1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1169 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1170 PadMBB->addSuccessor(TargetMBB); 1171 1172 // Create the terminator node. 1173 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1174 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1175 DAG.setRoot(Ret); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1179 llvm_unreachable("should never codegen catchendpads"); 1180 } 1181 1182 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1183 report_fatal_error("visitCleanupPad not yet implemented!"); 1184 } 1185 1186 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1187 report_fatal_error("visitCleanupRet not yet implemented!"); 1188 } 1189 1190 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1191 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1192 } 1193 1194 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1195 report_fatal_error("visitTerminatePad not yet implemented!"); 1196 } 1197 1198 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1200 auto &DL = DAG.getDataLayout(); 1201 SDValue Chain = getControlRoot(); 1202 SmallVector<ISD::OutputArg, 8> Outs; 1203 SmallVector<SDValue, 8> OutVals; 1204 1205 if (!FuncInfo.CanLowerReturn) { 1206 unsigned DemoteReg = FuncInfo.DemoteRegister; 1207 const Function *F = I.getParent()->getParent(); 1208 1209 // Emit a store of the return value through the virtual register. 1210 // Leave Outs empty so that LowerReturn won't try to load return 1211 // registers the usual way. 1212 SmallVector<EVT, 1> PtrValueVTs; 1213 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1214 PtrValueVTs); 1215 1216 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1217 SDValue RetOp = getValue(I.getOperand(0)); 1218 1219 SmallVector<EVT, 4> ValueVTs; 1220 SmallVector<uint64_t, 4> Offsets; 1221 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1222 unsigned NumValues = ValueVTs.size(); 1223 1224 SmallVector<SDValue, 4> Chains(NumValues); 1225 for (unsigned i = 0; i != NumValues; ++i) { 1226 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1227 RetPtr.getValueType(), RetPtr, 1228 DAG.getIntPtrConstant(Offsets[i], 1229 getCurSDLoc())); 1230 Chains[i] = 1231 DAG.getStore(Chain, getCurSDLoc(), 1232 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1233 // FIXME: better loc info would be nice. 1234 Add, MachinePointerInfo(), false, false, 0); 1235 } 1236 1237 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1238 MVT::Other, Chains); 1239 } else if (I.getNumOperands() != 0) { 1240 SmallVector<EVT, 4> ValueVTs; 1241 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1242 unsigned NumValues = ValueVTs.size(); 1243 if (NumValues) { 1244 SDValue RetOp = getValue(I.getOperand(0)); 1245 1246 const Function *F = I.getParent()->getParent(); 1247 1248 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1249 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1250 Attribute::SExt)) 1251 ExtendKind = ISD::SIGN_EXTEND; 1252 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1253 Attribute::ZExt)) 1254 ExtendKind = ISD::ZERO_EXTEND; 1255 1256 LLVMContext &Context = F->getContext(); 1257 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1258 Attribute::InReg); 1259 1260 for (unsigned j = 0; j != NumValues; ++j) { 1261 EVT VT = ValueVTs[j]; 1262 1263 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1264 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1265 1266 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1267 MVT PartVT = TLI.getRegisterType(Context, VT); 1268 SmallVector<SDValue, 4> Parts(NumParts); 1269 getCopyToParts(DAG, getCurSDLoc(), 1270 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1271 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1272 1273 // 'inreg' on function refers to return value 1274 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1275 if (RetInReg) 1276 Flags.setInReg(); 1277 1278 // Propagate extension type if any 1279 if (ExtendKind == ISD::SIGN_EXTEND) 1280 Flags.setSExt(); 1281 else if (ExtendKind == ISD::ZERO_EXTEND) 1282 Flags.setZExt(); 1283 1284 for (unsigned i = 0; i < NumParts; ++i) { 1285 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1286 VT, /*isfixed=*/true, 0, 0)); 1287 OutVals.push_back(Parts[i]); 1288 } 1289 } 1290 } 1291 } 1292 1293 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1294 CallingConv::ID CallConv = 1295 DAG.getMachineFunction().getFunction()->getCallingConv(); 1296 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1297 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1298 1299 // Verify that the target's LowerReturn behaved as expected. 1300 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1301 "LowerReturn didn't return a valid chain!"); 1302 1303 // Update the DAG with the new chain value resulting from return lowering. 1304 DAG.setRoot(Chain); 1305 } 1306 1307 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1308 /// created for it, emit nodes to copy the value into the virtual 1309 /// registers. 1310 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1311 // Skip empty types 1312 if (V->getType()->isEmptyTy()) 1313 return; 1314 1315 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1316 if (VMI != FuncInfo.ValueMap.end()) { 1317 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1318 CopyValueToVirtualRegister(V, VMI->second); 1319 } 1320 } 1321 1322 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1323 /// the current basic block, add it to ValueMap now so that we'll get a 1324 /// CopyTo/FromReg. 1325 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1326 // No need to export constants. 1327 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1328 1329 // Already exported? 1330 if (FuncInfo.isExportedInst(V)) return; 1331 1332 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1333 CopyValueToVirtualRegister(V, Reg); 1334 } 1335 1336 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1337 const BasicBlock *FromBB) { 1338 // The operands of the setcc have to be in this block. We don't know 1339 // how to export them from some other block. 1340 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1341 // Can export from current BB. 1342 if (VI->getParent() == FromBB) 1343 return true; 1344 1345 // Is already exported, noop. 1346 return FuncInfo.isExportedInst(V); 1347 } 1348 1349 // If this is an argument, we can export it if the BB is the entry block or 1350 // if it is already exported. 1351 if (isa<Argument>(V)) { 1352 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1353 return true; 1354 1355 // Otherwise, can only export this if it is already exported. 1356 return FuncInfo.isExportedInst(V); 1357 } 1358 1359 // Otherwise, constants can always be exported. 1360 return true; 1361 } 1362 1363 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1364 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1365 const MachineBasicBlock *Dst) const { 1366 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1367 if (!BPI) 1368 return 0; 1369 const BasicBlock *SrcBB = Src->getBasicBlock(); 1370 const BasicBlock *DstBB = Dst->getBasicBlock(); 1371 return BPI->getEdgeWeight(SrcBB, DstBB); 1372 } 1373 1374 void SelectionDAGBuilder:: 1375 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1376 uint32_t Weight /* = 0 */) { 1377 if (!Weight) 1378 Weight = getEdgeWeight(Src, Dst); 1379 Src->addSuccessor(Dst, Weight); 1380 } 1381 1382 1383 static bool InBlock(const Value *V, const BasicBlock *BB) { 1384 if (const Instruction *I = dyn_cast<Instruction>(V)) 1385 return I->getParent() == BB; 1386 return true; 1387 } 1388 1389 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1390 /// This function emits a branch and is used at the leaves of an OR or an 1391 /// AND operator tree. 1392 /// 1393 void 1394 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1395 MachineBasicBlock *TBB, 1396 MachineBasicBlock *FBB, 1397 MachineBasicBlock *CurBB, 1398 MachineBasicBlock *SwitchBB, 1399 uint32_t TWeight, 1400 uint32_t FWeight) { 1401 const BasicBlock *BB = CurBB->getBasicBlock(); 1402 1403 // If the leaf of the tree is a comparison, merge the condition into 1404 // the caseblock. 1405 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1406 // The operands of the cmp have to be in this block. We don't know 1407 // how to export them from some other block. If this is the first block 1408 // of the sequence, no exporting is needed. 1409 if (CurBB == SwitchBB || 1410 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1411 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1412 ISD::CondCode Condition; 1413 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1414 Condition = getICmpCondCode(IC->getPredicate()); 1415 } else { 1416 const FCmpInst *FC = cast<FCmpInst>(Cond); 1417 Condition = getFCmpCondCode(FC->getPredicate()); 1418 if (TM.Options.NoNaNsFPMath) 1419 Condition = getFCmpCodeWithoutNaN(Condition); 1420 } 1421 1422 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1423 TBB, FBB, CurBB, TWeight, FWeight); 1424 SwitchCases.push_back(CB); 1425 return; 1426 } 1427 } 1428 1429 // Create a CaseBlock record representing this branch. 1430 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1431 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1432 SwitchCases.push_back(CB); 1433 } 1434 1435 /// Scale down both weights to fit into uint32_t. 1436 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1437 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1438 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1439 NewTrue = NewTrue / Scale; 1440 NewFalse = NewFalse / Scale; 1441 } 1442 1443 /// FindMergedConditions - If Cond is an expression like 1444 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1445 MachineBasicBlock *TBB, 1446 MachineBasicBlock *FBB, 1447 MachineBasicBlock *CurBB, 1448 MachineBasicBlock *SwitchBB, 1449 Instruction::BinaryOps Opc, 1450 uint32_t TWeight, 1451 uint32_t FWeight) { 1452 // If this node is not part of the or/and tree, emit it as a branch. 1453 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1454 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1455 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1456 BOp->getParent() != CurBB->getBasicBlock() || 1457 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1458 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1459 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1460 TWeight, FWeight); 1461 return; 1462 } 1463 1464 // Create TmpBB after CurBB. 1465 MachineFunction::iterator BBI = CurBB; 1466 MachineFunction &MF = DAG.getMachineFunction(); 1467 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1468 CurBB->getParent()->insert(++BBI, TmpBB); 1469 1470 if (Opc == Instruction::Or) { 1471 // Codegen X | Y as: 1472 // BB1: 1473 // jmp_if_X TBB 1474 // jmp TmpBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 1480 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1481 // The requirement is that 1482 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1483 // = TrueProb for original BB. 1484 // Assuming the original weights are A and B, one choice is to set BB1's 1485 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1486 // assumes that 1487 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1488 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1489 // TmpBB, but the math is more complicated. 1490 1491 uint64_t NewTrueWeight = TWeight; 1492 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1493 ScaleWeights(NewTrueWeight, NewFalseWeight); 1494 // Emit the LHS condition. 1495 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1496 NewTrueWeight, NewFalseWeight); 1497 1498 NewTrueWeight = TWeight; 1499 NewFalseWeight = 2 * (uint64_t)FWeight; 1500 ScaleWeights(NewTrueWeight, NewFalseWeight); 1501 // Emit the RHS condition into TmpBB. 1502 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1503 NewTrueWeight, NewFalseWeight); 1504 } else { 1505 assert(Opc == Instruction::And && "Unknown merge op!"); 1506 // Codegen X & Y as: 1507 // BB1: 1508 // jmp_if_X TmpBB 1509 // jmp FBB 1510 // TmpBB: 1511 // jmp_if_Y TBB 1512 // jmp FBB 1513 // 1514 // This requires creation of TmpBB after CurBB. 1515 1516 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1517 // The requirement is that 1518 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1519 // = FalseProb for original BB. 1520 // Assuming the original weights are A and B, one choice is to set BB1's 1521 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1522 // assumes that 1523 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1524 1525 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1526 uint64_t NewFalseWeight = FWeight; 1527 ScaleWeights(NewTrueWeight, NewFalseWeight); 1528 // Emit the LHS condition. 1529 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1530 NewTrueWeight, NewFalseWeight); 1531 1532 NewTrueWeight = 2 * (uint64_t)TWeight; 1533 NewFalseWeight = FWeight; 1534 ScaleWeights(NewTrueWeight, NewFalseWeight); 1535 // Emit the RHS condition into TmpBB. 1536 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1537 NewTrueWeight, NewFalseWeight); 1538 } 1539 } 1540 1541 /// If the set of cases should be emitted as a series of branches, return true. 1542 /// If we should emit this as a bunch of and/or'd together conditions, return 1543 /// false. 1544 bool 1545 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1546 if (Cases.size() != 2) return true; 1547 1548 // If this is two comparisons of the same values or'd or and'd together, they 1549 // will get folded into a single comparison, so don't emit two blocks. 1550 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1551 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1552 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1553 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1554 return false; 1555 } 1556 1557 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1558 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1559 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1560 Cases[0].CC == Cases[1].CC && 1561 isa<Constant>(Cases[0].CmpRHS) && 1562 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1563 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1564 return false; 1565 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1566 return false; 1567 } 1568 1569 return true; 1570 } 1571 1572 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1573 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1574 1575 // Update machine-CFG edges. 1576 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1577 1578 if (I.isUnconditional()) { 1579 // Update machine-CFG edges. 1580 BrMBB->addSuccessor(Succ0MBB); 1581 1582 // If this is not a fall-through branch or optimizations are switched off, 1583 // emit the branch. 1584 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1585 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1586 MVT::Other, getControlRoot(), 1587 DAG.getBasicBlock(Succ0MBB))); 1588 1589 return; 1590 } 1591 1592 // If this condition is one of the special cases we handle, do special stuff 1593 // now. 1594 const Value *CondVal = I.getCondition(); 1595 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1596 1597 // If this is a series of conditions that are or'd or and'd together, emit 1598 // this as a sequence of branches instead of setcc's with and/or operations. 1599 // As long as jumps are not expensive, this should improve performance. 1600 // For example, instead of something like: 1601 // cmp A, B 1602 // C = seteq 1603 // cmp D, E 1604 // F = setle 1605 // or C, F 1606 // jnz foo 1607 // Emit: 1608 // cmp A, B 1609 // je foo 1610 // cmp D, E 1611 // jle foo 1612 // 1613 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1614 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1615 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1616 !I.getMetadata(LLVMContext::MD_unpredictable) && 1617 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1618 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1619 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1620 getEdgeWeight(BrMBB, Succ1MBB)); 1621 // If the compares in later blocks need to use values not currently 1622 // exported from this block, export them now. This block should always 1623 // be the first entry. 1624 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1625 1626 // Allow some cases to be rejected. 1627 if (ShouldEmitAsBranches(SwitchCases)) { 1628 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1629 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1630 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1631 } 1632 1633 // Emit the branch for this block. 1634 visitSwitchCase(SwitchCases[0], BrMBB); 1635 SwitchCases.erase(SwitchCases.begin()); 1636 return; 1637 } 1638 1639 // Okay, we decided not to do this, remove any inserted MBB's and clear 1640 // SwitchCases. 1641 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1642 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1643 1644 SwitchCases.clear(); 1645 } 1646 } 1647 1648 // Create a CaseBlock record representing this branch. 1649 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1650 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1651 1652 // Use visitSwitchCase to actually insert the fast branch sequence for this 1653 // cond branch. 1654 visitSwitchCase(CB, BrMBB); 1655 } 1656 1657 /// visitSwitchCase - Emits the necessary code to represent a single node in 1658 /// the binary search tree resulting from lowering a switch instruction. 1659 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1660 MachineBasicBlock *SwitchBB) { 1661 SDValue Cond; 1662 SDValue CondLHS = getValue(CB.CmpLHS); 1663 SDLoc dl = getCurSDLoc(); 1664 1665 // Build the setcc now. 1666 if (!CB.CmpMHS) { 1667 // Fold "(X == true)" to X and "(X == false)" to !X to 1668 // handle common cases produced by branch lowering. 1669 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1670 CB.CC == ISD::SETEQ) 1671 Cond = CondLHS; 1672 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1673 CB.CC == ISD::SETEQ) { 1674 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1675 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1676 } else 1677 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1678 } else { 1679 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1680 1681 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1682 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1683 1684 SDValue CmpOp = getValue(CB.CmpMHS); 1685 EVT VT = CmpOp.getValueType(); 1686 1687 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1688 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1689 ISD::SETLE); 1690 } else { 1691 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1692 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1693 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1694 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1695 } 1696 } 1697 1698 // Update successor info 1699 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1700 // TrueBB and FalseBB are always different unless the incoming IR is 1701 // degenerate. This only happens when running llc on weird IR. 1702 if (CB.TrueBB != CB.FalseBB) 1703 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1704 1705 // If the lhs block is the next block, invert the condition so that we can 1706 // fall through to the lhs instead of the rhs block. 1707 if (CB.TrueBB == NextBlock(SwitchBB)) { 1708 std::swap(CB.TrueBB, CB.FalseBB); 1709 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1710 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1711 } 1712 1713 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1714 MVT::Other, getControlRoot(), Cond, 1715 DAG.getBasicBlock(CB.TrueBB)); 1716 1717 // Insert the false branch. Do this even if it's a fall through branch, 1718 // this makes it easier to do DAG optimizations which require inverting 1719 // the branch condition. 1720 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1721 DAG.getBasicBlock(CB.FalseBB)); 1722 1723 DAG.setRoot(BrCond); 1724 } 1725 1726 /// visitJumpTable - Emit JumpTable node in the current MBB 1727 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1728 // Emit the code for the jump table 1729 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1730 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1731 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1732 JT.Reg, PTy); 1733 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1734 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1735 MVT::Other, Index.getValue(1), 1736 Table, Index); 1737 DAG.setRoot(BrJumpTable); 1738 } 1739 1740 /// visitJumpTableHeader - This function emits necessary code to produce index 1741 /// in the JumpTable from switch case. 1742 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1743 JumpTableHeader &JTH, 1744 MachineBasicBlock *SwitchBB) { 1745 SDLoc dl = getCurSDLoc(); 1746 1747 // Subtract the lowest switch case value from the value being switched on and 1748 // conditional branch to default mbb if the result is greater than the 1749 // difference between smallest and largest cases. 1750 SDValue SwitchOp = getValue(JTH.SValue); 1751 EVT VT = SwitchOp.getValueType(); 1752 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1753 DAG.getConstant(JTH.First, dl, VT)); 1754 1755 // The SDNode we just created, which holds the value being switched on minus 1756 // the smallest case value, needs to be copied to a virtual register so it 1757 // can be used as an index into the jump table in a subsequent basic block. 1758 // This value may be smaller or larger than the target's pointer type, and 1759 // therefore require extension or truncating. 1760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1761 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1762 1763 unsigned JumpTableReg = 1764 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1765 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1766 JumpTableReg, SwitchOp); 1767 JT.Reg = JumpTableReg; 1768 1769 // Emit the range check for the jump table, and branch to the default block 1770 // for the switch statement if the value being switched on exceeds the largest 1771 // case in the switch. 1772 SDValue CMP = DAG.getSetCC( 1773 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1774 Sub.getValueType()), 1775 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1776 1777 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1778 MVT::Other, CopyTo, CMP, 1779 DAG.getBasicBlock(JT.Default)); 1780 1781 // Avoid emitting unnecessary branches to the next block. 1782 if (JT.MBB != NextBlock(SwitchBB)) 1783 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1784 DAG.getBasicBlock(JT.MBB)); 1785 1786 DAG.setRoot(BrCond); 1787 } 1788 1789 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1790 /// tail spliced into a stack protector check success bb. 1791 /// 1792 /// For a high level explanation of how this fits into the stack protector 1793 /// generation see the comment on the declaration of class 1794 /// StackProtectorDescriptor. 1795 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1796 MachineBasicBlock *ParentBB) { 1797 1798 // First create the loads to the guard/stack slot for the comparison. 1799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1800 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1801 1802 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1803 int FI = MFI->getStackProtectorIndex(); 1804 1805 const Value *IRGuard = SPD.getGuard(); 1806 SDValue GuardPtr = getValue(IRGuard); 1807 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1808 1809 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1810 1811 SDValue Guard; 1812 SDLoc dl = getCurSDLoc(); 1813 1814 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1815 // guard value from the virtual register holding the value. Otherwise, emit a 1816 // volatile load to retrieve the stack guard value. 1817 unsigned GuardReg = SPD.getGuardReg(); 1818 1819 if (GuardReg && TLI.useLoadStackGuardNode()) 1820 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1821 PtrTy); 1822 else 1823 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1824 GuardPtr, MachinePointerInfo(IRGuard, 0), 1825 true, false, false, Align); 1826 1827 SDValue StackSlot = DAG.getLoad( 1828 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1829 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1830 false, false, Align); 1831 1832 // Perform the comparison via a subtract/getsetcc. 1833 EVT VT = Guard.getValueType(); 1834 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1835 1836 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1837 *DAG.getContext(), 1838 Sub.getValueType()), 1839 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1840 1841 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1842 // branch to failure MBB. 1843 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1844 MVT::Other, StackSlot.getOperand(0), 1845 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1846 // Otherwise branch to success MBB. 1847 SDValue Br = DAG.getNode(ISD::BR, dl, 1848 MVT::Other, BrCond, 1849 DAG.getBasicBlock(SPD.getSuccessMBB())); 1850 1851 DAG.setRoot(Br); 1852 } 1853 1854 /// Codegen the failure basic block for a stack protector check. 1855 /// 1856 /// A failure stack protector machine basic block consists simply of a call to 1857 /// __stack_chk_fail(). 1858 /// 1859 /// For a high level explanation of how this fits into the stack protector 1860 /// generation see the comment on the declaration of class 1861 /// StackProtectorDescriptor. 1862 void 1863 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1865 SDValue Chain = 1866 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1867 nullptr, 0, false, getCurSDLoc(), false, false).second; 1868 DAG.setRoot(Chain); 1869 } 1870 1871 /// visitBitTestHeader - This function emits necessary code to produce value 1872 /// suitable for "bit tests" 1873 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1874 MachineBasicBlock *SwitchBB) { 1875 SDLoc dl = getCurSDLoc(); 1876 1877 // Subtract the minimum value 1878 SDValue SwitchOp = getValue(B.SValue); 1879 EVT VT = SwitchOp.getValueType(); 1880 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1881 DAG.getConstant(B.First, dl, VT)); 1882 1883 // Check range 1884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1885 SDValue RangeCmp = DAG.getSetCC( 1886 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1887 Sub.getValueType()), 1888 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1889 1890 // Determine the type of the test operands. 1891 bool UsePtrType = false; 1892 if (!TLI.isTypeLegal(VT)) 1893 UsePtrType = true; 1894 else { 1895 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1896 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1897 // Switch table case range are encoded into series of masks. 1898 // Just use pointer type, it's guaranteed to fit. 1899 UsePtrType = true; 1900 break; 1901 } 1902 } 1903 if (UsePtrType) { 1904 VT = TLI.getPointerTy(DAG.getDataLayout()); 1905 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1906 } 1907 1908 B.RegVT = VT.getSimpleVT(); 1909 B.Reg = FuncInfo.CreateReg(B.RegVT); 1910 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1911 1912 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1913 1914 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1915 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1916 1917 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1918 MVT::Other, CopyTo, RangeCmp, 1919 DAG.getBasicBlock(B.Default)); 1920 1921 // Avoid emitting unnecessary branches to the next block. 1922 if (MBB != NextBlock(SwitchBB)) 1923 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1924 DAG.getBasicBlock(MBB)); 1925 1926 DAG.setRoot(BrRange); 1927 } 1928 1929 /// visitBitTestCase - this function produces one "bit test" 1930 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1931 MachineBasicBlock* NextMBB, 1932 uint32_t BranchWeightToNext, 1933 unsigned Reg, 1934 BitTestCase &B, 1935 MachineBasicBlock *SwitchBB) { 1936 SDLoc dl = getCurSDLoc(); 1937 MVT VT = BB.RegVT; 1938 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1939 SDValue Cmp; 1940 unsigned PopCount = countPopulation(B.Mask); 1941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1942 if (PopCount == 1) { 1943 // Testing for a single bit; just compare the shift count with what it 1944 // would need to be to shift a 1 bit in that position. 1945 Cmp = DAG.getSetCC( 1946 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1947 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1948 ISD::SETEQ); 1949 } else if (PopCount == BB.Range) { 1950 // There is only one zero bit in the range, test for it directly. 1951 Cmp = DAG.getSetCC( 1952 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1953 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1954 ISD::SETNE); 1955 } else { 1956 // Make desired shift 1957 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1958 DAG.getConstant(1, dl, VT), ShiftOp); 1959 1960 // Emit bit tests and jumps 1961 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1962 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1963 Cmp = DAG.getSetCC( 1964 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1965 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1966 } 1967 1968 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1969 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1970 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1971 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1972 1973 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1974 MVT::Other, getControlRoot(), 1975 Cmp, DAG.getBasicBlock(B.TargetBB)); 1976 1977 // Avoid emitting unnecessary branches to the next block. 1978 if (NextMBB != NextBlock(SwitchBB)) 1979 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1980 DAG.getBasicBlock(NextMBB)); 1981 1982 DAG.setRoot(BrAnd); 1983 } 1984 1985 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1986 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1987 1988 // Retrieve successors. Look through artificial IR level blocks like catchpads 1989 // and catchendpads for successors. 1990 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1991 const BasicBlock *EHPadBB = I.getSuccessor(1); 1992 1993 const Value *Callee(I.getCalledValue()); 1994 const Function *Fn = dyn_cast<Function>(Callee); 1995 if (isa<InlineAsm>(Callee)) 1996 visitInlineAsm(&I); 1997 else if (Fn && Fn->isIntrinsic()) { 1998 switch (Fn->getIntrinsicID()) { 1999 default: 2000 llvm_unreachable("Cannot invoke this intrinsic"); 2001 case Intrinsic::donothing: 2002 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2003 break; 2004 case Intrinsic::experimental_patchpoint_void: 2005 case Intrinsic::experimental_patchpoint_i64: 2006 visitPatchpoint(&I, EHPadBB); 2007 break; 2008 case Intrinsic::experimental_gc_statepoint: 2009 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2010 break; 2011 } 2012 } else 2013 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2014 2015 // If the value of the invoke is used outside of its defining block, make it 2016 // available as a virtual register. 2017 // We already took care of the exported value for the statepoint instruction 2018 // during call to the LowerStatepoint. 2019 if (!isStatepoint(I)) { 2020 CopyToExportRegsIfNeeded(&I); 2021 } 2022 2023 // Stop when we hit a pad that generates real code or we unwind to caller. 2024 // Catchpads are conditional branches that add real MBB destinations and 2025 // continue the loop. EH "end" pads are not real BBs and simply continue. 2026 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2027 bool IsMSVCCXX = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()) == 2028 EHPersonality::MSVC_CXX; 2029 while (EHPadBB) { 2030 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2031 if (isa<LandingPadInst>(Pad)) { 2032 // Stop on landingpads. They are not funclets. 2033 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 2034 break; 2035 } else if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 2036 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2037 // personalities. 2038 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 2039 UnwindDests.back()->setIsEHFuncletEntry(); 2040 break; 2041 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 2042 // Add the catchpad handler to the possible destinations. 2043 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 2044 // In MSVC C++, catchblocks are funclets and need prologues. 2045 if (IsMSVCCXX) 2046 UnwindDests.back()->setIsEHFuncletEntry(); 2047 EHPadBB = CPI->getUnwindDest(); 2048 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 2049 EHPadBB = CEPI->getUnwindDest(); 2050 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 2051 EHPadBB = CEPI->getUnwindDest(); 2052 } 2053 } 2054 2055 // Update successor info. 2056 // FIXME: The weights for catchpads will be wrong. 2057 addSuccessorWithWeight(InvokeMBB, Return); 2058 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2059 UnwindDest->setIsEHPad(); 2060 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2061 } 2062 2063 // Drop into normal successor. 2064 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2065 MVT::Other, getControlRoot(), 2066 DAG.getBasicBlock(Return))); 2067 } 2068 2069 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2070 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2071 } 2072 2073 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2074 assert(FuncInfo.MBB->isEHPad() && 2075 "Call to landingpad not in landing pad!"); 2076 2077 MachineBasicBlock *MBB = FuncInfo.MBB; 2078 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2079 AddLandingPadInfo(LP, MMI, MBB); 2080 2081 // If there aren't registers to copy the values into (e.g., during SjLj 2082 // exceptions), then don't bother to create these DAG nodes. 2083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2084 if (TLI.getExceptionPointerRegister() == 0 && 2085 TLI.getExceptionSelectorRegister() == 0) 2086 return; 2087 2088 SmallVector<EVT, 2> ValueVTs; 2089 SDLoc dl = getCurSDLoc(); 2090 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2091 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2092 2093 // Get the two live-in registers as SDValues. The physregs have already been 2094 // copied into virtual registers. 2095 SDValue Ops[2]; 2096 if (FuncInfo.ExceptionPointerVirtReg) { 2097 Ops[0] = DAG.getZExtOrTrunc( 2098 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2099 FuncInfo.ExceptionPointerVirtReg, 2100 TLI.getPointerTy(DAG.getDataLayout())), 2101 dl, ValueVTs[0]); 2102 } else { 2103 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2104 } 2105 Ops[1] = DAG.getZExtOrTrunc( 2106 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2107 FuncInfo.ExceptionSelectorVirtReg, 2108 TLI.getPointerTy(DAG.getDataLayout())), 2109 dl, ValueVTs[1]); 2110 2111 // Merge into one. 2112 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2113 DAG.getVTList(ValueVTs), Ops); 2114 setValue(&LP, Res); 2115 } 2116 2117 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2118 #ifndef NDEBUG 2119 for (const CaseCluster &CC : Clusters) 2120 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2121 #endif 2122 2123 std::sort(Clusters.begin(), Clusters.end(), 2124 [](const CaseCluster &a, const CaseCluster &b) { 2125 return a.Low->getValue().slt(b.Low->getValue()); 2126 }); 2127 2128 // Merge adjacent clusters with the same destination. 2129 const unsigned N = Clusters.size(); 2130 unsigned DstIndex = 0; 2131 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2132 CaseCluster &CC = Clusters[SrcIndex]; 2133 const ConstantInt *CaseVal = CC.Low; 2134 MachineBasicBlock *Succ = CC.MBB; 2135 2136 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2137 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2138 // If this case has the same successor and is a neighbour, merge it into 2139 // the previous cluster. 2140 Clusters[DstIndex - 1].High = CaseVal; 2141 Clusters[DstIndex - 1].Weight += CC.Weight; 2142 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2143 } else { 2144 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2145 sizeof(Clusters[SrcIndex])); 2146 } 2147 } 2148 Clusters.resize(DstIndex); 2149 } 2150 2151 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2152 MachineBasicBlock *Last) { 2153 // Update JTCases. 2154 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2155 if (JTCases[i].first.HeaderBB == First) 2156 JTCases[i].first.HeaderBB = Last; 2157 2158 // Update BitTestCases. 2159 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2160 if (BitTestCases[i].Parent == First) 2161 BitTestCases[i].Parent = Last; 2162 } 2163 2164 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2165 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2166 2167 // Update machine-CFG edges with unique successors. 2168 SmallSet<BasicBlock*, 32> Done; 2169 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2170 BasicBlock *BB = I.getSuccessor(i); 2171 bool Inserted = Done.insert(BB).second; 2172 if (!Inserted) 2173 continue; 2174 2175 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2176 addSuccessorWithWeight(IndirectBrMBB, Succ); 2177 } 2178 2179 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2180 MVT::Other, getControlRoot(), 2181 getValue(I.getAddress()))); 2182 } 2183 2184 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2185 if (DAG.getTarget().Options.TrapUnreachable) 2186 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2187 } 2188 2189 void SelectionDAGBuilder::visitFSub(const User &I) { 2190 // -0.0 - X --> fneg 2191 Type *Ty = I.getType(); 2192 if (isa<Constant>(I.getOperand(0)) && 2193 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2194 SDValue Op2 = getValue(I.getOperand(1)); 2195 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2196 Op2.getValueType(), Op2)); 2197 return; 2198 } 2199 2200 visitBinary(I, ISD::FSUB); 2201 } 2202 2203 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2204 SDValue Op1 = getValue(I.getOperand(0)); 2205 SDValue Op2 = getValue(I.getOperand(1)); 2206 2207 bool nuw = false; 2208 bool nsw = false; 2209 bool exact = false; 2210 FastMathFlags FMF; 2211 2212 if (const OverflowingBinaryOperator *OFBinOp = 2213 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2214 nuw = OFBinOp->hasNoUnsignedWrap(); 2215 nsw = OFBinOp->hasNoSignedWrap(); 2216 } 2217 if (const PossiblyExactOperator *ExactOp = 2218 dyn_cast<const PossiblyExactOperator>(&I)) 2219 exact = ExactOp->isExact(); 2220 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2221 FMF = FPOp->getFastMathFlags(); 2222 2223 SDNodeFlags Flags; 2224 Flags.setExact(exact); 2225 Flags.setNoSignedWrap(nsw); 2226 Flags.setNoUnsignedWrap(nuw); 2227 if (EnableFMFInDAG) { 2228 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2229 Flags.setNoInfs(FMF.noInfs()); 2230 Flags.setNoNaNs(FMF.noNaNs()); 2231 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2232 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2233 } 2234 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2235 Op1, Op2, &Flags); 2236 setValue(&I, BinNodeValue); 2237 } 2238 2239 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2240 SDValue Op1 = getValue(I.getOperand(0)); 2241 SDValue Op2 = getValue(I.getOperand(1)); 2242 2243 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2244 Op2.getValueType(), DAG.getDataLayout()); 2245 2246 // Coerce the shift amount to the right type if we can. 2247 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2248 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2249 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2250 SDLoc DL = getCurSDLoc(); 2251 2252 // If the operand is smaller than the shift count type, promote it. 2253 if (ShiftSize > Op2Size) 2254 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2255 2256 // If the operand is larger than the shift count type but the shift 2257 // count type has enough bits to represent any shift value, truncate 2258 // it now. This is a common case and it exposes the truncate to 2259 // optimization early. 2260 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2261 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2262 // Otherwise we'll need to temporarily settle for some other convenient 2263 // type. Type legalization will make adjustments once the shiftee is split. 2264 else 2265 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2266 } 2267 2268 bool nuw = false; 2269 bool nsw = false; 2270 bool exact = false; 2271 2272 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2273 2274 if (const OverflowingBinaryOperator *OFBinOp = 2275 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2276 nuw = OFBinOp->hasNoUnsignedWrap(); 2277 nsw = OFBinOp->hasNoSignedWrap(); 2278 } 2279 if (const PossiblyExactOperator *ExactOp = 2280 dyn_cast<const PossiblyExactOperator>(&I)) 2281 exact = ExactOp->isExact(); 2282 } 2283 SDNodeFlags Flags; 2284 Flags.setExact(exact); 2285 Flags.setNoSignedWrap(nsw); 2286 Flags.setNoUnsignedWrap(nuw); 2287 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2288 &Flags); 2289 setValue(&I, Res); 2290 } 2291 2292 void SelectionDAGBuilder::visitSDiv(const User &I) { 2293 SDValue Op1 = getValue(I.getOperand(0)); 2294 SDValue Op2 = getValue(I.getOperand(1)); 2295 2296 SDNodeFlags Flags; 2297 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2298 cast<PossiblyExactOperator>(&I)->isExact()); 2299 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2300 Op2, &Flags)); 2301 } 2302 2303 void SelectionDAGBuilder::visitICmp(const User &I) { 2304 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2305 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2306 predicate = IC->getPredicate(); 2307 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2308 predicate = ICmpInst::Predicate(IC->getPredicate()); 2309 SDValue Op1 = getValue(I.getOperand(0)); 2310 SDValue Op2 = getValue(I.getOperand(1)); 2311 ISD::CondCode Opcode = getICmpCondCode(predicate); 2312 2313 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2314 I.getType()); 2315 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2316 } 2317 2318 void SelectionDAGBuilder::visitFCmp(const User &I) { 2319 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2320 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2321 predicate = FC->getPredicate(); 2322 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2323 predicate = FCmpInst::Predicate(FC->getPredicate()); 2324 SDValue Op1 = getValue(I.getOperand(0)); 2325 SDValue Op2 = getValue(I.getOperand(1)); 2326 ISD::CondCode Condition = getFCmpCondCode(predicate); 2327 if (TM.Options.NoNaNsFPMath) 2328 Condition = getFCmpCodeWithoutNaN(Condition); 2329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2330 I.getType()); 2331 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2332 } 2333 2334 void SelectionDAGBuilder::visitSelect(const User &I) { 2335 SmallVector<EVT, 4> ValueVTs; 2336 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2337 ValueVTs); 2338 unsigned NumValues = ValueVTs.size(); 2339 if (NumValues == 0) return; 2340 2341 SmallVector<SDValue, 4> Values(NumValues); 2342 SDValue Cond = getValue(I.getOperand(0)); 2343 SDValue LHSVal = getValue(I.getOperand(1)); 2344 SDValue RHSVal = getValue(I.getOperand(2)); 2345 auto BaseOps = {Cond}; 2346 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2347 ISD::VSELECT : ISD::SELECT; 2348 2349 // Min/max matching is only viable if all output VTs are the same. 2350 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2351 EVT VT = ValueVTs[0]; 2352 LLVMContext &Ctx = *DAG.getContext(); 2353 auto &TLI = DAG.getTargetLoweringInfo(); 2354 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2355 VT = TLI.getTypeToTransformTo(Ctx, VT); 2356 2357 Value *LHS, *RHS; 2358 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2359 ISD::NodeType Opc = ISD::DELETED_NODE; 2360 switch (SPR.Flavor) { 2361 case SPF_UMAX: Opc = ISD::UMAX; break; 2362 case SPF_UMIN: Opc = ISD::UMIN; break; 2363 case SPF_SMAX: Opc = ISD::SMAX; break; 2364 case SPF_SMIN: Opc = ISD::SMIN; break; 2365 case SPF_FMINNUM: 2366 switch (SPR.NaNBehavior) { 2367 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2368 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2369 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2370 case SPNB_RETURNS_ANY: 2371 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2372 : ISD::FMINNAN; 2373 break; 2374 } 2375 break; 2376 case SPF_FMAXNUM: 2377 switch (SPR.NaNBehavior) { 2378 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2379 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2380 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2381 case SPNB_RETURNS_ANY: 2382 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2383 : ISD::FMAXNAN; 2384 break; 2385 } 2386 break; 2387 default: break; 2388 } 2389 2390 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2391 // If the underlying comparison instruction is used by any other instruction, 2392 // the consumed instructions won't be destroyed, so it is not profitable 2393 // to convert to a min/max. 2394 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2395 OpCode = Opc; 2396 LHSVal = getValue(LHS); 2397 RHSVal = getValue(RHS); 2398 BaseOps = {}; 2399 } 2400 } 2401 2402 for (unsigned i = 0; i != NumValues; ++i) { 2403 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2404 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2405 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2406 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2407 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2408 Ops); 2409 } 2410 2411 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2412 DAG.getVTList(ValueVTs), Values)); 2413 } 2414 2415 void SelectionDAGBuilder::visitTrunc(const User &I) { 2416 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2417 SDValue N = getValue(I.getOperand(0)); 2418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2419 I.getType()); 2420 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2421 } 2422 2423 void SelectionDAGBuilder::visitZExt(const User &I) { 2424 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2425 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2426 SDValue N = getValue(I.getOperand(0)); 2427 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2428 I.getType()); 2429 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2430 } 2431 2432 void SelectionDAGBuilder::visitSExt(const User &I) { 2433 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2434 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2435 SDValue N = getValue(I.getOperand(0)); 2436 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2437 I.getType()); 2438 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2439 } 2440 2441 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2442 // FPTrunc is never a no-op cast, no need to check 2443 SDValue N = getValue(I.getOperand(0)); 2444 SDLoc dl = getCurSDLoc(); 2445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2446 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2447 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2448 DAG.getTargetConstant( 2449 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2450 } 2451 2452 void SelectionDAGBuilder::visitFPExt(const User &I) { 2453 // FPExt is never a no-op cast, no need to check 2454 SDValue N = getValue(I.getOperand(0)); 2455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2456 I.getType()); 2457 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2458 } 2459 2460 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2461 // FPToUI is never a no-op cast, no need to check 2462 SDValue N = getValue(I.getOperand(0)); 2463 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2464 I.getType()); 2465 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2466 } 2467 2468 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2469 // FPToSI is never a no-op cast, no need to check 2470 SDValue N = getValue(I.getOperand(0)); 2471 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2472 I.getType()); 2473 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2474 } 2475 2476 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2477 // UIToFP is never a no-op cast, no need to check 2478 SDValue N = getValue(I.getOperand(0)); 2479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2480 I.getType()); 2481 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2482 } 2483 2484 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2485 // SIToFP is never a no-op cast, no need to check 2486 SDValue N = getValue(I.getOperand(0)); 2487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2488 I.getType()); 2489 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2490 } 2491 2492 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2493 // What to do depends on the size of the integer and the size of the pointer. 2494 // We can either truncate, zero extend, or no-op, accordingly. 2495 SDValue N = getValue(I.getOperand(0)); 2496 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2497 I.getType()); 2498 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2499 } 2500 2501 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2502 // What to do depends on the size of the integer and the size of the pointer. 2503 // We can either truncate, zero extend, or no-op, accordingly. 2504 SDValue N = getValue(I.getOperand(0)); 2505 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2506 I.getType()); 2507 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2508 } 2509 2510 void SelectionDAGBuilder::visitBitCast(const User &I) { 2511 SDValue N = getValue(I.getOperand(0)); 2512 SDLoc dl = getCurSDLoc(); 2513 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2514 I.getType()); 2515 2516 // BitCast assures us that source and destination are the same size so this is 2517 // either a BITCAST or a no-op. 2518 if (DestVT != N.getValueType()) 2519 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2520 DestVT, N)); // convert types. 2521 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2522 // might fold any kind of constant expression to an integer constant and that 2523 // is not what we are looking for. Only regcognize a bitcast of a genuine 2524 // constant integer as an opaque constant. 2525 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2526 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2527 /*isOpaque*/true)); 2528 else 2529 setValue(&I, N); // noop cast. 2530 } 2531 2532 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2534 const Value *SV = I.getOperand(0); 2535 SDValue N = getValue(SV); 2536 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2537 2538 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2539 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2540 2541 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2542 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2543 2544 setValue(&I, N); 2545 } 2546 2547 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2549 SDValue InVec = getValue(I.getOperand(0)); 2550 SDValue InVal = getValue(I.getOperand(1)); 2551 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2552 TLI.getVectorIdxTy(DAG.getDataLayout())); 2553 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2554 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2555 InVec, InVal, InIdx)); 2556 } 2557 2558 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2560 SDValue InVec = getValue(I.getOperand(0)); 2561 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2562 TLI.getVectorIdxTy(DAG.getDataLayout())); 2563 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2564 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2565 InVec, InIdx)); 2566 } 2567 2568 // Utility for visitShuffleVector - Return true if every element in Mask, 2569 // beginning from position Pos and ending in Pos+Size, falls within the 2570 // specified sequential range [L, L+Pos). or is undef. 2571 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2572 unsigned Pos, unsigned Size, int Low) { 2573 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2574 if (Mask[i] >= 0 && Mask[i] != Low) 2575 return false; 2576 return true; 2577 } 2578 2579 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2580 SDValue Src1 = getValue(I.getOperand(0)); 2581 SDValue Src2 = getValue(I.getOperand(1)); 2582 2583 SmallVector<int, 8> Mask; 2584 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2585 unsigned MaskNumElts = Mask.size(); 2586 2587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2588 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2589 EVT SrcVT = Src1.getValueType(); 2590 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2591 2592 if (SrcNumElts == MaskNumElts) { 2593 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2594 &Mask[0])); 2595 return; 2596 } 2597 2598 // Normalize the shuffle vector since mask and vector length don't match. 2599 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2600 // Mask is longer than the source vectors and is a multiple of the source 2601 // vectors. We can use concatenate vector to make the mask and vectors 2602 // lengths match. 2603 if (SrcNumElts*2 == MaskNumElts) { 2604 // First check for Src1 in low and Src2 in high 2605 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2606 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2607 // The shuffle is concatenating two vectors together. 2608 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2609 VT, Src1, Src2)); 2610 return; 2611 } 2612 // Then check for Src2 in low and Src1 in high 2613 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2614 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2615 // The shuffle is concatenating two vectors together. 2616 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2617 VT, Src2, Src1)); 2618 return; 2619 } 2620 } 2621 2622 // Pad both vectors with undefs to make them the same length as the mask. 2623 unsigned NumConcat = MaskNumElts / SrcNumElts; 2624 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2625 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2626 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2627 2628 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2629 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2630 MOps1[0] = Src1; 2631 MOps2[0] = Src2; 2632 2633 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2634 getCurSDLoc(), VT, MOps1); 2635 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2636 getCurSDLoc(), VT, MOps2); 2637 2638 // Readjust mask for new input vector length. 2639 SmallVector<int, 8> MappedOps; 2640 for (unsigned i = 0; i != MaskNumElts; ++i) { 2641 int Idx = Mask[i]; 2642 if (Idx >= (int)SrcNumElts) 2643 Idx -= SrcNumElts - MaskNumElts; 2644 MappedOps.push_back(Idx); 2645 } 2646 2647 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2648 &MappedOps[0])); 2649 return; 2650 } 2651 2652 if (SrcNumElts > MaskNumElts) { 2653 // Analyze the access pattern of the vector to see if we can extract 2654 // two subvectors and do the shuffle. The analysis is done by calculating 2655 // the range of elements the mask access on both vectors. 2656 int MinRange[2] = { static_cast<int>(SrcNumElts), 2657 static_cast<int>(SrcNumElts)}; 2658 int MaxRange[2] = {-1, -1}; 2659 2660 for (unsigned i = 0; i != MaskNumElts; ++i) { 2661 int Idx = Mask[i]; 2662 unsigned Input = 0; 2663 if (Idx < 0) 2664 continue; 2665 2666 if (Idx >= (int)SrcNumElts) { 2667 Input = 1; 2668 Idx -= SrcNumElts; 2669 } 2670 if (Idx > MaxRange[Input]) 2671 MaxRange[Input] = Idx; 2672 if (Idx < MinRange[Input]) 2673 MinRange[Input] = Idx; 2674 } 2675 2676 // Check if the access is smaller than the vector size and can we find 2677 // a reasonable extract index. 2678 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2679 // Extract. 2680 int StartIdx[2]; // StartIdx to extract from 2681 for (unsigned Input = 0; Input < 2; ++Input) { 2682 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2683 RangeUse[Input] = 0; // Unused 2684 StartIdx[Input] = 0; 2685 continue; 2686 } 2687 2688 // Find a good start index that is a multiple of the mask length. Then 2689 // see if the rest of the elements are in range. 2690 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2691 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2692 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2693 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2694 } 2695 2696 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2697 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2698 return; 2699 } 2700 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2701 // Extract appropriate subvector and generate a vector shuffle 2702 for (unsigned Input = 0; Input < 2; ++Input) { 2703 SDValue &Src = Input == 0 ? Src1 : Src2; 2704 if (RangeUse[Input] == 0) 2705 Src = DAG.getUNDEF(VT); 2706 else { 2707 SDLoc dl = getCurSDLoc(); 2708 Src = DAG.getNode( 2709 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2710 DAG.getConstant(StartIdx[Input], dl, 2711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2712 } 2713 } 2714 2715 // Calculate new mask. 2716 SmallVector<int, 8> MappedOps; 2717 for (unsigned i = 0; i != MaskNumElts; ++i) { 2718 int Idx = Mask[i]; 2719 if (Idx >= 0) { 2720 if (Idx < (int)SrcNumElts) 2721 Idx -= StartIdx[0]; 2722 else 2723 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2724 } 2725 MappedOps.push_back(Idx); 2726 } 2727 2728 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2729 &MappedOps[0])); 2730 return; 2731 } 2732 } 2733 2734 // We can't use either concat vectors or extract subvectors so fall back to 2735 // replacing the shuffle with extract and build vector. 2736 // to insert and build vector. 2737 EVT EltVT = VT.getVectorElementType(); 2738 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2739 SDLoc dl = getCurSDLoc(); 2740 SmallVector<SDValue,8> Ops; 2741 for (unsigned i = 0; i != MaskNumElts; ++i) { 2742 int Idx = Mask[i]; 2743 SDValue Res; 2744 2745 if (Idx < 0) { 2746 Res = DAG.getUNDEF(EltVT); 2747 } else { 2748 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2749 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2750 2751 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2752 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2753 } 2754 2755 Ops.push_back(Res); 2756 } 2757 2758 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2759 } 2760 2761 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2762 const Value *Op0 = I.getOperand(0); 2763 const Value *Op1 = I.getOperand(1); 2764 Type *AggTy = I.getType(); 2765 Type *ValTy = Op1->getType(); 2766 bool IntoUndef = isa<UndefValue>(Op0); 2767 bool FromUndef = isa<UndefValue>(Op1); 2768 2769 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2770 2771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2772 SmallVector<EVT, 4> AggValueVTs; 2773 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2774 SmallVector<EVT, 4> ValValueVTs; 2775 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2776 2777 unsigned NumAggValues = AggValueVTs.size(); 2778 unsigned NumValValues = ValValueVTs.size(); 2779 SmallVector<SDValue, 4> Values(NumAggValues); 2780 2781 // Ignore an insertvalue that produces an empty object 2782 if (!NumAggValues) { 2783 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2784 return; 2785 } 2786 2787 SDValue Agg = getValue(Op0); 2788 unsigned i = 0; 2789 // Copy the beginning value(s) from the original aggregate. 2790 for (; i != LinearIndex; ++i) 2791 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2792 SDValue(Agg.getNode(), Agg.getResNo() + i); 2793 // Copy values from the inserted value(s). 2794 if (NumValValues) { 2795 SDValue Val = getValue(Op1); 2796 for (; i != LinearIndex + NumValValues; ++i) 2797 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2798 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2799 } 2800 // Copy remaining value(s) from the original aggregate. 2801 for (; i != NumAggValues; ++i) 2802 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2803 SDValue(Agg.getNode(), Agg.getResNo() + i); 2804 2805 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2806 DAG.getVTList(AggValueVTs), Values)); 2807 } 2808 2809 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2810 const Value *Op0 = I.getOperand(0); 2811 Type *AggTy = Op0->getType(); 2812 Type *ValTy = I.getType(); 2813 bool OutOfUndef = isa<UndefValue>(Op0); 2814 2815 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2816 2817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2818 SmallVector<EVT, 4> ValValueVTs; 2819 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2820 2821 unsigned NumValValues = ValValueVTs.size(); 2822 2823 // Ignore a extractvalue that produces an empty object 2824 if (!NumValValues) { 2825 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2826 return; 2827 } 2828 2829 SmallVector<SDValue, 4> Values(NumValValues); 2830 2831 SDValue Agg = getValue(Op0); 2832 // Copy out the selected value(s). 2833 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2834 Values[i - LinearIndex] = 2835 OutOfUndef ? 2836 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2837 SDValue(Agg.getNode(), Agg.getResNo() + i); 2838 2839 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2840 DAG.getVTList(ValValueVTs), Values)); 2841 } 2842 2843 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2844 Value *Op0 = I.getOperand(0); 2845 // Note that the pointer operand may be a vector of pointers. Take the scalar 2846 // element which holds a pointer. 2847 Type *Ty = Op0->getType()->getScalarType(); 2848 unsigned AS = Ty->getPointerAddressSpace(); 2849 SDValue N = getValue(Op0); 2850 SDLoc dl = getCurSDLoc(); 2851 2852 // Normalize Vector GEP - all scalar operands should be converted to the 2853 // splat vector. 2854 unsigned VectorWidth = I.getType()->isVectorTy() ? 2855 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2856 2857 if (VectorWidth && !N.getValueType().isVector()) { 2858 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2859 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2860 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2861 } 2862 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2863 OI != E; ++OI) { 2864 const Value *Idx = *OI; 2865 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2866 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2867 if (Field) { 2868 // N = N + Offset 2869 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2870 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2871 DAG.getConstant(Offset, dl, N.getValueType())); 2872 } 2873 2874 Ty = StTy->getElementType(Field); 2875 } else { 2876 Ty = cast<SequentialType>(Ty)->getElementType(); 2877 MVT PtrTy = 2878 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2879 unsigned PtrSize = PtrTy.getSizeInBits(); 2880 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2881 2882 // If this is a scalar constant or a splat vector of constants, 2883 // handle it quickly. 2884 const auto *CI = dyn_cast<ConstantInt>(Idx); 2885 if (!CI && isa<ConstantDataVector>(Idx) && 2886 cast<ConstantDataVector>(Idx)->getSplatValue()) 2887 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2888 2889 if (CI) { 2890 if (CI->isZero()) 2891 continue; 2892 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2893 SDValue OffsVal = VectorWidth ? 2894 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2895 DAG.getConstant(Offs, dl, PtrTy); 2896 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2897 continue; 2898 } 2899 2900 // N = N + Idx * ElementSize; 2901 SDValue IdxN = getValue(Idx); 2902 2903 if (!IdxN.getValueType().isVector() && VectorWidth) { 2904 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2905 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2906 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2907 } 2908 // If the index is smaller or larger than intptr_t, truncate or extend 2909 // it. 2910 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2911 2912 // If this is a multiply by a power of two, turn it into a shl 2913 // immediately. This is a very common case. 2914 if (ElementSize != 1) { 2915 if (ElementSize.isPowerOf2()) { 2916 unsigned Amt = ElementSize.logBase2(); 2917 IdxN = DAG.getNode(ISD::SHL, dl, 2918 N.getValueType(), IdxN, 2919 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2920 } else { 2921 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2922 IdxN = DAG.getNode(ISD::MUL, dl, 2923 N.getValueType(), IdxN, Scale); 2924 } 2925 } 2926 2927 N = DAG.getNode(ISD::ADD, dl, 2928 N.getValueType(), N, IdxN); 2929 } 2930 } 2931 2932 setValue(&I, N); 2933 } 2934 2935 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2936 // If this is a fixed sized alloca in the entry block of the function, 2937 // allocate it statically on the stack. 2938 if (FuncInfo.StaticAllocaMap.count(&I)) 2939 return; // getValue will auto-populate this. 2940 2941 SDLoc dl = getCurSDLoc(); 2942 Type *Ty = I.getAllocatedType(); 2943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2944 auto &DL = DAG.getDataLayout(); 2945 uint64_t TySize = DL.getTypeAllocSize(Ty); 2946 unsigned Align = 2947 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2948 2949 SDValue AllocSize = getValue(I.getArraySize()); 2950 2951 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2952 if (AllocSize.getValueType() != IntPtr) 2953 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2954 2955 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2956 AllocSize, 2957 DAG.getConstant(TySize, dl, IntPtr)); 2958 2959 // Handle alignment. If the requested alignment is less than or equal to 2960 // the stack alignment, ignore it. If the size is greater than or equal to 2961 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2962 unsigned StackAlign = 2963 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2964 if (Align <= StackAlign) 2965 Align = 0; 2966 2967 // Round the size of the allocation up to the stack alignment size 2968 // by add SA-1 to the size. 2969 AllocSize = DAG.getNode(ISD::ADD, dl, 2970 AllocSize.getValueType(), AllocSize, 2971 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2972 2973 // Mask out the low bits for alignment purposes. 2974 AllocSize = DAG.getNode(ISD::AND, dl, 2975 AllocSize.getValueType(), AllocSize, 2976 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2977 dl)); 2978 2979 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2980 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2981 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2982 setValue(&I, DSA); 2983 DAG.setRoot(DSA.getValue(1)); 2984 2985 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2986 } 2987 2988 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2989 if (I.isAtomic()) 2990 return visitAtomicLoad(I); 2991 2992 const Value *SV = I.getOperand(0); 2993 SDValue Ptr = getValue(SV); 2994 2995 Type *Ty = I.getType(); 2996 2997 bool isVolatile = I.isVolatile(); 2998 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2999 3000 // The IR notion of invariant_load only guarantees that all *non-faulting* 3001 // invariant loads result in the same value. The MI notion of invariant load 3002 // guarantees that the load can be legally moved to any location within its 3003 // containing function. The MI notion of invariant_load is stronger than the 3004 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3005 // with a guarantee that the location being loaded from is dereferenceable 3006 // throughout the function's lifetime. 3007 3008 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3009 isDereferenceablePointer(SV, DAG.getDataLayout()); 3010 unsigned Alignment = I.getAlignment(); 3011 3012 AAMDNodes AAInfo; 3013 I.getAAMetadata(AAInfo); 3014 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3015 3016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3017 SmallVector<EVT, 4> ValueVTs; 3018 SmallVector<uint64_t, 4> Offsets; 3019 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3020 unsigned NumValues = ValueVTs.size(); 3021 if (NumValues == 0) 3022 return; 3023 3024 SDValue Root; 3025 bool ConstantMemory = false; 3026 if (isVolatile || NumValues > MaxParallelChains) 3027 // Serialize volatile loads with other side effects. 3028 Root = getRoot(); 3029 else if (AA->pointsToConstantMemory(MemoryLocation( 3030 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3031 // Do not serialize (non-volatile) loads of constant memory with anything. 3032 Root = DAG.getEntryNode(); 3033 ConstantMemory = true; 3034 } else { 3035 // Do not serialize non-volatile loads against each other. 3036 Root = DAG.getRoot(); 3037 } 3038 3039 SDLoc dl = getCurSDLoc(); 3040 3041 if (isVolatile) 3042 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3043 3044 SmallVector<SDValue, 4> Values(NumValues); 3045 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3046 EVT PtrVT = Ptr.getValueType(); 3047 unsigned ChainI = 0; 3048 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3049 // Serializing loads here may result in excessive register pressure, and 3050 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3051 // could recover a bit by hoisting nodes upward in the chain by recognizing 3052 // they are side-effect free or do not alias. The optimizer should really 3053 // avoid this case by converting large object/array copies to llvm.memcpy 3054 // (MaxParallelChains should always remain as failsafe). 3055 if (ChainI == MaxParallelChains) { 3056 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3057 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3058 makeArrayRef(Chains.data(), ChainI)); 3059 Root = Chain; 3060 ChainI = 0; 3061 } 3062 SDValue A = DAG.getNode(ISD::ADD, dl, 3063 PtrVT, Ptr, 3064 DAG.getConstant(Offsets[i], dl, PtrVT)); 3065 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3066 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3067 isNonTemporal, isInvariant, Alignment, AAInfo, 3068 Ranges); 3069 3070 Values[i] = L; 3071 Chains[ChainI] = L.getValue(1); 3072 } 3073 3074 if (!ConstantMemory) { 3075 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3076 makeArrayRef(Chains.data(), ChainI)); 3077 if (isVolatile) 3078 DAG.setRoot(Chain); 3079 else 3080 PendingLoads.push_back(Chain); 3081 } 3082 3083 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3084 DAG.getVTList(ValueVTs), Values)); 3085 } 3086 3087 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3088 if (I.isAtomic()) 3089 return visitAtomicStore(I); 3090 3091 const Value *SrcV = I.getOperand(0); 3092 const Value *PtrV = I.getOperand(1); 3093 3094 SmallVector<EVT, 4> ValueVTs; 3095 SmallVector<uint64_t, 4> Offsets; 3096 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3097 SrcV->getType(), ValueVTs, &Offsets); 3098 unsigned NumValues = ValueVTs.size(); 3099 if (NumValues == 0) 3100 return; 3101 3102 // Get the lowered operands. Note that we do this after 3103 // checking if NumResults is zero, because with zero results 3104 // the operands won't have values in the map. 3105 SDValue Src = getValue(SrcV); 3106 SDValue Ptr = getValue(PtrV); 3107 3108 SDValue Root = getRoot(); 3109 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3110 EVT PtrVT = Ptr.getValueType(); 3111 bool isVolatile = I.isVolatile(); 3112 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3113 unsigned Alignment = I.getAlignment(); 3114 SDLoc dl = getCurSDLoc(); 3115 3116 AAMDNodes AAInfo; 3117 I.getAAMetadata(AAInfo); 3118 3119 unsigned ChainI = 0; 3120 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3121 // See visitLoad comments. 3122 if (ChainI == MaxParallelChains) { 3123 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3124 makeArrayRef(Chains.data(), ChainI)); 3125 Root = Chain; 3126 ChainI = 0; 3127 } 3128 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3129 DAG.getConstant(Offsets[i], dl, PtrVT)); 3130 SDValue St = DAG.getStore(Root, dl, 3131 SDValue(Src.getNode(), Src.getResNo() + i), 3132 Add, MachinePointerInfo(PtrV, Offsets[i]), 3133 isVolatile, isNonTemporal, Alignment, AAInfo); 3134 Chains[ChainI] = St; 3135 } 3136 3137 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3138 makeArrayRef(Chains.data(), ChainI)); 3139 DAG.setRoot(StoreNode); 3140 } 3141 3142 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3143 SDLoc sdl = getCurSDLoc(); 3144 3145 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3146 Value *PtrOperand = I.getArgOperand(1); 3147 SDValue Ptr = getValue(PtrOperand); 3148 SDValue Src0 = getValue(I.getArgOperand(0)); 3149 SDValue Mask = getValue(I.getArgOperand(3)); 3150 EVT VT = Src0.getValueType(); 3151 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3152 if (!Alignment) 3153 Alignment = DAG.getEVTAlignment(VT); 3154 3155 AAMDNodes AAInfo; 3156 I.getAAMetadata(AAInfo); 3157 3158 MachineMemOperand *MMO = 3159 DAG.getMachineFunction(). 3160 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3161 MachineMemOperand::MOStore, VT.getStoreSize(), 3162 Alignment, AAInfo); 3163 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3164 MMO, false); 3165 DAG.setRoot(StoreNode); 3166 setValue(&I, StoreNode); 3167 } 3168 3169 // Get a uniform base for the Gather/Scatter intrinsic. 3170 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3171 // We try to represent it as a base pointer + vector of indices. 3172 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3173 // The first operand of the GEP may be a single pointer or a vector of pointers 3174 // Example: 3175 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3176 // or 3177 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3178 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3179 // 3180 // When the first GEP operand is a single pointer - it is the uniform base we 3181 // are looking for. If first operand of the GEP is a splat vector - we 3182 // extract the spalt value and use it as a uniform base. 3183 // In all other cases the function returns 'false'. 3184 // 3185 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3186 SelectionDAGBuilder* SDB) { 3187 3188 SelectionDAG& DAG = SDB->DAG; 3189 LLVMContext &Context = *DAG.getContext(); 3190 3191 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3192 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3193 if (!GEP || GEP->getNumOperands() > 2) 3194 return false; 3195 3196 Value *GEPPtr = GEP->getPointerOperand(); 3197 if (!GEPPtr->getType()->isVectorTy()) 3198 Ptr = GEPPtr; 3199 else if (!(Ptr = getSplatValue(GEPPtr))) 3200 return false; 3201 3202 Value *IndexVal = GEP->getOperand(1); 3203 3204 // The operands of the GEP may be defined in another basic block. 3205 // In this case we'll not find nodes for the operands. 3206 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3207 return false; 3208 3209 Base = SDB->getValue(Ptr); 3210 Index = SDB->getValue(IndexVal); 3211 3212 // Suppress sign extension. 3213 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3214 if (SDB->findValue(Sext->getOperand(0))) { 3215 IndexVal = Sext->getOperand(0); 3216 Index = SDB->getValue(IndexVal); 3217 } 3218 } 3219 if (!Index.getValueType().isVector()) { 3220 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3221 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3222 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3223 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3224 } 3225 return true; 3226 } 3227 3228 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3229 SDLoc sdl = getCurSDLoc(); 3230 3231 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3232 Value *Ptr = I.getArgOperand(1); 3233 SDValue Src0 = getValue(I.getArgOperand(0)); 3234 SDValue Mask = getValue(I.getArgOperand(3)); 3235 EVT VT = Src0.getValueType(); 3236 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3237 if (!Alignment) 3238 Alignment = DAG.getEVTAlignment(VT); 3239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3240 3241 AAMDNodes AAInfo; 3242 I.getAAMetadata(AAInfo); 3243 3244 SDValue Base; 3245 SDValue Index; 3246 Value *BasePtr = Ptr; 3247 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3248 3249 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3250 MachineMemOperand *MMO = DAG.getMachineFunction(). 3251 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3252 MachineMemOperand::MOStore, VT.getStoreSize(), 3253 Alignment, AAInfo); 3254 if (!UniformBase) { 3255 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3256 Index = getValue(Ptr); 3257 } 3258 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3259 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3260 Ops, MMO); 3261 DAG.setRoot(Scatter); 3262 setValue(&I, Scatter); 3263 } 3264 3265 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3266 SDLoc sdl = getCurSDLoc(); 3267 3268 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3269 Value *PtrOperand = I.getArgOperand(0); 3270 SDValue Ptr = getValue(PtrOperand); 3271 SDValue Src0 = getValue(I.getArgOperand(3)); 3272 SDValue Mask = getValue(I.getArgOperand(2)); 3273 3274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3275 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3276 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3277 if (!Alignment) 3278 Alignment = DAG.getEVTAlignment(VT); 3279 3280 AAMDNodes AAInfo; 3281 I.getAAMetadata(AAInfo); 3282 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3283 3284 SDValue InChain = DAG.getRoot(); 3285 if (AA->pointsToConstantMemory(MemoryLocation( 3286 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3287 AAInfo))) { 3288 // Do not serialize (non-volatile) loads of constant memory with anything. 3289 InChain = DAG.getEntryNode(); 3290 } 3291 3292 MachineMemOperand *MMO = 3293 DAG.getMachineFunction(). 3294 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3295 MachineMemOperand::MOLoad, VT.getStoreSize(), 3296 Alignment, AAInfo, Ranges); 3297 3298 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3299 ISD::NON_EXTLOAD); 3300 SDValue OutChain = Load.getValue(1); 3301 DAG.setRoot(OutChain); 3302 setValue(&I, Load); 3303 } 3304 3305 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3306 SDLoc sdl = getCurSDLoc(); 3307 3308 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3309 Value *Ptr = I.getArgOperand(0); 3310 SDValue Src0 = getValue(I.getArgOperand(3)); 3311 SDValue Mask = getValue(I.getArgOperand(2)); 3312 3313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3314 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3315 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3316 if (!Alignment) 3317 Alignment = DAG.getEVTAlignment(VT); 3318 3319 AAMDNodes AAInfo; 3320 I.getAAMetadata(AAInfo); 3321 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3322 3323 SDValue Root = DAG.getRoot(); 3324 SDValue Base; 3325 SDValue Index; 3326 Value *BasePtr = Ptr; 3327 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3328 bool ConstantMemory = false; 3329 if (UniformBase && 3330 AA->pointsToConstantMemory(MemoryLocation( 3331 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3332 AAInfo))) { 3333 // Do not serialize (non-volatile) loads of constant memory with anything. 3334 Root = DAG.getEntryNode(); 3335 ConstantMemory = true; 3336 } 3337 3338 MachineMemOperand *MMO = 3339 DAG.getMachineFunction(). 3340 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3341 MachineMemOperand::MOLoad, VT.getStoreSize(), 3342 Alignment, AAInfo, Ranges); 3343 3344 if (!UniformBase) { 3345 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3346 Index = getValue(Ptr); 3347 } 3348 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3349 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3350 Ops, MMO); 3351 3352 SDValue OutChain = Gather.getValue(1); 3353 if (!ConstantMemory) 3354 PendingLoads.push_back(OutChain); 3355 setValue(&I, Gather); 3356 } 3357 3358 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3359 SDLoc dl = getCurSDLoc(); 3360 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3361 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3362 SynchronizationScope Scope = I.getSynchScope(); 3363 3364 SDValue InChain = getRoot(); 3365 3366 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3367 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3368 SDValue L = DAG.getAtomicCmpSwap( 3369 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3370 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3371 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3372 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3373 3374 SDValue OutChain = L.getValue(2); 3375 3376 setValue(&I, L); 3377 DAG.setRoot(OutChain); 3378 } 3379 3380 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3381 SDLoc dl = getCurSDLoc(); 3382 ISD::NodeType NT; 3383 switch (I.getOperation()) { 3384 default: llvm_unreachable("Unknown atomicrmw operation"); 3385 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3386 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3387 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3388 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3389 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3390 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3391 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3392 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3393 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3394 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3395 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3396 } 3397 AtomicOrdering Order = I.getOrdering(); 3398 SynchronizationScope Scope = I.getSynchScope(); 3399 3400 SDValue InChain = getRoot(); 3401 3402 SDValue L = 3403 DAG.getAtomic(NT, dl, 3404 getValue(I.getValOperand()).getSimpleValueType(), 3405 InChain, 3406 getValue(I.getPointerOperand()), 3407 getValue(I.getValOperand()), 3408 I.getPointerOperand(), 3409 /* Alignment=*/ 0, Order, Scope); 3410 3411 SDValue OutChain = L.getValue(1); 3412 3413 setValue(&I, L); 3414 DAG.setRoot(OutChain); 3415 } 3416 3417 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3418 SDLoc dl = getCurSDLoc(); 3419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3420 SDValue Ops[3]; 3421 Ops[0] = getRoot(); 3422 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3423 TLI.getPointerTy(DAG.getDataLayout())); 3424 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3425 TLI.getPointerTy(DAG.getDataLayout())); 3426 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3427 } 3428 3429 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3430 SDLoc dl = getCurSDLoc(); 3431 AtomicOrdering Order = I.getOrdering(); 3432 SynchronizationScope Scope = I.getSynchScope(); 3433 3434 SDValue InChain = getRoot(); 3435 3436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3437 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3438 3439 if (I.getAlignment() < VT.getSizeInBits() / 8) 3440 report_fatal_error("Cannot generate unaligned atomic load"); 3441 3442 MachineMemOperand *MMO = 3443 DAG.getMachineFunction(). 3444 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3445 MachineMemOperand::MOVolatile | 3446 MachineMemOperand::MOLoad, 3447 VT.getStoreSize(), 3448 I.getAlignment() ? I.getAlignment() : 3449 DAG.getEVTAlignment(VT)); 3450 3451 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3452 SDValue L = 3453 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3454 getValue(I.getPointerOperand()), MMO, 3455 Order, Scope); 3456 3457 SDValue OutChain = L.getValue(1); 3458 3459 setValue(&I, L); 3460 DAG.setRoot(OutChain); 3461 } 3462 3463 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3464 SDLoc dl = getCurSDLoc(); 3465 3466 AtomicOrdering Order = I.getOrdering(); 3467 SynchronizationScope Scope = I.getSynchScope(); 3468 3469 SDValue InChain = getRoot(); 3470 3471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3472 EVT VT = 3473 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3474 3475 if (I.getAlignment() < VT.getSizeInBits() / 8) 3476 report_fatal_error("Cannot generate unaligned atomic store"); 3477 3478 SDValue OutChain = 3479 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3480 InChain, 3481 getValue(I.getPointerOperand()), 3482 getValue(I.getValueOperand()), 3483 I.getPointerOperand(), I.getAlignment(), 3484 Order, Scope); 3485 3486 DAG.setRoot(OutChain); 3487 } 3488 3489 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3490 /// node. 3491 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3492 unsigned Intrinsic) { 3493 bool HasChain = !I.doesNotAccessMemory(); 3494 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3495 3496 // Build the operand list. 3497 SmallVector<SDValue, 8> Ops; 3498 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3499 if (OnlyLoad) { 3500 // We don't need to serialize loads against other loads. 3501 Ops.push_back(DAG.getRoot()); 3502 } else { 3503 Ops.push_back(getRoot()); 3504 } 3505 } 3506 3507 // Info is set by getTgtMemInstrinsic 3508 TargetLowering::IntrinsicInfo Info; 3509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3510 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3511 3512 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3513 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3514 Info.opc == ISD::INTRINSIC_W_CHAIN) 3515 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3516 TLI.getPointerTy(DAG.getDataLayout()))); 3517 3518 // Add all operands of the call to the operand list. 3519 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3520 SDValue Op = getValue(I.getArgOperand(i)); 3521 Ops.push_back(Op); 3522 } 3523 3524 SmallVector<EVT, 4> ValueVTs; 3525 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3526 3527 if (HasChain) 3528 ValueVTs.push_back(MVT::Other); 3529 3530 SDVTList VTs = DAG.getVTList(ValueVTs); 3531 3532 // Create the node. 3533 SDValue Result; 3534 if (IsTgtIntrinsic) { 3535 // This is target intrinsic that touches memory 3536 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3537 VTs, Ops, Info.memVT, 3538 MachinePointerInfo(Info.ptrVal, Info.offset), 3539 Info.align, Info.vol, 3540 Info.readMem, Info.writeMem, Info.size); 3541 } else if (!HasChain) { 3542 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3543 } else if (!I.getType()->isVoidTy()) { 3544 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3545 } else { 3546 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3547 } 3548 3549 if (HasChain) { 3550 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3551 if (OnlyLoad) 3552 PendingLoads.push_back(Chain); 3553 else 3554 DAG.setRoot(Chain); 3555 } 3556 3557 if (!I.getType()->isVoidTy()) { 3558 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3559 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3560 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3561 } 3562 3563 setValue(&I, Result); 3564 } 3565 } 3566 3567 /// GetSignificand - Get the significand and build it into a floating-point 3568 /// number with exponent of 1: 3569 /// 3570 /// Op = (Op & 0x007fffff) | 0x3f800000; 3571 /// 3572 /// where Op is the hexadecimal representation of floating point value. 3573 static SDValue 3574 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3575 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3576 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3577 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3578 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3579 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3580 } 3581 3582 /// GetExponent - Get the exponent: 3583 /// 3584 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3585 /// 3586 /// where Op is the hexadecimal representation of floating point value. 3587 static SDValue 3588 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3589 SDLoc dl) { 3590 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3591 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3592 SDValue t1 = DAG.getNode( 3593 ISD::SRL, dl, MVT::i32, t0, 3594 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3595 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3596 DAG.getConstant(127, dl, MVT::i32)); 3597 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3598 } 3599 3600 /// getF32Constant - Get 32-bit floating point constant. 3601 static SDValue 3602 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3603 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3604 MVT::f32); 3605 } 3606 3607 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3608 SelectionDAG &DAG) { 3609 // IntegerPartOfX = ((int32_t)(t0); 3610 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3611 3612 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3613 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3614 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3615 3616 // IntegerPartOfX <<= 23; 3617 IntegerPartOfX = DAG.getNode( 3618 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3619 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3620 DAG.getDataLayout()))); 3621 3622 SDValue TwoToFractionalPartOfX; 3623 if (LimitFloatPrecision <= 6) { 3624 // For floating-point precision of 6: 3625 // 3626 // TwoToFractionalPartOfX = 3627 // 0.997535578f + 3628 // (0.735607626f + 0.252464424f * x) * x; 3629 // 3630 // error 0.0144103317, which is 6 bits 3631 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3632 getF32Constant(DAG, 0x3e814304, dl)); 3633 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3634 getF32Constant(DAG, 0x3f3c50c8, dl)); 3635 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3636 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3637 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3638 } else if (LimitFloatPrecision <= 12) { 3639 // For floating-point precision of 12: 3640 // 3641 // TwoToFractionalPartOfX = 3642 // 0.999892986f + 3643 // (0.696457318f + 3644 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3645 // 3646 // error 0.000107046256, which is 13 to 14 bits 3647 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3648 getF32Constant(DAG, 0x3da235e3, dl)); 3649 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3650 getF32Constant(DAG, 0x3e65b8f3, dl)); 3651 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3652 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3653 getF32Constant(DAG, 0x3f324b07, dl)); 3654 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3655 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3656 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3657 } else { // LimitFloatPrecision <= 18 3658 // For floating-point precision of 18: 3659 // 3660 // TwoToFractionalPartOfX = 3661 // 0.999999982f + 3662 // (0.693148872f + 3663 // (0.240227044f + 3664 // (0.554906021e-1f + 3665 // (0.961591928e-2f + 3666 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3667 // error 2.47208000*10^(-7), which is better than 18 bits 3668 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3669 getF32Constant(DAG, 0x3924b03e, dl)); 3670 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3671 getF32Constant(DAG, 0x3ab24b87, dl)); 3672 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3673 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3674 getF32Constant(DAG, 0x3c1d8c17, dl)); 3675 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3676 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3677 getF32Constant(DAG, 0x3d634a1d, dl)); 3678 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3679 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3680 getF32Constant(DAG, 0x3e75fe14, dl)); 3681 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3682 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3683 getF32Constant(DAG, 0x3f317234, dl)); 3684 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3685 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3686 getF32Constant(DAG, 0x3f800000, dl)); 3687 } 3688 3689 // Add the exponent into the result in integer domain. 3690 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3691 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3692 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3693 } 3694 3695 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3696 /// limited-precision mode. 3697 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3698 const TargetLowering &TLI) { 3699 if (Op.getValueType() == MVT::f32 && 3700 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3701 3702 // Put the exponent in the right bit position for later addition to the 3703 // final result: 3704 // 3705 // #define LOG2OFe 1.4426950f 3706 // t0 = Op * LOG2OFe 3707 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3708 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3709 return getLimitedPrecisionExp2(t0, dl, DAG); 3710 } 3711 3712 // No special expansion. 3713 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3714 } 3715 3716 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3717 /// limited-precision mode. 3718 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3719 const TargetLowering &TLI) { 3720 if (Op.getValueType() == MVT::f32 && 3721 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3722 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3723 3724 // Scale the exponent by log(2) [0.69314718f]. 3725 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3726 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3727 getF32Constant(DAG, 0x3f317218, dl)); 3728 3729 // Get the significand and build it into a floating-point number with 3730 // exponent of 1. 3731 SDValue X = GetSignificand(DAG, Op1, dl); 3732 3733 SDValue LogOfMantissa; 3734 if (LimitFloatPrecision <= 6) { 3735 // For floating-point precision of 6: 3736 // 3737 // LogofMantissa = 3738 // -1.1609546f + 3739 // (1.4034025f - 0.23903021f * x) * x; 3740 // 3741 // error 0.0034276066, which is better than 8 bits 3742 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3743 getF32Constant(DAG, 0xbe74c456, dl)); 3744 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3745 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3746 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3747 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3748 getF32Constant(DAG, 0x3f949a29, dl)); 3749 } else if (LimitFloatPrecision <= 12) { 3750 // For floating-point precision of 12: 3751 // 3752 // LogOfMantissa = 3753 // -1.7417939f + 3754 // (2.8212026f + 3755 // (-1.4699568f + 3756 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3757 // 3758 // error 0.000061011436, which is 14 bits 3759 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3760 getF32Constant(DAG, 0xbd67b6d6, dl)); 3761 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3762 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3764 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3765 getF32Constant(DAG, 0x3fbc278b, dl)); 3766 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3767 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3768 getF32Constant(DAG, 0x40348e95, dl)); 3769 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3770 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3771 getF32Constant(DAG, 0x3fdef31a, dl)); 3772 } else { // LimitFloatPrecision <= 18 3773 // For floating-point precision of 18: 3774 // 3775 // LogOfMantissa = 3776 // -2.1072184f + 3777 // (4.2372794f + 3778 // (-3.7029485f + 3779 // (2.2781945f + 3780 // (-0.87823314f + 3781 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3782 // 3783 // error 0.0000023660568, which is better than 18 bits 3784 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3785 getF32Constant(DAG, 0xbc91e5ac, dl)); 3786 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3787 getF32Constant(DAG, 0x3e4350aa, dl)); 3788 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3789 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3790 getF32Constant(DAG, 0x3f60d3e3, dl)); 3791 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3792 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3793 getF32Constant(DAG, 0x4011cdf0, dl)); 3794 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3795 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3796 getF32Constant(DAG, 0x406cfd1c, dl)); 3797 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3798 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3799 getF32Constant(DAG, 0x408797cb, dl)); 3800 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3801 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3802 getF32Constant(DAG, 0x4006dcab, dl)); 3803 } 3804 3805 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3806 } 3807 3808 // No special expansion. 3809 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3810 } 3811 3812 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3813 /// limited-precision mode. 3814 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3815 const TargetLowering &TLI) { 3816 if (Op.getValueType() == MVT::f32 && 3817 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3818 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3819 3820 // Get the exponent. 3821 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3822 3823 // Get the significand and build it into a floating-point number with 3824 // exponent of 1. 3825 SDValue X = GetSignificand(DAG, Op1, dl); 3826 3827 // Different possible minimax approximations of significand in 3828 // floating-point for various degrees of accuracy over [1,2]. 3829 SDValue Log2ofMantissa; 3830 if (LimitFloatPrecision <= 6) { 3831 // For floating-point precision of 6: 3832 // 3833 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3834 // 3835 // error 0.0049451742, which is more than 7 bits 3836 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3837 getF32Constant(DAG, 0xbeb08fe0, dl)); 3838 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3839 getF32Constant(DAG, 0x40019463, dl)); 3840 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3841 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3842 getF32Constant(DAG, 0x3fd6633d, dl)); 3843 } else if (LimitFloatPrecision <= 12) { 3844 // For floating-point precision of 12: 3845 // 3846 // Log2ofMantissa = 3847 // -2.51285454f + 3848 // (4.07009056f + 3849 // (-2.12067489f + 3850 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3851 // 3852 // error 0.0000876136000, which is better than 13 bits 3853 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3854 getF32Constant(DAG, 0xbda7262e, dl)); 3855 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3856 getF32Constant(DAG, 0x3f25280b, dl)); 3857 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3858 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3859 getF32Constant(DAG, 0x4007b923, dl)); 3860 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3861 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3862 getF32Constant(DAG, 0x40823e2f, dl)); 3863 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3864 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3865 getF32Constant(DAG, 0x4020d29c, dl)); 3866 } else { // LimitFloatPrecision <= 18 3867 // For floating-point precision of 18: 3868 // 3869 // Log2ofMantissa = 3870 // -3.0400495f + 3871 // (6.1129976f + 3872 // (-5.3420409f + 3873 // (3.2865683f + 3874 // (-1.2669343f + 3875 // (0.27515199f - 3876 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3877 // 3878 // error 0.0000018516, which is better than 18 bits 3879 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3880 getF32Constant(DAG, 0xbcd2769e, dl)); 3881 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3882 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3883 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3884 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3885 getF32Constant(DAG, 0x3fa22ae7, dl)); 3886 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3887 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3888 getF32Constant(DAG, 0x40525723, dl)); 3889 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3890 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3891 getF32Constant(DAG, 0x40aaf200, dl)); 3892 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3893 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3894 getF32Constant(DAG, 0x40c39dad, dl)); 3895 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3896 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3897 getF32Constant(DAG, 0x4042902c, dl)); 3898 } 3899 3900 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3901 } 3902 3903 // No special expansion. 3904 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3905 } 3906 3907 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3908 /// limited-precision mode. 3909 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3910 const TargetLowering &TLI) { 3911 if (Op.getValueType() == MVT::f32 && 3912 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3913 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3914 3915 // Scale the exponent by log10(2) [0.30102999f]. 3916 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3917 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3918 getF32Constant(DAG, 0x3e9a209a, dl)); 3919 3920 // Get the significand and build it into a floating-point number with 3921 // exponent of 1. 3922 SDValue X = GetSignificand(DAG, Op1, dl); 3923 3924 SDValue Log10ofMantissa; 3925 if (LimitFloatPrecision <= 6) { 3926 // For floating-point precision of 6: 3927 // 3928 // Log10ofMantissa = 3929 // -0.50419619f + 3930 // (0.60948995f - 0.10380950f * x) * x; 3931 // 3932 // error 0.0014886165, which is 6 bits 3933 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3934 getF32Constant(DAG, 0xbdd49a13, dl)); 3935 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3936 getF32Constant(DAG, 0x3f1c0789, dl)); 3937 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3938 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3939 getF32Constant(DAG, 0x3f011300, dl)); 3940 } else if (LimitFloatPrecision <= 12) { 3941 // For floating-point precision of 12: 3942 // 3943 // Log10ofMantissa = 3944 // -0.64831180f + 3945 // (0.91751397f + 3946 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3947 // 3948 // error 0.00019228036, which is better than 12 bits 3949 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3950 getF32Constant(DAG, 0x3d431f31, dl)); 3951 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3952 getF32Constant(DAG, 0x3ea21fb2, dl)); 3953 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3954 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3955 getF32Constant(DAG, 0x3f6ae232, dl)); 3956 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3957 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3958 getF32Constant(DAG, 0x3f25f7c3, dl)); 3959 } else { // LimitFloatPrecision <= 18 3960 // For floating-point precision of 18: 3961 // 3962 // Log10ofMantissa = 3963 // -0.84299375f + 3964 // (1.5327582f + 3965 // (-1.0688956f + 3966 // (0.49102474f + 3967 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3968 // 3969 // error 0.0000037995730, which is better than 18 bits 3970 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3971 getF32Constant(DAG, 0x3c5d51ce, dl)); 3972 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3973 getF32Constant(DAG, 0x3e00685a, dl)); 3974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3975 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3976 getF32Constant(DAG, 0x3efb6798, dl)); 3977 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3978 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3979 getF32Constant(DAG, 0x3f88d192, dl)); 3980 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3981 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3982 getF32Constant(DAG, 0x3fc4316c, dl)); 3983 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3984 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3985 getF32Constant(DAG, 0x3f57ce70, dl)); 3986 } 3987 3988 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3989 } 3990 3991 // No special expansion. 3992 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3993 } 3994 3995 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3996 /// limited-precision mode. 3997 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3998 const TargetLowering &TLI) { 3999 if (Op.getValueType() == MVT::f32 && 4000 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4001 return getLimitedPrecisionExp2(Op, dl, DAG); 4002 4003 // No special expansion. 4004 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4005 } 4006 4007 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4008 /// limited-precision mode with x == 10.0f. 4009 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4010 SelectionDAG &DAG, const TargetLowering &TLI) { 4011 bool IsExp10 = false; 4012 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4013 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4014 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4015 APFloat Ten(10.0f); 4016 IsExp10 = LHSC->isExactlyValue(Ten); 4017 } 4018 } 4019 4020 if (IsExp10) { 4021 // Put the exponent in the right bit position for later addition to the 4022 // final result: 4023 // 4024 // #define LOG2OF10 3.3219281f 4025 // t0 = Op * LOG2OF10; 4026 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4027 getF32Constant(DAG, 0x40549a78, dl)); 4028 return getLimitedPrecisionExp2(t0, dl, DAG); 4029 } 4030 4031 // No special expansion. 4032 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4033 } 4034 4035 4036 /// ExpandPowI - Expand a llvm.powi intrinsic. 4037 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4038 SelectionDAG &DAG) { 4039 // If RHS is a constant, we can expand this out to a multiplication tree, 4040 // otherwise we end up lowering to a call to __powidf2 (for example). When 4041 // optimizing for size, we only want to do this if the expansion would produce 4042 // a small number of multiplies, otherwise we do the full expansion. 4043 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4044 // Get the exponent as a positive value. 4045 unsigned Val = RHSC->getSExtValue(); 4046 if ((int)Val < 0) Val = -Val; 4047 4048 // powi(x, 0) -> 1.0 4049 if (Val == 0) 4050 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4051 4052 const Function *F = DAG.getMachineFunction().getFunction(); 4053 if (!F->optForSize() || 4054 // If optimizing for size, don't insert too many multiplies. 4055 // This inserts up to 5 multiplies. 4056 countPopulation(Val) + Log2_32(Val) < 7) { 4057 // We use the simple binary decomposition method to generate the multiply 4058 // sequence. There are more optimal ways to do this (for example, 4059 // powi(x,15) generates one more multiply than it should), but this has 4060 // the benefit of being both really simple and much better than a libcall. 4061 SDValue Res; // Logically starts equal to 1.0 4062 SDValue CurSquare = LHS; 4063 while (Val) { 4064 if (Val & 1) { 4065 if (Res.getNode()) 4066 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4067 else 4068 Res = CurSquare; // 1.0*CurSquare. 4069 } 4070 4071 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4072 CurSquare, CurSquare); 4073 Val >>= 1; 4074 } 4075 4076 // If the original was negative, invert the result, producing 1/(x*x*x). 4077 if (RHSC->getSExtValue() < 0) 4078 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4079 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4080 return Res; 4081 } 4082 } 4083 4084 // Otherwise, expand to a libcall. 4085 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4086 } 4087 4088 // getTruncatedArgReg - Find underlying register used for an truncated 4089 // argument. 4090 static unsigned getTruncatedArgReg(const SDValue &N) { 4091 if (N.getOpcode() != ISD::TRUNCATE) 4092 return 0; 4093 4094 const SDValue &Ext = N.getOperand(0); 4095 if (Ext.getOpcode() == ISD::AssertZext || 4096 Ext.getOpcode() == ISD::AssertSext) { 4097 const SDValue &CFR = Ext.getOperand(0); 4098 if (CFR.getOpcode() == ISD::CopyFromReg) 4099 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4100 if (CFR.getOpcode() == ISD::TRUNCATE) 4101 return getTruncatedArgReg(CFR); 4102 } 4103 return 0; 4104 } 4105 4106 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4107 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4108 /// At the end of instruction selection, they will be inserted to the entry BB. 4109 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4110 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4111 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4112 const Argument *Arg = dyn_cast<Argument>(V); 4113 if (!Arg) 4114 return false; 4115 4116 MachineFunction &MF = DAG.getMachineFunction(); 4117 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4118 4119 // Ignore inlined function arguments here. 4120 // 4121 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4122 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4123 return false; 4124 4125 Optional<MachineOperand> Op; 4126 // Some arguments' frame index is recorded during argument lowering. 4127 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4128 Op = MachineOperand::CreateFI(FI); 4129 4130 if (!Op && N.getNode()) { 4131 unsigned Reg; 4132 if (N.getOpcode() == ISD::CopyFromReg) 4133 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4134 else 4135 Reg = getTruncatedArgReg(N); 4136 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4138 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4139 if (PR) 4140 Reg = PR; 4141 } 4142 if (Reg) 4143 Op = MachineOperand::CreateReg(Reg, false); 4144 } 4145 4146 if (!Op) { 4147 // Check if ValueMap has reg number. 4148 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4149 if (VMI != FuncInfo.ValueMap.end()) 4150 Op = MachineOperand::CreateReg(VMI->second, false); 4151 } 4152 4153 if (!Op && N.getNode()) 4154 // Check if frame index is available. 4155 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4156 if (FrameIndexSDNode *FINode = 4157 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4158 Op = MachineOperand::CreateFI(FINode->getIndex()); 4159 4160 if (!Op) 4161 return false; 4162 4163 assert(Variable->isValidLocationForIntrinsic(DL) && 4164 "Expected inlined-at fields to agree"); 4165 if (Op->isReg()) 4166 FuncInfo.ArgDbgValues.push_back( 4167 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4168 Op->getReg(), Offset, Variable, Expr)); 4169 else 4170 FuncInfo.ArgDbgValues.push_back( 4171 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4172 .addOperand(*Op) 4173 .addImm(Offset) 4174 .addMetadata(Variable) 4175 .addMetadata(Expr)); 4176 4177 return true; 4178 } 4179 4180 // VisualStudio defines setjmp as _setjmp 4181 #if defined(_MSC_VER) && defined(setjmp) && \ 4182 !defined(setjmp_undefined_for_msvc) 4183 # pragma push_macro("setjmp") 4184 # undef setjmp 4185 # define setjmp_undefined_for_msvc 4186 #endif 4187 4188 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4189 /// we want to emit this as a call to a named external function, return the name 4190 /// otherwise lower it and return null. 4191 const char * 4192 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4194 SDLoc sdl = getCurSDLoc(); 4195 DebugLoc dl = getCurDebugLoc(); 4196 SDValue Res; 4197 4198 switch (Intrinsic) { 4199 default: 4200 // By default, turn this into a target intrinsic node. 4201 visitTargetIntrinsic(I, Intrinsic); 4202 return nullptr; 4203 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4204 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4205 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4206 case Intrinsic::returnaddress: 4207 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4208 TLI.getPointerTy(DAG.getDataLayout()), 4209 getValue(I.getArgOperand(0)))); 4210 return nullptr; 4211 case Intrinsic::frameaddress: 4212 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4213 TLI.getPointerTy(DAG.getDataLayout()), 4214 getValue(I.getArgOperand(0)))); 4215 return nullptr; 4216 case Intrinsic::read_register: { 4217 Value *Reg = I.getArgOperand(0); 4218 SDValue Chain = getRoot(); 4219 SDValue RegName = 4220 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4221 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4222 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4223 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4224 setValue(&I, Res); 4225 DAG.setRoot(Res.getValue(1)); 4226 return nullptr; 4227 } 4228 case Intrinsic::write_register: { 4229 Value *Reg = I.getArgOperand(0); 4230 Value *RegValue = I.getArgOperand(1); 4231 SDValue Chain = getRoot(); 4232 SDValue RegName = 4233 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4234 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4235 RegName, getValue(RegValue))); 4236 return nullptr; 4237 } 4238 case Intrinsic::setjmp: 4239 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4240 case Intrinsic::longjmp: 4241 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4242 case Intrinsic::memcpy: { 4243 // FIXME: this definition of "user defined address space" is x86-specific 4244 // Assert for address < 256 since we support only user defined address 4245 // spaces. 4246 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4247 < 256 && 4248 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4249 < 256 && 4250 "Unknown address space"); 4251 SDValue Op1 = getValue(I.getArgOperand(0)); 4252 SDValue Op2 = getValue(I.getArgOperand(1)); 4253 SDValue Op3 = getValue(I.getArgOperand(2)); 4254 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4255 if (!Align) 4256 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4257 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4258 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4259 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4260 false, isTC, 4261 MachinePointerInfo(I.getArgOperand(0)), 4262 MachinePointerInfo(I.getArgOperand(1))); 4263 updateDAGForMaybeTailCall(MC); 4264 return nullptr; 4265 } 4266 case Intrinsic::memset: { 4267 // FIXME: this definition of "user defined address space" is x86-specific 4268 // Assert for address < 256 since we support only user defined address 4269 // spaces. 4270 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4271 < 256 && 4272 "Unknown address space"); 4273 SDValue Op1 = getValue(I.getArgOperand(0)); 4274 SDValue Op2 = getValue(I.getArgOperand(1)); 4275 SDValue Op3 = getValue(I.getArgOperand(2)); 4276 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4277 if (!Align) 4278 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4279 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4280 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4281 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4282 isTC, MachinePointerInfo(I.getArgOperand(0))); 4283 updateDAGForMaybeTailCall(MS); 4284 return nullptr; 4285 } 4286 case Intrinsic::memmove: { 4287 // FIXME: this definition of "user defined address space" is x86-specific 4288 // Assert for address < 256 since we support only user defined address 4289 // spaces. 4290 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4291 < 256 && 4292 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4293 < 256 && 4294 "Unknown address space"); 4295 SDValue Op1 = getValue(I.getArgOperand(0)); 4296 SDValue Op2 = getValue(I.getArgOperand(1)); 4297 SDValue Op3 = getValue(I.getArgOperand(2)); 4298 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4299 if (!Align) 4300 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4301 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4302 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4303 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4304 isTC, MachinePointerInfo(I.getArgOperand(0)), 4305 MachinePointerInfo(I.getArgOperand(1))); 4306 updateDAGForMaybeTailCall(MM); 4307 return nullptr; 4308 } 4309 case Intrinsic::dbg_declare: { 4310 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4311 DILocalVariable *Variable = DI.getVariable(); 4312 DIExpression *Expression = DI.getExpression(); 4313 const Value *Address = DI.getAddress(); 4314 assert(Variable && "Missing variable"); 4315 if (!Address) { 4316 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4317 return nullptr; 4318 } 4319 4320 // Check if address has undef value. 4321 if (isa<UndefValue>(Address) || 4322 (Address->use_empty() && !isa<Argument>(Address))) { 4323 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4324 return nullptr; 4325 } 4326 4327 SDValue &N = NodeMap[Address]; 4328 if (!N.getNode() && isa<Argument>(Address)) 4329 // Check unused arguments map. 4330 N = UnusedArgNodeMap[Address]; 4331 SDDbgValue *SDV; 4332 if (N.getNode()) { 4333 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4334 Address = BCI->getOperand(0); 4335 // Parameters are handled specially. 4336 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4337 4338 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4339 4340 if (isParameter && !AI) { 4341 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4342 if (FINode) 4343 // Byval parameter. We have a frame index at this point. 4344 SDV = DAG.getFrameIndexDbgValue( 4345 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4346 else { 4347 // Address is an argument, so try to emit its dbg value using 4348 // virtual register info from the FuncInfo.ValueMap. 4349 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4350 N); 4351 return nullptr; 4352 } 4353 } else if (AI) 4354 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4355 true, 0, dl, SDNodeOrder); 4356 else { 4357 // Can't do anything with other non-AI cases yet. 4358 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4359 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4360 DEBUG(Address->dump()); 4361 return nullptr; 4362 } 4363 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4364 } else { 4365 // If Address is an argument then try to emit its dbg value using 4366 // virtual register info from the FuncInfo.ValueMap. 4367 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4368 N)) { 4369 // If variable is pinned by a alloca in dominating bb then 4370 // use StaticAllocaMap. 4371 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4372 if (AI->getParent() != DI.getParent()) { 4373 DenseMap<const AllocaInst*, int>::iterator SI = 4374 FuncInfo.StaticAllocaMap.find(AI); 4375 if (SI != FuncInfo.StaticAllocaMap.end()) { 4376 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4377 0, dl, SDNodeOrder); 4378 DAG.AddDbgValue(SDV, nullptr, false); 4379 return nullptr; 4380 } 4381 } 4382 } 4383 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4384 } 4385 } 4386 return nullptr; 4387 } 4388 case Intrinsic::dbg_value: { 4389 const DbgValueInst &DI = cast<DbgValueInst>(I); 4390 assert(DI.getVariable() && "Missing variable"); 4391 4392 DILocalVariable *Variable = DI.getVariable(); 4393 DIExpression *Expression = DI.getExpression(); 4394 uint64_t Offset = DI.getOffset(); 4395 const Value *V = DI.getValue(); 4396 if (!V) 4397 return nullptr; 4398 4399 SDDbgValue *SDV; 4400 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4401 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4402 SDNodeOrder); 4403 DAG.AddDbgValue(SDV, nullptr, false); 4404 } else { 4405 // Do not use getValue() in here; we don't want to generate code at 4406 // this point if it hasn't been done yet. 4407 SDValue N = NodeMap[V]; 4408 if (!N.getNode() && isa<Argument>(V)) 4409 // Check unused arguments map. 4410 N = UnusedArgNodeMap[V]; 4411 if (N.getNode()) { 4412 // A dbg.value for an alloca is always indirect. 4413 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4414 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4415 IsIndirect, N)) { 4416 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4417 IsIndirect, Offset, dl, SDNodeOrder); 4418 DAG.AddDbgValue(SDV, N.getNode(), false); 4419 } 4420 } else if (!V->use_empty() ) { 4421 // Do not call getValue(V) yet, as we don't want to generate code. 4422 // Remember it for later. 4423 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4424 DanglingDebugInfoMap[V] = DDI; 4425 } else { 4426 // We may expand this to cover more cases. One case where we have no 4427 // data available is an unreferenced parameter. 4428 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4429 } 4430 } 4431 4432 // Build a debug info table entry. 4433 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4434 V = BCI->getOperand(0); 4435 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4436 // Don't handle byval struct arguments or VLAs, for example. 4437 if (!AI) { 4438 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4439 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4440 return nullptr; 4441 } 4442 DenseMap<const AllocaInst*, int>::iterator SI = 4443 FuncInfo.StaticAllocaMap.find(AI); 4444 if (SI == FuncInfo.StaticAllocaMap.end()) 4445 return nullptr; // VLAs. 4446 return nullptr; 4447 } 4448 4449 case Intrinsic::eh_typeid_for: { 4450 // Find the type id for the given typeinfo. 4451 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4452 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4453 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4454 setValue(&I, Res); 4455 return nullptr; 4456 } 4457 4458 case Intrinsic::eh_return_i32: 4459 case Intrinsic::eh_return_i64: 4460 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4461 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4462 MVT::Other, 4463 getControlRoot(), 4464 getValue(I.getArgOperand(0)), 4465 getValue(I.getArgOperand(1)))); 4466 return nullptr; 4467 case Intrinsic::eh_unwind_init: 4468 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4469 return nullptr; 4470 case Intrinsic::eh_dwarf_cfa: { 4471 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4472 TLI.getPointerTy(DAG.getDataLayout())); 4473 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4474 CfaArg.getValueType(), 4475 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4476 CfaArg.getValueType()), 4477 CfaArg); 4478 SDValue FA = DAG.getNode( 4479 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4480 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4481 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4482 FA, Offset)); 4483 return nullptr; 4484 } 4485 case Intrinsic::eh_sjlj_callsite: { 4486 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4487 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4488 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4489 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4490 4491 MMI.setCurrentCallSite(CI->getZExtValue()); 4492 return nullptr; 4493 } 4494 case Intrinsic::eh_sjlj_functioncontext: { 4495 // Get and store the index of the function context. 4496 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4497 AllocaInst *FnCtx = 4498 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4499 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4500 MFI->setFunctionContextIndex(FI); 4501 return nullptr; 4502 } 4503 case Intrinsic::eh_sjlj_setjmp: { 4504 SDValue Ops[2]; 4505 Ops[0] = getRoot(); 4506 Ops[1] = getValue(I.getArgOperand(0)); 4507 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4508 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4509 setValue(&I, Op.getValue(0)); 4510 DAG.setRoot(Op.getValue(1)); 4511 return nullptr; 4512 } 4513 case Intrinsic::eh_sjlj_longjmp: { 4514 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4515 getRoot(), getValue(I.getArgOperand(0)))); 4516 return nullptr; 4517 } 4518 case Intrinsic::eh_sjlj_setup_dispatch: { 4519 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4520 getRoot())); 4521 return nullptr; 4522 } 4523 4524 case Intrinsic::masked_gather: 4525 visitMaskedGather(I); 4526 return nullptr; 4527 case Intrinsic::masked_load: 4528 visitMaskedLoad(I); 4529 return nullptr; 4530 case Intrinsic::masked_scatter: 4531 visitMaskedScatter(I); 4532 return nullptr; 4533 case Intrinsic::masked_store: 4534 visitMaskedStore(I); 4535 return nullptr; 4536 case Intrinsic::x86_mmx_pslli_w: 4537 case Intrinsic::x86_mmx_pslli_d: 4538 case Intrinsic::x86_mmx_pslli_q: 4539 case Intrinsic::x86_mmx_psrli_w: 4540 case Intrinsic::x86_mmx_psrli_d: 4541 case Intrinsic::x86_mmx_psrli_q: 4542 case Intrinsic::x86_mmx_psrai_w: 4543 case Intrinsic::x86_mmx_psrai_d: { 4544 SDValue ShAmt = getValue(I.getArgOperand(1)); 4545 if (isa<ConstantSDNode>(ShAmt)) { 4546 visitTargetIntrinsic(I, Intrinsic); 4547 return nullptr; 4548 } 4549 unsigned NewIntrinsic = 0; 4550 EVT ShAmtVT = MVT::v2i32; 4551 switch (Intrinsic) { 4552 case Intrinsic::x86_mmx_pslli_w: 4553 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4554 break; 4555 case Intrinsic::x86_mmx_pslli_d: 4556 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4557 break; 4558 case Intrinsic::x86_mmx_pslli_q: 4559 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4560 break; 4561 case Intrinsic::x86_mmx_psrli_w: 4562 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4563 break; 4564 case Intrinsic::x86_mmx_psrli_d: 4565 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4566 break; 4567 case Intrinsic::x86_mmx_psrli_q: 4568 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4569 break; 4570 case Intrinsic::x86_mmx_psrai_w: 4571 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4572 break; 4573 case Intrinsic::x86_mmx_psrai_d: 4574 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4575 break; 4576 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4577 } 4578 4579 // The vector shift intrinsics with scalars uses 32b shift amounts but 4580 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4581 // to be zero. 4582 // We must do this early because v2i32 is not a legal type. 4583 SDValue ShOps[2]; 4584 ShOps[0] = ShAmt; 4585 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4586 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4587 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4588 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4589 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4590 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4591 getValue(I.getArgOperand(0)), ShAmt); 4592 setValue(&I, Res); 4593 return nullptr; 4594 } 4595 case Intrinsic::convertff: 4596 case Intrinsic::convertfsi: 4597 case Intrinsic::convertfui: 4598 case Intrinsic::convertsif: 4599 case Intrinsic::convertuif: 4600 case Intrinsic::convertss: 4601 case Intrinsic::convertsu: 4602 case Intrinsic::convertus: 4603 case Intrinsic::convertuu: { 4604 ISD::CvtCode Code = ISD::CVT_INVALID; 4605 switch (Intrinsic) { 4606 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4607 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4608 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4609 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4610 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4611 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4612 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4613 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4614 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4615 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4616 } 4617 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4618 const Value *Op1 = I.getArgOperand(0); 4619 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4620 DAG.getValueType(DestVT), 4621 DAG.getValueType(getValue(Op1).getValueType()), 4622 getValue(I.getArgOperand(1)), 4623 getValue(I.getArgOperand(2)), 4624 Code); 4625 setValue(&I, Res); 4626 return nullptr; 4627 } 4628 case Intrinsic::powi: 4629 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4630 getValue(I.getArgOperand(1)), DAG)); 4631 return nullptr; 4632 case Intrinsic::log: 4633 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4634 return nullptr; 4635 case Intrinsic::log2: 4636 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4637 return nullptr; 4638 case Intrinsic::log10: 4639 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4640 return nullptr; 4641 case Intrinsic::exp: 4642 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4643 return nullptr; 4644 case Intrinsic::exp2: 4645 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4646 return nullptr; 4647 case Intrinsic::pow: 4648 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4649 getValue(I.getArgOperand(1)), DAG, TLI)); 4650 return nullptr; 4651 case Intrinsic::sqrt: 4652 case Intrinsic::fabs: 4653 case Intrinsic::sin: 4654 case Intrinsic::cos: 4655 case Intrinsic::floor: 4656 case Intrinsic::ceil: 4657 case Intrinsic::trunc: 4658 case Intrinsic::rint: 4659 case Intrinsic::nearbyint: 4660 case Intrinsic::round: { 4661 unsigned Opcode; 4662 switch (Intrinsic) { 4663 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4664 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4665 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4666 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4667 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4668 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4669 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4670 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4671 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4672 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4673 case Intrinsic::round: Opcode = ISD::FROUND; break; 4674 } 4675 4676 setValue(&I, DAG.getNode(Opcode, sdl, 4677 getValue(I.getArgOperand(0)).getValueType(), 4678 getValue(I.getArgOperand(0)))); 4679 return nullptr; 4680 } 4681 case Intrinsic::minnum: 4682 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4683 getValue(I.getArgOperand(0)).getValueType(), 4684 getValue(I.getArgOperand(0)), 4685 getValue(I.getArgOperand(1)))); 4686 return nullptr; 4687 case Intrinsic::maxnum: 4688 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4689 getValue(I.getArgOperand(0)).getValueType(), 4690 getValue(I.getArgOperand(0)), 4691 getValue(I.getArgOperand(1)))); 4692 return nullptr; 4693 case Intrinsic::copysign: 4694 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4695 getValue(I.getArgOperand(0)).getValueType(), 4696 getValue(I.getArgOperand(0)), 4697 getValue(I.getArgOperand(1)))); 4698 return nullptr; 4699 case Intrinsic::fma: 4700 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4701 getValue(I.getArgOperand(0)).getValueType(), 4702 getValue(I.getArgOperand(0)), 4703 getValue(I.getArgOperand(1)), 4704 getValue(I.getArgOperand(2)))); 4705 return nullptr; 4706 case Intrinsic::fmuladd: { 4707 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4708 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4709 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4710 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4711 getValue(I.getArgOperand(0)).getValueType(), 4712 getValue(I.getArgOperand(0)), 4713 getValue(I.getArgOperand(1)), 4714 getValue(I.getArgOperand(2)))); 4715 } else { 4716 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4717 getValue(I.getArgOperand(0)).getValueType(), 4718 getValue(I.getArgOperand(0)), 4719 getValue(I.getArgOperand(1))); 4720 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4721 getValue(I.getArgOperand(0)).getValueType(), 4722 Mul, 4723 getValue(I.getArgOperand(2))); 4724 setValue(&I, Add); 4725 } 4726 return nullptr; 4727 } 4728 case Intrinsic::convert_to_fp16: 4729 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4730 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4731 getValue(I.getArgOperand(0)), 4732 DAG.getTargetConstant(0, sdl, 4733 MVT::i32)))); 4734 return nullptr; 4735 case Intrinsic::convert_from_fp16: 4736 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4737 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4738 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4739 getValue(I.getArgOperand(0))))); 4740 return nullptr; 4741 case Intrinsic::pcmarker: { 4742 SDValue Tmp = getValue(I.getArgOperand(0)); 4743 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4744 return nullptr; 4745 } 4746 case Intrinsic::readcyclecounter: { 4747 SDValue Op = getRoot(); 4748 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4749 DAG.getVTList(MVT::i64, MVT::Other), Op); 4750 setValue(&I, Res); 4751 DAG.setRoot(Res.getValue(1)); 4752 return nullptr; 4753 } 4754 case Intrinsic::bswap: 4755 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4756 getValue(I.getArgOperand(0)).getValueType(), 4757 getValue(I.getArgOperand(0)))); 4758 return nullptr; 4759 case Intrinsic::uabsdiff: 4760 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4761 getValue(I.getArgOperand(0)).getValueType(), 4762 getValue(I.getArgOperand(0)), 4763 getValue(I.getArgOperand(1)))); 4764 return nullptr; 4765 case Intrinsic::sabsdiff: 4766 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4767 getValue(I.getArgOperand(0)).getValueType(), 4768 getValue(I.getArgOperand(0)), 4769 getValue(I.getArgOperand(1)))); 4770 return nullptr; 4771 case Intrinsic::cttz: { 4772 SDValue Arg = getValue(I.getArgOperand(0)); 4773 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4774 EVT Ty = Arg.getValueType(); 4775 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4776 sdl, Ty, Arg)); 4777 return nullptr; 4778 } 4779 case Intrinsic::ctlz: { 4780 SDValue Arg = getValue(I.getArgOperand(0)); 4781 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4782 EVT Ty = Arg.getValueType(); 4783 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4784 sdl, Ty, Arg)); 4785 return nullptr; 4786 } 4787 case Intrinsic::ctpop: { 4788 SDValue Arg = getValue(I.getArgOperand(0)); 4789 EVT Ty = Arg.getValueType(); 4790 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4791 return nullptr; 4792 } 4793 case Intrinsic::stacksave: { 4794 SDValue Op = getRoot(); 4795 Res = DAG.getNode( 4796 ISD::STACKSAVE, sdl, 4797 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4798 setValue(&I, Res); 4799 DAG.setRoot(Res.getValue(1)); 4800 return nullptr; 4801 } 4802 case Intrinsic::stackrestore: { 4803 Res = getValue(I.getArgOperand(0)); 4804 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4805 return nullptr; 4806 } 4807 case Intrinsic::stackprotector: { 4808 // Emit code into the DAG to store the stack guard onto the stack. 4809 MachineFunction &MF = DAG.getMachineFunction(); 4810 MachineFrameInfo *MFI = MF.getFrameInfo(); 4811 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4812 SDValue Src, Chain = getRoot(); 4813 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4814 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4815 4816 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4817 // global variable __stack_chk_guard. 4818 if (!GV) 4819 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4820 if (BC->getOpcode() == Instruction::BitCast) 4821 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4822 4823 if (GV && TLI.useLoadStackGuardNode()) { 4824 // Emit a LOAD_STACK_GUARD node. 4825 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4826 sdl, PtrTy, Chain); 4827 MachinePointerInfo MPInfo(GV); 4828 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4829 unsigned Flags = MachineMemOperand::MOLoad | 4830 MachineMemOperand::MOInvariant; 4831 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4832 PtrTy.getSizeInBits() / 8, 4833 DAG.getEVTAlignment(PtrTy)); 4834 Node->setMemRefs(MemRefs, MemRefs + 1); 4835 4836 // Copy the guard value to a virtual register so that it can be 4837 // retrieved in the epilogue. 4838 Src = SDValue(Node, 0); 4839 const TargetRegisterClass *RC = 4840 TLI.getRegClassFor(Src.getSimpleValueType()); 4841 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4842 4843 SPDescriptor.setGuardReg(Reg); 4844 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4845 } else { 4846 Src = getValue(I.getArgOperand(0)); // The guard's value. 4847 } 4848 4849 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4850 4851 int FI = FuncInfo.StaticAllocaMap[Slot]; 4852 MFI->setStackProtectorIndex(FI); 4853 4854 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4855 4856 // Store the stack protector onto the stack. 4857 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4858 DAG.getMachineFunction(), FI), 4859 true, false, 0); 4860 setValue(&I, Res); 4861 DAG.setRoot(Res); 4862 return nullptr; 4863 } 4864 case Intrinsic::objectsize: { 4865 // If we don't know by now, we're never going to know. 4866 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4867 4868 assert(CI && "Non-constant type in __builtin_object_size?"); 4869 4870 SDValue Arg = getValue(I.getCalledValue()); 4871 EVT Ty = Arg.getValueType(); 4872 4873 if (CI->isZero()) 4874 Res = DAG.getConstant(-1ULL, sdl, Ty); 4875 else 4876 Res = DAG.getConstant(0, sdl, Ty); 4877 4878 setValue(&I, Res); 4879 return nullptr; 4880 } 4881 case Intrinsic::annotation: 4882 case Intrinsic::ptr_annotation: 4883 // Drop the intrinsic, but forward the value 4884 setValue(&I, getValue(I.getOperand(0))); 4885 return nullptr; 4886 case Intrinsic::assume: 4887 case Intrinsic::var_annotation: 4888 // Discard annotate attributes and assumptions 4889 return nullptr; 4890 4891 case Intrinsic::init_trampoline: { 4892 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4893 4894 SDValue Ops[6]; 4895 Ops[0] = getRoot(); 4896 Ops[1] = getValue(I.getArgOperand(0)); 4897 Ops[2] = getValue(I.getArgOperand(1)); 4898 Ops[3] = getValue(I.getArgOperand(2)); 4899 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4900 Ops[5] = DAG.getSrcValue(F); 4901 4902 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4903 4904 DAG.setRoot(Res); 4905 return nullptr; 4906 } 4907 case Intrinsic::adjust_trampoline: { 4908 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4909 TLI.getPointerTy(DAG.getDataLayout()), 4910 getValue(I.getArgOperand(0)))); 4911 return nullptr; 4912 } 4913 case Intrinsic::gcroot: 4914 if (GFI) { 4915 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4916 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4917 4918 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4919 GFI->addStackRoot(FI->getIndex(), TypeMap); 4920 } 4921 return nullptr; 4922 case Intrinsic::gcread: 4923 case Intrinsic::gcwrite: 4924 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4925 case Intrinsic::flt_rounds: 4926 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4927 return nullptr; 4928 4929 case Intrinsic::expect: { 4930 // Just replace __builtin_expect(exp, c) with EXP. 4931 setValue(&I, getValue(I.getArgOperand(0))); 4932 return nullptr; 4933 } 4934 4935 case Intrinsic::debugtrap: 4936 case Intrinsic::trap: { 4937 StringRef TrapFuncName = 4938 I.getAttributes() 4939 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4940 .getValueAsString(); 4941 if (TrapFuncName.empty()) { 4942 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4943 ISD::TRAP : ISD::DEBUGTRAP; 4944 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4945 return nullptr; 4946 } 4947 TargetLowering::ArgListTy Args; 4948 4949 TargetLowering::CallLoweringInfo CLI(DAG); 4950 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4951 CallingConv::C, I.getType(), 4952 DAG.getExternalSymbol(TrapFuncName.data(), 4953 TLI.getPointerTy(DAG.getDataLayout())), 4954 std::move(Args), 0); 4955 4956 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4957 DAG.setRoot(Result.second); 4958 return nullptr; 4959 } 4960 4961 case Intrinsic::uadd_with_overflow: 4962 case Intrinsic::sadd_with_overflow: 4963 case Intrinsic::usub_with_overflow: 4964 case Intrinsic::ssub_with_overflow: 4965 case Intrinsic::umul_with_overflow: 4966 case Intrinsic::smul_with_overflow: { 4967 ISD::NodeType Op; 4968 switch (Intrinsic) { 4969 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4970 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4971 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4972 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4973 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4974 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4975 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4976 } 4977 SDValue Op1 = getValue(I.getArgOperand(0)); 4978 SDValue Op2 = getValue(I.getArgOperand(1)); 4979 4980 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4981 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4982 return nullptr; 4983 } 4984 case Intrinsic::prefetch: { 4985 SDValue Ops[5]; 4986 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4987 Ops[0] = getRoot(); 4988 Ops[1] = getValue(I.getArgOperand(0)); 4989 Ops[2] = getValue(I.getArgOperand(1)); 4990 Ops[3] = getValue(I.getArgOperand(2)); 4991 Ops[4] = getValue(I.getArgOperand(3)); 4992 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4993 DAG.getVTList(MVT::Other), Ops, 4994 EVT::getIntegerVT(*Context, 8), 4995 MachinePointerInfo(I.getArgOperand(0)), 4996 0, /* align */ 4997 false, /* volatile */ 4998 rw==0, /* read */ 4999 rw==1)); /* write */ 5000 return nullptr; 5001 } 5002 case Intrinsic::lifetime_start: 5003 case Intrinsic::lifetime_end: { 5004 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5005 // Stack coloring is not enabled in O0, discard region information. 5006 if (TM.getOptLevel() == CodeGenOpt::None) 5007 return nullptr; 5008 5009 SmallVector<Value *, 4> Allocas; 5010 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5011 5012 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5013 E = Allocas.end(); Object != E; ++Object) { 5014 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5015 5016 // Could not find an Alloca. 5017 if (!LifetimeObject) 5018 continue; 5019 5020 // First check that the Alloca is static, otherwise it won't have a 5021 // valid frame index. 5022 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5023 if (SI == FuncInfo.StaticAllocaMap.end()) 5024 return nullptr; 5025 5026 int FI = SI->second; 5027 5028 SDValue Ops[2]; 5029 Ops[0] = getRoot(); 5030 Ops[1] = 5031 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5032 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5033 5034 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5035 DAG.setRoot(Res); 5036 } 5037 return nullptr; 5038 } 5039 case Intrinsic::invariant_start: 5040 // Discard region information. 5041 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5042 return nullptr; 5043 case Intrinsic::invariant_end: 5044 // Discard region information. 5045 return nullptr; 5046 case Intrinsic::stackprotectorcheck: { 5047 // Do not actually emit anything for this basic block. Instead we initialize 5048 // the stack protector descriptor and export the guard variable so we can 5049 // access it in FinishBasicBlock. 5050 const BasicBlock *BB = I.getParent(); 5051 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5052 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5053 5054 // Flush our exports since we are going to process a terminator. 5055 (void)getControlRoot(); 5056 return nullptr; 5057 } 5058 case Intrinsic::clear_cache: 5059 return TLI.getClearCacheBuiltinName(); 5060 case Intrinsic::eh_actions: 5061 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5062 return nullptr; 5063 case Intrinsic::donothing: 5064 // ignore 5065 return nullptr; 5066 case Intrinsic::experimental_stackmap: { 5067 visitStackmap(I); 5068 return nullptr; 5069 } 5070 case Intrinsic::experimental_patchpoint_void: 5071 case Intrinsic::experimental_patchpoint_i64: { 5072 visitPatchpoint(&I); 5073 return nullptr; 5074 } 5075 case Intrinsic::experimental_gc_statepoint: { 5076 visitStatepoint(I); 5077 return nullptr; 5078 } 5079 case Intrinsic::experimental_gc_result_int: 5080 case Intrinsic::experimental_gc_result_float: 5081 case Intrinsic::experimental_gc_result_ptr: 5082 case Intrinsic::experimental_gc_result: { 5083 visitGCResult(I); 5084 return nullptr; 5085 } 5086 case Intrinsic::experimental_gc_relocate: { 5087 visitGCRelocate(I); 5088 return nullptr; 5089 } 5090 case Intrinsic::instrprof_increment: 5091 llvm_unreachable("instrprof failed to lower an increment"); 5092 5093 case Intrinsic::localescape: { 5094 MachineFunction &MF = DAG.getMachineFunction(); 5095 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5096 5097 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5098 // is the same on all targets. 5099 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5100 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5101 if (isa<ConstantPointerNull>(Arg)) 5102 continue; // Skip null pointers. They represent a hole in index space. 5103 AllocaInst *Slot = cast<AllocaInst>(Arg); 5104 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5105 "can only escape static allocas"); 5106 int FI = FuncInfo.StaticAllocaMap[Slot]; 5107 MCSymbol *FrameAllocSym = 5108 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5109 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5110 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5111 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5112 .addSym(FrameAllocSym) 5113 .addFrameIndex(FI); 5114 } 5115 5116 return nullptr; 5117 } 5118 5119 case Intrinsic::localrecover: { 5120 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5121 MachineFunction &MF = DAG.getMachineFunction(); 5122 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5123 5124 // Get the symbol that defines the frame offset. 5125 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5126 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5127 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5128 MCSymbol *FrameAllocSym = 5129 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5130 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5131 5132 // Create a MCSymbol for the label to avoid any target lowering 5133 // that would make this PC relative. 5134 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5135 SDValue OffsetVal = 5136 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5137 5138 // Add the offset to the FP. 5139 Value *FP = I.getArgOperand(1); 5140 SDValue FPVal = getValue(FP); 5141 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5142 setValue(&I, Add); 5143 5144 return nullptr; 5145 } 5146 case Intrinsic::eh_begincatch: 5147 case Intrinsic::eh_endcatch: 5148 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5149 case Intrinsic::eh_exceptioncode: { 5150 unsigned Reg = TLI.getExceptionPointerRegister(); 5151 assert(Reg && "cannot get exception code on this platform"); 5152 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5153 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5154 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5155 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5156 SDValue N = 5157 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5158 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5159 setValue(&I, N); 5160 return nullptr; 5161 } 5162 } 5163 } 5164 5165 std::pair<SDValue, SDValue> 5166 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5167 const BasicBlock *EHPadBB) { 5168 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5169 MCSymbol *BeginLabel = nullptr; 5170 5171 if (EHPadBB) { 5172 // Insert a label before the invoke call to mark the try range. This can be 5173 // used to detect deletion of the invoke via the MachineModuleInfo. 5174 BeginLabel = MMI.getContext().createTempSymbol(); 5175 5176 // For SjLj, keep track of which landing pads go with which invokes 5177 // so as to maintain the ordering of pads in the LSDA. 5178 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5179 if (CallSiteIndex) { 5180 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5181 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5182 5183 // Now that the call site is handled, stop tracking it. 5184 MMI.setCurrentCallSite(0); 5185 } 5186 5187 // Both PendingLoads and PendingExports must be flushed here; 5188 // this call might not return. 5189 (void)getRoot(); 5190 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5191 5192 CLI.setChain(getRoot()); 5193 } 5194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5195 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5196 5197 assert((CLI.IsTailCall || Result.second.getNode()) && 5198 "Non-null chain expected with non-tail call!"); 5199 assert((Result.second.getNode() || !Result.first.getNode()) && 5200 "Null value expected with tail call!"); 5201 5202 if (!Result.second.getNode()) { 5203 // As a special case, a null chain means that a tail call has been emitted 5204 // and the DAG root is already updated. 5205 HasTailCall = true; 5206 5207 // Since there's no actual continuation from this block, nothing can be 5208 // relying on us setting vregs for them. 5209 PendingExports.clear(); 5210 } else { 5211 DAG.setRoot(Result.second); 5212 } 5213 5214 if (EHPadBB) { 5215 // Insert a label at the end of the invoke call to mark the try range. This 5216 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5217 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5218 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5219 5220 // Inform MachineModuleInfo of range. 5221 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5222 } 5223 5224 return Result; 5225 } 5226 5227 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5228 bool isTailCall, 5229 const BasicBlock *EHPadBB) { 5230 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5231 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5232 Type *RetTy = FTy->getReturnType(); 5233 5234 TargetLowering::ArgListTy Args; 5235 TargetLowering::ArgListEntry Entry; 5236 Args.reserve(CS.arg_size()); 5237 5238 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5239 i != e; ++i) { 5240 const Value *V = *i; 5241 5242 // Skip empty types 5243 if (V->getType()->isEmptyTy()) 5244 continue; 5245 5246 SDValue ArgNode = getValue(V); 5247 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5248 5249 // Skip the first return-type Attribute to get to params. 5250 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5251 Args.push_back(Entry); 5252 5253 // If we have an explicit sret argument that is an Instruction, (i.e., it 5254 // might point to function-local memory), we can't meaningfully tail-call. 5255 if (Entry.isSRet && isa<Instruction>(V)) 5256 isTailCall = false; 5257 } 5258 5259 // Check if target-independent constraints permit a tail call here. 5260 // Target-dependent constraints are checked within TLI->LowerCallTo. 5261 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5262 isTailCall = false; 5263 5264 TargetLowering::CallLoweringInfo CLI(DAG); 5265 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5266 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5267 .setTailCall(isTailCall); 5268 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5269 5270 if (Result.first.getNode()) 5271 setValue(CS.getInstruction(), Result.first); 5272 } 5273 5274 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5275 /// value is equal or not-equal to zero. 5276 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5277 for (const User *U : V->users()) { 5278 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5279 if (IC->isEquality()) 5280 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5281 if (C->isNullValue()) 5282 continue; 5283 // Unknown instruction. 5284 return false; 5285 } 5286 return true; 5287 } 5288 5289 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5290 Type *LoadTy, 5291 SelectionDAGBuilder &Builder) { 5292 5293 // Check to see if this load can be trivially constant folded, e.g. if the 5294 // input is from a string literal. 5295 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5296 // Cast pointer to the type we really want to load. 5297 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5298 PointerType::getUnqual(LoadTy)); 5299 5300 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5301 const_cast<Constant *>(LoadInput), *Builder.DL)) 5302 return Builder.getValue(LoadCst); 5303 } 5304 5305 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5306 // still constant memory, the input chain can be the entry node. 5307 SDValue Root; 5308 bool ConstantMemory = false; 5309 5310 // Do not serialize (non-volatile) loads of constant memory with anything. 5311 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5312 Root = Builder.DAG.getEntryNode(); 5313 ConstantMemory = true; 5314 } else { 5315 // Do not serialize non-volatile loads against each other. 5316 Root = Builder.DAG.getRoot(); 5317 } 5318 5319 SDValue Ptr = Builder.getValue(PtrVal); 5320 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5321 Ptr, MachinePointerInfo(PtrVal), 5322 false /*volatile*/, 5323 false /*nontemporal*/, 5324 false /*isinvariant*/, 1 /* align=1 */); 5325 5326 if (!ConstantMemory) 5327 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5328 return LoadVal; 5329 } 5330 5331 /// processIntegerCallValue - Record the value for an instruction that 5332 /// produces an integer result, converting the type where necessary. 5333 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5334 SDValue Value, 5335 bool IsSigned) { 5336 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5337 I.getType(), true); 5338 if (IsSigned) 5339 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5340 else 5341 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5342 setValue(&I, Value); 5343 } 5344 5345 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5346 /// If so, return true and lower it, otherwise return false and it will be 5347 /// lowered like a normal call. 5348 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5349 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5350 if (I.getNumArgOperands() != 3) 5351 return false; 5352 5353 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5354 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5355 !I.getArgOperand(2)->getType()->isIntegerTy() || 5356 !I.getType()->isIntegerTy()) 5357 return false; 5358 5359 const Value *Size = I.getArgOperand(2); 5360 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5361 if (CSize && CSize->getZExtValue() == 0) { 5362 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5363 I.getType(), true); 5364 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5365 return true; 5366 } 5367 5368 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5369 std::pair<SDValue, SDValue> Res = 5370 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5371 getValue(LHS), getValue(RHS), getValue(Size), 5372 MachinePointerInfo(LHS), 5373 MachinePointerInfo(RHS)); 5374 if (Res.first.getNode()) { 5375 processIntegerCallValue(I, Res.first, true); 5376 PendingLoads.push_back(Res.second); 5377 return true; 5378 } 5379 5380 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5381 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5382 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5383 bool ActuallyDoIt = true; 5384 MVT LoadVT; 5385 Type *LoadTy; 5386 switch (CSize->getZExtValue()) { 5387 default: 5388 LoadVT = MVT::Other; 5389 LoadTy = nullptr; 5390 ActuallyDoIt = false; 5391 break; 5392 case 2: 5393 LoadVT = MVT::i16; 5394 LoadTy = Type::getInt16Ty(CSize->getContext()); 5395 break; 5396 case 4: 5397 LoadVT = MVT::i32; 5398 LoadTy = Type::getInt32Ty(CSize->getContext()); 5399 break; 5400 case 8: 5401 LoadVT = MVT::i64; 5402 LoadTy = Type::getInt64Ty(CSize->getContext()); 5403 break; 5404 /* 5405 case 16: 5406 LoadVT = MVT::v4i32; 5407 LoadTy = Type::getInt32Ty(CSize->getContext()); 5408 LoadTy = VectorType::get(LoadTy, 4); 5409 break; 5410 */ 5411 } 5412 5413 // This turns into unaligned loads. We only do this if the target natively 5414 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5415 // we'll only produce a small number of byte loads. 5416 5417 // Require that we can find a legal MVT, and only do this if the target 5418 // supports unaligned loads of that type. Expanding into byte loads would 5419 // bloat the code. 5420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5421 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5422 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5423 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5424 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5425 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5426 // TODO: Check alignment of src and dest ptrs. 5427 if (!TLI.isTypeLegal(LoadVT) || 5428 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5429 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5430 ActuallyDoIt = false; 5431 } 5432 5433 if (ActuallyDoIt) { 5434 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5435 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5436 5437 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5438 ISD::SETNE); 5439 processIntegerCallValue(I, Res, false); 5440 return true; 5441 } 5442 } 5443 5444 5445 return false; 5446 } 5447 5448 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5449 /// form. If so, return true and lower it, otherwise return false and it 5450 /// will be lowered like a normal call. 5451 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5452 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5453 if (I.getNumArgOperands() != 3) 5454 return false; 5455 5456 const Value *Src = I.getArgOperand(0); 5457 const Value *Char = I.getArgOperand(1); 5458 const Value *Length = I.getArgOperand(2); 5459 if (!Src->getType()->isPointerTy() || 5460 !Char->getType()->isIntegerTy() || 5461 !Length->getType()->isIntegerTy() || 5462 !I.getType()->isPointerTy()) 5463 return false; 5464 5465 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5466 std::pair<SDValue, SDValue> Res = 5467 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5468 getValue(Src), getValue(Char), getValue(Length), 5469 MachinePointerInfo(Src)); 5470 if (Res.first.getNode()) { 5471 setValue(&I, Res.first); 5472 PendingLoads.push_back(Res.second); 5473 return true; 5474 } 5475 5476 return false; 5477 } 5478 5479 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5480 /// optimized form. If so, return true and lower it, otherwise return false 5481 /// and it will be lowered like a normal call. 5482 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5483 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5484 if (I.getNumArgOperands() != 2) 5485 return false; 5486 5487 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5488 if (!Arg0->getType()->isPointerTy() || 5489 !Arg1->getType()->isPointerTy() || 5490 !I.getType()->isPointerTy()) 5491 return false; 5492 5493 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5494 std::pair<SDValue, SDValue> Res = 5495 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5496 getValue(Arg0), getValue(Arg1), 5497 MachinePointerInfo(Arg0), 5498 MachinePointerInfo(Arg1), isStpcpy); 5499 if (Res.first.getNode()) { 5500 setValue(&I, Res.first); 5501 DAG.setRoot(Res.second); 5502 return true; 5503 } 5504 5505 return false; 5506 } 5507 5508 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5509 /// If so, return true and lower it, otherwise return false and it will be 5510 /// lowered like a normal call. 5511 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5512 // Verify that the prototype makes sense. int strcmp(void*,void*) 5513 if (I.getNumArgOperands() != 2) 5514 return false; 5515 5516 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5517 if (!Arg0->getType()->isPointerTy() || 5518 !Arg1->getType()->isPointerTy() || 5519 !I.getType()->isIntegerTy()) 5520 return false; 5521 5522 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5523 std::pair<SDValue, SDValue> Res = 5524 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5525 getValue(Arg0), getValue(Arg1), 5526 MachinePointerInfo(Arg0), 5527 MachinePointerInfo(Arg1)); 5528 if (Res.first.getNode()) { 5529 processIntegerCallValue(I, Res.first, true); 5530 PendingLoads.push_back(Res.second); 5531 return true; 5532 } 5533 5534 return false; 5535 } 5536 5537 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5538 /// form. If so, return true and lower it, otherwise return false and it 5539 /// will be lowered like a normal call. 5540 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5541 // Verify that the prototype makes sense. size_t strlen(char *) 5542 if (I.getNumArgOperands() != 1) 5543 return false; 5544 5545 const Value *Arg0 = I.getArgOperand(0); 5546 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5547 return false; 5548 5549 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5550 std::pair<SDValue, SDValue> Res = 5551 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5552 getValue(Arg0), MachinePointerInfo(Arg0)); 5553 if (Res.first.getNode()) { 5554 processIntegerCallValue(I, Res.first, false); 5555 PendingLoads.push_back(Res.second); 5556 return true; 5557 } 5558 5559 return false; 5560 } 5561 5562 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5563 /// form. If so, return true and lower it, otherwise return false and it 5564 /// will be lowered like a normal call. 5565 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5566 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5567 if (I.getNumArgOperands() != 2) 5568 return false; 5569 5570 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5571 if (!Arg0->getType()->isPointerTy() || 5572 !Arg1->getType()->isIntegerTy() || 5573 !I.getType()->isIntegerTy()) 5574 return false; 5575 5576 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5577 std::pair<SDValue, SDValue> Res = 5578 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5579 getValue(Arg0), getValue(Arg1), 5580 MachinePointerInfo(Arg0)); 5581 if (Res.first.getNode()) { 5582 processIntegerCallValue(I, Res.first, false); 5583 PendingLoads.push_back(Res.second); 5584 return true; 5585 } 5586 5587 return false; 5588 } 5589 5590 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5591 /// operation (as expected), translate it to an SDNode with the specified opcode 5592 /// and return true. 5593 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5594 unsigned Opcode) { 5595 // Sanity check that it really is a unary floating-point call. 5596 if (I.getNumArgOperands() != 1 || 5597 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5598 I.getType() != I.getArgOperand(0)->getType() || 5599 !I.onlyReadsMemory()) 5600 return false; 5601 5602 SDValue Tmp = getValue(I.getArgOperand(0)); 5603 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5604 return true; 5605 } 5606 5607 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5608 /// operation (as expected), translate it to an SDNode with the specified opcode 5609 /// and return true. 5610 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5611 unsigned Opcode) { 5612 // Sanity check that it really is a binary floating-point call. 5613 if (I.getNumArgOperands() != 2 || 5614 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5615 I.getType() != I.getArgOperand(0)->getType() || 5616 I.getType() != I.getArgOperand(1)->getType() || 5617 !I.onlyReadsMemory()) 5618 return false; 5619 5620 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5621 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5622 EVT VT = Tmp0.getValueType(); 5623 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5624 return true; 5625 } 5626 5627 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5628 // Handle inline assembly differently. 5629 if (isa<InlineAsm>(I.getCalledValue())) { 5630 visitInlineAsm(&I); 5631 return; 5632 } 5633 5634 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5635 ComputeUsesVAFloatArgument(I, &MMI); 5636 5637 const char *RenameFn = nullptr; 5638 if (Function *F = I.getCalledFunction()) { 5639 if (F->isDeclaration()) { 5640 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5641 if (unsigned IID = II->getIntrinsicID(F)) { 5642 RenameFn = visitIntrinsicCall(I, IID); 5643 if (!RenameFn) 5644 return; 5645 } 5646 } 5647 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5648 RenameFn = visitIntrinsicCall(I, IID); 5649 if (!RenameFn) 5650 return; 5651 } 5652 } 5653 5654 // Check for well-known libc/libm calls. If the function is internal, it 5655 // can't be a library call. 5656 LibFunc::Func Func; 5657 if (!F->hasLocalLinkage() && F->hasName() && 5658 LibInfo->getLibFunc(F->getName(), Func) && 5659 LibInfo->hasOptimizedCodeGen(Func)) { 5660 switch (Func) { 5661 default: break; 5662 case LibFunc::copysign: 5663 case LibFunc::copysignf: 5664 case LibFunc::copysignl: 5665 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5666 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5667 I.getType() == I.getArgOperand(0)->getType() && 5668 I.getType() == I.getArgOperand(1)->getType() && 5669 I.onlyReadsMemory()) { 5670 SDValue LHS = getValue(I.getArgOperand(0)); 5671 SDValue RHS = getValue(I.getArgOperand(1)); 5672 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5673 LHS.getValueType(), LHS, RHS)); 5674 return; 5675 } 5676 break; 5677 case LibFunc::fabs: 5678 case LibFunc::fabsf: 5679 case LibFunc::fabsl: 5680 if (visitUnaryFloatCall(I, ISD::FABS)) 5681 return; 5682 break; 5683 case LibFunc::fmin: 5684 case LibFunc::fminf: 5685 case LibFunc::fminl: 5686 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5687 return; 5688 break; 5689 case LibFunc::fmax: 5690 case LibFunc::fmaxf: 5691 case LibFunc::fmaxl: 5692 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5693 return; 5694 break; 5695 case LibFunc::sin: 5696 case LibFunc::sinf: 5697 case LibFunc::sinl: 5698 if (visitUnaryFloatCall(I, ISD::FSIN)) 5699 return; 5700 break; 5701 case LibFunc::cos: 5702 case LibFunc::cosf: 5703 case LibFunc::cosl: 5704 if (visitUnaryFloatCall(I, ISD::FCOS)) 5705 return; 5706 break; 5707 case LibFunc::sqrt: 5708 case LibFunc::sqrtf: 5709 case LibFunc::sqrtl: 5710 case LibFunc::sqrt_finite: 5711 case LibFunc::sqrtf_finite: 5712 case LibFunc::sqrtl_finite: 5713 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5714 return; 5715 break; 5716 case LibFunc::floor: 5717 case LibFunc::floorf: 5718 case LibFunc::floorl: 5719 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5720 return; 5721 break; 5722 case LibFunc::nearbyint: 5723 case LibFunc::nearbyintf: 5724 case LibFunc::nearbyintl: 5725 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5726 return; 5727 break; 5728 case LibFunc::ceil: 5729 case LibFunc::ceilf: 5730 case LibFunc::ceill: 5731 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5732 return; 5733 break; 5734 case LibFunc::rint: 5735 case LibFunc::rintf: 5736 case LibFunc::rintl: 5737 if (visitUnaryFloatCall(I, ISD::FRINT)) 5738 return; 5739 break; 5740 case LibFunc::round: 5741 case LibFunc::roundf: 5742 case LibFunc::roundl: 5743 if (visitUnaryFloatCall(I, ISD::FROUND)) 5744 return; 5745 break; 5746 case LibFunc::trunc: 5747 case LibFunc::truncf: 5748 case LibFunc::truncl: 5749 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5750 return; 5751 break; 5752 case LibFunc::log2: 5753 case LibFunc::log2f: 5754 case LibFunc::log2l: 5755 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5756 return; 5757 break; 5758 case LibFunc::exp2: 5759 case LibFunc::exp2f: 5760 case LibFunc::exp2l: 5761 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5762 return; 5763 break; 5764 case LibFunc::memcmp: 5765 if (visitMemCmpCall(I)) 5766 return; 5767 break; 5768 case LibFunc::memchr: 5769 if (visitMemChrCall(I)) 5770 return; 5771 break; 5772 case LibFunc::strcpy: 5773 if (visitStrCpyCall(I, false)) 5774 return; 5775 break; 5776 case LibFunc::stpcpy: 5777 if (visitStrCpyCall(I, true)) 5778 return; 5779 break; 5780 case LibFunc::strcmp: 5781 if (visitStrCmpCall(I)) 5782 return; 5783 break; 5784 case LibFunc::strlen: 5785 if (visitStrLenCall(I)) 5786 return; 5787 break; 5788 case LibFunc::strnlen: 5789 if (visitStrNLenCall(I)) 5790 return; 5791 break; 5792 } 5793 } 5794 } 5795 5796 SDValue Callee; 5797 if (!RenameFn) 5798 Callee = getValue(I.getCalledValue()); 5799 else 5800 Callee = DAG.getExternalSymbol( 5801 RenameFn, 5802 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5803 5804 // Check if we can potentially perform a tail call. More detailed checking is 5805 // be done within LowerCallTo, after more information about the call is known. 5806 LowerCallTo(&I, Callee, I.isTailCall()); 5807 } 5808 5809 namespace { 5810 5811 /// AsmOperandInfo - This contains information for each constraint that we are 5812 /// lowering. 5813 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5814 public: 5815 /// CallOperand - If this is the result output operand or a clobber 5816 /// this is null, otherwise it is the incoming operand to the CallInst. 5817 /// This gets modified as the asm is processed. 5818 SDValue CallOperand; 5819 5820 /// AssignedRegs - If this is a register or register class operand, this 5821 /// contains the set of register corresponding to the operand. 5822 RegsForValue AssignedRegs; 5823 5824 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5825 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5826 } 5827 5828 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5829 /// corresponds to. If there is no Value* for this operand, it returns 5830 /// MVT::Other. 5831 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5832 const DataLayout &DL) const { 5833 if (!CallOperandVal) return MVT::Other; 5834 5835 if (isa<BasicBlock>(CallOperandVal)) 5836 return TLI.getPointerTy(DL); 5837 5838 llvm::Type *OpTy = CallOperandVal->getType(); 5839 5840 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5841 // If this is an indirect operand, the operand is a pointer to the 5842 // accessed type. 5843 if (isIndirect) { 5844 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5845 if (!PtrTy) 5846 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5847 OpTy = PtrTy->getElementType(); 5848 } 5849 5850 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5851 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5852 if (STy->getNumElements() == 1) 5853 OpTy = STy->getElementType(0); 5854 5855 // If OpTy is not a single value, it may be a struct/union that we 5856 // can tile with integers. 5857 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5858 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5859 switch (BitSize) { 5860 default: break; 5861 case 1: 5862 case 8: 5863 case 16: 5864 case 32: 5865 case 64: 5866 case 128: 5867 OpTy = IntegerType::get(Context, BitSize); 5868 break; 5869 } 5870 } 5871 5872 return TLI.getValueType(DL, OpTy, true); 5873 } 5874 }; 5875 5876 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5877 5878 } // end anonymous namespace 5879 5880 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5881 /// specified operand. We prefer to assign virtual registers, to allow the 5882 /// register allocator to handle the assignment process. However, if the asm 5883 /// uses features that we can't model on machineinstrs, we have SDISel do the 5884 /// allocation. This produces generally horrible, but correct, code. 5885 /// 5886 /// OpInfo describes the operand. 5887 /// 5888 static void GetRegistersForValue(SelectionDAG &DAG, 5889 const TargetLowering &TLI, 5890 SDLoc DL, 5891 SDISelAsmOperandInfo &OpInfo) { 5892 LLVMContext &Context = *DAG.getContext(); 5893 5894 MachineFunction &MF = DAG.getMachineFunction(); 5895 SmallVector<unsigned, 4> Regs; 5896 5897 // If this is a constraint for a single physreg, or a constraint for a 5898 // register class, find it. 5899 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5900 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5901 OpInfo.ConstraintCode, 5902 OpInfo.ConstraintVT); 5903 5904 unsigned NumRegs = 1; 5905 if (OpInfo.ConstraintVT != MVT::Other) { 5906 // If this is a FP input in an integer register (or visa versa) insert a bit 5907 // cast of the input value. More generally, handle any case where the input 5908 // value disagrees with the register class we plan to stick this in. 5909 if (OpInfo.Type == InlineAsm::isInput && 5910 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5911 // Try to convert to the first EVT that the reg class contains. If the 5912 // types are identical size, use a bitcast to convert (e.g. two differing 5913 // vector types). 5914 MVT RegVT = *PhysReg.second->vt_begin(); 5915 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5916 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5917 RegVT, OpInfo.CallOperand); 5918 OpInfo.ConstraintVT = RegVT; 5919 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5920 // If the input is a FP value and we want it in FP registers, do a 5921 // bitcast to the corresponding integer type. This turns an f64 value 5922 // into i64, which can be passed with two i32 values on a 32-bit 5923 // machine. 5924 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5925 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5926 RegVT, OpInfo.CallOperand); 5927 OpInfo.ConstraintVT = RegVT; 5928 } 5929 } 5930 5931 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5932 } 5933 5934 MVT RegVT; 5935 EVT ValueVT = OpInfo.ConstraintVT; 5936 5937 // If this is a constraint for a specific physical register, like {r17}, 5938 // assign it now. 5939 if (unsigned AssignedReg = PhysReg.first) { 5940 const TargetRegisterClass *RC = PhysReg.second; 5941 if (OpInfo.ConstraintVT == MVT::Other) 5942 ValueVT = *RC->vt_begin(); 5943 5944 // Get the actual register value type. This is important, because the user 5945 // may have asked for (e.g.) the AX register in i32 type. We need to 5946 // remember that AX is actually i16 to get the right extension. 5947 RegVT = *RC->vt_begin(); 5948 5949 // This is a explicit reference to a physical register. 5950 Regs.push_back(AssignedReg); 5951 5952 // If this is an expanded reference, add the rest of the regs to Regs. 5953 if (NumRegs != 1) { 5954 TargetRegisterClass::iterator I = RC->begin(); 5955 for (; *I != AssignedReg; ++I) 5956 assert(I != RC->end() && "Didn't find reg!"); 5957 5958 // Already added the first reg. 5959 --NumRegs; ++I; 5960 for (; NumRegs; --NumRegs, ++I) { 5961 assert(I != RC->end() && "Ran out of registers to allocate!"); 5962 Regs.push_back(*I); 5963 } 5964 } 5965 5966 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5967 return; 5968 } 5969 5970 // Otherwise, if this was a reference to an LLVM register class, create vregs 5971 // for this reference. 5972 if (const TargetRegisterClass *RC = PhysReg.second) { 5973 RegVT = *RC->vt_begin(); 5974 if (OpInfo.ConstraintVT == MVT::Other) 5975 ValueVT = RegVT; 5976 5977 // Create the appropriate number of virtual registers. 5978 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5979 for (; NumRegs; --NumRegs) 5980 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5981 5982 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5983 return; 5984 } 5985 5986 // Otherwise, we couldn't allocate enough registers for this. 5987 } 5988 5989 /// visitInlineAsm - Handle a call to an InlineAsm object. 5990 /// 5991 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5992 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5993 5994 /// ConstraintOperands - Information about all of the constraints. 5995 SDISelAsmOperandInfoVector ConstraintOperands; 5996 5997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5998 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5999 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6000 6001 bool hasMemory = false; 6002 6003 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6004 unsigned ResNo = 0; // ResNo - The result number of the next output. 6005 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6006 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6007 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6008 6009 MVT OpVT = MVT::Other; 6010 6011 // Compute the value type for each operand. 6012 switch (OpInfo.Type) { 6013 case InlineAsm::isOutput: 6014 // Indirect outputs just consume an argument. 6015 if (OpInfo.isIndirect) { 6016 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6017 break; 6018 } 6019 6020 // The return value of the call is this value. As such, there is no 6021 // corresponding argument. 6022 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6023 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6024 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6025 STy->getElementType(ResNo)); 6026 } else { 6027 assert(ResNo == 0 && "Asm only has one result!"); 6028 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6029 } 6030 ++ResNo; 6031 break; 6032 case InlineAsm::isInput: 6033 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6034 break; 6035 case InlineAsm::isClobber: 6036 // Nothing to do. 6037 break; 6038 } 6039 6040 // If this is an input or an indirect output, process the call argument. 6041 // BasicBlocks are labels, currently appearing only in asm's. 6042 if (OpInfo.CallOperandVal) { 6043 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6044 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6045 } else { 6046 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6047 } 6048 6049 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6050 DAG.getDataLayout()).getSimpleVT(); 6051 } 6052 6053 OpInfo.ConstraintVT = OpVT; 6054 6055 // Indirect operand accesses access memory. 6056 if (OpInfo.isIndirect) 6057 hasMemory = true; 6058 else { 6059 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6060 TargetLowering::ConstraintType 6061 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6062 if (CType == TargetLowering::C_Memory) { 6063 hasMemory = true; 6064 break; 6065 } 6066 } 6067 } 6068 } 6069 6070 SDValue Chain, Flag; 6071 6072 // We won't need to flush pending loads if this asm doesn't touch 6073 // memory and is nonvolatile. 6074 if (hasMemory || IA->hasSideEffects()) 6075 Chain = getRoot(); 6076 else 6077 Chain = DAG.getRoot(); 6078 6079 // Second pass over the constraints: compute which constraint option to use 6080 // and assign registers to constraints that want a specific physreg. 6081 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6082 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6083 6084 // If this is an output operand with a matching input operand, look up the 6085 // matching input. If their types mismatch, e.g. one is an integer, the 6086 // other is floating point, or their sizes are different, flag it as an 6087 // error. 6088 if (OpInfo.hasMatchingInput()) { 6089 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6090 6091 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6092 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6093 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6094 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6095 OpInfo.ConstraintVT); 6096 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6097 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6098 Input.ConstraintVT); 6099 if ((OpInfo.ConstraintVT.isInteger() != 6100 Input.ConstraintVT.isInteger()) || 6101 (MatchRC.second != InputRC.second)) { 6102 report_fatal_error("Unsupported asm: input constraint" 6103 " with a matching output constraint of" 6104 " incompatible type!"); 6105 } 6106 Input.ConstraintVT = OpInfo.ConstraintVT; 6107 } 6108 } 6109 6110 // Compute the constraint code and ConstraintType to use. 6111 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6112 6113 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6114 OpInfo.Type == InlineAsm::isClobber) 6115 continue; 6116 6117 // If this is a memory input, and if the operand is not indirect, do what we 6118 // need to to provide an address for the memory input. 6119 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6120 !OpInfo.isIndirect) { 6121 assert((OpInfo.isMultipleAlternative || 6122 (OpInfo.Type == InlineAsm::isInput)) && 6123 "Can only indirectify direct input operands!"); 6124 6125 // Memory operands really want the address of the value. If we don't have 6126 // an indirect input, put it in the constpool if we can, otherwise spill 6127 // it to a stack slot. 6128 // TODO: This isn't quite right. We need to handle these according to 6129 // the addressing mode that the constraint wants. Also, this may take 6130 // an additional register for the computation and we don't want that 6131 // either. 6132 6133 // If the operand is a float, integer, or vector constant, spill to a 6134 // constant pool entry to get its address. 6135 const Value *OpVal = OpInfo.CallOperandVal; 6136 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6137 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6138 OpInfo.CallOperand = DAG.getConstantPool( 6139 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6140 } else { 6141 // Otherwise, create a stack slot and emit a store to it before the 6142 // asm. 6143 Type *Ty = OpVal->getType(); 6144 auto &DL = DAG.getDataLayout(); 6145 uint64_t TySize = DL.getTypeAllocSize(Ty); 6146 unsigned Align = DL.getPrefTypeAlignment(Ty); 6147 MachineFunction &MF = DAG.getMachineFunction(); 6148 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6149 SDValue StackSlot = 6150 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6151 Chain = DAG.getStore( 6152 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6153 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6154 false, false, 0); 6155 OpInfo.CallOperand = StackSlot; 6156 } 6157 6158 // There is no longer a Value* corresponding to this operand. 6159 OpInfo.CallOperandVal = nullptr; 6160 6161 // It is now an indirect operand. 6162 OpInfo.isIndirect = true; 6163 } 6164 6165 // If this constraint is for a specific register, allocate it before 6166 // anything else. 6167 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6168 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6169 } 6170 6171 // Second pass - Loop over all of the operands, assigning virtual or physregs 6172 // to register class operands. 6173 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6174 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6175 6176 // C_Register operands have already been allocated, Other/Memory don't need 6177 // to be. 6178 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6179 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6180 } 6181 6182 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6183 std::vector<SDValue> AsmNodeOperands; 6184 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6185 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6186 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6187 6188 // If we have a !srcloc metadata node associated with it, we want to attach 6189 // this to the ultimately generated inline asm machineinstr. To do this, we 6190 // pass in the third operand as this (potentially null) inline asm MDNode. 6191 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6192 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6193 6194 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6195 // bits as operand 3. 6196 unsigned ExtraInfo = 0; 6197 if (IA->hasSideEffects()) 6198 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6199 if (IA->isAlignStack()) 6200 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6201 // Set the asm dialect. 6202 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6203 6204 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6205 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6206 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6207 6208 // Compute the constraint code and ConstraintType to use. 6209 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6210 6211 // Ideally, we would only check against memory constraints. However, the 6212 // meaning of an other constraint can be target-specific and we can't easily 6213 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6214 // for other constriants as well. 6215 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6216 OpInfo.ConstraintType == TargetLowering::C_Other) { 6217 if (OpInfo.Type == InlineAsm::isInput) 6218 ExtraInfo |= InlineAsm::Extra_MayLoad; 6219 else if (OpInfo.Type == InlineAsm::isOutput) 6220 ExtraInfo |= InlineAsm::Extra_MayStore; 6221 else if (OpInfo.Type == InlineAsm::isClobber) 6222 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6223 } 6224 } 6225 6226 AsmNodeOperands.push_back(DAG.getTargetConstant( 6227 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6228 6229 // Loop over all of the inputs, copying the operand values into the 6230 // appropriate registers and processing the output regs. 6231 RegsForValue RetValRegs; 6232 6233 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6234 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6235 6236 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6237 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6238 6239 switch (OpInfo.Type) { 6240 case InlineAsm::isOutput: { 6241 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6242 OpInfo.ConstraintType != TargetLowering::C_Register) { 6243 // Memory output, or 'other' output (e.g. 'X' constraint). 6244 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6245 6246 unsigned ConstraintID = 6247 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6248 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6249 "Failed to convert memory constraint code to constraint id."); 6250 6251 // Add information to the INLINEASM node to know about this output. 6252 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6253 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6254 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6255 MVT::i32)); 6256 AsmNodeOperands.push_back(OpInfo.CallOperand); 6257 break; 6258 } 6259 6260 // Otherwise, this is a register or register class output. 6261 6262 // Copy the output from the appropriate register. Find a register that 6263 // we can use. 6264 if (OpInfo.AssignedRegs.Regs.empty()) { 6265 LLVMContext &Ctx = *DAG.getContext(); 6266 Ctx.emitError(CS.getInstruction(), 6267 "couldn't allocate output register for constraint '" + 6268 Twine(OpInfo.ConstraintCode) + "'"); 6269 return; 6270 } 6271 6272 // If this is an indirect operand, store through the pointer after the 6273 // asm. 6274 if (OpInfo.isIndirect) { 6275 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6276 OpInfo.CallOperandVal)); 6277 } else { 6278 // This is the result value of the call. 6279 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6280 // Concatenate this output onto the outputs list. 6281 RetValRegs.append(OpInfo.AssignedRegs); 6282 } 6283 6284 // Add information to the INLINEASM node to know that this register is 6285 // set. 6286 OpInfo.AssignedRegs 6287 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6288 ? InlineAsm::Kind_RegDefEarlyClobber 6289 : InlineAsm::Kind_RegDef, 6290 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6291 break; 6292 } 6293 case InlineAsm::isInput: { 6294 SDValue InOperandVal = OpInfo.CallOperand; 6295 6296 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6297 // If this is required to match an output register we have already set, 6298 // just use its register. 6299 unsigned OperandNo = OpInfo.getMatchedOperand(); 6300 6301 // Scan until we find the definition we already emitted of this operand. 6302 // When we find it, create a RegsForValue operand. 6303 unsigned CurOp = InlineAsm::Op_FirstOperand; 6304 for (; OperandNo; --OperandNo) { 6305 // Advance to the next operand. 6306 unsigned OpFlag = 6307 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6308 assert((InlineAsm::isRegDefKind(OpFlag) || 6309 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6310 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6311 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6312 } 6313 6314 unsigned OpFlag = 6315 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6316 if (InlineAsm::isRegDefKind(OpFlag) || 6317 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6318 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6319 if (OpInfo.isIndirect) { 6320 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6321 LLVMContext &Ctx = *DAG.getContext(); 6322 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6323 " don't know how to handle tied " 6324 "indirect register inputs"); 6325 return; 6326 } 6327 6328 RegsForValue MatchedRegs; 6329 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6330 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6331 MatchedRegs.RegVTs.push_back(RegVT); 6332 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6333 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6334 i != e; ++i) { 6335 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6336 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6337 else { 6338 LLVMContext &Ctx = *DAG.getContext(); 6339 Ctx.emitError(CS.getInstruction(), 6340 "inline asm error: This value" 6341 " type register class is not natively supported!"); 6342 return; 6343 } 6344 } 6345 SDLoc dl = getCurSDLoc(); 6346 // Use the produced MatchedRegs object to 6347 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6348 Chain, &Flag, CS.getInstruction()); 6349 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6350 true, OpInfo.getMatchedOperand(), dl, 6351 DAG, AsmNodeOperands); 6352 break; 6353 } 6354 6355 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6356 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6357 "Unexpected number of operands"); 6358 // Add information to the INLINEASM node to know about this input. 6359 // See InlineAsm.h isUseOperandTiedToDef. 6360 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6361 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6362 OpInfo.getMatchedOperand()); 6363 AsmNodeOperands.push_back(DAG.getTargetConstant( 6364 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6365 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6366 break; 6367 } 6368 6369 // Treat indirect 'X' constraint as memory. 6370 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6371 OpInfo.isIndirect) 6372 OpInfo.ConstraintType = TargetLowering::C_Memory; 6373 6374 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6375 std::vector<SDValue> Ops; 6376 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6377 Ops, DAG); 6378 if (Ops.empty()) { 6379 LLVMContext &Ctx = *DAG.getContext(); 6380 Ctx.emitError(CS.getInstruction(), 6381 "invalid operand for inline asm constraint '" + 6382 Twine(OpInfo.ConstraintCode) + "'"); 6383 return; 6384 } 6385 6386 // Add information to the INLINEASM node to know about this input. 6387 unsigned ResOpType = 6388 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6389 AsmNodeOperands.push_back(DAG.getTargetConstant( 6390 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6391 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6392 break; 6393 } 6394 6395 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6396 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6397 assert(InOperandVal.getValueType() == 6398 TLI.getPointerTy(DAG.getDataLayout()) && 6399 "Memory operands expect pointer values"); 6400 6401 unsigned ConstraintID = 6402 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6403 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6404 "Failed to convert memory constraint code to constraint id."); 6405 6406 // Add information to the INLINEASM node to know about this input. 6407 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6408 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6409 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6410 getCurSDLoc(), 6411 MVT::i32)); 6412 AsmNodeOperands.push_back(InOperandVal); 6413 break; 6414 } 6415 6416 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6417 OpInfo.ConstraintType == TargetLowering::C_Register) && 6418 "Unknown constraint type!"); 6419 6420 // TODO: Support this. 6421 if (OpInfo.isIndirect) { 6422 LLVMContext &Ctx = *DAG.getContext(); 6423 Ctx.emitError(CS.getInstruction(), 6424 "Don't know how to handle indirect register inputs yet " 6425 "for constraint '" + 6426 Twine(OpInfo.ConstraintCode) + "'"); 6427 return; 6428 } 6429 6430 // Copy the input into the appropriate registers. 6431 if (OpInfo.AssignedRegs.Regs.empty()) { 6432 LLVMContext &Ctx = *DAG.getContext(); 6433 Ctx.emitError(CS.getInstruction(), 6434 "couldn't allocate input reg for constraint '" + 6435 Twine(OpInfo.ConstraintCode) + "'"); 6436 return; 6437 } 6438 6439 SDLoc dl = getCurSDLoc(); 6440 6441 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6442 Chain, &Flag, CS.getInstruction()); 6443 6444 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6445 dl, DAG, AsmNodeOperands); 6446 break; 6447 } 6448 case InlineAsm::isClobber: { 6449 // Add the clobbered value to the operand list, so that the register 6450 // allocator is aware that the physreg got clobbered. 6451 if (!OpInfo.AssignedRegs.Regs.empty()) 6452 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6453 false, 0, getCurSDLoc(), DAG, 6454 AsmNodeOperands); 6455 break; 6456 } 6457 } 6458 } 6459 6460 // Finish up input operands. Set the input chain and add the flag last. 6461 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6462 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6463 6464 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6465 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6466 Flag = Chain.getValue(1); 6467 6468 // If this asm returns a register value, copy the result from that register 6469 // and set it as the value of the call. 6470 if (!RetValRegs.Regs.empty()) { 6471 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6472 Chain, &Flag, CS.getInstruction()); 6473 6474 // FIXME: Why don't we do this for inline asms with MRVs? 6475 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6476 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6477 6478 // If any of the results of the inline asm is a vector, it may have the 6479 // wrong width/num elts. This can happen for register classes that can 6480 // contain multiple different value types. The preg or vreg allocated may 6481 // not have the same VT as was expected. Convert it to the right type 6482 // with bit_convert. 6483 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6484 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6485 ResultType, Val); 6486 6487 } else if (ResultType != Val.getValueType() && 6488 ResultType.isInteger() && Val.getValueType().isInteger()) { 6489 // If a result value was tied to an input value, the computed result may 6490 // have a wider width than the expected result. Extract the relevant 6491 // portion. 6492 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6493 } 6494 6495 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6496 } 6497 6498 setValue(CS.getInstruction(), Val); 6499 // Don't need to use this as a chain in this case. 6500 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6501 return; 6502 } 6503 6504 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6505 6506 // Process indirect outputs, first output all of the flagged copies out of 6507 // physregs. 6508 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6509 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6510 const Value *Ptr = IndirectStoresToEmit[i].second; 6511 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6512 Chain, &Flag, IA); 6513 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6514 } 6515 6516 // Emit the non-flagged stores from the physregs. 6517 SmallVector<SDValue, 8> OutChains; 6518 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6519 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6520 StoresToEmit[i].first, 6521 getValue(StoresToEmit[i].second), 6522 MachinePointerInfo(StoresToEmit[i].second), 6523 false, false, 0); 6524 OutChains.push_back(Val); 6525 } 6526 6527 if (!OutChains.empty()) 6528 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6529 6530 DAG.setRoot(Chain); 6531 } 6532 6533 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6534 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6535 MVT::Other, getRoot(), 6536 getValue(I.getArgOperand(0)), 6537 DAG.getSrcValue(I.getArgOperand(0)))); 6538 } 6539 6540 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6542 const DataLayout &DL = DAG.getDataLayout(); 6543 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6544 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6545 DAG.getSrcValue(I.getOperand(0)), 6546 DL.getABITypeAlignment(I.getType())); 6547 setValue(&I, V); 6548 DAG.setRoot(V.getValue(1)); 6549 } 6550 6551 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6552 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6553 MVT::Other, getRoot(), 6554 getValue(I.getArgOperand(0)), 6555 DAG.getSrcValue(I.getArgOperand(0)))); 6556 } 6557 6558 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6559 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6560 MVT::Other, getRoot(), 6561 getValue(I.getArgOperand(0)), 6562 getValue(I.getArgOperand(1)), 6563 DAG.getSrcValue(I.getArgOperand(0)), 6564 DAG.getSrcValue(I.getArgOperand(1)))); 6565 } 6566 6567 /// \brief Lower an argument list according to the target calling convention. 6568 /// 6569 /// \return A tuple of <return-value, token-chain> 6570 /// 6571 /// This is a helper for lowering intrinsics that follow a target calling 6572 /// convention or require stack pointer adjustment. Only a subset of the 6573 /// intrinsic's operands need to participate in the calling convention. 6574 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6575 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6576 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6577 TargetLowering::ArgListTy Args; 6578 Args.reserve(NumArgs); 6579 6580 // Populate the argument list. 6581 // Attributes for args start at offset 1, after the return attribute. 6582 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6583 ArgI != ArgE; ++ArgI) { 6584 const Value *V = CS->getOperand(ArgI); 6585 6586 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6587 6588 TargetLowering::ArgListEntry Entry; 6589 Entry.Node = getValue(V); 6590 Entry.Ty = V->getType(); 6591 Entry.setAttributes(&CS, AttrI); 6592 Args.push_back(Entry); 6593 } 6594 6595 TargetLowering::CallLoweringInfo CLI(DAG); 6596 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6597 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6598 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6599 6600 return lowerInvokable(CLI, EHPadBB); 6601 } 6602 6603 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6604 /// or patchpoint target node's operand list. 6605 /// 6606 /// Constants are converted to TargetConstants purely as an optimization to 6607 /// avoid constant materialization and register allocation. 6608 /// 6609 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6610 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6611 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6612 /// address materialization and register allocation, but may also be required 6613 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6614 /// alloca in the entry block, then the runtime may assume that the alloca's 6615 /// StackMap location can be read immediately after compilation and that the 6616 /// location is valid at any point during execution (this is similar to the 6617 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6618 /// only available in a register, then the runtime would need to trap when 6619 /// execution reaches the StackMap in order to read the alloca's location. 6620 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6621 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6622 SelectionDAGBuilder &Builder) { 6623 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6624 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6625 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6626 Ops.push_back( 6627 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6628 Ops.push_back( 6629 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6630 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6631 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6632 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6633 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6634 } else 6635 Ops.push_back(OpVal); 6636 } 6637 } 6638 6639 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6640 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6641 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6642 // [live variables...]) 6643 6644 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6645 6646 SDValue Chain, InFlag, Callee, NullPtr; 6647 SmallVector<SDValue, 32> Ops; 6648 6649 SDLoc DL = getCurSDLoc(); 6650 Callee = getValue(CI.getCalledValue()); 6651 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6652 6653 // The stackmap intrinsic only records the live variables (the arguemnts 6654 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6655 // intrinsic, this won't be lowered to a function call. This means we don't 6656 // have to worry about calling conventions and target specific lowering code. 6657 // Instead we perform the call lowering right here. 6658 // 6659 // chain, flag = CALLSEQ_START(chain, 0) 6660 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6661 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6662 // 6663 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6664 InFlag = Chain.getValue(1); 6665 6666 // Add the <id> and <numBytes> constants. 6667 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6668 Ops.push_back(DAG.getTargetConstant( 6669 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6670 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6671 Ops.push_back(DAG.getTargetConstant( 6672 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6673 MVT::i32)); 6674 6675 // Push live variables for the stack map. 6676 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6677 6678 // We are not pushing any register mask info here on the operands list, 6679 // because the stackmap doesn't clobber anything. 6680 6681 // Push the chain and the glue flag. 6682 Ops.push_back(Chain); 6683 Ops.push_back(InFlag); 6684 6685 // Create the STACKMAP node. 6686 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6687 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6688 Chain = SDValue(SM, 0); 6689 InFlag = Chain.getValue(1); 6690 6691 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6692 6693 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6694 6695 // Set the root to the target-lowered call chain. 6696 DAG.setRoot(Chain); 6697 6698 // Inform the Frame Information that we have a stackmap in this function. 6699 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6700 } 6701 6702 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6703 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6704 const BasicBlock *EHPadBB) { 6705 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6706 // i32 <numBytes>, 6707 // i8* <target>, 6708 // i32 <numArgs>, 6709 // [Args...], 6710 // [live variables...]) 6711 6712 CallingConv::ID CC = CS.getCallingConv(); 6713 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6714 bool HasDef = !CS->getType()->isVoidTy(); 6715 SDLoc dl = getCurSDLoc(); 6716 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6717 6718 // Handle immediate and symbolic callees. 6719 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6720 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6721 /*isTarget=*/true); 6722 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6723 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6724 SDLoc(SymbolicCallee), 6725 SymbolicCallee->getValueType(0)); 6726 6727 // Get the real number of arguments participating in the call <numArgs> 6728 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6729 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6730 6731 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6732 // Intrinsics include all meta-operands up to but not including CC. 6733 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6734 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6735 "Not enough arguments provided to the patchpoint intrinsic"); 6736 6737 // For AnyRegCC the arguments are lowered later on manually. 6738 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6739 Type *ReturnTy = 6740 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6741 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6742 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6743 6744 SDNode *CallEnd = Result.second.getNode(); 6745 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6746 CallEnd = CallEnd->getOperand(0).getNode(); 6747 6748 /// Get a call instruction from the call sequence chain. 6749 /// Tail calls are not allowed. 6750 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6751 "Expected a callseq node."); 6752 SDNode *Call = CallEnd->getOperand(0).getNode(); 6753 bool HasGlue = Call->getGluedNode(); 6754 6755 // Replace the target specific call node with the patchable intrinsic. 6756 SmallVector<SDValue, 8> Ops; 6757 6758 // Add the <id> and <numBytes> constants. 6759 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6760 Ops.push_back(DAG.getTargetConstant( 6761 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6762 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6763 Ops.push_back(DAG.getTargetConstant( 6764 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6765 MVT::i32)); 6766 6767 // Add the callee. 6768 Ops.push_back(Callee); 6769 6770 // Adjust <numArgs> to account for any arguments that have been passed on the 6771 // stack instead. 6772 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6773 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6774 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6775 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6776 6777 // Add the calling convention 6778 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6779 6780 // Add the arguments we omitted previously. The register allocator should 6781 // place these in any free register. 6782 if (IsAnyRegCC) 6783 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6784 Ops.push_back(getValue(CS.getArgument(i))); 6785 6786 // Push the arguments from the call instruction up to the register mask. 6787 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6788 Ops.append(Call->op_begin() + 2, e); 6789 6790 // Push live variables for the stack map. 6791 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6792 6793 // Push the register mask info. 6794 if (HasGlue) 6795 Ops.push_back(*(Call->op_end()-2)); 6796 else 6797 Ops.push_back(*(Call->op_end()-1)); 6798 6799 // Push the chain (this is originally the first operand of the call, but 6800 // becomes now the last or second to last operand). 6801 Ops.push_back(*(Call->op_begin())); 6802 6803 // Push the glue flag (last operand). 6804 if (HasGlue) 6805 Ops.push_back(*(Call->op_end()-1)); 6806 6807 SDVTList NodeTys; 6808 if (IsAnyRegCC && HasDef) { 6809 // Create the return types based on the intrinsic definition 6810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6811 SmallVector<EVT, 3> ValueVTs; 6812 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6813 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6814 6815 // There is always a chain and a glue type at the end 6816 ValueVTs.push_back(MVT::Other); 6817 ValueVTs.push_back(MVT::Glue); 6818 NodeTys = DAG.getVTList(ValueVTs); 6819 } else 6820 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6821 6822 // Replace the target specific call node with a PATCHPOINT node. 6823 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6824 dl, NodeTys, Ops); 6825 6826 // Update the NodeMap. 6827 if (HasDef) { 6828 if (IsAnyRegCC) 6829 setValue(CS.getInstruction(), SDValue(MN, 0)); 6830 else 6831 setValue(CS.getInstruction(), Result.first); 6832 } 6833 6834 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6835 // call sequence. Furthermore the location of the chain and glue can change 6836 // when the AnyReg calling convention is used and the intrinsic returns a 6837 // value. 6838 if (IsAnyRegCC && HasDef) { 6839 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6840 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6841 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6842 } else 6843 DAG.ReplaceAllUsesWith(Call, MN); 6844 DAG.DeleteNode(Call); 6845 6846 // Inform the Frame Information that we have a patchpoint in this function. 6847 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6848 } 6849 6850 /// Returns an AttributeSet representing the attributes applied to the return 6851 /// value of the given call. 6852 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6853 SmallVector<Attribute::AttrKind, 2> Attrs; 6854 if (CLI.RetSExt) 6855 Attrs.push_back(Attribute::SExt); 6856 if (CLI.RetZExt) 6857 Attrs.push_back(Attribute::ZExt); 6858 if (CLI.IsInReg) 6859 Attrs.push_back(Attribute::InReg); 6860 6861 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6862 Attrs); 6863 } 6864 6865 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6866 /// implementation, which just calls LowerCall. 6867 /// FIXME: When all targets are 6868 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6869 std::pair<SDValue, SDValue> 6870 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6871 // Handle the incoming return values from the call. 6872 CLI.Ins.clear(); 6873 Type *OrigRetTy = CLI.RetTy; 6874 SmallVector<EVT, 4> RetTys; 6875 SmallVector<uint64_t, 4> Offsets; 6876 auto &DL = CLI.DAG.getDataLayout(); 6877 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6878 6879 SmallVector<ISD::OutputArg, 4> Outs; 6880 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6881 6882 bool CanLowerReturn = 6883 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6884 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6885 6886 SDValue DemoteStackSlot; 6887 int DemoteStackIdx = -100; 6888 if (!CanLowerReturn) { 6889 // FIXME: equivalent assert? 6890 // assert(!CS.hasInAllocaArgument() && 6891 // "sret demotion is incompatible with inalloca"); 6892 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6893 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6894 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6895 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6896 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6897 6898 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6899 ArgListEntry Entry; 6900 Entry.Node = DemoteStackSlot; 6901 Entry.Ty = StackSlotPtrType; 6902 Entry.isSExt = false; 6903 Entry.isZExt = false; 6904 Entry.isInReg = false; 6905 Entry.isSRet = true; 6906 Entry.isNest = false; 6907 Entry.isByVal = false; 6908 Entry.isReturned = false; 6909 Entry.Alignment = Align; 6910 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6911 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6912 6913 // sret demotion isn't compatible with tail-calls, since the sret argument 6914 // points into the callers stack frame. 6915 CLI.IsTailCall = false; 6916 } else { 6917 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6918 EVT VT = RetTys[I]; 6919 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6920 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6921 for (unsigned i = 0; i != NumRegs; ++i) { 6922 ISD::InputArg MyFlags; 6923 MyFlags.VT = RegisterVT; 6924 MyFlags.ArgVT = VT; 6925 MyFlags.Used = CLI.IsReturnValueUsed; 6926 if (CLI.RetSExt) 6927 MyFlags.Flags.setSExt(); 6928 if (CLI.RetZExt) 6929 MyFlags.Flags.setZExt(); 6930 if (CLI.IsInReg) 6931 MyFlags.Flags.setInReg(); 6932 CLI.Ins.push_back(MyFlags); 6933 } 6934 } 6935 } 6936 6937 // Handle all of the outgoing arguments. 6938 CLI.Outs.clear(); 6939 CLI.OutVals.clear(); 6940 ArgListTy &Args = CLI.getArgs(); 6941 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6942 SmallVector<EVT, 4> ValueVTs; 6943 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6944 Type *FinalType = Args[i].Ty; 6945 if (Args[i].isByVal) 6946 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6947 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6948 FinalType, CLI.CallConv, CLI.IsVarArg); 6949 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6950 ++Value) { 6951 EVT VT = ValueVTs[Value]; 6952 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6953 SDValue Op = SDValue(Args[i].Node.getNode(), 6954 Args[i].Node.getResNo() + Value); 6955 ISD::ArgFlagsTy Flags; 6956 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6957 6958 if (Args[i].isZExt) 6959 Flags.setZExt(); 6960 if (Args[i].isSExt) 6961 Flags.setSExt(); 6962 if (Args[i].isInReg) 6963 Flags.setInReg(); 6964 if (Args[i].isSRet) 6965 Flags.setSRet(); 6966 if (Args[i].isByVal) 6967 Flags.setByVal(); 6968 if (Args[i].isInAlloca) { 6969 Flags.setInAlloca(); 6970 // Set the byval flag for CCAssignFn callbacks that don't know about 6971 // inalloca. This way we can know how many bytes we should've allocated 6972 // and how many bytes a callee cleanup function will pop. If we port 6973 // inalloca to more targets, we'll have to add custom inalloca handling 6974 // in the various CC lowering callbacks. 6975 Flags.setByVal(); 6976 } 6977 if (Args[i].isByVal || Args[i].isInAlloca) { 6978 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6979 Type *ElementTy = Ty->getElementType(); 6980 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6981 // For ByVal, alignment should come from FE. BE will guess if this 6982 // info is not there but there are cases it cannot get right. 6983 unsigned FrameAlign; 6984 if (Args[i].Alignment) 6985 FrameAlign = Args[i].Alignment; 6986 else 6987 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6988 Flags.setByValAlign(FrameAlign); 6989 } 6990 if (Args[i].isNest) 6991 Flags.setNest(); 6992 if (NeedsRegBlock) 6993 Flags.setInConsecutiveRegs(); 6994 Flags.setOrigAlign(OriginalAlignment); 6995 6996 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6997 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6998 SmallVector<SDValue, 4> Parts(NumParts); 6999 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7000 7001 if (Args[i].isSExt) 7002 ExtendKind = ISD::SIGN_EXTEND; 7003 else if (Args[i].isZExt) 7004 ExtendKind = ISD::ZERO_EXTEND; 7005 7006 // Conservatively only handle 'returned' on non-vectors for now 7007 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7008 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7009 "unexpected use of 'returned'"); 7010 // Before passing 'returned' to the target lowering code, ensure that 7011 // either the register MVT and the actual EVT are the same size or that 7012 // the return value and argument are extended in the same way; in these 7013 // cases it's safe to pass the argument register value unchanged as the 7014 // return register value (although it's at the target's option whether 7015 // to do so) 7016 // TODO: allow code generation to take advantage of partially preserved 7017 // registers rather than clobbering the entire register when the 7018 // parameter extension method is not compatible with the return 7019 // extension method 7020 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7021 (ExtendKind != ISD::ANY_EXTEND && 7022 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7023 Flags.setReturned(); 7024 } 7025 7026 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7027 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7028 7029 for (unsigned j = 0; j != NumParts; ++j) { 7030 // if it isn't first piece, alignment must be 1 7031 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7032 i < CLI.NumFixedArgs, 7033 i, j*Parts[j].getValueType().getStoreSize()); 7034 if (NumParts > 1 && j == 0) 7035 MyFlags.Flags.setSplit(); 7036 else if (j != 0) 7037 MyFlags.Flags.setOrigAlign(1); 7038 7039 CLI.Outs.push_back(MyFlags); 7040 CLI.OutVals.push_back(Parts[j]); 7041 } 7042 7043 if (NeedsRegBlock && Value == NumValues - 1) 7044 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7045 } 7046 } 7047 7048 SmallVector<SDValue, 4> InVals; 7049 CLI.Chain = LowerCall(CLI, InVals); 7050 7051 // Verify that the target's LowerCall behaved as expected. 7052 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7053 "LowerCall didn't return a valid chain!"); 7054 assert((!CLI.IsTailCall || InVals.empty()) && 7055 "LowerCall emitted a return value for a tail call!"); 7056 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7057 "LowerCall didn't emit the correct number of values!"); 7058 7059 // For a tail call, the return value is merely live-out and there aren't 7060 // any nodes in the DAG representing it. Return a special value to 7061 // indicate that a tail call has been emitted and no more Instructions 7062 // should be processed in the current block. 7063 if (CLI.IsTailCall) { 7064 CLI.DAG.setRoot(CLI.Chain); 7065 return std::make_pair(SDValue(), SDValue()); 7066 } 7067 7068 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7069 assert(InVals[i].getNode() && 7070 "LowerCall emitted a null value!"); 7071 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7072 "LowerCall emitted a value with the wrong type!"); 7073 }); 7074 7075 SmallVector<SDValue, 4> ReturnValues; 7076 if (!CanLowerReturn) { 7077 // The instruction result is the result of loading from the 7078 // hidden sret parameter. 7079 SmallVector<EVT, 1> PVTs; 7080 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7081 7082 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7083 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7084 EVT PtrVT = PVTs[0]; 7085 7086 unsigned NumValues = RetTys.size(); 7087 ReturnValues.resize(NumValues); 7088 SmallVector<SDValue, 4> Chains(NumValues); 7089 7090 for (unsigned i = 0; i < NumValues; ++i) { 7091 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7092 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7093 PtrVT)); 7094 SDValue L = CLI.DAG.getLoad( 7095 RetTys[i], CLI.DL, CLI.Chain, Add, 7096 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7097 DemoteStackIdx, Offsets[i]), 7098 false, false, false, 1); 7099 ReturnValues[i] = L; 7100 Chains[i] = L.getValue(1); 7101 } 7102 7103 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7104 } else { 7105 // Collect the legal value parts into potentially illegal values 7106 // that correspond to the original function's return values. 7107 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7108 if (CLI.RetSExt) 7109 AssertOp = ISD::AssertSext; 7110 else if (CLI.RetZExt) 7111 AssertOp = ISD::AssertZext; 7112 unsigned CurReg = 0; 7113 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7114 EVT VT = RetTys[I]; 7115 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7116 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7117 7118 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7119 NumRegs, RegisterVT, VT, nullptr, 7120 AssertOp)); 7121 CurReg += NumRegs; 7122 } 7123 7124 // For a function returning void, there is no return value. We can't create 7125 // such a node, so we just return a null return value in that case. In 7126 // that case, nothing will actually look at the value. 7127 if (ReturnValues.empty()) 7128 return std::make_pair(SDValue(), CLI.Chain); 7129 } 7130 7131 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7132 CLI.DAG.getVTList(RetTys), ReturnValues); 7133 return std::make_pair(Res, CLI.Chain); 7134 } 7135 7136 void TargetLowering::LowerOperationWrapper(SDNode *N, 7137 SmallVectorImpl<SDValue> &Results, 7138 SelectionDAG &DAG) const { 7139 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7140 if (Res.getNode()) 7141 Results.push_back(Res); 7142 } 7143 7144 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7145 llvm_unreachable("LowerOperation not implemented for this target!"); 7146 } 7147 7148 void 7149 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7150 SDValue Op = getNonRegisterValue(V); 7151 assert((Op.getOpcode() != ISD::CopyFromReg || 7152 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7153 "Copy from a reg to the same reg!"); 7154 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7155 7156 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7157 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7158 V->getType()); 7159 SDValue Chain = DAG.getEntryNode(); 7160 7161 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7162 FuncInfo.PreferredExtendType.end()) 7163 ? ISD::ANY_EXTEND 7164 : FuncInfo.PreferredExtendType[V]; 7165 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7166 PendingExports.push_back(Chain); 7167 } 7168 7169 #include "llvm/CodeGen/SelectionDAGISel.h" 7170 7171 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7172 /// entry block, return true. This includes arguments used by switches, since 7173 /// the switch may expand into multiple basic blocks. 7174 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7175 // With FastISel active, we may be splitting blocks, so force creation 7176 // of virtual registers for all non-dead arguments. 7177 if (FastISel) 7178 return A->use_empty(); 7179 7180 const BasicBlock *Entry = A->getParent()->begin(); 7181 for (const User *U : A->users()) 7182 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7183 return false; // Use not in entry block. 7184 7185 return true; 7186 } 7187 7188 void SelectionDAGISel::LowerArguments(const Function &F) { 7189 SelectionDAG &DAG = SDB->DAG; 7190 SDLoc dl = SDB->getCurSDLoc(); 7191 const DataLayout &DL = DAG.getDataLayout(); 7192 SmallVector<ISD::InputArg, 16> Ins; 7193 7194 if (!FuncInfo->CanLowerReturn) { 7195 // Put in an sret pointer parameter before all the other parameters. 7196 SmallVector<EVT, 1> ValueVTs; 7197 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7198 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7199 7200 // NOTE: Assuming that a pointer will never break down to more than one VT 7201 // or one register. 7202 ISD::ArgFlagsTy Flags; 7203 Flags.setSRet(); 7204 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7205 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7206 ISD::InputArg::NoArgIndex, 0); 7207 Ins.push_back(RetArg); 7208 } 7209 7210 // Set up the incoming argument description vector. 7211 unsigned Idx = 1; 7212 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7213 I != E; ++I, ++Idx) { 7214 SmallVector<EVT, 4> ValueVTs; 7215 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7216 bool isArgValueUsed = !I->use_empty(); 7217 unsigned PartBase = 0; 7218 Type *FinalType = I->getType(); 7219 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7220 FinalType = cast<PointerType>(FinalType)->getElementType(); 7221 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7222 FinalType, F.getCallingConv(), F.isVarArg()); 7223 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7224 Value != NumValues; ++Value) { 7225 EVT VT = ValueVTs[Value]; 7226 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7227 ISD::ArgFlagsTy Flags; 7228 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7229 7230 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7231 Flags.setZExt(); 7232 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7233 Flags.setSExt(); 7234 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7235 Flags.setInReg(); 7236 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7237 Flags.setSRet(); 7238 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7239 Flags.setByVal(); 7240 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7241 Flags.setInAlloca(); 7242 // Set the byval flag for CCAssignFn callbacks that don't know about 7243 // inalloca. This way we can know how many bytes we should've allocated 7244 // and how many bytes a callee cleanup function will pop. If we port 7245 // inalloca to more targets, we'll have to add custom inalloca handling 7246 // in the various CC lowering callbacks. 7247 Flags.setByVal(); 7248 } 7249 if (Flags.isByVal() || Flags.isInAlloca()) { 7250 PointerType *Ty = cast<PointerType>(I->getType()); 7251 Type *ElementTy = Ty->getElementType(); 7252 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7253 // For ByVal, alignment should be passed from FE. BE will guess if 7254 // this info is not there but there are cases it cannot get right. 7255 unsigned FrameAlign; 7256 if (F.getParamAlignment(Idx)) 7257 FrameAlign = F.getParamAlignment(Idx); 7258 else 7259 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7260 Flags.setByValAlign(FrameAlign); 7261 } 7262 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7263 Flags.setNest(); 7264 if (NeedsRegBlock) 7265 Flags.setInConsecutiveRegs(); 7266 Flags.setOrigAlign(OriginalAlignment); 7267 7268 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7269 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7270 for (unsigned i = 0; i != NumRegs; ++i) { 7271 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7272 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7273 if (NumRegs > 1 && i == 0) 7274 MyFlags.Flags.setSplit(); 7275 // if it isn't first piece, alignment must be 1 7276 else if (i > 0) 7277 MyFlags.Flags.setOrigAlign(1); 7278 Ins.push_back(MyFlags); 7279 } 7280 if (NeedsRegBlock && Value == NumValues - 1) 7281 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7282 PartBase += VT.getStoreSize(); 7283 } 7284 } 7285 7286 // Call the target to set up the argument values. 7287 SmallVector<SDValue, 8> InVals; 7288 SDValue NewRoot = TLI->LowerFormalArguments( 7289 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7290 7291 // Verify that the target's LowerFormalArguments behaved as expected. 7292 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7293 "LowerFormalArguments didn't return a valid chain!"); 7294 assert(InVals.size() == Ins.size() && 7295 "LowerFormalArguments didn't emit the correct number of values!"); 7296 DEBUG({ 7297 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7298 assert(InVals[i].getNode() && 7299 "LowerFormalArguments emitted a null value!"); 7300 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7301 "LowerFormalArguments emitted a value with the wrong type!"); 7302 } 7303 }); 7304 7305 // Update the DAG with the new chain value resulting from argument lowering. 7306 DAG.setRoot(NewRoot); 7307 7308 // Set up the argument values. 7309 unsigned i = 0; 7310 Idx = 1; 7311 if (!FuncInfo->CanLowerReturn) { 7312 // Create a virtual register for the sret pointer, and put in a copy 7313 // from the sret argument into it. 7314 SmallVector<EVT, 1> ValueVTs; 7315 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7316 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7317 MVT VT = ValueVTs[0].getSimpleVT(); 7318 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7319 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7320 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7321 RegVT, VT, nullptr, AssertOp); 7322 7323 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7324 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7325 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7326 FuncInfo->DemoteRegister = SRetReg; 7327 NewRoot = 7328 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7329 DAG.setRoot(NewRoot); 7330 7331 // i indexes lowered arguments. Bump it past the hidden sret argument. 7332 // Idx indexes LLVM arguments. Don't touch it. 7333 ++i; 7334 } 7335 7336 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7337 ++I, ++Idx) { 7338 SmallVector<SDValue, 4> ArgValues; 7339 SmallVector<EVT, 4> ValueVTs; 7340 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7341 unsigned NumValues = ValueVTs.size(); 7342 7343 // If this argument is unused then remember its value. It is used to generate 7344 // debugging information. 7345 if (I->use_empty() && NumValues) { 7346 SDB->setUnusedArgValue(I, InVals[i]); 7347 7348 // Also remember any frame index for use in FastISel. 7349 if (FrameIndexSDNode *FI = 7350 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7351 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7352 } 7353 7354 for (unsigned Val = 0; Val != NumValues; ++Val) { 7355 EVT VT = ValueVTs[Val]; 7356 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7357 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7358 7359 if (!I->use_empty()) { 7360 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7361 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7362 AssertOp = ISD::AssertSext; 7363 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7364 AssertOp = ISD::AssertZext; 7365 7366 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7367 NumParts, PartVT, VT, 7368 nullptr, AssertOp)); 7369 } 7370 7371 i += NumParts; 7372 } 7373 7374 // We don't need to do anything else for unused arguments. 7375 if (ArgValues.empty()) 7376 continue; 7377 7378 // Note down frame index. 7379 if (FrameIndexSDNode *FI = 7380 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7381 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7382 7383 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7384 SDB->getCurSDLoc()); 7385 7386 SDB->setValue(I, Res); 7387 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7388 if (LoadSDNode *LNode = 7389 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7390 if (FrameIndexSDNode *FI = 7391 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7392 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7393 } 7394 7395 // If this argument is live outside of the entry block, insert a copy from 7396 // wherever we got it to the vreg that other BB's will reference it as. 7397 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7398 // If we can, though, try to skip creating an unnecessary vreg. 7399 // FIXME: This isn't very clean... it would be nice to make this more 7400 // general. It's also subtly incompatible with the hacks FastISel 7401 // uses with vregs. 7402 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7403 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7404 FuncInfo->ValueMap[I] = Reg; 7405 continue; 7406 } 7407 } 7408 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7409 FuncInfo->InitializeRegForValue(I); 7410 SDB->CopyToExportRegsIfNeeded(I); 7411 } 7412 } 7413 7414 assert(i == InVals.size() && "Argument register count mismatch!"); 7415 7416 // Finally, if the target has anything special to do, allow it to do so. 7417 EmitFunctionEntryCode(); 7418 } 7419 7420 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7421 /// ensure constants are generated when needed. Remember the virtual registers 7422 /// that need to be added to the Machine PHI nodes as input. We cannot just 7423 /// directly add them, because expansion might result in multiple MBB's for one 7424 /// BB. As such, the start of the BB might correspond to a different MBB than 7425 /// the end. 7426 /// 7427 void 7428 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7429 const TerminatorInst *TI = LLVMBB->getTerminator(); 7430 7431 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7432 7433 // Check PHI nodes in successors that expect a value to be available from this 7434 // block. 7435 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7436 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7437 if (!isa<PHINode>(SuccBB->begin())) continue; 7438 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7439 7440 // If this terminator has multiple identical successors (common for 7441 // switches), only handle each succ once. 7442 if (!SuccsHandled.insert(SuccMBB).second) 7443 continue; 7444 7445 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7446 7447 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7448 // nodes and Machine PHI nodes, but the incoming operands have not been 7449 // emitted yet. 7450 for (BasicBlock::const_iterator I = SuccBB->begin(); 7451 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7452 // Ignore dead phi's. 7453 if (PN->use_empty()) continue; 7454 7455 // Skip empty types 7456 if (PN->getType()->isEmptyTy()) 7457 continue; 7458 7459 unsigned Reg; 7460 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7461 7462 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7463 unsigned &RegOut = ConstantsOut[C]; 7464 if (RegOut == 0) { 7465 RegOut = FuncInfo.CreateRegs(C->getType()); 7466 CopyValueToVirtualRegister(C, RegOut); 7467 } 7468 Reg = RegOut; 7469 } else { 7470 DenseMap<const Value *, unsigned>::iterator I = 7471 FuncInfo.ValueMap.find(PHIOp); 7472 if (I != FuncInfo.ValueMap.end()) 7473 Reg = I->second; 7474 else { 7475 assert(isa<AllocaInst>(PHIOp) && 7476 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7477 "Didn't codegen value into a register!??"); 7478 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7479 CopyValueToVirtualRegister(PHIOp, Reg); 7480 } 7481 } 7482 7483 // Remember that this register needs to added to the machine PHI node as 7484 // the input for this MBB. 7485 SmallVector<EVT, 4> ValueVTs; 7486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7487 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7488 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7489 EVT VT = ValueVTs[vti]; 7490 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7491 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7492 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7493 Reg += NumRegisters; 7494 } 7495 } 7496 } 7497 7498 ConstantsOut.clear(); 7499 } 7500 7501 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7502 /// is 0. 7503 MachineBasicBlock * 7504 SelectionDAGBuilder::StackProtectorDescriptor:: 7505 AddSuccessorMBB(const BasicBlock *BB, 7506 MachineBasicBlock *ParentMBB, 7507 bool IsLikely, 7508 MachineBasicBlock *SuccMBB) { 7509 // If SuccBB has not been created yet, create it. 7510 if (!SuccMBB) { 7511 MachineFunction *MF = ParentMBB->getParent(); 7512 MachineFunction::iterator BBI = ParentMBB; 7513 SuccMBB = MF->CreateMachineBasicBlock(BB); 7514 MF->insert(++BBI, SuccMBB); 7515 } 7516 // Add it as a successor of ParentMBB. 7517 ParentMBB->addSuccessor( 7518 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7519 return SuccMBB; 7520 } 7521 7522 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7523 MachineFunction::iterator I = MBB; 7524 if (++I == FuncInfo.MF->end()) 7525 return nullptr; 7526 return I; 7527 } 7528 7529 /// During lowering new call nodes can be created (such as memset, etc.). 7530 /// Those will become new roots of the current DAG, but complications arise 7531 /// when they are tail calls. In such cases, the call lowering will update 7532 /// the root, but the builder still needs to know that a tail call has been 7533 /// lowered in order to avoid generating an additional return. 7534 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7535 // If the node is null, we do have a tail call. 7536 if (MaybeTC.getNode() != nullptr) 7537 DAG.setRoot(MaybeTC); 7538 else 7539 HasTailCall = true; 7540 } 7541 7542 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7543 unsigned *TotalCases, unsigned First, 7544 unsigned Last) { 7545 assert(Last >= First); 7546 assert(TotalCases[Last] >= TotalCases[First]); 7547 7548 APInt LowCase = Clusters[First].Low->getValue(); 7549 APInt HighCase = Clusters[Last].High->getValue(); 7550 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7551 7552 // FIXME: A range of consecutive cases has 100% density, but only requires one 7553 // comparison to lower. We should discriminate against such consecutive ranges 7554 // in jump tables. 7555 7556 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7557 uint64_t Range = Diff + 1; 7558 7559 uint64_t NumCases = 7560 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7561 7562 assert(NumCases < UINT64_MAX / 100); 7563 assert(Range >= NumCases); 7564 7565 return NumCases * 100 >= Range * MinJumpTableDensity; 7566 } 7567 7568 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7569 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7570 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7571 } 7572 7573 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7574 unsigned First, unsigned Last, 7575 const SwitchInst *SI, 7576 MachineBasicBlock *DefaultMBB, 7577 CaseCluster &JTCluster) { 7578 assert(First <= Last); 7579 7580 uint32_t Weight = 0; 7581 unsigned NumCmps = 0; 7582 std::vector<MachineBasicBlock*> Table; 7583 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7584 for (unsigned I = First; I <= Last; ++I) { 7585 assert(Clusters[I].Kind == CC_Range); 7586 Weight += Clusters[I].Weight; 7587 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7588 APInt Low = Clusters[I].Low->getValue(); 7589 APInt High = Clusters[I].High->getValue(); 7590 NumCmps += (Low == High) ? 1 : 2; 7591 if (I != First) { 7592 // Fill the gap between this and the previous cluster. 7593 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7594 assert(PreviousHigh.slt(Low)); 7595 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7596 for (uint64_t J = 0; J < Gap; J++) 7597 Table.push_back(DefaultMBB); 7598 } 7599 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7600 for (uint64_t J = 0; J < ClusterSize; ++J) 7601 Table.push_back(Clusters[I].MBB); 7602 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7603 } 7604 7605 unsigned NumDests = JTWeights.size(); 7606 if (isSuitableForBitTests(NumDests, NumCmps, 7607 Clusters[First].Low->getValue(), 7608 Clusters[Last].High->getValue())) { 7609 // Clusters[First..Last] should be lowered as bit tests instead. 7610 return false; 7611 } 7612 7613 // Create the MBB that will load from and jump through the table. 7614 // Note: We create it here, but it's not inserted into the function yet. 7615 MachineFunction *CurMF = FuncInfo.MF; 7616 MachineBasicBlock *JumpTableMBB = 7617 CurMF->CreateMachineBasicBlock(SI->getParent()); 7618 7619 // Add successors. Note: use table order for determinism. 7620 SmallPtrSet<MachineBasicBlock *, 8> Done; 7621 for (MachineBasicBlock *Succ : Table) { 7622 if (Done.count(Succ)) 7623 continue; 7624 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7625 Done.insert(Succ); 7626 } 7627 7628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7629 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7630 ->createJumpTableIndex(Table); 7631 7632 // Set up the jump table info. 7633 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7634 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7635 Clusters[Last].High->getValue(), SI->getCondition(), 7636 nullptr, false); 7637 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7638 7639 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7640 JTCases.size() - 1, Weight); 7641 return true; 7642 } 7643 7644 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7645 const SwitchInst *SI, 7646 MachineBasicBlock *DefaultMBB) { 7647 #ifndef NDEBUG 7648 // Clusters must be non-empty, sorted, and only contain Range clusters. 7649 assert(!Clusters.empty()); 7650 for (CaseCluster &C : Clusters) 7651 assert(C.Kind == CC_Range); 7652 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7653 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7654 #endif 7655 7656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7657 if (!areJTsAllowed(TLI)) 7658 return; 7659 7660 const int64_t N = Clusters.size(); 7661 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7662 7663 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7664 SmallVector<unsigned, 8> TotalCases(N); 7665 7666 for (unsigned i = 0; i < N; ++i) { 7667 APInt Hi = Clusters[i].High->getValue(); 7668 APInt Lo = Clusters[i].Low->getValue(); 7669 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7670 if (i != 0) 7671 TotalCases[i] += TotalCases[i - 1]; 7672 } 7673 7674 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7675 // Cheap case: the whole range might be suitable for jump table. 7676 CaseCluster JTCluster; 7677 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7678 Clusters[0] = JTCluster; 7679 Clusters.resize(1); 7680 return; 7681 } 7682 } 7683 7684 // The algorithm below is not suitable for -O0. 7685 if (TM.getOptLevel() == CodeGenOpt::None) 7686 return; 7687 7688 // Split Clusters into minimum number of dense partitions. The algorithm uses 7689 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7690 // for the Case Statement'" (1994), but builds the MinPartitions array in 7691 // reverse order to make it easier to reconstruct the partitions in ascending 7692 // order. In the choice between two optimal partitionings, it picks the one 7693 // which yields more jump tables. 7694 7695 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7696 SmallVector<unsigned, 8> MinPartitions(N); 7697 // LastElement[i] is the last element of the partition starting at i. 7698 SmallVector<unsigned, 8> LastElement(N); 7699 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7700 SmallVector<unsigned, 8> NumTables(N); 7701 7702 // Base case: There is only one way to partition Clusters[N-1]. 7703 MinPartitions[N - 1] = 1; 7704 LastElement[N - 1] = N - 1; 7705 assert(MinJumpTableSize > 1); 7706 NumTables[N - 1] = 0; 7707 7708 // Note: loop indexes are signed to avoid underflow. 7709 for (int64_t i = N - 2; i >= 0; i--) { 7710 // Find optimal partitioning of Clusters[i..N-1]. 7711 // Baseline: Put Clusters[i] into a partition on its own. 7712 MinPartitions[i] = MinPartitions[i + 1] + 1; 7713 LastElement[i] = i; 7714 NumTables[i] = NumTables[i + 1]; 7715 7716 // Search for a solution that results in fewer partitions. 7717 for (int64_t j = N - 1; j > i; j--) { 7718 // Try building a partition from Clusters[i..j]. 7719 if (isDense(Clusters, &TotalCases[0], i, j)) { 7720 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7721 bool IsTable = j - i + 1 >= MinJumpTableSize; 7722 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7723 7724 // If this j leads to fewer partitions, or same number of partitions 7725 // with more lookup tables, it is a better partitioning. 7726 if (NumPartitions < MinPartitions[i] || 7727 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7728 MinPartitions[i] = NumPartitions; 7729 LastElement[i] = j; 7730 NumTables[i] = Tables; 7731 } 7732 } 7733 } 7734 } 7735 7736 // Iterate over the partitions, replacing some with jump tables in-place. 7737 unsigned DstIndex = 0; 7738 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7739 Last = LastElement[First]; 7740 assert(Last >= First); 7741 assert(DstIndex <= First); 7742 unsigned NumClusters = Last - First + 1; 7743 7744 CaseCluster JTCluster; 7745 if (NumClusters >= MinJumpTableSize && 7746 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7747 Clusters[DstIndex++] = JTCluster; 7748 } else { 7749 for (unsigned I = First; I <= Last; ++I) 7750 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7751 } 7752 } 7753 Clusters.resize(DstIndex); 7754 } 7755 7756 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7757 // FIXME: Using the pointer type doesn't seem ideal. 7758 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7759 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7760 return Range <= BW; 7761 } 7762 7763 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7764 unsigned NumCmps, 7765 const APInt &Low, 7766 const APInt &High) { 7767 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7768 // range of cases both require only one branch to lower. Just looking at the 7769 // number of clusters and destinations should be enough to decide whether to 7770 // build bit tests. 7771 7772 // To lower a range with bit tests, the range must fit the bitwidth of a 7773 // machine word. 7774 if (!rangeFitsInWord(Low, High)) 7775 return false; 7776 7777 // Decide whether it's profitable to lower this range with bit tests. Each 7778 // destination requires a bit test and branch, and there is an overall range 7779 // check branch. For a small number of clusters, separate comparisons might be 7780 // cheaper, and for many destinations, splitting the range might be better. 7781 return (NumDests == 1 && NumCmps >= 3) || 7782 (NumDests == 2 && NumCmps >= 5) || 7783 (NumDests == 3 && NumCmps >= 6); 7784 } 7785 7786 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7787 unsigned First, unsigned Last, 7788 const SwitchInst *SI, 7789 CaseCluster &BTCluster) { 7790 assert(First <= Last); 7791 if (First == Last) 7792 return false; 7793 7794 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7795 unsigned NumCmps = 0; 7796 for (int64_t I = First; I <= Last; ++I) { 7797 assert(Clusters[I].Kind == CC_Range); 7798 Dests.set(Clusters[I].MBB->getNumber()); 7799 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7800 } 7801 unsigned NumDests = Dests.count(); 7802 7803 APInt Low = Clusters[First].Low->getValue(); 7804 APInt High = Clusters[Last].High->getValue(); 7805 assert(Low.slt(High)); 7806 7807 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7808 return false; 7809 7810 APInt LowBound; 7811 APInt CmpRange; 7812 7813 const int BitWidth = DAG.getTargetLoweringInfo() 7814 .getPointerTy(DAG.getDataLayout()) 7815 .getSizeInBits(); 7816 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7817 7818 // Check if the clusters cover a contiguous range such that no value in the 7819 // range will jump to the default statement. 7820 bool ContiguousRange = true; 7821 for (int64_t I = First + 1; I <= Last; ++I) { 7822 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7823 ContiguousRange = false; 7824 break; 7825 } 7826 } 7827 7828 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7829 // Optimize the case where all the case values fit in a word without having 7830 // to subtract minValue. In this case, we can optimize away the subtraction. 7831 LowBound = APInt::getNullValue(Low.getBitWidth()); 7832 CmpRange = High; 7833 ContiguousRange = false; 7834 } else { 7835 LowBound = Low; 7836 CmpRange = High - Low; 7837 } 7838 7839 CaseBitsVector CBV; 7840 uint32_t TotalWeight = 0; 7841 for (unsigned i = First; i <= Last; ++i) { 7842 // Find the CaseBits for this destination. 7843 unsigned j; 7844 for (j = 0; j < CBV.size(); ++j) 7845 if (CBV[j].BB == Clusters[i].MBB) 7846 break; 7847 if (j == CBV.size()) 7848 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7849 CaseBits *CB = &CBV[j]; 7850 7851 // Update Mask, Bits and ExtraWeight. 7852 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7853 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7854 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7855 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7856 CB->Bits += Hi - Lo + 1; 7857 CB->ExtraWeight += Clusters[i].Weight; 7858 TotalWeight += Clusters[i].Weight; 7859 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7860 } 7861 7862 BitTestInfo BTI; 7863 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7864 // Sort by weight first, number of bits second. 7865 if (a.ExtraWeight != b.ExtraWeight) 7866 return a.ExtraWeight > b.ExtraWeight; 7867 return a.Bits > b.Bits; 7868 }); 7869 7870 for (auto &CB : CBV) { 7871 MachineBasicBlock *BitTestBB = 7872 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7873 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7874 } 7875 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7876 SI->getCondition(), -1U, MVT::Other, false, 7877 ContiguousRange, nullptr, nullptr, std::move(BTI), 7878 TotalWeight); 7879 7880 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7881 BitTestCases.size() - 1, TotalWeight); 7882 return true; 7883 } 7884 7885 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7886 const SwitchInst *SI) { 7887 // Partition Clusters into as few subsets as possible, where each subset has a 7888 // range that fits in a machine word and has <= 3 unique destinations. 7889 7890 #ifndef NDEBUG 7891 // Clusters must be sorted and contain Range or JumpTable clusters. 7892 assert(!Clusters.empty()); 7893 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7894 for (const CaseCluster &C : Clusters) 7895 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7896 for (unsigned i = 1; i < Clusters.size(); ++i) 7897 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7898 #endif 7899 7900 // The algorithm below is not suitable for -O0. 7901 if (TM.getOptLevel() == CodeGenOpt::None) 7902 return; 7903 7904 // If target does not have legal shift left, do not emit bit tests at all. 7905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7906 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7907 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7908 return; 7909 7910 int BitWidth = PTy.getSizeInBits(); 7911 const int64_t N = Clusters.size(); 7912 7913 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7914 SmallVector<unsigned, 8> MinPartitions(N); 7915 // LastElement[i] is the last element of the partition starting at i. 7916 SmallVector<unsigned, 8> LastElement(N); 7917 7918 // FIXME: This might not be the best algorithm for finding bit test clusters. 7919 7920 // Base case: There is only one way to partition Clusters[N-1]. 7921 MinPartitions[N - 1] = 1; 7922 LastElement[N - 1] = N - 1; 7923 7924 // Note: loop indexes are signed to avoid underflow. 7925 for (int64_t i = N - 2; i >= 0; --i) { 7926 // Find optimal partitioning of Clusters[i..N-1]. 7927 // Baseline: Put Clusters[i] into a partition on its own. 7928 MinPartitions[i] = MinPartitions[i + 1] + 1; 7929 LastElement[i] = i; 7930 7931 // Search for a solution that results in fewer partitions. 7932 // Note: the search is limited by BitWidth, reducing time complexity. 7933 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7934 // Try building a partition from Clusters[i..j]. 7935 7936 // Check the range. 7937 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7938 Clusters[j].High->getValue())) 7939 continue; 7940 7941 // Check nbr of destinations and cluster types. 7942 // FIXME: This works, but doesn't seem very efficient. 7943 bool RangesOnly = true; 7944 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7945 for (int64_t k = i; k <= j; k++) { 7946 if (Clusters[k].Kind != CC_Range) { 7947 RangesOnly = false; 7948 break; 7949 } 7950 Dests.set(Clusters[k].MBB->getNumber()); 7951 } 7952 if (!RangesOnly || Dests.count() > 3) 7953 break; 7954 7955 // Check if it's a better partition. 7956 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7957 if (NumPartitions < MinPartitions[i]) { 7958 // Found a better partition. 7959 MinPartitions[i] = NumPartitions; 7960 LastElement[i] = j; 7961 } 7962 } 7963 } 7964 7965 // Iterate over the partitions, replacing with bit-test clusters in-place. 7966 unsigned DstIndex = 0; 7967 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7968 Last = LastElement[First]; 7969 assert(First <= Last); 7970 assert(DstIndex <= First); 7971 7972 CaseCluster BitTestCluster; 7973 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7974 Clusters[DstIndex++] = BitTestCluster; 7975 } else { 7976 size_t NumClusters = Last - First + 1; 7977 std::memmove(&Clusters[DstIndex], &Clusters[First], 7978 sizeof(Clusters[0]) * NumClusters); 7979 DstIndex += NumClusters; 7980 } 7981 } 7982 Clusters.resize(DstIndex); 7983 } 7984 7985 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7986 MachineBasicBlock *SwitchMBB, 7987 MachineBasicBlock *DefaultMBB) { 7988 MachineFunction *CurMF = FuncInfo.MF; 7989 MachineBasicBlock *NextMBB = nullptr; 7990 MachineFunction::iterator BBI = W.MBB; 7991 if (++BBI != FuncInfo.MF->end()) 7992 NextMBB = BBI; 7993 7994 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7995 7996 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7997 7998 if (Size == 2 && W.MBB == SwitchMBB) { 7999 // If any two of the cases has the same destination, and if one value 8000 // is the same as the other, but has one bit unset that the other has set, 8001 // use bit manipulation to do two compares at once. For example: 8002 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8003 // TODO: This could be extended to merge any 2 cases in switches with 3 8004 // cases. 8005 // TODO: Handle cases where W.CaseBB != SwitchBB. 8006 CaseCluster &Small = *W.FirstCluster; 8007 CaseCluster &Big = *W.LastCluster; 8008 8009 if (Small.Low == Small.High && Big.Low == Big.High && 8010 Small.MBB == Big.MBB) { 8011 const APInt &SmallValue = Small.Low->getValue(); 8012 const APInt &BigValue = Big.Low->getValue(); 8013 8014 // Check that there is only one bit different. 8015 APInt CommonBit = BigValue ^ SmallValue; 8016 if (CommonBit.isPowerOf2()) { 8017 SDValue CondLHS = getValue(Cond); 8018 EVT VT = CondLHS.getValueType(); 8019 SDLoc DL = getCurSDLoc(); 8020 8021 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8022 DAG.getConstant(CommonBit, DL, VT)); 8023 SDValue Cond = DAG.getSetCC( 8024 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8025 ISD::SETEQ); 8026 8027 // Update successor info. 8028 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8029 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8030 addSuccessorWithWeight( 8031 SwitchMBB, DefaultMBB, 8032 // The default destination is the first successor in IR. 8033 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8034 : 0); 8035 8036 // Insert the true branch. 8037 SDValue BrCond = 8038 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8039 DAG.getBasicBlock(Small.MBB)); 8040 // Insert the false branch. 8041 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8042 DAG.getBasicBlock(DefaultMBB)); 8043 8044 DAG.setRoot(BrCond); 8045 return; 8046 } 8047 } 8048 } 8049 8050 if (TM.getOptLevel() != CodeGenOpt::None) { 8051 // Order cases by weight so the most likely case will be checked first. 8052 std::sort(W.FirstCluster, W.LastCluster + 1, 8053 [](const CaseCluster &a, const CaseCluster &b) { 8054 return a.Weight > b.Weight; 8055 }); 8056 8057 // Rearrange the case blocks so that the last one falls through if possible 8058 // without without changing the order of weights. 8059 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8060 --I; 8061 if (I->Weight > W.LastCluster->Weight) 8062 break; 8063 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8064 std::swap(*I, *W.LastCluster); 8065 break; 8066 } 8067 } 8068 } 8069 8070 // Compute total weight. 8071 uint32_t DefaultWeight = W.DefaultWeight; 8072 uint32_t UnhandledWeights = DefaultWeight; 8073 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8074 UnhandledWeights += I->Weight; 8075 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8076 } 8077 8078 MachineBasicBlock *CurMBB = W.MBB; 8079 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8080 MachineBasicBlock *Fallthrough; 8081 if (I == W.LastCluster) { 8082 // For the last cluster, fall through to the default destination. 8083 Fallthrough = DefaultMBB; 8084 } else { 8085 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8086 CurMF->insert(BBI, Fallthrough); 8087 // Put Cond in a virtual register to make it available from the new blocks. 8088 ExportFromCurrentBlock(Cond); 8089 } 8090 UnhandledWeights -= I->Weight; 8091 8092 switch (I->Kind) { 8093 case CC_JumpTable: { 8094 // FIXME: Optimize away range check based on pivot comparisons. 8095 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8096 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8097 8098 // The jump block hasn't been inserted yet; insert it here. 8099 MachineBasicBlock *JumpMBB = JT->MBB; 8100 CurMF->insert(BBI, JumpMBB); 8101 8102 uint32_t JumpWeight = I->Weight; 8103 uint32_t FallthroughWeight = UnhandledWeights; 8104 8105 // If Fallthrough is a target of the jump table, we evenly distribute 8106 // the weight on the edge to Fallthrough to successors of CurMBB. 8107 // Also update the weight on the edge from JumpMBB to Fallthrough. 8108 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8109 SE = JumpMBB->succ_end(); 8110 SI != SE; ++SI) { 8111 if (*SI == Fallthrough) { 8112 JumpWeight += DefaultWeight / 2; 8113 FallthroughWeight -= DefaultWeight / 2; 8114 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8115 break; 8116 } 8117 } 8118 8119 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8120 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8121 8122 // The jump table header will be inserted in our current block, do the 8123 // range check, and fall through to our fallthrough block. 8124 JTH->HeaderBB = CurMBB; 8125 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8126 8127 // If we're in the right place, emit the jump table header right now. 8128 if (CurMBB == SwitchMBB) { 8129 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8130 JTH->Emitted = true; 8131 } 8132 break; 8133 } 8134 case CC_BitTests: { 8135 // FIXME: Optimize away range check based on pivot comparisons. 8136 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8137 8138 // The bit test blocks haven't been inserted yet; insert them here. 8139 for (BitTestCase &BTC : BTB->Cases) 8140 CurMF->insert(BBI, BTC.ThisBB); 8141 8142 // Fill in fields of the BitTestBlock. 8143 BTB->Parent = CurMBB; 8144 BTB->Default = Fallthrough; 8145 8146 BTB->DefaultWeight = UnhandledWeights; 8147 // If the cases in bit test don't form a contiguous range, we evenly 8148 // distribute the weight on the edge to Fallthrough to two successors 8149 // of CurMBB. 8150 if (!BTB->ContiguousRange) { 8151 BTB->Weight += DefaultWeight / 2; 8152 BTB->DefaultWeight -= DefaultWeight / 2; 8153 } 8154 8155 // If we're in the right place, emit the bit test header right now. 8156 if (CurMBB == SwitchMBB) { 8157 visitBitTestHeader(*BTB, SwitchMBB); 8158 BTB->Emitted = true; 8159 } 8160 break; 8161 } 8162 case CC_Range: { 8163 const Value *RHS, *LHS, *MHS; 8164 ISD::CondCode CC; 8165 if (I->Low == I->High) { 8166 // Check Cond == I->Low. 8167 CC = ISD::SETEQ; 8168 LHS = Cond; 8169 RHS=I->Low; 8170 MHS = nullptr; 8171 } else { 8172 // Check I->Low <= Cond <= I->High. 8173 CC = ISD::SETLE; 8174 LHS = I->Low; 8175 MHS = Cond; 8176 RHS = I->High; 8177 } 8178 8179 // The false weight is the sum of all unhandled cases. 8180 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8181 UnhandledWeights); 8182 8183 if (CurMBB == SwitchMBB) 8184 visitSwitchCase(CB, SwitchMBB); 8185 else 8186 SwitchCases.push_back(CB); 8187 8188 break; 8189 } 8190 } 8191 CurMBB = Fallthrough; 8192 } 8193 } 8194 8195 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8196 CaseClusterIt First, 8197 CaseClusterIt Last) { 8198 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8199 if (X.Weight != CC.Weight) 8200 return X.Weight > CC.Weight; 8201 8202 // Ties are broken by comparing the case value. 8203 return X.Low->getValue().slt(CC.Low->getValue()); 8204 }); 8205 } 8206 8207 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8208 const SwitchWorkListItem &W, 8209 Value *Cond, 8210 MachineBasicBlock *SwitchMBB) { 8211 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8212 "Clusters not sorted?"); 8213 8214 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8215 8216 // Balance the tree based on branch weights to create a near-optimal (in terms 8217 // of search time given key frequency) binary search tree. See e.g. Kurt 8218 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8219 CaseClusterIt LastLeft = W.FirstCluster; 8220 CaseClusterIt FirstRight = W.LastCluster; 8221 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8222 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8223 8224 // Move LastLeft and FirstRight towards each other from opposite directions to 8225 // find a partitioning of the clusters which balances the weight on both 8226 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8227 // taken to ensure 0-weight nodes are distributed evenly. 8228 unsigned I = 0; 8229 while (LastLeft + 1 < FirstRight) { 8230 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8231 LeftWeight += (++LastLeft)->Weight; 8232 else 8233 RightWeight += (--FirstRight)->Weight; 8234 I++; 8235 } 8236 8237 for (;;) { 8238 // Our binary search tree differs from a typical BST in that ours can have up 8239 // to three values in each leaf. The pivot selection above doesn't take that 8240 // into account, which means the tree might require more nodes and be less 8241 // efficient. We compensate for this here. 8242 8243 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8244 unsigned NumRight = W.LastCluster - FirstRight + 1; 8245 8246 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8247 // If one side has less than 3 clusters, and the other has more than 3, 8248 // consider taking a cluster from the other side. 8249 8250 if (NumLeft < NumRight) { 8251 // Consider moving the first cluster on the right to the left side. 8252 CaseCluster &CC = *FirstRight; 8253 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8254 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8255 if (LeftSideRank <= RightSideRank) { 8256 // Moving the cluster to the left does not demote it. 8257 ++LastLeft; 8258 ++FirstRight; 8259 continue; 8260 } 8261 } else { 8262 assert(NumRight < NumLeft); 8263 // Consider moving the last element on the left to the right side. 8264 CaseCluster &CC = *LastLeft; 8265 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8266 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8267 if (RightSideRank <= LeftSideRank) { 8268 // Moving the cluster to the right does not demot it. 8269 --LastLeft; 8270 --FirstRight; 8271 continue; 8272 } 8273 } 8274 } 8275 break; 8276 } 8277 8278 assert(LastLeft + 1 == FirstRight); 8279 assert(LastLeft >= W.FirstCluster); 8280 assert(FirstRight <= W.LastCluster); 8281 8282 // Use the first element on the right as pivot since we will make less-than 8283 // comparisons against it. 8284 CaseClusterIt PivotCluster = FirstRight; 8285 assert(PivotCluster > W.FirstCluster); 8286 assert(PivotCluster <= W.LastCluster); 8287 8288 CaseClusterIt FirstLeft = W.FirstCluster; 8289 CaseClusterIt LastRight = W.LastCluster; 8290 8291 const ConstantInt *Pivot = PivotCluster->Low; 8292 8293 // New blocks will be inserted immediately after the current one. 8294 MachineFunction::iterator BBI = W.MBB; 8295 ++BBI; 8296 8297 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8298 // we can branch to its destination directly if it's squeezed exactly in 8299 // between the known lower bound and Pivot - 1. 8300 MachineBasicBlock *LeftMBB; 8301 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8302 FirstLeft->Low == W.GE && 8303 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8304 LeftMBB = FirstLeft->MBB; 8305 } else { 8306 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8307 FuncInfo.MF->insert(BBI, LeftMBB); 8308 WorkList.push_back( 8309 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8310 // Put Cond in a virtual register to make it available from the new blocks. 8311 ExportFromCurrentBlock(Cond); 8312 } 8313 8314 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8315 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8316 // directly if RHS.High equals the current upper bound. 8317 MachineBasicBlock *RightMBB; 8318 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8319 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8320 RightMBB = FirstRight->MBB; 8321 } else { 8322 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8323 FuncInfo.MF->insert(BBI, RightMBB); 8324 WorkList.push_back( 8325 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8326 // Put Cond in a virtual register to make it available from the new blocks. 8327 ExportFromCurrentBlock(Cond); 8328 } 8329 8330 // Create the CaseBlock record that will be used to lower the branch. 8331 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8332 LeftWeight, RightWeight); 8333 8334 if (W.MBB == SwitchMBB) 8335 visitSwitchCase(CB, SwitchMBB); 8336 else 8337 SwitchCases.push_back(CB); 8338 } 8339 8340 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8341 // Extract cases from the switch. 8342 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8343 CaseClusterVector Clusters; 8344 Clusters.reserve(SI.getNumCases()); 8345 for (auto I : SI.cases()) { 8346 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8347 const ConstantInt *CaseVal = I.getCaseValue(); 8348 uint32_t Weight = 8349 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8350 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8351 } 8352 8353 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8354 8355 // Cluster adjacent cases with the same destination. We do this at all 8356 // optimization levels because it's cheap to do and will make codegen faster 8357 // if there are many clusters. 8358 sortAndRangeify(Clusters); 8359 8360 if (TM.getOptLevel() != CodeGenOpt::None) { 8361 // Replace an unreachable default with the most popular destination. 8362 // FIXME: Exploit unreachable default more aggressively. 8363 bool UnreachableDefault = 8364 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8365 if (UnreachableDefault && !Clusters.empty()) { 8366 DenseMap<const BasicBlock *, unsigned> Popularity; 8367 unsigned MaxPop = 0; 8368 const BasicBlock *MaxBB = nullptr; 8369 for (auto I : SI.cases()) { 8370 const BasicBlock *BB = I.getCaseSuccessor(); 8371 if (++Popularity[BB] > MaxPop) { 8372 MaxPop = Popularity[BB]; 8373 MaxBB = BB; 8374 } 8375 } 8376 // Set new default. 8377 assert(MaxPop > 0 && MaxBB); 8378 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8379 8380 // Remove cases that were pointing to the destination that is now the 8381 // default. 8382 CaseClusterVector New; 8383 New.reserve(Clusters.size()); 8384 for (CaseCluster &CC : Clusters) { 8385 if (CC.MBB != DefaultMBB) 8386 New.push_back(CC); 8387 } 8388 Clusters = std::move(New); 8389 } 8390 } 8391 8392 // If there is only the default destination, jump there directly. 8393 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8394 if (Clusters.empty()) { 8395 SwitchMBB->addSuccessor(DefaultMBB); 8396 if (DefaultMBB != NextBlock(SwitchMBB)) { 8397 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8398 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8399 } 8400 return; 8401 } 8402 8403 findJumpTables(Clusters, &SI, DefaultMBB); 8404 findBitTestClusters(Clusters, &SI); 8405 8406 DEBUG({ 8407 dbgs() << "Case clusters: "; 8408 for (const CaseCluster &C : Clusters) { 8409 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8410 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8411 8412 C.Low->getValue().print(dbgs(), true); 8413 if (C.Low != C.High) { 8414 dbgs() << '-'; 8415 C.High->getValue().print(dbgs(), true); 8416 } 8417 dbgs() << ' '; 8418 } 8419 dbgs() << '\n'; 8420 }); 8421 8422 assert(!Clusters.empty()); 8423 SwitchWorkList WorkList; 8424 CaseClusterIt First = Clusters.begin(); 8425 CaseClusterIt Last = Clusters.end() - 1; 8426 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8427 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8428 8429 while (!WorkList.empty()) { 8430 SwitchWorkListItem W = WorkList.back(); 8431 WorkList.pop_back(); 8432 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8433 8434 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8435 // For optimized builds, lower large range as a balanced binary tree. 8436 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8437 continue; 8438 } 8439 8440 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8441 } 8442 } 8443