sat:
5618     return ISD::SMULFIXSAT;
5619   case Intrinsic::umul_fix_sat:
5620     return ISD::UMULFIXSAT;
5621   case Intrinsic::sdiv_fix:
5622     return ISD::SDIVFIX;
5623   case Intrinsic::udiv_fix:
5624     return ISD::UDIVFIX;
5625   case Intrinsic::sdiv_fix_sat:
5626     return ISD::SDIVFIXSAT;
5627   case Intrinsic::udiv_fix_sat:
5628     return ISD::UDIVFIXSAT;
5629   default:
5630     llvm_unreachable("Unhandled fixed point intrinsic");
5631   }
5632 }
5633 
5634 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5635                                            const char *FunctionName) {
5636   assert(FunctionName && "FunctionName must not be nullptr");
5637   SDValue Callee = DAG.getExternalSymbol(
5638       FunctionName,
5639       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5640   LowerCallTo(I, Callee, I.isTailCall());
5641 }
5642 
5643 /// Given a @llvm.call.preallocated.setup, return the corresponding
5644 /// preallocated call.
5645 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5646   assert(cast<CallBase>(PreallocatedSetup)
5647                  ->getCalledFunction()
5648                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5649          "expected call_preallocated_setup Value");
5650   for (auto *U : PreallocatedSetup->users()) {
5651     auto *UseCall = cast<CallBase>(U);
5652     const Function *Fn = UseCall->getCalledFunction();
5653     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5654       return UseCall;
5655     }
5656   }
5657   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5658 }
5659 
5660 /// Lower the call to the specified intrinsic function.
5661 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5662                                              unsigned Intrinsic) {
5663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5664   SDLoc sdl = getCurSDLoc();
5665   DebugLoc dl = getCurDebugLoc();
5666   SDValue Res;
5667 
5668   SDNodeFlags Flags;
5669   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5670     Flags.copyFMF(*FPOp);
5671 
5672   switch (Intrinsic) {
5673   default:
5674     // By default, turn this into a target intrinsic node.
5675     visitTargetIntrinsic(I, Intrinsic);
5676     return;
5677   case Intrinsic::vscale: {
5678     match(&I, m_VScale(DAG.getDataLayout()));
5679     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5680     setValue(&I,
5681              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5682     return;
5683   }
5684   case Intrinsic::vastart:  visitVAStart(I); return;
5685   case Intrinsic::vaend:    visitVAEnd(I); return;
5686   case Intrinsic::vacopy:   visitVACopy(I); return;
5687   case Intrinsic::returnaddress:
5688     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5689                              TLI.getPointerTy(DAG.getDataLayout()),
5690                              getValue(I.getArgOperand(0))));
5691     return;
5692   case Intrinsic::addressofreturnaddress:
5693     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5694                              TLI.getPointerTy(DAG.getDataLayout())));
5695     return;
5696   case Intrinsic::sponentry:
5697     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5698                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5699     return;
5700   case Intrinsic::frameaddress:
5701     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5702                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5703                              getValue(I.getArgOperand(0))));
5704     return;
5705   case Intrinsic::read_volatile_register:
5706   case Intrinsic::read_register: {
5707     Value *Reg = I.getArgOperand(0);
5708     SDValue Chain = getRoot();
5709     SDValue RegName =
5710         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5711     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5712     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5713       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5714     setValue(&I, Res);
5715     DAG.setRoot(Res.getValue(1));
5716     return;
5717   }
5718   case Intrinsic::write_register: {
5719     Value *Reg = I.getArgOperand(0);
5720     Value *RegValue = I.getArgOperand(1);
5721     SDValue Chain = getRoot();
5722     SDValue RegName =
5723         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5724     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5725                             RegName, getValue(RegValue)));
5726     return;
5727   }
5728   case Intrinsic::memcpy: {
5729     const auto &MCI = cast<MemCpyInst>(I);
5730     SDValue Op1 = getValue(I.getArgOperand(0));
5731     SDValue Op2 = getValue(I.getArgOperand(1));
5732     SDValue Op3 = getValue(I.getArgOperand(2));
5733     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5734     Align DstAlign = MCI.getDestAlign().valueOrOne();
5735     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5736     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5737     bool isVol = MCI.isVolatile();
5738     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5739     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5740     // node.
5741     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5742     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5743                                /* AlwaysInline */ false, isTC,
5744                                MachinePointerInfo(I.getArgOperand(0)),
5745                                MachinePointerInfo(I.getArgOperand(1)));
5746     updateDAGForMaybeTailCall(MC);
5747     return;
5748   }
5749   case Intrinsic::memcpy_inline: {
5750     const auto &MCI = cast<MemCpyInlineInst>(I);
5751     SDValue Dst = getValue(I.getArgOperand(0));
5752     SDValue Src = getValue(I.getArgOperand(1));
5753     SDValue Size = getValue(I.getArgOperand(2));
5754     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5755     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5756     Align DstAlign = MCI.getDestAlign().valueOrOne();
5757     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5758     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5759     bool isVol = MCI.isVolatile();
5760     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5761     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5762     // node.
5763     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5764                                /* AlwaysInline */ true, isTC,
5765                                MachinePointerInfo(I.getArgOperand(0)),
5766                                MachinePointerInfo(I.getArgOperand(1)));
5767     updateDAGForMaybeTailCall(MC);
5768     return;
5769   }
5770   case Intrinsic::memset: {
5771     const auto &MSI = cast<MemSetInst>(I);
5772     SDValue Op1 = getValue(I.getArgOperand(0));
5773     SDValue Op2 = getValue(I.getArgOperand(1));
5774     SDValue Op3 = getValue(I.getArgOperand(2));
5775     // @llvm.memset defines 0 and 1 to both mean no alignment.
5776     Align Alignment = MSI.getDestAlign().valueOrOne();
5777     bool isVol = MSI.isVolatile();
5778     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5779     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5780     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5781                                MachinePointerInfo(I.getArgOperand(0)));
5782     updateDAGForMaybeTailCall(MS);
5783     return;
5784   }
5785   case Intrinsic::memmove: {
5786     const auto &MMI = cast<MemMoveInst>(I);
5787     SDValue Op1 = getValue(I.getArgOperand(0));
5788     SDValue Op2 = getValue(I.getArgOperand(1));
5789     SDValue Op3 = getValue(I.getArgOperand(2));
5790     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5791     Align DstAlign = MMI.getDestAlign().valueOrOne();
5792     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5793     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5794     bool isVol = MMI.isVolatile();
5795     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5796     // FIXME: Support passing different dest/src alignments to the memmove DAG
5797     // node.
5798     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5799     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5800                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5801                                 MachinePointerInfo(I.getArgOperand(1)));
5802     updateDAGForMaybeTailCall(MM);
5803     return;
5804   }
5805   case Intrinsic::memcpy_element_unordered_atomic: {
5806     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5807     SDValue Dst = getValue(MI.getRawDest());
5808     SDValue Src = getValue(MI.getRawSource());
5809     SDValue Length = getValue(MI.getLength());
5810 
5811     unsigned DstAlign = MI.getDestAlignment();
5812     unsigned SrcAlign = MI.getSourceAlignment();
5813     Type *LengthTy = MI.getLength()->getType();
5814     unsigned ElemSz = MI.getElementSizeInBytes();
5815     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5816     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5817                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5818                                      MachinePointerInfo(MI.getRawDest()),
5819                                      MachinePointerInfo(MI.getRawSource()));
5820     updateDAGForMaybeTailCall(MC);
5821     return;
5822   }
5823   case Intrinsic::memmove_element_unordered_atomic: {
5824     auto &MI = cast<AtomicMemMoveInst>(I);
5825     SDValue Dst = getValue(MI.getRawDest());
5826     SDValue Src = getValue(MI.getRawSource());
5827     SDValue Length = getValue(MI.getLength());
5828 
5829     unsigned DstAlign = MI.getDestAlignment();
5830     unsigned SrcAlign = MI.getSourceAlignment();
5831     Type *LengthTy = MI.getLength()->getType();
5832     unsigned ElemSz = MI.getElementSizeInBytes();
5833     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5834     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5835                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5836                                       MachinePointerInfo(MI.getRawDest()),
5837                                       MachinePointerInfo(MI.getRawSource()));
5838     updateDAGForMaybeTailCall(MC);
5839     return;
5840   }
5841   case Intrinsic::memset_element_unordered_atomic: {
5842     auto &MI = cast<AtomicMemSetInst>(I);
5843     SDValue Dst = getValue(MI.getRawDest());
5844     SDValue Val = getValue(MI.getValue());
5845     SDValue Length = getValue(MI.getLength());
5846 
5847     unsigned DstAlign = MI.getDestAlignment();
5848     Type *LengthTy = MI.getLength()->getType();
5849     unsigned ElemSz = MI.getElementSizeInBytes();
5850     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5851     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5852                                      LengthTy, ElemSz, isTC,
5853                                      MachinePointerInfo(MI.getRawDest()));
5854     updateDAGForMaybeTailCall(MC);
5855     return;
5856   }
5857   case Intrinsic::call_preallocated_setup: {
5858     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5859     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5860     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5861                               getRoot(), SrcValue);
5862     setValue(&I, Res);
5863     DAG.setRoot(Res);
5864     return;
5865   }
5866   case Intrinsic::call_preallocated_arg: {
5867     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5868     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5869     SDValue Ops[3];
5870     Ops[0] = getRoot();
5871     Ops[1] = SrcValue;
5872     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5873                                    MVT::i32); // arg index
5874     SDValue Res = DAG.getNode(
5875         ISD::PREALLOCATED_ARG, sdl,
5876         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5877     setValue(&I, Res);
5878     DAG.setRoot(Res.getValue(1));
5879     return;
5880   }
5881   case Intrinsic::dbg_addr:
5882   case Intrinsic::dbg_declare: {
5883     const auto &DI = cast<DbgVariableIntrinsic>(I);
5884     DILocalVariable *Variable = DI.getVariable();
5885     DIExpression *Expression = DI.getExpression();
5886     dropDanglingDebugInfo(Variable, Expression);
5887     assert(Variable && "Missing variable");
5888     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5889                       << "\n");
5890     // Check if address has undef value.
5891     const Value *Address = DI.getVariableLocationOp(0);
5892     if (!Address || isa<UndefValue>(Address) ||
5893         (Address->use_empty() && !isa<Argument>(Address))) {
5894       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5895                         << " (bad/undef/unused-arg address)\n");
5896       return;
5897     }
5898 
5899     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5900 
5901     // Check if this variable can be described by a frame index, typically
5902     // either as a static alloca or a byval parameter.
5903     int FI = std::numeric_limits<int>::max();
5904     if (const auto *AI =
5905             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5906       if (AI->isStaticAlloca()) {
5907         auto I = FuncInfo.StaticAllocaMap.find(AI);
5908         if (I != FuncInfo.StaticAllocaMap.end())
5909           FI = I->second;
5910       }
5911     } else if (const auto *Arg = dyn_cast<Argument>(
5912                    Address->stripInBoundsConstantOffsets())) {
5913       FI = FuncInfo.getArgumentFrameIndex(Arg);
5914     }
5915 
5916     // llvm.dbg.addr is control dependent and always generates indirect
5917     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5918     // the MachineFunction variable table.
5919     if (FI != std::numeric_limits<int>::max()) {
5920       if (Intrinsic == Intrinsic::dbg_addr) {
5921         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5922             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5923         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5924       } else {
5925         LLVM_DEBUG(dbgs() << "Skipping " << DI
5926                           << " (variable info stashed in MF side table)\n");
5927       }
5928       return;
5929     }
5930 
5931     SDValue &N = NodeMap[Address];
5932     if (!N.getNode() && isa<Argument>(Address))
5933       // Check unused arguments map.
5934       N = UnusedArgNodeMap[Address];
5935     SDDbgValue *SDV;
5936     if (N.getNode()) {
5937       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5938         Address = BCI->getOperand(0);
5939       // Parameters are handled specially.
5940       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5941       if (isParameter && FINode) {
5942         // Byval parameter. We have a frame index at this point.
5943         SDV =
5944             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5945                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5946       } else if (isa<Argument>(Address)) {
5947         // Address is an argument, so try to emit its dbg value using
5948         // virtual register info from the FuncInfo.ValueMap.
5949         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5950         return;
5951       } else {
5952         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5953                               true, dl, SDNodeOrder);
5954       }
5955       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5956     } else {
5957       // If Address is an argument then try to emit its dbg value using
5958       // virtual register info from the FuncInfo.ValueMap.
5959       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5960                                     N)) {
5961         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5962                           << " (could not emit func-arg dbg_value)\n");
5963       }
5964     }
5965     return;
5966   }
5967   case Intrinsic::dbg_label: {
5968     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5969     DILabel *Label = DI.getLabel();
5970     assert(Label && "Missing label");
5971 
5972     SDDbgLabel *SDV;
5973     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5974     DAG.AddDbgLabel(SDV);
5975     return;
5976   }
5977   case Intrinsic::dbg_value: {
5978     const DbgValueInst &DI = cast<DbgValueInst>(I);
5979     assert(DI.getVariable() && "Missing variable");
5980 
5981     DILocalVariable *Variable = DI.getVariable();
5982     DIExpression *Expression = DI.getExpression();
5983     dropDanglingDebugInfo(Variable, Expression);
5984     const Value *V = DI.getValue(0);
5985     if (!V)
5986       return;
5987 
5988     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5989         SDNodeOrder))
5990       return;
5991 
5992     // TODO: Dangling debug info will eventually either be resolved or produce
5993     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5994     // between the original dbg.value location and its resolved DBG_VALUE, which
5995     // we should ideally fill with an extra Undef DBG_VALUE.
5996 
5997     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5998     return;
5999   }
6000 
6001   case Intrinsic::eh_typeid_for: {
6002     // Find the type id for the given typeinfo.
6003     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6004     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6005     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6006     setValue(&I, Res);
6007     return;
6008   }
6009 
6010   case Intrinsic::eh_return_i32:
6011   case Intrinsic::eh_return_i64:
6012     DAG.getMachineFunction().setCallsEHReturn(true);
6013     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6014                             MVT::Other,
6015                             getControlRoot(),
6016                             getValue(I.getArgOperand(0)),
6017                             getValue(I.getArgOperand(1))));
6018     return;
6019   case Intrinsic::eh_unwind_init:
6020     DAG.getMachineFunction().setCallsUnwindInit(true);
6021     return;
6022   case Intrinsic::eh_dwarf_cfa:
6023     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6024                              TLI.getPointerTy(DAG.getDataLayout()),
6025                              getValue(I.getArgOperand(0))));
6026     return;
6027   case Intrinsic::eh_sjlj_callsite: {
6028     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6029     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6030     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6031     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6032 
6033     MMI.setCurrentCallSite(CI->getZExtValue());
6034     return;
6035   }
6036   case Intrinsic::eh_sjlj_functioncontext: {
6037     // Get and store the index of the function context.
6038     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6039     AllocaInst *FnCtx =
6040       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6041     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6042     MFI.setFunctionContextIndex(FI);
6043     return;
6044   }
6045   case Intrinsic::eh_sjlj_setjmp: {
6046     SDValue Ops[2];
6047     Ops[0] = getRoot();
6048     Ops[1] = getValue(I.getArgOperand(0));
6049     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6050                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6051     setValue(&I, Op.getValue(0));
6052     DAG.setRoot(Op.getValue(1));
6053     return;
6054   }
6055   case Intrinsic::eh_sjlj_longjmp:
6056     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6057                             getRoot(), getValue(I.getArgOperand(0))));
6058     return;
6059   case Intrinsic::eh_sjlj_setup_dispatch:
6060     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6061                             getRoot()));
6062     return;
6063   case Intrinsic::masked_gather:
6064     visitMaskedGather(I);
6065     return;
6066   case Intrinsic::masked_load:
6067     visitMaskedLoad(I);
6068     return;
6069   case Intrinsic::masked_scatter:
6070     visitMaskedScatter(I);
6071     return;
6072   case Intrinsic::masked_store:
6073     visitMaskedStore(I);
6074     return;
6075   case Intrinsic::masked_expandload:
6076     visitMaskedLoad(I, true /* IsExpanding */);
6077     return;
6078   case Intrinsic::masked_compressstore:
6079     visitMaskedStore(I, true /* IsCompressing */);
6080     return;
6081   case Intrinsic::powi:
6082     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6083                             getValue(I.getArgOperand(1)), DAG));
6084     return;
6085   case Intrinsic::log:
6086     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6087     return;
6088   case Intrinsic::log2:
6089     setValue(&I,
6090              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6091     return;
6092   case Intrinsic::log10:
6093     setValue(&I,
6094              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6095     return;
6096   case Intrinsic::exp:
6097     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6098     return;
6099   case Intrinsic::exp2:
6100     setValue(&I,
6101              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6102     return;
6103   case Intrinsic::pow:
6104     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6105                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6106     return;
6107   case Intrinsic::sqrt:
6108   case Intrinsic::fabs:
6109   case Intrinsic::sin:
6110   case Intrinsic::cos:
6111   case Intrinsic::floor:
6112   case Intrinsic::ceil:
6113   case Intrinsic::trunc:
6114   case Intrinsic::rint:
6115   case Intrinsic::nearbyint:
6116   case Intrinsic::round:
6117   case Intrinsic::roundeven:
6118   case Intrinsic::canonicalize: {
6119     unsigned Opcode;
6120     switch (Intrinsic) {
6121     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6122     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6123     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6124     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6125     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6126     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6127     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6128     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6129     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6130     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6131     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6132     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6133     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6134     }
6135 
6136     setValue(&I, DAG.getNode(Opcode, sdl,
6137                              getValue(I.getArgOperand(0)).getValueType(),
6138                              getValue(I.getArgOperand(0)), Flags));
6139     return;
6140   }
6141   case Intrinsic::lround:
6142   case Intrinsic::llround:
6143   case Intrinsic::lrint:
6144   case Intrinsic::llrint: {
6145     unsigned Opcode;
6146     switch (Intrinsic) {
6147     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6148     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6149     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6150     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6151     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6152     }
6153 
6154     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6155     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6156                              getValue(I.getArgOperand(0))));
6157     return;
6158   }
6159   case Intrinsic::minnum:
6160     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6161                              getValue(I.getArgOperand(0)).getValueType(),
6162                              getValue(I.getArgOperand(0)),
6163                              getValue(I.getArgOperand(1)), Flags));
6164     return;
6165   case Intrinsic::maxnum:
6166     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6167                              getValue(I.getArgOperand(0)).getValueType(),
6168                              getValue(I.getArgOperand(0)),
6169                              getValue(I.getArgOperand(1)), Flags));
6170     return;
6171   case Intrinsic::minimum:
6172     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6173                              getValue(I.getArgOperand(0)).getValueType(),
6174                              getValue(I.getArgOperand(0)),
6175                              getValue(I.getArgOperand(1)), Flags));
6176     return;
6177   case Intrinsic::maximum:
6178     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6179                              getValue(I.getArgOperand(0)).getValueType(),
6180                              getValue(I.getArgOperand(0)),
6181                              getValue(I.getArgOperand(1)), Flags));
6182     return;
6183   case Intrinsic::copysign:
6184     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6185                              getValue(I.getArgOperand(0)).getValueType(),
6186                              getValue(I.getArgOperand(0)),
6187                              getValue(I.getArgOperand(1)), Flags));
6188     return;
6189   case Intrinsic::fma:
6190     setValue(&I, DAG.getNode(
6191                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6192                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6193                      getValue(I.getArgOperand(2)), Flags));
6194     return;
6195 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6196   case Intrinsic::INTRINSIC:
6197 #include "llvm/IR/ConstrainedOps.def"
6198     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6199     return;
6200 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6201 #include "llvm/IR/VPIntrinsics.def"
6202     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6203     return;
6204   case Intrinsic::fmuladd: {
6205     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6206     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6207         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6208       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6209                                getValue(I.getArgOperand(0)).getValueType(),
6210                                getValue(I.getArgOperand(0)),
6211                                getValue(I.getArgOperand(1)),
6212                                getValue(I.getArgOperand(2)), Flags));
6213     } else {
6214       // TODO: Intrinsic calls should have fast-math-flags.
6215       SDValue Mul = DAG.getNode(
6216           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6217           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6218       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6219                                 getValue(I.getArgOperand(0)).getValueType(),
6220                                 Mul, getValue(I.getArgOperand(2)), Flags);
6221       setValue(&I, Add);
6222     }
6223     return;
6224   }
6225   case Intrinsic::convert_to_fp16:
6226     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6227                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6228                                          getValue(I.getArgOperand(0)),
6229                                          DAG.getTargetConstant(0, sdl,
6230                                                                MVT::i32))));
6231     return;
6232   case Intrinsic::convert_from_fp16:
6233     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6234                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6235                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6236                                          getValue(I.getArgOperand(0)))));
6237     return;
6238   case Intrinsic::fptosi_sat: {
6239     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6240     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6241     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type,
6242                              getValue(I.getArgOperand(0)), SatW));
6243     return;
6244   }
6245   case Intrinsic::fptoui_sat: {
6246     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6247     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6248     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type,
6249                              getValue(I.getArgOperand(0)), SatW));
6250     return;
6251   }
6252   case Intrinsic::set_rounding:
6253     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6254                       {getRoot(), getValue(I.getArgOperand(0))});
6255     setValue(&I, Res);
6256     DAG.setRoot(Res.getValue(0));
6257     return;
6258   case Intrinsic::pcmarker: {
6259     SDValue Tmp = getValue(I.getArgOperand(0));
6260     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6261     return;
6262   }
6263   case Intrinsic::readcyclecounter: {
6264     SDValue Op = getRoot();
6265     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6266                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6267     setValue(&I, Res);
6268     DAG.setRoot(Res.getValue(1));
6269     return;
6270   }
6271   case Intrinsic::bitreverse:
6272     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6273                              getValue(I.getArgOperand(0)).getValueType(),
6274                              getValue(I.getArgOperand(0))));
6275     return;
6276   case Intrinsic::bswap:
6277     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6278                              getValue(I.getArgOperand(0)).getValueType(),
6279                              getValue(I.getArgOperand(0))));
6280     return;
6281   case Intrinsic::cttz: {
6282     SDValue Arg = getValue(I.getArgOperand(0));
6283     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6284     EVT Ty = Arg.getValueType();
6285     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6286                              sdl, Ty, Arg));
6287     return;
6288   }
6289   case Intrinsic::ctlz: {
6290     SDValue Arg = getValue(I.getArgOperand(0));
6291     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6292     EVT Ty = Arg.getValueType();
6293     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6294                              sdl, Ty, Arg));
6295     return;
6296   }
6297   case Intrinsic::ctpop: {
6298     SDValue Arg = getValue(I.getArgOperand(0));
6299     EVT Ty = Arg.getValueType();
6300     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6301     return;
6302   }
6303   case Intrinsic::fshl:
6304   case Intrinsic::fshr: {
6305     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6306     SDValue X = getValue(I.getArgOperand(0));
6307     SDValue Y = getValue(I.getArgOperand(1));
6308     SDValue Z = getValue(I.getArgOperand(2));
6309     EVT VT = X.getValueType();
6310 
6311     if (X == Y) {
6312       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6313       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6314     } else {
6315       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6316       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6317     }
6318     return;
6319   }
6320   case Intrinsic::sadd_sat: {
6321     SDValue Op1 = getValue(I.getArgOperand(0));
6322     SDValue Op2 = getValue(I.getArgOperand(1));
6323     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6324     return;
6325   }
6326   case Intrinsic::uadd_sat: {
6327     SDValue Op1 = getValue(I.getArgOperand(0));
6328     SDValue Op2 = getValue(I.getArgOperand(1));
6329     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6330     return;
6331   }
6332   case Intrinsic::ssub_sat: {
6333     SDValue Op1 = getValue(I.getArgOperand(0));
6334     SDValue Op2 = getValue(I.getArgOperand(1));
6335     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6336     return;
6337   }
6338   case Intrinsic::usub_sat: {
6339     SDValue Op1 = getValue(I.getArgOperand(0));
6340     SDValue Op2 = getValue(I.getArgOperand(1));
6341     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6342     return;
6343   }
6344   case Intrinsic::sshl_sat: {
6345     SDValue Op1 = getValue(I.getArgOperand(0));
6346     SDValue Op2 = getValue(I.getArgOperand(1));
6347     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6348     return;
6349   }
6350   case Intrinsic::ushl_sat: {
6351     SDValue Op1 = getValue(I.getArgOperand(0));
6352     SDValue Op2 = getValue(I.getArgOperand(1));
6353     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6354     return;
6355   }
6356   case Intrinsic::smul_fix:
6357   case Intrinsic::umul_fix:
6358   case Intrinsic::smul_fix_sat:
6359   case Intrinsic::umul_fix_sat: {
6360     SDValue Op1 = getValue(I.getArgOperand(0));
6361     SDValue Op2 = getValue(I.getArgOperand(1));
6362     SDValue Op3 = getValue(I.getArgOperand(2));
6363     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6364                              Op1.getValueType(), Op1, Op2, Op3));
6365     return;
6366   }
6367   case Intrinsic::sdiv_fix:
6368   case Intrinsic::udiv_fix:
6369   case Intrinsic::sdiv_fix_sat:
6370   case Intrinsic::udiv_fix_sat: {
6371     SDValue Op1 = getValue(I.getArgOperand(0));
6372     SDValue Op2 = getValue(I.getArgOperand(1));
6373     SDValue Op3 = getValue(I.getArgOperand(2));
6374     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6375                               Op1, Op2, Op3, DAG, TLI));
6376     return;
6377   }
6378   case Intrinsic::smax: {
6379     SDValue Op1 = getValue(I.getArgOperand(0));
6380     SDValue Op2 = getValue(I.getArgOperand(1));
6381     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6382     return;
6383   }
6384   case Intrinsic::smin: {
6385     SDValue Op1 = getValue(I.getArgOperand(0));
6386     SDValue Op2 = getValue(I.getArgOperand(1));
6387     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6388     return;
6389   }
6390   case Intrinsic::umax: {
6391     SDValue Op1 = getValue(I.getArgOperand(0));
6392     SDValue Op2 = getValue(I.getArgOperand(1));
6393     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6394     return;
6395   }
6396   case Intrinsic::umin: {
6397     SDValue Op1 = getValue(I.getArgOperand(0));
6398     SDValue Op2 = getValue(I.getArgOperand(1));
6399     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6400     return;
6401   }
6402   case Intrinsic::abs: {
6403     // TODO: Preserve "int min is poison" arg in SDAG?
6404     SDValue Op1 = getValue(I.getArgOperand(0));
6405     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6406     return;
6407   }
6408   case Intrinsic::stacksave: {
6409     SDValue Op = getRoot();
6410     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6411     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6412     setValue(&I, Res);
6413     DAG.setRoot(Res.getValue(1));
6414     return;
6415   }
6416   case Intrinsic::stackrestore:
6417     Res = getValue(I.getArgOperand(0));
6418     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6419     return;
6420   case Intrinsic::get_dynamic_area_offset: {
6421     SDValue Op = getRoot();
6422     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6423     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6424     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6425     // target.
6426     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6427       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6428                          " intrinsic!");
6429     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6430                       Op);
6431     DAG.setRoot(Op);
6432     setValue(&I, Res);
6433     return;
6434   }
6435   case Intrinsic::stackguard: {
6436     MachineFunction &MF = DAG.getMachineFunction();
6437     const Module &M = *MF.getFunction().getParent();
6438     SDValue Chain = getRoot();
6439     if (TLI.useLoadStackGuardNode()) {
6440       Res = getLoadStackGuard(DAG, sdl, Chain);
6441     } else {
6442       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6443       const Value *Global = TLI.getSDagStackGuard(M);
6444       Align Align = DL->getPrefTypeAlign(Global->getType());
6445       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6446                         MachinePointerInfo(Global, 0), Align,
6447                         MachineMemOperand::MOVolatile);
6448     }
6449     if (TLI.useStackGuardXorFP())
6450       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6451     DAG.setRoot(Chain);
6452     setValue(&I, Res);
6453     return;
6454   }
6455   case Intrinsic::stackprotector: {
6456     // Emit code into the DAG to store the stack guard onto the stack.
6457     MachineFunction &MF = DAG.getMachineFunction();
6458     MachineFrameInfo &MFI = MF.getFrameInfo();
6459     SDValue Src, Chain = getRoot();
6460 
6461     if (TLI.useLoadStackGuardNode())
6462       Src = getLoadStackGuard(DAG, sdl, Chain);
6463     else
6464       Src = getValue(I.getArgOperand(0));   // The guard's value.
6465 
6466     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6467 
6468     int FI = FuncInfo.StaticAllocaMap[Slot];
6469     MFI.setStackProtectorIndex(FI);
6470     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6471 
6472     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6473 
6474     // Store the stack protector onto the stack.
6475     Res = DAG.getStore(
6476         Chain, sdl, Src, FIN,
6477         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6478         MaybeAlign(), MachineMemOperand::MOVolatile);
6479     setValue(&I, Res);
6480     DAG.setRoot(Res);
6481     return;
6482   }
6483   case Intrinsic::objectsize:
6484     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6485 
6486   case Intrinsic::is_constant:
6487     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6488 
6489   case Intrinsic::annotation:
6490   case Intrinsic::ptr_annotation:
6491   case Intrinsic::launder_invariant_group:
6492   case Intrinsic::strip_invariant_group:
6493     // Drop the intrinsic, but forward the value
6494     setValue(&I, getValue(I.getOperand(0)));
6495     return;
6496 
6497   case Intrinsic::assume:
6498   case Intrinsic::experimental_noalias_scope_decl:
6499   case Intrinsic::var_annotation:
6500   case Intrinsic::sideeffect:
6501     // Discard annotate attributes, noalias scope declarations, assumptions, and
6502     // artificial side-effects.
6503     return;
6504 
6505   case Intrinsic::codeview_annotation: {
6506     // Emit a label associated with this metadata.
6507     MachineFunction &MF = DAG.getMachineFunction();
6508     MCSymbol *Label =
6509         MF.getMMI().getContext().createTempSymbol("annotation", true);
6510     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6511     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6512     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6513     DAG.setRoot(Res);
6514     return;
6515   }
6516 
6517   case Intrinsic::init_trampoline: {
6518     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6519 
6520     SDValue Ops[6];
6521     Ops[0] = getRoot();
6522     Ops[1] = getValue(I.getArgOperand(0));
6523     Ops[2] = getValue(I.getArgOperand(1));
6524     Ops[3] = getValue(I.getArgOperand(2));
6525     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6526     Ops[5] = DAG.getSrcValue(F);
6527 
6528     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6529 
6530     DAG.setRoot(Res);
6531     return;
6532   }
6533   case Intrinsic::adjust_trampoline:
6534     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6535                              TLI.getPointerTy(DAG.getDataLayout()),
6536                              getValue(I.getArgOperand(0))));
6537     return;
6538   case Intrinsic::gcroot: {
6539     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6540            "only valid in functions with gc specified, enforced by Verifier");
6541     assert(GFI && "implied by previous");
6542     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6543     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6544 
6545     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6546     GFI->addStackRoot(FI->getIndex(), TypeMap);
6547     return;
6548   }
6549   case Intrinsic::gcread:
6550   case Intrinsic::gcwrite:
6551     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6552   case Intrinsic::flt_rounds:
6553     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6554     setValue(&I, Res);
6555     DAG.setRoot(Res.getValue(1));
6556     return;
6557 
6558   case Intrinsic::expect:
6559     // Just replace __builtin_expect(exp, c) with EXP.
6560     setValue(&I, getValue(I.getArgOperand(0)));
6561     return;
6562 
6563   case Intrinsic::ubsantrap:
6564   case Intrinsic::debugtrap:
6565   case Intrinsic::trap: {
6566     StringRef TrapFuncName =
6567         I.getAttributes()
6568             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6569             .getValueAsString();
6570     if (TrapFuncName.empty()) {
6571       switch (Intrinsic) {
6572       case Intrinsic::trap:
6573         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6574         break;
6575       case Intrinsic::debugtrap:
6576         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6577         break;
6578       case Intrinsic::ubsantrap:
6579         DAG.setRoot(DAG.getNode(
6580             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6581             DAG.getTargetConstant(
6582                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6583                 MVT::i32)));
6584         break;
6585       default: llvm_unreachable("unknown trap intrinsic");
6586       }
6587       return;
6588     }
6589     TargetLowering::ArgListTy Args;
6590     if (Intrinsic == Intrinsic::ubsantrap) {
6591       Args.push_back(TargetLoweringBase::ArgListEntry());
6592       Args[0].Val = I.getArgOperand(0);
6593       Args[0].Node = getValue(Args[0].Val);
6594       Args[0].Ty = Args[0].Val->getType();
6595     }
6596 
6597     TargetLowering::CallLoweringInfo CLI(DAG);
6598     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6599         CallingConv::C, I.getType(),
6600         DAG.getExternalSymbol(TrapFuncName.data(),
6601                               TLI.getPointerTy(DAG.getDataLayout())),
6602         std::move(Args));
6603 
6604     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6605     DAG.setRoot(Result.second);
6606     return;
6607   }
6608 
6609   case Intrinsic::uadd_with_overflow:
6610   case Intrinsic::sadd_with_overflow:
6611   case Intrinsic::usub_with_overflow:
6612   case Intrinsic::ssub_with_overflow:
6613   case Intrinsic::umul_with_overflow:
6614   case Intrinsic::smul_with_overflow: {
6615     ISD::NodeType Op;
6616     switch (Intrinsic) {
6617     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6618     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6619     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6620     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6621     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6622     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6623     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6624     }
6625     SDValue Op1 = getValue(I.getArgOperand(0));
6626     SDValue Op2 = getValue(I.getArgOperand(1));
6627 
6628     EVT ResultVT = Op1.getValueType();
6629     EVT OverflowVT = MVT::i1;
6630     if (ResultVT.isVector())
6631       OverflowVT = EVT::getVectorVT(
6632           *Context, OverflowVT, ResultVT.getVectorElementCount());
6633 
6634     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6635     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6636     return;
6637   }
6638   case Intrinsic::prefetch: {
6639     SDValue Ops[5];
6640     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6641     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6642     Ops[0] = DAG.getRoot();
6643     Ops[1] = getValue(I.getArgOperand(0));
6644     Ops[2] = getValue(I.getArgOperand(1));
6645     Ops[3] = getValue(I.getArgOperand(2));
6646     Ops[4] = getValue(I.getArgOperand(3));
6647     SDValue Result = DAG.getMemIntrinsicNode(
6648         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6649         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6650         /* align */ None, Flags);
6651 
6652     // Chain the prefetch in parallell with any pending loads, to stay out of
6653     // the way of later optimizations.
6654     PendingLoads.push_back(Result);
6655     Result = getRoot();
6656     DAG.setRoot(Result);
6657     return;
6658   }
6659   case Intrinsic::lifetime_start:
6660   case Intrinsic::lifetime_end: {
6661     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6662     // Stack coloring is not enabled in O0, discard region information.
6663     if (TM.getOptLevel() == CodeGenOpt::None)
6664       return;
6665 
6666     const int64_t ObjectSize =
6667         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6668     Value *const ObjectPtr = I.getArgOperand(1);
6669     SmallVector<const Value *, 4> Allocas;
6670     getUnderlyingObjects(ObjectPtr, Allocas);
6671 
6672     for (const Value *Alloca : Allocas) {
6673       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6674 
6675       // Could not find an Alloca.
6676       if (!LifetimeObject)
6677         continue;
6678 
6679       // First check that the Alloca is static, otherwise it won't have a
6680       // valid frame index.
6681       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6682       if (SI == FuncInfo.StaticAllocaMap.end())
6683         return;
6684 
6685       const int FrameIndex = SI->second;
6686       int64_t Offset;
6687       if (GetPointerBaseWithConstantOffset(
6688               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6689         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6690       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6691                                 Offset);
6692       DAG.setRoot(Res);
6693     }
6694     return;
6695   }
6696   case Intrinsic::pseudoprobe: {
6697     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6698     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6699     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6700     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6701     DAG.setRoot(Res);
6702     return;
6703   }
6704   case Intrinsic::invariant_start:
6705     // Discard region information.
6706     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6707     return;
6708   case Intrinsic::invariant_end:
6709     // Discard region information.
6710     return;
6711   case Intrinsic::clear_cache:
6712     /// FunctionName may be null.
6713     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6714       lowerCallToExternalSymbol(I, FunctionName);
6715     return;
6716   case Intrinsic::donothing:
6717     // ignore
6718     return;
6719   case Intrinsic::experimental_stackmap:
6720     visitStackmap(I);
6721     return;
6722   case Intrinsic::experimental_patchpoint_void:
6723   case Intrinsic::experimental_patchpoint_i64:
6724     visitPatchpoint(I);
6725     return;
6726   case Intrinsic::experimental_gc_statepoint:
6727     LowerStatepoint(cast<GCStatepointInst>(I));
6728     return;
6729   case Intrinsic::experimental_gc_result:
6730     visitGCResult(cast<GCResultInst>(I));
6731     return;
6732   case Intrinsic::experimental_gc_relocate:
6733     visitGCRelocate(cast<GCRelocateInst>(I));
6734     return;
6735   case Intrinsic::instrprof_increment:
6736     llvm_unreachable("instrprof failed to lower an increment");
6737   case Intrinsic::instrprof_value_profile:
6738     llvm_unreachable("instrprof failed to lower a value profiling call");
6739   case Intrinsic::localescape: {
6740     MachineFunction &MF = DAG.getMachineFunction();
6741     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6742 
6743     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6744     // is the same on all targets.
6745     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6746       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6747       if (isa<ConstantPointerNull>(Arg))
6748         continue; // Skip null pointers. They represent a hole in index space.
6749       AllocaInst *Slot = cast<AllocaInst>(Arg);
6750       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6751              "can only escape static allocas");
6752       int FI = FuncInfo.StaticAllocaMap[Slot];
6753       MCSymbol *FrameAllocSym =
6754           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6755               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6756       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6757               TII->get(TargetOpcode::LOCAL_ESCAPE))
6758           .addSym(FrameAllocSym)
6759           .addFrameIndex(FI);
6760     }
6761 
6762     return;
6763   }
6764 
6765   case Intrinsic::localrecover: {
6766     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6767     MachineFunction &MF = DAG.getMachineFunction();
6768 
6769     // Get the symbol that defines the frame offset.
6770     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6771     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6772     unsigned IdxVal =
6773         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6774     MCSymbol *FrameAllocSym =
6775         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6776             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6777 
6778     Value *FP = I.getArgOperand(1);
6779     SDValue FPVal = getValue(FP);
6780     EVT PtrVT = FPVal.getValueType();
6781 
6782     // Create a MCSymbol for the label to avoid any target lowering
6783     // that would make this PC relative.
6784     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6785     SDValue OffsetVal =
6786         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6787 
6788     // Add the offset to the FP.
6789     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6790     setValue(&I, Add);
6791 
6792     return;
6793   }
6794 
6795   case Intrinsic::eh_exceptionpointer:
6796   case Intrinsic::eh_exceptioncode: {
6797     // Get the exception pointer vreg, copy from it, and resize it to fit.
6798     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6799     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6800     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6801     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6802     SDValue N =
6803         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6804     if (Intrinsic == Intrinsic::eh_exceptioncode)
6805       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6806     setValue(&I, N);
6807     return;
6808   }
6809   case Intrinsic::xray_customevent: {
6810     // Here we want to make sure that the intrinsic behaves as if it has a
6811     // specific calling convention, and only for x86_64.
6812     // FIXME: Support other platforms later.
6813     const auto &Triple = DAG.getTarget().getTargetTriple();
6814     if (Triple.getArch() != Triple::x86_64)
6815       return;
6816 
6817     SDLoc DL = getCurSDLoc();
6818     SmallVector<SDValue, 8> Ops;
6819 
6820     // We want to say that we always want the arguments in registers.
6821     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6822     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6823     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6824     SDValue Chain = getRoot();
6825     Ops.push_back(LogEntryVal);
6826     Ops.push_back(StrSizeVal);
6827     Ops.push_back(Chain);
6828 
6829     // We need to enforce the calling convention for the callsite, so that
6830     // argument ordering is enforced correctly, and that register allocation can
6831     // see that some registers may be assumed clobbered and have to preserve
6832     // them across calls to the intrinsic.
6833     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6834                                            DL, NodeTys, Ops);
6835     SDValue patchableNode = SDValue(MN, 0);
6836     DAG.setRoot(patchableNode);
6837     setValue(&I, patchableNode);
6838     return;
6839   }
6840   case Intrinsic::xray_typedevent: {
6841     // Here we want to make sure that the intrinsic behaves as if it has a
6842     // specific calling convention, and only for x86_64.
6843     // FIXME: Support other platforms later.
6844     const auto &Triple = DAG.getTarget().getTargetTriple();
6845     if (Triple.getArch() != Triple::x86_64)
6846       return;
6847 
6848     SDLoc DL = getCurSDLoc();
6849     SmallVector<SDValue, 8> Ops;
6850 
6851     // We want to say that we always want the arguments in registers.
6852     // It's unclear to me how manipulating the selection DAG here forces callers
6853     // to provide arguments in registers instead of on the stack.
6854     SDValue LogTypeId = getValue(I.getArgOperand(0));
6855     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6856     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6857     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6858     SDValue Chain = getRoot();
6859     Ops.push_back(LogTypeId);
6860     Ops.push_back(LogEntryVal);
6861     Ops.push_back(StrSizeVal);
6862     Ops.push_back(Chain);
6863 
6864     // We need to enforce the calling convention for the callsite, so that
6865     // argument ordering is enforced correctly, and that register allocation can
6866     // see that some registers may be assumed clobbered and have to preserve
6867     // them across calls to the intrinsic.
6868     MachineSDNode *MN = DAG.getMachineNode(
6869         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6870     SDValue patchableNode = SDValue(MN, 0);
6871     DAG.setRoot(patchableNode);
6872     setValue(&I, patchableNode);
6873     return;
6874   }
6875   case Intrinsic::experimental_deoptimize:
6876     LowerDeoptimizeCall(&I);
6877     return;
6878 
6879   case Intrinsic::vector_reduce_fadd:
6880   case Intrinsic::vector_reduce_fmul:
6881   case Intrinsic::vector_reduce_add:
6882   case Intrinsic::vector_reduce_mul:
6883   case Intrinsic::vector_reduce_and:
6884   case Intrinsic::vector_reduce_or:
6885   case Intrinsic::vector_reduce_xor:
6886   case Intrinsic::vector_reduce_smax:
6887   case Intrinsic::vector_reduce_smin:
6888   case Intrinsic::vector_reduce_umax:
6889   case Intrinsic::vector_reduce_umin:
6890   case Intrinsic::vector_reduce_fmax:
6891   case Intrinsic::vector_reduce_fmin:
6892     visitVectorReduce(I, Intrinsic);
6893     return;
6894 
6895   case Intrinsic::icall_branch_funnel: {
6896     SmallVector<SDValue, 16> Ops;
6897     Ops.push_back(getValue(I.getArgOperand(0)));
6898 
6899     int64_t Offset;
6900     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6901         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6902     if (!Base)
6903       report_fatal_error(
6904           "llvm.icall.branch.funnel operand must be a GlobalValue");
6905     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6906 
6907     struct BranchFunnelTarget {
6908       int64_t Offset;
6909       SDValue Target;
6910     };
6911     SmallVector<BranchFunnelTarget, 8> Targets;
6912 
6913     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6914       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6915           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6916       if (ElemBase != Base)
6917         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6918                            "to the same GlobalValue");
6919 
6920       SDValue Val = getValue(I.getArgOperand(Op + 1));
6921       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6922       if (!GA)
6923         report_fatal_error(
6924             "llvm.icall.branch.funnel operand must be a GlobalValue");
6925       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6926                                      GA->getGlobal(), getCurSDLoc(),
6927                                      Val.getValueType(), GA->getOffset())});
6928     }
6929     llvm::sort(Targets,
6930                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6931                  return T1.Offset < T2.Offset;
6932                });
6933 
6934     for (auto &T : Targets) {
6935       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6936       Ops.push_back(T.Target);
6937     }
6938 
6939     Ops.push_back(DAG.getRoot()); // Chain
6940     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6941                                  getCurSDLoc(), MVT::Other, Ops),
6942               0);
6943     DAG.setRoot(N);
6944     setValue(&I, N);
6945     HasTailCall = true;
6946     return;
6947   }
6948 
6949   case Intrinsic::wasm_landingpad_index:
6950     // Information this intrinsic contained has been transferred to
6951     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6952     // delete it now.
6953     return;
6954 
6955   case Intrinsic::aarch64_settag:
6956   case Intrinsic::aarch64_settag_zero: {
6957     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6958     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6959     SDValue Val = TSI.EmitTargetCodeForSetTag(
6960         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6961         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6962         ZeroMemory);
6963     DAG.setRoot(Val);
6964     setValue(&I, Val);
6965     return;
6966   }
6967   case Intrinsic::ptrmask: {
6968     SDValue Ptr = getValue(I.getOperand(0));
6969     SDValue Const = getValue(I.getOperand(1));
6970 
6971     EVT PtrVT = Ptr.getValueType();
6972     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6973                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6974     return;
6975   }
6976   case Intrinsic::get_active_lane_mask: {
6977     auto DL = getCurSDLoc();
6978     SDValue Index = getValue(I.getOperand(0));
6979     SDValue TripCount = getValue(I.getOperand(1));
6980     Type *ElementTy = I.getOperand(0)->getType();
6981     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6982     unsigned VecWidth = VT.getVectorNumElements();
6983 
6984     SmallVector<SDValue, 16> OpsTripCount;
6985     SmallVector<SDValue, 16> OpsIndex;
6986     SmallVector<SDValue, 16> OpsStepConstants;
6987     for (unsigned i = 0; i < VecWidth; i++) {
6988       OpsTripCount.push_back(TripCount);
6989       OpsIndex.push_back(Index);
6990       OpsStepConstants.push_back(
6991           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6992     }
6993 
6994     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6995 
6996     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6997     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6998     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6999     SDValue VectorInduction = DAG.getNode(
7000        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7001     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7002     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7003                                  VectorTripCount, ISD::CondCode::SETULT);
7004     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7005                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7006                              SetCC));
7007     return;
7008   }
7009   case Intrinsic::experimental_vector_insert: {
7010     auto DL = getCurSDLoc();
7011 
7012     SDValue Vec = getValue(I.getOperand(0));
7013     SDValue SubVec = getValue(I.getOperand(1));
7014     SDValue Index = getValue(I.getOperand(2));
7015 
7016     // The intrinsic's index type is i64, but the SDNode requires an index type
7017     // suitable for the target. Convert the index as required.
7018     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7019     if (Index.getValueType() != VectorIdxTy)
7020       Index = DAG.getVectorIdxConstant(
7021           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7022 
7023     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7024     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7025                              Index));
7026     return;
7027   }
7028   case Intrinsic::experimental_vector_extract: {
7029     auto DL = getCurSDLoc();
7030 
7031     SDValue Vec = getValue(I.getOperand(0));
7032     SDValue Index = getValue(I.getOperand(1));
7033     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7034 
7035     // The intrinsic's index type is i64, but the SDNode requires an index type
7036     // suitable for the target. Convert the index as required.
7037     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7038     if (Index.getValueType() != VectorIdxTy)
7039       Index = DAG.getVectorIdxConstant(
7040           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7041 
7042     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7043     return;
7044   }
7045   case Intrinsic::experimental_vector_reverse:
7046     visitVectorReverse(I);
7047     return;
7048   }
7049 }
7050 
7051 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7052     const ConstrainedFPIntrinsic &FPI) {
7053   SDLoc sdl = getCurSDLoc();
7054 
7055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7056   SmallVector<EVT, 4> ValueVTs;
7057   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7058   ValueVTs.push_back(MVT::Other); // Out chain
7059 
7060   // We do not need to serialize constrained FP intrinsics against
7061   // each other or against (nonvolatile) loads, so they can be
7062   // chained like loads.
7063   SDValue Chain = DAG.getRoot();
7064   SmallVector<SDValue, 4> Opers;
7065   Opers.push_back(Chain);
7066   if (FPI.isUnaryOp()) {
7067     Opers.push_back(getValue(FPI.getArgOperand(0)));
7068   } else if (FPI.isTernaryOp()) {
7069     Opers.push_back(getValue(FPI.getArgOperand(0)));
7070     Opers.push_back(getValue(FPI.getArgOperand(1)));
7071     Opers.push_back(getValue(FPI.getArgOperand(2)));
7072   } else {
7073     Opers.push_back(getValue(FPI.getArgOperand(0)));
7074     Opers.push_back(getValue(FPI.getArgOperand(1)));
7075   }
7076 
7077   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7078     assert(Result.getNode()->getNumValues() == 2);
7079 
7080     // Push node to the appropriate list so that future instructions can be
7081     // chained up correctly.
7082     SDValue OutChain = Result.getValue(1);
7083     switch (EB) {
7084     case fp::ExceptionBehavior::ebIgnore:
7085       // The only reason why ebIgnore nodes still need to be chained is that
7086       // they might depend on the current rounding mode, and therefore must
7087       // not be moved across instruction that may change that mode.
7088       LLVM_FALLTHROUGH;
7089     case fp::ExceptionBehavior::ebMayTrap:
7090       // These must not be moved across calls or instructions that may change
7091       // floating-point exception masks.
7092       PendingConstrainedFP.push_back(OutChain);
7093       break;
7094     case fp::ExceptionBehavior::ebStrict:
7095       // These must not be moved across calls or instructions that may change
7096       // floating-point exception masks or read floating-point exception flags.
7097       // In addition, they cannot be optimized out even if unused.
7098       PendingConstrainedFPStrict.push_back(OutChain);
7099       break;
7100     }
7101   };
7102 
7103   SDVTList VTs = DAG.getVTList(ValueVTs);
7104   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7105 
7106   SDNodeFlags Flags;
7107   if (EB == fp::ExceptionBehavior::ebIgnore)
7108     Flags.setNoFPExcept(true);
7109 
7110   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7111     Flags.copyFMF(*FPOp);
7112 
7113   unsigned Opcode;
7114   switch (FPI.getIntrinsicID()) {
7115   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7116 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7117   case Intrinsic::INTRINSIC:                                                   \
7118     Opcode = ISD::STRICT_##DAGN;                                               \
7119     break;
7120 #include "llvm/IR/ConstrainedOps.def"
7121   case Intrinsic::experimental_constrained_fmuladd: {
7122     Opcode = ISD::STRICT_FMA;
7123     // Break fmuladd into fmul and fadd.
7124     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7125         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7126                                         ValueVTs[0])) {
7127       Opers.pop_back();
7128       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7129       pushOutChain(Mul, EB);
7130       Opcode = ISD::STRICT_FADD;
7131       Opers.clear();
7132       Opers.push_back(Mul.getValue(1));
7133       Opers.push_back(Mul.getValue(0));
7134       Opers.push_back(getValue(FPI.getArgOperand(2)));
7135     }
7136     break;
7137   }
7138   }
7139 
7140   // A few strict DAG nodes carry additional operands that are not
7141   // set up by the default code above.
7142   switch (Opcode) {
7143   default: break;
7144   case ISD::STRICT_FP_ROUND:
7145     Opers.push_back(
7146         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7147     break;
7148   case ISD::STRICT_FSETCC:
7149   case ISD::STRICT_FSETCCS: {
7150     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7151     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7152     if (TM.Options.NoNaNsFPMath)
7153       Condition = getFCmpCodeWithoutNaN(Condition);
7154     Opers.push_back(DAG.getCondCode(Condition));
7155     break;
7156   }
7157   }
7158 
7159   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7160   pushOutChain(Result, EB);
7161 
7162   SDValue FPResult = Result.getValue(0);
7163   setValue(&FPI, FPResult);
7164 }
7165 
7166 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7167   Optional<unsigned> ResOPC;
7168   switch (VPIntrin.getIntrinsicID()) {
7169 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7170 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7171 #define END_REGISTER_VP_INTRINSIC(...) break;
7172 #include "llvm/IR/VPIntrinsics.def"
7173   }
7174 
7175   if (!ResOPC.hasValue())
7176     llvm_unreachable(
7177         "Inconsistency: no SDNode available for this VPIntrinsic!");
7178 
7179   return ResOPC.getValue();
7180 }
7181 
7182 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7183     const VPIntrinsic &VPIntrin) {
7184   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7185 
7186   SmallVector<EVT, 4> ValueVTs;
7187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7188   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7189   SDVTList VTs = DAG.getVTList(ValueVTs);
7190 
7191   // Request operands.
7192   SmallVector<SDValue, 7> OpValues;
7193   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7194     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7195 
7196   SDLoc DL = getCurSDLoc();
7197   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7198   setValue(&VPIntrin, Result);
7199 }
7200 
7201 std::pair<SDValue, SDValue>
7202 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7203                                     const BasicBlock *EHPadBB) {
7204   MachineFunction &MF = DAG.getMachineFunction();
7205   MachineModuleInfo &MMI = MF.getMMI();
7206   MCSymbol *BeginLabel = nullptr;
7207 
7208   if (EHPadBB) {
7209     // Insert a label before the invoke call to mark the try range.  This can be
7210     // used to detect deletion of the invoke via the MachineModuleInfo.
7211     BeginLabel = MMI.getContext().createTempSymbol();
7212 
7213     // For SjLj, keep track of which landing pads go with which invokes
7214     // so as to maintain the ordering of pads in the LSDA.
7215     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7216     if (CallSiteIndex) {
7217       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7218       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7219 
7220       // Now that the call site is handled, stop tracking it.
7221       MMI.setCurrentCallSite(0);
7222     }
7223 
7224     // Both PendingLoads and PendingExports must be flushed here;
7225     // this call might not return.
7226     (void)getRoot();
7227     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7228 
7229     CLI.setChain(getRoot());
7230   }
7231   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7232   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7233 
7234   assert((CLI.IsTailCall || Result.second.getNode()) &&
7235          "Non-null chain expected with non-tail call!");
7236   assert((Result.second.getNode() || !Result.first.getNode()) &&
7237          "Null value expected with tail call!");
7238 
7239   if (!Result.second.getNode()) {
7240     // As a special case, a null chain means that a tail call has been emitted
7241     // and the DAG root is already updated.
7242     HasTailCall = true;
7243 
7244     // Since there's no actual continuation from this block, nothing can be
7245     // relying on us setting vregs for them.
7246     PendingExports.clear();
7247   } else {
7248     DAG.setRoot(Result.second);
7249   }
7250 
7251   if (EHPadBB) {
7252     // Insert a label at the end of the invoke call to mark the try range.  This
7253     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7254     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7255     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7256 
7257     // Inform MachineModuleInfo of range.
7258     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7259     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7260     // actually use outlined funclets and their LSDA info style.
7261     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7262       assert(CLI.CB);
7263       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7264       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7265     } else if (!isScopedEHPersonality(Pers)) {
7266       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7267     }
7268   }
7269 
7270   return Result;
7271 }
7272 
7273 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7274                                       bool isTailCall,
7275                                       const BasicBlock *EHPadBB) {
7276   auto &DL = DAG.getDataLayout();
7277   FunctionType *FTy = CB.getFunctionType();
7278   Type *RetTy = CB.getType();
7279 
7280   TargetLowering::ArgListTy Args;
7281   Args.reserve(CB.arg_size());
7282 
7283   const Value *SwiftErrorVal = nullptr;
7284   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7285 
7286   if (isTailCall) {
7287     // Avoid emitting tail calls in functions with the disable-tail-calls
7288     // attribute.
7289     auto *Caller = CB.getParent()->getParent();
7290     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7291         "true")
7292       isTailCall = false;
7293 
7294     // We can't tail call inside a function with a swifterror argument. Lowering
7295     // does not support this yet. It would have to move into the swifterror
7296     // register before the call.
7297     if (TLI.supportSwiftError() &&
7298         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7299       isTailCall = false;
7300   }
7301 
7302   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7303     TargetLowering::ArgListEntry Entry;
7304     const Value *V = *I;
7305 
7306     // Skip empty types
7307     if (V->getType()->isEmptyTy())
7308       continue;
7309 
7310     SDValue ArgNode = getValue(V);
7311     Entry.Node = ArgNode; Entry.Ty = V->getType();
7312 
7313     Entry.setAttributes(&CB, I - CB.arg_begin());
7314 
7315     // Use swifterror virtual register as input to the call.
7316     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7317       SwiftErrorVal = V;
7318       // We find the virtual register for the actual swifterror argument.
7319       // Instead of using the Value, we use the virtual register instead.
7320       Entry.Node =
7321           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7322                           EVT(TLI.getPointerTy(DL)));
7323     }
7324 
7325     Args.push_back(Entry);
7326 
7327     // If we have an explicit sret argument that is an Instruction, (i.e., it
7328     // might point to function-local memory), we can't meaningfully tail-call.
7329     if (Entry.IsSRet && isa<Instruction>(V))
7330       isTailCall = false;
7331   }
7332 
7333   // If call site has a cfguardtarget operand bundle, create and add an
7334   // additional ArgListEntry.
7335   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7336     TargetLowering::ArgListEntry Entry;
7337     Value *V = Bundle->Inputs[0];
7338     SDValue ArgNode = getValue(V);
7339     Entry.Node = ArgNode;
7340     Entry.Ty = V->getType();
7341     Entry.IsCFGuardTarget = true;
7342     Args.push_back(Entry);
7343   }
7344 
7345   // Check if target-independent constraints permit a tail call here.
7346   // Target-dependent constraints are checked within TLI->LowerCallTo.
7347   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7348     isTailCall = false;
7349 
7350   // Disable tail calls if there is an swifterror argument. Targets have not
7351   // been updated to support tail calls.
7352   if (TLI.supportSwiftError() && SwiftErrorVal)
7353     isTailCall = false;
7354 
7355   TargetLowering::CallLoweringInfo CLI(DAG);
7356   CLI.setDebugLoc(getCurSDLoc())
7357       .setChain(getRoot())
7358       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7359       .setTailCall(isTailCall)
7360       .setConvergent(CB.isConvergent())
7361       .setIsPreallocated(
7362           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7363   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7364 
7365   if (Result.first.getNode()) {
7366     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7367     setValue(&CB, Result.first);
7368   }
7369 
7370   // The last element of CLI.InVals has the SDValue for swifterror return.
7371   // Here we copy it to a virtual register and update SwiftErrorMap for
7372   // book-keeping.
7373   if (SwiftErrorVal && TLI.supportSwiftError()) {
7374     // Get the last element of InVals.
7375     SDValue Src = CLI.InVals.back();
7376     Register VReg =
7377         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7378     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7379     DAG.setRoot(CopyNode);
7380   }
7381 }
7382 
7383 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7384                              SelectionDAGBuilder &Builder) {
7385   // Check to see if this load can be trivially constant folded, e.g. if the
7386   // input is from a string literal.
7387   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7388     // Cast pointer to the type we really want to load.
7389     Type *LoadTy =
7390         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7391     if (LoadVT.isVector())
7392       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7393 
7394     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7395                                          PointerType::getUnqual(LoadTy));
7396 
7397     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7398             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7399       return Builder.getValue(LoadCst);
7400   }
7401 
7402   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7403   // still constant memory, the input chain can be the entry node.
7404   SDValue Root;
7405   bool ConstantMemory = false;
7406 
7407   // Do not serialize (non-volatile) loads of constant memory with anything.
7408   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7409     Root = Builder.DAG.getEntryNode();
7410     ConstantMemory = true;
7411   } else {
7412     // Do not serialize non-volatile loads against each other.
7413     Root = Builder.DAG.getRoot();
7414   }
7415 
7416   SDValue Ptr = Builder.getValue(PtrVal);
7417   SDValue LoadVal =
7418       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7419                           MachinePointerInfo(PtrVal), Align(1));
7420 
7421   if (!ConstantMemory)
7422     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7423   return LoadVal;
7424 }
7425 
7426 /// Record the value for an instruction that produces an integer result,
7427 /// converting the type where necessary.
7428 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7429                                                   SDValue Value,
7430                                                   bool IsSigned) {
7431   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7432                                                     I.getType(), true);
7433   if (IsSigned)
7434     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7435   else
7436     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7437   setValue(&I, Value);
7438 }
7439 
7440 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7441 /// true and lower it. Otherwise return false, and it will be lowered like a
7442 /// normal call.
7443 /// The caller already checked that \p I calls the appropriate LibFunc with a
7444 /// correct prototype.
7445 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7446   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7447   const Value *Size = I.getArgOperand(2);
7448   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7449   if (CSize && CSize->getZExtValue() == 0) {
7450     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7451                                                           I.getType(), true);
7452     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7453     return true;
7454   }
7455 
7456   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7457   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7458       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7459       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7460   if (Res.first.getNode()) {
7461     processIntegerCallValue(I, Res.first, true);
7462     PendingLoads.push_back(Res.second);
7463     return true;
7464   }
7465 
7466   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7467   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7468   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7469     return false;
7470 
7471   // If the target has a fast compare for the given size, it will return a
7472   // preferred load type for that size. Require that the load VT is legal and
7473   // that the target supports unaligned loads of that type. Otherwise, return
7474   // INVALID.
7475   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7476     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7477     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7478     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7479       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7480       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7481       // TODO: Check alignment of src and dest ptrs.
7482       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7483       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7484       if (!TLI.isTypeLegal(LVT) ||
7485           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7486           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7487         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7488     }
7489 
7490     return LVT;
7491   };
7492 
7493   // This turns into unaligned loads. We only do this if the target natively
7494   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7495   // we'll only produce a small number of byte loads.
7496   MVT LoadVT;
7497   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7498   switch (NumBitsToCompare) {
7499   default:
7500     return false;
7501   case 16:
7502     LoadVT = MVT::i16;
7503     break;
7504   case 32:
7505     LoadVT = MVT::i32;
7506     break;
7507   case 64:
7508   case 128:
7509   case 256:
7510     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7511     break;
7512   }
7513 
7514   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7515     return false;
7516 
7517   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7518   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7519 
7520   // Bitcast to a wide integer type if the loads are vectors.
7521   if (LoadVT.isVector()) {
7522     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7523     LoadL = DAG.getBitcast(CmpVT, LoadL);
7524     LoadR = DAG.getBitcast(CmpVT, LoadR);
7525   }
7526 
7527   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7528   processIntegerCallValue(I, Cmp, false);
7529   return true;
7530 }
7531 
7532 /// See if we can lower a memchr call into an optimized form. If so, return
7533 /// true and lower it. Otherwise return false, and it will be lowered like a
7534 /// normal call.
7535 /// The caller already checked that \p I calls the appropriate LibFunc with a
7536 /// correct prototype.
7537 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7538   const Value *Src = I.getArgOperand(0);
7539   const Value *Char = I.getArgOperand(1);
7540   const Value *Length = I.getArgOperand(2);
7541 
7542   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7543   std::pair<SDValue, SDValue> Res =
7544     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7545                                 getValue(Src), getValue(Char), getValue(Length),
7546                                 MachinePointerInfo(Src));
7547   if (Res.first.getNode()) {
7548     setValue(&I, Res.first);
7549     PendingLoads.push_back(Res.second);
7550     return true;
7551   }
7552 
7553   return false;
7554 }
7555 
7556 /// See if we can lower a mempcpy call into an optimized form. If so, return
7557 /// true and lower it. Otherwise return false, and it will be lowered like a
7558 /// normal call.
7559 /// The caller already checked that \p I calls the appropriate LibFunc with a
7560 /// correct prototype.
7561 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7562   SDValue Dst = getValue(I.getArgOperand(0));
7563   SDValue Src = getValue(I.getArgOperand(1));
7564   SDValue Size = getValue(I.getArgOperand(2));
7565 
7566   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7567   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7568   // DAG::getMemcpy needs Alignment to be defined.
7569   Align Alignment = std::min(DstAlign, SrcAlign);
7570 
7571   bool isVol = false;
7572   SDLoc sdl = getCurSDLoc();
7573 
7574   // In the mempcpy context we need to pass in a false value for isTailCall
7575   // because the return pointer needs to be adjusted by the size of
7576   // the copied memory.
7577   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7578   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7579                              /*isTailCall=*/false,
7580                              MachinePointerInfo(I.getArgOperand(0)),
7581                              MachinePointerInfo(I.getArgOperand(1)));
7582   assert(MC.getNode() != nullptr &&
7583          "** memcpy should not be lowered as TailCall in mempcpy context **");
7584   DAG.setRoot(MC);
7585 
7586   // Check if Size needs to be truncated or extended.
7587   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7588 
7589   // Adjust return pointer to point just past the last dst byte.
7590   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7591                                     Dst, Size);
7592   setValue(&I, DstPlusSize);
7593   return true;
7594 }
7595 
7596 /// See if we can lower a strcpy call into an optimized form.  If so, return
7597 /// true and lower it, otherwise return false and it will be lowered like a
7598 /// normal call.
7599 /// The caller already checked that \p I calls the appropriate LibFunc with a
7600 /// correct prototype.
7601 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7602   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7603 
7604   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7605   std::pair<SDValue, SDValue> Res =
7606     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7607                                 getValue(Arg0), getValue(Arg1),
7608                                 MachinePointerInfo(Arg0),
7609                                 MachinePointerInfo(Arg1), isStpcpy);
7610   if (Res.first.getNode()) {
7611     setValue(&I, Res.first);
7612     DAG.setRoot(Res.second);
7613     return true;
7614   }
7615 
7616   return false;
7617 }
7618 
7619 /// See if we can lower a strcmp call into an optimized form.  If so, return
7620 /// true and lower it, otherwise return false and it will be lowered like a
7621 /// normal call.
7622 /// The caller already checked that \p I calls the appropriate LibFunc with a
7623 /// correct prototype.
7624 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7625   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7626 
7627   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7628   std::pair<SDValue, SDValue> Res =
7629     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7630                                 getValue(Arg0), getValue(Arg1),
7631                                 MachinePointerInfo(Arg0),
7632                                 MachinePointerInfo(Arg1));
7633   if (Res.first.getNode()) {
7634     processIntegerCallValue(I, Res.first, true);
7635     PendingLoads.push_back(Res.second);
7636     return true;
7637   }
7638 
7639   return false;
7640 }
7641 
7642 /// See if we can lower a strlen call into an optimized form.  If so, return
7643 /// true and lower it, otherwise return false and it will be lowered like a
7644 /// normal call.
7645 /// The caller already checked that \p I calls the appropriate LibFunc with a
7646 /// correct prototype.
7647 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7648   const Value *Arg0 = I.getArgOperand(0);
7649 
7650   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7651   std::pair<SDValue, SDValue> Res =
7652     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7653                                 getValue(Arg0), MachinePointerInfo(Arg0));
7654   if (Res.first.getNode()) {
7655     processIntegerCallValue(I, Res.first, false);
7656     PendingLoads.push_back(Res.second);
7657     return true;
7658   }
7659 
7660   return false;
7661 }
7662 
7663 /// See if we can lower a strnlen call into an optimized form.  If so, return
7664 /// true and lower it, otherwise return false and it will be lowered like a
7665 /// normal call.
7666 /// The caller already checked that \p I calls the appropriate LibFunc with a
7667 /// correct prototype.
7668 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7669   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7670 
7671   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7672   std::pair<SDValue, SDValue> Res =
7673     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7674                                  getValue(Arg0), getValue(Arg1),
7675                                  MachinePointerInfo(Arg0));
7676   if (Res.first.getNode()) {
7677     processIntegerCallValue(I, Res.first, false);
7678     PendingLoads.push_back(Res.second);
7679     return true;
7680   }
7681 
7682   return false;
7683 }
7684 
7685 /// See if we can lower a unary floating-point operation into an SDNode with
7686 /// the specified Opcode.  If so, return true and lower it, otherwise return
7687 /// false and it will be lowered like a normal call.
7688 /// The caller already checked that \p I calls the appropriate LibFunc with a
7689 /// correct prototype.
7690 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7691                                               unsigned Opcode) {
7692   // We already checked this call's prototype; verify it doesn't modify errno.
7693   if (!I.onlyReadsMemory())
7694     return false;
7695 
7696   SDNodeFlags Flags;
7697   Flags.copyFMF(cast<FPMathOperator>(I));
7698 
7699   SDValue Tmp = getValue(I.getArgOperand(0));
7700   setValue(&I,
7701            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7702   return true;
7703 }
7704 
7705 /// See if we can lower a binary floating-point operation into an SDNode with
7706 /// the specified Opcode. If so, return true and lower it. Otherwise return
7707 /// false, and it will be lowered like a normal call.
7708 /// The caller already checked that \p I calls the appropriate LibFunc with a
7709 /// correct prototype.
7710 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7711                                                unsigned Opcode) {
7712   // We already checked this call's prototype; verify it doesn't modify errno.
7713   if (!I.onlyReadsMemory())
7714     return false;
7715 
7716   SDNodeFlags Flags;
7717   Flags.copyFMF(cast<FPMathOperator>(I));
7718 
7719   SDValue Tmp0 = getValue(I.getArgOperand(0));
7720   SDValue Tmp1 = getValue(I.getArgOperand(1));
7721   EVT VT = Tmp0.getValueType();
7722   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7723   return true;
7724 }
7725 
7726 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7727   // Handle inline assembly differently.
7728   if (I.isInlineAsm()) {
7729     visitInlineAsm(I);
7730     return;
7731   }
7732 
7733   if (Function *F = I.getCalledFunction()) {
7734     if (F->isDeclaration()) {
7735       // Is this an LLVM intrinsic or a target-specific intrinsic?
7736       unsigned IID = F->getIntrinsicID();
7737       if (!IID)
7738         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7739           IID = II->getIntrinsicID(F);
7740 
7741       if (IID) {
7742         visitIntrinsicCall(I, IID);
7743         return;
7744       }
7745     }
7746 
7747     // Check for well-known libc/libm calls.  If the function is internal, it
7748     // can't be a library call.  Don't do the check if marked as nobuiltin for
7749     // some reason or the call site requires strict floating point semantics.
7750     LibFunc Func;
7751     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7752         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7753         LibInfo->hasOptimizedCodeGen(Func)) {
7754       switch (Func) {
7755       default: break;
7756       case LibFunc_bcmp:
7757         if (visitMemCmpBCmpCall(I))
7758           return;
7759         break;
7760       case LibFunc_copysign:
7761       case LibFunc_copysignf:
7762       case LibFunc_copysignl:
7763         // We already checked this call's prototype; verify it doesn't modify
7764         // errno.
7765         if (I.onlyReadsMemory()) {
7766           SDValue LHS = getValue(I.getArgOperand(0));
7767           SDValue RHS = getValue(I.getArgOperand(1));
7768           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7769                                    LHS.getValueType(), LHS, RHS));
7770           return;
7771         }
7772         break;
7773       case LibFunc_fabs:
7774       case LibFunc_fabsf:
7775       case LibFunc_fabsl:
7776         if (visitUnaryFloatCall(I, ISD::FABS))
7777           return;
7778         break;
7779       case LibFunc_fmin:
7780       case LibFunc_fminf:
7781       case LibFunc_fminl:
7782         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7783           return;
7784         break;
7785       case LibFunc_fmax:
7786       case LibFunc_fmaxf:
7787       case LibFunc_fmaxl:
7788         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7789           return;
7790         break;
7791       case LibFunc_sin:
7792       case LibFunc_sinf:
7793       case LibFunc_sinl:
7794         if (visitUnaryFloatCall(I, ISD::FSIN))
7795           return;
7796         break;
7797       case LibFunc_cos:
7798       case LibFunc_cosf:
7799       case LibFunc_cosl:
7800         if (visitUnaryFloatCall(I, ISD::FCOS))
7801           return;
7802         break;
7803       case LibFunc_sqrt:
7804       case LibFunc_sqrtf:
7805       case LibFunc_sqrtl:
7806       case LibFunc_sqrt_finite:
7807       case LibFunc_sqrtf_finite:
7808       case LibFunc_sqrtl_finite:
7809         if (visitUnaryFloatCall(I, ISD::FSQRT))
7810           return;
7811         break;
7812       case LibFunc_floor:
7813       case LibFunc_floorf:
7814       case LibFunc_floorl:
7815         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7816           return;
7817         break;
7818       case LibFunc_nearbyint:
7819       case LibFunc_nearbyintf:
7820       case LibFunc_nearbyintl:
7821         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7822           return;
7823         break;
7824       case LibFunc_ceil:
7825       case LibFunc_ceilf:
7826       case LibFunc_ceill:
7827         if (visitUnaryFloatCall(I, ISD::FCEIL))
7828           return;
7829         break;
7830       case LibFunc_rint:
7831       case LibFunc_rintf:
7832       case LibFunc_rintl:
7833         if (visitUnaryFloatCall(I, ISD::FRINT))
7834           return;
7835         break;
7836       case LibFunc_round:
7837       case LibFunc_roundf:
7838       case LibFunc_roundl:
7839         if (visitUnaryFloatCall(I, ISD::FROUND))
7840           return;
7841         break;
7842       case LibFunc_trunc:
7843       case LibFunc_truncf:
7844       case LibFunc_truncl:
7845         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7846           return;
7847         break;
7848       case LibFunc_log2:
7849       case LibFunc_log2f:
7850       case LibFunc_log2l:
7851         if (visitUnaryFloatCall(I, ISD::FLOG2))
7852           return;
7853         break;
7854       case LibFunc_exp2:
7855       case LibFunc_exp2f:
7856       case LibFunc_exp2l:
7857         if (visitUnaryFloatCall(I, ISD::FEXP2))
7858           return;
7859         break;
7860       case LibFunc_memcmp:
7861         if (visitMemCmpBCmpCall(I))
7862           return;
7863         break;
7864       case LibFunc_mempcpy:
7865         if (visitMemPCpyCall(I))
7866           return;
7867         break;
7868       case LibFunc_memchr:
7869         if (visitMemChrCall(I))
7870           return;
7871         break;
7872       case LibFunc_strcpy:
7873         if (visitStrCpyCall(I, false))
7874           return;
7875         break;
7876       case LibFunc_stpcpy:
7877         if (visitStrCpyCall(I, true))
7878           return;
7879         break;
7880       case LibFunc_strcmp:
7881         if (visitStrCmpCall(I))
7882           return;
7883         break;
7884       case LibFunc_strlen:
7885         if (visitStrLenCall(I))
7886           return;
7887         break;
7888       case LibFunc_strnlen:
7889         if (visitStrNLenCall(I))
7890           return;
7891         break;
7892       }
7893     }
7894   }
7895 
7896   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7897   // have to do anything here to lower funclet bundles.
7898   // CFGuardTarget bundles are lowered in LowerCallTo.
7899   assert(!I.hasOperandBundlesOtherThan(
7900              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7901               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
7902               LLVMContext::OB_clang_arc_attachedcall}) &&
7903          "Cannot lower calls with arbitrary operand bundles!");
7904 
7905   SDValue Callee = getValue(I.getCalledOperand());
7906 
7907   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7908     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7909   else
7910     // Check if we can potentially perform a tail call. More detailed checking
7911     // is be done within LowerCallTo, after more information about the call is
7912     // known.
7913     LowerCallTo(I, Callee, I.isTailCall());
7914 }
7915 
7916 namespace {
7917 
7918 /// AsmOperandInfo - This contains information for each constraint that we are
7919 /// lowering.
7920 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7921 public:
7922   /// CallOperand - If this is the result output operand or a clobber
7923   /// this is null, otherwise it is the incoming operand to the CallInst.
7924   /// This gets modified as the asm is processed.
7925   SDValue CallOperand;
7926 
7927   /// AssignedRegs - If this is a register or register class operand, this
7928   /// contains the set of register corresponding to the operand.
7929   RegsForValue AssignedRegs;
7930 
7931   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7932     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7933   }
7934 
7935   /// Whether or not this operand accesses memory
7936   bool hasMemory(const TargetLowering &TLI) const {
7937     // Indirect operand accesses access memory.
7938     if (isIndirect)
7939       return true;
7940 
7941     for (const auto &Code : Codes)
7942       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7943         return true;
7944 
7945     return false;
7946   }
7947 
7948   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7949   /// corresponds to.  If there is no Value* for this operand, it returns
7950   /// MVT::Other.
7951   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7952                            const DataLayout &DL) const {
7953     if (!CallOperandVal) return MVT::Other;
7954 
7955     if (isa<BasicBlock>(CallOperandVal))
7956       return TLI.getProgramPointerTy(DL);
7957 
7958     llvm::Type *OpTy = CallOperandVal->getType();
7959 
7960     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7961     // If this is an indirect operand, the operand is a pointer to the
7962     // accessed type.
7963     if (isIndirect) {
7964       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7965       if (!PtrTy)
7966         report_fatal_error("Indirect operand for inline asm not a pointer!");
7967       OpTy = PtrTy->getElementType();
7968     }
7969 
7970     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7971     if (StructType *STy = dyn_cast<StructType>(OpTy))
7972       if (STy->getNumElements() == 1)
7973         OpTy = STy->getElementType(0);
7974 
7975     // If OpTy is not a single value, it may be a struct/union that we
7976     // can tile with integers.
7977     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7978       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7979       switch (BitSize) {
7980       default: break;
7981       case 1:
7982       case 8:
7983       case 16:
7984       case 32:
7985       case 64:
7986       case 128:
7987         OpTy = IntegerType::get(Context, BitSize);
7988         break;
7989       }
7990     }
7991 
7992     return TLI.getValueType(DL, OpTy, true);
7993   }
7994 };
7995 
7996 
7997 } // end anonymous namespace
7998 
7999 /// Make sure that the output operand \p OpInfo and its corresponding input
8000 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8001 /// out).
8002 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8003                                SDISelAsmOperandInfo &MatchingOpInfo,
8004                                SelectionDAG &DAG) {
8005   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8006     return;
8007 
8008   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8009   const auto &TLI = DAG.getTargetLoweringInfo();
8010 
8011   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8012       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8013                                        OpInfo.ConstraintVT);
8014   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8015       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8016                                        MatchingOpInfo.ConstraintVT);
8017   if ((OpInfo.ConstraintVT.isInteger() !=
8018        MatchingOpInfo.ConstraintVT.isInteger()) ||
8019       (MatchRC.second != InputRC.second)) {
8020     // FIXME: error out in a more elegant fashion
8021     report_fatal_error("Unsupported asm: input constraint"
8022                        " with a matching output constraint of"
8023                        " incompatible type!");
8024   }
8025   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8026 }
8027 
8028 /// Get a direct memory input to behave well as an indirect operand.
8029 /// This may introduce stores, hence the need for a \p Chain.
8030 /// \return The (possibly updated) chain.
8031 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8032                                         SDISelAsmOperandInfo &OpInfo,
8033                                         SelectionDAG &DAG) {
8034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8035 
8036   // If we don't have an indirect input, put it in the constpool if we can,
8037   // otherwise spill it to a stack slot.
8038   // TODO: This isn't quite right. We need to handle these according to
8039   // the addressing mode that the constraint wants. Also, this may take
8040   // an additional register for the computation and we don't want that
8041   // either.
8042 
8043   // If the operand is a float, integer, or vector constant, spill to a
8044   // constant pool entry to get its address.
8045   const Value *OpVal = OpInfo.CallOperandVal;
8046   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8047       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8048     OpInfo.CallOperand = DAG.getConstantPool(
8049         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8050     return Chain;
8051   }
8052 
8053   // Otherwise, create a stack slot and emit a store to it before the asm.
8054   Type *Ty = OpVal->getType();
8055   auto &DL = DAG.getDataLayout();
8056   uint64_t TySize = DL.getTypeAllocSize(Ty);
8057   MachineFunction &MF = DAG.getMachineFunction();
8058   int SSFI = MF.getFrameInfo().CreateStackObject(
8059       TySize, DL.getPrefTypeAlign(Ty), false);
8060   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8061   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8062                             MachinePointerInfo::getFixedStack(MF, SSFI),
8063                             TLI.getMemValueType(DL, Ty));
8064   OpInfo.CallOperand = StackSlot;
8065 
8066   return Chain;
8067 }
8068 
8069 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8070 /// specified operand.  We prefer to assign virtual registers, to allow the
8071 /// register allocator to handle the assignment process.  However, if the asm
8072 /// uses features that we can't model on machineinstrs, we have SDISel do the
8073 /// allocation.  This produces generally horrible, but correct, code.
8074 ///
8075 ///   OpInfo describes the operand
8076 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8077 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8078                                  SDISelAsmOperandInfo &OpInfo,
8079                                  SDISelAsmOperandInfo &RefOpInfo) {
8080   LLVMContext &Context = *DAG.getContext();
8081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8082 
8083   MachineFunction &MF = DAG.getMachineFunction();
8084   SmallVector<unsigned, 4> Regs;
8085   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8086 
8087   // No work to do for memory operations.
8088   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8089     return;
8090 
8091   // If this is a constraint for a single physreg, or a constraint for a
8092   // register class, find it.
8093   unsigned AssignedReg;
8094   const TargetRegisterClass *RC;
8095   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8096       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8097   // RC is unset only on failure. Return immediately.
8098   if (!RC)
8099     return;
8100 
8101   // Get the actual register value type.  This is important, because the user
8102   // may have asked for (e.g.) the AX register in i32 type.  We need to
8103   // remember that AX is actually i16 to get the right extension.
8104   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8105 
8106   if (OpInfo.ConstraintVT != MVT::Other) {
8107     // If this is an FP operand in an integer register (or visa versa), or more
8108     // generally if the operand value disagrees with the register class we plan
8109     // to stick it in, fix the operand type.
8110     //
8111     // If this is an input value, the bitcast to the new type is done now.
8112     // Bitcast for output value is done at the end of visitInlineAsm().
8113     if ((OpInfo.Type == InlineAsm::isOutput ||
8114          OpInfo.Type == InlineAsm::isInput) &&
8115         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8116       // Try to convert to the first EVT that the reg class contains.  If the
8117       // types are identical size, use a bitcast to convert (e.g. two differing
8118       // vector types).  Note: output bitcast is done at the end of
8119       // visitInlineAsm().
8120       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8121         // Exclude indirect inputs while they are unsupported because the code
8122         // to perform the load is missing and thus OpInfo.CallOperand still
8123         // refers to the input address rather than the pointed-to value.
8124         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8125           OpInfo.CallOperand =
8126               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8127         OpInfo.ConstraintVT = RegVT;
8128         // If the operand is an FP value and we want it in integer registers,
8129         // use the corresponding integer type. This turns an f64 value into
8130         // i64, which can be passed with two i32 values on a 32-bit machine.
8131       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8132         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8133         if (OpInfo.Type == InlineAsm::isInput)
8134           OpInfo.CallOperand =
8135               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8136         OpInfo.ConstraintVT = VT;
8137       }
8138     }
8139   }
8140 
8141   // No need to allocate a matching input constraint since the constraint it's
8142   // matching to has already been allocated.
8143   if (OpInfo.isMatchingInputConstraint())
8144     return;
8145 
8146   EVT ValueVT = OpInfo.ConstraintVT;
8147   if (OpInfo.ConstraintVT == MVT::Other)
8148     ValueVT = RegVT;
8149 
8150   // Initialize NumRegs.
8151   unsigned NumRegs = 1;
8152   if (OpInfo.ConstraintVT != MVT::Other)
8153     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8154 
8155   // If this is a constraint for a specific physical register, like {r17},
8156   // assign it now.
8157 
8158   // If this associated to a specific register, initialize iterator to correct
8159   // place. If virtual, make sure we have enough registers
8160 
8161   // Initialize iterator if necessary
8162   TargetRegisterClass::iterator I = RC->begin();
8163   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8164 
8165   // Do not check for single registers.
8166   if (AssignedReg) {
8167       for (; *I != AssignedReg; ++I)
8168         assert(I != RC->end() && "AssignedReg should be member of RC");
8169   }
8170 
8171   for (; NumRegs; --NumRegs, ++I) {
8172     assert(I != RC->end() && "Ran out of registers to allocate!");
8173     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8174     Regs.push_back(R);
8175   }
8176 
8177   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8178 }
8179 
8180 static unsigned
8181 findMatchingInlineAsmOperand(unsigned OperandNo,
8182                              const std::vector<SDValue> &AsmNodeOperands) {
8183   // Scan until we find the definition we already emitted of this operand.
8184   unsigned CurOp = InlineAsm::Op_FirstOperand;
8185   for (; OperandNo; --OperandNo) {
8186     // Advance to the next operand.
8187     unsigned OpFlag =
8188         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8189     assert((InlineAsm::isRegDefKind(OpFlag) ||
8190             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8191             InlineAsm::isMemKind(OpFlag)) &&
8192            "Skipped past definitions?");
8193     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8194   }
8195   return CurOp;
8196 }
8197 
8198 namespace {
8199 
8200 class ExtraFlags {
8201   unsigned Flags = 0;
8202 
8203 public:
8204   explicit ExtraFlags(const CallBase &Call) {
8205     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8206     if (IA->hasSideEffects())
8207       Flags |= InlineAsm::Extra_HasSideEffects;
8208     if (IA->isAlignStack())
8209       Flags |= InlineAsm::Extra_IsAlignStack;
8210     if (Call.isConvergent())
8211       Flags |= InlineAsm::Extra_IsConvergent;
8212     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8213   }
8214 
8215   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8216     // Ideally, we would only check against memory constraints.  However, the
8217     // meaning of an Other constraint can be target-specific and we can't easily
8218     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8219     // for Other constraints as well.
8220     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8221         OpInfo.ConstraintType == TargetLowering::C_Other) {
8222       if (OpInfo.Type == InlineAsm::isInput)
8223         Flags |= InlineAsm::Extra_MayLoad;
8224       else if (OpInfo.Type == InlineAsm::isOutput)
8225         Flags |= InlineAsm::Extra_MayStore;
8226       else if (OpInfo.Type == InlineAsm::isClobber)
8227         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8228     }
8229   }
8230 
8231   unsigned get() const { return Flags; }
8232 };
8233 
8234 } // end anonymous namespace
8235 
8236 /// visitInlineAsm - Handle a call to an InlineAsm object.
8237 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8238   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8239 
8240   /// ConstraintOperands - Information about all of the constraints.
8241   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8242 
8243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8244   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8245       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8246 
8247   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8248   // AsmDialect, MayLoad, MayStore).
8249   bool HasSideEffect = IA->hasSideEffects();
8250   ExtraFlags ExtraInfo(Call);
8251 
8252   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8253   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8254   unsigned NumMatchingOps = 0;
8255   for (auto &T : TargetConstraints) {
8256     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8257     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8258 
8259     // Compute the value type for each operand.
8260     if (OpInfo.Type == InlineAsm::isInput ||
8261         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8262       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8263 
8264       // Process the call argument. BasicBlocks are labels, currently appearing
8265       // only in asm's.
8266       if (isa<CallBrInst>(Call) &&
8267           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8268                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8269                         NumMatchingOps) &&
8270           (NumMatchingOps == 0 ||
8271            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8272                         NumMatchingOps))) {
8273         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8274         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8275         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8276       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8277         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8278       } else {
8279         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8280       }
8281 
8282       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8283                                            DAG.getDataLayout());
8284       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8285     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8286       // The return value of the call is this value.  As such, there is no
8287       // corresponding argument.
8288       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8289       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8290         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8291             DAG.getDataLayout(), STy->getElementType(ResNo));
8292       } else {
8293         assert(ResNo == 0 && "Asm only has one result!");
8294         OpInfo.ConstraintVT =
8295             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8296       }
8297       ++ResNo;
8298     } else {
8299       OpInfo.ConstraintVT = MVT::Other;
8300     }
8301 
8302     if (OpInfo.hasMatchingInput())
8303       ++NumMatchingOps;
8304 
8305     if (!HasSideEffect)
8306       HasSideEffect = OpInfo.hasMemory(TLI);
8307 
8308     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8309     // FIXME: Could we compute this on OpInfo rather than T?
8310 
8311     // Compute the constraint code and ConstraintType to use.
8312     TLI.ComputeConstraintToUse(T, SDValue());
8313 
8314     if (T.ConstraintType == TargetLowering::C_Immediate &&
8315         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8316       // We've delayed emitting a diagnostic like the "n" constraint because
8317       // inlining could cause an integer showing up.
8318       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8319                                           "' expects an integer constant "
8320                                           "expression");
8321 
8322     ExtraInfo.update(T);
8323   }
8324 
8325 
8326   // We won't need to flush pending loads if this asm doesn't touch
8327   // memory and is nonvolatile.
8328   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8329 
8330   bool IsCallBr = isa<CallBrInst>(Call);
8331   if (IsCallBr) {
8332     // If this is a callbr we need to flush pending exports since inlineasm_br
8333     // is a terminator. We need to do this before nodes are glued to
8334     // the inlineasm_br node.
8335     Chain = getControlRoot();
8336   }
8337 
8338   // Second pass over the constraints: compute which constraint option to use.
8339   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8340     // If this is an output operand with a matching input operand, look up the
8341     // matching input. If their types mismatch, e.g. one is an integer, the
8342     // other is floating point, or their sizes are different, flag it as an
8343     // error.
8344     if (OpInfo.hasMatchingInput()) {
8345       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8346       patchMatchingInput(OpInfo, Input, DAG);
8347     }
8348 
8349     // Compute the constraint code and ConstraintType to use.
8350     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8351 
8352     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8353         OpInfo.Type == InlineAsm::isClobber)
8354       continue;
8355 
8356     // If this is a memory input, and if the operand is not indirect, do what we
8357     // need to provide an address for the memory input.
8358     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8359         !OpInfo.isIndirect) {
8360       assert((OpInfo.isMultipleAlternative ||
8361               (OpInfo.Type == InlineAsm::isInput)) &&
8362              "Can only indirectify direct input operands!");
8363 
8364       // Memory operands really want the address of the value.
8365       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8366 
8367       // There is no longer a Value* corresponding to this operand.
8368       OpInfo.CallOperandVal = nullptr;
8369 
8370       // It is now an indirect operand.
8371       OpInfo.isIndirect = true;
8372     }
8373 
8374   }
8375 
8376   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8377   std::vector<SDValue> AsmNodeOperands;
8378   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8379   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8380       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8381 
8382   // If we have a !srcloc metadata node associated with it, we want to attach
8383   // this to the ultimately generated inline asm machineinstr.  To do this, we
8384   // pass in the third operand as this (potentially null) inline asm MDNode.
8385   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8386   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8387 
8388   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8389   // bits as operand 3.
8390   AsmNodeOperands.push_back(DAG.getTargetConstant(
8391       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8392 
8393   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8394   // this, assign virtual and physical registers for inputs and otput.
8395   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8396     // Assign Registers.
8397     SDISelAsmOperandInfo &RefOpInfo =
8398         OpInfo.isMatchingInputConstraint()
8399             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8400             : OpInfo;
8401     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8402 
8403     auto DetectWriteToReservedRegister = [&]() {
8404       const MachineFunction &MF = DAG.getMachineFunction();
8405       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8406       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8407         if (Register::isPhysicalRegister(Reg) &&
8408             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8409           const char *RegName = TRI.getName(Reg);
8410           emitInlineAsmError(Call, "write to reserved register '" +
8411                                        Twine(RegName) + "'");
8412           return true;
8413         }
8414       }
8415       return false;
8416     };
8417 
8418     switch (OpInfo.Type) {
8419     case InlineAsm::isOutput:
8420       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8421         unsigned ConstraintID =
8422             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8423         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8424                "Failed to convert memory constraint code to constraint id.");
8425 
8426         // Add information to the INLINEASM node to know about this output.
8427         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8428         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8429         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8430                                                         MVT::i32));
8431         AsmNodeOperands.push_back(OpInfo.CallOperand);
8432       } else {
8433         // Otherwise, this outputs to a register (directly for C_Register /
8434         // C_RegisterClass, and a target-defined fashion for
8435         // C_Immediate/C_Other). Find a register that we can use.
8436         if (OpInfo.AssignedRegs.Regs.empty()) {
8437           emitInlineAsmError(
8438               Call, "couldn't allocate output register for constraint '" +
8439                         Twine(OpInfo.ConstraintCode) + "'");
8440           return;
8441         }
8442 
8443         if (DetectWriteToReservedRegister())
8444           return;
8445 
8446         // Add information to the INLINEASM node to know that this register is
8447         // set.
8448         OpInfo.AssignedRegs.AddInlineAsmOperands(
8449             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8450                                   : InlineAsm::Kind_RegDef,
8451             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8452       }
8453       break;
8454 
8455     case InlineAsm::isInput: {
8456       SDValue InOperandVal = OpInfo.CallOperand;
8457 
8458       if (OpInfo.isMatchingInputConstraint()) {
8459         // If this is required to match an output register we have already set,
8460         // just use its register.
8461         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8462                                                   AsmNodeOperands);
8463         unsigned OpFlag =
8464           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8465         if (InlineAsm::isRegDefKind(OpFlag) ||
8466             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8467           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8468           if (OpInfo.isIndirect) {
8469             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8470             emitInlineAsmError(Call, "inline asm not supported yet: "
8471                                      "don't know how to handle tied "
8472                                      "indirect register inputs");
8473             return;
8474           }
8475 
8476           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8477           SmallVector<unsigned, 4> Regs;
8478 
8479           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8480             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8481             MachineRegisterInfo &RegInfo =
8482                 DAG.getMachineFunction().getRegInfo();
8483             for (unsigned i = 0; i != NumRegs; ++i)
8484               Regs.push_back(RegInfo.createVirtualRegister(RC));
8485           } else {
8486             emitInlineAsmError(Call,
8487                                "inline asm error: This value type register "
8488                                "class is not natively supported!");
8489             return;
8490           }
8491 
8492           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8493 
8494           SDLoc dl = getCurSDLoc();
8495           // Use the produced MatchedRegs object to
8496           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8497           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8498                                            true, OpInfo.getMatchedOperand(), dl,
8499                                            DAG, AsmNodeOperands);
8500           break;
8501         }
8502 
8503         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8504         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8505                "Unexpected number of operands");
8506         // Add information to the INLINEASM node to know about this input.
8507         // See InlineAsm.h isUseOperandTiedToDef.
8508         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8509         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8510                                                     OpInfo.getMatchedOperand());
8511         AsmNodeOperands.push_back(DAG.getTargetConstant(
8512             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8513         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8514         break;
8515       }
8516 
8517       // Treat indirect 'X' constraint as memory.
8518       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8519           OpInfo.isIndirect)
8520         OpInfo.ConstraintType = TargetLowering::C_Memory;
8521 
8522       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8523           OpInfo.ConstraintType == TargetLowering::C_Other) {
8524         std::vector<SDValue> Ops;
8525         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8526                                           Ops, DAG);
8527         if (Ops.empty()) {
8528           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8529             if (isa<ConstantSDNode>(InOperandVal)) {
8530               emitInlineAsmError(Call, "value out of range for constraint '" +
8531                                            Twine(OpInfo.ConstraintCode) + "'");
8532               return;
8533             }
8534 
8535           emitInlineAsmError(Call,
8536                              "invalid operand for inline asm constraint '" +
8537                                  Twine(OpInfo.ConstraintCode) + "'");
8538           return;
8539         }
8540 
8541         // Add information to the INLINEASM node to know about this input.
8542         unsigned ResOpType =
8543           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8544         AsmNodeOperands.push_back(DAG.getTargetConstant(
8545             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8546         llvm::append_range(AsmNodeOperands, Ops);
8547         break;
8548       }
8549 
8550       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8551         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8552         assert(InOperandVal.getValueType() ==
8553                    TLI.getPointerTy(DAG.getDataLayout()) &&
8554                "Memory operands expect pointer values");
8555 
8556         unsigned ConstraintID =
8557             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8558         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8559                "Failed to convert memory constraint code to constraint id.");
8560 
8561         // Add information to the INLINEASM node to know about this input.
8562         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8563         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8564         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8565                                                         getCurSDLoc(),
8566                                                         MVT::i32));
8567         AsmNodeOperands.push_back(InOperandVal);
8568         break;
8569       }
8570 
8571       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8572               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8573              "Unknown constraint type!");
8574 
8575       // TODO: Support this.
8576       if (OpInfo.isIndirect) {
8577         emitInlineAsmError(
8578             Call, "Don't know how to handle indirect register inputs yet "
8579                   "for constraint '" +
8580                       Twine(OpInfo.ConstraintCode) + "'");
8581         return;
8582       }
8583 
8584       // Copy the input into the appropriate registers.
8585       if (OpInfo.AssignedRegs.Regs.empty()) {
8586         emitInlineAsmError(Call,
8587                            "couldn't allocate input reg for constraint '" +
8588                                Twine(OpInfo.ConstraintCode) + "'");
8589         return;
8590       }
8591 
8592       if (DetectWriteToReservedRegister())
8593         return;
8594 
8595       SDLoc dl = getCurSDLoc();
8596 
8597       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8598                                         &Call);
8599 
8600       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8601                                                dl, DAG, AsmNodeOperands);
8602       break;
8603     }
8604     case InlineAsm::isClobber:
8605       // Add the clobbered value to the operand list, so that the register
8606       // allocator is aware that the physreg got clobbered.
8607       if (!OpInfo.AssignedRegs.Regs.empty())
8608         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8609                                                  false, 0, getCurSDLoc(), DAG,
8610                                                  AsmNodeOperands);
8611       break;
8612     }
8613   }
8614 
8615   // Finish up input operands.  Set the input chain and add the flag last.
8616   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8617   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8618 
8619   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8620   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8621                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8622   Flag = Chain.getValue(1);
8623 
8624   // Do additional work to generate outputs.
8625 
8626   SmallVector<EVT, 1> ResultVTs;
8627   SmallVector<SDValue, 1> ResultValues;
8628   SmallVector<SDValue, 8> OutChains;
8629 
8630   llvm::Type *CallResultType = Call.getType();
8631   ArrayRef<Type *> ResultTypes;
8632   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8633     ResultTypes = StructResult->elements();
8634   else if (!CallResultType->isVoidTy())
8635     ResultTypes = makeArrayRef(CallResultType);
8636 
8637   auto CurResultType = ResultTypes.begin();
8638   auto handleRegAssign = [&](SDValue V) {
8639     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8640     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8641     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8642     ++CurResultType;
8643     // If the type of the inline asm call site return value is different but has
8644     // same size as the type of the asm output bitcast it.  One example of this
8645     // is for vectors with different width / number of elements.  This can
8646     // happen for register classes that can contain multiple different value
8647     // types.  The preg or vreg allocated may not have the same VT as was
8648     // expected.
8649     //
8650     // This can also happen for a return value that disagrees with the register
8651     // class it is put in, eg. a double in a general-purpose register on a
8652     // 32-bit machine.
8653     if (ResultVT != V.getValueType() &&
8654         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8655       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8656     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8657              V.getValueType().isInteger()) {
8658       // If a result value was tied to an input value, the computed result
8659       // may have a wider width than the expected result.  Extract the
8660       // relevant portion.
8661       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8662     }
8663     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8664     ResultVTs.push_back(ResultVT);
8665     ResultValues.push_back(V);
8666   };
8667 
8668   // Deal with output operands.
8669   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8670     if (OpInfo.Type == InlineAsm::isOutput) {
8671       SDValue Val;
8672       // Skip trivial output operands.
8673       if (OpInfo.AssignedRegs.Regs.empty())
8674         continue;
8675 
8676       switch (OpInfo.ConstraintType) {
8677       case TargetLowering::C_Register:
8678       case TargetLowering::C_RegisterClass:
8679         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8680                                                   Chain, &Flag, &Call);
8681         break;
8682       case TargetLowering::C_Immediate:
8683       case TargetLowering::C_Other:
8684         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8685                                               OpInfo, DAG);
8686         break;
8687       case TargetLowering::C_Memory:
8688         break; // Already handled.
8689       case TargetLowering::C_Unknown:
8690         assert(false && "Unexpected unknown constraint");
8691       }
8692 
8693       // Indirect output manifest as stores. Record output chains.
8694       if (OpInfo.isIndirect) {
8695         const Value *Ptr = OpInfo.CallOperandVal;
8696         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8697         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8698                                      MachinePointerInfo(Ptr));
8699         OutChains.push_back(Store);
8700       } else {
8701         // generate CopyFromRegs to associated registers.
8702         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8703         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8704           for (const SDValue &V : Val->op_values())
8705             handleRegAssign(V);
8706         } else
8707           handleRegAssign(Val);
8708       }
8709     }
8710   }
8711 
8712   // Set results.
8713   if (!ResultValues.empty()) {
8714     assert(CurResultType == ResultTypes.end() &&
8715            "Mismatch in number of ResultTypes");
8716     assert(ResultValues.size() == ResultTypes.size() &&
8717            "Mismatch in number of output operands in asm result");
8718 
8719     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8720                             DAG.getVTList(ResultVTs), ResultValues);
8721     setValue(&Call, V);
8722   }
8723 
8724   // Collect store chains.
8725   if (!OutChains.empty())
8726     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8727 
8728   // Only Update Root if inline assembly has a memory effect.
8729   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8730     DAG.setRoot(Chain);
8731 }
8732 
8733 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8734                                              const Twine &Message) {
8735   LLVMContext &Ctx = *DAG.getContext();
8736   Ctx.emitError(&Call, Message);
8737 
8738   // Make sure we leave the DAG in a valid state
8739   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8740   SmallVector<EVT, 1> ValueVTs;
8741   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8742 
8743   if (ValueVTs.empty())
8744     return;
8745 
8746   SmallVector<SDValue, 1> Ops;
8747   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8748     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8749 
8750   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8751 }
8752 
8753 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8754   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8755                           MVT::Other, getRoot(),
8756                           getValue(I.getArgOperand(0)),
8757                           DAG.getSrcValue(I.getArgOperand(0))));
8758 }
8759 
8760 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8761   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8762   const DataLayout &DL = DAG.getDataLayout();
8763   SDValue V = DAG.getVAArg(
8764       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8765       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8766       DL.getABITypeAlign(I.getType()).value());
8767   DAG.setRoot(V.getValue(1));
8768 
8769   if (I.getType()->isPointerTy())
8770     V = DAG.getPtrExtOrTrunc(
8771         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8772   setValue(&I, V);
8773 }
8774 
8775 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8776   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8777                           MVT::Other, getRoot(),
8778                           getValue(I.getArgOperand(0)),
8779                           DAG.getSrcValue(I.getArgOperand(0))));
8780 }
8781 
8782 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8783   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8784                           MVT::Other, getRoot(),
8785                           getValue(I.getArgOperand(0)),
8786                           getValue(I.getArgOperand(1)),
8787                           DAG.getSrcValue(I.getArgOperand(0)),
8788                           DAG.getSrcValue(I.getArgOperand(1))));
8789 }
8790 
8791 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8792                                                     const Instruction &I,
8793                                                     SDValue Op) {
8794   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8795   if (!Range)
8796     return Op;
8797 
8798   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8799   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8800     return Op;
8801 
8802   APInt Lo = CR.getUnsignedMin();
8803   if (!Lo.isMinValue())
8804     return Op;
8805 
8806   APInt Hi = CR.getUnsignedMax();
8807   unsigned Bits = std::max(Hi.getActiveBits(),
8808                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8809 
8810   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8811 
8812   SDLoc SL = getCurSDLoc();
8813 
8814   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8815                              DAG.getValueType(SmallVT));
8816   unsigned NumVals = Op.getNode()->getNumValues();
8817   if (NumVals == 1)
8818     return ZExt;
8819 
8820   SmallVector<SDValue, 4> Ops;
8821 
8822   Ops.push_back(ZExt);
8823   for (unsigned I = 1; I != NumVals; ++I)
8824     Ops.push_back(Op.getValue(I));
8825 
8826   return DAG.getMergeValues(Ops, SL);
8827 }
8828 
8829 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8830 /// the call being lowered.
8831 ///
8832 /// This is a helper for lowering intrinsics that follow a target calling
8833 /// convention or require stack pointer adjustment. Only a subset of the
8834 /// intrinsic's operands need to participate in the calling convention.
8835 void SelectionDAGBuilder::populateCallLoweringInfo(
8836     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8837     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8838     bool IsPatchPoint) {
8839   TargetLowering::ArgListTy Args;
8840   Args.reserve(NumArgs);
8841 
8842   // Populate the argument list.
8843   // Attributes for args start at offset 1, after the return attribute.
8844   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8845        ArgI != ArgE; ++ArgI) {
8846     const Value *V = Call->getOperand(ArgI);
8847 
8848     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8849 
8850     TargetLowering::ArgListEntry Entry;
8851     Entry.Node = getValue(V);
8852     Entry.Ty = V->getType();
8853     Entry.setAttributes(Call, ArgI);
8854     Args.push_back(Entry);
8855   }
8856 
8857   CLI.setDebugLoc(getCurSDLoc())
8858       .setChain(getRoot())
8859       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8860       .setDiscardResult(Call->use_empty())
8861       .setIsPatchPoint(IsPatchPoint)
8862       .setIsPreallocated(
8863           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8864 }
8865 
8866 /// Add a stack map intrinsic call's live variable operands to a stackmap
8867 /// or patchpoint target node's operand list.
8868 ///
8869 /// Constants are converted to TargetConstants purely as an optimization to
8870 /// avoid constant materialization and register allocation.
8871 ///
8872 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8873 /// generate addess computation nodes, and so FinalizeISel can convert the
8874 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8875 /// address materialization and register allocation, but may also be required
8876 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8877 /// alloca in the entry block, then the runtime may assume that the alloca's
8878 /// StackMap location can be read immediately after compilation and that the
8879 /// location is valid at any point during execution (this is similar to the
8880 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8881 /// only available in a register, then the runtime would need to trap when
8882 /// execution reaches the StackMap in order to read the alloca's location.
8883 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8884                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8885                                 SelectionDAGBuilder &Builder) {
8886   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8887     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8888     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8889       Ops.push_back(
8890         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8891       Ops.push_back(
8892         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8893     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8894       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8895       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8896           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8897     } else
8898       Ops.push_back(OpVal);
8899   }
8900 }
8901 
8902 /// Lower llvm.experimental.stackmap directly to its target opcode.
8903 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8904   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8905   //                                  [live variables...])
8906 
8907   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8908 
8909   SDValue Chain, InFlag, Callee, NullPtr;
8910   SmallVector<SDValue, 32> Ops;
8911 
8912   SDLoc DL = getCurSDLoc();
8913   Callee = getValue(CI.getCalledOperand());
8914   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8915 
8916   // The stackmap intrinsic only records the live variables (the arguments
8917   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8918   // intrinsic, this won't be lowered to a function call. This means we don't
8919   // have to worry about calling conventions and target specific lowering code.
8920   // Instead we perform the call lowering right here.
8921   //
8922   // chain, flag = CALLSEQ_START(chain, 0, 0)
8923   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8924   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8925   //
8926   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8927   InFlag = Chain.getValue(1);
8928 
8929   // Add the <id> and <numBytes> constants.
8930   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8931   Ops.push_back(DAG.getTargetConstant(
8932                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8933   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8934   Ops.push_back(DAG.getTargetConstant(
8935                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8936                   MVT::i32));
8937 
8938   // Push live variables for the stack map.
8939   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8940 
8941   // We are not pushing any register mask info here on the operands list,
8942   // because the stackmap doesn't clobber anything.
8943 
8944   // Push the chain and the glue flag.
8945   Ops.push_back(Chain);
8946   Ops.push_back(InFlag);
8947 
8948   // Create the STACKMAP node.
8949   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8950   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8951   Chain = SDValue(SM, 0);
8952   InFlag = Chain.getValue(1);
8953 
8954   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8955 
8956   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8957 
8958   // Set the root to the target-lowered call chain.
8959   DAG.setRoot(Chain);
8960 
8961   // Inform the Frame Information that we have a stackmap in this function.
8962   FuncInfo.MF->getFrameInfo().setHasStackMap();
8963 }
8964 
8965 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8966 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8967                                           const BasicBlock *EHPadBB) {
8968   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8969   //                                                 i32 <numBytes>,
8970   //                                                 i8* <target>,
8971   //                                                 i32 <numArgs>,
8972   //                                                 [Args...],
8973   //                                                 [live variables...])
8974 
8975   CallingConv::ID CC = CB.getCallingConv();
8976   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8977   bool HasDef = !CB.getType()->isVoidTy();
8978   SDLoc dl = getCurSDLoc();
8979   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8980 
8981   // Handle immediate and symbolic callees.
8982   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8983     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8984                                    /*isTarget=*/true);
8985   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8986     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8987                                          SDLoc(SymbolicCallee),
8988                                          SymbolicCallee->getValueType(0));
8989 
8990   // Get the real number of arguments participating in the call <numArgs>
8991   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8992   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8993 
8994   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8995   // Intrinsics include all meta-operands up to but not including CC.
8996   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8997   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8998          "Not enough arguments provided to the patchpoint intrinsic");
8999 
9000   // For AnyRegCC the arguments are lowered later on manually.
9001   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9002   Type *ReturnTy =
9003       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9004 
9005   TargetLowering::CallLoweringInfo CLI(DAG);
9006   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9007                            ReturnTy, true);
9008   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9009 
9010   SDNode *CallEnd = Result.second.getNode();
9011   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9012     CallEnd = CallEnd->getOperand(0).getNode();
9013 
9014   /// Get a call instruction from the call sequence chain.
9015   /// Tail calls are not allowed.
9016   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9017          "Expected a callseq node.");
9018   SDNode *Call = CallEnd->getOperand(0).getNode();
9019   bool HasGlue = Call->getGluedNode();
9020 
9021   // Replace the target specific call node with the patchable intrinsic.
9022   SmallVector<SDValue, 8> Ops;
9023 
9024   // Add the <id> and <numBytes> constants.
9025   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9026   Ops.push_back(DAG.getTargetConstant(
9027                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9028   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9029   Ops.push_back(DAG.getTargetConstant(
9030                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9031                   MVT::i32));
9032 
9033   // Add the callee.
9034   Ops.push_back(Callee);
9035 
9036   // Adjust <numArgs> to account for any arguments that have been passed on the
9037   // stack instead.
9038   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9039   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9040   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9041   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9042 
9043   // Add the calling convention
9044   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9045 
9046   // Add the arguments we omitted previously. The register allocator should
9047   // place these in any free register.
9048   if (IsAnyRegCC)
9049     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9050       Ops.push_back(getValue(CB.getArgOperand(i)));
9051 
9052   // Push the arguments from the call instruction up to the register mask.
9053   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9054   Ops.append(Call->op_begin() + 2, e);
9055 
9056   // Push live variables for the stack map.
9057   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9058 
9059   // Push the register mask info.
9060   if (HasGlue)
9061     Ops.push_back(*(Call->op_end()-2));
9062   else
9063     Ops.push_back(*(Call->op_end()-1));
9064 
9065   // Push the chain (this is originally the first operand of the call, but
9066   // becomes now the last or second to last operand).
9067   Ops.push_back(*(Call->op_begin()));
9068 
9069   // Push the glue flag (last operand).
9070   if (HasGlue)
9071     Ops.push_back(*(Call->op_end()-1));
9072 
9073   SDVTList NodeTys;
9074   if (IsAnyRegCC && HasDef) {
9075     // Create the return types based on the intrinsic definition
9076     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9077     SmallVector<EVT, 3> ValueVTs;
9078     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9079     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9080 
9081     // There is always a chain and a glue type at the end
9082     ValueVTs.push_back(MVT::Other);
9083     ValueVTs.push_back(MVT::Glue);
9084     NodeTys = DAG.getVTList(ValueVTs);
9085   } else
9086     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9087 
9088   // Replace the target specific call node with a PATCHPOINT node.
9089   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9090                                          dl, NodeTys, Ops);
9091 
9092   // Update the NodeMap.
9093   if (HasDef) {
9094     if (IsAnyRegCC)
9095       setValue(&CB, SDValue(MN, 0));
9096     else
9097       setValue(&CB, Result.first);
9098   }
9099 
9100   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9101   // call sequence. Furthermore the location of the chain and glue can change
9102   // when the AnyReg calling convention is used and the intrinsic returns a
9103   // value.
9104   if (IsAnyRegCC && HasDef) {
9105     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9106     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9107     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9108   } else
9109     DAG.ReplaceAllUsesWith(Call, MN);
9110   DAG.DeleteNode(Call);
9111 
9112   // Inform the Frame Information that we have a patchpoint in this function.
9113   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9114 }
9115 
9116 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9117                                             unsigned Intrinsic) {
9118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9119   SDValue Op1 = getValue(I.getArgOperand(0));
9120   SDValue Op2;
9121   if (I.getNumArgOperands() > 1)
9122     Op2 = getValue(I.getArgOperand(1));
9123   SDLoc dl = getCurSDLoc();
9124   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9125   SDValue Res;
9126   SDNodeFlags SDFlags;
9127   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9128     SDFlags.copyFMF(*FPMO);
9129 
9130   switch (Intrinsic) {
9131   case Intrinsic::vector_reduce_fadd:
9132     if (SDFlags.hasAllowReassociation())
9133       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9134                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9135                         SDFlags);
9136     else
9137       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9138     break;
9139   case Intrinsic::vector_reduce_fmul:
9140     if (SDFlags.hasAllowReassociation())
9141       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9142                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9143                         SDFlags);
9144     else
9145       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9146     break;
9147   case Intrinsic::vector_reduce_add:
9148     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9149     break;
9150   case Intrinsic::vector_reduce_mul:
9151     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9152     break;
9153   case Intrinsic::vector_reduce_and:
9154     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9155     break;
9156   case Intrinsic::vector_reduce_or:
9157     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9158     break;
9159   case Intrinsic::vector_reduce_xor:
9160     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9161     break;
9162   case Intrinsic::vector_reduce_smax:
9163     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9164     break;
9165   case Intrinsic::vector_reduce_smin:
9166     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9167     break;
9168   case Intrinsic::vector_reduce_umax:
9169     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9170     break;
9171   case Intrinsic::vector_reduce_umin:
9172     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9173     break;
9174   case Intrinsic::vector_reduce_fmax:
9175     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9176     break;
9177   case Intrinsic::vector_reduce_fmin:
9178     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9179     break;
9180   default:
9181     llvm_unreachable("Unhandled vector reduce intrinsic");
9182   }
9183   setValue(&I, Res);
9184 }
9185 
9186 /// Returns an AttributeList representing the attributes applied to the return
9187 /// value of the given call.
9188 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9189   SmallVector<Attribute::AttrKind, 2> Attrs;
9190   if (CLI.RetSExt)
9191     Attrs.push_back(Attribute::SExt);
9192   if (CLI.RetZExt)
9193     Attrs.push_back(Attribute::ZExt);
9194   if (CLI.IsInReg)
9195     Attrs.push_back(Attribute::InReg);
9196 
9197   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9198                             Attrs);
9199 }
9200 
9201 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9202 /// implementation, which just calls LowerCall.
9203 /// FIXME: When all targets are
9204 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9205 std::pair<SDValue, SDValue>
9206 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9207   // Handle the incoming return values from the call.
9208   CLI.Ins.clear();
9209   Type *OrigRetTy = CLI.RetTy;
9210   SmallVector<EVT, 4> RetTys;
9211   SmallVector<uint64_t, 4> Offsets;
9212   auto &DL = CLI.DAG.getDataLayout();
9213   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9214 
9215   if (CLI.IsPostTypeLegalization) {
9216     // If we are lowering a libcall after legalization, split the return type.
9217     SmallVector<EVT, 4> OldRetTys;
9218     SmallVector<uint64_t, 4> OldOffsets;
9219     RetTys.swap(OldRetTys);
9220     Offsets.swap(OldOffsets);
9221 
9222     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9223       EVT RetVT = OldRetTys[i];
9224       uint64_t Offset = OldOffsets[i];
9225       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9226       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9227       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9228       RetTys.append(NumRegs, RegisterVT);
9229       for (unsigned j = 0; j != NumRegs; ++j)
9230         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9231     }
9232   }
9233 
9234   SmallVector<ISD::OutputArg, 4> Outs;
9235   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9236 
9237   bool CanLowerReturn =
9238       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9239                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9240 
9241   SDValue DemoteStackSlot;
9242   int DemoteStackIdx = -100;
9243   if (!CanLowerReturn) {
9244     // FIXME: equivalent assert?
9245     // assert(!CS.hasInAllocaArgument() &&
9246     //        "sret demotion is incompatible with inalloca");
9247     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9248     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9249     MachineFunction &MF = CLI.DAG.getMachineFunction();
9250     DemoteStackIdx =
9251         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9252     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9253                                               DL.getAllocaAddrSpace());
9254 
9255     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9256     ArgListEntry Entry;
9257     Entry.Node = DemoteStackSlot;
9258     Entry.Ty = StackSlotPtrType;
9259     Entry.IsSExt = false;
9260     Entry.IsZExt = false;
9261     Entry.IsInReg = false;
9262     Entry.IsSRet = true;
9263     Entry.IsNest = false;
9264     Entry.IsByVal = false;
9265     Entry.IsByRef = false;
9266     Entry.IsReturned = false;
9267     Entry.IsSwiftSelf = false;
9268     Entry.IsSwiftError = false;
9269     Entry.IsCFGuardTarget = false;
9270     Entry.Alignment = Alignment;
9271     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9272     CLI.NumFixedArgs += 1;
9273     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9274 
9275     // sret demotion isn't compatible with tail-calls, since the sret argument
9276     // points into the callers stack frame.
9277     CLI.IsTailCall = false;
9278   } else {
9279     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9280         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9281     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9282       ISD::ArgFlagsTy Flags;
9283       if (NeedsRegBlock) {
9284         Flags.setInConsecutiveRegs();
9285         if (I == RetTys.size() - 1)
9286           Flags.setInConsecutiveRegsLast();
9287       }
9288       EVT VT = RetTys[I];
9289       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9290                                                      CLI.CallConv, VT);
9291       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9292                                                        CLI.CallConv, VT);
9293       for (unsigned i = 0; i != NumRegs; ++i) {
9294         ISD::InputArg MyFlags;
9295         MyFlags.Flags = Flags;
9296         MyFlags.VT = RegisterVT;
9297         MyFlags.ArgVT = VT;
9298         MyFlags.Used = CLI.IsReturnValueUsed;
9299         if (CLI.RetTy->isPointerTy()) {
9300           MyFlags.Flags.setPointer();
9301           MyFlags.Flags.setPointerAddrSpace(
9302               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9303         }
9304         if (CLI.RetSExt)
9305           MyFlags.Flags.setSExt();
9306         if (CLI.RetZExt)
9307           MyFlags.Flags.setZExt();
9308         if (CLI.IsInReg)
9309           MyFlags.Flags.setInReg();
9310         CLI.Ins.push_back(MyFlags);
9311       }
9312     }
9313   }
9314 
9315   // We push in swifterror return as the last element of CLI.Ins.
9316   ArgListTy &Args = CLI.getArgs();
9317   if (supportSwiftError()) {
9318     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9319       if (Args[i].IsSwiftError) {
9320         ISD::InputArg MyFlags;
9321         MyFlags.VT = getPointerTy(DL);
9322         MyFlags.ArgVT = EVT(getPointerTy(DL));
9323         MyFlags.Flags.setSwiftError();
9324         CLI.Ins.push_back(MyFlags);
9325       }
9326     }
9327   }
9328 
9329   // Handle all of the outgoing arguments.
9330   CLI.Outs.clear();
9331   CLI.OutVals.clear();
9332   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9333     SmallVector<EVT, 4> ValueVTs;
9334     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9335     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9336     Type *FinalType = Args[i].Ty;
9337     if (Args[i].IsByVal)
9338       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9339     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9340         FinalType, CLI.CallConv, CLI.IsVarArg);
9341     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9342          ++Value) {
9343       EVT VT = ValueVTs[Value];
9344       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9345       SDValue Op = SDValue(Args[i].Node.getNode(),
9346                            Args[i].Node.getResNo() + Value);
9347       ISD::ArgFlagsTy Flags;
9348 
9349       // Certain targets (such as MIPS), may have a different ABI alignment
9350       // for a type depending on the context. Give the target a chance to
9351       // specify the alignment it wants.
9352       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9353 
9354       if (Args[i].Ty->isPointerTy()) {
9355         Flags.setPointer();
9356         Flags.setPointerAddrSpace(
9357             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9358       }
9359       if (Args[i].IsZExt)
9360         Flags.setZExt();
9361       if (Args[i].IsSExt)
9362         Flags.setSExt();
9363       if (Args[i].IsInReg) {
9364         // If we are using vectorcall calling convention, a structure that is
9365         // passed InReg - is surely an HVA
9366         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9367             isa<StructType>(FinalType)) {
9368           // The first value of a structure is marked
9369           if (0 == Value)
9370             Flags.setHvaStart();
9371           Flags.setHva();
9372         }
9373         // Set InReg Flag
9374         Flags.setInReg();
9375       }
9376       if (Args[i].IsSRet)
9377         Flags.setSRet();
9378       if (Args[i].IsSwiftSelf)
9379         Flags.setSwiftSelf();
9380       if (Args[i].IsSwiftError)
9381         Flags.setSwiftError();
9382       if (Args[i].IsCFGuardTarget)
9383         Flags.setCFGuardTarget();
9384       if (Args[i].IsByVal)
9385         Flags.setByVal();
9386       if (Args[i].IsByRef)
9387         Flags.setByRef();
9388       if (Args[i].IsPreallocated) {
9389         Flags.setPreallocated();
9390         // Set the byval flag for CCAssignFn callbacks that don't know about
9391         // preallocated.  This way we can know how many bytes we should've
9392         // allocated and how many bytes a callee cleanup function will pop.  If
9393         // we port preallocated to more targets, we'll have to add custom
9394         // preallocated handling in the various CC lowering callbacks.
9395         Flags.setByVal();
9396       }
9397       if (Args[i].IsInAlloca) {
9398         Flags.setInAlloca();
9399         // Set the byval flag for CCAssignFn callbacks that don't know about
9400         // inalloca.  This way we can know how many bytes we should've allocated
9401         // and how many bytes a callee cleanup function will pop.  If we port
9402         // inalloca to more targets, we'll have to add custom inalloca handling
9403         // in the various CC lowering callbacks.
9404         Flags.setByVal();
9405       }
9406       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9407         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9408         Type *ElementTy = Ty->getElementType();
9409 
9410         unsigned FrameSize = DL.getTypeAllocSize(
9411             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9412         Flags.setByValSize(FrameSize);
9413 
9414         // info is not there but there are cases it cannot get right.
9415         Align FrameAlign;
9416         if (auto MA = Args[i].Alignment)
9417           FrameAlign = *MA;
9418         else
9419           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9420         Flags.setByValAlign(FrameAlign);
9421       }
9422       if (Args[i].IsNest)
9423         Flags.setNest();
9424       if (NeedsRegBlock)
9425         Flags.setInConsecutiveRegs();
9426       Flags.setOrigAlign(OriginalAlignment);
9427 
9428       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9429                                                  CLI.CallConv, VT);
9430       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9431                                                         CLI.CallConv, VT);
9432       SmallVector<SDValue, 4> Parts(NumParts);
9433       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9434 
9435       if (Args[i].IsSExt)
9436         ExtendKind = ISD::SIGN_EXTEND;
9437       else if (Args[i].IsZExt)
9438         ExtendKind = ISD::ZERO_EXTEND;
9439 
9440       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9441       // for now.
9442       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9443           CanLowerReturn) {
9444         assert((CLI.RetTy == Args[i].Ty ||
9445                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9446                  CLI.RetTy->getPointerAddressSpace() ==
9447                      Args[i].Ty->getPointerAddressSpace())) &&
9448                RetTys.size() == NumValues && "unexpected use of 'returned'");
9449         // Before passing 'returned' to the target lowering code, ensure that
9450         // either the register MVT and the actual EVT are the same size or that
9451         // the return value and argument are extended in the same way; in these
9452         // cases it's safe to pass the argument register value unchanged as the
9453         // return register value (although it's at the target's option whether
9454         // to do so)
9455         // TODO: allow code generation to take advantage of partially preserved
9456         // registers rather than clobbering the entire register when the
9457         // parameter extension method is not compatible with the return
9458         // extension method
9459         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9460             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9461              CLI.RetZExt == Args[i].IsZExt))
9462           Flags.setReturned();
9463       }
9464 
9465       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9466                      CLI.CallConv, ExtendKind);
9467 
9468       for (unsigned j = 0; j != NumParts; ++j) {
9469         // if it isn't first piece, alignment must be 1
9470         // For scalable vectors the scalable part is currently handled
9471         // by individual targets, so we just use the known minimum size here.
9472         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9473                     i < CLI.NumFixedArgs, i,
9474                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9475         if (NumParts > 1 && j == 0)
9476           MyFlags.Flags.setSplit();
9477         else if (j != 0) {
9478           MyFlags.Flags.setOrigAlign(Align(1));
9479           if (j == NumParts - 1)
9480             MyFlags.Flags.setSplitEnd();
9481         }
9482 
9483         CLI.Outs.push_back(MyFlags);
9484         CLI.OutVals.push_back(Parts[j]);
9485       }
9486 
9487       if (NeedsRegBlock && Value == NumValues - 1)
9488         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9489     }
9490   }
9491 
9492   SmallVector<SDValue, 4> InVals;
9493   CLI.Chain = LowerCall(CLI, InVals);
9494 
9495   // Update CLI.InVals to use outside of this function.
9496   CLI.InVals = InVals;
9497 
9498   // Verify that the target's LowerCall behaved as expected.
9499   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9500          "LowerCall didn't return a valid chain!");
9501   assert((!CLI.IsTailCall || InVals.empty()) &&
9502          "LowerCall emitted a return value for a tail call!");
9503   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9504          "LowerCall didn't emit the correct number of values!");
9505 
9506   // For a tail call, the return value is merely live-out and there aren't
9507   // any nodes in the DAG representing it. Return a special value to
9508   // indicate that a tail call has been emitted and no more Instructions
9509   // should be processed in the current block.
9510   if (CLI.IsTailCall) {
9511     CLI.DAG.setRoot(CLI.Chain);
9512     return std::make_pair(SDValue(), SDValue());
9513   }
9514 
9515 #ifndef NDEBUG
9516   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9517     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9518     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9519            "LowerCall emitted a value with the wrong type!");
9520   }
9521 #endif
9522 
9523   SmallVector<SDValue, 4> ReturnValues;
9524   if (!CanLowerReturn) {
9525     // The instruction result is the result of loading from the
9526     // hidden sret parameter.
9527     SmallVector<EVT, 1> PVTs;
9528     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9529 
9530     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9531     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9532     EVT PtrVT = PVTs[0];
9533 
9534     unsigned NumValues = RetTys.size();
9535     ReturnValues.resize(NumValues);
9536     SmallVector<SDValue, 4> Chains(NumValues);
9537 
9538     // An aggregate return value cannot wrap around the address space, so
9539     // offsets to its parts don't wrap either.
9540     SDNodeFlags Flags;
9541     Flags.setNoUnsignedWrap(true);
9542 
9543     MachineFunction &MF = CLI.DAG.getMachineFunction();
9544     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9545     for (unsigned i = 0; i < NumValues; ++i) {
9546       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9547                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9548                                                         PtrVT), Flags);
9549       SDValue L = CLI.DAG.getLoad(
9550           RetTys[i], CLI.DL, CLI.Chain, Add,
9551           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9552                                             DemoteStackIdx, Offsets[i]),
9553           HiddenSRetAlign);
9554       ReturnValues[i] = L;
9555       Chains[i] = L.getValue(1);
9556     }
9557 
9558     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9559   } else {
9560     // Collect the legal value parts into potentially illegal values
9561     // that correspond to the original function's return values.
9562     Optional<ISD::NodeType> AssertOp;
9563     if (CLI.RetSExt)
9564       AssertOp = ISD::AssertSext;
9565     else if (CLI.RetZExt)
9566       AssertOp = ISD::AssertZext;
9567     unsigned CurReg = 0;
9568     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9569       EVT VT = RetTys[I];
9570       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9571                                                      CLI.CallConv, VT);
9572       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9573                                                        CLI.CallConv, VT);
9574 
9575       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9576                                               NumRegs, RegisterVT, VT, nullptr,
9577                                               CLI.CallConv, AssertOp));
9578       CurReg += NumRegs;
9579     }
9580 
9581     // For a function returning void, there is no return value. We can't create
9582     // such a node, so we just return a null return value in that case. In
9583     // that case, nothing will actually look at the value.
9584     if (ReturnValues.empty())
9585       return std::make_pair(SDValue(), CLI.Chain);
9586   }
9587 
9588   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9589                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9590   return std::make_pair(Res, CLI.Chain);
9591 }
9592 
9593 /// Places new result values for the node in Results (their number
9594 /// and types must exactly match those of the original return values of
9595 /// the node), or leaves Results empty, which indicates that the node is not
9596 /// to be custom lowered after all.
9597 void TargetLowering::LowerOperationWrapper(SDNode *N,
9598                                            SmallVectorImpl<SDValue> &Results,
9599                                            SelectionDAG &DAG) const {
9600   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9601 
9602   if (!Res.getNode())
9603     return;
9604 
9605   // If the original node has one result, take the return value from
9606   // LowerOperation as is. It might not be result number 0.
9607   if (N->getNumValues() == 1) {
9608     Results.push_back(Res);
9609     return;
9610   }
9611 
9612   // If the original node has multiple results, then the return node should
9613   // have the same number of results.
9614   assert((N->getNumValues() == Res->getNumValues()) &&
9615       "Lowering returned the wrong number of results!");
9616 
9617   // Places new result values base on N result number.
9618   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9619     Results.push_back(Res.getValue(I));
9620 }
9621 
9622 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9623   llvm_unreachable("LowerOperation not implemented for this target!");
9624 }
9625 
9626 void
9627 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9628   SDValue Op = getNonRegisterValue(V);
9629   assert((Op.getOpcode() != ISD::CopyFromReg ||
9630           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9631          "Copy from a reg to the same reg!");
9632   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9633 
9634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9635   // If this is an InlineAsm we have to match the registers required, not the
9636   // notional registers required by the type.
9637 
9638   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9639                    None); // This is not an ABI copy.
9640   SDValue Chain = DAG.getEntryNode();
9641 
9642   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9643                               FuncInfo.PreferredExtendType.end())
9644                                  ? ISD::ANY_EXTEND
9645                                  : FuncInfo.PreferredExtendType[V];
9646   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9647   PendingExports.push_back(Chain);
9648 }
9649 
9650 #include "llvm/CodeGen/SelectionDAGISel.h"
9651 
9652 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9653 /// entry block, return true.  This includes arguments used by switches, since
9654 /// the switch may expand into multiple basic blocks.
9655 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9656   // With FastISel active, we may be splitting blocks, so force creation
9657   // of virtual registers for all non-dead arguments.
9658   if (FastISel)
9659     return A->use_empty();
9660 
9661   const BasicBlock &Entry = A->getParent()->front();
9662   for (const User *U : A->users())
9663     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9664       return false;  // Use not in entry block.
9665 
9666   return true;
9667 }
9668 
9669 using ArgCopyElisionMapTy =
9670     DenseMap<const Argument *,
9671              std::pair<const AllocaInst *, const StoreInst *>>;
9672 
9673 /// Scan the entry block of the function in FuncInfo for arguments that look
9674 /// like copies into a local alloca. Record any copied arguments in
9675 /// ArgCopyElisionCandidates.
9676 static void
9677 findArgumentCopyElisionCandidates(const DataLayout &DL,
9678                                   FunctionLoweringInfo *FuncInfo,
9679                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9680   // Record the state of every static alloca used in the entry block. Argument
9681   // allocas are all used in the entry block, so we need approximately as many
9682   // entries as we have arguments.
9683   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9684   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9685   unsigned NumArgs = FuncInfo->Fn->arg_size();
9686   StaticAllocas.reserve(NumArgs * 2);
9687 
9688   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9689     if (!V)
9690       return nullptr;
9691     V = V->stripPointerCasts();
9692     const auto *AI = dyn_cast<AllocaInst>(V);
9693     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9694       return nullptr;
9695     auto Iter = StaticAllocas.insert({AI, Unknown});
9696     return &Iter.first->second;
9697   };
9698 
9699   // Look for stores of arguments to static allocas. Look through bitcasts and
9700   // GEPs to handle type coercions, as long as the alloca is fully initialized
9701   // by the store. Any non-store use of an alloca escapes it and any subsequent
9702   // unanalyzed store might write it.
9703   // FIXME: Handle structs initialized with multiple stores.
9704   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9705     // Look for stores, and handle non-store uses conservatively.
9706     const auto *SI = dyn_cast<StoreInst>(&I);
9707     if (!SI) {
9708       // We will look through cast uses, so ignore them completely.
9709       if (I.isCast())
9710         continue;
9711       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9712       // to allocas.
9713       if (I.isDebugOrPseudoInst())
9714         continue;
9715       // This is an unknown instruction. Assume it escapes or writes to all
9716       // static alloca operands.
9717       for (const Use &U : I.operands()) {
9718         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9719           *Info = StaticAllocaInfo::Clobbered;
9720       }
9721       continue;
9722     }
9723 
9724     // If the stored value is a static alloca, mark it as escaped.
9725     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9726       *Info = StaticAllocaInfo::Clobbered;
9727 
9728     // Check if the destination is a static alloca.
9729     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9730     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9731     if (!Info)
9732       continue;
9733     const AllocaInst *AI = cast<AllocaInst>(Dst);
9734 
9735     // Skip allocas that have been initialized or clobbered.
9736     if (*Info != StaticAllocaInfo::Unknown)
9737       continue;
9738 
9739     // Check if the stored value is an argument, and that this store fully
9740     // initializes the alloca. Don't elide copies from the same argument twice.
9741     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9742     const auto *Arg = dyn_cast<Argument>(Val);
9743     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9744         Arg->getType()->isEmptyTy() ||
9745         DL.getTypeStoreSize(Arg->getType()) !=
9746             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9747         ArgCopyElisionCandidates.count(Arg)) {
9748       *Info = StaticAllocaInfo::Clobbered;
9749       continue;
9750     }
9751 
9752     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9753                       << '\n');
9754 
9755     // Mark this alloca and store for argument copy elision.
9756     *Info = StaticAllocaInfo::Elidable;
9757     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9758 
9759     // Stop scanning if we've seen all arguments. This will happen early in -O0
9760     // builds, which is useful, because -O0 builds have large entry blocks and
9761     // many allocas.
9762     if (ArgCopyElisionCandidates.size() == NumArgs)
9763       break;
9764   }
9765 }
9766 
9767 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9768 /// ArgVal is a load from a suitable fixed stack object.
9769 static void tryToElideArgumentCopy(
9770     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9771     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9772     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9773     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9774     SDValue ArgVal, bool &ArgHasUses) {
9775   // Check if this is a load from a fixed stack object.
9776   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9777   if (!LNode)
9778     return;
9779   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9780   if (!FINode)
9781     return;
9782 
9783   // Check that the fixed stack object is the right size and alignment.
9784   // Look at the alignment that the user wrote on the alloca instead of looking
9785   // at the stack object.
9786   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9787   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9788   const AllocaInst *AI = ArgCopyIter->second.first;
9789   int FixedIndex = FINode->getIndex();
9790   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9791   int OldIndex = AllocaIndex;
9792   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9793   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9794     LLVM_DEBUG(
9795         dbgs() << "  argument copy elision failed due to bad fixed stack "
9796                   "object size\n");
9797     return;
9798   }
9799   Align RequiredAlignment = AI->getAlign();
9800   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9801     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9802                          "greater than stack argument alignment ("
9803                       << DebugStr(RequiredAlignment) << " vs "
9804                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9805     return;
9806   }
9807 
9808   // Perform the elision. Delete the old stack object and replace its only use
9809   // in the variable info map. Mark the stack object as mutable.
9810   LLVM_DEBUG({
9811     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9812            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9813            << '\n';
9814   });
9815   MFI.RemoveStackObject(OldIndex);
9816   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9817   AllocaIndex = FixedIndex;
9818   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9819   Chains.push_back(ArgVal.getValue(1));
9820 
9821   // Avoid emitting code for the store implementing the copy.
9822   const StoreInst *SI = ArgCopyIter->second.second;
9823   ElidedArgCopyInstrs.insert(SI);
9824 
9825   // Check for uses of the argument again so that we can avoid exporting ArgVal
9826   // if it is't used by anything other than the store.
9827   for (const Value *U : Arg.users()) {
9828     if (U != SI) {
9829       ArgHasUses = true;
9830       break;
9831     }
9832   }
9833 }
9834 
9835 void SelectionDAGISel::LowerArguments(const Function &F) {
9836   SelectionDAG &DAG = SDB->DAG;
9837   SDLoc dl = SDB->getCurSDLoc();
9838   const DataLayout &DL = DAG.getDataLayout();
9839   SmallVector<ISD::InputArg, 16> Ins;
9840 
9841   // In Naked functions we aren't going to save any registers.
9842   if (F.hasFnAttribute(Attribute::Naked))
9843     return;
9844 
9845   if (!FuncInfo->CanLowerReturn) {
9846     // Put in an sret pointer parameter before all the other parameters.
9847     SmallVector<EVT, 1> ValueVTs;
9848     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9849                     F.getReturnType()->getPointerTo(
9850                         DAG.getDataLayout().getAllocaAddrSpace()),
9851                     ValueVTs);
9852 
9853     // NOTE: Assuming that a pointer will never break down to more than one VT
9854     // or one register.
9855     ISD::ArgFlagsTy Flags;
9856     Flags.setSRet();
9857     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9858     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9859                          ISD::InputArg::NoArgIndex, 0);
9860     Ins.push_back(RetArg);
9861   }
9862 
9863   // Look for stores of arguments to static allocas. Mark such arguments with a
9864   // flag to ask the target to give us the memory location of that argument if
9865   // available.
9866   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9867   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9868                                     ArgCopyElisionCandidates);
9869 
9870   // Set up the incoming argument description vector.
9871   for (const Argument &Arg : F.args()) {
9872     unsigned ArgNo = Arg.getArgNo();
9873     SmallVector<EVT, 4> ValueVTs;
9874     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9875     bool isArgValueUsed = !Arg.use_empty();
9876     unsigned PartBase = 0;
9877     Type *FinalType = Arg.getType();
9878     if (Arg.hasAttribute(Attribute::ByVal))
9879       FinalType = Arg.getParamByValType();
9880     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9881         FinalType, F.getCallingConv(), F.isVarArg());
9882     for (unsigned Value = 0, NumValues = ValueVTs.size();
9883          Value != NumValues; ++Value) {
9884       EVT VT = ValueVTs[Value];
9885       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9886       ISD::ArgFlagsTy Flags;
9887 
9888       // Certain targets (such as MIPS), may have a different ABI alignment
9889       // for a type depending on the context. Give the target a chance to
9890       // specify the alignment it wants.
9891       const Align OriginalAlignment(
9892           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9893 
9894       if (Arg.getType()->isPointerTy()) {
9895         Flags.setPointer();
9896         Flags.setPointerAddrSpace(
9897             cast<PointerType>(Arg.getType())->getAddressSpace());
9898       }
9899       if (Arg.hasAttribute(Attribute::ZExt))
9900         Flags.setZExt();
9901       if (Arg.hasAttribute(Attribute::SExt))
9902         Flags.setSExt();
9903       if (Arg.hasAttribute(Attribute::InReg)) {
9904         // If we are using vectorcall calling convention, a structure that is
9905         // passed InReg - is surely an HVA
9906         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9907             isa<StructType>(Arg.getType())) {
9908           // The first value of a structure is marked
9909           if (0 == Value)
9910             Flags.setHvaStart();
9911           Flags.setHva();
9912         }
9913         // Set InReg Flag
9914         Flags.setInReg();
9915       }
9916       if (Arg.hasAttribute(Attribute::StructRet))
9917         Flags.setSRet();
9918       if (Arg.hasAttribute(Attribute::SwiftSelf))
9919         Flags.setSwiftSelf();
9920       if (Arg.hasAttribute(Attribute::SwiftError))
9921         Flags.setSwiftError();
9922       if (Arg.hasAttribute(Attribute::ByVal))
9923         Flags.setByVal();
9924       if (Arg.hasAttribute(Attribute::ByRef))
9925         Flags.setByRef();
9926       if (Arg.hasAttribute(Attribute::InAlloca)) {
9927         Flags.setInAlloca();
9928         // Set the byval flag for CCAssignFn callbacks that don't know about
9929         // inalloca.  This way we can know how many bytes we should've allocated
9930         // and how many bytes a callee cleanup function will pop.  If we port
9931         // inalloca to more targets, we'll have to add custom inalloca handling
9932         // in the various CC lowering callbacks.
9933         Flags.setByVal();
9934       }
9935       if (Arg.hasAttribute(Attribute::Preallocated)) {
9936         Flags.setPreallocated();
9937         // Set the byval flag for CCAssignFn callbacks that don't know about
9938         // preallocated.  This way we can know how many bytes we should've
9939         // allocated and how many bytes a callee cleanup function will pop.  If
9940         // we port preallocated to more targets, we'll have to add custom
9941         // preallocated handling in the various CC lowering callbacks.
9942         Flags.setByVal();
9943       }
9944 
9945       Type *ArgMemTy = nullptr;
9946       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9947           Flags.isByRef()) {
9948         if (!ArgMemTy)
9949           ArgMemTy = Arg.getPointeeInMemoryValueType();
9950 
9951         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9952 
9953         // For in-memory arguments, size and alignment should be passed from FE.
9954         // BE will guess if this info is not there but there are cases it cannot
9955         // get right.
9956         MaybeAlign MemAlign = Arg.getParamAlign();
9957         if (!MemAlign)
9958           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9959 
9960         if (Flags.isByRef()) {
9961           Flags.setByRefSize(MemSize);
9962           Flags.setByRefAlign(*MemAlign);
9963         } else {
9964           Flags.setByValSize(MemSize);
9965           Flags.setByValAlign(*MemAlign);
9966         }
9967       }
9968 
9969       if (Arg.hasAttribute(Attribute::Nest))
9970         Flags.setNest();
9971       if (NeedsRegBlock)
9972         Flags.setInConsecutiveRegs();
9973       Flags.setOrigAlign(OriginalAlignment);
9974       if (ArgCopyElisionCandidates.count(&Arg))
9975         Flags.setCopyElisionCandidate();
9976       if (Arg.hasAttribute(Attribute::Returned))
9977         Flags.setReturned();
9978 
9979       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9980           *CurDAG->getContext(), F.getCallingConv(), VT);
9981       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9982           *CurDAG->getContext(), F.getCallingConv(), VT);
9983       for (unsigned i = 0; i != NumRegs; ++i) {
9984         // For scalable vectors, use the minimum size; individual targets
9985         // are responsible for handling scalable vector arguments and
9986         // return values.
9987         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9988                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9989         if (NumRegs > 1 && i == 0)
9990           MyFlags.Flags.setSplit();
9991         // if it isn't first piece, alignment must be 1
9992         else if (i > 0) {
9993           MyFlags.Flags.setOrigAlign(Align(1));
9994           if (i == NumRegs - 1)
9995             MyFlags.Flags.setSplitEnd();
9996         }
9997         Ins.push_back(MyFlags);
9998       }
9999       if (NeedsRegBlock && Value == NumValues - 1)
10000         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10001       PartBase += VT.getStoreSize().getKnownMinSize();
10002     }
10003   }
10004 
10005   // Call the target to set up the argument values.
10006   SmallVector<SDValue, 8> InVals;
10007   SDValue NewRoot = TLI->LowerFormalArguments(
10008       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10009 
10010   // Verify that the target's LowerFormalArguments behaved as expected.
10011   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10012          "LowerFormalArguments didn't return a valid chain!");
10013   assert(InVals.size() == Ins.size() &&
10014          "LowerFormalArguments didn't emit the correct number of values!");
10015   LLVM_DEBUG({
10016     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10017       assert(InVals[i].getNode() &&
10018              "LowerFormalArguments emitted a null value!");
10019       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10020              "LowerFormalArguments emitted a value with the wrong type!");
10021     }
10022   });
10023 
10024   // Update the DAG with the new chain value resulting from argument lowering.
10025   DAG.setRoot(NewRoot);
10026 
10027   // Set up the argument values.
10028   unsigned i = 0;
10029   if (!FuncInfo->CanLowerReturn) {
10030     // Create a virtual register for the sret pointer, and put in a copy
10031     // from the sret argument into it.
10032     SmallVector<EVT, 1> ValueVTs;
10033     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10034                     F.getReturnType()->getPointerTo(
10035                         DAG.getDataLayout().getAllocaAddrSpace()),
10036                     ValueVTs);
10037     MVT VT = ValueVTs[0].getSimpleVT();
10038     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10039     Optional<ISD::NodeType> AssertOp = None;
10040     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10041                                         nullptr, F.getCallingConv(), AssertOp);
10042 
10043     MachineFunction& MF = SDB->DAG.getMachineFunction();
10044     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10045     Register SRetReg =
10046         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10047     FuncInfo->DemoteRegister = SRetReg;
10048     NewRoot =
10049         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10050     DAG.setRoot(NewRoot);
10051 
10052     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10053     ++i;
10054   }
10055 
10056   SmallVector<SDValue, 4> Chains;
10057   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10058   for (const Argument &Arg : F.args()) {
10059     SmallVector<SDValue, 4> ArgValues;
10060     SmallVector<EVT, 4> ValueVTs;
10061     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10062     unsigned NumValues = ValueVTs.size();
10063     if (NumValues == 0)
10064       continue;
10065 
10066     bool ArgHasUses = !Arg.use_empty();
10067 
10068     // Elide the copying store if the target loaded this argument from a
10069     // suitable fixed stack object.
10070     if (Ins[i].Flags.isCopyElisionCandidate()) {
10071       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10072                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10073                              InVals[i], ArgHasUses);
10074     }
10075 
10076     // If this argument is unused then remember its value. It is used to generate
10077     // debugging information.
10078     bool isSwiftErrorArg =
10079         TLI->supportSwiftError() &&
10080         Arg.hasAttribute(Attribute::SwiftError);
10081     if (!ArgHasUses && !isSwiftErrorArg) {
10082       SDB->setUnusedArgValue(&Arg, InVals[i]);
10083 
10084       // Also remember any frame index for use in FastISel.
10085       if (FrameIndexSDNode *FI =
10086           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10087         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10088     }
10089 
10090     for (unsigned Val = 0; Val != NumValues; ++Val) {
10091       EVT VT = ValueVTs[Val];
10092       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10093                                                       F.getCallingConv(), VT);
10094       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10095           *CurDAG->getContext(), F.getCallingConv(), VT);
10096 
10097       // Even an apparent 'unused' swifterror argument needs to be returned. So
10098       // we do generate a copy for it that can be used on return from the
10099       // function.
10100       if (ArgHasUses || isSwiftErrorArg) {
10101         Optional<ISD::NodeType> AssertOp;
10102         if (Arg.hasAttribute(Attribute::SExt))
10103           AssertOp = ISD::AssertSext;
10104         else if (Arg.hasAttribute(Attribute::ZExt))
10105           AssertOp = ISD::AssertZext;
10106 
10107         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10108                                              PartVT, VT, nullptr,
10109                                              F.getCallingConv(), AssertOp));
10110       }
10111 
10112       i += NumParts;
10113     }
10114 
10115     // We don't need to do anything else for unused arguments.
10116     if (ArgValues.empty())
10117       continue;
10118 
10119     // Note down frame index.
10120     if (FrameIndexSDNode *FI =
10121         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10122       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10123 
10124     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10125                                      SDB->getCurSDLoc());
10126 
10127     SDB->setValue(&Arg, Res);
10128     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10129       // We want to associate the argument with the frame index, among
10130       // involved operands, that correspond to the lowest address. The
10131       // getCopyFromParts function, called earlier, is swapping the order of
10132       // the operands to BUILD_PAIR depending on endianness. The result of
10133       // that swapping is that the least significant bits of the argument will
10134       // be in the first operand of the BUILD_PAIR node, and the most
10135       // significant bits will be in the second operand.
10136       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10137       if (LoadSDNode *LNode =
10138           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10139         if (FrameIndexSDNode *FI =
10140             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10141           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10142     }
10143 
10144     // Analyses past this point are naive and don't expect an assertion.
10145     if (Res.getOpcode() == ISD::AssertZext)
10146       Res = Res.getOperand(0);
10147 
10148     // Update the SwiftErrorVRegDefMap.
10149     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10150       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10151       if (Register::isVirtualRegister(Reg))
10152         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10153                                    Reg);
10154     }
10155 
10156     // If this argument is live outside of the entry block, insert a copy from
10157     // wherever we got it to the vreg that other BB's will reference it as.
10158     if (Res.getOpcode() == ISD::CopyFromReg) {
10159       // If we can, though, try to skip creating an unnecessary vreg.
10160       // FIXME: This isn't very clean... it would be nice to make this more
10161       // general.
10162       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10163       if (Register::isVirtualRegister(Reg)) {
10164         FuncInfo->ValueMap[&Arg] = Reg;
10165         continue;
10166       }
10167     }
10168     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10169       FuncInfo->InitializeRegForValue(&Arg);
10170       SDB->CopyToExportRegsIfNeeded(&Arg);
10171     }
10172   }
10173 
10174   if (!Chains.empty()) {
10175     Chains.push_back(NewRoot);
10176     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10177   }
10178 
10179   DAG.setRoot(NewRoot);
10180 
10181   assert(i == InVals.size() && "Argument register count mismatch!");
10182 
10183   // If any argument copy elisions occurred and we have debug info, update the
10184   // stale frame indices used in the dbg.declare variable info table.
10185   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10186   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10187     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10188       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10189       if (I != ArgCopyElisionFrameIndexMap.end())
10190         VI.Slot = I->second;
10191     }
10192   }
10193 
10194   // Finally, if the target has anything special to do, allow it to do so.
10195   emitFunctionEntryCode();
10196 }
10197 
10198 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10199 /// ensure constants are generated when needed.  Remember the virtual registers
10200 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10201 /// directly add them, because expansion might result in multiple MBB's for one
10202 /// BB.  As such, the start of the BB might correspond to a different MBB than
10203 /// the end.
10204 void
10205 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10206   const Instruction *TI = LLVMBB->getTerminator();
10207 
10208   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10209 
10210   // Check PHI nodes in successors that expect a value to be available from this
10211   // block.
10212   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10213     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10214     if (!isa<PHINode>(SuccBB->begin())) continue;
10215     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10216 
10217     // If this terminator has multiple identical successors (common for
10218     // switches), only handle each succ once.
10219     if (!SuccsHandled.insert(SuccMBB).second)
10220       continue;
10221 
10222     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10223 
10224     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10225     // nodes and Machine PHI nodes, but the incoming operands have not been
10226     // emitted yet.
10227     for (const PHINode &PN : SuccBB->phis()) {
10228       // Ignore dead phi's.
10229       if (PN.use_empty())
10230         continue;
10231 
10232       // Skip empty types
10233       if (PN.getType()->isEmptyTy())
10234         continue;
10235 
10236       unsigned Reg;
10237       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10238 
10239       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10240         unsigned &RegOut = ConstantsOut[C];
10241         if (RegOut == 0) {
10242           RegOut = FuncInfo.CreateRegs(C);
10243           CopyValueToVirtualRegister(C, RegOut);
10244         }
10245         Reg = RegOut;
10246       } else {
10247         DenseMap<const Value *, Register>::iterator I =
10248           FuncInfo.ValueMap.find(PHIOp);
10249         if (I != FuncInfo.ValueMap.end())
10250           Reg = I->second;
10251         else {
10252           assert(isa<AllocaInst>(PHIOp) &&
10253                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10254                  "Didn't codegen value into a register!??");
10255           Reg = FuncInfo.CreateRegs(PHIOp);
10256           CopyValueToVirtualRegister(PHIOp, Reg);
10257         }
10258       }
10259 
10260       // Remember that this register needs to added to the machine PHI node as
10261       // the input for this MBB.
10262       SmallVector<EVT, 4> ValueVTs;
10263       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10264       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10265       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10266         EVT VT = ValueVTs[vti];
10267         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10268         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10269           FuncInfo.PHINodesToUpdate.push_back(
10270               std::make_pair(&*MBBI++, Reg + i));
10271         Reg += NumRegisters;
10272       }
10273     }
10274   }
10275 
10276   ConstantsOut.clear();
10277 }
10278 
10279 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10280 /// is 0.
10281 MachineBasicBlock *
10282 SelectionDAGBuilder::StackProtectorDescriptor::
10283 AddSuccessorMBB(const BasicBlock *BB,
10284                 MachineBasicBlock *ParentMBB,
10285                 bool IsLikely,
10286                 MachineBasicBlock *SuccMBB) {
10287   // If SuccBB has not been created yet, create it.
10288   if (!SuccMBB) {
10289     MachineFunction *MF = ParentMBB->getParent();
10290     MachineFunction::iterator BBI(ParentMBB);
10291     SuccMBB = MF->CreateMachineBasicBlock(BB);
10292     MF->insert(++BBI, SuccMBB);
10293   }
10294   // Add it as a successor of ParentMBB.
10295   ParentMBB->addSuccessor(
10296       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10297   return SuccMBB;
10298 }
10299 
10300 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10301   MachineFunction::iterator I(MBB);
10302   if (++I == FuncInfo.MF->end())
10303     return nullptr;
10304   return &*I;
10305 }
10306 
10307 /// During lowering new call nodes can be created (such as memset, etc.).
10308 /// Those will become new roots of the current DAG, but complications arise
10309 /// when they are tail calls. In such cases, the call lowering will update
10310 /// the root, but the builder still needs to know that a tail call has been
10311 /// lowered in order to avoid generating an additional return.
10312 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10313   // If the node is null, we do have a tail call.
10314   if (MaybeTC.getNode() != nullptr)
10315     DAG.setRoot(MaybeTC);
10316   else
10317     HasTailCall = true;
10318 }
10319 
10320 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10321                                         MachineBasicBlock *SwitchMBB,
10322                                         MachineBasicBlock *DefaultMBB) {
10323   MachineFunction *CurMF = FuncInfo.MF;
10324   MachineBasicBlock *NextMBB = nullptr;
10325   MachineFunction::iterator BBI(W.MBB);
10326   if (++BBI != FuncInfo.MF->end())
10327     NextMBB = &*BBI;
10328 
10329   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10330 
10331   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10332 
10333   if (Size == 2 && W.MBB == SwitchMBB) {
10334     // If any two of the cases has the same destination, and if one value
10335     // is the same as the other, but has one bit unset that the other has set,
10336     // use bit manipulation to do two compares at once.  For example:
10337     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10338     // TODO: This could be extended to merge any 2 cases in switches with 3
10339     // cases.
10340     // TODO: Handle cases where W.CaseBB != SwitchBB.
10341     CaseCluster &Small = *W.FirstCluster;
10342     CaseCluster &Big = *W.LastCluster;
10343 
10344     if (Small.Low == Small.High && Big.Low == Big.High &&
10345         Small.MBB == Big.MBB) {
10346       const APInt &SmallValue = Small.Low->getValue();
10347       const APInt &BigValue = Big.Low->getValue();
10348 
10349       // Check that there is only one bit different.
10350       APInt CommonBit = BigValue ^ SmallValue;
10351       if (CommonBit.isPowerOf2()) {
10352         SDValue CondLHS = getValue(Cond);
10353         EVT VT = CondLHS.getValueType();
10354         SDLoc DL = getCurSDLoc();
10355 
10356         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10357                                  DAG.getConstant(CommonBit, DL, VT));
10358         SDValue Cond = DAG.getSetCC(
10359             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10360             ISD::SETEQ);
10361 
10362         // Update successor info.
10363         // Both Small and Big will jump to Small.BB, so we sum up the
10364         // probabilities.
10365         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10366         if (BPI)
10367           addSuccessorWithProb(
10368               SwitchMBB, DefaultMBB,
10369               // The default destination is the first successor in IR.
10370               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10371         else
10372           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10373 
10374         // Insert the true branch.
10375         SDValue BrCond =
10376             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10377                         DAG.getBasicBlock(Small.MBB));
10378         // Insert the false branch.
10379         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10380                              DAG.getBasicBlock(DefaultMBB));
10381 
10382         DAG.setRoot(BrCond);
10383         return;
10384       }
10385     }
10386   }
10387 
10388   if (TM.getOptLevel() != CodeGenOpt::None) {
10389     // Here, we order cases by probability so the most likely case will be
10390     // checked first. However, two clusters can have the same probability in
10391     // which case their relative ordering is non-deterministic. So we use Low
10392     // as a tie-breaker as clusters are guaranteed to never overlap.
10393     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10394                [](const CaseCluster &a, const CaseCluster &b) {
10395       return a.Prob != b.Prob ?
10396              a.Prob > b.Prob :
10397              a.Low->getValue().slt(b.Low->getValue());
10398     });
10399 
10400     // Rearrange the case blocks so that the last one falls through if possible
10401     // without changing the order of probabilities.
10402     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10403       --I;
10404       if (I->Prob > W.LastCluster->Prob)
10405         break;
10406       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10407         std::swap(*I, *W.LastCluster);
10408         break;
10409       }
10410     }
10411   }
10412 
10413   // Compute total probability.
10414   BranchProbability DefaultProb = W.DefaultProb;
10415   BranchProbability UnhandledProbs = DefaultProb;
10416   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10417     UnhandledProbs += I->Prob;
10418 
10419   MachineBasicBlock *CurMBB = W.MBB;
10420   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10421     bool FallthroughUnreachable = false;
10422     MachineBasicBlock *Fallthrough;
10423     if (I == W.LastCluster) {
10424       // For the last cluster, fall through to the default destination.
10425       Fallthrough = DefaultMBB;
10426       FallthroughUnreachable = isa<UnreachableInst>(
10427           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10428     } else {
10429       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10430       CurMF->insert(BBI, Fallthrough);
10431       // Put Cond in a virtual register to make it available from the new blocks.
10432       ExportFromCurrentBlock(Cond);
10433     }
10434     UnhandledProbs -= I->Prob;
10435 
10436     switch (I->Kind) {
10437       case CC_JumpTable: {
10438         // FIXME: Optimize away range check based on pivot comparisons.
10439         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10440         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10441 
10442         // The jump block hasn't been inserted yet; insert it here.
10443         MachineBasicBlock *JumpMBB = JT->MBB;
10444         CurMF->insert(BBI, JumpMBB);
10445 
10446         auto JumpProb = I->Prob;
10447         auto FallthroughProb = UnhandledProbs;
10448 
10449         // If the default statement is a target of the jump table, we evenly
10450         // distribute the default probability to successors of CurMBB. Also
10451         // update the probability on the edge from JumpMBB to Fallthrough.
10452         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10453                                               SE = JumpMBB->succ_end();
10454              SI != SE; ++SI) {
10455           if (*SI == DefaultMBB) {
10456             JumpProb += DefaultProb / 2;
10457             FallthroughProb -= DefaultProb / 2;
10458             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10459             JumpMBB->normalizeSuccProbs();
10460             break;
10461           }
10462         }
10463 
10464         if (FallthroughUnreachable) {
10465           // Skip the range check if the fallthrough block is unreachable.
10466           JTH->OmitRangeCheck = true;
10467         }
10468 
10469         if (!JTH->OmitRangeCheck)
10470           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10471         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10472         CurMBB->normalizeSuccProbs();
10473 
10474         // The jump table header will be inserted in our current block, do the
10475         // range check, and fall through to our fallthrough block.
10476         JTH->HeaderBB = CurMBB;
10477         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10478 
10479         // If we're in the right place, emit the jump table header right now.
10480         if (CurMBB == SwitchMBB) {
10481           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10482           JTH->Emitted = true;
10483         }
10484         break;
10485       }
10486       case CC_BitTests: {
10487         // FIXME: Optimize away range check based on pivot comparisons.
10488         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10489 
10490         // The bit test blocks haven't been inserted yet; insert them here.
10491         for (BitTestCase &BTC : BTB->Cases)
10492           CurMF->insert(BBI, BTC.ThisBB);
10493 
10494         // Fill in fields of the BitTestBlock.
10495         BTB->Parent = CurMBB;
10496         BTB->Default = Fallthrough;
10497 
10498         BTB->DefaultProb = UnhandledProbs;
10499         // If the cases in bit test don't form a contiguous range, we evenly
10500         // distribute the probability on the edge to Fallthrough to two
10501         // successors of CurMBB.
10502         if (!BTB->ContiguousRange) {
10503           BTB->Prob += DefaultProb / 2;
10504           BTB->DefaultProb -= DefaultProb / 2;
10505         }
10506 
10507         if (FallthroughUnreachable) {
10508           // Skip the range check if the fallthrough block is unreachable.
10509           BTB->OmitRangeCheck = true;
10510         }
10511 
10512         // If we're in the right place, emit the bit test header right now.
10513         if (CurMBB == SwitchMBB) {
10514           visitBitTestHeader(*BTB, SwitchMBB);
10515           BTB->Emitted = true;
10516         }
10517         break;
10518       }
10519       case CC_Range: {
10520         const Value *RHS, *LHS, *MHS;
10521         ISD::CondCode CC;
10522         if (I->Low == I->High) {
10523           // Check Cond == I->Low.
10524           CC = ISD::SETEQ;
10525           LHS = Cond;
10526           RHS=I->Low;
10527           MHS = nullptr;
10528         } else {
10529           // Check I->Low <= Cond <= I->High.
10530           CC = ISD::SETLE;
10531           LHS = I->Low;
10532           MHS = Cond;
10533           RHS = I->High;
10534         }
10535 
10536         // If Fallthrough is unreachable, fold away the comparison.
10537         if (FallthroughUnreachable)
10538           CC = ISD::SETTRUE;
10539 
10540         // The false probability is the sum of all unhandled cases.
10541         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10542                      getCurSDLoc(), I->Prob, UnhandledProbs);
10543 
10544         if (CurMBB == SwitchMBB)
10545           visitSwitchCase(CB, SwitchMBB);
10546         else
10547           SL->SwitchCases.push_back(CB);
10548 
10549         break;
10550       }
10551     }
10552     CurMBB = Fallthrough;
10553   }
10554 }
10555 
10556 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10557                                               CaseClusterIt First,
10558                                               CaseClusterIt Last) {
10559   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10560     if (X.Prob != CC.Prob)
10561       return X.Prob > CC.Prob;
10562 
10563     // Ties are broken by comparing the case value.
10564     return X.Low->getValue().slt(CC.Low->getValue());
10565   });
10566 }
10567 
10568 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10569                                         const SwitchWorkListItem &W,
10570                                         Value *Cond,
10571                                         MachineBasicBlock *SwitchMBB) {
10572   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10573          "Clusters not sorted?");
10574 
10575   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10576 
10577   // Balance the tree based on branch probabilities to create a near-optimal (in
10578   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10579   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10580   CaseClusterIt LastLeft = W.FirstCluster;
10581   CaseClusterIt FirstRight = W.LastCluster;
10582   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10583   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10584 
10585   // Move LastLeft and FirstRight towards each other from opposite directions to
10586   // find a partitioning of the clusters which balances the probability on both
10587   // sides. If LeftProb and RightProb are equal, alternate which side is
10588   // taken to ensure 0-probability nodes are distributed evenly.
10589   unsigned I = 0;
10590   while (LastLeft + 1 < FirstRight) {
10591     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10592       LeftProb += (++LastLeft)->Prob;
10593     else
10594       RightProb += (--FirstRight)->Prob;
10595     I++;
10596   }
10597 
10598   while (true) {
10599     // Our binary search tree differs from a typical BST in that ours can have up
10600     // to three values in each leaf. The pivot selection above doesn't take that
10601     // into account, which means the tree might require more nodes and be less
10602     // efficient. We compensate for this here.
10603 
10604     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10605     unsigned NumRight = W.LastCluster - FirstRight + 1;
10606 
10607     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10608       // If one side has less than 3 clusters, and the other has more than 3,
10609       // consider taking a cluster from the other side.
10610 
10611       if (NumLeft < NumRight) {
10612         // Consider moving the first cluster on the right to the left side.
10613         CaseCluster &CC = *FirstRight;
10614         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10615         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10616         if (LeftSideRank <= RightSideRank) {
10617           // Moving the cluster to the left does not demote it.
10618           ++LastLeft;
10619           ++FirstRight;
10620           continue;
10621         }
10622       } else {
10623         assert(NumRight < NumLeft);
10624         // Consider moving the last element on the left to the right side.
10625         CaseCluster &CC = *LastLeft;
10626         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10627         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10628         if (RightSideRank <= LeftSideRank) {
10629           // Moving the cluster to the right does not demot it.
10630           --LastLeft;
10631           --FirstRight;
10632           continue;
10633         }
10634       }
10635     }
10636     break;
10637   }
10638 
10639   assert(LastLeft + 1 == FirstRight);
10640   assert(LastLeft >= W.FirstCluster);
10641   assert(FirstRight <= W.LastCluster);
10642 
10643   // Use the first element on the right as pivot since we will make less-than
10644   // comparisons against it.
10645   CaseClusterIt PivotCluster = FirstRight;
10646   assert(PivotCluster > W.FirstCluster);
10647   assert(PivotCluster <= W.LastCluster);
10648 
10649   CaseClusterIt FirstLeft = W.FirstCluster;
10650   CaseClusterIt LastRight = W.LastCluster;
10651 
10652   const ConstantInt *Pivot = PivotCluster->Low;
10653 
10654   // New blocks will be inserted immediately after the current one.
10655   MachineFunction::iterator BBI(W.MBB);
10656   ++BBI;
10657 
10658   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10659   // we can branch to its destination directly if it's squeezed exactly in
10660   // between the known lower bound and Pivot - 1.
10661   MachineBasicBlock *LeftMBB;
10662   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10663       FirstLeft->Low == W.GE &&
10664       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10665     LeftMBB = FirstLeft->MBB;
10666   } else {
10667     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10668     FuncInfo.MF->insert(BBI, LeftMBB);
10669     WorkList.push_back(
10670         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10671     // Put Cond in a virtual register to make it available from the new blocks.
10672     ExportFromCurrentBlock(Cond);
10673   }
10674 
10675   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10676   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10677   // directly if RHS.High equals the current upper bound.
10678   MachineBasicBlock *RightMBB;
10679   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10680       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10681     RightMBB = FirstRight->MBB;
10682   } else {
10683     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10684     FuncInfo.MF->insert(BBI, RightMBB);
10685     WorkList.push_back(
10686         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10687     // Put Cond in a virtual register to make it available from the new blocks.
10688     ExportFromCurrentBlock(Cond);
10689   }
10690 
10691   // Create the CaseBlock record that will be used to lower the branch.
10692   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10693                getCurSDLoc(), LeftProb, RightProb);
10694 
10695   if (W.MBB == SwitchMBB)
10696     visitSwitchCase(CB, SwitchMBB);
10697   else
10698     SL->SwitchCases.push_back(CB);
10699 }
10700 
10701 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10702 // from the swith statement.
10703 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10704                                             BranchProbability PeeledCaseProb) {
10705   if (PeeledCaseProb == BranchProbability::getOne())
10706     return BranchProbability::getZero();
10707   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10708 
10709   uint32_t Numerator = CaseProb.getNumerator();
10710   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10711   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10712 }
10713 
10714 // Try to peel the top probability case if it exceeds the threshold.
10715 // Return current MachineBasicBlock for the switch statement if the peeling
10716 // does not occur.
10717 // If the peeling is performed, return the newly created MachineBasicBlock
10718 // for the peeled switch statement. Also update Clusters to remove the peeled
10719 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10720 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10721     const SwitchInst &SI, CaseClusterVector &Clusters,
10722     BranchProbability &PeeledCaseProb) {
10723   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10724   // Don't perform if there is only one cluster or optimizing for size.
10725   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10726       TM.getOptLevel() == CodeGenOpt::None ||
10727       SwitchMBB->getParent()->getFunction().hasMinSize())
10728     return SwitchMBB;
10729 
10730   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10731   unsigned PeeledCaseIndex = 0;
10732   bool SwitchPeeled = false;
10733   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10734     CaseCluster &CC = Clusters[Index];
10735     if (CC.Prob < TopCaseProb)
10736       continue;
10737     TopCaseProb = CC.Prob;
10738     PeeledCaseIndex = Index;
10739     SwitchPeeled = true;
10740   }
10741   if (!SwitchPeeled)
10742     return SwitchMBB;
10743 
10744   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10745                     << TopCaseProb << "\n");
10746 
10747   // Record the MBB for the peeled switch statement.
10748   MachineFunction::iterator BBI(SwitchMBB);
10749   ++BBI;
10750   MachineBasicBlock *PeeledSwitchMBB =
10751       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10752   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10753 
10754   ExportFromCurrentBlock(SI.getCondition());
10755   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10756   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10757                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10758   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10759 
10760   Clusters.erase(PeeledCaseIt);
10761   for (CaseCluster &CC : Clusters) {
10762     LLVM_DEBUG(
10763         dbgs() << "Scale the probablity for one cluster, before scaling: "
10764                << CC.Prob << "\n");
10765     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10766     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10767   }
10768   PeeledCaseProb = TopCaseProb;
10769   return PeeledSwitchMBB;
10770 }
10771 
10772 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10773   // Extract cases from the switch.
10774   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10775   CaseClusterVector Clusters;
10776   Clusters.reserve(SI.getNumCases());
10777   for (auto I : SI.cases()) {
10778     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10779     const ConstantInt *CaseVal = I.getCaseValue();
10780     BranchProbability Prob =
10781         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10782             : BranchProbability(1, SI.getNumCases() + 1);
10783     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10784   }
10785 
10786   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10787 
10788   // Cluster adjacent cases with the same destination. We do this at all
10789   // optimization levels because it's cheap to do and will make codegen faster
10790   // if there are many clusters.
10791   sortAndRangeify(Clusters);
10792 
10793   // The branch probablity of the peeled case.
10794   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10795   MachineBasicBlock *PeeledSwitchMBB =
10796       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10797 
10798   // If there is only the default destination, jump there directly.
10799   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10800   if (Clusters.empty()) {
10801     assert(PeeledSwitchMBB == SwitchMBB);
10802     SwitchMBB->addSuccessor(DefaultMBB);
10803     if (DefaultMBB != NextBlock(SwitchMBB)) {
10804       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10805                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10806     }
10807     return;
10808   }
10809 
10810   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10811   SL->findBitTestClusters(Clusters, &SI);
10812 
10813   LLVM_DEBUG({
10814     dbgs() << "Case clusters: ";
10815     for (const CaseCluster &C : Clusters) {
10816       if (C.Kind == CC_JumpTable)
10817         dbgs() << "JT:";
10818       if (C.Kind == CC_BitTests)
10819         dbgs() << "BT:";
10820 
10821       C.Low->getValue().print(dbgs(), true);
10822       if (C.Low != C.High) {
10823         dbgs() << '-';
10824         C.High->getValue().print(dbgs(), true);
10825       }
10826       dbgs() << ' ';
10827     }
10828     dbgs() << '\n';
10829   });
10830 
10831   assert(!Clusters.empty());
10832   SwitchWorkList WorkList;
10833   CaseClusterIt First = Clusters.begin();
10834   CaseClusterIt Last = Clusters.end() - 1;
10835   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10836   // Scale the branchprobability for DefaultMBB if the peel occurs and
10837   // DefaultMBB is not replaced.
10838   if (PeeledCaseProb != BranchProbability::getZero() &&
10839       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10840     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10841   WorkList.push_back(
10842       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10843 
10844   while (!WorkList.empty()) {
10845     SwitchWorkListItem W = WorkList.pop_back_val();
10846     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10847 
10848     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10849         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10850       // For optimized builds, lower large range as a balanced binary tree.
10851       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10852       continue;
10853     }
10854 
10855     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10856   }
10857 }
10858 
10859 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
10860   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10861   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10862 
10863   SDLoc DL = getCurSDLoc();
10864   SDValue V = getValue(I.getOperand(0));
10865   assert(VT == V.getValueType() && "Malformed vector.reverse!");
10866 
10867   if (VT.isScalableVector()) {
10868     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
10869     return;
10870   }
10871 
10872   // Use VECTOR_SHUFFLE for the fixed-length vector
10873   // to maintain existing behavior.
10874   SmallVector<int, 8> Mask;
10875   unsigned NumElts = VT.getVectorMinNumElements();
10876   for (unsigned i = 0; i != NumElts; ++i)
10877     Mask.push_back(NumElts - 1 - i);
10878 
10879   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
10880 }
10881 
10882 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10883   SmallVector<EVT, 4> ValueVTs;
10884   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10885                   ValueVTs);
10886   unsigned NumValues = ValueVTs.size();
10887   if (NumValues == 0) return;
10888 
10889   SmallVector<SDValue, 4> Values(NumValues);
10890   SDValue Op = getValue(I.getOperand(0));
10891 
10892   for (unsigned i = 0; i != NumValues; ++i)
10893     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10894                             SDValue(Op.getNode(), Op.getResNo() + i));
10895 
10896   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10897                            DAG.getVTList(ValueVTs), Values));
10898 }
10899