xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 950fe784be6a2ad13bd47aef034ed025cccb97e7)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "FunctionLoweringInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/GCStrategy.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/PseudoSourceValue.h"
43 #include "llvm/CodeGen/SelectionDAG.h"
44 #include "llvm/Analysis/DebugInfo.h"
45 #include "llvm/Target/TargetRegisterInfo.h"
46 #include "llvm/Target/TargetData.h"
47 #include "llvm/Target/TargetFrameInfo.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetIntrinsicInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetOptions.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 namespace {
73   /// RegsForValue - This struct represents the registers (physical or virtual)
74   /// that a particular set of values is assigned, and the type information
75   /// about the value. The most common situation is to represent one value at a
76   /// time, but struct or array values are handled element-wise as multiple
77   /// values.  The splitting of aggregates is performed recursively, so that we
78   /// never have aggregate-typed registers. The values at this point do not
79   /// necessarily have legal types, so each value may require one or more
80   /// registers of some legal type.
81   ///
82   struct RegsForValue {
83     /// TLI - The TargetLowering object.
84     ///
85     const TargetLowering *TLI;
86 
87     /// ValueVTs - The value types of the values, which may not be legal, and
88     /// may need be promoted or synthesized from one or more registers.
89     ///
90     SmallVector<EVT, 4> ValueVTs;
91 
92     /// RegVTs - The value types of the registers. This is the same size as
93     /// ValueVTs and it records, for each value, what the type of the assigned
94     /// register or registers are. (Individual values are never synthesized
95     /// from more than one type of register.)
96     ///
97     /// With virtual registers, the contents of RegVTs is redundant with TLI's
98     /// getRegisterType member function, however when with physical registers
99     /// it is necessary to have a separate record of the types.
100     ///
101     SmallVector<EVT, 4> RegVTs;
102 
103     /// Regs - This list holds the registers assigned to the values.
104     /// Each legal or promoted value requires one register, and each
105     /// expanded value requires multiple registers.
106     ///
107     SmallVector<unsigned, 4> Regs;
108 
109     RegsForValue() : TLI(0) {}
110 
111     RegsForValue(const TargetLowering &tli,
112                  const SmallVector<unsigned, 4> &regs,
113                  EVT regvt, EVT valuevt)
114       : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
115     RegsForValue(const TargetLowering &tli,
116                  const SmallVector<unsigned, 4> &regs,
117                  const SmallVector<EVT, 4> &regvts,
118                  const SmallVector<EVT, 4> &valuevts)
119       : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
120     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
121                  unsigned Reg, const Type *Ty) : TLI(&tli) {
122       ComputeValueVTs(tli, Ty, ValueVTs);
123 
124       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
125         EVT ValueVT = ValueVTs[Value];
126         unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
127         EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
128         for (unsigned i = 0; i != NumRegs; ++i)
129           Regs.push_back(Reg + i);
130         RegVTs.push_back(RegisterVT);
131         Reg += NumRegs;
132       }
133     }
134 
135     /// areValueTypesLegal - Return true if types of all the values are legal.
136     bool areValueTypesLegal() {
137       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
138         EVT RegisterVT = RegVTs[Value];
139         if (!TLI->isTypeLegal(RegisterVT))
140           return false;
141       }
142       return true;
143     }
144 
145 
146     /// append - Add the specified values to this one.
147     void append(const RegsForValue &RHS) {
148       TLI = RHS.TLI;
149       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
150       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
151       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
152     }
153 
154 
155     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
156     /// this value and returns the result as a ValueVTs value.  This uses
157     /// Chain/Flag as the input and updates them for the output Chain/Flag.
158     /// If the Flag pointer is NULL, no flag is used.
159     SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
160                             SDValue &Chain, SDValue *Flag) const;
161 
162     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
163     /// specified value into the registers specified by this object.  This uses
164     /// Chain/Flag as the input and updates them for the output Chain/Flag.
165     /// If the Flag pointer is NULL, no flag is used.
166     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
167                        SDValue &Chain, SDValue *Flag) const;
168 
169     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
170     /// operand list.  This adds the code marker, matching input operand index
171     /// (if applicable), and includes the number of values added into it.
172     void AddInlineAsmOperands(unsigned Kind,
173                               bool HasMatching, unsigned MatchingIdx,
174                               SelectionDAG &DAG,
175                               std::vector<SDValue> &Ops) const;
176   };
177 }
178 
179 /// getCopyFromParts - Create a value that contains the specified legal parts
180 /// combined into the value they represent.  If the parts combine to a type
181 /// larger then ValueVT then AssertOp can be used to specify whether the extra
182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
183 /// (ISD::AssertSext).
184 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
185                                 const SDValue *Parts,
186                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
187                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
188   assert(NumParts > 0 && "No parts to assemble!");
189   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
190   SDValue Val = Parts[0];
191 
192   if (NumParts > 1) {
193     // Assemble the value from multiple parts.
194     if (!ValueVT.isVector() && ValueVT.isInteger()) {
195       unsigned PartBits = PartVT.getSizeInBits();
196       unsigned ValueBits = ValueVT.getSizeInBits();
197 
198       // Assemble the power of 2 part.
199       unsigned RoundParts = NumParts & (NumParts - 1) ?
200         1 << Log2_32(NumParts) : NumParts;
201       unsigned RoundBits = PartBits * RoundParts;
202       EVT RoundVT = RoundBits == ValueBits ?
203         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
204       SDValue Lo, Hi;
205 
206       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
207 
208       if (RoundParts > 2) {
209         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
210                               PartVT, HalfVT);
211         Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
212                               RoundParts / 2, PartVT, HalfVT);
213       } else {
214         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
215         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
216       }
217 
218       if (TLI.isBigEndian())
219         std::swap(Lo, Hi);
220 
221       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
222 
223       if (RoundParts < NumParts) {
224         // Assemble the trailing non-power-of-2 part.
225         unsigned OddParts = NumParts - RoundParts;
226         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
227         Hi = getCopyFromParts(DAG, dl,
228                               Parts + RoundParts, OddParts, PartVT, OddVT);
229 
230         // Combine the round and odd parts.
231         Lo = Val;
232         if (TLI.isBigEndian())
233           std::swap(Lo, Hi);
234         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
235         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
236         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
237                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
238                                          TLI.getPointerTy()));
239         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
240         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
241       }
242     } else if (ValueVT.isVector()) {
243       // Handle a multi-element vector.
244       EVT IntermediateVT, RegisterVT;
245       unsigned NumIntermediates;
246       unsigned NumRegs =
247         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
248                                    NumIntermediates, RegisterVT);
249       assert(NumRegs == NumParts
250              && "Part count doesn't match vector breakdown!");
251       NumParts = NumRegs; // Silence a compiler warning.
252       assert(RegisterVT == PartVT
253              && "Part type doesn't match vector breakdown!");
254       assert(RegisterVT == Parts[0].getValueType() &&
255              "Part type doesn't match part!");
256 
257       // Assemble the parts into intermediate operands.
258       SmallVector<SDValue, 8> Ops(NumIntermediates);
259       if (NumIntermediates == NumParts) {
260         // If the register was not expanded, truncate or copy the value,
261         // as appropriate.
262         for (unsigned i = 0; i != NumParts; ++i)
263           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
264                                     PartVT, IntermediateVT);
265       } else if (NumParts > 0) {
266         // If the intermediate type was expanded, build the intermediate
267         // operands from the parts.
268         assert(NumParts % NumIntermediates == 0 &&
269                "Must expand into a divisible number of parts!");
270         unsigned Factor = NumParts / NumIntermediates;
271         for (unsigned i = 0; i != NumIntermediates; ++i)
272           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
273                                     PartVT, IntermediateVT);
274       }
275 
276       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
277       // intermediate operands.
278       Val = DAG.getNode(IntermediateVT.isVector() ?
279                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
280                         ValueVT, &Ops[0], NumIntermediates);
281     } else if (PartVT.isFloatingPoint()) {
282       // FP split into multiple FP parts (for ppcf128)
283       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
284              "Unexpected split");
285       SDValue Lo, Hi;
286       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
287       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
288       if (TLI.isBigEndian())
289         std::swap(Lo, Hi);
290       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
291     } else {
292       // FP split into integer parts (soft fp)
293       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
294              !PartVT.isVector() && "Unexpected split");
295       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
296       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
297     }
298   }
299 
300   // There is now one part, held in Val.  Correct it to match ValueVT.
301   PartVT = Val.getValueType();
302 
303   if (PartVT == ValueVT)
304     return Val;
305 
306   if (PartVT.isVector()) {
307     assert(ValueVT.isVector() && "Unknown vector conversion!");
308     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
309   }
310 
311   if (ValueVT.isVector()) {
312     assert(ValueVT.getVectorElementType() == PartVT &&
313            ValueVT.getVectorNumElements() == 1 &&
314            "Only trivial scalar-to-vector conversions should get here!");
315     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
316   }
317 
318   if (PartVT.isInteger() &&
319       ValueVT.isInteger()) {
320     if (ValueVT.bitsLT(PartVT)) {
321       // For a truncate, see if we have any information to
322       // indicate whether the truncated bits will always be
323       // zero or sign-extension.
324       if (AssertOp != ISD::DELETED_NODE)
325         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
326                           DAG.getValueType(ValueVT));
327       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
328     } else {
329       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
330     }
331   }
332 
333   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
334     if (ValueVT.bitsLT(Val.getValueType())) {
335       // FP_ROUND's are always exact here.
336       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
337                          DAG.getIntPtrConstant(1));
338     }
339 
340     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
341   }
342 
343   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
344     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
345 
346   llvm_unreachable("Unknown mismatch!");
347   return SDValue();
348 }
349 
350 /// getCopyToParts - Create a series of nodes that contain the specified value
351 /// split into legal parts.  If the parts contain more bits than Val, then, for
352 /// integers, ExtendKind can be used to specify how to generate the extra bits.
353 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
354                            SDValue Val, SDValue *Parts, unsigned NumParts,
355                            EVT PartVT,
356                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
358   EVT PtrVT = TLI.getPointerTy();
359   EVT ValueVT = Val.getValueType();
360   unsigned PartBits = PartVT.getSizeInBits();
361   unsigned OrigNumParts = NumParts;
362   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
363 
364   if (!NumParts)
365     return;
366 
367   if (!ValueVT.isVector()) {
368     if (PartVT == ValueVT) {
369       assert(NumParts == 1 && "No-op copy with multiple parts!");
370       Parts[0] = Val;
371       return;
372     }
373 
374     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
375       // If the parts cover more bits than the value has, promote the value.
376       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
377         assert(NumParts == 1 && "Do not know what to promote to!");
378         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
379       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
380         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
381         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
382       } else {
383         llvm_unreachable("Unknown mismatch!");
384       }
385     } else if (PartBits == ValueVT.getSizeInBits()) {
386       // Different types of the same size.
387       assert(NumParts == 1 && PartVT != ValueVT);
388       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
389     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
390       // If the parts cover less bits than value has, truncate the value.
391       if (PartVT.isInteger() && ValueVT.isInteger()) {
392         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
393         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
394       } else {
395         llvm_unreachable("Unknown mismatch!");
396       }
397     }
398 
399     // The value may have changed - recompute ValueVT.
400     ValueVT = Val.getValueType();
401     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
402            "Failed to tile the value with PartVT!");
403 
404     if (NumParts == 1) {
405       assert(PartVT == ValueVT && "Type conversion failed!");
406       Parts[0] = Val;
407       return;
408     }
409 
410     // Expand the value into multiple parts.
411     if (NumParts & (NumParts - 1)) {
412       // The number of parts is not a power of 2.  Split off and copy the tail.
413       assert(PartVT.isInteger() && ValueVT.isInteger() &&
414              "Do not know what to expand to!");
415       unsigned RoundParts = 1 << Log2_32(NumParts);
416       unsigned RoundBits = RoundParts * PartBits;
417       unsigned OddParts = NumParts - RoundParts;
418       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
419                                    DAG.getConstant(RoundBits,
420                                                    TLI.getPointerTy()));
421       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
422                      OddParts, PartVT);
423 
424       if (TLI.isBigEndian())
425         // The odd parts were reversed by getCopyToParts - unreverse them.
426         std::reverse(Parts + RoundParts, Parts + NumParts);
427 
428       NumParts = RoundParts;
429       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
430       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
431     }
432 
433     // The number of parts is a power of 2.  Repeatedly bisect the value using
434     // EXTRACT_ELEMENT.
435     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
436                            EVT::getIntegerVT(*DAG.getContext(),
437                                              ValueVT.getSizeInBits()),
438                            Val);
439 
440     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
441       for (unsigned i = 0; i < NumParts; i += StepSize) {
442         unsigned ThisBits = StepSize * PartBits / 2;
443         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
444         SDValue &Part0 = Parts[i];
445         SDValue &Part1 = Parts[i+StepSize/2];
446 
447         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
448                             ThisVT, Part0,
449                             DAG.getConstant(1, PtrVT));
450         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
451                             ThisVT, Part0,
452                             DAG.getConstant(0, PtrVT));
453 
454         if (ThisBits == PartBits && ThisVT != PartVT) {
455           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
456                                                 PartVT, Part0);
457           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
458                                                 PartVT, Part1);
459         }
460       }
461     }
462 
463     if (TLI.isBigEndian())
464       std::reverse(Parts, Parts + OrigNumParts);
465 
466     return;
467   }
468 
469   // Vector ValueVT.
470   if (NumParts == 1) {
471     if (PartVT != ValueVT) {
472       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
473         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
474       } else {
475         assert(ValueVT.getVectorElementType() == PartVT &&
476                ValueVT.getVectorNumElements() == 1 &&
477                "Only trivial vector-to-scalar conversions should get here!");
478         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
479                           PartVT, Val,
480                           DAG.getConstant(0, PtrVT));
481       }
482     }
483 
484     Parts[0] = Val;
485     return;
486   }
487 
488   // Handle a multi-element vector.
489   EVT IntermediateVT, RegisterVT;
490   unsigned NumIntermediates;
491   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
492                               IntermediateVT, NumIntermediates, RegisterVT);
493   unsigned NumElements = ValueVT.getVectorNumElements();
494 
495   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
496   NumParts = NumRegs; // Silence a compiler warning.
497   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
498 
499   // Split the vector into intermediate operands.
500   SmallVector<SDValue, 8> Ops(NumIntermediates);
501   for (unsigned i = 0; i != NumIntermediates; ++i) {
502     if (IntermediateVT.isVector())
503       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
504                            IntermediateVT, Val,
505                            DAG.getConstant(i * (NumElements / NumIntermediates),
506                                            PtrVT));
507     else
508       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
509                            IntermediateVT, Val,
510                            DAG.getConstant(i, PtrVT));
511   }
512 
513   // Split the intermediate operands into legal parts.
514   if (NumParts == NumIntermediates) {
515     // If the register was not expanded, promote or copy the value,
516     // as appropriate.
517     for (unsigned i = 0; i != NumParts; ++i)
518       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
519   } else if (NumParts > 0) {
520     // If the intermediate type was expanded, split each the value into
521     // legal parts.
522     assert(NumParts % NumIntermediates == 0 &&
523            "Must expand into a divisible number of parts!");
524     unsigned Factor = NumParts / NumIntermediates;
525     for (unsigned i = 0; i != NumIntermediates; ++i)
526       getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
527   }
528 }
529 
530 
531 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
532   AA = &aa;
533   GFI = gfi;
534   TD = DAG.getTarget().getTargetData();
535 }
536 
537 /// clear - Clear out the current SelectionDAG and the associated
538 /// state and prepare this SelectionDAGBuilder object to be used
539 /// for a new block. This doesn't clear out information about
540 /// additional blocks that are needed to complete switch lowering
541 /// or PHI node updating; that information is cleared out as it is
542 /// consumed.
543 void SelectionDAGBuilder::clear() {
544   NodeMap.clear();
545   PendingLoads.clear();
546   PendingExports.clear();
547   EdgeMapping.clear();
548   DAG.clear();
549   CurDebugLoc = DebugLoc();
550   HasTailCall = false;
551 }
552 
553 /// getRoot - Return the current virtual root of the Selection DAG,
554 /// flushing any PendingLoad items. This must be done before emitting
555 /// a store or any other node that may need to be ordered after any
556 /// prior load instructions.
557 ///
558 SDValue SelectionDAGBuilder::getRoot() {
559   if (PendingLoads.empty())
560     return DAG.getRoot();
561 
562   if (PendingLoads.size() == 1) {
563     SDValue Root = PendingLoads[0];
564     DAG.setRoot(Root);
565     PendingLoads.clear();
566     return Root;
567   }
568 
569   // Otherwise, we have to make a token factor node.
570   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
571                                &PendingLoads[0], PendingLoads.size());
572   PendingLoads.clear();
573   DAG.setRoot(Root);
574   return Root;
575 }
576 
577 /// getControlRoot - Similar to getRoot, but instead of flushing all the
578 /// PendingLoad items, flush all the PendingExports items. It is necessary
579 /// to do this before emitting a terminator instruction.
580 ///
581 SDValue SelectionDAGBuilder::getControlRoot() {
582   SDValue Root = DAG.getRoot();
583 
584   if (PendingExports.empty())
585     return Root;
586 
587   // Turn all of the CopyToReg chains into one factored node.
588   if (Root.getOpcode() != ISD::EntryToken) {
589     unsigned i = 0, e = PendingExports.size();
590     for (; i != e; ++i) {
591       assert(PendingExports[i].getNode()->getNumOperands() > 1);
592       if (PendingExports[i].getNode()->getOperand(0) == Root)
593         break;  // Don't add the root if we already indirectly depend on it.
594     }
595 
596     if (i == e)
597       PendingExports.push_back(Root);
598   }
599 
600   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
601                      &PendingExports[0],
602                      PendingExports.size());
603   PendingExports.clear();
604   DAG.setRoot(Root);
605   return Root;
606 }
607 
608 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
609   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
610   DAG.AssignOrdering(Node, SDNodeOrder);
611 
612   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
613     AssignOrderingToNode(Node->getOperand(I).getNode());
614 }
615 
616 void SelectionDAGBuilder::visit(const Instruction &I) {
617   CurDebugLoc = I.getDebugLoc();
618 
619   visit(I.getOpcode(), I);
620 
621   if (!isa<TerminatorInst>(&I) && !HasTailCall)
622     CopyToExportRegsIfNeeded(&I);
623 
624   CurDebugLoc = DebugLoc();
625 }
626 
627 void SelectionDAGBuilder::visitPHI(const PHINode &) {
628   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
629 }
630 
631 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
632   // Note: this doesn't use InstVisitor, because it has to work with
633   // ConstantExpr's in addition to instructions.
634   switch (Opcode) {
635   default: llvm_unreachable("Unknown instruction type encountered!");
636     // Build the switch statement using the Instruction.def file.
637 #define HANDLE_INST(NUM, OPCODE, CLASS) \
638     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
639 #include "llvm/Instruction.def"
640   }
641 
642   // Assign the ordering to the freshly created DAG nodes.
643   if (NodeMap.count(&I)) {
644     ++SDNodeOrder;
645     AssignOrderingToNode(getValue(&I).getNode());
646   }
647 }
648 
649 SDValue SelectionDAGBuilder::getValue(const Value *V) {
650   SDValue &N = NodeMap[V];
651   if (N.getNode()) return N;
652 
653   if (const Constant *C = dyn_cast<Constant>(V)) {
654     EVT VT = TLI.getValueType(V->getType(), true);
655 
656     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
657       return N = DAG.getConstant(*CI, VT);
658 
659     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
660       return N = DAG.getGlobalAddress(GV, VT);
661 
662     if (isa<ConstantPointerNull>(C))
663       return N = DAG.getConstant(0, TLI.getPointerTy());
664 
665     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
666       return N = DAG.getConstantFP(*CFP, VT);
667 
668     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
669       return N = DAG.getUNDEF(VT);
670 
671     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
672       visit(CE->getOpcode(), *CE);
673       SDValue N1 = NodeMap[V];
674       assert(N1.getNode() && "visit didn't populate the NodeMap!");
675       return N1;
676     }
677 
678     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
679       SmallVector<SDValue, 4> Constants;
680       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
681            OI != OE; ++OI) {
682         SDNode *Val = getValue(*OI).getNode();
683         // If the operand is an empty aggregate, there are no values.
684         if (!Val) continue;
685         // Add each leaf value from the operand to the Constants list
686         // to form a flattened list of all the values.
687         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
688           Constants.push_back(SDValue(Val, i));
689       }
690 
691       return DAG.getMergeValues(&Constants[0], Constants.size(),
692                                 getCurDebugLoc());
693     }
694 
695     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
696       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
697              "Unknown struct or array constant!");
698 
699       SmallVector<EVT, 4> ValueVTs;
700       ComputeValueVTs(TLI, C->getType(), ValueVTs);
701       unsigned NumElts = ValueVTs.size();
702       if (NumElts == 0)
703         return SDValue(); // empty struct
704       SmallVector<SDValue, 4> Constants(NumElts);
705       for (unsigned i = 0; i != NumElts; ++i) {
706         EVT EltVT = ValueVTs[i];
707         if (isa<UndefValue>(C))
708           Constants[i] = DAG.getUNDEF(EltVT);
709         else if (EltVT.isFloatingPoint())
710           Constants[i] = DAG.getConstantFP(0, EltVT);
711         else
712           Constants[i] = DAG.getConstant(0, EltVT);
713       }
714 
715       return DAG.getMergeValues(&Constants[0], NumElts,
716                                 getCurDebugLoc());
717     }
718 
719     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
720       return DAG.getBlockAddress(BA, VT);
721 
722     const VectorType *VecTy = cast<VectorType>(V->getType());
723     unsigned NumElements = VecTy->getNumElements();
724 
725     // Now that we know the number and type of the elements, get that number of
726     // elements into the Ops array based on what kind of constant it is.
727     SmallVector<SDValue, 16> Ops;
728     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
729       for (unsigned i = 0; i != NumElements; ++i)
730         Ops.push_back(getValue(CP->getOperand(i)));
731     } else {
732       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
733       EVT EltVT = TLI.getValueType(VecTy->getElementType());
734 
735       SDValue Op;
736       if (EltVT.isFloatingPoint())
737         Op = DAG.getConstantFP(0, EltVT);
738       else
739         Op = DAG.getConstant(0, EltVT);
740       Ops.assign(NumElements, Op);
741     }
742 
743     // Create a BUILD_VECTOR node.
744     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
745                                     VT, &Ops[0], Ops.size());
746   }
747 
748   // If this is a static alloca, generate it as the frameindex instead of
749   // computation.
750   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
751     DenseMap<const AllocaInst*, int>::iterator SI =
752       FuncInfo.StaticAllocaMap.find(AI);
753     if (SI != FuncInfo.StaticAllocaMap.end())
754       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
755   }
756 
757   unsigned InReg = FuncInfo.ValueMap[V];
758   assert(InReg && "Value not in map!");
759 
760   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
761   SDValue Chain = DAG.getEntryNode();
762   return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
763 }
764 
765 /// Get the EVTs and ArgFlags collections that represent the legalized return
766 /// type of the given function.  This does not require a DAG or a return value,
767 /// and is suitable for use before any DAGs for the function are constructed.
768 static void getReturnInfo(const Type* ReturnType,
769                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
770                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
771                    const TargetLowering &TLI,
772                    SmallVectorImpl<uint64_t> *Offsets = 0) {
773   SmallVector<EVT, 4> ValueVTs;
774   ComputeValueVTs(TLI, ReturnType, ValueVTs);
775   unsigned NumValues = ValueVTs.size();
776   if (NumValues == 0) return;
777   unsigned Offset = 0;
778 
779   for (unsigned j = 0, f = NumValues; j != f; ++j) {
780     EVT VT = ValueVTs[j];
781     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
782 
783     if (attr & Attribute::SExt)
784       ExtendKind = ISD::SIGN_EXTEND;
785     else if (attr & Attribute::ZExt)
786       ExtendKind = ISD::ZERO_EXTEND;
787 
788     // FIXME: C calling convention requires the return type to be promoted to
789     // at least 32-bit. But this is not necessary for non-C calling
790     // conventions. The frontend should mark functions whose return values
791     // require promoting with signext or zeroext attributes.
792     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
793       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
794       if (VT.bitsLT(MinVT))
795         VT = MinVT;
796     }
797 
798     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
799     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
800     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
801                         PartVT.getTypeForEVT(ReturnType->getContext()));
802 
803     // 'inreg' on function refers to return value
804     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
805     if (attr & Attribute::InReg)
806       Flags.setInReg();
807 
808     // Propagate extension type if any
809     if (attr & Attribute::SExt)
810       Flags.setSExt();
811     else if (attr & Attribute::ZExt)
812       Flags.setZExt();
813 
814     for (unsigned i = 0; i < NumParts; ++i) {
815       OutVTs.push_back(PartVT);
816       OutFlags.push_back(Flags);
817       if (Offsets)
818       {
819         Offsets->push_back(Offset);
820         Offset += PartSize;
821       }
822     }
823   }
824 }
825 
826 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
827   SDValue Chain = getControlRoot();
828   SmallVector<ISD::OutputArg, 8> Outs;
829   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
830 
831   if (!FLI.CanLowerReturn) {
832     unsigned DemoteReg = FLI.DemoteRegister;
833     const Function *F = I.getParent()->getParent();
834 
835     // Emit a store of the return value through the virtual register.
836     // Leave Outs empty so that LowerReturn won't try to load return
837     // registers the usual way.
838     SmallVector<EVT, 1> PtrValueVTs;
839     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
840                     PtrValueVTs);
841 
842     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
843     SDValue RetOp = getValue(I.getOperand(0));
844 
845     SmallVector<EVT, 4> ValueVTs;
846     SmallVector<uint64_t, 4> Offsets;
847     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
848     unsigned NumValues = ValueVTs.size();
849 
850     SmallVector<SDValue, 4> Chains(NumValues);
851     EVT PtrVT = PtrValueVTs[0];
852     for (unsigned i = 0; i != NumValues; ++i) {
853       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
854                                 DAG.getConstant(Offsets[i], PtrVT));
855       Chains[i] =
856         DAG.getStore(Chain, getCurDebugLoc(),
857                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
858                      Add, NULL, Offsets[i], false, false, 0);
859     }
860 
861     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
862                         MVT::Other, &Chains[0], NumValues);
863   } else if (I.getNumOperands() != 0) {
864     SmallVector<EVT, 4> ValueVTs;
865     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
866     unsigned NumValues = ValueVTs.size();
867     if (NumValues) {
868       SDValue RetOp = getValue(I.getOperand(0));
869       for (unsigned j = 0, f = NumValues; j != f; ++j) {
870         EVT VT = ValueVTs[j];
871 
872         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
873 
874         const Function *F = I.getParent()->getParent();
875         if (F->paramHasAttr(0, Attribute::SExt))
876           ExtendKind = ISD::SIGN_EXTEND;
877         else if (F->paramHasAttr(0, Attribute::ZExt))
878           ExtendKind = ISD::ZERO_EXTEND;
879 
880         // FIXME: C calling convention requires the return type to be promoted
881         // to at least 32-bit. But this is not necessary for non-C calling
882         // conventions. The frontend should mark functions whose return values
883         // require promoting with signext or zeroext attributes.
884         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
885           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
886           if (VT.bitsLT(MinVT))
887             VT = MinVT;
888         }
889 
890         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
891         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
892         SmallVector<SDValue, 4> Parts(NumParts);
893         getCopyToParts(DAG, getCurDebugLoc(),
894                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
895                        &Parts[0], NumParts, PartVT, ExtendKind);
896 
897         // 'inreg' on function refers to return value
898         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
899         if (F->paramHasAttr(0, Attribute::InReg))
900           Flags.setInReg();
901 
902         // Propagate extension type if any
903         if (F->paramHasAttr(0, Attribute::SExt))
904           Flags.setSExt();
905         else if (F->paramHasAttr(0, Attribute::ZExt))
906           Flags.setZExt();
907 
908         for (unsigned i = 0; i < NumParts; ++i)
909           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
910       }
911     }
912   }
913 
914   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
915   CallingConv::ID CallConv =
916     DAG.getMachineFunction().getFunction()->getCallingConv();
917   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
918                           Outs, getCurDebugLoc(), DAG);
919 
920   // Verify that the target's LowerReturn behaved as expected.
921   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
922          "LowerReturn didn't return a valid chain!");
923 
924   // Update the DAG with the new chain value resulting from return lowering.
925   DAG.setRoot(Chain);
926 }
927 
928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
929 /// created for it, emit nodes to copy the value into the virtual
930 /// registers.
931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
932   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
933   if (VMI != FuncInfo.ValueMap.end()) {
934     assert(!V->use_empty() && "Unused value assigned virtual registers!");
935     CopyValueToVirtualRegister(V, VMI->second);
936   }
937 }
938 
939 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
940 /// the current basic block, add it to ValueMap now so that we'll get a
941 /// CopyTo/FromReg.
942 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
943   // No need to export constants.
944   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
945 
946   // Already exported?
947   if (FuncInfo.isExportedInst(V)) return;
948 
949   unsigned Reg = FuncInfo.InitializeRegForValue(V);
950   CopyValueToVirtualRegister(V, Reg);
951 }
952 
953 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
954                                                      const BasicBlock *FromBB) {
955   // The operands of the setcc have to be in this block.  We don't know
956   // how to export them from some other block.
957   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
958     // Can export from current BB.
959     if (VI->getParent() == FromBB)
960       return true;
961 
962     // Is already exported, noop.
963     return FuncInfo.isExportedInst(V);
964   }
965 
966   // If this is an argument, we can export it if the BB is the entry block or
967   // if it is already exported.
968   if (isa<Argument>(V)) {
969     if (FromBB == &FromBB->getParent()->getEntryBlock())
970       return true;
971 
972     // Otherwise, can only export this if it is already exported.
973     return FuncInfo.isExportedInst(V);
974   }
975 
976   // Otherwise, constants can always be exported.
977   return true;
978 }
979 
980 static bool InBlock(const Value *V, const BasicBlock *BB) {
981   if (const Instruction *I = dyn_cast<Instruction>(V))
982     return I->getParent() == BB;
983   return true;
984 }
985 
986 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
987 /// This function emits a branch and is used at the leaves of an OR or an
988 /// AND operator tree.
989 ///
990 void
991 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
992                                                   MachineBasicBlock *TBB,
993                                                   MachineBasicBlock *FBB,
994                                                   MachineBasicBlock *CurBB,
995                                                   MachineBasicBlock *SwitchBB) {
996   const BasicBlock *BB = CurBB->getBasicBlock();
997 
998   // If the leaf of the tree is a comparison, merge the condition into
999   // the caseblock.
1000   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1001     // The operands of the cmp have to be in this block.  We don't know
1002     // how to export them from some other block.  If this is the first block
1003     // of the sequence, no exporting is needed.
1004     if (CurBB == SwitchBB ||
1005         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1006          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1007       ISD::CondCode Condition;
1008       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1009         Condition = getICmpCondCode(IC->getPredicate());
1010       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1011         Condition = getFCmpCondCode(FC->getPredicate());
1012       } else {
1013         Condition = ISD::SETEQ; // silence warning.
1014         llvm_unreachable("Unknown compare instruction");
1015       }
1016 
1017       CaseBlock CB(Condition, BOp->getOperand(0),
1018                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1019       SwitchCases.push_back(CB);
1020       return;
1021     }
1022   }
1023 
1024   // Create a CaseBlock record representing this branch.
1025   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1026                NULL, TBB, FBB, CurBB);
1027   SwitchCases.push_back(CB);
1028 }
1029 
1030 /// FindMergedConditions - If Cond is an expression like
1031 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1032                                                MachineBasicBlock *TBB,
1033                                                MachineBasicBlock *FBB,
1034                                                MachineBasicBlock *CurBB,
1035                                                MachineBasicBlock *SwitchBB,
1036                                                unsigned Opc) {
1037   // If this node is not part of the or/and tree, emit it as a branch.
1038   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1039   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1040       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1041       BOp->getParent() != CurBB->getBasicBlock() ||
1042       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1043       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1044     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1045     return;
1046   }
1047 
1048   //  Create TmpBB after CurBB.
1049   MachineFunction::iterator BBI = CurBB;
1050   MachineFunction &MF = DAG.getMachineFunction();
1051   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1052   CurBB->getParent()->insert(++BBI, TmpBB);
1053 
1054   if (Opc == Instruction::Or) {
1055     // Codegen X | Y as:
1056     //   jmp_if_X TBB
1057     //   jmp TmpBB
1058     // TmpBB:
1059     //   jmp_if_Y TBB
1060     //   jmp FBB
1061     //
1062 
1063     // Emit the LHS condition.
1064     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1065 
1066     // Emit the RHS condition into TmpBB.
1067     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1068   } else {
1069     assert(Opc == Instruction::And && "Unknown merge op!");
1070     // Codegen X & Y as:
1071     //   jmp_if_X TmpBB
1072     //   jmp FBB
1073     // TmpBB:
1074     //   jmp_if_Y TBB
1075     //   jmp FBB
1076     //
1077     //  This requires creation of TmpBB after CurBB.
1078 
1079     // Emit the LHS condition.
1080     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1081 
1082     // Emit the RHS condition into TmpBB.
1083     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1084   }
1085 }
1086 
1087 /// If the set of cases should be emitted as a series of branches, return true.
1088 /// If we should emit this as a bunch of and/or'd together conditions, return
1089 /// false.
1090 bool
1091 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1092   if (Cases.size() != 2) return true;
1093 
1094   // If this is two comparisons of the same values or'd or and'd together, they
1095   // will get folded into a single comparison, so don't emit two blocks.
1096   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1097        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1098       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1099        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1100     return false;
1101   }
1102 
1103   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1104   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1105   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1106       Cases[0].CC == Cases[1].CC &&
1107       isa<Constant>(Cases[0].CmpRHS) &&
1108       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1109     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1110       return false;
1111     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1112       return false;
1113   }
1114 
1115   return true;
1116 }
1117 
1118 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1119   MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1120 
1121   // Update machine-CFG edges.
1122   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1123 
1124   // Figure out which block is immediately after the current one.
1125   MachineBasicBlock *NextBlock = 0;
1126   MachineFunction::iterator BBI = BrMBB;
1127   if (++BBI != FuncInfo.MF->end())
1128     NextBlock = BBI;
1129 
1130   if (I.isUnconditional()) {
1131     // Update machine-CFG edges.
1132     BrMBB->addSuccessor(Succ0MBB);
1133 
1134     // If this is not a fall-through branch, emit the branch.
1135     if (Succ0MBB != NextBlock)
1136       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1137                               MVT::Other, getControlRoot(),
1138                               DAG.getBasicBlock(Succ0MBB)));
1139 
1140     return;
1141   }
1142 
1143   // If this condition is one of the special cases we handle, do special stuff
1144   // now.
1145   const Value *CondVal = I.getCondition();
1146   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1147 
1148   // If this is a series of conditions that are or'd or and'd together, emit
1149   // this as a sequence of branches instead of setcc's with and/or operations.
1150   // For example, instead of something like:
1151   //     cmp A, B
1152   //     C = seteq
1153   //     cmp D, E
1154   //     F = setle
1155   //     or C, F
1156   //     jnz foo
1157   // Emit:
1158   //     cmp A, B
1159   //     je foo
1160   //     cmp D, E
1161   //     jle foo
1162   //
1163   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1164     if (BOp->hasOneUse() &&
1165         (BOp->getOpcode() == Instruction::And ||
1166          BOp->getOpcode() == Instruction::Or)) {
1167       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1168                            BOp->getOpcode());
1169       // If the compares in later blocks need to use values not currently
1170       // exported from this block, export them now.  This block should always
1171       // be the first entry.
1172       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1173 
1174       // Allow some cases to be rejected.
1175       if (ShouldEmitAsBranches(SwitchCases)) {
1176         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1177           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1178           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1179         }
1180 
1181         // Emit the branch for this block.
1182         visitSwitchCase(SwitchCases[0], BrMBB);
1183         SwitchCases.erase(SwitchCases.begin());
1184         return;
1185       }
1186 
1187       // Okay, we decided not to do this, remove any inserted MBB's and clear
1188       // SwitchCases.
1189       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1190         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1191 
1192       SwitchCases.clear();
1193     }
1194   }
1195 
1196   // Create a CaseBlock record representing this branch.
1197   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1198                NULL, Succ0MBB, Succ1MBB, BrMBB);
1199 
1200   // Use visitSwitchCase to actually insert the fast branch sequence for this
1201   // cond branch.
1202   visitSwitchCase(CB, BrMBB);
1203 }
1204 
1205 /// visitSwitchCase - Emits the necessary code to represent a single node in
1206 /// the binary search tree resulting from lowering a switch instruction.
1207 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1208                                           MachineBasicBlock *SwitchBB) {
1209   SDValue Cond;
1210   SDValue CondLHS = getValue(CB.CmpLHS);
1211   DebugLoc dl = getCurDebugLoc();
1212 
1213   // Build the setcc now.
1214   if (CB.CmpMHS == NULL) {
1215     // Fold "(X == true)" to X and "(X == false)" to !X to
1216     // handle common cases produced by branch lowering.
1217     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1218         CB.CC == ISD::SETEQ)
1219       Cond = CondLHS;
1220     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1221              CB.CC == ISD::SETEQ) {
1222       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1223       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1224     } else
1225       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1226   } else {
1227     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1228 
1229     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1230     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1231 
1232     SDValue CmpOp = getValue(CB.CmpMHS);
1233     EVT VT = CmpOp.getValueType();
1234 
1235     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1236       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1237                           ISD::SETLE);
1238     } else {
1239       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1240                                 VT, CmpOp, DAG.getConstant(Low, VT));
1241       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1242                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1243     }
1244   }
1245 
1246   // Update successor info
1247   SwitchBB->addSuccessor(CB.TrueBB);
1248   SwitchBB->addSuccessor(CB.FalseBB);
1249 
1250   // Set NextBlock to be the MBB immediately after the current one, if any.
1251   // This is used to avoid emitting unnecessary branches to the next block.
1252   MachineBasicBlock *NextBlock = 0;
1253   MachineFunction::iterator BBI = SwitchBB;
1254   if (++BBI != FuncInfo.MF->end())
1255     NextBlock = BBI;
1256 
1257   // If the lhs block is the next block, invert the condition so that we can
1258   // fall through to the lhs instead of the rhs block.
1259   if (CB.TrueBB == NextBlock) {
1260     std::swap(CB.TrueBB, CB.FalseBB);
1261     SDValue True = DAG.getConstant(1, Cond.getValueType());
1262     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1263   }
1264 
1265   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1266                                MVT::Other, getControlRoot(), Cond,
1267                                DAG.getBasicBlock(CB.TrueBB));
1268 
1269   // If the branch was constant folded, fix up the CFG.
1270   if (BrCond.getOpcode() == ISD::BR) {
1271     SwitchBB->removeSuccessor(CB.FalseBB);
1272   } else {
1273     // Otherwise, go ahead and insert the false branch.
1274     if (BrCond == getControlRoot())
1275       SwitchBB->removeSuccessor(CB.TrueBB);
1276 
1277     if (CB.FalseBB != NextBlock)
1278       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1279                            DAG.getBasicBlock(CB.FalseBB));
1280   }
1281 
1282   DAG.setRoot(BrCond);
1283 }
1284 
1285 /// visitJumpTable - Emit JumpTable node in the current MBB
1286 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1287   // Emit the code for the jump table
1288   assert(JT.Reg != -1U && "Should lower JT Header first!");
1289   EVT PTy = TLI.getPointerTy();
1290   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1291                                      JT.Reg, PTy);
1292   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1293   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1294                                     MVT::Other, Index.getValue(1),
1295                                     Table, Index);
1296   DAG.setRoot(BrJumpTable);
1297 }
1298 
1299 /// visitJumpTableHeader - This function emits necessary code to produce index
1300 /// in the JumpTable from switch case.
1301 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1302                                                JumpTableHeader &JTH,
1303                                                MachineBasicBlock *SwitchBB) {
1304   // Subtract the lowest switch case value from the value being switched on and
1305   // conditional branch to default mbb if the result is greater than the
1306   // difference between smallest and largest cases.
1307   SDValue SwitchOp = getValue(JTH.SValue);
1308   EVT VT = SwitchOp.getValueType();
1309   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1310                             DAG.getConstant(JTH.First, VT));
1311 
1312   // The SDNode we just created, which holds the value being switched on minus
1313   // the smallest case value, needs to be copied to a virtual register so it
1314   // can be used as an index into the jump table in a subsequent basic block.
1315   // This value may be smaller or larger than the target's pointer type, and
1316   // therefore require extension or truncating.
1317   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1318 
1319   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1320   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1321                                     JumpTableReg, SwitchOp);
1322   JT.Reg = JumpTableReg;
1323 
1324   // Emit the range check for the jump table, and branch to the default block
1325   // for the switch statement if the value being switched on exceeds the largest
1326   // case in the switch.
1327   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1328                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1329                              DAG.getConstant(JTH.Last-JTH.First,VT),
1330                              ISD::SETUGT);
1331 
1332   // Set NextBlock to be the MBB immediately after the current one, if any.
1333   // This is used to avoid emitting unnecessary branches to the next block.
1334   MachineBasicBlock *NextBlock = 0;
1335   MachineFunction::iterator BBI = SwitchBB;
1336 
1337   if (++BBI != FuncInfo.MF->end())
1338     NextBlock = BBI;
1339 
1340   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1341                                MVT::Other, CopyTo, CMP,
1342                                DAG.getBasicBlock(JT.Default));
1343 
1344   if (JT.MBB != NextBlock)
1345     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1346                          DAG.getBasicBlock(JT.MBB));
1347 
1348   DAG.setRoot(BrCond);
1349 }
1350 
1351 /// visitBitTestHeader - This function emits necessary code to produce value
1352 /// suitable for "bit tests"
1353 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1354                                              MachineBasicBlock *SwitchBB) {
1355   // Subtract the minimum value
1356   SDValue SwitchOp = getValue(B.SValue);
1357   EVT VT = SwitchOp.getValueType();
1358   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1359                             DAG.getConstant(B.First, VT));
1360 
1361   // Check range
1362   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1363                                   TLI.getSetCCResultType(Sub.getValueType()),
1364                                   Sub, DAG.getConstant(B.Range, VT),
1365                                   ISD::SETUGT);
1366 
1367   SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1368                                        TLI.getPointerTy());
1369 
1370   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1371   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1372                                     B.Reg, ShiftOp);
1373 
1374   // Set NextBlock to be the MBB immediately after the current one, if any.
1375   // This is used to avoid emitting unnecessary branches to the next block.
1376   MachineBasicBlock *NextBlock = 0;
1377   MachineFunction::iterator BBI = SwitchBB;
1378   if (++BBI != FuncInfo.MF->end())
1379     NextBlock = BBI;
1380 
1381   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1382 
1383   SwitchBB->addSuccessor(B.Default);
1384   SwitchBB->addSuccessor(MBB);
1385 
1386   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1387                                 MVT::Other, CopyTo, RangeCmp,
1388                                 DAG.getBasicBlock(B.Default));
1389 
1390   if (MBB != NextBlock)
1391     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1392                           DAG.getBasicBlock(MBB));
1393 
1394   DAG.setRoot(BrRange);
1395 }
1396 
1397 /// visitBitTestCase - this function produces one "bit test"
1398 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1399                                            unsigned Reg,
1400                                            BitTestCase &B,
1401                                            MachineBasicBlock *SwitchBB) {
1402   // Make desired shift
1403   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1404                                        TLI.getPointerTy());
1405   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1406                                   TLI.getPointerTy(),
1407                                   DAG.getConstant(1, TLI.getPointerTy()),
1408                                   ShiftOp);
1409 
1410   // Emit bit tests and jumps
1411   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1412                               TLI.getPointerTy(), SwitchVal,
1413                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1414   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1415                                 TLI.getSetCCResultType(AndOp.getValueType()),
1416                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1417                                 ISD::SETNE);
1418 
1419   SwitchBB->addSuccessor(B.TargetBB);
1420   SwitchBB->addSuccessor(NextMBB);
1421 
1422   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1423                               MVT::Other, getControlRoot(),
1424                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1425 
1426   // Set NextBlock to be the MBB immediately after the current one, if any.
1427   // This is used to avoid emitting unnecessary branches to the next block.
1428   MachineBasicBlock *NextBlock = 0;
1429   MachineFunction::iterator BBI = SwitchBB;
1430   if (++BBI != FuncInfo.MF->end())
1431     NextBlock = BBI;
1432 
1433   if (NextMBB != NextBlock)
1434     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1435                         DAG.getBasicBlock(NextMBB));
1436 
1437   DAG.setRoot(BrAnd);
1438 }
1439 
1440 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1441   MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1442 
1443   // Retrieve successors.
1444   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1445   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1446 
1447   const Value *Callee(I.getCalledValue());
1448   if (isa<InlineAsm>(Callee))
1449     visitInlineAsm(&I);
1450   else
1451     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1452 
1453   // If the value of the invoke is used outside of its defining block, make it
1454   // available as a virtual register.
1455   CopyToExportRegsIfNeeded(&I);
1456 
1457   // Update successor info
1458   InvokeMBB->addSuccessor(Return);
1459   InvokeMBB->addSuccessor(LandingPad);
1460 
1461   // Drop into normal successor.
1462   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1463                           MVT::Other, getControlRoot(),
1464                           DAG.getBasicBlock(Return)));
1465 }
1466 
1467 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1468 }
1469 
1470 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1471 /// small case ranges).
1472 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1473                                                  CaseRecVector& WorkList,
1474                                                  const Value* SV,
1475                                                  MachineBasicBlock *Default,
1476                                                  MachineBasicBlock *SwitchBB) {
1477   Case& BackCase  = *(CR.Range.second-1);
1478 
1479   // Size is the number of Cases represented by this range.
1480   size_t Size = CR.Range.second - CR.Range.first;
1481   if (Size > 3)
1482     return false;
1483 
1484   // Get the MachineFunction which holds the current MBB.  This is used when
1485   // inserting any additional MBBs necessary to represent the switch.
1486   MachineFunction *CurMF = FuncInfo.MF;
1487 
1488   // Figure out which block is immediately after the current one.
1489   MachineBasicBlock *NextBlock = 0;
1490   MachineFunction::iterator BBI = CR.CaseBB;
1491 
1492   if (++BBI != FuncInfo.MF->end())
1493     NextBlock = BBI;
1494 
1495   // TODO: If any two of the cases has the same destination, and if one value
1496   // is the same as the other, but has one bit unset that the other has set,
1497   // use bit manipulation to do two compares at once.  For example:
1498   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1499 
1500   // Rearrange the case blocks so that the last one falls through if possible.
1501   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1502     // The last case block won't fall through into 'NextBlock' if we emit the
1503     // branches in this order.  See if rearranging a case value would help.
1504     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1505       if (I->BB == NextBlock) {
1506         std::swap(*I, BackCase);
1507         break;
1508       }
1509     }
1510   }
1511 
1512   // Create a CaseBlock record representing a conditional branch to
1513   // the Case's target mbb if the value being switched on SV is equal
1514   // to C.
1515   MachineBasicBlock *CurBlock = CR.CaseBB;
1516   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1517     MachineBasicBlock *FallThrough;
1518     if (I != E-1) {
1519       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1520       CurMF->insert(BBI, FallThrough);
1521 
1522       // Put SV in a virtual register to make it available from the new blocks.
1523       ExportFromCurrentBlock(SV);
1524     } else {
1525       // If the last case doesn't match, go to the default block.
1526       FallThrough = Default;
1527     }
1528 
1529     const Value *RHS, *LHS, *MHS;
1530     ISD::CondCode CC;
1531     if (I->High == I->Low) {
1532       // This is just small small case range :) containing exactly 1 case
1533       CC = ISD::SETEQ;
1534       LHS = SV; RHS = I->High; MHS = NULL;
1535     } else {
1536       CC = ISD::SETLE;
1537       LHS = I->Low; MHS = SV; RHS = I->High;
1538     }
1539     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1540 
1541     // If emitting the first comparison, just call visitSwitchCase to emit the
1542     // code into the current block.  Otherwise, push the CaseBlock onto the
1543     // vector to be later processed by SDISel, and insert the node's MBB
1544     // before the next MBB.
1545     if (CurBlock == SwitchBB)
1546       visitSwitchCase(CB, SwitchBB);
1547     else
1548       SwitchCases.push_back(CB);
1549 
1550     CurBlock = FallThrough;
1551   }
1552 
1553   return true;
1554 }
1555 
1556 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1557   return !DisableJumpTables &&
1558           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1559            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1560 }
1561 
1562 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1563   APInt LastExt(Last), FirstExt(First);
1564   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1565   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1566   return (LastExt - FirstExt + 1ULL);
1567 }
1568 
1569 /// handleJTSwitchCase - Emit jumptable for current switch case range
1570 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1571                                              CaseRecVector& WorkList,
1572                                              const Value* SV,
1573                                              MachineBasicBlock* Default,
1574                                              MachineBasicBlock *SwitchBB) {
1575   Case& FrontCase = *CR.Range.first;
1576   Case& BackCase  = *(CR.Range.second-1);
1577 
1578   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1579   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1580 
1581   APInt TSize(First.getBitWidth(), 0);
1582   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1583        I!=E; ++I)
1584     TSize += I->size();
1585 
1586   if (!areJTsAllowed(TLI) || TSize.ult(4))
1587     return false;
1588 
1589   APInt Range = ComputeRange(First, Last);
1590   double Density = TSize.roundToDouble() / Range.roundToDouble();
1591   if (Density < 0.4)
1592     return false;
1593 
1594   DEBUG(dbgs() << "Lowering jump table\n"
1595                << "First entry: " << First << ". Last entry: " << Last << '\n'
1596                << "Range: " << Range
1597                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1598 
1599   // Get the MachineFunction which holds the current MBB.  This is used when
1600   // inserting any additional MBBs necessary to represent the switch.
1601   MachineFunction *CurMF = FuncInfo.MF;
1602 
1603   // Figure out which block is immediately after the current one.
1604   MachineFunction::iterator BBI = CR.CaseBB;
1605   ++BBI;
1606 
1607   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1608 
1609   // Create a new basic block to hold the code for loading the address
1610   // of the jump table, and jumping to it.  Update successor information;
1611   // we will either branch to the default case for the switch, or the jump
1612   // table.
1613   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1614   CurMF->insert(BBI, JumpTableBB);
1615   CR.CaseBB->addSuccessor(Default);
1616   CR.CaseBB->addSuccessor(JumpTableBB);
1617 
1618   // Build a vector of destination BBs, corresponding to each target
1619   // of the jump table. If the value of the jump table slot corresponds to
1620   // a case statement, push the case's BB onto the vector, otherwise, push
1621   // the default BB.
1622   std::vector<MachineBasicBlock*> DestBBs;
1623   APInt TEI = First;
1624   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1625     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1626     const APInt &High = cast<ConstantInt>(I->High)->getValue();
1627 
1628     if (Low.sle(TEI) && TEI.sle(High)) {
1629       DestBBs.push_back(I->BB);
1630       if (TEI==High)
1631         ++I;
1632     } else {
1633       DestBBs.push_back(Default);
1634     }
1635   }
1636 
1637   // Update successor info. Add one edge to each unique successor.
1638   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1639   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1640          E = DestBBs.end(); I != E; ++I) {
1641     if (!SuccsHandled[(*I)->getNumber()]) {
1642       SuccsHandled[(*I)->getNumber()] = true;
1643       JumpTableBB->addSuccessor(*I);
1644     }
1645   }
1646 
1647   // Create a jump table index for this jump table.
1648   unsigned JTEncoding = TLI.getJumpTableEncoding();
1649   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1650                        ->createJumpTableIndex(DestBBs);
1651 
1652   // Set the jump table information so that we can codegen it as a second
1653   // MachineBasicBlock
1654   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1655   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1656   if (CR.CaseBB == SwitchBB)
1657     visitJumpTableHeader(JT, JTH, SwitchBB);
1658 
1659   JTCases.push_back(JumpTableBlock(JTH, JT));
1660 
1661   return true;
1662 }
1663 
1664 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1665 /// 2 subtrees.
1666 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1667                                                   CaseRecVector& WorkList,
1668                                                   const Value* SV,
1669                                                   MachineBasicBlock *Default,
1670                                                   MachineBasicBlock *SwitchBB) {
1671   // Get the MachineFunction which holds the current MBB.  This is used when
1672   // inserting any additional MBBs necessary to represent the switch.
1673   MachineFunction *CurMF = FuncInfo.MF;
1674 
1675   // Figure out which block is immediately after the current one.
1676   MachineFunction::iterator BBI = CR.CaseBB;
1677   ++BBI;
1678 
1679   Case& FrontCase = *CR.Range.first;
1680   Case& BackCase  = *(CR.Range.second-1);
1681   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1682 
1683   // Size is the number of Cases represented by this range.
1684   unsigned Size = CR.Range.second - CR.Range.first;
1685 
1686   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1687   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1688   double FMetric = 0;
1689   CaseItr Pivot = CR.Range.first + Size/2;
1690 
1691   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1692   // (heuristically) allow us to emit JumpTable's later.
1693   APInt TSize(First.getBitWidth(), 0);
1694   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1695        I!=E; ++I)
1696     TSize += I->size();
1697 
1698   APInt LSize = FrontCase.size();
1699   APInt RSize = TSize-LSize;
1700   DEBUG(dbgs() << "Selecting best pivot: \n"
1701                << "First: " << First << ", Last: " << Last <<'\n'
1702                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1703   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1704        J!=E; ++I, ++J) {
1705     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1706     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1707     APInt Range = ComputeRange(LEnd, RBegin);
1708     assert((Range - 2ULL).isNonNegative() &&
1709            "Invalid case distance");
1710     double LDensity = (double)LSize.roundToDouble() /
1711                            (LEnd - First + 1ULL).roundToDouble();
1712     double RDensity = (double)RSize.roundToDouble() /
1713                            (Last - RBegin + 1ULL).roundToDouble();
1714     double Metric = Range.logBase2()*(LDensity+RDensity);
1715     // Should always split in some non-trivial place
1716     DEBUG(dbgs() <<"=>Step\n"
1717                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1718                  << "LDensity: " << LDensity
1719                  << ", RDensity: " << RDensity << '\n'
1720                  << "Metric: " << Metric << '\n');
1721     if (FMetric < Metric) {
1722       Pivot = J;
1723       FMetric = Metric;
1724       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1725     }
1726 
1727     LSize += J->size();
1728     RSize -= J->size();
1729   }
1730   if (areJTsAllowed(TLI)) {
1731     // If our case is dense we *really* should handle it earlier!
1732     assert((FMetric > 0) && "Should handle dense range earlier!");
1733   } else {
1734     Pivot = CR.Range.first + Size/2;
1735   }
1736 
1737   CaseRange LHSR(CR.Range.first, Pivot);
1738   CaseRange RHSR(Pivot, CR.Range.second);
1739   Constant *C = Pivot->Low;
1740   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1741 
1742   // We know that we branch to the LHS if the Value being switched on is
1743   // less than the Pivot value, C.  We use this to optimize our binary
1744   // tree a bit, by recognizing that if SV is greater than or equal to the
1745   // LHS's Case Value, and that Case Value is exactly one less than the
1746   // Pivot's Value, then we can branch directly to the LHS's Target,
1747   // rather than creating a leaf node for it.
1748   if ((LHSR.second - LHSR.first) == 1 &&
1749       LHSR.first->High == CR.GE &&
1750       cast<ConstantInt>(C)->getValue() ==
1751       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1752     TrueBB = LHSR.first->BB;
1753   } else {
1754     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1755     CurMF->insert(BBI, TrueBB);
1756     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1757 
1758     // Put SV in a virtual register to make it available from the new blocks.
1759     ExportFromCurrentBlock(SV);
1760   }
1761 
1762   // Similar to the optimization above, if the Value being switched on is
1763   // known to be less than the Constant CR.LT, and the current Case Value
1764   // is CR.LT - 1, then we can branch directly to the target block for
1765   // the current Case Value, rather than emitting a RHS leaf node for it.
1766   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1767       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1768       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1769     FalseBB = RHSR.first->BB;
1770   } else {
1771     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1772     CurMF->insert(BBI, FalseBB);
1773     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1774 
1775     // Put SV in a virtual register to make it available from the new blocks.
1776     ExportFromCurrentBlock(SV);
1777   }
1778 
1779   // Create a CaseBlock record representing a conditional branch to
1780   // the LHS node if the value being switched on SV is less than C.
1781   // Otherwise, branch to LHS.
1782   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1783 
1784   if (CR.CaseBB == SwitchBB)
1785     visitSwitchCase(CB, SwitchBB);
1786   else
1787     SwitchCases.push_back(CB);
1788 
1789   return true;
1790 }
1791 
1792 /// handleBitTestsSwitchCase - if current case range has few destination and
1793 /// range span less, than machine word bitwidth, encode case range into series
1794 /// of masks and emit bit tests with these masks.
1795 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1796                                                    CaseRecVector& WorkList,
1797                                                    const Value* SV,
1798                                                    MachineBasicBlock* Default,
1799                                                    MachineBasicBlock *SwitchBB){
1800   EVT PTy = TLI.getPointerTy();
1801   unsigned IntPtrBits = PTy.getSizeInBits();
1802 
1803   Case& FrontCase = *CR.Range.first;
1804   Case& BackCase  = *(CR.Range.second-1);
1805 
1806   // Get the MachineFunction which holds the current MBB.  This is used when
1807   // inserting any additional MBBs necessary to represent the switch.
1808   MachineFunction *CurMF = FuncInfo.MF;
1809 
1810   // If target does not have legal shift left, do not emit bit tests at all.
1811   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1812     return false;
1813 
1814   size_t numCmps = 0;
1815   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1816        I!=E; ++I) {
1817     // Single case counts one, case range - two.
1818     numCmps += (I->Low == I->High ? 1 : 2);
1819   }
1820 
1821   // Count unique destinations
1822   SmallSet<MachineBasicBlock*, 4> Dests;
1823   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1824     Dests.insert(I->BB);
1825     if (Dests.size() > 3)
1826       // Don't bother the code below, if there are too much unique destinations
1827       return false;
1828   }
1829   DEBUG(dbgs() << "Total number of unique destinations: "
1830         << Dests.size() << '\n'
1831         << "Total number of comparisons: " << numCmps << '\n');
1832 
1833   // Compute span of values.
1834   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1835   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1836   APInt cmpRange = maxValue - minValue;
1837 
1838   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1839                << "Low bound: " << minValue << '\n'
1840                << "High bound: " << maxValue << '\n');
1841 
1842   if (cmpRange.uge(IntPtrBits) ||
1843       (!(Dests.size() == 1 && numCmps >= 3) &&
1844        !(Dests.size() == 2 && numCmps >= 5) &&
1845        !(Dests.size() >= 3 && numCmps >= 6)))
1846     return false;
1847 
1848   DEBUG(dbgs() << "Emitting bit tests\n");
1849   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1850 
1851   // Optimize the case where all the case values fit in a
1852   // word without having to subtract minValue. In this case,
1853   // we can optimize away the subtraction.
1854   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
1855     cmpRange = maxValue;
1856   } else {
1857     lowBound = minValue;
1858   }
1859 
1860   CaseBitsVector CasesBits;
1861   unsigned i, count = 0;
1862 
1863   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1864     MachineBasicBlock* Dest = I->BB;
1865     for (i = 0; i < count; ++i)
1866       if (Dest == CasesBits[i].BB)
1867         break;
1868 
1869     if (i == count) {
1870       assert((count < 3) && "Too much destinations to test!");
1871       CasesBits.push_back(CaseBits(0, Dest, 0));
1872       count++;
1873     }
1874 
1875     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1876     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1877 
1878     uint64_t lo = (lowValue - lowBound).getZExtValue();
1879     uint64_t hi = (highValue - lowBound).getZExtValue();
1880 
1881     for (uint64_t j = lo; j <= hi; j++) {
1882       CasesBits[i].Mask |=  1ULL << j;
1883       CasesBits[i].Bits++;
1884     }
1885 
1886   }
1887   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1888 
1889   BitTestInfo BTC;
1890 
1891   // Figure out which block is immediately after the current one.
1892   MachineFunction::iterator BBI = CR.CaseBB;
1893   ++BBI;
1894 
1895   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1896 
1897   DEBUG(dbgs() << "Cases:\n");
1898   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1899     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1900                  << ", Bits: " << CasesBits[i].Bits
1901                  << ", BB: " << CasesBits[i].BB << '\n');
1902 
1903     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1904     CurMF->insert(BBI, CaseBB);
1905     BTC.push_back(BitTestCase(CasesBits[i].Mask,
1906                               CaseBB,
1907                               CasesBits[i].BB));
1908 
1909     // Put SV in a virtual register to make it available from the new blocks.
1910     ExportFromCurrentBlock(SV);
1911   }
1912 
1913   BitTestBlock BTB(lowBound, cmpRange, SV,
1914                    -1U, (CR.CaseBB == SwitchBB),
1915                    CR.CaseBB, Default, BTC);
1916 
1917   if (CR.CaseBB == SwitchBB)
1918     visitBitTestHeader(BTB, SwitchBB);
1919 
1920   BitTestCases.push_back(BTB);
1921 
1922   return true;
1923 }
1924 
1925 /// Clusterify - Transform simple list of Cases into list of CaseRange's
1926 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1927                                        const SwitchInst& SI) {
1928   size_t numCmps = 0;
1929 
1930   // Start with "simple" cases
1931   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1932     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1933     Cases.push_back(Case(SI.getSuccessorValue(i),
1934                          SI.getSuccessorValue(i),
1935                          SMBB));
1936   }
1937   std::sort(Cases.begin(), Cases.end(), CaseCmp());
1938 
1939   // Merge case into clusters
1940   if (Cases.size() >= 2)
1941     // Must recompute end() each iteration because it may be
1942     // invalidated by erase if we hold on to it
1943     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1944       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1945       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1946       MachineBasicBlock* nextBB = J->BB;
1947       MachineBasicBlock* currentBB = I->BB;
1948 
1949       // If the two neighboring cases go to the same destination, merge them
1950       // into a single case.
1951       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1952         I->High = J->High;
1953         J = Cases.erase(J);
1954       } else {
1955         I = J++;
1956       }
1957     }
1958 
1959   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1960     if (I->Low != I->High)
1961       // A range counts double, since it requires two compares.
1962       ++numCmps;
1963   }
1964 
1965   return numCmps;
1966 }
1967 
1968 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
1969   MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
1970 
1971   // Figure out which block is immediately after the current one.
1972   MachineBasicBlock *NextBlock = 0;
1973   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1974 
1975   // If there is only the default destination, branch to it if it is not the
1976   // next basic block.  Otherwise, just fall through.
1977   if (SI.getNumOperands() == 2) {
1978     // Update machine-CFG edges.
1979 
1980     // If this is not a fall-through branch, emit the branch.
1981     SwitchMBB->addSuccessor(Default);
1982     if (Default != NextBlock)
1983       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1984                               MVT::Other, getControlRoot(),
1985                               DAG.getBasicBlock(Default)));
1986 
1987     return;
1988   }
1989 
1990   // If there are any non-default case statements, create a vector of Cases
1991   // representing each one, and sort the vector so that we can efficiently
1992   // create a binary search tree from them.
1993   CaseVector Cases;
1994   size_t numCmps = Clusterify(Cases, SI);
1995   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
1996                << ". Total compares: " << numCmps << '\n');
1997   numCmps = 0;
1998 
1999   // Get the Value to be switched on and default basic blocks, which will be
2000   // inserted into CaseBlock records, representing basic blocks in the binary
2001   // search tree.
2002   const Value *SV = SI.getOperand(0);
2003 
2004   // Push the initial CaseRec onto the worklist
2005   CaseRecVector WorkList;
2006   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2007                              CaseRange(Cases.begin(),Cases.end())));
2008 
2009   while (!WorkList.empty()) {
2010     // Grab a record representing a case range to process off the worklist
2011     CaseRec CR = WorkList.back();
2012     WorkList.pop_back();
2013 
2014     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2015       continue;
2016 
2017     // If the range has few cases (two or less) emit a series of specific
2018     // tests.
2019     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2020       continue;
2021 
2022     // If the switch has more than 5 blocks, and at least 40% dense, and the
2023     // target supports indirect branches, then emit a jump table rather than
2024     // lowering the switch to a binary tree of conditional branches.
2025     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2026       continue;
2027 
2028     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2029     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2030     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2031   }
2032 }
2033 
2034 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2035   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2036 
2037   // Update machine-CFG edges with unique successors.
2038   SmallVector<BasicBlock*, 32> succs;
2039   succs.reserve(I.getNumSuccessors());
2040   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2041     succs.push_back(I.getSuccessor(i));
2042   array_pod_sort(succs.begin(), succs.end());
2043   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2044   for (unsigned i = 0, e = succs.size(); i != e; ++i)
2045     IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2046 
2047   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2048                           MVT::Other, getControlRoot(),
2049                           getValue(I.getAddress())));
2050 }
2051 
2052 void SelectionDAGBuilder::visitFSub(const User &I) {
2053   // -0.0 - X --> fneg
2054   const Type *Ty = I.getType();
2055   if (Ty->isVectorTy()) {
2056     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2057       const VectorType *DestTy = cast<VectorType>(I.getType());
2058       const Type *ElTy = DestTy->getElementType();
2059       unsigned VL = DestTy->getNumElements();
2060       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2061       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2062       if (CV == CNZ) {
2063         SDValue Op2 = getValue(I.getOperand(1));
2064         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2065                                  Op2.getValueType(), Op2));
2066         return;
2067       }
2068     }
2069   }
2070 
2071   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2072     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2073       SDValue Op2 = getValue(I.getOperand(1));
2074       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2075                                Op2.getValueType(), Op2));
2076       return;
2077     }
2078 
2079   visitBinary(I, ISD::FSUB);
2080 }
2081 
2082 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2083   SDValue Op1 = getValue(I.getOperand(0));
2084   SDValue Op2 = getValue(I.getOperand(1));
2085   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2086                            Op1.getValueType(), Op1, Op2));
2087 }
2088 
2089 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2090   SDValue Op1 = getValue(I.getOperand(0));
2091   SDValue Op2 = getValue(I.getOperand(1));
2092   if (!I.getType()->isVectorTy() &&
2093       Op2.getValueType() != TLI.getShiftAmountTy()) {
2094     // If the operand is smaller than the shift count type, promote it.
2095     EVT PTy = TLI.getPointerTy();
2096     EVT STy = TLI.getShiftAmountTy();
2097     if (STy.bitsGT(Op2.getValueType()))
2098       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2099                         TLI.getShiftAmountTy(), Op2);
2100     // If the operand is larger than the shift count type but the shift
2101     // count type has enough bits to represent any shift value, truncate
2102     // it now. This is a common case and it exposes the truncate to
2103     // optimization early.
2104     else if (STy.getSizeInBits() >=
2105              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2106       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2107                         TLI.getShiftAmountTy(), Op2);
2108     // Otherwise we'll need to temporarily settle for some other
2109     // convenient type; type legalization will make adjustments as
2110     // needed.
2111     else if (PTy.bitsLT(Op2.getValueType()))
2112       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2113                         TLI.getPointerTy(), Op2);
2114     else if (PTy.bitsGT(Op2.getValueType()))
2115       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2116                         TLI.getPointerTy(), Op2);
2117   }
2118 
2119   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2120                            Op1.getValueType(), Op1, Op2));
2121 }
2122 
2123 void SelectionDAGBuilder::visitICmp(const User &I) {
2124   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2125   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2126     predicate = IC->getPredicate();
2127   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2128     predicate = ICmpInst::Predicate(IC->getPredicate());
2129   SDValue Op1 = getValue(I.getOperand(0));
2130   SDValue Op2 = getValue(I.getOperand(1));
2131   ISD::CondCode Opcode = getICmpCondCode(predicate);
2132 
2133   EVT DestVT = TLI.getValueType(I.getType());
2134   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2135 }
2136 
2137 void SelectionDAGBuilder::visitFCmp(const User &I) {
2138   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2139   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2140     predicate = FC->getPredicate();
2141   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2142     predicate = FCmpInst::Predicate(FC->getPredicate());
2143   SDValue Op1 = getValue(I.getOperand(0));
2144   SDValue Op2 = getValue(I.getOperand(1));
2145   ISD::CondCode Condition = getFCmpCondCode(predicate);
2146   EVT DestVT = TLI.getValueType(I.getType());
2147   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2148 }
2149 
2150 void SelectionDAGBuilder::visitSelect(const User &I) {
2151   SmallVector<EVT, 4> ValueVTs;
2152   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2153   unsigned NumValues = ValueVTs.size();
2154   if (NumValues == 0) return;
2155 
2156   SmallVector<SDValue, 4> Values(NumValues);
2157   SDValue Cond     = getValue(I.getOperand(0));
2158   SDValue TrueVal  = getValue(I.getOperand(1));
2159   SDValue FalseVal = getValue(I.getOperand(2));
2160 
2161   for (unsigned i = 0; i != NumValues; ++i)
2162     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2163                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2164                             Cond,
2165                             SDValue(TrueVal.getNode(),
2166                                     TrueVal.getResNo() + i),
2167                             SDValue(FalseVal.getNode(),
2168                                     FalseVal.getResNo() + i));
2169 
2170   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2171                            DAG.getVTList(&ValueVTs[0], NumValues),
2172                            &Values[0], NumValues));
2173 }
2174 
2175 void SelectionDAGBuilder::visitTrunc(const User &I) {
2176   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2177   SDValue N = getValue(I.getOperand(0));
2178   EVT DestVT = TLI.getValueType(I.getType());
2179   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2180 }
2181 
2182 void SelectionDAGBuilder::visitZExt(const User &I) {
2183   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2184   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2185   SDValue N = getValue(I.getOperand(0));
2186   EVT DestVT = TLI.getValueType(I.getType());
2187   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2188 }
2189 
2190 void SelectionDAGBuilder::visitSExt(const User &I) {
2191   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2192   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2193   SDValue N = getValue(I.getOperand(0));
2194   EVT DestVT = TLI.getValueType(I.getType());
2195   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2196 }
2197 
2198 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2199   // FPTrunc is never a no-op cast, no need to check
2200   SDValue N = getValue(I.getOperand(0));
2201   EVT DestVT = TLI.getValueType(I.getType());
2202   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2203                            DestVT, N, DAG.getIntPtrConstant(0)));
2204 }
2205 
2206 void SelectionDAGBuilder::visitFPExt(const User &I){
2207   // FPTrunc is never a no-op cast, no need to check
2208   SDValue N = getValue(I.getOperand(0));
2209   EVT DestVT = TLI.getValueType(I.getType());
2210   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2211 }
2212 
2213 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2214   // FPToUI is never a no-op cast, no need to check
2215   SDValue N = getValue(I.getOperand(0));
2216   EVT DestVT = TLI.getValueType(I.getType());
2217   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2218 }
2219 
2220 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2221   // FPToSI is never a no-op cast, no need to check
2222   SDValue N = getValue(I.getOperand(0));
2223   EVT DestVT = TLI.getValueType(I.getType());
2224   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2225 }
2226 
2227 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2228   // UIToFP is never a no-op cast, no need to check
2229   SDValue N = getValue(I.getOperand(0));
2230   EVT DestVT = TLI.getValueType(I.getType());
2231   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2232 }
2233 
2234 void SelectionDAGBuilder::visitSIToFP(const User &I){
2235   // SIToFP is never a no-op cast, no need to check
2236   SDValue N = getValue(I.getOperand(0));
2237   EVT DestVT = TLI.getValueType(I.getType());
2238   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2239 }
2240 
2241 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2242   // What to do depends on the size of the integer and the size of the pointer.
2243   // We can either truncate, zero extend, or no-op, accordingly.
2244   SDValue N = getValue(I.getOperand(0));
2245   EVT SrcVT = N.getValueType();
2246   EVT DestVT = TLI.getValueType(I.getType());
2247   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2248 }
2249 
2250 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2251   // What to do depends on the size of the integer and the size of the pointer.
2252   // We can either truncate, zero extend, or no-op, accordingly.
2253   SDValue N = getValue(I.getOperand(0));
2254   EVT SrcVT = N.getValueType();
2255   EVT DestVT = TLI.getValueType(I.getType());
2256   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2257 }
2258 
2259 void SelectionDAGBuilder::visitBitCast(const User &I) {
2260   SDValue N = getValue(I.getOperand(0));
2261   EVT DestVT = TLI.getValueType(I.getType());
2262 
2263   // BitCast assures us that source and destination are the same size so this is
2264   // either a BIT_CONVERT or a no-op.
2265   if (DestVT != N.getValueType())
2266     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2267                              DestVT, N)); // convert types.
2268   else
2269     setValue(&I, N);            // noop cast.
2270 }
2271 
2272 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2273   SDValue InVec = getValue(I.getOperand(0));
2274   SDValue InVal = getValue(I.getOperand(1));
2275   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2276                               TLI.getPointerTy(),
2277                               getValue(I.getOperand(2)));
2278   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2279                            TLI.getValueType(I.getType()),
2280                            InVec, InVal, InIdx));
2281 }
2282 
2283 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2284   SDValue InVec = getValue(I.getOperand(0));
2285   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2286                               TLI.getPointerTy(),
2287                               getValue(I.getOperand(1)));
2288   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2289                            TLI.getValueType(I.getType()), InVec, InIdx));
2290 }
2291 
2292 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2293 // from SIndx and increasing to the element length (undefs are allowed).
2294 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2295   unsigned MaskNumElts = Mask.size();
2296   for (unsigned i = 0; i != MaskNumElts; ++i)
2297     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2298       return false;
2299   return true;
2300 }
2301 
2302 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2303   SmallVector<int, 8> Mask;
2304   SDValue Src1 = getValue(I.getOperand(0));
2305   SDValue Src2 = getValue(I.getOperand(1));
2306 
2307   // Convert the ConstantVector mask operand into an array of ints, with -1
2308   // representing undef values.
2309   SmallVector<Constant*, 8> MaskElts;
2310   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2311   unsigned MaskNumElts = MaskElts.size();
2312   for (unsigned i = 0; i != MaskNumElts; ++i) {
2313     if (isa<UndefValue>(MaskElts[i]))
2314       Mask.push_back(-1);
2315     else
2316       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2317   }
2318 
2319   EVT VT = TLI.getValueType(I.getType());
2320   EVT SrcVT = Src1.getValueType();
2321   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2322 
2323   if (SrcNumElts == MaskNumElts) {
2324     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2325                                       &Mask[0]));
2326     return;
2327   }
2328 
2329   // Normalize the shuffle vector since mask and vector length don't match.
2330   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2331     // Mask is longer than the source vectors and is a multiple of the source
2332     // vectors.  We can use concatenate vector to make the mask and vectors
2333     // lengths match.
2334     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2335       // The shuffle is concatenating two vectors together.
2336       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2337                                VT, Src1, Src2));
2338       return;
2339     }
2340 
2341     // Pad both vectors with undefs to make them the same length as the mask.
2342     unsigned NumConcat = MaskNumElts / SrcNumElts;
2343     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2344     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2345     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2346 
2347     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2348     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2349     MOps1[0] = Src1;
2350     MOps2[0] = Src2;
2351 
2352     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2353                                                   getCurDebugLoc(), VT,
2354                                                   &MOps1[0], NumConcat);
2355     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2356                                                   getCurDebugLoc(), VT,
2357                                                   &MOps2[0], NumConcat);
2358 
2359     // Readjust mask for new input vector length.
2360     SmallVector<int, 8> MappedOps;
2361     for (unsigned i = 0; i != MaskNumElts; ++i) {
2362       int Idx = Mask[i];
2363       if (Idx < (int)SrcNumElts)
2364         MappedOps.push_back(Idx);
2365       else
2366         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2367     }
2368 
2369     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2370                                       &MappedOps[0]));
2371     return;
2372   }
2373 
2374   if (SrcNumElts > MaskNumElts) {
2375     // Analyze the access pattern of the vector to see if we can extract
2376     // two subvectors and do the shuffle. The analysis is done by calculating
2377     // the range of elements the mask access on both vectors.
2378     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2379     int MaxRange[2] = {-1, -1};
2380 
2381     for (unsigned i = 0; i != MaskNumElts; ++i) {
2382       int Idx = Mask[i];
2383       int Input = 0;
2384       if (Idx < 0)
2385         continue;
2386 
2387       if (Idx >= (int)SrcNumElts) {
2388         Input = 1;
2389         Idx -= SrcNumElts;
2390       }
2391       if (Idx > MaxRange[Input])
2392         MaxRange[Input] = Idx;
2393       if (Idx < MinRange[Input])
2394         MinRange[Input] = Idx;
2395     }
2396 
2397     // Check if the access is smaller than the vector size and can we find
2398     // a reasonable extract index.
2399     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2400                                  // Extract.
2401     int StartIdx[2];  // StartIdx to extract from
2402     for (int Input=0; Input < 2; ++Input) {
2403       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2404         RangeUse[Input] = 0; // Unused
2405         StartIdx[Input] = 0;
2406       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2407         // Fits within range but we should see if we can find a good
2408         // start index that is a multiple of the mask length.
2409         if (MaxRange[Input] < (int)MaskNumElts) {
2410           RangeUse[Input] = 1; // Extract from beginning of the vector
2411           StartIdx[Input] = 0;
2412         } else {
2413           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2414           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2415               StartIdx[Input] + MaskNumElts < SrcNumElts)
2416             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2417         }
2418       }
2419     }
2420 
2421     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2422       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2423       return;
2424     }
2425     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2426       // Extract appropriate subvector and generate a vector shuffle
2427       for (int Input=0; Input < 2; ++Input) {
2428         SDValue &Src = Input == 0 ? Src1 : Src2;
2429         if (RangeUse[Input] == 0)
2430           Src = DAG.getUNDEF(VT);
2431         else
2432           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2433                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2434       }
2435 
2436       // Calculate new mask.
2437       SmallVector<int, 8> MappedOps;
2438       for (unsigned i = 0; i != MaskNumElts; ++i) {
2439         int Idx = Mask[i];
2440         if (Idx < 0)
2441           MappedOps.push_back(Idx);
2442         else if (Idx < (int)SrcNumElts)
2443           MappedOps.push_back(Idx - StartIdx[0]);
2444         else
2445           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2446       }
2447 
2448       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2449                                         &MappedOps[0]));
2450       return;
2451     }
2452   }
2453 
2454   // We can't use either concat vectors or extract subvectors so fall back to
2455   // replacing the shuffle with extract and build vector.
2456   // to insert and build vector.
2457   EVT EltVT = VT.getVectorElementType();
2458   EVT PtrVT = TLI.getPointerTy();
2459   SmallVector<SDValue,8> Ops;
2460   for (unsigned i = 0; i != MaskNumElts; ++i) {
2461     if (Mask[i] < 0) {
2462       Ops.push_back(DAG.getUNDEF(EltVT));
2463     } else {
2464       int Idx = Mask[i];
2465       SDValue Res;
2466 
2467       if (Idx < (int)SrcNumElts)
2468         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2469                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2470       else
2471         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2472                           EltVT, Src2,
2473                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2474 
2475       Ops.push_back(Res);
2476     }
2477   }
2478 
2479   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2480                            VT, &Ops[0], Ops.size()));
2481 }
2482 
2483 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2484   const Value *Op0 = I.getOperand(0);
2485   const Value *Op1 = I.getOperand(1);
2486   const Type *AggTy = I.getType();
2487   const Type *ValTy = Op1->getType();
2488   bool IntoUndef = isa<UndefValue>(Op0);
2489   bool FromUndef = isa<UndefValue>(Op1);
2490 
2491   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2492                                             I.idx_begin(), I.idx_end());
2493 
2494   SmallVector<EVT, 4> AggValueVTs;
2495   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2496   SmallVector<EVT, 4> ValValueVTs;
2497   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2498 
2499   unsigned NumAggValues = AggValueVTs.size();
2500   unsigned NumValValues = ValValueVTs.size();
2501   SmallVector<SDValue, 4> Values(NumAggValues);
2502 
2503   SDValue Agg = getValue(Op0);
2504   SDValue Val = getValue(Op1);
2505   unsigned i = 0;
2506   // Copy the beginning value(s) from the original aggregate.
2507   for (; i != LinearIndex; ++i)
2508     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2509                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2510   // Copy values from the inserted value(s).
2511   for (; i != LinearIndex + NumValValues; ++i)
2512     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2513                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2514   // Copy remaining value(s) from the original aggregate.
2515   for (; i != NumAggValues; ++i)
2516     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2517                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2518 
2519   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2520                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2521                            &Values[0], NumAggValues));
2522 }
2523 
2524 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2525   const Value *Op0 = I.getOperand(0);
2526   const Type *AggTy = Op0->getType();
2527   const Type *ValTy = I.getType();
2528   bool OutOfUndef = isa<UndefValue>(Op0);
2529 
2530   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2531                                             I.idx_begin(), I.idx_end());
2532 
2533   SmallVector<EVT, 4> ValValueVTs;
2534   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2535 
2536   unsigned NumValValues = ValValueVTs.size();
2537   SmallVector<SDValue, 4> Values(NumValValues);
2538 
2539   SDValue Agg = getValue(Op0);
2540   // Copy out the selected value(s).
2541   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2542     Values[i - LinearIndex] =
2543       OutOfUndef ?
2544         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2545         SDValue(Agg.getNode(), Agg.getResNo() + i);
2546 
2547   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2548                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2549                            &Values[0], NumValValues));
2550 }
2551 
2552 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2553   SDValue N = getValue(I.getOperand(0));
2554   const Type *Ty = I.getOperand(0)->getType();
2555 
2556   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2557        OI != E; ++OI) {
2558     const Value *Idx = *OI;
2559     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2560       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2561       if (Field) {
2562         // N = N + Offset
2563         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2564         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2565                         DAG.getIntPtrConstant(Offset));
2566       }
2567 
2568       Ty = StTy->getElementType(Field);
2569     } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2570       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2571 
2572       // Offset canonically 0 for unions, but type changes
2573       Ty = UnTy->getElementType(Field);
2574     } else {
2575       Ty = cast<SequentialType>(Ty)->getElementType();
2576 
2577       // If this is a constant subscript, handle it quickly.
2578       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2579         if (CI->getZExtValue() == 0) continue;
2580         uint64_t Offs =
2581             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2582         SDValue OffsVal;
2583         EVT PTy = TLI.getPointerTy();
2584         unsigned PtrBits = PTy.getSizeInBits();
2585         if (PtrBits < 64)
2586           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2587                                 TLI.getPointerTy(),
2588                                 DAG.getConstant(Offs, MVT::i64));
2589         else
2590           OffsVal = DAG.getIntPtrConstant(Offs);
2591 
2592         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2593                         OffsVal);
2594         continue;
2595       }
2596 
2597       // N = N + Idx * ElementSize;
2598       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2599                                 TD->getTypeAllocSize(Ty));
2600       SDValue IdxN = getValue(Idx);
2601 
2602       // If the index is smaller or larger than intptr_t, truncate or extend
2603       // it.
2604       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2605 
2606       // If this is a multiply by a power of two, turn it into a shl
2607       // immediately.  This is a very common case.
2608       if (ElementSize != 1) {
2609         if (ElementSize.isPowerOf2()) {
2610           unsigned Amt = ElementSize.logBase2();
2611           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2612                              N.getValueType(), IdxN,
2613                              DAG.getConstant(Amt, TLI.getPointerTy()));
2614         } else {
2615           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2616           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2617                              N.getValueType(), IdxN, Scale);
2618         }
2619       }
2620 
2621       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2622                       N.getValueType(), N, IdxN);
2623     }
2624   }
2625 
2626   setValue(&I, N);
2627 }
2628 
2629 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2630   // If this is a fixed sized alloca in the entry block of the function,
2631   // allocate it statically on the stack.
2632   if (FuncInfo.StaticAllocaMap.count(&I))
2633     return;   // getValue will auto-populate this.
2634 
2635   const Type *Ty = I.getAllocatedType();
2636   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2637   unsigned Align =
2638     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2639              I.getAlignment());
2640 
2641   SDValue AllocSize = getValue(I.getArraySize());
2642 
2643   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2644                           AllocSize,
2645                           DAG.getConstant(TySize, AllocSize.getValueType()));
2646 
2647   EVT IntPtr = TLI.getPointerTy();
2648   AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2649 
2650   // Handle alignment.  If the requested alignment is less than or equal to
2651   // the stack alignment, ignore it.  If the size is greater than or equal to
2652   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2653   unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2654   if (Align <= StackAlign)
2655     Align = 0;
2656 
2657   // Round the size of the allocation up to the stack alignment size
2658   // by add SA-1 to the size.
2659   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2660                           AllocSize.getValueType(), AllocSize,
2661                           DAG.getIntPtrConstant(StackAlign-1));
2662 
2663   // Mask out the low bits for alignment purposes.
2664   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2665                           AllocSize.getValueType(), AllocSize,
2666                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2667 
2668   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2669   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2670   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2671                             VTs, Ops, 3);
2672   setValue(&I, DSA);
2673   DAG.setRoot(DSA.getValue(1));
2674 
2675   // Inform the Frame Information that we have just allocated a variable-sized
2676   // object.
2677   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2678 }
2679 
2680 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2681   const Value *SV = I.getOperand(0);
2682   SDValue Ptr = getValue(SV);
2683 
2684   const Type *Ty = I.getType();
2685 
2686   bool isVolatile = I.isVolatile();
2687   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2688   unsigned Alignment = I.getAlignment();
2689 
2690   SmallVector<EVT, 4> ValueVTs;
2691   SmallVector<uint64_t, 4> Offsets;
2692   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2693   unsigned NumValues = ValueVTs.size();
2694   if (NumValues == 0)
2695     return;
2696 
2697   SDValue Root;
2698   bool ConstantMemory = false;
2699   if (I.isVolatile())
2700     // Serialize volatile loads with other side effects.
2701     Root = getRoot();
2702   else if (AA->pointsToConstantMemory(SV)) {
2703     // Do not serialize (non-volatile) loads of constant memory with anything.
2704     Root = DAG.getEntryNode();
2705     ConstantMemory = true;
2706   } else {
2707     // Do not serialize non-volatile loads against each other.
2708     Root = DAG.getRoot();
2709   }
2710 
2711   SmallVector<SDValue, 4> Values(NumValues);
2712   SmallVector<SDValue, 4> Chains(NumValues);
2713   EVT PtrVT = Ptr.getValueType();
2714   for (unsigned i = 0; i != NumValues; ++i) {
2715     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2716                             PtrVT, Ptr,
2717                             DAG.getConstant(Offsets[i], PtrVT));
2718     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2719                             A, SV, Offsets[i], isVolatile,
2720                             isNonTemporal, Alignment);
2721 
2722     Values[i] = L;
2723     Chains[i] = L.getValue(1);
2724   }
2725 
2726   if (!ConstantMemory) {
2727     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2728                                 MVT::Other, &Chains[0], NumValues);
2729     if (isVolatile)
2730       DAG.setRoot(Chain);
2731     else
2732       PendingLoads.push_back(Chain);
2733   }
2734 
2735   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2736                            DAG.getVTList(&ValueVTs[0], NumValues),
2737                            &Values[0], NumValues));
2738 }
2739 
2740 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2741   const Value *SrcV = I.getOperand(0);
2742   const Value *PtrV = I.getOperand(1);
2743 
2744   SmallVector<EVT, 4> ValueVTs;
2745   SmallVector<uint64_t, 4> Offsets;
2746   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2747   unsigned NumValues = ValueVTs.size();
2748   if (NumValues == 0)
2749     return;
2750 
2751   // Get the lowered operands. Note that we do this after
2752   // checking if NumResults is zero, because with zero results
2753   // the operands won't have values in the map.
2754   SDValue Src = getValue(SrcV);
2755   SDValue Ptr = getValue(PtrV);
2756 
2757   SDValue Root = getRoot();
2758   SmallVector<SDValue, 4> Chains(NumValues);
2759   EVT PtrVT = Ptr.getValueType();
2760   bool isVolatile = I.isVolatile();
2761   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2762   unsigned Alignment = I.getAlignment();
2763 
2764   for (unsigned i = 0; i != NumValues; ++i) {
2765     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2766                               DAG.getConstant(Offsets[i], PtrVT));
2767     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2768                              SDValue(Src.getNode(), Src.getResNo() + i),
2769                              Add, PtrV, Offsets[i], isVolatile,
2770                              isNonTemporal, Alignment);
2771   }
2772 
2773   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2774                           MVT::Other, &Chains[0], NumValues));
2775 }
2776 
2777 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2778 /// node.
2779 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2780                                                unsigned Intrinsic) {
2781   bool HasChain = !I.doesNotAccessMemory();
2782   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2783 
2784   // Build the operand list.
2785   SmallVector<SDValue, 8> Ops;
2786   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2787     if (OnlyLoad) {
2788       // We don't need to serialize loads against other loads.
2789       Ops.push_back(DAG.getRoot());
2790     } else {
2791       Ops.push_back(getRoot());
2792     }
2793   }
2794 
2795   // Info is set by getTgtMemInstrinsic
2796   TargetLowering::IntrinsicInfo Info;
2797   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2798 
2799   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2800   if (!IsTgtIntrinsic)
2801     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2802 
2803   // Add all operands of the call to the operand list.
2804   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2805     SDValue Op = getValue(I.getOperand(i));
2806     assert(TLI.isTypeLegal(Op.getValueType()) &&
2807            "Intrinsic uses a non-legal type?");
2808     Ops.push_back(Op);
2809   }
2810 
2811   SmallVector<EVT, 4> ValueVTs;
2812   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2813 #ifndef NDEBUG
2814   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2815     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2816            "Intrinsic uses a non-legal type?");
2817   }
2818 #endif // NDEBUG
2819 
2820   if (HasChain)
2821     ValueVTs.push_back(MVT::Other);
2822 
2823   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2824 
2825   // Create the node.
2826   SDValue Result;
2827   if (IsTgtIntrinsic) {
2828     // This is target intrinsic that touches memory
2829     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2830                                      VTs, &Ops[0], Ops.size(),
2831                                      Info.memVT, Info.ptrVal, Info.offset,
2832                                      Info.align, Info.vol,
2833                                      Info.readMem, Info.writeMem);
2834   } else if (!HasChain) {
2835     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2836                          VTs, &Ops[0], Ops.size());
2837   } else if (!I.getType()->isVoidTy()) {
2838     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2839                          VTs, &Ops[0], Ops.size());
2840   } else {
2841     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2842                          VTs, &Ops[0], Ops.size());
2843   }
2844 
2845   if (HasChain) {
2846     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2847     if (OnlyLoad)
2848       PendingLoads.push_back(Chain);
2849     else
2850       DAG.setRoot(Chain);
2851   }
2852 
2853   if (!I.getType()->isVoidTy()) {
2854     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2855       EVT VT = TLI.getValueType(PTy);
2856       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2857     }
2858 
2859     setValue(&I, Result);
2860   }
2861 }
2862 
2863 /// GetSignificand - Get the significand and build it into a floating-point
2864 /// number with exponent of 1:
2865 ///
2866 ///   Op = (Op & 0x007fffff) | 0x3f800000;
2867 ///
2868 /// where Op is the hexidecimal representation of floating point value.
2869 static SDValue
2870 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2871   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2872                            DAG.getConstant(0x007fffff, MVT::i32));
2873   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2874                            DAG.getConstant(0x3f800000, MVT::i32));
2875   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2876 }
2877 
2878 /// GetExponent - Get the exponent:
2879 ///
2880 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2881 ///
2882 /// where Op is the hexidecimal representation of floating point value.
2883 static SDValue
2884 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2885             DebugLoc dl) {
2886   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2887                            DAG.getConstant(0x7f800000, MVT::i32));
2888   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2889                            DAG.getConstant(23, TLI.getPointerTy()));
2890   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2891                            DAG.getConstant(127, MVT::i32));
2892   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2893 }
2894 
2895 /// getF32Constant - Get 32-bit floating point constant.
2896 static SDValue
2897 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2898   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2899 }
2900 
2901 /// Inlined utility function to implement binary input atomic intrinsics for
2902 /// visitIntrinsicCall: I is a call instruction
2903 ///                     Op is the associated NodeType for I
2904 const char *
2905 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
2906                                            ISD::NodeType Op) {
2907   SDValue Root = getRoot();
2908   SDValue L =
2909     DAG.getAtomic(Op, getCurDebugLoc(),
2910                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2911                   Root,
2912                   getValue(I.getOperand(1)),
2913                   getValue(I.getOperand(2)),
2914                   I.getOperand(1));
2915   setValue(&I, L);
2916   DAG.setRoot(L.getValue(1));
2917   return 0;
2918 }
2919 
2920 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2921 const char *
2922 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
2923   SDValue Op1 = getValue(I.getOperand(1));
2924   SDValue Op2 = getValue(I.getOperand(2));
2925 
2926   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2927   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2928   return 0;
2929 }
2930 
2931 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
2932 /// limited-precision mode.
2933 void
2934 SelectionDAGBuilder::visitExp(const CallInst &I) {
2935   SDValue result;
2936   DebugLoc dl = getCurDebugLoc();
2937 
2938   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2939       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2940     SDValue Op = getValue(I.getOperand(1));
2941 
2942     // Put the exponent in the right bit position for later addition to the
2943     // final result:
2944     //
2945     //   #define LOG2OFe 1.4426950f
2946     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2947     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2948                              getF32Constant(DAG, 0x3fb8aa3b));
2949     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2950 
2951     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2952     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2953     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2954 
2955     //   IntegerPartOfX <<= 23;
2956     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2957                                  DAG.getConstant(23, TLI.getPointerTy()));
2958 
2959     if (LimitFloatPrecision <= 6) {
2960       // For floating-point precision of 6:
2961       //
2962       //   TwoToFractionalPartOfX =
2963       //     0.997535578f +
2964       //       (0.735607626f + 0.252464424f * x) * x;
2965       //
2966       // error 0.0144103317, which is 6 bits
2967       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2968                                getF32Constant(DAG, 0x3e814304));
2969       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2970                                getF32Constant(DAG, 0x3f3c50c8));
2971       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2972       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2973                                getF32Constant(DAG, 0x3f7f5e7e));
2974       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2975 
2976       // Add the exponent into the result in integer domain.
2977       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2978                                TwoToFracPartOfX, IntegerPartOfX);
2979 
2980       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2981     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2982       // For floating-point precision of 12:
2983       //
2984       //   TwoToFractionalPartOfX =
2985       //     0.999892986f +
2986       //       (0.696457318f +
2987       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2988       //
2989       // 0.000107046256 error, which is 13 to 14 bits
2990       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2991                                getF32Constant(DAG, 0x3da235e3));
2992       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2993                                getF32Constant(DAG, 0x3e65b8f3));
2994       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2995       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2996                                getF32Constant(DAG, 0x3f324b07));
2997       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
2998       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
2999                                getF32Constant(DAG, 0x3f7ff8fd));
3000       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3001 
3002       // Add the exponent into the result in integer domain.
3003       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3004                                TwoToFracPartOfX, IntegerPartOfX);
3005 
3006       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3007     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3008       // For floating-point precision of 18:
3009       //
3010       //   TwoToFractionalPartOfX =
3011       //     0.999999982f +
3012       //       (0.693148872f +
3013       //         (0.240227044f +
3014       //           (0.554906021e-1f +
3015       //             (0.961591928e-2f +
3016       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3017       //
3018       // error 2.47208000*10^(-7), which is better than 18 bits
3019       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3020                                getF32Constant(DAG, 0x3924b03e));
3021       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3022                                getF32Constant(DAG, 0x3ab24b87));
3023       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3024       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3025                                getF32Constant(DAG, 0x3c1d8c17));
3026       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3027       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3028                                getF32Constant(DAG, 0x3d634a1d));
3029       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3030       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3031                                getF32Constant(DAG, 0x3e75fe14));
3032       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3033       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3034                                 getF32Constant(DAG, 0x3f317234));
3035       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3036       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3037                                 getF32Constant(DAG, 0x3f800000));
3038       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3039                                              MVT::i32, t13);
3040 
3041       // Add the exponent into the result in integer domain.
3042       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3043                                 TwoToFracPartOfX, IntegerPartOfX);
3044 
3045       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3046     }
3047   } else {
3048     // No special expansion.
3049     result = DAG.getNode(ISD::FEXP, dl,
3050                          getValue(I.getOperand(1)).getValueType(),
3051                          getValue(I.getOperand(1)));
3052   }
3053 
3054   setValue(&I, result);
3055 }
3056 
3057 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3058 /// limited-precision mode.
3059 void
3060 SelectionDAGBuilder::visitLog(const CallInst &I) {
3061   SDValue result;
3062   DebugLoc dl = getCurDebugLoc();
3063 
3064   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3065       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3066     SDValue Op = getValue(I.getOperand(1));
3067     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3068 
3069     // Scale the exponent by log(2) [0.69314718f].
3070     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3071     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3072                                         getF32Constant(DAG, 0x3f317218));
3073 
3074     // Get the significand and build it into a floating-point number with
3075     // exponent of 1.
3076     SDValue X = GetSignificand(DAG, Op1, dl);
3077 
3078     if (LimitFloatPrecision <= 6) {
3079       // For floating-point precision of 6:
3080       //
3081       //   LogofMantissa =
3082       //     -1.1609546f +
3083       //       (1.4034025f - 0.23903021f * x) * x;
3084       //
3085       // error 0.0034276066, which is better than 8 bits
3086       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3087                                getF32Constant(DAG, 0xbe74c456));
3088       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3089                                getF32Constant(DAG, 0x3fb3a2b1));
3090       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3091       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3092                                           getF32Constant(DAG, 0x3f949a29));
3093 
3094       result = DAG.getNode(ISD::FADD, dl,
3095                            MVT::f32, LogOfExponent, LogOfMantissa);
3096     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3097       // For floating-point precision of 12:
3098       //
3099       //   LogOfMantissa =
3100       //     -1.7417939f +
3101       //       (2.8212026f +
3102       //         (-1.4699568f +
3103       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3104       //
3105       // error 0.000061011436, which is 14 bits
3106       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3107                                getF32Constant(DAG, 0xbd67b6d6));
3108       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3109                                getF32Constant(DAG, 0x3ee4f4b8));
3110       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3111       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3112                                getF32Constant(DAG, 0x3fbc278b));
3113       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3114       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3115                                getF32Constant(DAG, 0x40348e95));
3116       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3117       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3118                                           getF32Constant(DAG, 0x3fdef31a));
3119 
3120       result = DAG.getNode(ISD::FADD, dl,
3121                            MVT::f32, LogOfExponent, LogOfMantissa);
3122     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3123       // For floating-point precision of 18:
3124       //
3125       //   LogOfMantissa =
3126       //     -2.1072184f +
3127       //       (4.2372794f +
3128       //         (-3.7029485f +
3129       //           (2.2781945f +
3130       //             (-0.87823314f +
3131       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3132       //
3133       // error 0.0000023660568, which is better than 18 bits
3134       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3135                                getF32Constant(DAG, 0xbc91e5ac));
3136       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3137                                getF32Constant(DAG, 0x3e4350aa));
3138       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3139       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3140                                getF32Constant(DAG, 0x3f60d3e3));
3141       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3142       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3143                                getF32Constant(DAG, 0x4011cdf0));
3144       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3145       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3146                                getF32Constant(DAG, 0x406cfd1c));
3147       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3148       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3149                                getF32Constant(DAG, 0x408797cb));
3150       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3151       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3152                                           getF32Constant(DAG, 0x4006dcab));
3153 
3154       result = DAG.getNode(ISD::FADD, dl,
3155                            MVT::f32, LogOfExponent, LogOfMantissa);
3156     }
3157   } else {
3158     // No special expansion.
3159     result = DAG.getNode(ISD::FLOG, dl,
3160                          getValue(I.getOperand(1)).getValueType(),
3161                          getValue(I.getOperand(1)));
3162   }
3163 
3164   setValue(&I, result);
3165 }
3166 
3167 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3168 /// limited-precision mode.
3169 void
3170 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3171   SDValue result;
3172   DebugLoc dl = getCurDebugLoc();
3173 
3174   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3175       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3176     SDValue Op = getValue(I.getOperand(1));
3177     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3178 
3179     // Get the exponent.
3180     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3181 
3182     // Get the significand and build it into a floating-point number with
3183     // exponent of 1.
3184     SDValue X = GetSignificand(DAG, Op1, dl);
3185 
3186     // Different possible minimax approximations of significand in
3187     // floating-point for various degrees of accuracy over [1,2].
3188     if (LimitFloatPrecision <= 6) {
3189       // For floating-point precision of 6:
3190       //
3191       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3192       //
3193       // error 0.0049451742, which is more than 7 bits
3194       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3195                                getF32Constant(DAG, 0xbeb08fe0));
3196       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3197                                getF32Constant(DAG, 0x40019463));
3198       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3199       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3200                                            getF32Constant(DAG, 0x3fd6633d));
3201 
3202       result = DAG.getNode(ISD::FADD, dl,
3203                            MVT::f32, LogOfExponent, Log2ofMantissa);
3204     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3205       // For floating-point precision of 12:
3206       //
3207       //   Log2ofMantissa =
3208       //     -2.51285454f +
3209       //       (4.07009056f +
3210       //         (-2.12067489f +
3211       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3212       //
3213       // error 0.0000876136000, which is better than 13 bits
3214       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3215                                getF32Constant(DAG, 0xbda7262e));
3216       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3217                                getF32Constant(DAG, 0x3f25280b));
3218       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3219       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3220                                getF32Constant(DAG, 0x4007b923));
3221       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3222       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3223                                getF32Constant(DAG, 0x40823e2f));
3224       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3225       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3226                                            getF32Constant(DAG, 0x4020d29c));
3227 
3228       result = DAG.getNode(ISD::FADD, dl,
3229                            MVT::f32, LogOfExponent, Log2ofMantissa);
3230     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3231       // For floating-point precision of 18:
3232       //
3233       //   Log2ofMantissa =
3234       //     -3.0400495f +
3235       //       (6.1129976f +
3236       //         (-5.3420409f +
3237       //           (3.2865683f +
3238       //             (-1.2669343f +
3239       //               (0.27515199f -
3240       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3241       //
3242       // error 0.0000018516, which is better than 18 bits
3243       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3244                                getF32Constant(DAG, 0xbcd2769e));
3245       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3246                                getF32Constant(DAG, 0x3e8ce0b9));
3247       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3248       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3249                                getF32Constant(DAG, 0x3fa22ae7));
3250       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3251       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3252                                getF32Constant(DAG, 0x40525723));
3253       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3254       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3255                                getF32Constant(DAG, 0x40aaf200));
3256       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3257       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3258                                getF32Constant(DAG, 0x40c39dad));
3259       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3260       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3261                                            getF32Constant(DAG, 0x4042902c));
3262 
3263       result = DAG.getNode(ISD::FADD, dl,
3264                            MVT::f32, LogOfExponent, Log2ofMantissa);
3265     }
3266   } else {
3267     // No special expansion.
3268     result = DAG.getNode(ISD::FLOG2, dl,
3269                          getValue(I.getOperand(1)).getValueType(),
3270                          getValue(I.getOperand(1)));
3271   }
3272 
3273   setValue(&I, result);
3274 }
3275 
3276 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3277 /// limited-precision mode.
3278 void
3279 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3280   SDValue result;
3281   DebugLoc dl = getCurDebugLoc();
3282 
3283   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3284       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3285     SDValue Op = getValue(I.getOperand(1));
3286     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3287 
3288     // Scale the exponent by log10(2) [0.30102999f].
3289     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3290     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3291                                         getF32Constant(DAG, 0x3e9a209a));
3292 
3293     // Get the significand and build it into a floating-point number with
3294     // exponent of 1.
3295     SDValue X = GetSignificand(DAG, Op1, dl);
3296 
3297     if (LimitFloatPrecision <= 6) {
3298       // For floating-point precision of 6:
3299       //
3300       //   Log10ofMantissa =
3301       //     -0.50419619f +
3302       //       (0.60948995f - 0.10380950f * x) * x;
3303       //
3304       // error 0.0014886165, which is 6 bits
3305       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3306                                getF32Constant(DAG, 0xbdd49a13));
3307       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3308                                getF32Constant(DAG, 0x3f1c0789));
3309       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3310       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3311                                             getF32Constant(DAG, 0x3f011300));
3312 
3313       result = DAG.getNode(ISD::FADD, dl,
3314                            MVT::f32, LogOfExponent, Log10ofMantissa);
3315     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3316       // For floating-point precision of 12:
3317       //
3318       //   Log10ofMantissa =
3319       //     -0.64831180f +
3320       //       (0.91751397f +
3321       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3322       //
3323       // error 0.00019228036, which is better than 12 bits
3324       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3325                                getF32Constant(DAG, 0x3d431f31));
3326       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3327                                getF32Constant(DAG, 0x3ea21fb2));
3328       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3329       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3330                                getF32Constant(DAG, 0x3f6ae232));
3331       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3332       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3333                                             getF32Constant(DAG, 0x3f25f7c3));
3334 
3335       result = DAG.getNode(ISD::FADD, dl,
3336                            MVT::f32, LogOfExponent, Log10ofMantissa);
3337     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3338       // For floating-point precision of 18:
3339       //
3340       //   Log10ofMantissa =
3341       //     -0.84299375f +
3342       //       (1.5327582f +
3343       //         (-1.0688956f +
3344       //           (0.49102474f +
3345       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3346       //
3347       // error 0.0000037995730, which is better than 18 bits
3348       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3349                                getF32Constant(DAG, 0x3c5d51ce));
3350       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3351                                getF32Constant(DAG, 0x3e00685a));
3352       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3353       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3354                                getF32Constant(DAG, 0x3efb6798));
3355       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3356       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3357                                getF32Constant(DAG, 0x3f88d192));
3358       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3359       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3360                                getF32Constant(DAG, 0x3fc4316c));
3361       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3362       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3363                                             getF32Constant(DAG, 0x3f57ce70));
3364 
3365       result = DAG.getNode(ISD::FADD, dl,
3366                            MVT::f32, LogOfExponent, Log10ofMantissa);
3367     }
3368   } else {
3369     // No special expansion.
3370     result = DAG.getNode(ISD::FLOG10, dl,
3371                          getValue(I.getOperand(1)).getValueType(),
3372                          getValue(I.getOperand(1)));
3373   }
3374 
3375   setValue(&I, result);
3376 }
3377 
3378 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3379 /// limited-precision mode.
3380 void
3381 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3382   SDValue result;
3383   DebugLoc dl = getCurDebugLoc();
3384 
3385   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3386       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3387     SDValue Op = getValue(I.getOperand(1));
3388 
3389     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3390 
3391     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3392     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3393     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3394 
3395     //   IntegerPartOfX <<= 23;
3396     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3397                                  DAG.getConstant(23, TLI.getPointerTy()));
3398 
3399     if (LimitFloatPrecision <= 6) {
3400       // For floating-point precision of 6:
3401       //
3402       //   TwoToFractionalPartOfX =
3403       //     0.997535578f +
3404       //       (0.735607626f + 0.252464424f * x) * x;
3405       //
3406       // error 0.0144103317, which is 6 bits
3407       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3408                                getF32Constant(DAG, 0x3e814304));
3409       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3410                                getF32Constant(DAG, 0x3f3c50c8));
3411       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3412       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3413                                getF32Constant(DAG, 0x3f7f5e7e));
3414       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3415       SDValue TwoToFractionalPartOfX =
3416         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3417 
3418       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3419                            MVT::f32, TwoToFractionalPartOfX);
3420     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3421       // For floating-point precision of 12:
3422       //
3423       //   TwoToFractionalPartOfX =
3424       //     0.999892986f +
3425       //       (0.696457318f +
3426       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3427       //
3428       // error 0.000107046256, which is 13 to 14 bits
3429       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3430                                getF32Constant(DAG, 0x3da235e3));
3431       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3432                                getF32Constant(DAG, 0x3e65b8f3));
3433       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3434       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3435                                getF32Constant(DAG, 0x3f324b07));
3436       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3437       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3438                                getF32Constant(DAG, 0x3f7ff8fd));
3439       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3440       SDValue TwoToFractionalPartOfX =
3441         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3442 
3443       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3444                            MVT::f32, TwoToFractionalPartOfX);
3445     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3446       // For floating-point precision of 18:
3447       //
3448       //   TwoToFractionalPartOfX =
3449       //     0.999999982f +
3450       //       (0.693148872f +
3451       //         (0.240227044f +
3452       //           (0.554906021e-1f +
3453       //             (0.961591928e-2f +
3454       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3455       // error 2.47208000*10^(-7), which is better than 18 bits
3456       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3457                                getF32Constant(DAG, 0x3924b03e));
3458       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3459                                getF32Constant(DAG, 0x3ab24b87));
3460       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3461       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3462                                getF32Constant(DAG, 0x3c1d8c17));
3463       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3464       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3465                                getF32Constant(DAG, 0x3d634a1d));
3466       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3467       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3468                                getF32Constant(DAG, 0x3e75fe14));
3469       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3470       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3471                                 getF32Constant(DAG, 0x3f317234));
3472       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3473       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3474                                 getF32Constant(DAG, 0x3f800000));
3475       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3476       SDValue TwoToFractionalPartOfX =
3477         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3478 
3479       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3480                            MVT::f32, TwoToFractionalPartOfX);
3481     }
3482   } else {
3483     // No special expansion.
3484     result = DAG.getNode(ISD::FEXP2, dl,
3485                          getValue(I.getOperand(1)).getValueType(),
3486                          getValue(I.getOperand(1)));
3487   }
3488 
3489   setValue(&I, result);
3490 }
3491 
3492 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3493 /// limited-precision mode with x == 10.0f.
3494 void
3495 SelectionDAGBuilder::visitPow(const CallInst &I) {
3496   SDValue result;
3497   const Value *Val = I.getOperand(1);
3498   DebugLoc dl = getCurDebugLoc();
3499   bool IsExp10 = false;
3500 
3501   if (getValue(Val).getValueType() == MVT::f32 &&
3502       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3503       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3504     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3505       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3506         APFloat Ten(10.0f);
3507         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3508       }
3509     }
3510   }
3511 
3512   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3513     SDValue Op = getValue(I.getOperand(2));
3514 
3515     // Put the exponent in the right bit position for later addition to the
3516     // final result:
3517     //
3518     //   #define LOG2OF10 3.3219281f
3519     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3520     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3521                              getF32Constant(DAG, 0x40549a78));
3522     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3523 
3524     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3525     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3526     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3527 
3528     //   IntegerPartOfX <<= 23;
3529     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3530                                  DAG.getConstant(23, TLI.getPointerTy()));
3531 
3532     if (LimitFloatPrecision <= 6) {
3533       // For floating-point precision of 6:
3534       //
3535       //   twoToFractionalPartOfX =
3536       //     0.997535578f +
3537       //       (0.735607626f + 0.252464424f * x) * x;
3538       //
3539       // error 0.0144103317, which is 6 bits
3540       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3541                                getF32Constant(DAG, 0x3e814304));
3542       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3543                                getF32Constant(DAG, 0x3f3c50c8));
3544       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3545       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3546                                getF32Constant(DAG, 0x3f7f5e7e));
3547       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3548       SDValue TwoToFractionalPartOfX =
3549         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3550 
3551       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3552                            MVT::f32, TwoToFractionalPartOfX);
3553     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3554       // For floating-point precision of 12:
3555       //
3556       //   TwoToFractionalPartOfX =
3557       //     0.999892986f +
3558       //       (0.696457318f +
3559       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3560       //
3561       // error 0.000107046256, which is 13 to 14 bits
3562       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3563                                getF32Constant(DAG, 0x3da235e3));
3564       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3565                                getF32Constant(DAG, 0x3e65b8f3));
3566       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3567       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3568                                getF32Constant(DAG, 0x3f324b07));
3569       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3570       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3571                                getF32Constant(DAG, 0x3f7ff8fd));
3572       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3573       SDValue TwoToFractionalPartOfX =
3574         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3575 
3576       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3577                            MVT::f32, TwoToFractionalPartOfX);
3578     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3579       // For floating-point precision of 18:
3580       //
3581       //   TwoToFractionalPartOfX =
3582       //     0.999999982f +
3583       //       (0.693148872f +
3584       //         (0.240227044f +
3585       //           (0.554906021e-1f +
3586       //             (0.961591928e-2f +
3587       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3588       // error 2.47208000*10^(-7), which is better than 18 bits
3589       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3590                                getF32Constant(DAG, 0x3924b03e));
3591       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3592                                getF32Constant(DAG, 0x3ab24b87));
3593       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3594       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3595                                getF32Constant(DAG, 0x3c1d8c17));
3596       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3597       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3598                                getF32Constant(DAG, 0x3d634a1d));
3599       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3600       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3601                                getF32Constant(DAG, 0x3e75fe14));
3602       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3603       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3604                                 getF32Constant(DAG, 0x3f317234));
3605       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3606       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3607                                 getF32Constant(DAG, 0x3f800000));
3608       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3609       SDValue TwoToFractionalPartOfX =
3610         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3611 
3612       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3613                            MVT::f32, TwoToFractionalPartOfX);
3614     }
3615   } else {
3616     // No special expansion.
3617     result = DAG.getNode(ISD::FPOW, dl,
3618                          getValue(I.getOperand(1)).getValueType(),
3619                          getValue(I.getOperand(1)),
3620                          getValue(I.getOperand(2)));
3621   }
3622 
3623   setValue(&I, result);
3624 }
3625 
3626 
3627 /// ExpandPowI - Expand a llvm.powi intrinsic.
3628 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3629                           SelectionDAG &DAG) {
3630   // If RHS is a constant, we can expand this out to a multiplication tree,
3631   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3632   // optimizing for size, we only want to do this if the expansion would produce
3633   // a small number of multiplies, otherwise we do the full expansion.
3634   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3635     // Get the exponent as a positive value.
3636     unsigned Val = RHSC->getSExtValue();
3637     if ((int)Val < 0) Val = -Val;
3638 
3639     // powi(x, 0) -> 1.0
3640     if (Val == 0)
3641       return DAG.getConstantFP(1.0, LHS.getValueType());
3642 
3643     const Function *F = DAG.getMachineFunction().getFunction();
3644     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3645         // If optimizing for size, don't insert too many multiplies.  This
3646         // inserts up to 5 multiplies.
3647         CountPopulation_32(Val)+Log2_32(Val) < 7) {
3648       // We use the simple binary decomposition method to generate the multiply
3649       // sequence.  There are more optimal ways to do this (for example,
3650       // powi(x,15) generates one more multiply than it should), but this has
3651       // the benefit of being both really simple and much better than a libcall.
3652       SDValue Res;  // Logically starts equal to 1.0
3653       SDValue CurSquare = LHS;
3654       while (Val) {
3655         if (Val & 1) {
3656           if (Res.getNode())
3657             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3658           else
3659             Res = CurSquare;  // 1.0*CurSquare.
3660         }
3661 
3662         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3663                                 CurSquare, CurSquare);
3664         Val >>= 1;
3665       }
3666 
3667       // If the original was negative, invert the result, producing 1/(x*x*x).
3668       if (RHSC->getSExtValue() < 0)
3669         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3670                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3671       return Res;
3672     }
3673   }
3674 
3675   // Otherwise, expand to a libcall.
3676   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3677 }
3678 
3679 
3680 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3681 /// we want to emit this as a call to a named external function, return the name
3682 /// otherwise lower it and return null.
3683 const char *
3684 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3685   DebugLoc dl = getCurDebugLoc();
3686   SDValue Res;
3687 
3688   switch (Intrinsic) {
3689   default:
3690     // By default, turn this into a target intrinsic node.
3691     visitTargetIntrinsic(I, Intrinsic);
3692     return 0;
3693   case Intrinsic::vastart:  visitVAStart(I); return 0;
3694   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3695   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3696   case Intrinsic::returnaddress:
3697     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3698                              getValue(I.getOperand(1))));
3699     return 0;
3700   case Intrinsic::frameaddress:
3701     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3702                              getValue(I.getOperand(1))));
3703     return 0;
3704   case Intrinsic::setjmp:
3705     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3706   case Intrinsic::longjmp:
3707     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3708   case Intrinsic::memcpy: {
3709     // Assert for address < 256 since we support only user defined address
3710     // spaces.
3711     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3712            < 256 &&
3713            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3714            < 256 &&
3715            "Unknown address space");
3716     SDValue Op1 = getValue(I.getOperand(1));
3717     SDValue Op2 = getValue(I.getOperand(2));
3718     SDValue Op3 = getValue(I.getOperand(3));
3719     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3720     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3721     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3722                               I.getOperand(1), 0, I.getOperand(2), 0));
3723     return 0;
3724   }
3725   case Intrinsic::memset: {
3726     // Assert for address < 256 since we support only user defined address
3727     // spaces.
3728     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3729            < 256 &&
3730            "Unknown address space");
3731     SDValue Op1 = getValue(I.getOperand(1));
3732     SDValue Op2 = getValue(I.getOperand(2));
3733     SDValue Op3 = getValue(I.getOperand(3));
3734     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3735     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3736     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3737                               I.getOperand(1), 0));
3738     return 0;
3739   }
3740   case Intrinsic::memmove: {
3741     // Assert for address < 256 since we support only user defined address
3742     // spaces.
3743     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3744            < 256 &&
3745            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3746            < 256 &&
3747            "Unknown address space");
3748     SDValue Op1 = getValue(I.getOperand(1));
3749     SDValue Op2 = getValue(I.getOperand(2));
3750     SDValue Op3 = getValue(I.getOperand(3));
3751     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3752     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3753 
3754     // If the source and destination are known to not be aliases, we can
3755     // lower memmove as memcpy.
3756     uint64_t Size = -1ULL;
3757     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3758       Size = C->getZExtValue();
3759     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3760         AliasAnalysis::NoAlias) {
3761       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3762                                 false, I.getOperand(1), 0, I.getOperand(2), 0));
3763       return 0;
3764     }
3765 
3766     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3767                                I.getOperand(1), 0, I.getOperand(2), 0));
3768     return 0;
3769   }
3770   case Intrinsic::dbg_declare: {
3771     // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3772     // The real handling of this intrinsic is in FastISel.
3773     if (OptLevel != CodeGenOpt::None)
3774       // FIXME: Variable debug info is not supported here.
3775       return 0;
3776     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3777     if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3778       return 0;
3779 
3780     MDNode *Variable = DI.getVariable();
3781     const Value *Address = DI.getAddress();
3782     if (!Address)
3783       return 0;
3784     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3785       Address = BCI->getOperand(0);
3786     const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3787     // Don't handle byval struct arguments or VLAs, for example.
3788     if (!AI)
3789       return 0;
3790     DenseMap<const AllocaInst*, int>::iterator SI =
3791       FuncInfo.StaticAllocaMap.find(AI);
3792     if (SI == FuncInfo.StaticAllocaMap.end())
3793       return 0; // VLAs.
3794     int FI = SI->second;
3795 
3796     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3797     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3798       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3799     return 0;
3800   }
3801   case Intrinsic::dbg_value: {
3802     const DbgValueInst &DI = cast<DbgValueInst>(I);
3803     if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3804       return 0;
3805 
3806     MDNode *Variable = DI.getVariable();
3807     uint64_t Offset = DI.getOffset();
3808     const Value *V = DI.getValue();
3809     if (!V)
3810       return 0;
3811 
3812     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3813     // but do not always have a corresponding SDNode built.  The SDNodeOrder
3814     // absolute, but not relative, values are different depending on whether
3815     // debug info exists.
3816     ++SDNodeOrder;
3817     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3818       DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder));
3819     } else {
3820       SDValue &N = NodeMap[V];
3821       if (N.getNode())
3822         DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(),
3823                                         N.getResNo(), Offset, dl, SDNodeOrder),
3824                         N.getNode());
3825       else
3826         // We may expand this to cover more cases.  One case where we have no
3827         // data available is an unreferenced parameter; we need this fallback.
3828         DAG.AddDbgValue(DAG.getDbgValue(Variable,
3829                                         UndefValue::get(V->getType()),
3830                                         Offset, dl, SDNodeOrder));
3831     }
3832 
3833     // Build a debug info table entry.
3834     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3835       V = BCI->getOperand(0);
3836     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
3837     // Don't handle byval struct arguments or VLAs, for example.
3838     if (!AI)
3839       return 0;
3840     DenseMap<const AllocaInst*, int>::iterator SI =
3841       FuncInfo.StaticAllocaMap.find(AI);
3842     if (SI == FuncInfo.StaticAllocaMap.end())
3843       return 0; // VLAs.
3844     int FI = SI->second;
3845 
3846     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3847     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3848       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3849     return 0;
3850   }
3851   case Intrinsic::eh_exception: {
3852     // Insert the EXCEPTIONADDR instruction.
3853     assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
3854            "Call to eh.exception not in landing pad!");
3855     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3856     SDValue Ops[1];
3857     Ops[0] = DAG.getRoot();
3858     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3859     setValue(&I, Op);
3860     DAG.setRoot(Op.getValue(1));
3861     return 0;
3862   }
3863 
3864   case Intrinsic::eh_selector: {
3865     MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
3866     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3867     if (CallMBB->isLandingPad())
3868       AddCatchInfo(I, &MMI, CallMBB);
3869     else {
3870 #ifndef NDEBUG
3871       FuncInfo.CatchInfoLost.insert(&I);
3872 #endif
3873       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3874       unsigned Reg = TLI.getExceptionSelectorRegister();
3875       if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
3876     }
3877 
3878     // Insert the EHSELECTION instruction.
3879     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3880     SDValue Ops[2];
3881     Ops[0] = getValue(I.getOperand(1));
3882     Ops[1] = getRoot();
3883     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3884     DAG.setRoot(Op.getValue(1));
3885     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3886     return 0;
3887   }
3888 
3889   case Intrinsic::eh_typeid_for: {
3890     // Find the type id for the given typeinfo.
3891     GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3892     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3893     Res = DAG.getConstant(TypeID, MVT::i32);
3894     setValue(&I, Res);
3895     return 0;
3896   }
3897 
3898   case Intrinsic::eh_return_i32:
3899   case Intrinsic::eh_return_i64:
3900     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
3901     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3902                             MVT::Other,
3903                             getControlRoot(),
3904                             getValue(I.getOperand(1)),
3905                             getValue(I.getOperand(2))));
3906     return 0;
3907   case Intrinsic::eh_unwind_init:
3908     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
3909     return 0;
3910   case Intrinsic::eh_dwarf_cfa: {
3911     EVT VT = getValue(I.getOperand(1)).getValueType();
3912     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3913                                         TLI.getPointerTy());
3914     SDValue Offset = DAG.getNode(ISD::ADD, dl,
3915                                  TLI.getPointerTy(),
3916                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3917                                              TLI.getPointerTy()),
3918                                  CfaArg);
3919     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3920                              TLI.getPointerTy(),
3921                              DAG.getConstant(0, TLI.getPointerTy()));
3922     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3923                              FA, Offset));
3924     return 0;
3925   }
3926   case Intrinsic::eh_sjlj_callsite: {
3927     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3928     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3929     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3930     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
3931 
3932     MMI.setCurrentCallSite(CI->getZExtValue());
3933     return 0;
3934   }
3935 
3936   case Intrinsic::convertff:
3937   case Intrinsic::convertfsi:
3938   case Intrinsic::convertfui:
3939   case Intrinsic::convertsif:
3940   case Intrinsic::convertuif:
3941   case Intrinsic::convertss:
3942   case Intrinsic::convertsu:
3943   case Intrinsic::convertus:
3944   case Intrinsic::convertuu: {
3945     ISD::CvtCode Code = ISD::CVT_INVALID;
3946     switch (Intrinsic) {
3947     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3948     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3949     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3950     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3951     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3952     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3953     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3954     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3955     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3956     }
3957     EVT DestVT = TLI.getValueType(I.getType());
3958     const Value *Op1 = I.getOperand(1);
3959     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3960                                DAG.getValueType(DestVT),
3961                                DAG.getValueType(getValue(Op1).getValueType()),
3962                                getValue(I.getOperand(2)),
3963                                getValue(I.getOperand(3)),
3964                                Code);
3965     setValue(&I, Res);
3966     return 0;
3967   }
3968   case Intrinsic::sqrt:
3969     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
3970                              getValue(I.getOperand(1)).getValueType(),
3971                              getValue(I.getOperand(1))));
3972     return 0;
3973   case Intrinsic::powi:
3974     setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
3975                             getValue(I.getOperand(2)), DAG));
3976     return 0;
3977   case Intrinsic::sin:
3978     setValue(&I, DAG.getNode(ISD::FSIN, dl,
3979                              getValue(I.getOperand(1)).getValueType(),
3980                              getValue(I.getOperand(1))));
3981     return 0;
3982   case Intrinsic::cos:
3983     setValue(&I, DAG.getNode(ISD::FCOS, dl,
3984                              getValue(I.getOperand(1)).getValueType(),
3985                              getValue(I.getOperand(1))));
3986     return 0;
3987   case Intrinsic::log:
3988     visitLog(I);
3989     return 0;
3990   case Intrinsic::log2:
3991     visitLog2(I);
3992     return 0;
3993   case Intrinsic::log10:
3994     visitLog10(I);
3995     return 0;
3996   case Intrinsic::exp:
3997     visitExp(I);
3998     return 0;
3999   case Intrinsic::exp2:
4000     visitExp2(I);
4001     return 0;
4002   case Intrinsic::pow:
4003     visitPow(I);
4004     return 0;
4005   case Intrinsic::convert_to_fp16:
4006     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4007                              MVT::i16, getValue(I.getOperand(1))));
4008     return 0;
4009   case Intrinsic::convert_from_fp16:
4010     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4011                              MVT::f32, getValue(I.getOperand(1))));
4012     return 0;
4013   case Intrinsic::pcmarker: {
4014     SDValue Tmp = getValue(I.getOperand(1));
4015     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4016     return 0;
4017   }
4018   case Intrinsic::readcyclecounter: {
4019     SDValue Op = getRoot();
4020     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4021                       DAG.getVTList(MVT::i64, MVT::Other),
4022                       &Op, 1);
4023     setValue(&I, Res);
4024     DAG.setRoot(Res.getValue(1));
4025     return 0;
4026   }
4027   case Intrinsic::bswap:
4028     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4029                              getValue(I.getOperand(1)).getValueType(),
4030                              getValue(I.getOperand(1))));
4031     return 0;
4032   case Intrinsic::cttz: {
4033     SDValue Arg = getValue(I.getOperand(1));
4034     EVT Ty = Arg.getValueType();
4035     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4036     return 0;
4037   }
4038   case Intrinsic::ctlz: {
4039     SDValue Arg = getValue(I.getOperand(1));
4040     EVT Ty = Arg.getValueType();
4041     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4042     return 0;
4043   }
4044   case Intrinsic::ctpop: {
4045     SDValue Arg = getValue(I.getOperand(1));
4046     EVT Ty = Arg.getValueType();
4047     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4048     return 0;
4049   }
4050   case Intrinsic::stacksave: {
4051     SDValue Op = getRoot();
4052     Res = DAG.getNode(ISD::STACKSAVE, dl,
4053                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4054     setValue(&I, Res);
4055     DAG.setRoot(Res.getValue(1));
4056     return 0;
4057   }
4058   case Intrinsic::stackrestore: {
4059     Res = getValue(I.getOperand(1));
4060     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4061     return 0;
4062   }
4063   case Intrinsic::stackprotector: {
4064     // Emit code into the DAG to store the stack guard onto the stack.
4065     MachineFunction &MF = DAG.getMachineFunction();
4066     MachineFrameInfo *MFI = MF.getFrameInfo();
4067     EVT PtrTy = TLI.getPointerTy();
4068 
4069     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4070     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4071 
4072     int FI = FuncInfo.StaticAllocaMap[Slot];
4073     MFI->setStackProtectorIndex(FI);
4074 
4075     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4076 
4077     // Store the stack protector onto the stack.
4078     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4079                        PseudoSourceValue::getFixedStack(FI),
4080                        0, true, false, 0);
4081     setValue(&I, Res);
4082     DAG.setRoot(Res);
4083     return 0;
4084   }
4085   case Intrinsic::objectsize: {
4086     // If we don't know by now, we're never going to know.
4087     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4088 
4089     assert(CI && "Non-constant type in __builtin_object_size?");
4090 
4091     SDValue Arg = getValue(I.getOperand(0));
4092     EVT Ty = Arg.getValueType();
4093 
4094     if (CI->getZExtValue() == 0)
4095       Res = DAG.getConstant(-1ULL, Ty);
4096     else
4097       Res = DAG.getConstant(0, Ty);
4098 
4099     setValue(&I, Res);
4100     return 0;
4101   }
4102   case Intrinsic::var_annotation:
4103     // Discard annotate attributes
4104     return 0;
4105 
4106   case Intrinsic::init_trampoline: {
4107     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4108 
4109     SDValue Ops[6];
4110     Ops[0] = getRoot();
4111     Ops[1] = getValue(I.getOperand(1));
4112     Ops[2] = getValue(I.getOperand(2));
4113     Ops[3] = getValue(I.getOperand(3));
4114     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4115     Ops[5] = DAG.getSrcValue(F);
4116 
4117     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4118                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4119                       Ops, 6);
4120 
4121     setValue(&I, Res);
4122     DAG.setRoot(Res.getValue(1));
4123     return 0;
4124   }
4125   case Intrinsic::gcroot:
4126     if (GFI) {
4127       const Value *Alloca = I.getOperand(1);
4128       const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4129 
4130       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4131       GFI->addStackRoot(FI->getIndex(), TypeMap);
4132     }
4133     return 0;
4134   case Intrinsic::gcread:
4135   case Intrinsic::gcwrite:
4136     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4137     return 0;
4138   case Intrinsic::flt_rounds:
4139     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4140     return 0;
4141   case Intrinsic::trap:
4142     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4143     return 0;
4144   case Intrinsic::uadd_with_overflow:
4145     return implVisitAluOverflow(I, ISD::UADDO);
4146   case Intrinsic::sadd_with_overflow:
4147     return implVisitAluOverflow(I, ISD::SADDO);
4148   case Intrinsic::usub_with_overflow:
4149     return implVisitAluOverflow(I, ISD::USUBO);
4150   case Intrinsic::ssub_with_overflow:
4151     return implVisitAluOverflow(I, ISD::SSUBO);
4152   case Intrinsic::umul_with_overflow:
4153     return implVisitAluOverflow(I, ISD::UMULO);
4154   case Intrinsic::smul_with_overflow:
4155     return implVisitAluOverflow(I, ISD::SMULO);
4156 
4157   case Intrinsic::prefetch: {
4158     SDValue Ops[4];
4159     Ops[0] = getRoot();
4160     Ops[1] = getValue(I.getOperand(1));
4161     Ops[2] = getValue(I.getOperand(2));
4162     Ops[3] = getValue(I.getOperand(3));
4163     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4164     return 0;
4165   }
4166 
4167   case Intrinsic::memory_barrier: {
4168     SDValue Ops[6];
4169     Ops[0] = getRoot();
4170     for (int x = 1; x < 6; ++x)
4171       Ops[x] = getValue(I.getOperand(x));
4172 
4173     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4174     return 0;
4175   }
4176   case Intrinsic::atomic_cmp_swap: {
4177     SDValue Root = getRoot();
4178     SDValue L =
4179       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4180                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4181                     Root,
4182                     getValue(I.getOperand(1)),
4183                     getValue(I.getOperand(2)),
4184                     getValue(I.getOperand(3)),
4185                     I.getOperand(1));
4186     setValue(&I, L);
4187     DAG.setRoot(L.getValue(1));
4188     return 0;
4189   }
4190   case Intrinsic::atomic_load_add:
4191     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4192   case Intrinsic::atomic_load_sub:
4193     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4194   case Intrinsic::atomic_load_or:
4195     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4196   case Intrinsic::atomic_load_xor:
4197     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4198   case Intrinsic::atomic_load_and:
4199     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4200   case Intrinsic::atomic_load_nand:
4201     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4202   case Intrinsic::atomic_load_max:
4203     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4204   case Intrinsic::atomic_load_min:
4205     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4206   case Intrinsic::atomic_load_umin:
4207     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4208   case Intrinsic::atomic_load_umax:
4209     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4210   case Intrinsic::atomic_swap:
4211     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4212 
4213   case Intrinsic::invariant_start:
4214   case Intrinsic::lifetime_start:
4215     // Discard region information.
4216     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4217     return 0;
4218   case Intrinsic::invariant_end:
4219   case Intrinsic::lifetime_end:
4220     // Discard region information.
4221     return 0;
4222   }
4223 }
4224 
4225 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4226                                       bool isTailCall,
4227                                       MachineBasicBlock *LandingPad) {
4228   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4229   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4230   const Type *RetTy = FTy->getReturnType();
4231   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4232   MCSymbol *BeginLabel = 0;
4233 
4234   TargetLowering::ArgListTy Args;
4235   TargetLowering::ArgListEntry Entry;
4236   Args.reserve(CS.arg_size());
4237 
4238   // Check whether the function can return without sret-demotion.
4239   SmallVector<EVT, 4> OutVTs;
4240   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4241   SmallVector<uint64_t, 4> Offsets;
4242   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4243                 OutVTs, OutsFlags, TLI, &Offsets);
4244 
4245   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4246                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4247 
4248   SDValue DemoteStackSlot;
4249 
4250   if (!CanLowerReturn) {
4251     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4252                       FTy->getReturnType());
4253     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4254                       FTy->getReturnType());
4255     MachineFunction &MF = DAG.getMachineFunction();
4256     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4257     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4258 
4259     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4260     Entry.Node = DemoteStackSlot;
4261     Entry.Ty = StackSlotPtrType;
4262     Entry.isSExt = false;
4263     Entry.isZExt = false;
4264     Entry.isInReg = false;
4265     Entry.isSRet = true;
4266     Entry.isNest = false;
4267     Entry.isByVal = false;
4268     Entry.Alignment = Align;
4269     Args.push_back(Entry);
4270     RetTy = Type::getVoidTy(FTy->getContext());
4271   }
4272 
4273   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4274        i != e; ++i) {
4275     SDValue ArgNode = getValue(*i);
4276     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4277 
4278     unsigned attrInd = i - CS.arg_begin() + 1;
4279     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4280     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4281     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4282     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4283     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4284     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4285     Entry.Alignment = CS.getParamAlignment(attrInd);
4286     Args.push_back(Entry);
4287   }
4288 
4289   if (LandingPad) {
4290     // Insert a label before the invoke call to mark the try range.  This can be
4291     // used to detect deletion of the invoke via the MachineModuleInfo.
4292     BeginLabel = MMI.getContext().CreateTempSymbol();
4293 
4294     // For SjLj, keep track of which landing pads go with which invokes
4295     // so as to maintain the ordering of pads in the LSDA.
4296     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4297     if (CallSiteIndex) {
4298       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4299       // Now that the call site is handled, stop tracking it.
4300       MMI.setCurrentCallSite(0);
4301     }
4302 
4303     // Both PendingLoads and PendingExports must be flushed here;
4304     // this call might not return.
4305     (void)getRoot();
4306     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4307   }
4308 
4309   // Check if target-independent constraints permit a tail call here.
4310   // Target-dependent constraints are checked within TLI.LowerCallTo.
4311   if (isTailCall &&
4312       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4313     isTailCall = false;
4314 
4315   std::pair<SDValue,SDValue> Result =
4316     TLI.LowerCallTo(getRoot(), RetTy,
4317                     CS.paramHasAttr(0, Attribute::SExt),
4318                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4319                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4320                     CS.getCallingConv(),
4321                     isTailCall,
4322                     !CS.getInstruction()->use_empty(),
4323                     Callee, Args, DAG, getCurDebugLoc());
4324   assert((isTailCall || Result.second.getNode()) &&
4325          "Non-null chain expected with non-tail call!");
4326   assert((Result.second.getNode() || !Result.first.getNode()) &&
4327          "Null value expected with tail call!");
4328   if (Result.first.getNode()) {
4329     setValue(CS.getInstruction(), Result.first);
4330   } else if (!CanLowerReturn && Result.second.getNode()) {
4331     // The instruction result is the result of loading from the
4332     // hidden sret parameter.
4333     SmallVector<EVT, 1> PVTs;
4334     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4335 
4336     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4337     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4338     EVT PtrVT = PVTs[0];
4339     unsigned NumValues = OutVTs.size();
4340     SmallVector<SDValue, 4> Values(NumValues);
4341     SmallVector<SDValue, 4> Chains(NumValues);
4342 
4343     for (unsigned i = 0; i < NumValues; ++i) {
4344       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4345                                 DemoteStackSlot,
4346                                 DAG.getConstant(Offsets[i], PtrVT));
4347       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4348                               Add, NULL, Offsets[i], false, false, 1);
4349       Values[i] = L;
4350       Chains[i] = L.getValue(1);
4351     }
4352 
4353     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4354                                 MVT::Other, &Chains[0], NumValues);
4355     PendingLoads.push_back(Chain);
4356 
4357     // Collect the legal value parts into potentially illegal values
4358     // that correspond to the original function's return values.
4359     SmallVector<EVT, 4> RetTys;
4360     RetTy = FTy->getReturnType();
4361     ComputeValueVTs(TLI, RetTy, RetTys);
4362     ISD::NodeType AssertOp = ISD::DELETED_NODE;
4363     SmallVector<SDValue, 4> ReturnValues;
4364     unsigned CurReg = 0;
4365     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4366       EVT VT = RetTys[I];
4367       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4368       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4369 
4370       SDValue ReturnValue =
4371         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4372                          RegisterVT, VT, AssertOp);
4373       ReturnValues.push_back(ReturnValue);
4374       CurReg += NumRegs;
4375     }
4376 
4377     setValue(CS.getInstruction(),
4378              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4379                          DAG.getVTList(&RetTys[0], RetTys.size()),
4380                          &ReturnValues[0], ReturnValues.size()));
4381 
4382   }
4383 
4384   // As a special case, a null chain means that a tail call has been emitted and
4385   // the DAG root is already updated.
4386   if (Result.second.getNode())
4387     DAG.setRoot(Result.second);
4388   else
4389     HasTailCall = true;
4390 
4391   if (LandingPad) {
4392     // Insert a label at the end of the invoke call to mark the try range.  This
4393     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4394     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4395     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4396 
4397     // Inform MachineModuleInfo of range.
4398     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4399   }
4400 }
4401 
4402 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4403 /// value is equal or not-equal to zero.
4404 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4405   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4406        UI != E; ++UI) {
4407     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4408       if (IC->isEquality())
4409         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4410           if (C->isNullValue())
4411             continue;
4412     // Unknown instruction.
4413     return false;
4414   }
4415   return true;
4416 }
4417 
4418 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4419                              const Type *LoadTy,
4420                              SelectionDAGBuilder &Builder) {
4421 
4422   // Check to see if this load can be trivially constant folded, e.g. if the
4423   // input is from a string literal.
4424   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4425     // Cast pointer to the type we really want to load.
4426     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4427                                          PointerType::getUnqual(LoadTy));
4428 
4429     if (const Constant *LoadCst =
4430           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4431                                        Builder.TD))
4432       return Builder.getValue(LoadCst);
4433   }
4434 
4435   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4436   // still constant memory, the input chain can be the entry node.
4437   SDValue Root;
4438   bool ConstantMemory = false;
4439 
4440   // Do not serialize (non-volatile) loads of constant memory with anything.
4441   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4442     Root = Builder.DAG.getEntryNode();
4443     ConstantMemory = true;
4444   } else {
4445     // Do not serialize non-volatile loads against each other.
4446     Root = Builder.DAG.getRoot();
4447   }
4448 
4449   SDValue Ptr = Builder.getValue(PtrVal);
4450   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4451                                         Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4452                                         false /*volatile*/,
4453                                         false /*nontemporal*/, 1 /* align=1 */);
4454 
4455   if (!ConstantMemory)
4456     Builder.PendingLoads.push_back(LoadVal.getValue(1));
4457   return LoadVal;
4458 }
4459 
4460 
4461 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4462 /// If so, return true and lower it, otherwise return false and it will be
4463 /// lowered like a normal call.
4464 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4465   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4466   if (I.getNumOperands() != 4)
4467     return false;
4468 
4469   const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4470   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4471       !I.getOperand(3)->getType()->isIntegerTy() ||
4472       !I.getType()->isIntegerTy())
4473     return false;
4474 
4475   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4476 
4477   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4478   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4479   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4480     bool ActuallyDoIt = true;
4481     MVT LoadVT;
4482     const Type *LoadTy;
4483     switch (Size->getZExtValue()) {
4484     default:
4485       LoadVT = MVT::Other;
4486       LoadTy = 0;
4487       ActuallyDoIt = false;
4488       break;
4489     case 2:
4490       LoadVT = MVT::i16;
4491       LoadTy = Type::getInt16Ty(Size->getContext());
4492       break;
4493     case 4:
4494       LoadVT = MVT::i32;
4495       LoadTy = Type::getInt32Ty(Size->getContext());
4496       break;
4497     case 8:
4498       LoadVT = MVT::i64;
4499       LoadTy = Type::getInt64Ty(Size->getContext());
4500       break;
4501         /*
4502     case 16:
4503       LoadVT = MVT::v4i32;
4504       LoadTy = Type::getInt32Ty(Size->getContext());
4505       LoadTy = VectorType::get(LoadTy, 4);
4506       break;
4507          */
4508     }
4509 
4510     // This turns into unaligned loads.  We only do this if the target natively
4511     // supports the MVT we'll be loading or if it is small enough (<= 4) that
4512     // we'll only produce a small number of byte loads.
4513 
4514     // Require that we can find a legal MVT, and only do this if the target
4515     // supports unaligned loads of that type.  Expanding into byte loads would
4516     // bloat the code.
4517     if (ActuallyDoIt && Size->getZExtValue() > 4) {
4518       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4519       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4520       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4521         ActuallyDoIt = false;
4522     }
4523 
4524     if (ActuallyDoIt) {
4525       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4526       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4527 
4528       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4529                                  ISD::SETNE);
4530       EVT CallVT = TLI.getValueType(I.getType(), true);
4531       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4532       return true;
4533     }
4534   }
4535 
4536 
4537   return false;
4538 }
4539 
4540 
4541 void SelectionDAGBuilder::visitCall(const CallInst &I) {
4542   const char *RenameFn = 0;
4543   if (Function *F = I.getCalledFunction()) {
4544     if (F->isDeclaration()) {
4545       const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4546       if (II) {
4547         if (unsigned IID = II->getIntrinsicID(F)) {
4548           RenameFn = visitIntrinsicCall(I, IID);
4549           if (!RenameFn)
4550             return;
4551         }
4552       }
4553       if (unsigned IID = F->getIntrinsicID()) {
4554         RenameFn = visitIntrinsicCall(I, IID);
4555         if (!RenameFn)
4556           return;
4557       }
4558     }
4559 
4560     // Check for well-known libc/libm calls.  If the function is internal, it
4561     // can't be a library call.
4562     if (!F->hasLocalLinkage() && F->hasName()) {
4563       StringRef Name = F->getName();
4564       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4565         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4566             I.getOperand(1)->getType()->isFloatingPointTy() &&
4567             I.getType() == I.getOperand(1)->getType() &&
4568             I.getType() == I.getOperand(2)->getType()) {
4569           SDValue LHS = getValue(I.getOperand(1));
4570           SDValue RHS = getValue(I.getOperand(2));
4571           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4572                                    LHS.getValueType(), LHS, RHS));
4573           return;
4574         }
4575       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4576         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4577             I.getOperand(1)->getType()->isFloatingPointTy() &&
4578             I.getType() == I.getOperand(1)->getType()) {
4579           SDValue Tmp = getValue(I.getOperand(1));
4580           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4581                                    Tmp.getValueType(), Tmp));
4582           return;
4583         }
4584       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4585         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4586             I.getOperand(1)->getType()->isFloatingPointTy() &&
4587             I.getType() == I.getOperand(1)->getType() &&
4588             I.onlyReadsMemory()) {
4589           SDValue Tmp = getValue(I.getOperand(1));
4590           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4591                                    Tmp.getValueType(), Tmp));
4592           return;
4593         }
4594       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4595         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4596             I.getOperand(1)->getType()->isFloatingPointTy() &&
4597             I.getType() == I.getOperand(1)->getType() &&
4598             I.onlyReadsMemory()) {
4599           SDValue Tmp = getValue(I.getOperand(1));
4600           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4601                                    Tmp.getValueType(), Tmp));
4602           return;
4603         }
4604       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4605         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4606             I.getOperand(1)->getType()->isFloatingPointTy() &&
4607             I.getType() == I.getOperand(1)->getType() &&
4608             I.onlyReadsMemory()) {
4609           SDValue Tmp = getValue(I.getOperand(1));
4610           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4611                                    Tmp.getValueType(), Tmp));
4612           return;
4613         }
4614       } else if (Name == "memcmp") {
4615         if (visitMemCmpCall(I))
4616           return;
4617       }
4618     }
4619   } else if (isa<InlineAsm>(I.getOperand(0))) {
4620     visitInlineAsm(&I);
4621     return;
4622   }
4623 
4624   SDValue Callee;
4625   if (!RenameFn)
4626     Callee = getValue(I.getOperand(0));
4627   else
4628     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4629 
4630   // Check if we can potentially perform a tail call. More detailed checking is
4631   // be done within LowerCallTo, after more information about the call is known.
4632   LowerCallTo(&I, Callee, I.isTailCall());
4633 }
4634 
4635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4636 /// this value and returns the result as a ValueVT value.  This uses
4637 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4638 /// If the Flag pointer is NULL, no flag is used.
4639 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4640                                       SDValue &Chain, SDValue *Flag) const {
4641   // Assemble the legal parts into the final values.
4642   SmallVector<SDValue, 4> Values(ValueVTs.size());
4643   SmallVector<SDValue, 8> Parts;
4644   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4645     // Copy the legal parts from the registers.
4646     EVT ValueVT = ValueVTs[Value];
4647     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4648     EVT RegisterVT = RegVTs[Value];
4649 
4650     Parts.resize(NumRegs);
4651     for (unsigned i = 0; i != NumRegs; ++i) {
4652       SDValue P;
4653       if (Flag == 0) {
4654         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4655       } else {
4656         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4657         *Flag = P.getValue(2);
4658       }
4659 
4660       Chain = P.getValue(1);
4661 
4662       // If the source register was virtual and if we know something about it,
4663       // add an assert node.
4664       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4665           RegisterVT.isInteger() && !RegisterVT.isVector()) {
4666         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4667         FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4668         if (FLI.LiveOutRegInfo.size() > SlotNo) {
4669           FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4670 
4671           unsigned RegSize = RegisterVT.getSizeInBits();
4672           unsigned NumSignBits = LOI.NumSignBits;
4673           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4674 
4675           // FIXME: We capture more information than the dag can represent.  For
4676           // now, just use the tightest assertzext/assertsext possible.
4677           bool isSExt = true;
4678           EVT FromVT(MVT::Other);
4679           if (NumSignBits == RegSize)
4680             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4681           else if (NumZeroBits >= RegSize-1)
4682             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4683           else if (NumSignBits > RegSize-8)
4684             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4685           else if (NumZeroBits >= RegSize-8)
4686             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4687           else if (NumSignBits > RegSize-16)
4688             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4689           else if (NumZeroBits >= RegSize-16)
4690             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4691           else if (NumSignBits > RegSize-32)
4692             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4693           else if (NumZeroBits >= RegSize-32)
4694             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4695 
4696           if (FromVT != MVT::Other)
4697             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4698                             RegisterVT, P, DAG.getValueType(FromVT));
4699         }
4700       }
4701 
4702       Parts[i] = P;
4703     }
4704 
4705     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4706                                      NumRegs, RegisterVT, ValueVT);
4707     Part += NumRegs;
4708     Parts.clear();
4709   }
4710 
4711   return DAG.getNode(ISD::MERGE_VALUES, dl,
4712                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4713                      &Values[0], ValueVTs.size());
4714 }
4715 
4716 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4717 /// specified value into the registers specified by this object.  This uses
4718 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4719 /// If the Flag pointer is NULL, no flag is used.
4720 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4721                                  SDValue &Chain, SDValue *Flag) const {
4722   // Get the list of the values's legal parts.
4723   unsigned NumRegs = Regs.size();
4724   SmallVector<SDValue, 8> Parts(NumRegs);
4725   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4726     EVT ValueVT = ValueVTs[Value];
4727     unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4728     EVT RegisterVT = RegVTs[Value];
4729 
4730     getCopyToParts(DAG, dl,
4731                    Val.getValue(Val.getResNo() + Value),
4732                    &Parts[Part], NumParts, RegisterVT);
4733     Part += NumParts;
4734   }
4735 
4736   // Copy the parts into the registers.
4737   SmallVector<SDValue, 8> Chains(NumRegs);
4738   for (unsigned i = 0; i != NumRegs; ++i) {
4739     SDValue Part;
4740     if (Flag == 0) {
4741       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4742     } else {
4743       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4744       *Flag = Part.getValue(1);
4745     }
4746 
4747     Chains[i] = Part.getValue(0);
4748   }
4749 
4750   if (NumRegs == 1 || Flag)
4751     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4752     // flagged to it. That is the CopyToReg nodes and the user are considered
4753     // a single scheduling unit. If we create a TokenFactor and return it as
4754     // chain, then the TokenFactor is both a predecessor (operand) of the
4755     // user as well as a successor (the TF operands are flagged to the user).
4756     // c1, f1 = CopyToReg
4757     // c2, f2 = CopyToReg
4758     // c3     = TokenFactor c1, c2
4759     // ...
4760     //        = op c3, ..., f2
4761     Chain = Chains[NumRegs-1];
4762   else
4763     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4764 }
4765 
4766 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4767 /// operand list.  This adds the code marker and includes the number of
4768 /// values added into it.
4769 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4770                                         unsigned MatchingIdx,
4771                                         SelectionDAG &DAG,
4772                                         std::vector<SDValue> &Ops) const {
4773   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4774   if (HasMatching)
4775     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4776   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4777   Ops.push_back(Res);
4778 
4779   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4780     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4781     EVT RegisterVT = RegVTs[Value];
4782     for (unsigned i = 0; i != NumRegs; ++i) {
4783       assert(Reg < Regs.size() && "Mismatch in # registers expected");
4784       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4785     }
4786   }
4787 }
4788 
4789 /// isAllocatableRegister - If the specified register is safe to allocate,
4790 /// i.e. it isn't a stack pointer or some other special register, return the
4791 /// register class for the register.  Otherwise, return null.
4792 static const TargetRegisterClass *
4793 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4794                       const TargetLowering &TLI,
4795                       const TargetRegisterInfo *TRI) {
4796   EVT FoundVT = MVT::Other;
4797   const TargetRegisterClass *FoundRC = 0;
4798   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4799        E = TRI->regclass_end(); RCI != E; ++RCI) {
4800     EVT ThisVT = MVT::Other;
4801 
4802     const TargetRegisterClass *RC = *RCI;
4803     // If none of the value types for this register class are valid, we
4804     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4805     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4806          I != E; ++I) {
4807       if (TLI.isTypeLegal(*I)) {
4808         // If we have already found this register in a different register class,
4809         // choose the one with the largest VT specified.  For example, on
4810         // PowerPC, we favor f64 register classes over f32.
4811         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4812           ThisVT = *I;
4813           break;
4814         }
4815       }
4816     }
4817 
4818     if (ThisVT == MVT::Other) continue;
4819 
4820     // NOTE: This isn't ideal.  In particular, this might allocate the
4821     // frame pointer in functions that need it (due to them not being taken
4822     // out of allocation, because a variable sized allocation hasn't been seen
4823     // yet).  This is a slight code pessimization, but should still work.
4824     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4825          E = RC->allocation_order_end(MF); I != E; ++I)
4826       if (*I == Reg) {
4827         // We found a matching register class.  Keep looking at others in case
4828         // we find one with larger registers that this physreg is also in.
4829         FoundRC = RC;
4830         FoundVT = ThisVT;
4831         break;
4832       }
4833   }
4834   return FoundRC;
4835 }
4836 
4837 
4838 namespace llvm {
4839 /// AsmOperandInfo - This contains information for each constraint that we are
4840 /// lowering.
4841 class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4842     public TargetLowering::AsmOperandInfo {
4843 public:
4844   /// CallOperand - If this is the result output operand or a clobber
4845   /// this is null, otherwise it is the incoming operand to the CallInst.
4846   /// This gets modified as the asm is processed.
4847   SDValue CallOperand;
4848 
4849   /// AssignedRegs - If this is a register or register class operand, this
4850   /// contains the set of register corresponding to the operand.
4851   RegsForValue AssignedRegs;
4852 
4853   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4854     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4855   }
4856 
4857   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4858   /// busy in OutputRegs/InputRegs.
4859   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4860                          std::set<unsigned> &OutputRegs,
4861                          std::set<unsigned> &InputRegs,
4862                          const TargetRegisterInfo &TRI) const {
4863     if (isOutReg) {
4864       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4865         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4866     }
4867     if (isInReg) {
4868       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4869         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4870     }
4871   }
4872 
4873   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4874   /// corresponds to.  If there is no Value* for this operand, it returns
4875   /// MVT::Other.
4876   EVT getCallOperandValEVT(LLVMContext &Context,
4877                            const TargetLowering &TLI,
4878                            const TargetData *TD) const {
4879     if (CallOperandVal == 0) return MVT::Other;
4880 
4881     if (isa<BasicBlock>(CallOperandVal))
4882       return TLI.getPointerTy();
4883 
4884     const llvm::Type *OpTy = CallOperandVal->getType();
4885 
4886     // If this is an indirect operand, the operand is a pointer to the
4887     // accessed type.
4888     if (isIndirect) {
4889       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4890       if (!PtrTy)
4891         report_fatal_error("Indirect operand for inline asm not a pointer!");
4892       OpTy = PtrTy->getElementType();
4893     }
4894 
4895     // If OpTy is not a single value, it may be a struct/union that we
4896     // can tile with integers.
4897     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4898       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4899       switch (BitSize) {
4900       default: break;
4901       case 1:
4902       case 8:
4903       case 16:
4904       case 32:
4905       case 64:
4906       case 128:
4907         OpTy = IntegerType::get(Context, BitSize);
4908         break;
4909       }
4910     }
4911 
4912     return TLI.getValueType(OpTy, true);
4913   }
4914 
4915 private:
4916   /// MarkRegAndAliases - Mark the specified register and all aliases in the
4917   /// specified set.
4918   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4919                                 const TargetRegisterInfo &TRI) {
4920     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4921     Regs.insert(Reg);
4922     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4923       for (; *Aliases; ++Aliases)
4924         Regs.insert(*Aliases);
4925   }
4926 };
4927 } // end llvm namespace.
4928 
4929 
4930 /// GetRegistersForValue - Assign registers (virtual or physical) for the
4931 /// specified operand.  We prefer to assign virtual registers, to allow the
4932 /// register allocator to handle the assignment process.  However, if the asm
4933 /// uses features that we can't model on machineinstrs, we have SDISel do the
4934 /// allocation.  This produces generally horrible, but correct, code.
4935 ///
4936 ///   OpInfo describes the operand.
4937 ///   Input and OutputRegs are the set of already allocated physical registers.
4938 ///
4939 void SelectionDAGBuilder::
4940 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
4941                      std::set<unsigned> &OutputRegs,
4942                      std::set<unsigned> &InputRegs) {
4943   LLVMContext &Context = FuncInfo.Fn->getContext();
4944 
4945   // Compute whether this value requires an input register, an output register,
4946   // or both.
4947   bool isOutReg = false;
4948   bool isInReg = false;
4949   switch (OpInfo.Type) {
4950   case InlineAsm::isOutput:
4951     isOutReg = true;
4952 
4953     // If there is an input constraint that matches this, we need to reserve
4954     // the input register so no other inputs allocate to it.
4955     isInReg = OpInfo.hasMatchingInput();
4956     break;
4957   case InlineAsm::isInput:
4958     isInReg = true;
4959     isOutReg = false;
4960     break;
4961   case InlineAsm::isClobber:
4962     isOutReg = true;
4963     isInReg = true;
4964     break;
4965   }
4966 
4967 
4968   MachineFunction &MF = DAG.getMachineFunction();
4969   SmallVector<unsigned, 4> Regs;
4970 
4971   // If this is a constraint for a single physreg, or a constraint for a
4972   // register class, find it.
4973   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4974     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4975                                      OpInfo.ConstraintVT);
4976 
4977   unsigned NumRegs = 1;
4978   if (OpInfo.ConstraintVT != MVT::Other) {
4979     // If this is a FP input in an integer register (or visa versa) insert a bit
4980     // cast of the input value.  More generally, handle any case where the input
4981     // value disagrees with the register class we plan to stick this in.
4982     if (OpInfo.Type == InlineAsm::isInput &&
4983         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
4984       // Try to convert to the first EVT that the reg class contains.  If the
4985       // types are identical size, use a bitcast to convert (e.g. two differing
4986       // vector types).
4987       EVT RegVT = *PhysReg.second->vt_begin();
4988       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
4989         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
4990                                          RegVT, OpInfo.CallOperand);
4991         OpInfo.ConstraintVT = RegVT;
4992       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
4993         // If the input is a FP value and we want it in FP registers, do a
4994         // bitcast to the corresponding integer type.  This turns an f64 value
4995         // into i64, which can be passed with two i32 values on a 32-bit
4996         // machine.
4997         RegVT = EVT::getIntegerVT(Context,
4998                                   OpInfo.ConstraintVT.getSizeInBits());
4999         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5000                                          RegVT, OpInfo.CallOperand);
5001         OpInfo.ConstraintVT = RegVT;
5002       }
5003     }
5004 
5005     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5006   }
5007 
5008   EVT RegVT;
5009   EVT ValueVT = OpInfo.ConstraintVT;
5010 
5011   // If this is a constraint for a specific physical register, like {r17},
5012   // assign it now.
5013   if (unsigned AssignedReg = PhysReg.first) {
5014     const TargetRegisterClass *RC = PhysReg.second;
5015     if (OpInfo.ConstraintVT == MVT::Other)
5016       ValueVT = *RC->vt_begin();
5017 
5018     // Get the actual register value type.  This is important, because the user
5019     // may have asked for (e.g.) the AX register in i32 type.  We need to
5020     // remember that AX is actually i16 to get the right extension.
5021     RegVT = *RC->vt_begin();
5022 
5023     // This is a explicit reference to a physical register.
5024     Regs.push_back(AssignedReg);
5025 
5026     // If this is an expanded reference, add the rest of the regs to Regs.
5027     if (NumRegs != 1) {
5028       TargetRegisterClass::iterator I = RC->begin();
5029       for (; *I != AssignedReg; ++I)
5030         assert(I != RC->end() && "Didn't find reg!");
5031 
5032       // Already added the first reg.
5033       --NumRegs; ++I;
5034       for (; NumRegs; --NumRegs, ++I) {
5035         assert(I != RC->end() && "Ran out of registers to allocate!");
5036         Regs.push_back(*I);
5037       }
5038     }
5039 
5040     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5041     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5042     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5043     return;
5044   }
5045 
5046   // Otherwise, if this was a reference to an LLVM register class, create vregs
5047   // for this reference.
5048   if (const TargetRegisterClass *RC = PhysReg.second) {
5049     RegVT = *RC->vt_begin();
5050     if (OpInfo.ConstraintVT == MVT::Other)
5051       ValueVT = RegVT;
5052 
5053     // Create the appropriate number of virtual registers.
5054     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5055     for (; NumRegs; --NumRegs)
5056       Regs.push_back(RegInfo.createVirtualRegister(RC));
5057 
5058     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5059     return;
5060   }
5061 
5062   // This is a reference to a register class that doesn't directly correspond
5063   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5064   // registers from the class.
5065   std::vector<unsigned> RegClassRegs
5066     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5067                                             OpInfo.ConstraintVT);
5068 
5069   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5070   unsigned NumAllocated = 0;
5071   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5072     unsigned Reg = RegClassRegs[i];
5073     // See if this register is available.
5074     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5075         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5076       // Make sure we find consecutive registers.
5077       NumAllocated = 0;
5078       continue;
5079     }
5080 
5081     // Check to see if this register is allocatable (i.e. don't give out the
5082     // stack pointer).
5083     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5084     if (!RC) {        // Couldn't allocate this register.
5085       // Reset NumAllocated to make sure we return consecutive registers.
5086       NumAllocated = 0;
5087       continue;
5088     }
5089 
5090     // Okay, this register is good, we can use it.
5091     ++NumAllocated;
5092 
5093     // If we allocated enough consecutive registers, succeed.
5094     if (NumAllocated == NumRegs) {
5095       unsigned RegStart = (i-NumAllocated)+1;
5096       unsigned RegEnd   = i+1;
5097       // Mark all of the allocated registers used.
5098       for (unsigned i = RegStart; i != RegEnd; ++i)
5099         Regs.push_back(RegClassRegs[i]);
5100 
5101       OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5102                                          OpInfo.ConstraintVT);
5103       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5104       return;
5105     }
5106   }
5107 
5108   // Otherwise, we couldn't allocate enough registers for this.
5109 }
5110 
5111 /// visitInlineAsm - Handle a call to an InlineAsm object.
5112 ///
5113 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5114   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5115 
5116   /// ConstraintOperands - Information about all of the constraints.
5117   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5118 
5119   std::set<unsigned> OutputRegs, InputRegs;
5120 
5121   // Do a prepass over the constraints, canonicalizing them, and building up the
5122   // ConstraintOperands list.
5123   std::vector<InlineAsm::ConstraintInfo>
5124     ConstraintInfos = IA->ParseConstraints();
5125 
5126   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5127 
5128   SDValue Chain, Flag;
5129 
5130   // We won't need to flush pending loads if this asm doesn't touch
5131   // memory and is nonvolatile.
5132   if (hasMemory || IA->hasSideEffects())
5133     Chain = getRoot();
5134   else
5135     Chain = DAG.getRoot();
5136 
5137   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5138   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5139   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5140     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5141     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5142 
5143     EVT OpVT = MVT::Other;
5144 
5145     // Compute the value type for each operand.
5146     switch (OpInfo.Type) {
5147     case InlineAsm::isOutput:
5148       // Indirect outputs just consume an argument.
5149       if (OpInfo.isIndirect) {
5150         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5151         break;
5152       }
5153 
5154       // The return value of the call is this value.  As such, there is no
5155       // corresponding argument.
5156       assert(!CS.getType()->isVoidTy() &&
5157              "Bad inline asm!");
5158       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5159         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5160       } else {
5161         assert(ResNo == 0 && "Asm only has one result!");
5162         OpVT = TLI.getValueType(CS.getType());
5163       }
5164       ++ResNo;
5165       break;
5166     case InlineAsm::isInput:
5167       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5168       break;
5169     case InlineAsm::isClobber:
5170       // Nothing to do.
5171       break;
5172     }
5173 
5174     // If this is an input or an indirect output, process the call argument.
5175     // BasicBlocks are labels, currently appearing only in asm's.
5176     if (OpInfo.CallOperandVal) {
5177       // Strip bitcasts, if any.  This mostly comes up for functions.
5178       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5179 
5180       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5181         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5182       } else {
5183         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5184       }
5185 
5186       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5187     }
5188 
5189     OpInfo.ConstraintVT = OpVT;
5190   }
5191 
5192   // Second pass over the constraints: compute which constraint option to use
5193   // and assign registers to constraints that want a specific physreg.
5194   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5195     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5196 
5197     // If this is an output operand with a matching input operand, look up the
5198     // matching input. If their types mismatch, e.g. one is an integer, the
5199     // other is floating point, or their sizes are different, flag it as an
5200     // error.
5201     if (OpInfo.hasMatchingInput()) {
5202       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5203 
5204       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5205         if ((OpInfo.ConstraintVT.isInteger() !=
5206              Input.ConstraintVT.isInteger()) ||
5207             (OpInfo.ConstraintVT.getSizeInBits() !=
5208              Input.ConstraintVT.getSizeInBits())) {
5209           report_fatal_error("Unsupported asm: input constraint"
5210                              " with a matching output constraint of"
5211                              " incompatible type!");
5212         }
5213         Input.ConstraintVT = OpInfo.ConstraintVT;
5214       }
5215     }
5216 
5217     // Compute the constraint code and ConstraintType to use.
5218     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5219 
5220     // If this is a memory input, and if the operand is not indirect, do what we
5221     // need to to provide an address for the memory input.
5222     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5223         !OpInfo.isIndirect) {
5224       assert(OpInfo.Type == InlineAsm::isInput &&
5225              "Can only indirectify direct input operands!");
5226 
5227       // Memory operands really want the address of the value.  If we don't have
5228       // an indirect input, put it in the constpool if we can, otherwise spill
5229       // it to a stack slot.
5230 
5231       // If the operand is a float, integer, or vector constant, spill to a
5232       // constant pool entry to get its address.
5233       const Value *OpVal = OpInfo.CallOperandVal;
5234       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5235           isa<ConstantVector>(OpVal)) {
5236         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5237                                                  TLI.getPointerTy());
5238       } else {
5239         // Otherwise, create a stack slot and emit a store to it before the
5240         // asm.
5241         const Type *Ty = OpVal->getType();
5242         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5243         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5244         MachineFunction &MF = DAG.getMachineFunction();
5245         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5246         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5247         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5248                              OpInfo.CallOperand, StackSlot, NULL, 0,
5249                              false, false, 0);
5250         OpInfo.CallOperand = StackSlot;
5251       }
5252 
5253       // There is no longer a Value* corresponding to this operand.
5254       OpInfo.CallOperandVal = 0;
5255 
5256       // It is now an indirect operand.
5257       OpInfo.isIndirect = true;
5258     }
5259 
5260     // If this constraint is for a specific register, allocate it before
5261     // anything else.
5262     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5263       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5264   }
5265 
5266   ConstraintInfos.clear();
5267 
5268   // Second pass - Loop over all of the operands, assigning virtual or physregs
5269   // to register class operands.
5270   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5271     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5272 
5273     // C_Register operands have already been allocated, Other/Memory don't need
5274     // to be.
5275     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5276       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5277   }
5278 
5279   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5280   std::vector<SDValue> AsmNodeOperands;
5281   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5282   AsmNodeOperands.push_back(
5283           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5284                                       TLI.getPointerTy()));
5285 
5286   // If we have a !srcloc metadata node associated with it, we want to attach
5287   // this to the ultimately generated inline asm machineinstr.  To do this, we
5288   // pass in the third operand as this (potentially null) inline asm MDNode.
5289   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5290   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5291 
5292   // Loop over all of the inputs, copying the operand values into the
5293   // appropriate registers and processing the output regs.
5294   RegsForValue RetValRegs;
5295 
5296   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5297   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5298 
5299   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5300     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5301 
5302     switch (OpInfo.Type) {
5303     case InlineAsm::isOutput: {
5304       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5305           OpInfo.ConstraintType != TargetLowering::C_Register) {
5306         // Memory output, or 'other' output (e.g. 'X' constraint).
5307         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5308 
5309         // Add information to the INLINEASM node to know about this output.
5310         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5311         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5312                                                         TLI.getPointerTy()));
5313         AsmNodeOperands.push_back(OpInfo.CallOperand);
5314         break;
5315       }
5316 
5317       // Otherwise, this is a register or register class output.
5318 
5319       // Copy the output from the appropriate register.  Find a register that
5320       // we can use.
5321       if (OpInfo.AssignedRegs.Regs.empty())
5322         report_fatal_error("Couldn't allocate output reg for constraint '" +
5323                            Twine(OpInfo.ConstraintCode) + "'!");
5324 
5325       // If this is an indirect operand, store through the pointer after the
5326       // asm.
5327       if (OpInfo.isIndirect) {
5328         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5329                                                       OpInfo.CallOperandVal));
5330       } else {
5331         // This is the result value of the call.
5332         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5333         // Concatenate this output onto the outputs list.
5334         RetValRegs.append(OpInfo.AssignedRegs);
5335       }
5336 
5337       // Add information to the INLINEASM node to know that this register is
5338       // set.
5339       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5340                                            InlineAsm::Kind_RegDefEarlyClobber :
5341                                                InlineAsm::Kind_RegDef,
5342                                                false,
5343                                                0,
5344                                                DAG,
5345                                                AsmNodeOperands);
5346       break;
5347     }
5348     case InlineAsm::isInput: {
5349       SDValue InOperandVal = OpInfo.CallOperand;
5350 
5351       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5352         // If this is required to match an output register we have already set,
5353         // just use its register.
5354         unsigned OperandNo = OpInfo.getMatchedOperand();
5355 
5356         // Scan until we find the definition we already emitted of this operand.
5357         // When we find it, create a RegsForValue operand.
5358         unsigned CurOp = InlineAsm::Op_FirstOperand;
5359         for (; OperandNo; --OperandNo) {
5360           // Advance to the next operand.
5361           unsigned OpFlag =
5362             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5363           assert((InlineAsm::isRegDefKind(OpFlag) ||
5364                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5365                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5366           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5367         }
5368 
5369         unsigned OpFlag =
5370           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5371         if (InlineAsm::isRegDefKind(OpFlag) ||
5372             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5373           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5374           if (OpInfo.isIndirect) {
5375             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5376             LLVMContext &Ctx = *DAG.getContext();
5377             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5378                           " don't know how to handle tied "
5379                           "indirect register inputs");
5380           }
5381 
5382           RegsForValue MatchedRegs;
5383           MatchedRegs.TLI = &TLI;
5384           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5385           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5386           MatchedRegs.RegVTs.push_back(RegVT);
5387           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5388           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5389                i != e; ++i)
5390             MatchedRegs.Regs.push_back
5391               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5392 
5393           // Use the produced MatchedRegs object to
5394           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5395                                     Chain, &Flag);
5396           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5397                                            true, OpInfo.getMatchedOperand(),
5398                                            DAG, AsmNodeOperands);
5399           break;
5400         }
5401 
5402         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5403         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5404                "Unexpected number of operands");
5405         // Add information to the INLINEASM node to know about this input.
5406         // See InlineAsm.h isUseOperandTiedToDef.
5407         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5408                                                     OpInfo.getMatchedOperand());
5409         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5410                                                         TLI.getPointerTy()));
5411         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5412         break;
5413       }
5414 
5415       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5416         assert(!OpInfo.isIndirect &&
5417                "Don't know how to handle indirect other inputs yet!");
5418 
5419         std::vector<SDValue> Ops;
5420         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5421                                          hasMemory, Ops, DAG);
5422         if (Ops.empty())
5423           report_fatal_error("Invalid operand for inline asm constraint '" +
5424                              Twine(OpInfo.ConstraintCode) + "'!");
5425 
5426         // Add information to the INLINEASM node to know about this input.
5427         unsigned ResOpType =
5428           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5429         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5430                                                         TLI.getPointerTy()));
5431         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5432         break;
5433       }
5434 
5435       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5436         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5437         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5438                "Memory operands expect pointer values");
5439 
5440         // Add information to the INLINEASM node to know about this input.
5441         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5442         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5443                                                         TLI.getPointerTy()));
5444         AsmNodeOperands.push_back(InOperandVal);
5445         break;
5446       }
5447 
5448       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5449               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5450              "Unknown constraint type!");
5451       assert(!OpInfo.isIndirect &&
5452              "Don't know how to handle indirect register inputs yet!");
5453 
5454       // Copy the input into the appropriate registers.
5455       if (OpInfo.AssignedRegs.Regs.empty() ||
5456           !OpInfo.AssignedRegs.areValueTypesLegal())
5457         report_fatal_error("Couldn't allocate input reg for constraint '" +
5458                            Twine(OpInfo.ConstraintCode) + "'!");
5459 
5460       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5461                                         Chain, &Flag);
5462 
5463       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5464                                                DAG, AsmNodeOperands);
5465       break;
5466     }
5467     case InlineAsm::isClobber: {
5468       // Add the clobbered value to the operand list, so that the register
5469       // allocator is aware that the physreg got clobbered.
5470       if (!OpInfo.AssignedRegs.Regs.empty())
5471         OpInfo.AssignedRegs.AddInlineAsmOperands(
5472                                             InlineAsm::Kind_RegDefEarlyClobber,
5473                                                  false, 0, DAG,
5474                                                  AsmNodeOperands);
5475       break;
5476     }
5477     }
5478   }
5479 
5480   // Finish up input operands.  Set the input chain and add the flag last.
5481   AsmNodeOperands[0] = Chain;
5482   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5483 
5484   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5485                       DAG.getVTList(MVT::Other, MVT::Flag),
5486                       &AsmNodeOperands[0], AsmNodeOperands.size());
5487   Flag = Chain.getValue(1);
5488 
5489   // If this asm returns a register value, copy the result from that register
5490   // and set it as the value of the call.
5491   if (!RetValRegs.Regs.empty()) {
5492     SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5493                                              Chain, &Flag);
5494 
5495     // FIXME: Why don't we do this for inline asms with MRVs?
5496     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5497       EVT ResultType = TLI.getValueType(CS.getType());
5498 
5499       // If any of the results of the inline asm is a vector, it may have the
5500       // wrong width/num elts.  This can happen for register classes that can
5501       // contain multiple different value types.  The preg or vreg allocated may
5502       // not have the same VT as was expected.  Convert it to the right type
5503       // with bit_convert.
5504       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5505         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5506                           ResultType, Val);
5507 
5508       } else if (ResultType != Val.getValueType() &&
5509                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5510         // If a result value was tied to an input value, the computed result may
5511         // have a wider width than the expected result.  Extract the relevant
5512         // portion.
5513         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5514       }
5515 
5516       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5517     }
5518 
5519     setValue(CS.getInstruction(), Val);
5520     // Don't need to use this as a chain in this case.
5521     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5522       return;
5523   }
5524 
5525   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5526 
5527   // Process indirect outputs, first output all of the flagged copies out of
5528   // physregs.
5529   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5530     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5531     const Value *Ptr = IndirectStoresToEmit[i].second;
5532     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5533                                              Chain, &Flag);
5534     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5535   }
5536 
5537   // Emit the non-flagged stores from the physregs.
5538   SmallVector<SDValue, 8> OutChains;
5539   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5540     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5541                                StoresToEmit[i].first,
5542                                getValue(StoresToEmit[i].second),
5543                                StoresToEmit[i].second, 0,
5544                                false, false, 0);
5545     OutChains.push_back(Val);
5546   }
5547 
5548   if (!OutChains.empty())
5549     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5550                         &OutChains[0], OutChains.size());
5551 
5552   DAG.setRoot(Chain);
5553 }
5554 
5555 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5556   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5557                           MVT::Other, getRoot(),
5558                           getValue(I.getOperand(1)),
5559                           DAG.getSrcValue(I.getOperand(1))));
5560 }
5561 
5562 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5563   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5564                            getRoot(), getValue(I.getOperand(0)),
5565                            DAG.getSrcValue(I.getOperand(0)));
5566   setValue(&I, V);
5567   DAG.setRoot(V.getValue(1));
5568 }
5569 
5570 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5571   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5572                           MVT::Other, getRoot(),
5573                           getValue(I.getOperand(1)),
5574                           DAG.getSrcValue(I.getOperand(1))));
5575 }
5576 
5577 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5578   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5579                           MVT::Other, getRoot(),
5580                           getValue(I.getOperand(1)),
5581                           getValue(I.getOperand(2)),
5582                           DAG.getSrcValue(I.getOperand(1)),
5583                           DAG.getSrcValue(I.getOperand(2))));
5584 }
5585 
5586 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5587 /// implementation, which just calls LowerCall.
5588 /// FIXME: When all targets are
5589 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5590 std::pair<SDValue, SDValue>
5591 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5592                             bool RetSExt, bool RetZExt, bool isVarArg,
5593                             bool isInreg, unsigned NumFixedArgs,
5594                             CallingConv::ID CallConv, bool isTailCall,
5595                             bool isReturnValueUsed,
5596                             SDValue Callee,
5597                             ArgListTy &Args, SelectionDAG &DAG,
5598                             DebugLoc dl) const {
5599   // Handle all of the outgoing arguments.
5600   SmallVector<ISD::OutputArg, 32> Outs;
5601   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5602     SmallVector<EVT, 4> ValueVTs;
5603     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5604     for (unsigned Value = 0, NumValues = ValueVTs.size();
5605          Value != NumValues; ++Value) {
5606       EVT VT = ValueVTs[Value];
5607       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5608       SDValue Op = SDValue(Args[i].Node.getNode(),
5609                            Args[i].Node.getResNo() + Value);
5610       ISD::ArgFlagsTy Flags;
5611       unsigned OriginalAlignment =
5612         getTargetData()->getABITypeAlignment(ArgTy);
5613 
5614       if (Args[i].isZExt)
5615         Flags.setZExt();
5616       if (Args[i].isSExt)
5617         Flags.setSExt();
5618       if (Args[i].isInReg)
5619         Flags.setInReg();
5620       if (Args[i].isSRet)
5621         Flags.setSRet();
5622       if (Args[i].isByVal) {
5623         Flags.setByVal();
5624         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5625         const Type *ElementTy = Ty->getElementType();
5626         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5627         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5628         // For ByVal, alignment should come from FE.  BE will guess if this
5629         // info is not there but there are cases it cannot get right.
5630         if (Args[i].Alignment)
5631           FrameAlign = Args[i].Alignment;
5632         Flags.setByValAlign(FrameAlign);
5633         Flags.setByValSize(FrameSize);
5634       }
5635       if (Args[i].isNest)
5636         Flags.setNest();
5637       Flags.setOrigAlign(OriginalAlignment);
5638 
5639       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5640       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5641       SmallVector<SDValue, 4> Parts(NumParts);
5642       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5643 
5644       if (Args[i].isSExt)
5645         ExtendKind = ISD::SIGN_EXTEND;
5646       else if (Args[i].isZExt)
5647         ExtendKind = ISD::ZERO_EXTEND;
5648 
5649       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5650                      PartVT, ExtendKind);
5651 
5652       for (unsigned j = 0; j != NumParts; ++j) {
5653         // if it isn't first piece, alignment must be 1
5654         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5655         if (NumParts > 1 && j == 0)
5656           MyFlags.Flags.setSplit();
5657         else if (j != 0)
5658           MyFlags.Flags.setOrigAlign(1);
5659 
5660         Outs.push_back(MyFlags);
5661       }
5662     }
5663   }
5664 
5665   // Handle the incoming return values from the call.
5666   SmallVector<ISD::InputArg, 32> Ins;
5667   SmallVector<EVT, 4> RetTys;
5668   ComputeValueVTs(*this, RetTy, RetTys);
5669   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5670     EVT VT = RetTys[I];
5671     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5672     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5673     for (unsigned i = 0; i != NumRegs; ++i) {
5674       ISD::InputArg MyFlags;
5675       MyFlags.VT = RegisterVT;
5676       MyFlags.Used = isReturnValueUsed;
5677       if (RetSExt)
5678         MyFlags.Flags.setSExt();
5679       if (RetZExt)
5680         MyFlags.Flags.setZExt();
5681       if (isInreg)
5682         MyFlags.Flags.setInReg();
5683       Ins.push_back(MyFlags);
5684     }
5685   }
5686 
5687   SmallVector<SDValue, 4> InVals;
5688   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5689                     Outs, Ins, dl, DAG, InVals);
5690 
5691   // Verify that the target's LowerCall behaved as expected.
5692   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5693          "LowerCall didn't return a valid chain!");
5694   assert((!isTailCall || InVals.empty()) &&
5695          "LowerCall emitted a return value for a tail call!");
5696   assert((isTailCall || InVals.size() == Ins.size()) &&
5697          "LowerCall didn't emit the correct number of values!");
5698 
5699   // For a tail call, the return value is merely live-out and there aren't
5700   // any nodes in the DAG representing it. Return a special value to
5701   // indicate that a tail call has been emitted and no more Instructions
5702   // should be processed in the current block.
5703   if (isTailCall) {
5704     DAG.setRoot(Chain);
5705     return std::make_pair(SDValue(), SDValue());
5706   }
5707 
5708   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5709           assert(InVals[i].getNode() &&
5710                  "LowerCall emitted a null value!");
5711           assert(Ins[i].VT == InVals[i].getValueType() &&
5712                  "LowerCall emitted a value with the wrong type!");
5713         });
5714 
5715   // Collect the legal value parts into potentially illegal values
5716   // that correspond to the original function's return values.
5717   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5718   if (RetSExt)
5719     AssertOp = ISD::AssertSext;
5720   else if (RetZExt)
5721     AssertOp = ISD::AssertZext;
5722   SmallVector<SDValue, 4> ReturnValues;
5723   unsigned CurReg = 0;
5724   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5725     EVT VT = RetTys[I];
5726     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5727     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5728 
5729     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5730                                             NumRegs, RegisterVT, VT,
5731                                             AssertOp));
5732     CurReg += NumRegs;
5733   }
5734 
5735   // For a function returning void, there is no return value. We can't create
5736   // such a node, so we just return a null return value in that case. In
5737   // that case, nothing will actualy look at the value.
5738   if (ReturnValues.empty())
5739     return std::make_pair(SDValue(), Chain);
5740 
5741   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5742                             DAG.getVTList(&RetTys[0], RetTys.size()),
5743                             &ReturnValues[0], ReturnValues.size());
5744   return std::make_pair(Res, Chain);
5745 }
5746 
5747 void TargetLowering::LowerOperationWrapper(SDNode *N,
5748                                            SmallVectorImpl<SDValue> &Results,
5749                                            SelectionDAG &DAG) const {
5750   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5751   if (Res.getNode())
5752     Results.push_back(Res);
5753 }
5754 
5755 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5756   llvm_unreachable("LowerOperation not implemented for this target!");
5757   return SDValue();
5758 }
5759 
5760 void
5761 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5762   SDValue Op = getValue(V);
5763   assert((Op.getOpcode() != ISD::CopyFromReg ||
5764           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5765          "Copy from a reg to the same reg!");
5766   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5767 
5768   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5769   SDValue Chain = DAG.getEntryNode();
5770   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5771   PendingExports.push_back(Chain);
5772 }
5773 
5774 #include "llvm/CodeGen/SelectionDAGISel.h"
5775 
5776 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5777   // If this is the entry block, emit arguments.
5778   const Function &F = *LLVMBB->getParent();
5779   SelectionDAG &DAG = SDB->DAG;
5780   SDValue OldRoot = DAG.getRoot();
5781   DebugLoc dl = SDB->getCurDebugLoc();
5782   const TargetData *TD = TLI.getTargetData();
5783   SmallVector<ISD::InputArg, 16> Ins;
5784 
5785   // Check whether the function can return without sret-demotion.
5786   SmallVector<EVT, 4> OutVTs;
5787   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5788   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5789                 OutVTs, OutsFlags, TLI);
5790   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5791 
5792   FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5793                                           OutVTs, OutsFlags, DAG);
5794   if (!FLI.CanLowerReturn) {
5795     // Put in an sret pointer parameter before all the other parameters.
5796     SmallVector<EVT, 1> ValueVTs;
5797     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5798 
5799     // NOTE: Assuming that a pointer will never break down to more than one VT
5800     // or one register.
5801     ISD::ArgFlagsTy Flags;
5802     Flags.setSRet();
5803     EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5804     ISD::InputArg RetArg(Flags, RegisterVT, true);
5805     Ins.push_back(RetArg);
5806   }
5807 
5808   // Set up the incoming argument description vector.
5809   unsigned Idx = 1;
5810   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5811        I != E; ++I, ++Idx) {
5812     SmallVector<EVT, 4> ValueVTs;
5813     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5814     bool isArgValueUsed = !I->use_empty();
5815     for (unsigned Value = 0, NumValues = ValueVTs.size();
5816          Value != NumValues; ++Value) {
5817       EVT VT = ValueVTs[Value];
5818       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5819       ISD::ArgFlagsTy Flags;
5820       unsigned OriginalAlignment =
5821         TD->getABITypeAlignment(ArgTy);
5822 
5823       if (F.paramHasAttr(Idx, Attribute::ZExt))
5824         Flags.setZExt();
5825       if (F.paramHasAttr(Idx, Attribute::SExt))
5826         Flags.setSExt();
5827       if (F.paramHasAttr(Idx, Attribute::InReg))
5828         Flags.setInReg();
5829       if (F.paramHasAttr(Idx, Attribute::StructRet))
5830         Flags.setSRet();
5831       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5832         Flags.setByVal();
5833         const PointerType *Ty = cast<PointerType>(I->getType());
5834         const Type *ElementTy = Ty->getElementType();
5835         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5836         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5837         // For ByVal, alignment should be passed from FE.  BE will guess if
5838         // this info is not there but there are cases it cannot get right.
5839         if (F.getParamAlignment(Idx))
5840           FrameAlign = F.getParamAlignment(Idx);
5841         Flags.setByValAlign(FrameAlign);
5842         Flags.setByValSize(FrameSize);
5843       }
5844       if (F.paramHasAttr(Idx, Attribute::Nest))
5845         Flags.setNest();
5846       Flags.setOrigAlign(OriginalAlignment);
5847 
5848       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5849       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5850       for (unsigned i = 0; i != NumRegs; ++i) {
5851         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5852         if (NumRegs > 1 && i == 0)
5853           MyFlags.Flags.setSplit();
5854         // if it isn't first piece, alignment must be 1
5855         else if (i > 0)
5856           MyFlags.Flags.setOrigAlign(1);
5857         Ins.push_back(MyFlags);
5858       }
5859     }
5860   }
5861 
5862   // Call the target to set up the argument values.
5863   SmallVector<SDValue, 8> InVals;
5864   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5865                                              F.isVarArg(), Ins,
5866                                              dl, DAG, InVals);
5867 
5868   // Verify that the target's LowerFormalArguments behaved as expected.
5869   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5870          "LowerFormalArguments didn't return a valid chain!");
5871   assert(InVals.size() == Ins.size() &&
5872          "LowerFormalArguments didn't emit the correct number of values!");
5873   DEBUG({
5874       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5875         assert(InVals[i].getNode() &&
5876                "LowerFormalArguments emitted a null value!");
5877         assert(Ins[i].VT == InVals[i].getValueType() &&
5878                "LowerFormalArguments emitted a value with the wrong type!");
5879       }
5880     });
5881 
5882   // Update the DAG with the new chain value resulting from argument lowering.
5883   DAG.setRoot(NewRoot);
5884 
5885   // Set up the argument values.
5886   unsigned i = 0;
5887   Idx = 1;
5888   if (!FLI.CanLowerReturn) {
5889     // Create a virtual register for the sret pointer, and put in a copy
5890     // from the sret argument into it.
5891     SmallVector<EVT, 1> ValueVTs;
5892     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5893     EVT VT = ValueVTs[0];
5894     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5895     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5896     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
5897                                         RegVT, VT, AssertOp);
5898 
5899     MachineFunction& MF = SDB->DAG.getMachineFunction();
5900     MachineRegisterInfo& RegInfo = MF.getRegInfo();
5901     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5902     FLI.DemoteRegister = SRetReg;
5903     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5904                                     SRetReg, ArgValue);
5905     DAG.setRoot(NewRoot);
5906 
5907     // i indexes lowered arguments.  Bump it past the hidden sret argument.
5908     // Idx indexes LLVM arguments.  Don't touch it.
5909     ++i;
5910   }
5911 
5912   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5913       ++I, ++Idx) {
5914     SmallVector<SDValue, 4> ArgValues;
5915     SmallVector<EVT, 4> ValueVTs;
5916     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5917     unsigned NumValues = ValueVTs.size();
5918     for (unsigned Value = 0; Value != NumValues; ++Value) {
5919       EVT VT = ValueVTs[Value];
5920       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5921       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5922 
5923       if (!I->use_empty()) {
5924         ISD::NodeType AssertOp = ISD::DELETED_NODE;
5925         if (F.paramHasAttr(Idx, Attribute::SExt))
5926           AssertOp = ISD::AssertSext;
5927         else if (F.paramHasAttr(Idx, Attribute::ZExt))
5928           AssertOp = ISD::AssertZext;
5929 
5930         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
5931                                              NumParts, PartVT, VT,
5932                                              AssertOp));
5933       }
5934 
5935       i += NumParts;
5936     }
5937 
5938     if (!I->use_empty()) {
5939       SDValue Res;
5940       if (!ArgValues.empty())
5941         Res = DAG.getMergeValues(&ArgValues[0], NumValues,
5942                                  SDB->getCurDebugLoc());
5943       SDB->setValue(I, Res);
5944 
5945       // If this argument is live outside of the entry block, insert a copy from
5946       // whereever we got it to the vreg that other BB's will reference it as.
5947       SDB->CopyToExportRegsIfNeeded(I);
5948     }
5949   }
5950 
5951   assert(i == InVals.size() && "Argument register count mismatch!");
5952 
5953   // Finally, if the target has anything special to do, allow it to do so.
5954   // FIXME: this should insert code into the DAG!
5955   EmitFunctionEntryCode();
5956 }
5957 
5958 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5959 /// ensure constants are generated when needed.  Remember the virtual registers
5960 /// that need to be added to the Machine PHI nodes as input.  We cannot just
5961 /// directly add them, because expansion might result in multiple MBB's for one
5962 /// BB.  As such, the start of the BB might correspond to a different MBB than
5963 /// the end.
5964 ///
5965 void
5966 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
5967   const TerminatorInst *TI = LLVMBB->getTerminator();
5968 
5969   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5970 
5971   // Check successor nodes' PHI nodes that expect a constant to be available
5972   // from this block.
5973   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5974     const BasicBlock *SuccBB = TI->getSuccessor(succ);
5975     if (!isa<PHINode>(SuccBB->begin())) continue;
5976     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5977 
5978     // If this terminator has multiple identical successors (common for
5979     // switches), only handle each succ once.
5980     if (!SuccsHandled.insert(SuccMBB)) continue;
5981 
5982     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5983 
5984     // At this point we know that there is a 1-1 correspondence between LLVM PHI
5985     // nodes and Machine PHI nodes, but the incoming operands have not been
5986     // emitted yet.
5987     for (BasicBlock::const_iterator I = SuccBB->begin();
5988          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
5989       // Ignore dead phi's.
5990       if (PN->use_empty()) continue;
5991 
5992       unsigned Reg;
5993       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5994 
5995       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
5996         unsigned &RegOut = SDB->ConstantsOut[C];
5997         if (RegOut == 0) {
5998           RegOut = FuncInfo->CreateRegForValue(C);
5999           SDB->CopyValueToVirtualRegister(C, RegOut);
6000         }
6001         Reg = RegOut;
6002       } else {
6003         Reg = FuncInfo->ValueMap[PHIOp];
6004         if (Reg == 0) {
6005           assert(isa<AllocaInst>(PHIOp) &&
6006                  FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6007                  "Didn't codegen value into a register!??");
6008           Reg = FuncInfo->CreateRegForValue(PHIOp);
6009           SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6010         }
6011       }
6012 
6013       // Remember that this register needs to added to the machine PHI node as
6014       // the input for this MBB.
6015       SmallVector<EVT, 4> ValueVTs;
6016       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6017       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6018         EVT VT = ValueVTs[vti];
6019         unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6020         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6021           SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6022         Reg += NumRegisters;
6023       }
6024     }
6025   }
6026   SDB->ConstantsOut.clear();
6027 }
6028 
6029 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6030 /// supports legal types, and it emits MachineInstrs directly instead of
6031 /// creating SelectionDAG nodes.
6032 ///
6033 bool
6034 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(const BasicBlock *LLVMBB,
6035                                                       FastISel *F) {
6036   const TerminatorInst *TI = LLVMBB->getTerminator();
6037 
6038   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6039   unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6040 
6041   // Check successor nodes' PHI nodes that expect a constant to be available
6042   // from this block.
6043   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6044     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6045     if (!isa<PHINode>(SuccBB->begin())) continue;
6046     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6047 
6048     // If this terminator has multiple identical successors (common for
6049     // switches), only handle each succ once.
6050     if (!SuccsHandled.insert(SuccMBB)) continue;
6051 
6052     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6053 
6054     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6055     // nodes and Machine PHI nodes, but the incoming operands have not been
6056     // emitted yet.
6057     for (BasicBlock::const_iterator I = SuccBB->begin();
6058          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6059       // Ignore dead phi's.
6060       if (PN->use_empty()) continue;
6061 
6062       // Only handle legal types. Two interesting things to note here. First,
6063       // by bailing out early, we may leave behind some dead instructions,
6064       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6065       // own moves. Second, this check is necessary becuase FastISel doesn't
6066       // use CreateRegForValue to create registers, so it always creates
6067       // exactly one register for each non-void instruction.
6068       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6069       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6070         // Promote MVT::i1.
6071         if (VT == MVT::i1)
6072           VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6073         else {
6074           SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6075           return false;
6076         }
6077       }
6078 
6079       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6080 
6081       unsigned Reg = F->getRegForValue(PHIOp);
6082       if (Reg == 0) {
6083         SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6084         return false;
6085       }
6086       SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6087     }
6088   }
6089 
6090   return true;
6091 }
6092