1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 IntermediateVT.isVector() 419 ? EVT::getVectorVT( 420 *DAG.getContext(), IntermediateVT.getScalarType(), 421 IntermediateVT.getVectorElementCount() * NumParts) 422 : EVT::getVectorVT(*DAG.getContext(), 423 IntermediateVT.getScalarType(), 424 NumIntermediates); 425 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 426 : ISD::BUILD_VECTOR, 427 DL, BuiltVectorTy, Ops); 428 } 429 430 // There is now one part, held in Val. Correct it to match ValueVT. 431 EVT PartEVT = Val.getValueType(); 432 433 if (PartEVT == ValueVT) 434 return Val; 435 436 if (PartEVT.isVector()) { 437 // If the element type of the source/dest vectors are the same, but the 438 // parts vector has more elements than the value vector, then we have a 439 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 440 // elements we want. 441 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 442 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 443 "Cannot narrow, it would be a lossy transformation"); 444 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 445 DAG.getVectorIdxConstant(0, DL)); 446 } 447 448 // Vector/Vector bitcast. 449 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 453 "Cannot handle this kind of promotion"); 454 // Promoted vector extract 455 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 456 457 } 458 459 // Trivial bitcast if the types are the same size and the destination 460 // vector type is legal. 461 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 462 TLI.isTypeLegal(ValueVT)) 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 465 if (ValueVT.getVectorNumElements() != 1) { 466 // Certain ABIs require that vectors are passed as integers. For vectors 467 // are the same size, this is an obvious bitcast. 468 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 469 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 470 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 471 // Bitcast Val back the original type and extract the corresponding 472 // vector we want. 473 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 474 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 475 ValueVT.getVectorElementType(), Elts); 476 Val = DAG.getBitcast(WiderVecType, Val); 477 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 478 DAG.getVectorIdxConstant(0, DL)); 479 } 480 481 diagnosePossiblyInvalidConstraint( 482 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 483 return DAG.getUNDEF(ValueVT); 484 } 485 486 // Handle cases such as i8 -> <1 x i1> 487 EVT ValueSVT = ValueVT.getVectorElementType(); 488 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 489 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 490 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 491 else 492 Val = ValueVT.isFloatingPoint() 493 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 494 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 495 } 496 497 return DAG.getBuildVector(ValueVT, DL, Val); 498 } 499 500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 501 SDValue Val, SDValue *Parts, unsigned NumParts, 502 MVT PartVT, const Value *V, 503 Optional<CallingConv::ID> CallConv); 504 505 /// getCopyToParts - Create a series of nodes that contain the specified value 506 /// split into legal parts. If the parts contain more bits than Val, then, for 507 /// integers, ExtendKind can be used to specify how to generate the extra bits. 508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 509 SDValue *Parts, unsigned NumParts, MVT PartVT, 510 const Value *V, 511 Optional<CallingConv::ID> CallConv = None, 512 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 513 EVT ValueVT = Val.getValueType(); 514 515 // Handle the vector case separately. 516 if (ValueVT.isVector()) 517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 518 CallConv); 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 537 // If the parts cover more bits than the value has, promote the value. 538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 539 assert(NumParts == 1 && "Do not know what to promote to!"); 540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 541 } else { 542 if (ValueVT.isFloatingPoint()) { 543 // FP values need to be bitcast, then extended if they are being put 544 // into a larger container. 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 547 } 548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 549 ValueVT.isInteger() && 550 "Unknown mismatch!"); 551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 553 if (PartVT == MVT::x86mmx) 554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 555 } 556 } else if (PartBits == ValueVT.getSizeInBits()) { 557 // Different types of the same size. 558 assert(NumParts == 1 && PartEVT != ValueVT); 559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 561 // If the parts cover less bits than value has, truncate the value. 562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 563 ValueVT.isInteger() && 564 "Unknown mismatch!"); 565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 567 if (PartVT == MVT::x86mmx) 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } 570 571 // The value may have changed - recompute ValueVT. 572 ValueVT = Val.getValueType(); 573 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 574 "Failed to tile the value with PartVT!"); 575 576 if (NumParts == 1) { 577 if (PartEVT != ValueVT) { 578 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 579 "scalar-to-vector conversion failed"); 580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 581 } 582 583 Parts[0] = Val; 584 return; 585 } 586 587 // Expand the value into multiple parts. 588 if (NumParts & (NumParts - 1)) { 589 // The number of parts is not a power of 2. Split off and copy the tail. 590 assert(PartVT.isInteger() && ValueVT.isInteger() && 591 "Do not know what to expand to!"); 592 unsigned RoundParts = 1 << Log2_32(NumParts); 593 unsigned RoundBits = RoundParts * PartBits; 594 unsigned OddParts = NumParts - RoundParts; 595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 597 598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 599 CallConv); 600 601 if (DAG.getDataLayout().isBigEndian()) 602 // The odd parts were reversed by getCopyToParts - unreverse them. 603 std::reverse(Parts + RoundParts, Parts + NumParts); 604 605 NumParts = RoundParts; 606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 608 } 609 610 // The number of parts is a power of 2. Repeatedly bisect the value using 611 // EXTRACT_ELEMENT. 612 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 613 EVT::getIntegerVT(*DAG.getContext(), 614 ValueVT.getSizeInBits()), 615 Val); 616 617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 618 for (unsigned i = 0; i < NumParts; i += StepSize) { 619 unsigned ThisBits = StepSize * PartBits / 2; 620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 621 SDValue &Part0 = Parts[i]; 622 SDValue &Part1 = Parts[i+StepSize/2]; 623 624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 628 629 if (ThisBits == PartBits && ThisVT != PartVT) { 630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 632 } 633 } 634 } 635 636 if (DAG.getDataLayout().isBigEndian()) 637 std::reverse(Parts, Parts + OrigNumParts); 638 } 639 640 static SDValue widenVectorToPartType(SelectionDAG &DAG, 641 SDValue Val, const SDLoc &DL, EVT PartVT) { 642 if (!PartVT.isVector()) 643 return SDValue(); 644 645 EVT ValueVT = Val.getValueType(); 646 unsigned PartNumElts = PartVT.getVectorNumElements(); 647 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 648 if (PartNumElts > ValueNumElts && 649 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 650 EVT ElementVT = PartVT.getVectorElementType(); 651 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 652 // undef elements. 653 SmallVector<SDValue, 16> Ops; 654 DAG.ExtractVectorElements(Val, Ops); 655 SDValue EltUndef = DAG.getUNDEF(ElementVT); 656 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 657 Ops.push_back(EltUndef); 658 659 // FIXME: Use CONCAT for 2x -> 4x. 660 return DAG.getBuildVector(PartVT, DL, Ops); 661 } 662 663 return SDValue(); 664 } 665 666 /// getCopyToPartsVector - Create a series of nodes that contain the specified 667 /// value split into legal parts. 668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 669 SDValue Val, SDValue *Parts, unsigned NumParts, 670 MVT PartVT, const Value *V, 671 Optional<CallingConv::ID> CallConv) { 672 EVT ValueVT = Val.getValueType(); 673 assert(ValueVT.isVector() && "Not a vector"); 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 const bool IsABIRegCopy = CallConv.hasValue(); 676 677 if (NumParts == 1) { 678 EVT PartEVT = PartVT; 679 if (PartEVT == ValueVT) { 680 // Nothing to do. 681 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 682 // Bitconvert vector->vector case. 683 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 684 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 685 Val = Widened; 686 } else if (PartVT.isVector() && 687 PartEVT.getVectorElementType().bitsGE( 688 ValueVT.getVectorElementType()) && 689 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 690 691 // Promoted vector extract 692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 693 } else { 694 if (ValueVT.getVectorNumElements() == 1) { 695 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 696 DAG.getVectorIdxConstant(0, DL)); 697 } else { 698 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 699 "lossy conversion of vector to scalar type"); 700 EVT IntermediateType = 701 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 702 Val = DAG.getBitcast(IntermediateType, Val); 703 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 704 } 705 } 706 707 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 708 Parts[0] = Val; 709 return; 710 } 711 712 // Handle a multi-element vector. 713 EVT IntermediateVT; 714 MVT RegisterVT; 715 unsigned NumIntermediates; 716 unsigned NumRegs; 717 if (IsABIRegCopy) { 718 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 719 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 720 NumIntermediates, RegisterVT); 721 } else { 722 NumRegs = 723 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 724 NumIntermediates, RegisterVT); 725 } 726 727 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 728 NumParts = NumRegs; // Silence a compiler warning. 729 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 730 731 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 732 IntermediateVT.getVectorNumElements() : 1; 733 734 // Convert the vector to the appropriate type if necessary. 735 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 736 737 EVT BuiltVectorTy = EVT::getVectorVT( 738 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 739 if (ValueVT != BuiltVectorTy) { 740 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 741 Val = Widened; 742 743 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 744 } 745 746 // Split the vector into intermediate operands. 747 SmallVector<SDValue, 8> Ops(NumIntermediates); 748 for (unsigned i = 0; i != NumIntermediates; ++i) { 749 if (IntermediateVT.isVector()) { 750 Ops[i] = 751 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 753 } else { 754 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 755 DAG.getVectorIdxConstant(i, DL)); 756 } 757 } 758 759 // Split the intermediate operands into legal parts. 760 if (NumParts == NumIntermediates) { 761 // If the register was not expanded, promote or copy the value, 762 // as appropriate. 763 for (unsigned i = 0; i != NumParts; ++i) 764 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 765 } else if (NumParts > 0) { 766 // If the intermediate type was expanded, split each the value into 767 // legal parts. 768 assert(NumIntermediates != 0 && "division by zero"); 769 assert(NumParts % NumIntermediates == 0 && 770 "Must expand into a divisible number of parts!"); 771 unsigned Factor = NumParts / NumIntermediates; 772 for (unsigned i = 0; i != NumIntermediates; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 774 CallConv); 775 } 776 } 777 778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 779 EVT valuevt, Optional<CallingConv::ID> CC) 780 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 781 RegCount(1, regs.size()), CallConv(CC) {} 782 783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 784 const DataLayout &DL, unsigned Reg, Type *Ty, 785 Optional<CallingConv::ID> CC) { 786 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 787 788 CallConv = CC; 789 790 for (EVT ValueVT : ValueVTs) { 791 unsigned NumRegs = 792 isABIMangled() 793 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getNumRegisters(Context, ValueVT); 795 MVT RegisterVT = 796 isABIMangled() 797 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 798 : TLI.getRegisterType(Context, ValueVT); 799 for (unsigned i = 0; i != NumRegs; ++i) 800 Regs.push_back(Reg + i); 801 RegVTs.push_back(RegisterVT); 802 RegCount.push_back(NumRegs); 803 Reg += NumRegs; 804 } 805 } 806 807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 808 FunctionLoweringInfo &FuncInfo, 809 const SDLoc &dl, SDValue &Chain, 810 SDValue *Flag, const Value *V) const { 811 // A Value with type {} or [0 x %t] needs no registers. 812 if (ValueVTs.empty()) 813 return SDValue(); 814 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 // Assemble the legal parts into the final values. 818 SmallVector<SDValue, 4> Values(ValueVTs.size()); 819 SmallVector<SDValue, 8> Parts; 820 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 821 // Copy the legal parts from the registers. 822 EVT ValueVT = ValueVTs[Value]; 823 unsigned NumRegs = RegCount[Value]; 824 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 825 *DAG.getContext(), 826 CallConv.getValue(), RegVTs[Value]) 827 : RegVTs[Value]; 828 829 Parts.resize(NumRegs); 830 for (unsigned i = 0; i != NumRegs; ++i) { 831 SDValue P; 832 if (!Flag) { 833 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 834 } else { 835 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 836 *Flag = P.getValue(2); 837 } 838 839 Chain = P.getValue(1); 840 Parts[i] = P; 841 842 // If the source register was virtual and if we know something about it, 843 // add an assert node. 844 if (!Register::isVirtualRegister(Regs[Part + i]) || 845 !RegisterVT.isInteger()) 846 continue; 847 848 const FunctionLoweringInfo::LiveOutInfo *LOI = 849 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 850 if (!LOI) 851 continue; 852 853 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 854 unsigned NumSignBits = LOI->NumSignBits; 855 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 856 857 if (NumZeroBits == RegSize) { 858 // The current value is a zero. 859 // Explicitly express that as it would be easier for 860 // optimizations to kick in. 861 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 862 continue; 863 } 864 865 // FIXME: We capture more information than the dag can represent. For 866 // now, just use the tightest assertzext/assertsext possible. 867 bool isSExt; 868 EVT FromVT(MVT::Other); 869 if (NumZeroBits) { 870 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 871 isSExt = false; 872 } else if (NumSignBits > 1) { 873 FromVT = 874 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 875 isSExt = true; 876 } else { 877 continue; 878 } 879 // Add an assertion node. 880 assert(FromVT != MVT::Other); 881 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 882 RegisterVT, P, DAG.getValueType(FromVT)); 883 } 884 885 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 886 RegisterVT, ValueVT, V, CallConv); 887 Part += NumRegs; 888 Parts.clear(); 889 } 890 891 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 892 } 893 894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 895 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 896 const Value *V, 897 ISD::NodeType PreferredExtendType) const { 898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 899 ISD::NodeType ExtendKind = PreferredExtendType; 900 901 // Get the list of the values's legal parts. 902 unsigned NumRegs = Regs.size(); 903 SmallVector<SDValue, 8> Parts(NumRegs); 904 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 905 unsigned NumParts = RegCount[Value]; 906 907 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 908 *DAG.getContext(), 909 CallConv.getValue(), RegVTs[Value]) 910 : RegVTs[Value]; 911 912 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 913 ExtendKind = ISD::ZERO_EXTEND; 914 915 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 916 NumParts, RegisterVT, V, CallConv, ExtendKind); 917 Part += NumParts; 918 } 919 920 // Copy the parts into the registers. 921 SmallVector<SDValue, 8> Chains(NumRegs); 922 for (unsigned i = 0; i != NumRegs; ++i) { 923 SDValue Part; 924 if (!Flag) { 925 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 926 } else { 927 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 928 *Flag = Part.getValue(1); 929 } 930 931 Chains[i] = Part.getValue(0); 932 } 933 934 if (NumRegs == 1 || Flag) 935 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 936 // flagged to it. That is the CopyToReg nodes and the user are considered 937 // a single scheduling unit. If we create a TokenFactor and return it as 938 // chain, then the TokenFactor is both a predecessor (operand) of the 939 // user as well as a successor (the TF operands are flagged to the user). 940 // c1, f1 = CopyToReg 941 // c2, f2 = CopyToReg 942 // c3 = TokenFactor c1, c2 943 // ... 944 // = op c3, ..., f2 945 Chain = Chains[NumRegs-1]; 946 else 947 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 948 } 949 950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 951 unsigned MatchingIdx, const SDLoc &dl, 952 SelectionDAG &DAG, 953 std::vector<SDValue> &Ops) const { 954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 955 956 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 957 if (HasMatching) 958 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 959 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 960 // Put the register class of the virtual registers in the flag word. That 961 // way, later passes can recompute register class constraints for inline 962 // assembly as well as normal instructions. 963 // Don't do this for tied operands that can use the regclass information 964 // from the def. 965 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 966 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 967 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 968 } 969 970 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 971 Ops.push_back(Res); 972 973 if (Code == InlineAsm::Kind_Clobber) { 974 // Clobbers should always have a 1:1 mapping with registers, and may 975 // reference registers that have illegal (e.g. vector) types. Hence, we 976 // shouldn't try to apply any sort of splitting logic to them. 977 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 978 "No 1:1 mapping from clobbers to regs?"); 979 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 980 (void)SP; 981 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 982 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 983 assert( 984 (Regs[I] != SP || 985 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 986 "If we clobbered the stack pointer, MFI should know about it."); 987 } 988 return; 989 } 990 991 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 993 MVT RegisterVT = RegVTs[Value]; 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, unsigned>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1119 // ConstrainedFPIntrinsics handle their own FMF. 1120 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1121 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1122 // maps to this instruction. 1123 // TODO: We could handle all flags (nsw, etc) here. 1124 // TODO: If an IR instruction maps to >1 node, only the final node will have 1125 // flags set. 1126 if (SDNode *Node = getNodeForIRValue(&I)) { 1127 SDNodeFlags IncomingFlags; 1128 IncomingFlags.copyFMF(*FPMO); 1129 if (!Node->getFlags().isDefined()) 1130 Node->setFlags(IncomingFlags); 1131 else 1132 Node->intersectFlagsWith(IncomingFlags); 1133 } 1134 } 1135 } 1136 1137 if (!I.isTerminator() && !HasTailCall && 1138 !isStatepoint(&I)) // statepoints handle their exports internally 1139 CopyToExportRegsIfNeeded(&I); 1140 1141 CurInst = nullptr; 1142 } 1143 1144 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1145 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1146 } 1147 1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1149 // Note: this doesn't use InstVisitor, because it has to work with 1150 // ConstantExpr's in addition to instructions. 1151 switch (Opcode) { 1152 default: llvm_unreachable("Unknown instruction type encountered!"); 1153 // Build the switch statement using the Instruction.def file. 1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1155 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1156 #include "llvm/IR/Instruction.def" 1157 } 1158 } 1159 1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1161 const DIExpression *Expr) { 1162 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1163 const DbgValueInst *DI = DDI.getDI(); 1164 DIVariable *DanglingVariable = DI->getVariable(); 1165 DIExpression *DanglingExpr = DI->getExpression(); 1166 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1167 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1168 return true; 1169 } 1170 return false; 1171 }; 1172 1173 for (auto &DDIMI : DanglingDebugInfoMap) { 1174 DanglingDebugInfoVector &DDIV = DDIMI.second; 1175 1176 // If debug info is to be dropped, run it through final checks to see 1177 // whether it can be salvaged. 1178 for (auto &DDI : DDIV) 1179 if (isMatchingDbgValue(DDI)) 1180 salvageUnresolvedDbgValue(DDI); 1181 1182 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1183 } 1184 } 1185 1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1187 // generate the debug data structures now that we've seen its definition. 1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1189 SDValue Val) { 1190 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1191 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1192 return; 1193 1194 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1195 for (auto &DDI : DDIV) { 1196 const DbgValueInst *DI = DDI.getDI(); 1197 assert(DI && "Ill-formed DanglingDebugInfo"); 1198 DebugLoc dl = DDI.getdl(); 1199 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1200 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1201 DILocalVariable *Variable = DI->getVariable(); 1202 DIExpression *Expr = DI->getExpression(); 1203 assert(Variable->isValidLocationForIntrinsic(dl) && 1204 "Expected inlined-at fields to agree"); 1205 SDDbgValue *SDV; 1206 if (Val.getNode()) { 1207 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1208 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1209 // we couldn't resolve it directly when examining the DbgValue intrinsic 1210 // in the first place we should not be more successful here). Unless we 1211 // have some test case that prove this to be correct we should avoid 1212 // calling EmitFuncArgumentDbgValue here. 1213 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1214 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1215 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1216 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1217 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1218 // inserted after the definition of Val when emitting the instructions 1219 // after ISel. An alternative could be to teach 1220 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1221 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1222 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1223 << ValSDNodeOrder << "\n"); 1224 SDV = getDbgValue(Val, Variable, Expr, dl, 1225 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1226 DAG.AddDbgValue(SDV, Val.getNode(), false); 1227 } else 1228 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1229 << "in EmitFuncArgumentDbgValue\n"); 1230 } else { 1231 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1232 auto Undef = 1233 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1234 auto SDV = 1235 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1236 DAG.AddDbgValue(SDV, nullptr, false); 1237 } 1238 } 1239 DDIV.clear(); 1240 } 1241 1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1243 Value *V = DDI.getDI()->getValue(); 1244 DILocalVariable *Var = DDI.getDI()->getVariable(); 1245 DIExpression *Expr = DDI.getDI()->getExpression(); 1246 DebugLoc DL = DDI.getdl(); 1247 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1248 unsigned SDOrder = DDI.getSDNodeOrder(); 1249 1250 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1251 // that DW_OP_stack_value is desired. 1252 assert(isa<DbgValueInst>(DDI.getDI())); 1253 bool StackValue = true; 1254 1255 // Can this Value can be encoded without any further work? 1256 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1257 return; 1258 1259 // Attempt to salvage back through as many instructions as possible. Bail if 1260 // a non-instruction is seen, such as a constant expression or global 1261 // variable. FIXME: Further work could recover those too. 1262 while (isa<Instruction>(V)) { 1263 Instruction &VAsInst = *cast<Instruction>(V); 1264 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1265 1266 // If we cannot salvage any further, and haven't yet found a suitable debug 1267 // expression, bail out. 1268 if (!NewExpr) 1269 break; 1270 1271 // New value and expr now represent this debuginfo. 1272 V = VAsInst.getOperand(0); 1273 Expr = NewExpr; 1274 1275 // Some kind of simplification occurred: check whether the operand of the 1276 // salvaged debug expression can be encoded in this DAG. 1277 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1278 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1279 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1280 return; 1281 } 1282 } 1283 1284 // This was the final opportunity to salvage this debug information, and it 1285 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1286 // any earlier variable location. 1287 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1288 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 1291 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1292 << "\n"); 1293 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1294 << "\n"); 1295 } 1296 1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1298 DIExpression *Expr, DebugLoc dl, 1299 DebugLoc InstDL, unsigned Order) { 1300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1301 SDDbgValue *SDV; 1302 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1303 isa<ConstantPointerNull>(V)) { 1304 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, nullptr, false); 1306 return true; 1307 } 1308 1309 // If the Value is a frame index, we can create a FrameIndex debug value 1310 // without relying on the DAG at all. 1311 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1312 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1313 if (SI != FuncInfo.StaticAllocaMap.end()) { 1314 auto SDV = 1315 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1316 /*IsIndirect*/ false, dl, SDNodeOrder); 1317 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1318 // is still available even if the SDNode gets optimized out. 1319 DAG.AddDbgValue(SDV, nullptr, false); 1320 return true; 1321 } 1322 } 1323 1324 // Do not use getValue() in here; we don't want to generate code at 1325 // this point if it hasn't been done yet. 1326 SDValue N = NodeMap[V]; 1327 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1328 N = UnusedArgNodeMap[V]; 1329 if (N.getNode()) { 1330 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1331 return true; 1332 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1333 DAG.AddDbgValue(SDV, N.getNode(), false); 1334 return true; 1335 } 1336 1337 // Special rules apply for the first dbg.values of parameter variables in a 1338 // function. Identify them by the fact they reference Argument Values, that 1339 // they're parameters, and they are parameters of the current function. We 1340 // need to let them dangle until they get an SDNode. 1341 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1342 !InstDL.getInlinedAt(); 1343 if (!IsParamOfFunc) { 1344 // The value is not used in this block yet (or it would have an SDNode). 1345 // We still want the value to appear for the user if possible -- if it has 1346 // an associated VReg, we can refer to that instead. 1347 auto VMI = FuncInfo.ValueMap.find(V); 1348 if (VMI != FuncInfo.ValueMap.end()) { 1349 unsigned Reg = VMI->second; 1350 // If this is a PHI node, it may be split up into several MI PHI nodes 1351 // (in FunctionLoweringInfo::set). 1352 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1353 V->getType(), None); 1354 if (RFV.occupiesMultipleRegs()) { 1355 unsigned Offset = 0; 1356 unsigned BitsToDescribe = 0; 1357 if (auto VarSize = Var->getSizeInBits()) 1358 BitsToDescribe = *VarSize; 1359 if (auto Fragment = Expr->getFragmentInfo()) 1360 BitsToDescribe = Fragment->SizeInBits; 1361 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1362 unsigned RegisterSize = RegAndSize.second; 1363 // Bail out if all bits are described already. 1364 if (Offset >= BitsToDescribe) 1365 break; 1366 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1367 ? BitsToDescribe - Offset 1368 : RegisterSize; 1369 auto FragmentExpr = DIExpression::createFragmentExpression( 1370 Expr, Offset, FragmentSize); 1371 if (!FragmentExpr) 1372 continue; 1373 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1374 false, dl, SDNodeOrder); 1375 DAG.AddDbgValue(SDV, nullptr, false); 1376 Offset += RegisterSize; 1377 } 1378 } else { 1379 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, nullptr, false); 1381 } 1382 return true; 1383 } 1384 } 1385 1386 return false; 1387 } 1388 1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1390 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1391 for (auto &Pair : DanglingDebugInfoMap) 1392 for (auto &DDI : Pair.second) 1393 salvageUnresolvedDbgValue(DDI); 1394 clearDanglingDebugInfo(); 1395 } 1396 1397 /// getCopyFromRegs - If there was virtual register allocated for the value V 1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1400 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1401 SDValue Result; 1402 1403 if (It != FuncInfo.ValueMap.end()) { 1404 Register InReg = It->second; 1405 1406 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1407 DAG.getDataLayout(), InReg, Ty, 1408 None); // This is not an ABI copy. 1409 SDValue Chain = DAG.getEntryNode(); 1410 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1411 V); 1412 resolveDanglingDebugInfo(V, Result); 1413 } 1414 1415 return Result; 1416 } 1417 1418 /// getValue - Return an SDValue for the given Value. 1419 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1420 // If we already have an SDValue for this value, use it. It's important 1421 // to do this first, so that we don't create a CopyFromReg if we already 1422 // have a regular SDValue. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) return N; 1425 1426 // If there's a virtual register allocated and initialized for this 1427 // value, use it. 1428 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1429 return copyFromReg; 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 /// getNonRegisterValue - Return an SDValue for the given Value, but 1439 /// don't look in FuncInfo.ValueMap for a virtual register. 1440 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1441 // If we already have an SDValue for this value, use it. 1442 SDValue &N = NodeMap[V]; 1443 if (N.getNode()) { 1444 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1445 // Remove the debug location from the node as the node is about to be used 1446 // in a location which may differ from the original debug location. This 1447 // is relevant to Constant and ConstantFP nodes because they can appear 1448 // as constant expressions inside PHI nodes. 1449 N->setDebugLoc(DebugLoc()); 1450 } 1451 return N; 1452 } 1453 1454 // Otherwise create a new SDValue and remember it. 1455 SDValue Val = getValueImpl(V); 1456 NodeMap[V] = Val; 1457 resolveDanglingDebugInfo(V, Val); 1458 return Val; 1459 } 1460 1461 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1462 /// Create an SDValue for the given value. 1463 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1465 1466 if (const Constant *C = dyn_cast<Constant>(V)) { 1467 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1468 1469 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1470 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1471 1472 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1473 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1474 1475 if (isa<ConstantPointerNull>(C)) { 1476 unsigned AS = V->getType()->getPointerAddressSpace(); 1477 return DAG.getConstant(0, getCurSDLoc(), 1478 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1479 } 1480 1481 if (match(C, m_VScale(DAG.getDataLayout()))) 1482 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1483 1484 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1485 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1486 1487 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1488 return DAG.getUNDEF(VT); 1489 1490 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1491 visit(CE->getOpcode(), *CE); 1492 SDValue N1 = NodeMap[V]; 1493 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1494 return N1; 1495 } 1496 1497 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1498 SmallVector<SDValue, 4> Constants; 1499 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1500 OI != OE; ++OI) { 1501 SDNode *Val = getValue(*OI).getNode(); 1502 // If the operand is an empty aggregate, there are no values. 1503 if (!Val) continue; 1504 // Add each leaf value from the operand to the Constants list 1505 // to form a flattened list of all the values. 1506 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1507 Constants.push_back(SDValue(Val, i)); 1508 } 1509 1510 return DAG.getMergeValues(Constants, getCurSDLoc()); 1511 } 1512 1513 if (const ConstantDataSequential *CDS = 1514 dyn_cast<ConstantDataSequential>(C)) { 1515 SmallVector<SDValue, 4> Ops; 1516 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1517 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1518 // Add each leaf value from the operand to the Constants list 1519 // to form a flattened list of all the values. 1520 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1521 Ops.push_back(SDValue(Val, i)); 1522 } 1523 1524 if (isa<ArrayType>(CDS->getType())) 1525 return DAG.getMergeValues(Ops, getCurSDLoc()); 1526 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1527 } 1528 1529 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1530 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1531 "Unknown struct or array constant!"); 1532 1533 SmallVector<EVT, 4> ValueVTs; 1534 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1535 unsigned NumElts = ValueVTs.size(); 1536 if (NumElts == 0) 1537 return SDValue(); // empty struct 1538 SmallVector<SDValue, 4> Constants(NumElts); 1539 for (unsigned i = 0; i != NumElts; ++i) { 1540 EVT EltVT = ValueVTs[i]; 1541 if (isa<UndefValue>(C)) 1542 Constants[i] = DAG.getUNDEF(EltVT); 1543 else if (EltVT.isFloatingPoint()) 1544 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1545 else 1546 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1547 } 1548 1549 return DAG.getMergeValues(Constants, getCurSDLoc()); 1550 } 1551 1552 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1553 return DAG.getBlockAddress(BA, VT); 1554 1555 VectorType *VecTy = cast<VectorType>(V->getType()); 1556 unsigned NumElements = VecTy->getNumElements(); 1557 1558 // Now that we know the number and type of the elements, get that number of 1559 // elements into the Ops array based on what kind of constant it is. 1560 SmallVector<SDValue, 16> Ops; 1561 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1562 for (unsigned i = 0; i != NumElements; ++i) 1563 Ops.push_back(getValue(CV->getOperand(i))); 1564 } else { 1565 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1566 EVT EltVT = 1567 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1568 1569 SDValue Op; 1570 if (EltVT.isFloatingPoint()) 1571 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1572 else 1573 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1574 Ops.assign(NumElements, Op); 1575 } 1576 1577 // Create a BUILD_VECTOR node. 1578 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1579 } 1580 1581 // If this is a static alloca, generate it as the frameindex instead of 1582 // computation. 1583 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1584 DenseMap<const AllocaInst*, int>::iterator SI = 1585 FuncInfo.StaticAllocaMap.find(AI); 1586 if (SI != FuncInfo.StaticAllocaMap.end()) 1587 return DAG.getFrameIndex(SI->second, 1588 TLI.getFrameIndexTy(DAG.getDataLayout())); 1589 } 1590 1591 // If this is an instruction which fast-isel has deferred, select it now. 1592 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1593 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1594 1595 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1596 Inst->getType(), getABIRegCopyCC(V)); 1597 SDValue Chain = DAG.getEntryNode(); 1598 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1599 } 1600 1601 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1602 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1603 } 1604 llvm_unreachable("Can't get register for value!"); 1605 } 1606 1607 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1608 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1609 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1610 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1611 bool IsSEH = isAsynchronousEHPersonality(Pers); 1612 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1613 if (!IsSEH) 1614 CatchPadMBB->setIsEHScopeEntry(); 1615 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1616 if (IsMSVCCXX || IsCoreCLR) 1617 CatchPadMBB->setIsEHFuncletEntry(); 1618 } 1619 1620 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1621 // Update machine-CFG edge. 1622 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1623 FuncInfo.MBB->addSuccessor(TargetMBB); 1624 1625 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1626 bool IsSEH = isAsynchronousEHPersonality(Pers); 1627 if (IsSEH) { 1628 // If this is not a fall-through branch or optimizations are switched off, 1629 // emit the branch. 1630 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1631 TM.getOptLevel() == CodeGenOpt::None) 1632 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1633 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1634 return; 1635 } 1636 1637 // Figure out the funclet membership for the catchret's successor. 1638 // This will be used by the FuncletLayout pass to determine how to order the 1639 // BB's. 1640 // A 'catchret' returns to the outer scope's color. 1641 Value *ParentPad = I.getCatchSwitchParentPad(); 1642 const BasicBlock *SuccessorColor; 1643 if (isa<ConstantTokenNone>(ParentPad)) 1644 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1645 else 1646 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1647 assert(SuccessorColor && "No parent funclet for catchret!"); 1648 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1649 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1650 1651 // Create the terminator node. 1652 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1653 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1654 DAG.getBasicBlock(SuccessorColorMBB)); 1655 DAG.setRoot(Ret); 1656 } 1657 1658 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1659 // Don't emit any special code for the cleanuppad instruction. It just marks 1660 // the start of an EH scope/funclet. 1661 FuncInfo.MBB->setIsEHScopeEntry(); 1662 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1663 if (Pers != EHPersonality::Wasm_CXX) { 1664 FuncInfo.MBB->setIsEHFuncletEntry(); 1665 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1666 } 1667 } 1668 1669 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1670 // the control flow always stops at the single catch pad, as it does for a 1671 // cleanup pad. In case the exception caught is not of the types the catch pad 1672 // catches, it will be rethrown by a rethrow. 1673 static void findWasmUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 while (EHPadBB) { 1679 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1680 if (isa<CleanupPadInst>(Pad)) { 1681 // Stop on cleanup pads. 1682 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1683 UnwindDests.back().first->setIsEHScopeEntry(); 1684 break; 1685 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1686 // Add the catchpad handlers to the possible destinations. We don't 1687 // continue to the unwind destination of the catchswitch for wasm. 1688 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1689 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1690 UnwindDests.back().first->setIsEHScopeEntry(); 1691 } 1692 break; 1693 } else { 1694 continue; 1695 } 1696 } 1697 } 1698 1699 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1700 /// many places it could ultimately go. In the IR, we have a single unwind 1701 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1702 /// This function skips over imaginary basic blocks that hold catchswitch 1703 /// instructions, and finds all the "real" machine 1704 /// basic block destinations. As those destinations may not be successors of 1705 /// EHPadBB, here we also calculate the edge probability to those destinations. 1706 /// The passed-in Prob is the edge probability to EHPadBB. 1707 static void findUnwindDestinations( 1708 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1709 BranchProbability Prob, 1710 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1711 &UnwindDests) { 1712 EHPersonality Personality = 1713 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1714 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1715 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1716 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1717 bool IsSEH = isAsynchronousEHPersonality(Personality); 1718 1719 if (IsWasmCXX) { 1720 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1721 assert(UnwindDests.size() <= 1 && 1722 "There should be at most one unwind destination for wasm"); 1723 return; 1724 } 1725 1726 while (EHPadBB) { 1727 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1728 BasicBlock *NewEHPadBB = nullptr; 1729 if (isa<LandingPadInst>(Pad)) { 1730 // Stop on landingpads. They are not funclets. 1731 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1732 break; 1733 } else if (isa<CleanupPadInst>(Pad)) { 1734 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1735 // personalities. 1736 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1737 UnwindDests.back().first->setIsEHScopeEntry(); 1738 UnwindDests.back().first->setIsEHFuncletEntry(); 1739 break; 1740 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1741 // Add the catchpad handlers to the possible destinations. 1742 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1743 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1744 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1745 if (IsMSVCCXX || IsCoreCLR) 1746 UnwindDests.back().first->setIsEHFuncletEntry(); 1747 if (!IsSEH) 1748 UnwindDests.back().first->setIsEHScopeEntry(); 1749 } 1750 NewEHPadBB = CatchSwitch->getUnwindDest(); 1751 } else { 1752 continue; 1753 } 1754 1755 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1756 if (BPI && NewEHPadBB) 1757 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1758 EHPadBB = NewEHPadBB; 1759 } 1760 } 1761 1762 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1763 // Update successor info. 1764 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1765 auto UnwindDest = I.getUnwindDest(); 1766 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1767 BranchProbability UnwindDestProb = 1768 (BPI && UnwindDest) 1769 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1770 : BranchProbability::getZero(); 1771 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1772 for (auto &UnwindDest : UnwindDests) { 1773 UnwindDest.first->setIsEHPad(); 1774 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1775 } 1776 FuncInfo.MBB->normalizeSuccProbs(); 1777 1778 // Create the terminator node. 1779 SDValue Ret = 1780 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1781 DAG.setRoot(Ret); 1782 } 1783 1784 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1785 report_fatal_error("visitCatchSwitch not yet implemented!"); 1786 } 1787 1788 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1790 auto &DL = DAG.getDataLayout(); 1791 SDValue Chain = getControlRoot(); 1792 SmallVector<ISD::OutputArg, 8> Outs; 1793 SmallVector<SDValue, 8> OutVals; 1794 1795 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1796 // lower 1797 // 1798 // %val = call <ty> @llvm.experimental.deoptimize() 1799 // ret <ty> %val 1800 // 1801 // differently. 1802 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1803 LowerDeoptimizingReturn(); 1804 return; 1805 } 1806 1807 if (!FuncInfo.CanLowerReturn) { 1808 unsigned DemoteReg = FuncInfo.DemoteRegister; 1809 const Function *F = I.getParent()->getParent(); 1810 1811 // Emit a store of the return value through the virtual register. 1812 // Leave Outs empty so that LowerReturn won't try to load return 1813 // registers the usual way. 1814 SmallVector<EVT, 1> PtrValueVTs; 1815 ComputeValueVTs(TLI, DL, 1816 F->getReturnType()->getPointerTo( 1817 DAG.getDataLayout().getAllocaAddrSpace()), 1818 PtrValueVTs); 1819 1820 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1821 DemoteReg, PtrValueVTs[0]); 1822 SDValue RetOp = getValue(I.getOperand(0)); 1823 1824 SmallVector<EVT, 4> ValueVTs, MemVTs; 1825 SmallVector<uint64_t, 4> Offsets; 1826 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1827 &Offsets); 1828 unsigned NumValues = ValueVTs.size(); 1829 1830 SmallVector<SDValue, 4> Chains(NumValues); 1831 for (unsigned i = 0; i != NumValues; ++i) { 1832 // An aggregate return value cannot wrap around the address space, so 1833 // offsets to its parts don't wrap either. 1834 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1835 1836 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1837 if (MemVTs[i] != ValueVTs[i]) 1838 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1839 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1840 // FIXME: better loc info would be nice. 1841 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1842 } 1843 1844 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1845 MVT::Other, Chains); 1846 } else if (I.getNumOperands() != 0) { 1847 SmallVector<EVT, 4> ValueVTs; 1848 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1849 unsigned NumValues = ValueVTs.size(); 1850 if (NumValues) { 1851 SDValue RetOp = getValue(I.getOperand(0)); 1852 1853 const Function *F = I.getParent()->getParent(); 1854 1855 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1856 I.getOperand(0)->getType(), F->getCallingConv(), 1857 /*IsVarArg*/ false); 1858 1859 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1860 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1861 Attribute::SExt)) 1862 ExtendKind = ISD::SIGN_EXTEND; 1863 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1864 Attribute::ZExt)) 1865 ExtendKind = ISD::ZERO_EXTEND; 1866 1867 LLVMContext &Context = F->getContext(); 1868 bool RetInReg = F->getAttributes().hasAttribute( 1869 AttributeList::ReturnIndex, Attribute::InReg); 1870 1871 for (unsigned j = 0; j != NumValues; ++j) { 1872 EVT VT = ValueVTs[j]; 1873 1874 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1875 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1876 1877 CallingConv::ID CC = F->getCallingConv(); 1878 1879 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1880 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1881 SmallVector<SDValue, 4> Parts(NumParts); 1882 getCopyToParts(DAG, getCurSDLoc(), 1883 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1884 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1885 1886 // 'inreg' on function refers to return value 1887 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1888 if (RetInReg) 1889 Flags.setInReg(); 1890 1891 if (I.getOperand(0)->getType()->isPointerTy()) { 1892 Flags.setPointer(); 1893 Flags.setPointerAddrSpace( 1894 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1895 } 1896 1897 if (NeedsRegBlock) { 1898 Flags.setInConsecutiveRegs(); 1899 if (j == NumValues - 1) 1900 Flags.setInConsecutiveRegsLast(); 1901 } 1902 1903 // Propagate extension type if any 1904 if (ExtendKind == ISD::SIGN_EXTEND) 1905 Flags.setSExt(); 1906 else if (ExtendKind == ISD::ZERO_EXTEND) 1907 Flags.setZExt(); 1908 1909 for (unsigned i = 0; i < NumParts; ++i) { 1910 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1911 VT, /*isfixed=*/true, 0, 0)); 1912 OutVals.push_back(Parts[i]); 1913 } 1914 } 1915 } 1916 } 1917 1918 // Push in swifterror virtual register as the last element of Outs. This makes 1919 // sure swifterror virtual register will be returned in the swifterror 1920 // physical register. 1921 const Function *F = I.getParent()->getParent(); 1922 if (TLI.supportSwiftError() && 1923 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1924 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1925 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1926 Flags.setSwiftError(); 1927 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1928 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1929 true /*isfixed*/, 1 /*origidx*/, 1930 0 /*partOffs*/)); 1931 // Create SDNode for the swifterror virtual register. 1932 OutVals.push_back( 1933 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1934 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1935 EVT(TLI.getPointerTy(DL)))); 1936 } 1937 1938 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1939 CallingConv::ID CallConv = 1940 DAG.getMachineFunction().getFunction().getCallingConv(); 1941 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1942 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1943 1944 // Verify that the target's LowerReturn behaved as expected. 1945 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1946 "LowerReturn didn't return a valid chain!"); 1947 1948 // Update the DAG with the new chain value resulting from return lowering. 1949 DAG.setRoot(Chain); 1950 } 1951 1952 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1953 /// created for it, emit nodes to copy the value into the virtual 1954 /// registers. 1955 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1956 // Skip empty types 1957 if (V->getType()->isEmptyTy()) 1958 return; 1959 1960 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1961 if (VMI != FuncInfo.ValueMap.end()) { 1962 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1963 CopyValueToVirtualRegister(V, VMI->second); 1964 } 1965 } 1966 1967 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1968 /// the current basic block, add it to ValueMap now so that we'll get a 1969 /// CopyTo/FromReg. 1970 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1971 // No need to export constants. 1972 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1973 1974 // Already exported? 1975 if (FuncInfo.isExportedInst(V)) return; 1976 1977 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1978 CopyValueToVirtualRegister(V, Reg); 1979 } 1980 1981 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1982 const BasicBlock *FromBB) { 1983 // The operands of the setcc have to be in this block. We don't know 1984 // how to export them from some other block. 1985 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1986 // Can export from current BB. 1987 if (VI->getParent() == FromBB) 1988 return true; 1989 1990 // Is already exported, noop. 1991 return FuncInfo.isExportedInst(V); 1992 } 1993 1994 // If this is an argument, we can export it if the BB is the entry block or 1995 // if it is already exported. 1996 if (isa<Argument>(V)) { 1997 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1998 return true; 1999 2000 // Otherwise, can only export this if it is already exported. 2001 return FuncInfo.isExportedInst(V); 2002 } 2003 2004 // Otherwise, constants can always be exported. 2005 return true; 2006 } 2007 2008 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2009 BranchProbability 2010 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2011 const MachineBasicBlock *Dst) const { 2012 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2013 const BasicBlock *SrcBB = Src->getBasicBlock(); 2014 const BasicBlock *DstBB = Dst->getBasicBlock(); 2015 if (!BPI) { 2016 // If BPI is not available, set the default probability as 1 / N, where N is 2017 // the number of successors. 2018 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2019 return BranchProbability(1, SuccSize); 2020 } 2021 return BPI->getEdgeProbability(SrcBB, DstBB); 2022 } 2023 2024 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2025 MachineBasicBlock *Dst, 2026 BranchProbability Prob) { 2027 if (!FuncInfo.BPI) 2028 Src->addSuccessorWithoutProb(Dst); 2029 else { 2030 if (Prob.isUnknown()) 2031 Prob = getEdgeProbability(Src, Dst); 2032 Src->addSuccessor(Dst, Prob); 2033 } 2034 } 2035 2036 static bool InBlock(const Value *V, const BasicBlock *BB) { 2037 if (const Instruction *I = dyn_cast<Instruction>(V)) 2038 return I->getParent() == BB; 2039 return true; 2040 } 2041 2042 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2043 /// This function emits a branch and is used at the leaves of an OR or an 2044 /// AND operator tree. 2045 void 2046 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2047 MachineBasicBlock *TBB, 2048 MachineBasicBlock *FBB, 2049 MachineBasicBlock *CurBB, 2050 MachineBasicBlock *SwitchBB, 2051 BranchProbability TProb, 2052 BranchProbability FProb, 2053 bool InvertCond) { 2054 const BasicBlock *BB = CurBB->getBasicBlock(); 2055 2056 // If the leaf of the tree is a comparison, merge the condition into 2057 // the caseblock. 2058 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2059 // The operands of the cmp have to be in this block. We don't know 2060 // how to export them from some other block. If this is the first block 2061 // of the sequence, no exporting is needed. 2062 if (CurBB == SwitchBB || 2063 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2064 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2065 ISD::CondCode Condition; 2066 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2067 ICmpInst::Predicate Pred = 2068 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2069 Condition = getICmpCondCode(Pred); 2070 } else { 2071 const FCmpInst *FC = cast<FCmpInst>(Cond); 2072 FCmpInst::Predicate Pred = 2073 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2074 Condition = getFCmpCondCode(Pred); 2075 if (TM.Options.NoNaNsFPMath) 2076 Condition = getFCmpCodeWithoutNaN(Condition); 2077 } 2078 2079 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2080 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2081 SL->SwitchCases.push_back(CB); 2082 return; 2083 } 2084 } 2085 2086 // Create a CaseBlock record representing this branch. 2087 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2088 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2089 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2090 SL->SwitchCases.push_back(CB); 2091 } 2092 2093 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2094 MachineBasicBlock *TBB, 2095 MachineBasicBlock *FBB, 2096 MachineBasicBlock *CurBB, 2097 MachineBasicBlock *SwitchBB, 2098 Instruction::BinaryOps Opc, 2099 BranchProbability TProb, 2100 BranchProbability FProb, 2101 bool InvertCond) { 2102 // Skip over not part of the tree and remember to invert op and operands at 2103 // next level. 2104 Value *NotCond; 2105 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2106 InBlock(NotCond, CurBB->getBasicBlock())) { 2107 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2108 !InvertCond); 2109 return; 2110 } 2111 2112 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2113 // Compute the effective opcode for Cond, taking into account whether it needs 2114 // to be inverted, e.g. 2115 // and (not (or A, B)), C 2116 // gets lowered as 2117 // and (and (not A, not B), C) 2118 unsigned BOpc = 0; 2119 if (BOp) { 2120 BOpc = BOp->getOpcode(); 2121 if (InvertCond) { 2122 if (BOpc == Instruction::And) 2123 BOpc = Instruction::Or; 2124 else if (BOpc == Instruction::Or) 2125 BOpc = Instruction::And; 2126 } 2127 } 2128 2129 // If this node is not part of the or/and tree, emit it as a branch. 2130 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2131 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2132 BOp->getParent() != CurBB->getBasicBlock() || 2133 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2134 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2135 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2136 TProb, FProb, InvertCond); 2137 return; 2138 } 2139 2140 // Create TmpBB after CurBB. 2141 MachineFunction::iterator BBI(CurBB); 2142 MachineFunction &MF = DAG.getMachineFunction(); 2143 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2144 CurBB->getParent()->insert(++BBI, TmpBB); 2145 2146 if (Opc == Instruction::Or) { 2147 // Codegen X | Y as: 2148 // BB1: 2149 // jmp_if_X TBB 2150 // jmp TmpBB 2151 // TmpBB: 2152 // jmp_if_Y TBB 2153 // jmp FBB 2154 // 2155 2156 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2157 // The requirement is that 2158 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2159 // = TrueProb for original BB. 2160 // Assuming the original probabilities are A and B, one choice is to set 2161 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2162 // A/(1+B) and 2B/(1+B). This choice assumes that 2163 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2164 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2165 // TmpBB, but the math is more complicated. 2166 2167 auto NewTrueProb = TProb / 2; 2168 auto NewFalseProb = TProb / 2 + FProb; 2169 // Emit the LHS condition. 2170 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2171 NewTrueProb, NewFalseProb, InvertCond); 2172 2173 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2174 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2175 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2176 // Emit the RHS condition into TmpBB. 2177 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2178 Probs[0], Probs[1], InvertCond); 2179 } else { 2180 assert(Opc == Instruction::And && "Unknown merge op!"); 2181 // Codegen X & Y as: 2182 // BB1: 2183 // jmp_if_X TmpBB 2184 // jmp FBB 2185 // TmpBB: 2186 // jmp_if_Y TBB 2187 // jmp FBB 2188 // 2189 // This requires creation of TmpBB after CurBB. 2190 2191 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2192 // The requirement is that 2193 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2194 // = FalseProb for original BB. 2195 // Assuming the original probabilities are A and B, one choice is to set 2196 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2197 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2198 // TrueProb for BB1 * FalseProb for TmpBB. 2199 2200 auto NewTrueProb = TProb + FProb / 2; 2201 auto NewFalseProb = FProb / 2; 2202 // Emit the LHS condition. 2203 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2204 NewTrueProb, NewFalseProb, InvertCond); 2205 2206 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2207 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2208 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2209 // Emit the RHS condition into TmpBB. 2210 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2211 Probs[0], Probs[1], InvertCond); 2212 } 2213 } 2214 2215 /// If the set of cases should be emitted as a series of branches, return true. 2216 /// If we should emit this as a bunch of and/or'd together conditions, return 2217 /// false. 2218 bool 2219 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2220 if (Cases.size() != 2) return true; 2221 2222 // If this is two comparisons of the same values or'd or and'd together, they 2223 // will get folded into a single comparison, so don't emit two blocks. 2224 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2225 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2226 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2227 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2228 return false; 2229 } 2230 2231 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2232 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2233 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2234 Cases[0].CC == Cases[1].CC && 2235 isa<Constant>(Cases[0].CmpRHS) && 2236 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2237 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2238 return false; 2239 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2240 return false; 2241 } 2242 2243 return true; 2244 } 2245 2246 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2247 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2248 2249 // Update machine-CFG edges. 2250 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2251 2252 if (I.isUnconditional()) { 2253 // Update machine-CFG edges. 2254 BrMBB->addSuccessor(Succ0MBB); 2255 2256 // If this is not a fall-through branch or optimizations are switched off, 2257 // emit the branch. 2258 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2259 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2260 MVT::Other, getControlRoot(), 2261 DAG.getBasicBlock(Succ0MBB))); 2262 2263 return; 2264 } 2265 2266 // If this condition is one of the special cases we handle, do special stuff 2267 // now. 2268 const Value *CondVal = I.getCondition(); 2269 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2270 2271 // If this is a series of conditions that are or'd or and'd together, emit 2272 // this as a sequence of branches instead of setcc's with and/or operations. 2273 // As long as jumps are not expensive, this should improve performance. 2274 // For example, instead of something like: 2275 // cmp A, B 2276 // C = seteq 2277 // cmp D, E 2278 // F = setle 2279 // or C, F 2280 // jnz foo 2281 // Emit: 2282 // cmp A, B 2283 // je foo 2284 // cmp D, E 2285 // jle foo 2286 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2287 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2288 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2289 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2290 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2291 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2292 Opcode, 2293 getEdgeProbability(BrMBB, Succ0MBB), 2294 getEdgeProbability(BrMBB, Succ1MBB), 2295 /*InvertCond=*/false); 2296 // If the compares in later blocks need to use values not currently 2297 // exported from this block, export them now. This block should always 2298 // be the first entry. 2299 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2300 2301 // Allow some cases to be rejected. 2302 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2303 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2304 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2305 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2306 } 2307 2308 // Emit the branch for this block. 2309 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2310 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2311 return; 2312 } 2313 2314 // Okay, we decided not to do this, remove any inserted MBB's and clear 2315 // SwitchCases. 2316 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2317 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2318 2319 SL->SwitchCases.clear(); 2320 } 2321 } 2322 2323 // Create a CaseBlock record representing this branch. 2324 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2325 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2326 2327 // Use visitSwitchCase to actually insert the fast branch sequence for this 2328 // cond branch. 2329 visitSwitchCase(CB, BrMBB); 2330 } 2331 2332 /// visitSwitchCase - Emits the necessary code to represent a single node in 2333 /// the binary search tree resulting from lowering a switch instruction. 2334 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2335 MachineBasicBlock *SwitchBB) { 2336 SDValue Cond; 2337 SDValue CondLHS = getValue(CB.CmpLHS); 2338 SDLoc dl = CB.DL; 2339 2340 if (CB.CC == ISD::SETTRUE) { 2341 // Branch or fall through to TrueBB. 2342 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2343 SwitchBB->normalizeSuccProbs(); 2344 if (CB.TrueBB != NextBlock(SwitchBB)) { 2345 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2346 DAG.getBasicBlock(CB.TrueBB))); 2347 } 2348 return; 2349 } 2350 2351 auto &TLI = DAG.getTargetLoweringInfo(); 2352 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2353 2354 // Build the setcc now. 2355 if (!CB.CmpMHS) { 2356 // Fold "(X == true)" to X and "(X == false)" to !X to 2357 // handle common cases produced by branch lowering. 2358 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2359 CB.CC == ISD::SETEQ) 2360 Cond = CondLHS; 2361 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2362 CB.CC == ISD::SETEQ) { 2363 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2364 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2365 } else { 2366 SDValue CondRHS = getValue(CB.CmpRHS); 2367 2368 // If a pointer's DAG type is larger than its memory type then the DAG 2369 // values are zero-extended. This breaks signed comparisons so truncate 2370 // back to the underlying type before doing the compare. 2371 if (CondLHS.getValueType() != MemVT) { 2372 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2373 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2374 } 2375 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2376 } 2377 } else { 2378 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2379 2380 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2381 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2382 2383 SDValue CmpOp = getValue(CB.CmpMHS); 2384 EVT VT = CmpOp.getValueType(); 2385 2386 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2387 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2388 ISD::SETLE); 2389 } else { 2390 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2391 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2392 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2393 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2394 } 2395 } 2396 2397 // Update successor info 2398 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2399 // TrueBB and FalseBB are always different unless the incoming IR is 2400 // degenerate. This only happens when running llc on weird IR. 2401 if (CB.TrueBB != CB.FalseBB) 2402 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2403 SwitchBB->normalizeSuccProbs(); 2404 2405 // If the lhs block is the next block, invert the condition so that we can 2406 // fall through to the lhs instead of the rhs block. 2407 if (CB.TrueBB == NextBlock(SwitchBB)) { 2408 std::swap(CB.TrueBB, CB.FalseBB); 2409 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2410 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2411 } 2412 2413 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2414 MVT::Other, getControlRoot(), Cond, 2415 DAG.getBasicBlock(CB.TrueBB)); 2416 2417 // Insert the false branch. Do this even if it's a fall through branch, 2418 // this makes it easier to do DAG optimizations which require inverting 2419 // the branch condition. 2420 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2421 DAG.getBasicBlock(CB.FalseBB)); 2422 2423 DAG.setRoot(BrCond); 2424 } 2425 2426 /// visitJumpTable - Emit JumpTable node in the current MBB 2427 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2428 // Emit the code for the jump table 2429 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2430 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2431 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2432 JT.Reg, PTy); 2433 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2434 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2435 MVT::Other, Index.getValue(1), 2436 Table, Index); 2437 DAG.setRoot(BrJumpTable); 2438 } 2439 2440 /// visitJumpTableHeader - This function emits necessary code to produce index 2441 /// in the JumpTable from switch case. 2442 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2443 JumpTableHeader &JTH, 2444 MachineBasicBlock *SwitchBB) { 2445 SDLoc dl = getCurSDLoc(); 2446 2447 // Subtract the lowest switch case value from the value being switched on. 2448 SDValue SwitchOp = getValue(JTH.SValue); 2449 EVT VT = SwitchOp.getValueType(); 2450 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2451 DAG.getConstant(JTH.First, dl, VT)); 2452 2453 // The SDNode we just created, which holds the value being switched on minus 2454 // the smallest case value, needs to be copied to a virtual register so it 2455 // can be used as an index into the jump table in a subsequent basic block. 2456 // This value may be smaller or larger than the target's pointer type, and 2457 // therefore require extension or truncating. 2458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2459 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2460 2461 unsigned JumpTableReg = 2462 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2463 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2464 JumpTableReg, SwitchOp); 2465 JT.Reg = JumpTableReg; 2466 2467 if (!JTH.OmitRangeCheck) { 2468 // Emit the range check for the jump table, and branch to the default block 2469 // for the switch statement if the value being switched on exceeds the 2470 // largest case in the switch. 2471 SDValue CMP = DAG.getSetCC( 2472 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2473 Sub.getValueType()), 2474 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2475 2476 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2477 MVT::Other, CopyTo, CMP, 2478 DAG.getBasicBlock(JT.Default)); 2479 2480 // Avoid emitting unnecessary branches to the next block. 2481 if (JT.MBB != NextBlock(SwitchBB)) 2482 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2483 DAG.getBasicBlock(JT.MBB)); 2484 2485 DAG.setRoot(BrCond); 2486 } else { 2487 // Avoid emitting unnecessary branches to the next block. 2488 if (JT.MBB != NextBlock(SwitchBB)) 2489 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2490 DAG.getBasicBlock(JT.MBB))); 2491 else 2492 DAG.setRoot(CopyTo); 2493 } 2494 } 2495 2496 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2497 /// variable if there exists one. 2498 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2499 SDValue &Chain) { 2500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2501 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2502 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2503 MachineFunction &MF = DAG.getMachineFunction(); 2504 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2505 MachineSDNode *Node = 2506 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2507 if (Global) { 2508 MachinePointerInfo MPInfo(Global); 2509 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2510 MachineMemOperand::MODereferenceable; 2511 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2512 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2513 DAG.setNodeMemRefs(Node, {MemRef}); 2514 } 2515 if (PtrTy != PtrMemTy) 2516 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2517 return SDValue(Node, 0); 2518 } 2519 2520 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2521 /// tail spliced into a stack protector check success bb. 2522 /// 2523 /// For a high level explanation of how this fits into the stack protector 2524 /// generation see the comment on the declaration of class 2525 /// StackProtectorDescriptor. 2526 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2527 MachineBasicBlock *ParentBB) { 2528 2529 // First create the loads to the guard/stack slot for the comparison. 2530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2531 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2532 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2533 2534 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2535 int FI = MFI.getStackProtectorIndex(); 2536 2537 SDValue Guard; 2538 SDLoc dl = getCurSDLoc(); 2539 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2540 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2541 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2542 2543 // Generate code to load the content of the guard slot. 2544 SDValue GuardVal = DAG.getLoad( 2545 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2546 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2547 MachineMemOperand::MOVolatile); 2548 2549 if (TLI.useStackGuardXorFP()) 2550 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2551 2552 // Retrieve guard check function, nullptr if instrumentation is inlined. 2553 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2554 // The target provides a guard check function to validate the guard value. 2555 // Generate a call to that function with the content of the guard slot as 2556 // argument. 2557 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2558 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2559 2560 TargetLowering::ArgListTy Args; 2561 TargetLowering::ArgListEntry Entry; 2562 Entry.Node = GuardVal; 2563 Entry.Ty = FnTy->getParamType(0); 2564 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2565 Entry.IsInReg = true; 2566 Args.push_back(Entry); 2567 2568 TargetLowering::CallLoweringInfo CLI(DAG); 2569 CLI.setDebugLoc(getCurSDLoc()) 2570 .setChain(DAG.getEntryNode()) 2571 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2572 getValue(GuardCheckFn), std::move(Args)); 2573 2574 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2575 DAG.setRoot(Result.second); 2576 return; 2577 } 2578 2579 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2580 // Otherwise, emit a volatile load to retrieve the stack guard value. 2581 SDValue Chain = DAG.getEntryNode(); 2582 if (TLI.useLoadStackGuardNode()) { 2583 Guard = getLoadStackGuard(DAG, dl, Chain); 2584 } else { 2585 const Value *IRGuard = TLI.getSDagStackGuard(M); 2586 SDValue GuardPtr = getValue(IRGuard); 2587 2588 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2589 MachinePointerInfo(IRGuard, 0), Align, 2590 MachineMemOperand::MOVolatile); 2591 } 2592 2593 // Perform the comparison via a getsetcc. 2594 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2595 *DAG.getContext(), 2596 Guard.getValueType()), 2597 Guard, GuardVal, ISD::SETNE); 2598 2599 // If the guard/stackslot do not equal, branch to failure MBB. 2600 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2601 MVT::Other, GuardVal.getOperand(0), 2602 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2603 // Otherwise branch to success MBB. 2604 SDValue Br = DAG.getNode(ISD::BR, dl, 2605 MVT::Other, BrCond, 2606 DAG.getBasicBlock(SPD.getSuccessMBB())); 2607 2608 DAG.setRoot(Br); 2609 } 2610 2611 /// Codegen the failure basic block for a stack protector check. 2612 /// 2613 /// A failure stack protector machine basic block consists simply of a call to 2614 /// __stack_chk_fail(). 2615 /// 2616 /// For a high level explanation of how this fits into the stack protector 2617 /// generation see the comment on the declaration of class 2618 /// StackProtectorDescriptor. 2619 void 2620 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2622 TargetLowering::MakeLibCallOptions CallOptions; 2623 CallOptions.setDiscardResult(true); 2624 SDValue Chain = 2625 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2626 None, CallOptions, getCurSDLoc()).second; 2627 // On PS4, the "return address" must still be within the calling function, 2628 // even if it's at the very end, so emit an explicit TRAP here. 2629 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2630 if (TM.getTargetTriple().isPS4CPU()) 2631 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2632 2633 DAG.setRoot(Chain); 2634 } 2635 2636 /// visitBitTestHeader - This function emits necessary code to produce value 2637 /// suitable for "bit tests" 2638 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2639 MachineBasicBlock *SwitchBB) { 2640 SDLoc dl = getCurSDLoc(); 2641 2642 // Subtract the minimum value. 2643 SDValue SwitchOp = getValue(B.SValue); 2644 EVT VT = SwitchOp.getValueType(); 2645 SDValue RangeSub = 2646 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2647 2648 // Determine the type of the test operands. 2649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2650 bool UsePtrType = false; 2651 if (!TLI.isTypeLegal(VT)) { 2652 UsePtrType = true; 2653 } else { 2654 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2655 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2656 // Switch table case range are encoded into series of masks. 2657 // Just use pointer type, it's guaranteed to fit. 2658 UsePtrType = true; 2659 break; 2660 } 2661 } 2662 SDValue Sub = RangeSub; 2663 if (UsePtrType) { 2664 VT = TLI.getPointerTy(DAG.getDataLayout()); 2665 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2666 } 2667 2668 B.RegVT = VT.getSimpleVT(); 2669 B.Reg = FuncInfo.CreateReg(B.RegVT); 2670 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2671 2672 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2673 2674 if (!B.OmitRangeCheck) 2675 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2676 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2677 SwitchBB->normalizeSuccProbs(); 2678 2679 SDValue Root = CopyTo; 2680 if (!B.OmitRangeCheck) { 2681 // Conditional branch to the default block. 2682 SDValue RangeCmp = DAG.getSetCC(dl, 2683 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2684 RangeSub.getValueType()), 2685 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2686 ISD::SETUGT); 2687 2688 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2689 DAG.getBasicBlock(B.Default)); 2690 } 2691 2692 // Avoid emitting unnecessary branches to the next block. 2693 if (MBB != NextBlock(SwitchBB)) 2694 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2695 2696 DAG.setRoot(Root); 2697 } 2698 2699 /// visitBitTestCase - this function produces one "bit test" 2700 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2701 MachineBasicBlock* NextMBB, 2702 BranchProbability BranchProbToNext, 2703 unsigned Reg, 2704 BitTestCase &B, 2705 MachineBasicBlock *SwitchBB) { 2706 SDLoc dl = getCurSDLoc(); 2707 MVT VT = BB.RegVT; 2708 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2709 SDValue Cmp; 2710 unsigned PopCount = countPopulation(B.Mask); 2711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2712 if (PopCount == 1) { 2713 // Testing for a single bit; just compare the shift count with what it 2714 // would need to be to shift a 1 bit in that position. 2715 Cmp = DAG.getSetCC( 2716 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2717 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2718 ISD::SETEQ); 2719 } else if (PopCount == BB.Range) { 2720 // There is only one zero bit in the range, test for it directly. 2721 Cmp = DAG.getSetCC( 2722 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2723 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2724 ISD::SETNE); 2725 } else { 2726 // Make desired shift 2727 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2728 DAG.getConstant(1, dl, VT), ShiftOp); 2729 2730 // Emit bit tests and jumps 2731 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2732 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2733 Cmp = DAG.getSetCC( 2734 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2735 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2736 } 2737 2738 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2739 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2740 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2741 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2742 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2743 // one as they are relative probabilities (and thus work more like weights), 2744 // and hence we need to normalize them to let the sum of them become one. 2745 SwitchBB->normalizeSuccProbs(); 2746 2747 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2748 MVT::Other, getControlRoot(), 2749 Cmp, DAG.getBasicBlock(B.TargetBB)); 2750 2751 // Avoid emitting unnecessary branches to the next block. 2752 if (NextMBB != NextBlock(SwitchBB)) 2753 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2754 DAG.getBasicBlock(NextMBB)); 2755 2756 DAG.setRoot(BrAnd); 2757 } 2758 2759 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2760 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2761 2762 // Retrieve successors. Look through artificial IR level blocks like 2763 // catchswitch for successors. 2764 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2765 const BasicBlock *EHPadBB = I.getSuccessor(1); 2766 2767 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2768 // have to do anything here to lower funclet bundles. 2769 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2770 LLVMContext::OB_funclet, 2771 LLVMContext::OB_cfguardtarget}) && 2772 "Cannot lower invokes with arbitrary operand bundles yet!"); 2773 2774 const Value *Callee(I.getCalledValue()); 2775 const Function *Fn = dyn_cast<Function>(Callee); 2776 if (isa<InlineAsm>(Callee)) 2777 visitInlineAsm(I); 2778 else if (Fn && Fn->isIntrinsic()) { 2779 switch (Fn->getIntrinsicID()) { 2780 default: 2781 llvm_unreachable("Cannot invoke this intrinsic"); 2782 case Intrinsic::donothing: 2783 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2784 break; 2785 case Intrinsic::experimental_patchpoint_void: 2786 case Intrinsic::experimental_patchpoint_i64: 2787 visitPatchpoint(I, EHPadBB); 2788 break; 2789 case Intrinsic::experimental_gc_statepoint: 2790 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2791 break; 2792 case Intrinsic::wasm_rethrow_in_catch: { 2793 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2794 // special because it can be invoked, so we manually lower it to a DAG 2795 // node here. 2796 SmallVector<SDValue, 8> Ops; 2797 Ops.push_back(getRoot()); // inchain 2798 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2799 Ops.push_back( 2800 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2801 TLI.getPointerTy(DAG.getDataLayout()))); 2802 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2803 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2804 break; 2805 } 2806 } 2807 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2808 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2809 // Eventually we will support lowering the @llvm.experimental.deoptimize 2810 // intrinsic, and right now there are no plans to support other intrinsics 2811 // with deopt state. 2812 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2813 } else { 2814 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2815 } 2816 2817 // If the value of the invoke is used outside of its defining block, make it 2818 // available as a virtual register. 2819 // We already took care of the exported value for the statepoint instruction 2820 // during call to the LowerStatepoint. 2821 if (!isStatepoint(I)) { 2822 CopyToExportRegsIfNeeded(&I); 2823 } 2824 2825 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2826 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2827 BranchProbability EHPadBBProb = 2828 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2829 : BranchProbability::getZero(); 2830 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2831 2832 // Update successor info. 2833 addSuccessorWithProb(InvokeMBB, Return); 2834 for (auto &UnwindDest : UnwindDests) { 2835 UnwindDest.first->setIsEHPad(); 2836 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2837 } 2838 InvokeMBB->normalizeSuccProbs(); 2839 2840 // Drop into normal successor. 2841 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2842 DAG.getBasicBlock(Return))); 2843 } 2844 2845 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2846 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2847 2848 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2849 // have to do anything here to lower funclet bundles. 2850 assert(!I.hasOperandBundlesOtherThan( 2851 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2852 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2853 2854 assert(isa<InlineAsm>(I.getCalledValue()) && 2855 "Only know how to handle inlineasm callbr"); 2856 visitInlineAsm(I); 2857 CopyToExportRegsIfNeeded(&I); 2858 2859 // Retrieve successors. 2860 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2861 Return->setInlineAsmBrDefaultTarget(); 2862 2863 // Update successor info. 2864 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2865 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2866 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2867 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2868 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2869 } 2870 CallBrMBB->normalizeSuccProbs(); 2871 2872 // Drop into default successor. 2873 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2874 MVT::Other, getControlRoot(), 2875 DAG.getBasicBlock(Return))); 2876 } 2877 2878 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2879 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2880 } 2881 2882 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2883 assert(FuncInfo.MBB->isEHPad() && 2884 "Call to landingpad not in landing pad!"); 2885 2886 // If there aren't registers to copy the values into (e.g., during SjLj 2887 // exceptions), then don't bother to create these DAG nodes. 2888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2889 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2890 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2891 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2892 return; 2893 2894 // If landingpad's return type is token type, we don't create DAG nodes 2895 // for its exception pointer and selector value. The extraction of exception 2896 // pointer or selector value from token type landingpads is not currently 2897 // supported. 2898 if (LP.getType()->isTokenTy()) 2899 return; 2900 2901 SmallVector<EVT, 2> ValueVTs; 2902 SDLoc dl = getCurSDLoc(); 2903 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2904 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2905 2906 // Get the two live-in registers as SDValues. The physregs have already been 2907 // copied into virtual registers. 2908 SDValue Ops[2]; 2909 if (FuncInfo.ExceptionPointerVirtReg) { 2910 Ops[0] = DAG.getZExtOrTrunc( 2911 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2912 FuncInfo.ExceptionPointerVirtReg, 2913 TLI.getPointerTy(DAG.getDataLayout())), 2914 dl, ValueVTs[0]); 2915 } else { 2916 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2917 } 2918 Ops[1] = DAG.getZExtOrTrunc( 2919 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2920 FuncInfo.ExceptionSelectorVirtReg, 2921 TLI.getPointerTy(DAG.getDataLayout())), 2922 dl, ValueVTs[1]); 2923 2924 // Merge into one. 2925 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2926 DAG.getVTList(ValueVTs), Ops); 2927 setValue(&LP, Res); 2928 } 2929 2930 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2931 MachineBasicBlock *Last) { 2932 // Update JTCases. 2933 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2934 if (SL->JTCases[i].first.HeaderBB == First) 2935 SL->JTCases[i].first.HeaderBB = Last; 2936 2937 // Update BitTestCases. 2938 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2939 if (SL->BitTestCases[i].Parent == First) 2940 SL->BitTestCases[i].Parent = Last; 2941 2942 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2943 // successors of the fallthrough block. Here, we add PHI operands for the 2944 // successors of the INLINEASM_BR block itself. 2945 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2946 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2947 if (First->isSuccessor(pair.first->getParent())) 2948 MachineInstrBuilder(*First->getParent(), pair.first) 2949 .addReg(pair.second) 2950 .addMBB(First); 2951 } 2952 2953 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2954 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2955 2956 // Update machine-CFG edges with unique successors. 2957 SmallSet<BasicBlock*, 32> Done; 2958 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2959 BasicBlock *BB = I.getSuccessor(i); 2960 bool Inserted = Done.insert(BB).second; 2961 if (!Inserted) 2962 continue; 2963 2964 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2965 addSuccessorWithProb(IndirectBrMBB, Succ); 2966 } 2967 IndirectBrMBB->normalizeSuccProbs(); 2968 2969 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2970 MVT::Other, getControlRoot(), 2971 getValue(I.getAddress()))); 2972 } 2973 2974 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2975 if (!DAG.getTarget().Options.TrapUnreachable) 2976 return; 2977 2978 // We may be able to ignore unreachable behind a noreturn call. 2979 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2980 const BasicBlock &BB = *I.getParent(); 2981 if (&I != &BB.front()) { 2982 BasicBlock::const_iterator PredI = 2983 std::prev(BasicBlock::const_iterator(&I)); 2984 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2985 if (Call->doesNotReturn()) 2986 return; 2987 } 2988 } 2989 } 2990 2991 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2992 } 2993 2994 void SelectionDAGBuilder::visitFSub(const User &I) { 2995 // -0.0 - X --> fneg 2996 Type *Ty = I.getType(); 2997 if (isa<Constant>(I.getOperand(0)) && 2998 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2999 SDValue Op2 = getValue(I.getOperand(1)); 3000 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3001 Op2.getValueType(), Op2)); 3002 return; 3003 } 3004 3005 visitBinary(I, ISD::FSUB); 3006 } 3007 3008 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3009 SDNodeFlags Flags; 3010 3011 SDValue Op = getValue(I.getOperand(0)); 3012 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3013 Op, Flags); 3014 setValue(&I, UnNodeValue); 3015 } 3016 3017 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3018 SDNodeFlags Flags; 3019 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3020 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3021 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3022 } 3023 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3024 Flags.setExact(ExactOp->isExact()); 3025 } 3026 3027 SDValue Op1 = getValue(I.getOperand(0)); 3028 SDValue Op2 = getValue(I.getOperand(1)); 3029 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3030 Op1, Op2, Flags); 3031 setValue(&I, BinNodeValue); 3032 } 3033 3034 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3035 SDValue Op1 = getValue(I.getOperand(0)); 3036 SDValue Op2 = getValue(I.getOperand(1)); 3037 3038 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3039 Op1.getValueType(), DAG.getDataLayout()); 3040 3041 // Coerce the shift amount to the right type if we can. 3042 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3043 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3044 unsigned Op2Size = Op2.getValueSizeInBits(); 3045 SDLoc DL = getCurSDLoc(); 3046 3047 // If the operand is smaller than the shift count type, promote it. 3048 if (ShiftSize > Op2Size) 3049 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3050 3051 // If the operand is larger than the shift count type but the shift 3052 // count type has enough bits to represent any shift value, truncate 3053 // it now. This is a common case and it exposes the truncate to 3054 // optimization early. 3055 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3056 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3057 // Otherwise we'll need to temporarily settle for some other convenient 3058 // type. Type legalization will make adjustments once the shiftee is split. 3059 else 3060 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3061 } 3062 3063 bool nuw = false; 3064 bool nsw = false; 3065 bool exact = false; 3066 3067 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3068 3069 if (const OverflowingBinaryOperator *OFBinOp = 3070 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3071 nuw = OFBinOp->hasNoUnsignedWrap(); 3072 nsw = OFBinOp->hasNoSignedWrap(); 3073 } 3074 if (const PossiblyExactOperator *ExactOp = 3075 dyn_cast<const PossiblyExactOperator>(&I)) 3076 exact = ExactOp->isExact(); 3077 } 3078 SDNodeFlags Flags; 3079 Flags.setExact(exact); 3080 Flags.setNoSignedWrap(nsw); 3081 Flags.setNoUnsignedWrap(nuw); 3082 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3083 Flags); 3084 setValue(&I, Res); 3085 } 3086 3087 void SelectionDAGBuilder::visitSDiv(const User &I) { 3088 SDValue Op1 = getValue(I.getOperand(0)); 3089 SDValue Op2 = getValue(I.getOperand(1)); 3090 3091 SDNodeFlags Flags; 3092 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3093 cast<PossiblyExactOperator>(&I)->isExact()); 3094 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3095 Op2, Flags)); 3096 } 3097 3098 void SelectionDAGBuilder::visitICmp(const User &I) { 3099 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3100 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3101 predicate = IC->getPredicate(); 3102 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3103 predicate = ICmpInst::Predicate(IC->getPredicate()); 3104 SDValue Op1 = getValue(I.getOperand(0)); 3105 SDValue Op2 = getValue(I.getOperand(1)); 3106 ISD::CondCode Opcode = getICmpCondCode(predicate); 3107 3108 auto &TLI = DAG.getTargetLoweringInfo(); 3109 EVT MemVT = 3110 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3111 3112 // If a pointer's DAG type is larger than its memory type then the DAG values 3113 // are zero-extended. This breaks signed comparisons so truncate back to the 3114 // underlying type before doing the compare. 3115 if (Op1.getValueType() != MemVT) { 3116 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3117 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3118 } 3119 3120 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3121 I.getType()); 3122 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3123 } 3124 3125 void SelectionDAGBuilder::visitFCmp(const User &I) { 3126 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3127 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3128 predicate = FC->getPredicate(); 3129 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3130 predicate = FCmpInst::Predicate(FC->getPredicate()); 3131 SDValue Op1 = getValue(I.getOperand(0)); 3132 SDValue Op2 = getValue(I.getOperand(1)); 3133 3134 ISD::CondCode Condition = getFCmpCondCode(predicate); 3135 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3136 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3137 Condition = getFCmpCodeWithoutNaN(Condition); 3138 3139 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3140 I.getType()); 3141 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3142 } 3143 3144 // Check if the condition of the select has one use or two users that are both 3145 // selects with the same condition. 3146 static bool hasOnlySelectUsers(const Value *Cond) { 3147 return llvm::all_of(Cond->users(), [](const Value *V) { 3148 return isa<SelectInst>(V); 3149 }); 3150 } 3151 3152 void SelectionDAGBuilder::visitSelect(const User &I) { 3153 SmallVector<EVT, 4> ValueVTs; 3154 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3155 ValueVTs); 3156 unsigned NumValues = ValueVTs.size(); 3157 if (NumValues == 0) return; 3158 3159 SmallVector<SDValue, 4> Values(NumValues); 3160 SDValue Cond = getValue(I.getOperand(0)); 3161 SDValue LHSVal = getValue(I.getOperand(1)); 3162 SDValue RHSVal = getValue(I.getOperand(2)); 3163 SmallVector<SDValue, 1> BaseOps(1, Cond); 3164 ISD::NodeType OpCode = 3165 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3166 3167 bool IsUnaryAbs = false; 3168 3169 // Min/max matching is only viable if all output VTs are the same. 3170 if (is_splat(ValueVTs)) { 3171 EVT VT = ValueVTs[0]; 3172 LLVMContext &Ctx = *DAG.getContext(); 3173 auto &TLI = DAG.getTargetLoweringInfo(); 3174 3175 // We care about the legality of the operation after it has been type 3176 // legalized. 3177 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3178 VT = TLI.getTypeToTransformTo(Ctx, VT); 3179 3180 // If the vselect is legal, assume we want to leave this as a vector setcc + 3181 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3182 // min/max is legal on the scalar type. 3183 bool UseScalarMinMax = VT.isVector() && 3184 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3185 3186 Value *LHS, *RHS; 3187 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3188 ISD::NodeType Opc = ISD::DELETED_NODE; 3189 switch (SPR.Flavor) { 3190 case SPF_UMAX: Opc = ISD::UMAX; break; 3191 case SPF_UMIN: Opc = ISD::UMIN; break; 3192 case SPF_SMAX: Opc = ISD::SMAX; break; 3193 case SPF_SMIN: Opc = ISD::SMIN; break; 3194 case SPF_FMINNUM: 3195 switch (SPR.NaNBehavior) { 3196 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3197 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3198 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3199 case SPNB_RETURNS_ANY: { 3200 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3201 Opc = ISD::FMINNUM; 3202 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3203 Opc = ISD::FMINIMUM; 3204 else if (UseScalarMinMax) 3205 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3206 ISD::FMINNUM : ISD::FMINIMUM; 3207 break; 3208 } 3209 } 3210 break; 3211 case SPF_FMAXNUM: 3212 switch (SPR.NaNBehavior) { 3213 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3214 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3215 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3216 case SPNB_RETURNS_ANY: 3217 3218 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3219 Opc = ISD::FMAXNUM; 3220 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3221 Opc = ISD::FMAXIMUM; 3222 else if (UseScalarMinMax) 3223 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3224 ISD::FMAXNUM : ISD::FMAXIMUM; 3225 break; 3226 } 3227 break; 3228 case SPF_ABS: 3229 IsUnaryAbs = true; 3230 Opc = ISD::ABS; 3231 break; 3232 case SPF_NABS: 3233 // TODO: we need to produce sub(0, abs(X)). 3234 default: break; 3235 } 3236 3237 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3238 (TLI.isOperationLegalOrCustom(Opc, VT) || 3239 (UseScalarMinMax && 3240 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3241 // If the underlying comparison instruction is used by any other 3242 // instruction, the consumed instructions won't be destroyed, so it is 3243 // not profitable to convert to a min/max. 3244 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3245 OpCode = Opc; 3246 LHSVal = getValue(LHS); 3247 RHSVal = getValue(RHS); 3248 BaseOps.clear(); 3249 } 3250 3251 if (IsUnaryAbs) { 3252 OpCode = Opc; 3253 LHSVal = getValue(LHS); 3254 BaseOps.clear(); 3255 } 3256 } 3257 3258 if (IsUnaryAbs) { 3259 for (unsigned i = 0; i != NumValues; ++i) { 3260 Values[i] = 3261 DAG.getNode(OpCode, getCurSDLoc(), 3262 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3263 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3264 } 3265 } else { 3266 for (unsigned i = 0; i != NumValues; ++i) { 3267 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3268 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3269 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3270 Values[i] = DAG.getNode( 3271 OpCode, getCurSDLoc(), 3272 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3273 } 3274 } 3275 3276 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3277 DAG.getVTList(ValueVTs), Values)); 3278 } 3279 3280 void SelectionDAGBuilder::visitTrunc(const User &I) { 3281 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3282 SDValue N = getValue(I.getOperand(0)); 3283 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3284 I.getType()); 3285 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3286 } 3287 3288 void SelectionDAGBuilder::visitZExt(const User &I) { 3289 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3290 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3291 SDValue N = getValue(I.getOperand(0)); 3292 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3293 I.getType()); 3294 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3295 } 3296 3297 void SelectionDAGBuilder::visitSExt(const User &I) { 3298 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3299 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3300 SDValue N = getValue(I.getOperand(0)); 3301 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3302 I.getType()); 3303 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3304 } 3305 3306 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3307 // FPTrunc is never a no-op cast, no need to check 3308 SDValue N = getValue(I.getOperand(0)); 3309 SDLoc dl = getCurSDLoc(); 3310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3311 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3312 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3313 DAG.getTargetConstant( 3314 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3315 } 3316 3317 void SelectionDAGBuilder::visitFPExt(const User &I) { 3318 // FPExt is never a no-op cast, no need to check 3319 SDValue N = getValue(I.getOperand(0)); 3320 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3321 I.getType()); 3322 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3323 } 3324 3325 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3326 // FPToUI is never a no-op cast, no need to check 3327 SDValue N = getValue(I.getOperand(0)); 3328 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3329 I.getType()); 3330 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3331 } 3332 3333 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3334 // FPToSI is never a no-op cast, no need to check 3335 SDValue N = getValue(I.getOperand(0)); 3336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3337 I.getType()); 3338 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3339 } 3340 3341 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3342 // UIToFP is never a no-op cast, no need to check 3343 SDValue N = getValue(I.getOperand(0)); 3344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3345 I.getType()); 3346 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3347 } 3348 3349 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3350 // SIToFP is never a no-op cast, no need to check 3351 SDValue N = getValue(I.getOperand(0)); 3352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3353 I.getType()); 3354 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3355 } 3356 3357 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3358 // What to do depends on the size of the integer and the size of the pointer. 3359 // We can either truncate, zero extend, or no-op, accordingly. 3360 SDValue N = getValue(I.getOperand(0)); 3361 auto &TLI = DAG.getTargetLoweringInfo(); 3362 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3363 I.getType()); 3364 EVT PtrMemVT = 3365 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3366 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3367 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3368 setValue(&I, N); 3369 } 3370 3371 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3372 // What to do depends on the size of the integer and the size of the pointer. 3373 // We can either truncate, zero extend, or no-op, accordingly. 3374 SDValue N = getValue(I.getOperand(0)); 3375 auto &TLI = DAG.getTargetLoweringInfo(); 3376 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3377 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3378 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3379 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3380 setValue(&I, N); 3381 } 3382 3383 void SelectionDAGBuilder::visitBitCast(const User &I) { 3384 SDValue N = getValue(I.getOperand(0)); 3385 SDLoc dl = getCurSDLoc(); 3386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3387 I.getType()); 3388 3389 // BitCast assures us that source and destination are the same size so this is 3390 // either a BITCAST or a no-op. 3391 if (DestVT != N.getValueType()) 3392 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3393 DestVT, N)); // convert types. 3394 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3395 // might fold any kind of constant expression to an integer constant and that 3396 // is not what we are looking for. Only recognize a bitcast of a genuine 3397 // constant integer as an opaque constant. 3398 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3399 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3400 /*isOpaque*/true)); 3401 else 3402 setValue(&I, N); // noop cast. 3403 } 3404 3405 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3406 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3407 const Value *SV = I.getOperand(0); 3408 SDValue N = getValue(SV); 3409 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3410 3411 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3412 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3413 3414 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3415 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3416 3417 setValue(&I, N); 3418 } 3419 3420 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3422 SDValue InVec = getValue(I.getOperand(0)); 3423 SDValue InVal = getValue(I.getOperand(1)); 3424 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3425 TLI.getVectorIdxTy(DAG.getDataLayout())); 3426 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3427 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3428 InVec, InVal, InIdx)); 3429 } 3430 3431 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 SDValue InVec = getValue(I.getOperand(0)); 3434 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3435 TLI.getVectorIdxTy(DAG.getDataLayout())); 3436 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3437 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3438 InVec, InIdx)); 3439 } 3440 3441 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3442 SDValue Src1 = getValue(I.getOperand(0)); 3443 SDValue Src2 = getValue(I.getOperand(1)); 3444 ArrayRef<int> Mask; 3445 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3446 Mask = SVI->getShuffleMask(); 3447 else 3448 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3449 SDLoc DL = getCurSDLoc(); 3450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3451 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3452 EVT SrcVT = Src1.getValueType(); 3453 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3454 3455 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3456 VT.isScalableVector()) { 3457 // Canonical splat form of first element of first input vector. 3458 SDValue FirstElt = 3459 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3460 DAG.getVectorIdxConstant(0, DL)); 3461 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3462 return; 3463 } 3464 3465 // For now, we only handle splats for scalable vectors. 3466 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3467 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3468 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3469 3470 unsigned MaskNumElts = Mask.size(); 3471 3472 if (SrcNumElts == MaskNumElts) { 3473 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3474 return; 3475 } 3476 3477 // Normalize the shuffle vector since mask and vector length don't match. 3478 if (SrcNumElts < MaskNumElts) { 3479 // Mask is longer than the source vectors. We can use concatenate vector to 3480 // make the mask and vectors lengths match. 3481 3482 if (MaskNumElts % SrcNumElts == 0) { 3483 // Mask length is a multiple of the source vector length. 3484 // Check if the shuffle is some kind of concatenation of the input 3485 // vectors. 3486 unsigned NumConcat = MaskNumElts / SrcNumElts; 3487 bool IsConcat = true; 3488 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3489 for (unsigned i = 0; i != MaskNumElts; ++i) { 3490 int Idx = Mask[i]; 3491 if (Idx < 0) 3492 continue; 3493 // Ensure the indices in each SrcVT sized piece are sequential and that 3494 // the same source is used for the whole piece. 3495 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3496 (ConcatSrcs[i / SrcNumElts] >= 0 && 3497 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3498 IsConcat = false; 3499 break; 3500 } 3501 // Remember which source this index came from. 3502 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3503 } 3504 3505 // The shuffle is concatenating multiple vectors together. Just emit 3506 // a CONCAT_VECTORS operation. 3507 if (IsConcat) { 3508 SmallVector<SDValue, 8> ConcatOps; 3509 for (auto Src : ConcatSrcs) { 3510 if (Src < 0) 3511 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3512 else if (Src == 0) 3513 ConcatOps.push_back(Src1); 3514 else 3515 ConcatOps.push_back(Src2); 3516 } 3517 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3518 return; 3519 } 3520 } 3521 3522 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3523 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3524 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3525 PaddedMaskNumElts); 3526 3527 // Pad both vectors with undefs to make them the same length as the mask. 3528 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3529 3530 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3531 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3532 MOps1[0] = Src1; 3533 MOps2[0] = Src2; 3534 3535 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3536 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3537 3538 // Readjust mask for new input vector length. 3539 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3540 for (unsigned i = 0; i != MaskNumElts; ++i) { 3541 int Idx = Mask[i]; 3542 if (Idx >= (int)SrcNumElts) 3543 Idx -= SrcNumElts - PaddedMaskNumElts; 3544 MappedOps[i] = Idx; 3545 } 3546 3547 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3548 3549 // If the concatenated vector was padded, extract a subvector with the 3550 // correct number of elements. 3551 if (MaskNumElts != PaddedMaskNumElts) 3552 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3553 DAG.getVectorIdxConstant(0, DL)); 3554 3555 setValue(&I, Result); 3556 return; 3557 } 3558 3559 if (SrcNumElts > MaskNumElts) { 3560 // Analyze the access pattern of the vector to see if we can extract 3561 // two subvectors and do the shuffle. 3562 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3563 bool CanExtract = true; 3564 for (int Idx : Mask) { 3565 unsigned Input = 0; 3566 if (Idx < 0) 3567 continue; 3568 3569 if (Idx >= (int)SrcNumElts) { 3570 Input = 1; 3571 Idx -= SrcNumElts; 3572 } 3573 3574 // If all the indices come from the same MaskNumElts sized portion of 3575 // the sources we can use extract. Also make sure the extract wouldn't 3576 // extract past the end of the source. 3577 int NewStartIdx = alignDown(Idx, MaskNumElts); 3578 if (NewStartIdx + MaskNumElts > SrcNumElts || 3579 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3580 CanExtract = false; 3581 // Make sure we always update StartIdx as we use it to track if all 3582 // elements are undef. 3583 StartIdx[Input] = NewStartIdx; 3584 } 3585 3586 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3587 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3588 return; 3589 } 3590 if (CanExtract) { 3591 // Extract appropriate subvector and generate a vector shuffle 3592 for (unsigned Input = 0; Input < 2; ++Input) { 3593 SDValue &Src = Input == 0 ? Src1 : Src2; 3594 if (StartIdx[Input] < 0) 3595 Src = DAG.getUNDEF(VT); 3596 else { 3597 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3598 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3599 } 3600 } 3601 3602 // Calculate new mask. 3603 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3604 for (int &Idx : MappedOps) { 3605 if (Idx >= (int)SrcNumElts) 3606 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3607 else if (Idx >= 0) 3608 Idx -= StartIdx[0]; 3609 } 3610 3611 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3612 return; 3613 } 3614 } 3615 3616 // We can't use either concat vectors or extract subvectors so fall back to 3617 // replacing the shuffle with extract and build vector. 3618 // to insert and build vector. 3619 EVT EltVT = VT.getVectorElementType(); 3620 SmallVector<SDValue,8> Ops; 3621 for (int Idx : Mask) { 3622 SDValue Res; 3623 3624 if (Idx < 0) { 3625 Res = DAG.getUNDEF(EltVT); 3626 } else { 3627 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3628 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3629 3630 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3631 DAG.getVectorIdxConstant(Idx, DL)); 3632 } 3633 3634 Ops.push_back(Res); 3635 } 3636 3637 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3638 } 3639 3640 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3641 ArrayRef<unsigned> Indices; 3642 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3643 Indices = IV->getIndices(); 3644 else 3645 Indices = cast<ConstantExpr>(&I)->getIndices(); 3646 3647 const Value *Op0 = I.getOperand(0); 3648 const Value *Op1 = I.getOperand(1); 3649 Type *AggTy = I.getType(); 3650 Type *ValTy = Op1->getType(); 3651 bool IntoUndef = isa<UndefValue>(Op0); 3652 bool FromUndef = isa<UndefValue>(Op1); 3653 3654 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3655 3656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3657 SmallVector<EVT, 4> AggValueVTs; 3658 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3659 SmallVector<EVT, 4> ValValueVTs; 3660 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3661 3662 unsigned NumAggValues = AggValueVTs.size(); 3663 unsigned NumValValues = ValValueVTs.size(); 3664 SmallVector<SDValue, 4> Values(NumAggValues); 3665 3666 // Ignore an insertvalue that produces an empty object 3667 if (!NumAggValues) { 3668 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3669 return; 3670 } 3671 3672 SDValue Agg = getValue(Op0); 3673 unsigned i = 0; 3674 // Copy the beginning value(s) from the original aggregate. 3675 for (; i != LinearIndex; ++i) 3676 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3677 SDValue(Agg.getNode(), Agg.getResNo() + i); 3678 // Copy values from the inserted value(s). 3679 if (NumValValues) { 3680 SDValue Val = getValue(Op1); 3681 for (; i != LinearIndex + NumValValues; ++i) 3682 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3683 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3684 } 3685 // Copy remaining value(s) from the original aggregate. 3686 for (; i != NumAggValues; ++i) 3687 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3688 SDValue(Agg.getNode(), Agg.getResNo() + i); 3689 3690 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3691 DAG.getVTList(AggValueVTs), Values)); 3692 } 3693 3694 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3695 ArrayRef<unsigned> Indices; 3696 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3697 Indices = EV->getIndices(); 3698 else 3699 Indices = cast<ConstantExpr>(&I)->getIndices(); 3700 3701 const Value *Op0 = I.getOperand(0); 3702 Type *AggTy = Op0->getType(); 3703 Type *ValTy = I.getType(); 3704 bool OutOfUndef = isa<UndefValue>(Op0); 3705 3706 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3707 3708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3709 SmallVector<EVT, 4> ValValueVTs; 3710 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3711 3712 unsigned NumValValues = ValValueVTs.size(); 3713 3714 // Ignore a extractvalue that produces an empty object 3715 if (!NumValValues) { 3716 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3717 return; 3718 } 3719 3720 SmallVector<SDValue, 4> Values(NumValValues); 3721 3722 SDValue Agg = getValue(Op0); 3723 // Copy out the selected value(s). 3724 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3725 Values[i - LinearIndex] = 3726 OutOfUndef ? 3727 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3728 SDValue(Agg.getNode(), Agg.getResNo() + i); 3729 3730 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3731 DAG.getVTList(ValValueVTs), Values)); 3732 } 3733 3734 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3735 Value *Op0 = I.getOperand(0); 3736 // Note that the pointer operand may be a vector of pointers. Take the scalar 3737 // element which holds a pointer. 3738 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3739 SDValue N = getValue(Op0); 3740 SDLoc dl = getCurSDLoc(); 3741 auto &TLI = DAG.getTargetLoweringInfo(); 3742 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3743 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3744 3745 // Normalize Vector GEP - all scalar operands should be converted to the 3746 // splat vector. 3747 bool IsVectorGEP = I.getType()->isVectorTy(); 3748 ElementCount VectorElementCount = 3749 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3750 : ElementCount(0, false); 3751 3752 if (IsVectorGEP && !N.getValueType().isVector()) { 3753 LLVMContext &Context = *DAG.getContext(); 3754 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3755 if (VectorElementCount.Scalable) 3756 N = DAG.getSplatVector(VT, dl, N); 3757 else 3758 N = DAG.getSplatBuildVector(VT, dl, N); 3759 } 3760 3761 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3762 GTI != E; ++GTI) { 3763 const Value *Idx = GTI.getOperand(); 3764 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3765 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3766 if (Field) { 3767 // N = N + Offset 3768 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3769 3770 // In an inbounds GEP with an offset that is nonnegative even when 3771 // interpreted as signed, assume there is no unsigned overflow. 3772 SDNodeFlags Flags; 3773 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3774 Flags.setNoUnsignedWrap(true); 3775 3776 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3777 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3778 } 3779 } else { 3780 // IdxSize is the width of the arithmetic according to IR semantics. 3781 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3782 // (and fix up the result later). 3783 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3784 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3785 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3786 // We intentionally mask away the high bits here; ElementSize may not 3787 // fit in IdxTy. 3788 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3789 bool ElementScalable = ElementSize.isScalable(); 3790 3791 // If this is a scalar constant or a splat vector of constants, 3792 // handle it quickly. 3793 const auto *C = dyn_cast<Constant>(Idx); 3794 if (C && isa<VectorType>(C->getType())) 3795 C = C->getSplatValue(); 3796 3797 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3798 if (CI && CI->isZero()) 3799 continue; 3800 if (CI && !ElementScalable) { 3801 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3802 LLVMContext &Context = *DAG.getContext(); 3803 SDValue OffsVal; 3804 if (IsVectorGEP) 3805 OffsVal = DAG.getConstant( 3806 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3807 else 3808 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3809 3810 // In an inbounds GEP with an offset that is nonnegative even when 3811 // interpreted as signed, assume there is no unsigned overflow. 3812 SDNodeFlags Flags; 3813 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3814 Flags.setNoUnsignedWrap(true); 3815 3816 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3817 3818 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3819 continue; 3820 } 3821 3822 // N = N + Idx * ElementMul; 3823 SDValue IdxN = getValue(Idx); 3824 3825 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3826 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3827 VectorElementCount); 3828 if (VectorElementCount.Scalable) 3829 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3830 else 3831 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3832 } 3833 3834 // If the index is smaller or larger than intptr_t, truncate or extend 3835 // it. 3836 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3837 3838 if (ElementScalable) { 3839 EVT VScaleTy = N.getValueType().getScalarType(); 3840 SDValue VScale = DAG.getNode( 3841 ISD::VSCALE, dl, VScaleTy, 3842 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3843 if (IsVectorGEP) 3844 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3845 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3846 } else { 3847 // If this is a multiply by a power of two, turn it into a shl 3848 // immediately. This is a very common case. 3849 if (ElementMul != 1) { 3850 if (ElementMul.isPowerOf2()) { 3851 unsigned Amt = ElementMul.logBase2(); 3852 IdxN = DAG.getNode(ISD::SHL, dl, 3853 N.getValueType(), IdxN, 3854 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3855 } else { 3856 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3857 IdxN.getValueType()); 3858 IdxN = DAG.getNode(ISD::MUL, dl, 3859 N.getValueType(), IdxN, Scale); 3860 } 3861 } 3862 } 3863 3864 N = DAG.getNode(ISD::ADD, dl, 3865 N.getValueType(), N, IdxN); 3866 } 3867 } 3868 3869 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3870 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3871 3872 setValue(&I, N); 3873 } 3874 3875 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3876 // If this is a fixed sized alloca in the entry block of the function, 3877 // allocate it statically on the stack. 3878 if (FuncInfo.StaticAllocaMap.count(&I)) 3879 return; // getValue will auto-populate this. 3880 3881 SDLoc dl = getCurSDLoc(); 3882 Type *Ty = I.getAllocatedType(); 3883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3884 auto &DL = DAG.getDataLayout(); 3885 uint64_t TySize = DL.getTypeAllocSize(Ty); 3886 MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3887 3888 SDValue AllocSize = getValue(I.getArraySize()); 3889 3890 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3891 if (AllocSize.getValueType() != IntPtr) 3892 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3893 3894 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3895 AllocSize, 3896 DAG.getConstant(TySize, dl, IntPtr)); 3897 3898 // Handle alignment. If the requested alignment is less than or equal to 3899 // the stack alignment, ignore it. If the size is greater than or equal to 3900 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3901 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3902 if (Alignment <= StackAlign) 3903 Alignment = None; 3904 3905 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3906 // Round the size of the allocation up to the stack alignment size 3907 // by add SA-1 to the size. This doesn't overflow because we're computing 3908 // an address inside an alloca. 3909 SDNodeFlags Flags; 3910 Flags.setNoUnsignedWrap(true); 3911 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3912 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3913 3914 // Mask out the low bits for alignment purposes. 3915 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3916 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3917 3918 SDValue Ops[] = { 3919 getRoot(), AllocSize, 3920 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3921 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3922 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3923 setValue(&I, DSA); 3924 DAG.setRoot(DSA.getValue(1)); 3925 3926 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3927 } 3928 3929 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3930 if (I.isAtomic()) 3931 return visitAtomicLoad(I); 3932 3933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3934 const Value *SV = I.getOperand(0); 3935 if (TLI.supportSwiftError()) { 3936 // Swifterror values can come from either a function parameter with 3937 // swifterror attribute or an alloca with swifterror attribute. 3938 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3939 if (Arg->hasSwiftErrorAttr()) 3940 return visitLoadFromSwiftError(I); 3941 } 3942 3943 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3944 if (Alloca->isSwiftError()) 3945 return visitLoadFromSwiftError(I); 3946 } 3947 } 3948 3949 SDValue Ptr = getValue(SV); 3950 3951 Type *Ty = I.getType(); 3952 Align Alignment = DL->getValueOrABITypeAlignment(I.getAlign(), Ty); 3953 3954 AAMDNodes AAInfo; 3955 I.getAAMetadata(AAInfo); 3956 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3957 3958 SmallVector<EVT, 4> ValueVTs, MemVTs; 3959 SmallVector<uint64_t, 4> Offsets; 3960 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3961 unsigned NumValues = ValueVTs.size(); 3962 if (NumValues == 0) 3963 return; 3964 3965 bool isVolatile = I.isVolatile(); 3966 3967 SDValue Root; 3968 bool ConstantMemory = false; 3969 if (isVolatile) 3970 // Serialize volatile loads with other side effects. 3971 Root = getRoot(); 3972 else if (NumValues > MaxParallelChains) 3973 Root = getMemoryRoot(); 3974 else if (AA && 3975 AA->pointsToConstantMemory(MemoryLocation( 3976 SV, 3977 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3978 AAInfo))) { 3979 // Do not serialize (non-volatile) loads of constant memory with anything. 3980 Root = DAG.getEntryNode(); 3981 ConstantMemory = true; 3982 } else { 3983 // Do not serialize non-volatile loads against each other. 3984 Root = DAG.getRoot(); 3985 } 3986 3987 SDLoc dl = getCurSDLoc(); 3988 3989 if (isVolatile) 3990 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3991 3992 // An aggregate load cannot wrap around the address space, so offsets to its 3993 // parts don't wrap either. 3994 SDNodeFlags Flags; 3995 Flags.setNoUnsignedWrap(true); 3996 3997 SmallVector<SDValue, 4> Values(NumValues); 3998 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3999 EVT PtrVT = Ptr.getValueType(); 4000 4001 MachineMemOperand::Flags MMOFlags 4002 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4003 4004 unsigned ChainI = 0; 4005 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4006 // Serializing loads here may result in excessive register pressure, and 4007 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4008 // could recover a bit by hoisting nodes upward in the chain by recognizing 4009 // they are side-effect free or do not alias. The optimizer should really 4010 // avoid this case by converting large object/array copies to llvm.memcpy 4011 // (MaxParallelChains should always remain as failsafe). 4012 if (ChainI == MaxParallelChains) { 4013 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4014 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4015 makeArrayRef(Chains.data(), ChainI)); 4016 Root = Chain; 4017 ChainI = 0; 4018 } 4019 SDValue A = DAG.getNode(ISD::ADD, dl, 4020 PtrVT, Ptr, 4021 DAG.getConstant(Offsets[i], dl, PtrVT), 4022 Flags); 4023 4024 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4025 MachinePointerInfo(SV, Offsets[i]), Alignment, 4026 MMOFlags, AAInfo, Ranges); 4027 Chains[ChainI] = L.getValue(1); 4028 4029 if (MemVTs[i] != ValueVTs[i]) 4030 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4031 4032 Values[i] = L; 4033 } 4034 4035 if (!ConstantMemory) { 4036 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4037 makeArrayRef(Chains.data(), ChainI)); 4038 if (isVolatile) 4039 DAG.setRoot(Chain); 4040 else 4041 PendingLoads.push_back(Chain); 4042 } 4043 4044 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4045 DAG.getVTList(ValueVTs), Values)); 4046 } 4047 4048 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4049 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4050 "call visitStoreToSwiftError when backend supports swifterror"); 4051 4052 SmallVector<EVT, 4> ValueVTs; 4053 SmallVector<uint64_t, 4> Offsets; 4054 const Value *SrcV = I.getOperand(0); 4055 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4056 SrcV->getType(), ValueVTs, &Offsets); 4057 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4058 "expect a single EVT for swifterror"); 4059 4060 SDValue Src = getValue(SrcV); 4061 // Create a virtual register, then update the virtual register. 4062 Register VReg = 4063 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4064 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4065 // Chain can be getRoot or getControlRoot. 4066 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4067 SDValue(Src.getNode(), Src.getResNo())); 4068 DAG.setRoot(CopyNode); 4069 } 4070 4071 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4072 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4073 "call visitLoadFromSwiftError when backend supports swifterror"); 4074 4075 assert(!I.isVolatile() && 4076 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4077 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4078 "Support volatile, non temporal, invariant for load_from_swift_error"); 4079 4080 const Value *SV = I.getOperand(0); 4081 Type *Ty = I.getType(); 4082 AAMDNodes AAInfo; 4083 I.getAAMetadata(AAInfo); 4084 assert( 4085 (!AA || 4086 !AA->pointsToConstantMemory(MemoryLocation( 4087 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4088 AAInfo))) && 4089 "load_from_swift_error should not be constant memory"); 4090 4091 SmallVector<EVT, 4> ValueVTs; 4092 SmallVector<uint64_t, 4> Offsets; 4093 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4094 ValueVTs, &Offsets); 4095 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4096 "expect a single EVT for swifterror"); 4097 4098 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4099 SDValue L = DAG.getCopyFromReg( 4100 getRoot(), getCurSDLoc(), 4101 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4102 4103 setValue(&I, L); 4104 } 4105 4106 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4107 if (I.isAtomic()) 4108 return visitAtomicStore(I); 4109 4110 const Value *SrcV = I.getOperand(0); 4111 const Value *PtrV = I.getOperand(1); 4112 4113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4114 if (TLI.supportSwiftError()) { 4115 // Swifterror values can come from either a function parameter with 4116 // swifterror attribute or an alloca with swifterror attribute. 4117 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4118 if (Arg->hasSwiftErrorAttr()) 4119 return visitStoreToSwiftError(I); 4120 } 4121 4122 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4123 if (Alloca->isSwiftError()) 4124 return visitStoreToSwiftError(I); 4125 } 4126 } 4127 4128 SmallVector<EVT, 4> ValueVTs, MemVTs; 4129 SmallVector<uint64_t, 4> Offsets; 4130 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4131 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4132 unsigned NumValues = ValueVTs.size(); 4133 if (NumValues == 0) 4134 return; 4135 4136 // Get the lowered operands. Note that we do this after 4137 // checking if NumResults is zero, because with zero results 4138 // the operands won't have values in the map. 4139 SDValue Src = getValue(SrcV); 4140 SDValue Ptr = getValue(PtrV); 4141 4142 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4143 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4144 SDLoc dl = getCurSDLoc(); 4145 Align Alignment = 4146 DL->getValueOrABITypeAlignment(I.getAlign(), SrcV->getType()); 4147 AAMDNodes AAInfo; 4148 I.getAAMetadata(AAInfo); 4149 4150 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4151 4152 // An aggregate load cannot wrap around the address space, so offsets to its 4153 // parts don't wrap either. 4154 SDNodeFlags Flags; 4155 Flags.setNoUnsignedWrap(true); 4156 4157 unsigned ChainI = 0; 4158 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4159 // See visitLoad comments. 4160 if (ChainI == MaxParallelChains) { 4161 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4162 makeArrayRef(Chains.data(), ChainI)); 4163 Root = Chain; 4164 ChainI = 0; 4165 } 4166 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4167 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4168 if (MemVTs[i] != ValueVTs[i]) 4169 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4170 SDValue St = 4171 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4172 Alignment, MMOFlags, AAInfo); 4173 Chains[ChainI] = St; 4174 } 4175 4176 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4177 makeArrayRef(Chains.data(), ChainI)); 4178 DAG.setRoot(StoreNode); 4179 } 4180 4181 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4182 bool IsCompressing) { 4183 SDLoc sdl = getCurSDLoc(); 4184 4185 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4186 MaybeAlign &Alignment) { 4187 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4188 Src0 = I.getArgOperand(0); 4189 Ptr = I.getArgOperand(1); 4190 Alignment = 4191 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4192 Mask = I.getArgOperand(3); 4193 }; 4194 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4195 MaybeAlign &Alignment) { 4196 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4197 Src0 = I.getArgOperand(0); 4198 Ptr = I.getArgOperand(1); 4199 Mask = I.getArgOperand(2); 4200 Alignment = None; 4201 }; 4202 4203 Value *PtrOperand, *MaskOperand, *Src0Operand; 4204 MaybeAlign Alignment; 4205 if (IsCompressing) 4206 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4207 else 4208 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4209 4210 SDValue Ptr = getValue(PtrOperand); 4211 SDValue Src0 = getValue(Src0Operand); 4212 SDValue Mask = getValue(MaskOperand); 4213 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4214 4215 EVT VT = Src0.getValueType(); 4216 if (!Alignment) 4217 Alignment = DAG.getEVTAlign(VT); 4218 4219 AAMDNodes AAInfo; 4220 I.getAAMetadata(AAInfo); 4221 4222 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4223 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4224 // TODO: Make MachineMemOperands aware of scalable 4225 // vectors. 4226 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4227 SDValue StoreNode = 4228 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4229 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4230 DAG.setRoot(StoreNode); 4231 setValue(&I, StoreNode); 4232 } 4233 4234 // Get a uniform base for the Gather/Scatter intrinsic. 4235 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4236 // We try to represent it as a base pointer + vector of indices. 4237 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4238 // The first operand of the GEP may be a single pointer or a vector of pointers 4239 // Example: 4240 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4241 // or 4242 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4243 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4244 // 4245 // When the first GEP operand is a single pointer - it is the uniform base we 4246 // are looking for. If first operand of the GEP is a splat vector - we 4247 // extract the splat value and use it as a uniform base. 4248 // In all other cases the function returns 'false'. 4249 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4250 ISD::MemIndexType &IndexType, SDValue &Scale, 4251 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4252 SelectionDAG& DAG = SDB->DAG; 4253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4254 const DataLayout &DL = DAG.getDataLayout(); 4255 4256 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4257 4258 // Handle splat constant pointer. 4259 if (auto *C = dyn_cast<Constant>(Ptr)) { 4260 C = C->getSplatValue(); 4261 if (!C) 4262 return false; 4263 4264 Base = SDB->getValue(C); 4265 4266 unsigned NumElts = Ptr->getType()->getVectorNumElements(); 4267 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4268 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4269 IndexType = ISD::SIGNED_SCALED; 4270 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4271 return true; 4272 } 4273 4274 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4275 if (!GEP || GEP->getParent() != CurBB) 4276 return false; 4277 4278 if (GEP->getNumOperands() != 2) 4279 return false; 4280 4281 const Value *BasePtr = GEP->getPointerOperand(); 4282 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4283 4284 // Make sure the base is scalar and the index is a vector. 4285 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4286 return false; 4287 4288 Base = SDB->getValue(BasePtr); 4289 Index = SDB->getValue(IndexVal); 4290 IndexType = ISD::SIGNED_SCALED; 4291 Scale = DAG.getTargetConstant( 4292 DL.getTypeAllocSize(GEP->getResultElementType()), 4293 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4294 return true; 4295 } 4296 4297 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4298 SDLoc sdl = getCurSDLoc(); 4299 4300 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4301 const Value *Ptr = I.getArgOperand(1); 4302 SDValue Src0 = getValue(I.getArgOperand(0)); 4303 SDValue Mask = getValue(I.getArgOperand(3)); 4304 EVT VT = Src0.getValueType(); 4305 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4306 if (!Alignment) 4307 Alignment = DAG.getEVTAlign(VT); 4308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4309 4310 AAMDNodes AAInfo; 4311 I.getAAMetadata(AAInfo); 4312 4313 SDValue Base; 4314 SDValue Index; 4315 ISD::MemIndexType IndexType; 4316 SDValue Scale; 4317 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4318 I.getParent()); 4319 4320 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4321 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4322 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4323 // TODO: Make MachineMemOperands aware of scalable 4324 // vectors. 4325 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4326 if (!UniformBase) { 4327 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4328 Index = getValue(Ptr); 4329 IndexType = ISD::SIGNED_SCALED; 4330 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4331 } 4332 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4333 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4334 Ops, MMO, IndexType); 4335 DAG.setRoot(Scatter); 4336 setValue(&I, Scatter); 4337 } 4338 4339 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4340 SDLoc sdl = getCurSDLoc(); 4341 4342 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4343 MaybeAlign &Alignment) { 4344 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4345 Ptr = I.getArgOperand(0); 4346 Alignment = 4347 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4348 Mask = I.getArgOperand(2); 4349 Src0 = I.getArgOperand(3); 4350 }; 4351 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4352 MaybeAlign &Alignment) { 4353 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4354 Ptr = I.getArgOperand(0); 4355 Alignment = None; 4356 Mask = I.getArgOperand(1); 4357 Src0 = I.getArgOperand(2); 4358 }; 4359 4360 Value *PtrOperand, *MaskOperand, *Src0Operand; 4361 MaybeAlign Alignment; 4362 if (IsExpanding) 4363 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4364 else 4365 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4366 4367 SDValue Ptr = getValue(PtrOperand); 4368 SDValue Src0 = getValue(Src0Operand); 4369 SDValue Mask = getValue(MaskOperand); 4370 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4371 4372 EVT VT = Src0.getValueType(); 4373 if (!Alignment) 4374 Alignment = DAG.getEVTAlign(VT); 4375 4376 AAMDNodes AAInfo; 4377 I.getAAMetadata(AAInfo); 4378 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4379 4380 // Do not serialize masked loads of constant memory with anything. 4381 MemoryLocation ML; 4382 if (VT.isScalableVector()) 4383 ML = MemoryLocation(PtrOperand); 4384 else 4385 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4386 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4387 AAInfo); 4388 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4389 4390 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4391 4392 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4393 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4394 // TODO: Make MachineMemOperands aware of scalable 4395 // vectors. 4396 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4397 4398 SDValue Load = 4399 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4400 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4401 if (AddToChain) 4402 PendingLoads.push_back(Load.getValue(1)); 4403 setValue(&I, Load); 4404 } 4405 4406 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4407 SDLoc sdl = getCurSDLoc(); 4408 4409 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4410 const Value *Ptr = I.getArgOperand(0); 4411 SDValue Src0 = getValue(I.getArgOperand(3)); 4412 SDValue Mask = getValue(I.getArgOperand(2)); 4413 4414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4415 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4416 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4417 if (!Alignment) 4418 Alignment = DAG.getEVTAlign(VT); 4419 4420 AAMDNodes AAInfo; 4421 I.getAAMetadata(AAInfo); 4422 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4423 4424 SDValue Root = DAG.getRoot(); 4425 SDValue Base; 4426 SDValue Index; 4427 ISD::MemIndexType IndexType; 4428 SDValue Scale; 4429 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4430 I.getParent()); 4431 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4432 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4433 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4434 // TODO: Make MachineMemOperands aware of scalable 4435 // vectors. 4436 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4437 4438 if (!UniformBase) { 4439 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4440 Index = getValue(Ptr); 4441 IndexType = ISD::SIGNED_SCALED; 4442 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4443 } 4444 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4445 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4446 Ops, MMO, IndexType); 4447 4448 PendingLoads.push_back(Gather.getValue(1)); 4449 setValue(&I, Gather); 4450 } 4451 4452 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4453 SDLoc dl = getCurSDLoc(); 4454 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4455 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4456 SyncScope::ID SSID = I.getSyncScopeID(); 4457 4458 SDValue InChain = getRoot(); 4459 4460 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4461 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4462 4463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4464 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4465 4466 MachineFunction &MF = DAG.getMachineFunction(); 4467 MachineMemOperand *MMO = MF.getMachineMemOperand( 4468 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4469 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4470 FailureOrdering); 4471 4472 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4473 dl, MemVT, VTs, InChain, 4474 getValue(I.getPointerOperand()), 4475 getValue(I.getCompareOperand()), 4476 getValue(I.getNewValOperand()), MMO); 4477 4478 SDValue OutChain = L.getValue(2); 4479 4480 setValue(&I, L); 4481 DAG.setRoot(OutChain); 4482 } 4483 4484 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4485 SDLoc dl = getCurSDLoc(); 4486 ISD::NodeType NT; 4487 switch (I.getOperation()) { 4488 default: llvm_unreachable("Unknown atomicrmw operation"); 4489 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4490 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4491 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4492 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4493 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4494 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4495 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4496 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4497 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4498 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4499 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4500 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4501 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4502 } 4503 AtomicOrdering Ordering = I.getOrdering(); 4504 SyncScope::ID SSID = I.getSyncScopeID(); 4505 4506 SDValue InChain = getRoot(); 4507 4508 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4510 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4511 4512 MachineFunction &MF = DAG.getMachineFunction(); 4513 MachineMemOperand *MMO = MF.getMachineMemOperand( 4514 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4515 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4516 4517 SDValue L = 4518 DAG.getAtomic(NT, dl, MemVT, InChain, 4519 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4520 MMO); 4521 4522 SDValue OutChain = L.getValue(1); 4523 4524 setValue(&I, L); 4525 DAG.setRoot(OutChain); 4526 } 4527 4528 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4529 SDLoc dl = getCurSDLoc(); 4530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4531 SDValue Ops[3]; 4532 Ops[0] = getRoot(); 4533 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4534 TLI.getFenceOperandTy(DAG.getDataLayout())); 4535 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4536 TLI.getFenceOperandTy(DAG.getDataLayout())); 4537 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4538 } 4539 4540 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4541 SDLoc dl = getCurSDLoc(); 4542 AtomicOrdering Order = I.getOrdering(); 4543 SyncScope::ID SSID = I.getSyncScopeID(); 4544 4545 SDValue InChain = getRoot(); 4546 4547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4548 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4549 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4550 4551 if (!TLI.supportsUnalignedAtomics() && 4552 I.getAlignment() < MemVT.getSizeInBits() / 8) 4553 report_fatal_error("Cannot generate unaligned atomic load"); 4554 4555 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4556 4557 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4558 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4559 *I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4560 4561 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4562 4563 SDValue Ptr = getValue(I.getPointerOperand()); 4564 4565 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4566 // TODO: Once this is better exercised by tests, it should be merged with 4567 // the normal path for loads to prevent future divergence. 4568 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4569 if (MemVT != VT) 4570 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4571 4572 setValue(&I, L); 4573 SDValue OutChain = L.getValue(1); 4574 if (!I.isUnordered()) 4575 DAG.setRoot(OutChain); 4576 else 4577 PendingLoads.push_back(OutChain); 4578 return; 4579 } 4580 4581 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4582 Ptr, MMO); 4583 4584 SDValue OutChain = L.getValue(1); 4585 if (MemVT != VT) 4586 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4587 4588 setValue(&I, L); 4589 DAG.setRoot(OutChain); 4590 } 4591 4592 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4593 SDLoc dl = getCurSDLoc(); 4594 4595 AtomicOrdering Ordering = I.getOrdering(); 4596 SyncScope::ID SSID = I.getSyncScopeID(); 4597 4598 SDValue InChain = getRoot(); 4599 4600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4601 EVT MemVT = 4602 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4603 4604 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4605 report_fatal_error("Cannot generate unaligned atomic store"); 4606 4607 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4608 4609 MachineFunction &MF = DAG.getMachineFunction(); 4610 MachineMemOperand *MMO = MF.getMachineMemOperand( 4611 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4612 *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4613 4614 SDValue Val = getValue(I.getValueOperand()); 4615 if (Val.getValueType() != MemVT) 4616 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4617 SDValue Ptr = getValue(I.getPointerOperand()); 4618 4619 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4620 // TODO: Once this is better exercised by tests, it should be merged with 4621 // the normal path for stores to prevent future divergence. 4622 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4623 DAG.setRoot(S); 4624 return; 4625 } 4626 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4627 Ptr, Val, MMO); 4628 4629 4630 DAG.setRoot(OutChain); 4631 } 4632 4633 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4634 /// node. 4635 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4636 unsigned Intrinsic) { 4637 // Ignore the callsite's attributes. A specific call site may be marked with 4638 // readnone, but the lowering code will expect the chain based on the 4639 // definition. 4640 const Function *F = I.getCalledFunction(); 4641 bool HasChain = !F->doesNotAccessMemory(); 4642 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4643 4644 // Build the operand list. 4645 SmallVector<SDValue, 8> Ops; 4646 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4647 if (OnlyLoad) { 4648 // We don't need to serialize loads against other loads. 4649 Ops.push_back(DAG.getRoot()); 4650 } else { 4651 Ops.push_back(getRoot()); 4652 } 4653 } 4654 4655 // Info is set by getTgtMemInstrinsic 4656 TargetLowering::IntrinsicInfo Info; 4657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4658 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4659 DAG.getMachineFunction(), 4660 Intrinsic); 4661 4662 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4663 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4664 Info.opc == ISD::INTRINSIC_W_CHAIN) 4665 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4666 TLI.getPointerTy(DAG.getDataLayout()))); 4667 4668 // Add all operands of the call to the operand list. 4669 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4670 const Value *Arg = I.getArgOperand(i); 4671 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4672 Ops.push_back(getValue(Arg)); 4673 continue; 4674 } 4675 4676 // Use TargetConstant instead of a regular constant for immarg. 4677 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4678 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4679 assert(CI->getBitWidth() <= 64 && 4680 "large intrinsic immediates not handled"); 4681 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4682 } else { 4683 Ops.push_back( 4684 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4685 } 4686 } 4687 4688 SmallVector<EVT, 4> ValueVTs; 4689 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4690 4691 if (HasChain) 4692 ValueVTs.push_back(MVT::Other); 4693 4694 SDVTList VTs = DAG.getVTList(ValueVTs); 4695 4696 // Create the node. 4697 SDValue Result; 4698 if (IsTgtIntrinsic) { 4699 // This is target intrinsic that touches memory 4700 AAMDNodes AAInfo; 4701 I.getAAMetadata(AAInfo); 4702 Result = 4703 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4704 MachinePointerInfo(Info.ptrVal, Info.offset), 4705 Info.align, Info.flags, Info.size, AAInfo); 4706 } else if (!HasChain) { 4707 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4708 } else if (!I.getType()->isVoidTy()) { 4709 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4710 } else { 4711 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4712 } 4713 4714 if (HasChain) { 4715 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4716 if (OnlyLoad) 4717 PendingLoads.push_back(Chain); 4718 else 4719 DAG.setRoot(Chain); 4720 } 4721 4722 if (!I.getType()->isVoidTy()) { 4723 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4724 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4725 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4726 } else 4727 Result = lowerRangeToAssertZExt(DAG, I, Result); 4728 4729 setValue(&I, Result); 4730 } 4731 } 4732 4733 /// GetSignificand - Get the significand and build it into a floating-point 4734 /// number with exponent of 1: 4735 /// 4736 /// Op = (Op & 0x007fffff) | 0x3f800000; 4737 /// 4738 /// where Op is the hexadecimal representation of floating point value. 4739 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4740 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4741 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4742 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4743 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4744 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4745 } 4746 4747 /// GetExponent - Get the exponent: 4748 /// 4749 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4750 /// 4751 /// where Op is the hexadecimal representation of floating point value. 4752 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4753 const TargetLowering &TLI, const SDLoc &dl) { 4754 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4755 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4756 SDValue t1 = DAG.getNode( 4757 ISD::SRL, dl, MVT::i32, t0, 4758 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4759 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4760 DAG.getConstant(127, dl, MVT::i32)); 4761 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4762 } 4763 4764 /// getF32Constant - Get 32-bit floating point constant. 4765 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4766 const SDLoc &dl) { 4767 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4768 MVT::f32); 4769 } 4770 4771 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4772 SelectionDAG &DAG) { 4773 // TODO: What fast-math-flags should be set on the floating-point nodes? 4774 4775 // IntegerPartOfX = ((int32_t)(t0); 4776 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4777 4778 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4779 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4780 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4781 4782 // IntegerPartOfX <<= 23; 4783 IntegerPartOfX = DAG.getNode( 4784 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4785 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4786 DAG.getDataLayout()))); 4787 4788 SDValue TwoToFractionalPartOfX; 4789 if (LimitFloatPrecision <= 6) { 4790 // For floating-point precision of 6: 4791 // 4792 // TwoToFractionalPartOfX = 4793 // 0.997535578f + 4794 // (0.735607626f + 0.252464424f * x) * x; 4795 // 4796 // error 0.0144103317, which is 6 bits 4797 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4798 getF32Constant(DAG, 0x3e814304, dl)); 4799 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4800 getF32Constant(DAG, 0x3f3c50c8, dl)); 4801 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4802 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4803 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4804 } else if (LimitFloatPrecision <= 12) { 4805 // For floating-point precision of 12: 4806 // 4807 // TwoToFractionalPartOfX = 4808 // 0.999892986f + 4809 // (0.696457318f + 4810 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4811 // 4812 // error 0.000107046256, which is 13 to 14 bits 4813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4814 getF32Constant(DAG, 0x3da235e3, dl)); 4815 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4816 getF32Constant(DAG, 0x3e65b8f3, dl)); 4817 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4818 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4819 getF32Constant(DAG, 0x3f324b07, dl)); 4820 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4821 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4822 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4823 } else { // LimitFloatPrecision <= 18 4824 // For floating-point precision of 18: 4825 // 4826 // TwoToFractionalPartOfX = 4827 // 0.999999982f + 4828 // (0.693148872f + 4829 // (0.240227044f + 4830 // (0.554906021e-1f + 4831 // (0.961591928e-2f + 4832 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4833 // error 2.47208000*10^(-7), which is better than 18 bits 4834 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4835 getF32Constant(DAG, 0x3924b03e, dl)); 4836 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4837 getF32Constant(DAG, 0x3ab24b87, dl)); 4838 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4839 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4840 getF32Constant(DAG, 0x3c1d8c17, dl)); 4841 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4842 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4843 getF32Constant(DAG, 0x3d634a1d, dl)); 4844 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4845 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4846 getF32Constant(DAG, 0x3e75fe14, dl)); 4847 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4848 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4849 getF32Constant(DAG, 0x3f317234, dl)); 4850 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4851 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4852 getF32Constant(DAG, 0x3f800000, dl)); 4853 } 4854 4855 // Add the exponent into the result in integer domain. 4856 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4857 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4858 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4859 } 4860 4861 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4862 /// limited-precision mode. 4863 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4864 const TargetLowering &TLI) { 4865 if (Op.getValueType() == MVT::f32 && 4866 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4867 4868 // Put the exponent in the right bit position for later addition to the 4869 // final result: 4870 // 4871 // t0 = Op * log2(e) 4872 4873 // TODO: What fast-math-flags should be set here? 4874 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4875 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4876 return getLimitedPrecisionExp2(t0, dl, DAG); 4877 } 4878 4879 // No special expansion. 4880 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4881 } 4882 4883 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4884 /// limited-precision mode. 4885 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4886 const TargetLowering &TLI) { 4887 // TODO: What fast-math-flags should be set on the floating-point nodes? 4888 4889 if (Op.getValueType() == MVT::f32 && 4890 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4891 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4892 4893 // Scale the exponent by log(2). 4894 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4895 SDValue LogOfExponent = 4896 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4897 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4898 4899 // Get the significand and build it into a floating-point number with 4900 // exponent of 1. 4901 SDValue X = GetSignificand(DAG, Op1, dl); 4902 4903 SDValue LogOfMantissa; 4904 if (LimitFloatPrecision <= 6) { 4905 // For floating-point precision of 6: 4906 // 4907 // LogofMantissa = 4908 // -1.1609546f + 4909 // (1.4034025f - 0.23903021f * x) * x; 4910 // 4911 // error 0.0034276066, which is better than 8 bits 4912 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4913 getF32Constant(DAG, 0xbe74c456, dl)); 4914 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4915 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4916 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4917 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4918 getF32Constant(DAG, 0x3f949a29, dl)); 4919 } else if (LimitFloatPrecision <= 12) { 4920 // For floating-point precision of 12: 4921 // 4922 // LogOfMantissa = 4923 // -1.7417939f + 4924 // (2.8212026f + 4925 // (-1.4699568f + 4926 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4927 // 4928 // error 0.000061011436, which is 14 bits 4929 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4930 getF32Constant(DAG, 0xbd67b6d6, dl)); 4931 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4932 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4933 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4934 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4935 getF32Constant(DAG, 0x3fbc278b, dl)); 4936 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4937 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4938 getF32Constant(DAG, 0x40348e95, dl)); 4939 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4940 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4941 getF32Constant(DAG, 0x3fdef31a, dl)); 4942 } else { // LimitFloatPrecision <= 18 4943 // For floating-point precision of 18: 4944 // 4945 // LogOfMantissa = 4946 // -2.1072184f + 4947 // (4.2372794f + 4948 // (-3.7029485f + 4949 // (2.2781945f + 4950 // (-0.87823314f + 4951 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4952 // 4953 // error 0.0000023660568, which is better than 18 bits 4954 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4955 getF32Constant(DAG, 0xbc91e5ac, dl)); 4956 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4957 getF32Constant(DAG, 0x3e4350aa, dl)); 4958 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4959 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4960 getF32Constant(DAG, 0x3f60d3e3, dl)); 4961 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4962 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4963 getF32Constant(DAG, 0x4011cdf0, dl)); 4964 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4965 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4966 getF32Constant(DAG, 0x406cfd1c, dl)); 4967 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4968 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4969 getF32Constant(DAG, 0x408797cb, dl)); 4970 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4971 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4972 getF32Constant(DAG, 0x4006dcab, dl)); 4973 } 4974 4975 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4976 } 4977 4978 // No special expansion. 4979 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4980 } 4981 4982 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4983 /// limited-precision mode. 4984 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4985 const TargetLowering &TLI) { 4986 // TODO: What fast-math-flags should be set on the floating-point nodes? 4987 4988 if (Op.getValueType() == MVT::f32 && 4989 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4990 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4991 4992 // Get the exponent. 4993 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4994 4995 // Get the significand and build it into a floating-point number with 4996 // exponent of 1. 4997 SDValue X = GetSignificand(DAG, Op1, dl); 4998 4999 // Different possible minimax approximations of significand in 5000 // floating-point for various degrees of accuracy over [1,2]. 5001 SDValue Log2ofMantissa; 5002 if (LimitFloatPrecision <= 6) { 5003 // For floating-point precision of 6: 5004 // 5005 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5006 // 5007 // error 0.0049451742, which is more than 7 bits 5008 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5009 getF32Constant(DAG, 0xbeb08fe0, dl)); 5010 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5011 getF32Constant(DAG, 0x40019463, dl)); 5012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5013 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5014 getF32Constant(DAG, 0x3fd6633d, dl)); 5015 } else if (LimitFloatPrecision <= 12) { 5016 // For floating-point precision of 12: 5017 // 5018 // Log2ofMantissa = 5019 // -2.51285454f + 5020 // (4.07009056f + 5021 // (-2.12067489f + 5022 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5023 // 5024 // error 0.0000876136000, which is better than 13 bits 5025 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5026 getF32Constant(DAG, 0xbda7262e, dl)); 5027 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5028 getF32Constant(DAG, 0x3f25280b, dl)); 5029 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5030 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5031 getF32Constant(DAG, 0x4007b923, dl)); 5032 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5033 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5034 getF32Constant(DAG, 0x40823e2f, dl)); 5035 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5036 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5037 getF32Constant(DAG, 0x4020d29c, dl)); 5038 } else { // LimitFloatPrecision <= 18 5039 // For floating-point precision of 18: 5040 // 5041 // Log2ofMantissa = 5042 // -3.0400495f + 5043 // (6.1129976f + 5044 // (-5.3420409f + 5045 // (3.2865683f + 5046 // (-1.2669343f + 5047 // (0.27515199f - 5048 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5049 // 5050 // error 0.0000018516, which is better than 18 bits 5051 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5052 getF32Constant(DAG, 0xbcd2769e, dl)); 5053 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5054 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5055 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5056 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5057 getF32Constant(DAG, 0x3fa22ae7, dl)); 5058 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5059 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5060 getF32Constant(DAG, 0x40525723, dl)); 5061 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5062 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5063 getF32Constant(DAG, 0x40aaf200, dl)); 5064 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5065 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5066 getF32Constant(DAG, 0x40c39dad, dl)); 5067 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5068 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5069 getF32Constant(DAG, 0x4042902c, dl)); 5070 } 5071 5072 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5073 } 5074 5075 // No special expansion. 5076 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5077 } 5078 5079 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5080 /// limited-precision mode. 5081 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5082 const TargetLowering &TLI) { 5083 // TODO: What fast-math-flags should be set on the floating-point nodes? 5084 5085 if (Op.getValueType() == MVT::f32 && 5086 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5087 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5088 5089 // Scale the exponent by log10(2) [0.30102999f]. 5090 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5091 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5092 getF32Constant(DAG, 0x3e9a209a, dl)); 5093 5094 // Get the significand and build it into a floating-point number with 5095 // exponent of 1. 5096 SDValue X = GetSignificand(DAG, Op1, dl); 5097 5098 SDValue Log10ofMantissa; 5099 if (LimitFloatPrecision <= 6) { 5100 // For floating-point precision of 6: 5101 // 5102 // Log10ofMantissa = 5103 // -0.50419619f + 5104 // (0.60948995f - 0.10380950f * x) * x; 5105 // 5106 // error 0.0014886165, which is 6 bits 5107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5108 getF32Constant(DAG, 0xbdd49a13, dl)); 5109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5110 getF32Constant(DAG, 0x3f1c0789, dl)); 5111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5112 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5113 getF32Constant(DAG, 0x3f011300, dl)); 5114 } else if (LimitFloatPrecision <= 12) { 5115 // For floating-point precision of 12: 5116 // 5117 // Log10ofMantissa = 5118 // -0.64831180f + 5119 // (0.91751397f + 5120 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5121 // 5122 // error 0.00019228036, which is better than 12 bits 5123 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5124 getF32Constant(DAG, 0x3d431f31, dl)); 5125 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5126 getF32Constant(DAG, 0x3ea21fb2, dl)); 5127 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5128 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5129 getF32Constant(DAG, 0x3f6ae232, dl)); 5130 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5131 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5132 getF32Constant(DAG, 0x3f25f7c3, dl)); 5133 } else { // LimitFloatPrecision <= 18 5134 // For floating-point precision of 18: 5135 // 5136 // Log10ofMantissa = 5137 // -0.84299375f + 5138 // (1.5327582f + 5139 // (-1.0688956f + 5140 // (0.49102474f + 5141 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5142 // 5143 // error 0.0000037995730, which is better than 18 bits 5144 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5145 getF32Constant(DAG, 0x3c5d51ce, dl)); 5146 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5147 getF32Constant(DAG, 0x3e00685a, dl)); 5148 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5149 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5150 getF32Constant(DAG, 0x3efb6798, dl)); 5151 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5152 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5153 getF32Constant(DAG, 0x3f88d192, dl)); 5154 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5155 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5156 getF32Constant(DAG, 0x3fc4316c, dl)); 5157 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5158 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5159 getF32Constant(DAG, 0x3f57ce70, dl)); 5160 } 5161 5162 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5163 } 5164 5165 // No special expansion. 5166 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5167 } 5168 5169 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5170 /// limited-precision mode. 5171 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5172 const TargetLowering &TLI) { 5173 if (Op.getValueType() == MVT::f32 && 5174 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5175 return getLimitedPrecisionExp2(Op, dl, DAG); 5176 5177 // No special expansion. 5178 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5179 } 5180 5181 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5182 /// limited-precision mode with x == 10.0f. 5183 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5184 SelectionDAG &DAG, const TargetLowering &TLI) { 5185 bool IsExp10 = false; 5186 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5187 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5188 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5189 APFloat Ten(10.0f); 5190 IsExp10 = LHSC->isExactlyValue(Ten); 5191 } 5192 } 5193 5194 // TODO: What fast-math-flags should be set on the FMUL node? 5195 if (IsExp10) { 5196 // Put the exponent in the right bit position for later addition to the 5197 // final result: 5198 // 5199 // #define LOG2OF10 3.3219281f 5200 // t0 = Op * LOG2OF10; 5201 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5202 getF32Constant(DAG, 0x40549a78, dl)); 5203 return getLimitedPrecisionExp2(t0, dl, DAG); 5204 } 5205 5206 // No special expansion. 5207 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5208 } 5209 5210 /// ExpandPowI - Expand a llvm.powi intrinsic. 5211 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5212 SelectionDAG &DAG) { 5213 // If RHS is a constant, we can expand this out to a multiplication tree, 5214 // otherwise we end up lowering to a call to __powidf2 (for example). When 5215 // optimizing for size, we only want to do this if the expansion would produce 5216 // a small number of multiplies, otherwise we do the full expansion. 5217 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5218 // Get the exponent as a positive value. 5219 unsigned Val = RHSC->getSExtValue(); 5220 if ((int)Val < 0) Val = -Val; 5221 5222 // powi(x, 0) -> 1.0 5223 if (Val == 0) 5224 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5225 5226 bool OptForSize = DAG.shouldOptForSize(); 5227 if (!OptForSize || 5228 // If optimizing for size, don't insert too many multiplies. 5229 // This inserts up to 5 multiplies. 5230 countPopulation(Val) + Log2_32(Val) < 7) { 5231 // We use the simple binary decomposition method to generate the multiply 5232 // sequence. There are more optimal ways to do this (for example, 5233 // powi(x,15) generates one more multiply than it should), but this has 5234 // the benefit of being both really simple and much better than a libcall. 5235 SDValue Res; // Logically starts equal to 1.0 5236 SDValue CurSquare = LHS; 5237 // TODO: Intrinsics should have fast-math-flags that propagate to these 5238 // nodes. 5239 while (Val) { 5240 if (Val & 1) { 5241 if (Res.getNode()) 5242 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5243 else 5244 Res = CurSquare; // 1.0*CurSquare. 5245 } 5246 5247 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5248 CurSquare, CurSquare); 5249 Val >>= 1; 5250 } 5251 5252 // If the original was negative, invert the result, producing 1/(x*x*x). 5253 if (RHSC->getSExtValue() < 0) 5254 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5255 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5256 return Res; 5257 } 5258 } 5259 5260 // Otherwise, expand to a libcall. 5261 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5262 } 5263 5264 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5265 SDValue LHS, SDValue RHS, SDValue Scale, 5266 SelectionDAG &DAG, const TargetLowering &TLI) { 5267 EVT VT = LHS.getValueType(); 5268 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5269 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5270 LLVMContext &Ctx = *DAG.getContext(); 5271 5272 // If the type is legal but the operation isn't, this node might survive all 5273 // the way to operation legalization. If we end up there and we do not have 5274 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5275 // node. 5276 5277 // Coax the legalizer into expanding the node during type legalization instead 5278 // by bumping the size by one bit. This will force it to Promote, enabling the 5279 // early expansion and avoiding the need to expand later. 5280 5281 // We don't have to do this if Scale is 0; that can always be expanded, unless 5282 // it's a saturating signed operation. Those can experience true integer 5283 // division overflow, a case which we must avoid. 5284 5285 // FIXME: We wouldn't have to do this (or any of the early 5286 // expansion/promotion) if it was possible to expand a libcall of an 5287 // illegal type during operation legalization. But it's not, so things 5288 // get a bit hacky. 5289 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5290 if ((ScaleInt > 0 || (Saturating && Signed)) && 5291 (TLI.isTypeLegal(VT) || 5292 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5293 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5294 Opcode, VT, ScaleInt); 5295 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5296 EVT PromVT; 5297 if (VT.isScalarInteger()) 5298 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5299 else if (VT.isVector()) { 5300 PromVT = VT.getVectorElementType(); 5301 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5302 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5303 } else 5304 llvm_unreachable("Wrong VT for DIVFIX?"); 5305 if (Signed) { 5306 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5307 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5308 } else { 5309 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5310 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5311 } 5312 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5313 // For saturating operations, we need to shift up the LHS to get the 5314 // proper saturation width, and then shift down again afterwards. 5315 if (Saturating) 5316 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5317 DAG.getConstant(1, DL, ShiftTy)); 5318 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5319 if (Saturating) 5320 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5321 DAG.getConstant(1, DL, ShiftTy)); 5322 return DAG.getZExtOrTrunc(Res, DL, VT); 5323 } 5324 } 5325 5326 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5327 } 5328 5329 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5330 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5331 static void 5332 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5333 const SDValue &N) { 5334 switch (N.getOpcode()) { 5335 case ISD::CopyFromReg: { 5336 SDValue Op = N.getOperand(1); 5337 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5338 Op.getValueType().getSizeInBits()); 5339 return; 5340 } 5341 case ISD::BITCAST: 5342 case ISD::AssertZext: 5343 case ISD::AssertSext: 5344 case ISD::TRUNCATE: 5345 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5346 return; 5347 case ISD::BUILD_PAIR: 5348 case ISD::BUILD_VECTOR: 5349 case ISD::CONCAT_VECTORS: 5350 for (SDValue Op : N->op_values()) 5351 getUnderlyingArgRegs(Regs, Op); 5352 return; 5353 default: 5354 return; 5355 } 5356 } 5357 5358 /// If the DbgValueInst is a dbg_value of a function argument, create the 5359 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5360 /// instruction selection, they will be inserted to the entry BB. 5361 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5362 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5363 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5364 const Argument *Arg = dyn_cast<Argument>(V); 5365 if (!Arg) 5366 return false; 5367 5368 if (!IsDbgDeclare) { 5369 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5370 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5371 // the entry block. 5372 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5373 if (!IsInEntryBlock) 5374 return false; 5375 5376 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5377 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5378 // variable that also is a param. 5379 // 5380 // Although, if we are at the top of the entry block already, we can still 5381 // emit using ArgDbgValue. This might catch some situations when the 5382 // dbg.value refers to an argument that isn't used in the entry block, so 5383 // any CopyToReg node would be optimized out and the only way to express 5384 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5385 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5386 // we should only emit as ArgDbgValue if the Variable is an argument to the 5387 // current function, and the dbg.value intrinsic is found in the entry 5388 // block. 5389 bool VariableIsFunctionInputArg = Variable->isParameter() && 5390 !DL->getInlinedAt(); 5391 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5392 if (!IsInPrologue && !VariableIsFunctionInputArg) 5393 return false; 5394 5395 // Here we assume that a function argument on IR level only can be used to 5396 // describe one input parameter on source level. If we for example have 5397 // source code like this 5398 // 5399 // struct A { long x, y; }; 5400 // void foo(struct A a, long b) { 5401 // ... 5402 // b = a.x; 5403 // ... 5404 // } 5405 // 5406 // and IR like this 5407 // 5408 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5409 // entry: 5410 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5411 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5412 // call void @llvm.dbg.value(metadata i32 %b, "b", 5413 // ... 5414 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5415 // ... 5416 // 5417 // then the last dbg.value is describing a parameter "b" using a value that 5418 // is an argument. But since we already has used %a1 to describe a parameter 5419 // we should not handle that last dbg.value here (that would result in an 5420 // incorrect hoisting of the DBG_VALUE to the function entry). 5421 // Notice that we allow one dbg.value per IR level argument, to accommodate 5422 // for the situation with fragments above. 5423 if (VariableIsFunctionInputArg) { 5424 unsigned ArgNo = Arg->getArgNo(); 5425 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5426 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5427 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5428 return false; 5429 FuncInfo.DescribedArgs.set(ArgNo); 5430 } 5431 } 5432 5433 MachineFunction &MF = DAG.getMachineFunction(); 5434 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5435 5436 bool IsIndirect = false; 5437 Optional<MachineOperand> Op; 5438 // Some arguments' frame index is recorded during argument lowering. 5439 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5440 if (FI != std::numeric_limits<int>::max()) 5441 Op = MachineOperand::CreateFI(FI); 5442 5443 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5444 if (!Op && N.getNode()) { 5445 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5446 Register Reg; 5447 if (ArgRegsAndSizes.size() == 1) 5448 Reg = ArgRegsAndSizes.front().first; 5449 5450 if (Reg && Reg.isVirtual()) { 5451 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5452 Register PR = RegInfo.getLiveInPhysReg(Reg); 5453 if (PR) 5454 Reg = PR; 5455 } 5456 if (Reg) { 5457 Op = MachineOperand::CreateReg(Reg, false); 5458 IsIndirect = IsDbgDeclare; 5459 } 5460 } 5461 5462 if (!Op && N.getNode()) { 5463 // Check if frame index is available. 5464 SDValue LCandidate = peekThroughBitcasts(N); 5465 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5466 if (FrameIndexSDNode *FINode = 5467 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5468 Op = MachineOperand::CreateFI(FINode->getIndex()); 5469 } 5470 5471 if (!Op) { 5472 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5473 auto splitMultiRegDbgValue 5474 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5475 unsigned Offset = 0; 5476 for (auto RegAndSize : SplitRegs) { 5477 // If the expression is already a fragment, the current register 5478 // offset+size might extend beyond the fragment. In this case, only 5479 // the register bits that are inside the fragment are relevant. 5480 int RegFragmentSizeInBits = RegAndSize.second; 5481 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5482 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5483 // The register is entirely outside the expression fragment, 5484 // so is irrelevant for debug info. 5485 if (Offset >= ExprFragmentSizeInBits) 5486 break; 5487 // The register is partially outside the expression fragment, only 5488 // the low bits within the fragment are relevant for debug info. 5489 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5490 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5491 } 5492 } 5493 5494 auto FragmentExpr = DIExpression::createFragmentExpression( 5495 Expr, Offset, RegFragmentSizeInBits); 5496 Offset += RegAndSize.second; 5497 // If a valid fragment expression cannot be created, the variable's 5498 // correct value cannot be determined and so it is set as Undef. 5499 if (!FragmentExpr) { 5500 SDDbgValue *SDV = DAG.getConstantDbgValue( 5501 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5502 DAG.AddDbgValue(SDV, nullptr, false); 5503 continue; 5504 } 5505 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5506 FuncInfo.ArgDbgValues.push_back( 5507 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5508 RegAndSize.first, Variable, *FragmentExpr)); 5509 } 5510 }; 5511 5512 // Check if ValueMap has reg number. 5513 DenseMap<const Value *, Register>::const_iterator 5514 VMI = FuncInfo.ValueMap.find(V); 5515 if (VMI != FuncInfo.ValueMap.end()) { 5516 const auto &TLI = DAG.getTargetLoweringInfo(); 5517 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5518 V->getType(), getABIRegCopyCC(V)); 5519 if (RFV.occupiesMultipleRegs()) { 5520 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5521 return true; 5522 } 5523 5524 Op = MachineOperand::CreateReg(VMI->second, false); 5525 IsIndirect = IsDbgDeclare; 5526 } else if (ArgRegsAndSizes.size() > 1) { 5527 // This was split due to the calling convention, and no virtual register 5528 // mapping exists for the value. 5529 splitMultiRegDbgValue(ArgRegsAndSizes); 5530 return true; 5531 } 5532 } 5533 5534 if (!Op) 5535 return false; 5536 5537 assert(Variable->isValidLocationForIntrinsic(DL) && 5538 "Expected inlined-at fields to agree"); 5539 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5540 FuncInfo.ArgDbgValues.push_back( 5541 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5542 *Op, Variable, Expr)); 5543 5544 return true; 5545 } 5546 5547 /// Return the appropriate SDDbgValue based on N. 5548 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5549 DILocalVariable *Variable, 5550 DIExpression *Expr, 5551 const DebugLoc &dl, 5552 unsigned DbgSDNodeOrder) { 5553 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5554 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5555 // stack slot locations. 5556 // 5557 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5558 // debug values here after optimization: 5559 // 5560 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5561 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5562 // 5563 // Both describe the direct values of their associated variables. 5564 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5565 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5566 } 5567 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5568 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5569 } 5570 5571 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5572 switch (Intrinsic) { 5573 case Intrinsic::smul_fix: 5574 return ISD::SMULFIX; 5575 case Intrinsic::umul_fix: 5576 return ISD::UMULFIX; 5577 case Intrinsic::smul_fix_sat: 5578 return ISD::SMULFIXSAT; 5579 case Intrinsic::umul_fix_sat: 5580 return ISD::UMULFIXSAT; 5581 case Intrinsic::sdiv_fix: 5582 return ISD::SDIVFIX; 5583 case Intrinsic::udiv_fix: 5584 return ISD::UDIVFIX; 5585 case Intrinsic::sdiv_fix_sat: 5586 return ISD::SDIVFIXSAT; 5587 case Intrinsic::udiv_fix_sat: 5588 return ISD::UDIVFIXSAT; 5589 default: 5590 llvm_unreachable("Unhandled fixed point intrinsic"); 5591 } 5592 } 5593 5594 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5595 const char *FunctionName) { 5596 assert(FunctionName && "FunctionName must not be nullptr"); 5597 SDValue Callee = DAG.getExternalSymbol( 5598 FunctionName, 5599 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5600 LowerCallTo(I, Callee, I.isTailCall()); 5601 } 5602 5603 /// Lower the call to the specified intrinsic function. 5604 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5605 unsigned Intrinsic) { 5606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5607 SDLoc sdl = getCurSDLoc(); 5608 DebugLoc dl = getCurDebugLoc(); 5609 SDValue Res; 5610 5611 switch (Intrinsic) { 5612 default: 5613 // By default, turn this into a target intrinsic node. 5614 visitTargetIntrinsic(I, Intrinsic); 5615 return; 5616 case Intrinsic::vscale: { 5617 match(&I, m_VScale(DAG.getDataLayout())); 5618 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5619 setValue(&I, 5620 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5621 return; 5622 } 5623 case Intrinsic::vastart: visitVAStart(I); return; 5624 case Intrinsic::vaend: visitVAEnd(I); return; 5625 case Intrinsic::vacopy: visitVACopy(I); return; 5626 case Intrinsic::returnaddress: 5627 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5628 TLI.getPointerTy(DAG.getDataLayout()), 5629 getValue(I.getArgOperand(0)))); 5630 return; 5631 case Intrinsic::addressofreturnaddress: 5632 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5633 TLI.getPointerTy(DAG.getDataLayout()))); 5634 return; 5635 case Intrinsic::sponentry: 5636 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5637 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5638 return; 5639 case Intrinsic::frameaddress: 5640 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5641 TLI.getFrameIndexTy(DAG.getDataLayout()), 5642 getValue(I.getArgOperand(0)))); 5643 return; 5644 case Intrinsic::read_register: { 5645 Value *Reg = I.getArgOperand(0); 5646 SDValue Chain = getRoot(); 5647 SDValue RegName = 5648 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5649 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5650 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5651 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5652 setValue(&I, Res); 5653 DAG.setRoot(Res.getValue(1)); 5654 return; 5655 } 5656 case Intrinsic::write_register: { 5657 Value *Reg = I.getArgOperand(0); 5658 Value *RegValue = I.getArgOperand(1); 5659 SDValue Chain = getRoot(); 5660 SDValue RegName = 5661 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5662 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5663 RegName, getValue(RegValue))); 5664 return; 5665 } 5666 case Intrinsic::memcpy: { 5667 const auto &MCI = cast<MemCpyInst>(I); 5668 SDValue Op1 = getValue(I.getArgOperand(0)); 5669 SDValue Op2 = getValue(I.getArgOperand(1)); 5670 SDValue Op3 = getValue(I.getArgOperand(2)); 5671 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5672 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5673 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5674 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5675 bool isVol = MCI.isVolatile(); 5676 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5677 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5678 // node. 5679 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5680 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5681 /* AlwaysInline */ false, isTC, 5682 MachinePointerInfo(I.getArgOperand(0)), 5683 MachinePointerInfo(I.getArgOperand(1))); 5684 updateDAGForMaybeTailCall(MC); 5685 return; 5686 } 5687 case Intrinsic::memcpy_inline: { 5688 const auto &MCI = cast<MemCpyInlineInst>(I); 5689 SDValue Dst = getValue(I.getArgOperand(0)); 5690 SDValue Src = getValue(I.getArgOperand(1)); 5691 SDValue Size = getValue(I.getArgOperand(2)); 5692 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5693 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5694 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5695 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5696 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5697 bool isVol = MCI.isVolatile(); 5698 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5699 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5700 // node. 5701 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5702 /* AlwaysInline */ true, isTC, 5703 MachinePointerInfo(I.getArgOperand(0)), 5704 MachinePointerInfo(I.getArgOperand(1))); 5705 updateDAGForMaybeTailCall(MC); 5706 return; 5707 } 5708 case Intrinsic::memset: { 5709 const auto &MSI = cast<MemSetInst>(I); 5710 SDValue Op1 = getValue(I.getArgOperand(0)); 5711 SDValue Op2 = getValue(I.getArgOperand(1)); 5712 SDValue Op3 = getValue(I.getArgOperand(2)); 5713 // @llvm.memset defines 0 and 1 to both mean no alignment. 5714 Align Alignment = MSI.getDestAlign().valueOrOne(); 5715 bool isVol = MSI.isVolatile(); 5716 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5717 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5718 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5719 MachinePointerInfo(I.getArgOperand(0))); 5720 updateDAGForMaybeTailCall(MS); 5721 return; 5722 } 5723 case Intrinsic::memmove: { 5724 const auto &MMI = cast<MemMoveInst>(I); 5725 SDValue Op1 = getValue(I.getArgOperand(0)); 5726 SDValue Op2 = getValue(I.getArgOperand(1)); 5727 SDValue Op3 = getValue(I.getArgOperand(2)); 5728 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5729 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5730 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5731 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5732 bool isVol = MMI.isVolatile(); 5733 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5734 // FIXME: Support passing different dest/src alignments to the memmove DAG 5735 // node. 5736 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5737 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5738 isTC, MachinePointerInfo(I.getArgOperand(0)), 5739 MachinePointerInfo(I.getArgOperand(1))); 5740 updateDAGForMaybeTailCall(MM); 5741 return; 5742 } 5743 case Intrinsic::memcpy_element_unordered_atomic: { 5744 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5745 SDValue Dst = getValue(MI.getRawDest()); 5746 SDValue Src = getValue(MI.getRawSource()); 5747 SDValue Length = getValue(MI.getLength()); 5748 5749 unsigned DstAlign = MI.getDestAlignment(); 5750 unsigned SrcAlign = MI.getSourceAlignment(); 5751 Type *LengthTy = MI.getLength()->getType(); 5752 unsigned ElemSz = MI.getElementSizeInBytes(); 5753 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5754 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5755 SrcAlign, Length, LengthTy, ElemSz, isTC, 5756 MachinePointerInfo(MI.getRawDest()), 5757 MachinePointerInfo(MI.getRawSource())); 5758 updateDAGForMaybeTailCall(MC); 5759 return; 5760 } 5761 case Intrinsic::memmove_element_unordered_atomic: { 5762 auto &MI = cast<AtomicMemMoveInst>(I); 5763 SDValue Dst = getValue(MI.getRawDest()); 5764 SDValue Src = getValue(MI.getRawSource()); 5765 SDValue Length = getValue(MI.getLength()); 5766 5767 unsigned DstAlign = MI.getDestAlignment(); 5768 unsigned SrcAlign = MI.getSourceAlignment(); 5769 Type *LengthTy = MI.getLength()->getType(); 5770 unsigned ElemSz = MI.getElementSizeInBytes(); 5771 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5772 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5773 SrcAlign, Length, LengthTy, ElemSz, isTC, 5774 MachinePointerInfo(MI.getRawDest()), 5775 MachinePointerInfo(MI.getRawSource())); 5776 updateDAGForMaybeTailCall(MC); 5777 return; 5778 } 5779 case Intrinsic::memset_element_unordered_atomic: { 5780 auto &MI = cast<AtomicMemSetInst>(I); 5781 SDValue Dst = getValue(MI.getRawDest()); 5782 SDValue Val = getValue(MI.getValue()); 5783 SDValue Length = getValue(MI.getLength()); 5784 5785 unsigned DstAlign = MI.getDestAlignment(); 5786 Type *LengthTy = MI.getLength()->getType(); 5787 unsigned ElemSz = MI.getElementSizeInBytes(); 5788 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5789 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5790 LengthTy, ElemSz, isTC, 5791 MachinePointerInfo(MI.getRawDest())); 5792 updateDAGForMaybeTailCall(MC); 5793 return; 5794 } 5795 case Intrinsic::dbg_addr: 5796 case Intrinsic::dbg_declare: { 5797 const auto &DI = cast<DbgVariableIntrinsic>(I); 5798 DILocalVariable *Variable = DI.getVariable(); 5799 DIExpression *Expression = DI.getExpression(); 5800 dropDanglingDebugInfo(Variable, Expression); 5801 assert(Variable && "Missing variable"); 5802 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5803 << "\n"); 5804 // Check if address has undef value. 5805 const Value *Address = DI.getVariableLocation(); 5806 if (!Address || isa<UndefValue>(Address) || 5807 (Address->use_empty() && !isa<Argument>(Address))) { 5808 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5809 << " (bad/undef/unused-arg address)\n"); 5810 return; 5811 } 5812 5813 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5814 5815 // Check if this variable can be described by a frame index, typically 5816 // either as a static alloca or a byval parameter. 5817 int FI = std::numeric_limits<int>::max(); 5818 if (const auto *AI = 5819 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5820 if (AI->isStaticAlloca()) { 5821 auto I = FuncInfo.StaticAllocaMap.find(AI); 5822 if (I != FuncInfo.StaticAllocaMap.end()) 5823 FI = I->second; 5824 } 5825 } else if (const auto *Arg = dyn_cast<Argument>( 5826 Address->stripInBoundsConstantOffsets())) { 5827 FI = FuncInfo.getArgumentFrameIndex(Arg); 5828 } 5829 5830 // llvm.dbg.addr is control dependent and always generates indirect 5831 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5832 // the MachineFunction variable table. 5833 if (FI != std::numeric_limits<int>::max()) { 5834 if (Intrinsic == Intrinsic::dbg_addr) { 5835 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5836 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5837 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5838 } else { 5839 LLVM_DEBUG(dbgs() << "Skipping " << DI 5840 << " (variable info stashed in MF side table)\n"); 5841 } 5842 return; 5843 } 5844 5845 SDValue &N = NodeMap[Address]; 5846 if (!N.getNode() && isa<Argument>(Address)) 5847 // Check unused arguments map. 5848 N = UnusedArgNodeMap[Address]; 5849 SDDbgValue *SDV; 5850 if (N.getNode()) { 5851 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5852 Address = BCI->getOperand(0); 5853 // Parameters are handled specially. 5854 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5855 if (isParameter && FINode) { 5856 // Byval parameter. We have a frame index at this point. 5857 SDV = 5858 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5859 /*IsIndirect*/ true, dl, SDNodeOrder); 5860 } else if (isa<Argument>(Address)) { 5861 // Address is an argument, so try to emit its dbg value using 5862 // virtual register info from the FuncInfo.ValueMap. 5863 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5864 return; 5865 } else { 5866 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5867 true, dl, SDNodeOrder); 5868 } 5869 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5870 } else { 5871 // If Address is an argument then try to emit its dbg value using 5872 // virtual register info from the FuncInfo.ValueMap. 5873 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5874 N)) { 5875 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5876 << " (could not emit func-arg dbg_value)\n"); 5877 } 5878 } 5879 return; 5880 } 5881 case Intrinsic::dbg_label: { 5882 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5883 DILabel *Label = DI.getLabel(); 5884 assert(Label && "Missing label"); 5885 5886 SDDbgLabel *SDV; 5887 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5888 DAG.AddDbgLabel(SDV); 5889 return; 5890 } 5891 case Intrinsic::dbg_value: { 5892 const DbgValueInst &DI = cast<DbgValueInst>(I); 5893 assert(DI.getVariable() && "Missing variable"); 5894 5895 DILocalVariable *Variable = DI.getVariable(); 5896 DIExpression *Expression = DI.getExpression(); 5897 dropDanglingDebugInfo(Variable, Expression); 5898 const Value *V = DI.getValue(); 5899 if (!V) 5900 return; 5901 5902 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5903 SDNodeOrder)) 5904 return; 5905 5906 // TODO: Dangling debug info will eventually either be resolved or produce 5907 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5908 // between the original dbg.value location and its resolved DBG_VALUE, which 5909 // we should ideally fill with an extra Undef DBG_VALUE. 5910 5911 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5912 return; 5913 } 5914 5915 case Intrinsic::eh_typeid_for: { 5916 // Find the type id for the given typeinfo. 5917 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5918 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5919 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5920 setValue(&I, Res); 5921 return; 5922 } 5923 5924 case Intrinsic::eh_return_i32: 5925 case Intrinsic::eh_return_i64: 5926 DAG.getMachineFunction().setCallsEHReturn(true); 5927 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5928 MVT::Other, 5929 getControlRoot(), 5930 getValue(I.getArgOperand(0)), 5931 getValue(I.getArgOperand(1)))); 5932 return; 5933 case Intrinsic::eh_unwind_init: 5934 DAG.getMachineFunction().setCallsUnwindInit(true); 5935 return; 5936 case Intrinsic::eh_dwarf_cfa: 5937 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5938 TLI.getPointerTy(DAG.getDataLayout()), 5939 getValue(I.getArgOperand(0)))); 5940 return; 5941 case Intrinsic::eh_sjlj_callsite: { 5942 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5943 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5944 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5945 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5946 5947 MMI.setCurrentCallSite(CI->getZExtValue()); 5948 return; 5949 } 5950 case Intrinsic::eh_sjlj_functioncontext: { 5951 // Get and store the index of the function context. 5952 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5953 AllocaInst *FnCtx = 5954 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5955 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5956 MFI.setFunctionContextIndex(FI); 5957 return; 5958 } 5959 case Intrinsic::eh_sjlj_setjmp: { 5960 SDValue Ops[2]; 5961 Ops[0] = getRoot(); 5962 Ops[1] = getValue(I.getArgOperand(0)); 5963 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5964 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5965 setValue(&I, Op.getValue(0)); 5966 DAG.setRoot(Op.getValue(1)); 5967 return; 5968 } 5969 case Intrinsic::eh_sjlj_longjmp: 5970 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5971 getRoot(), getValue(I.getArgOperand(0)))); 5972 return; 5973 case Intrinsic::eh_sjlj_setup_dispatch: 5974 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5975 getRoot())); 5976 return; 5977 case Intrinsic::masked_gather: 5978 visitMaskedGather(I); 5979 return; 5980 case Intrinsic::masked_load: 5981 visitMaskedLoad(I); 5982 return; 5983 case Intrinsic::masked_scatter: 5984 visitMaskedScatter(I); 5985 return; 5986 case Intrinsic::masked_store: 5987 visitMaskedStore(I); 5988 return; 5989 case Intrinsic::masked_expandload: 5990 visitMaskedLoad(I, true /* IsExpanding */); 5991 return; 5992 case Intrinsic::masked_compressstore: 5993 visitMaskedStore(I, true /* IsCompressing */); 5994 return; 5995 case Intrinsic::powi: 5996 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5997 getValue(I.getArgOperand(1)), DAG)); 5998 return; 5999 case Intrinsic::log: 6000 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6001 return; 6002 case Intrinsic::log2: 6003 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6004 return; 6005 case Intrinsic::log10: 6006 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6007 return; 6008 case Intrinsic::exp: 6009 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6010 return; 6011 case Intrinsic::exp2: 6012 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6013 return; 6014 case Intrinsic::pow: 6015 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6016 getValue(I.getArgOperand(1)), DAG, TLI)); 6017 return; 6018 case Intrinsic::sqrt: 6019 case Intrinsic::fabs: 6020 case Intrinsic::sin: 6021 case Intrinsic::cos: 6022 case Intrinsic::floor: 6023 case Intrinsic::ceil: 6024 case Intrinsic::trunc: 6025 case Intrinsic::rint: 6026 case Intrinsic::nearbyint: 6027 case Intrinsic::round: 6028 case Intrinsic::canonicalize: { 6029 unsigned Opcode; 6030 switch (Intrinsic) { 6031 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6032 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6033 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6034 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6035 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6036 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6037 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6038 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6039 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6040 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6041 case Intrinsic::round: Opcode = ISD::FROUND; break; 6042 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6043 } 6044 6045 setValue(&I, DAG.getNode(Opcode, sdl, 6046 getValue(I.getArgOperand(0)).getValueType(), 6047 getValue(I.getArgOperand(0)))); 6048 return; 6049 } 6050 case Intrinsic::lround: 6051 case Intrinsic::llround: 6052 case Intrinsic::lrint: 6053 case Intrinsic::llrint: { 6054 unsigned Opcode; 6055 switch (Intrinsic) { 6056 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6057 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6058 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6059 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6060 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6061 } 6062 6063 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6064 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6065 getValue(I.getArgOperand(0)))); 6066 return; 6067 } 6068 case Intrinsic::minnum: 6069 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6070 getValue(I.getArgOperand(0)).getValueType(), 6071 getValue(I.getArgOperand(0)), 6072 getValue(I.getArgOperand(1)))); 6073 return; 6074 case Intrinsic::maxnum: 6075 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6076 getValue(I.getArgOperand(0)).getValueType(), 6077 getValue(I.getArgOperand(0)), 6078 getValue(I.getArgOperand(1)))); 6079 return; 6080 case Intrinsic::minimum: 6081 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6082 getValue(I.getArgOperand(0)).getValueType(), 6083 getValue(I.getArgOperand(0)), 6084 getValue(I.getArgOperand(1)))); 6085 return; 6086 case Intrinsic::maximum: 6087 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6088 getValue(I.getArgOperand(0)).getValueType(), 6089 getValue(I.getArgOperand(0)), 6090 getValue(I.getArgOperand(1)))); 6091 return; 6092 case Intrinsic::copysign: 6093 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6094 getValue(I.getArgOperand(0)).getValueType(), 6095 getValue(I.getArgOperand(0)), 6096 getValue(I.getArgOperand(1)))); 6097 return; 6098 case Intrinsic::fma: 6099 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6100 getValue(I.getArgOperand(0)).getValueType(), 6101 getValue(I.getArgOperand(0)), 6102 getValue(I.getArgOperand(1)), 6103 getValue(I.getArgOperand(2)))); 6104 return; 6105 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6106 case Intrinsic::INTRINSIC: 6107 #include "llvm/IR/ConstrainedOps.def" 6108 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6109 return; 6110 case Intrinsic::fmuladd: { 6111 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6112 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6113 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6114 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6115 getValue(I.getArgOperand(0)).getValueType(), 6116 getValue(I.getArgOperand(0)), 6117 getValue(I.getArgOperand(1)), 6118 getValue(I.getArgOperand(2)))); 6119 } else { 6120 // TODO: Intrinsic calls should have fast-math-flags. 6121 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6122 getValue(I.getArgOperand(0)).getValueType(), 6123 getValue(I.getArgOperand(0)), 6124 getValue(I.getArgOperand(1))); 6125 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6126 getValue(I.getArgOperand(0)).getValueType(), 6127 Mul, 6128 getValue(I.getArgOperand(2))); 6129 setValue(&I, Add); 6130 } 6131 return; 6132 } 6133 case Intrinsic::convert_to_fp16: 6134 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6135 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6136 getValue(I.getArgOperand(0)), 6137 DAG.getTargetConstant(0, sdl, 6138 MVT::i32)))); 6139 return; 6140 case Intrinsic::convert_from_fp16: 6141 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6142 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6143 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6144 getValue(I.getArgOperand(0))))); 6145 return; 6146 case Intrinsic::pcmarker: { 6147 SDValue Tmp = getValue(I.getArgOperand(0)); 6148 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6149 return; 6150 } 6151 case Intrinsic::readcyclecounter: { 6152 SDValue Op = getRoot(); 6153 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6154 DAG.getVTList(MVT::i64, MVT::Other), Op); 6155 setValue(&I, Res); 6156 DAG.setRoot(Res.getValue(1)); 6157 return; 6158 } 6159 case Intrinsic::bitreverse: 6160 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6161 getValue(I.getArgOperand(0)).getValueType(), 6162 getValue(I.getArgOperand(0)))); 6163 return; 6164 case Intrinsic::bswap: 6165 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6166 getValue(I.getArgOperand(0)).getValueType(), 6167 getValue(I.getArgOperand(0)))); 6168 return; 6169 case Intrinsic::cttz: { 6170 SDValue Arg = getValue(I.getArgOperand(0)); 6171 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6172 EVT Ty = Arg.getValueType(); 6173 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6174 sdl, Ty, Arg)); 6175 return; 6176 } 6177 case Intrinsic::ctlz: { 6178 SDValue Arg = getValue(I.getArgOperand(0)); 6179 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6180 EVT Ty = Arg.getValueType(); 6181 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6182 sdl, Ty, Arg)); 6183 return; 6184 } 6185 case Intrinsic::ctpop: { 6186 SDValue Arg = getValue(I.getArgOperand(0)); 6187 EVT Ty = Arg.getValueType(); 6188 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6189 return; 6190 } 6191 case Intrinsic::fshl: 6192 case Intrinsic::fshr: { 6193 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6194 SDValue X = getValue(I.getArgOperand(0)); 6195 SDValue Y = getValue(I.getArgOperand(1)); 6196 SDValue Z = getValue(I.getArgOperand(2)); 6197 EVT VT = X.getValueType(); 6198 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6199 SDValue Zero = DAG.getConstant(0, sdl, VT); 6200 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6201 6202 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6203 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6204 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6205 return; 6206 } 6207 6208 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6209 // avoid the select that is necessary in the general case to filter out 6210 // the 0-shift possibility that leads to UB. 6211 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6212 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6213 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6214 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6215 return; 6216 } 6217 6218 // Some targets only rotate one way. Try the opposite direction. 6219 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6220 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6221 // Negate the shift amount because it is safe to ignore the high bits. 6222 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6223 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6224 return; 6225 } 6226 6227 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6228 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6229 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6230 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6231 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6232 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6233 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6234 return; 6235 } 6236 6237 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6238 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6239 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6240 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6241 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6242 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6243 6244 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6245 // and that is undefined. We must compare and select to avoid UB. 6246 EVT CCVT = MVT::i1; 6247 if (VT.isVector()) 6248 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6249 6250 // For fshl, 0-shift returns the 1st arg (X). 6251 // For fshr, 0-shift returns the 2nd arg (Y). 6252 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6253 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6254 return; 6255 } 6256 case Intrinsic::sadd_sat: { 6257 SDValue Op1 = getValue(I.getArgOperand(0)); 6258 SDValue Op2 = getValue(I.getArgOperand(1)); 6259 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6260 return; 6261 } 6262 case Intrinsic::uadd_sat: { 6263 SDValue Op1 = getValue(I.getArgOperand(0)); 6264 SDValue Op2 = getValue(I.getArgOperand(1)); 6265 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6266 return; 6267 } 6268 case Intrinsic::ssub_sat: { 6269 SDValue Op1 = getValue(I.getArgOperand(0)); 6270 SDValue Op2 = getValue(I.getArgOperand(1)); 6271 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6272 return; 6273 } 6274 case Intrinsic::usub_sat: { 6275 SDValue Op1 = getValue(I.getArgOperand(0)); 6276 SDValue Op2 = getValue(I.getArgOperand(1)); 6277 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6278 return; 6279 } 6280 case Intrinsic::smul_fix: 6281 case Intrinsic::umul_fix: 6282 case Intrinsic::smul_fix_sat: 6283 case Intrinsic::umul_fix_sat: { 6284 SDValue Op1 = getValue(I.getArgOperand(0)); 6285 SDValue Op2 = getValue(I.getArgOperand(1)); 6286 SDValue Op3 = getValue(I.getArgOperand(2)); 6287 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6288 Op1.getValueType(), Op1, Op2, Op3)); 6289 return; 6290 } 6291 case Intrinsic::sdiv_fix: 6292 case Intrinsic::udiv_fix: 6293 case Intrinsic::sdiv_fix_sat: 6294 case Intrinsic::udiv_fix_sat: { 6295 SDValue Op1 = getValue(I.getArgOperand(0)); 6296 SDValue Op2 = getValue(I.getArgOperand(1)); 6297 SDValue Op3 = getValue(I.getArgOperand(2)); 6298 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6299 Op1, Op2, Op3, DAG, TLI)); 6300 return; 6301 } 6302 case Intrinsic::stacksave: { 6303 SDValue Op = getRoot(); 6304 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6305 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6306 setValue(&I, Res); 6307 DAG.setRoot(Res.getValue(1)); 6308 return; 6309 } 6310 case Intrinsic::stackrestore: 6311 Res = getValue(I.getArgOperand(0)); 6312 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6313 return; 6314 case Intrinsic::get_dynamic_area_offset: { 6315 SDValue Op = getRoot(); 6316 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6317 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6318 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6319 // target. 6320 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6321 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6322 " intrinsic!"); 6323 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6324 Op); 6325 DAG.setRoot(Op); 6326 setValue(&I, Res); 6327 return; 6328 } 6329 case Intrinsic::stackguard: { 6330 MachineFunction &MF = DAG.getMachineFunction(); 6331 const Module &M = *MF.getFunction().getParent(); 6332 SDValue Chain = getRoot(); 6333 if (TLI.useLoadStackGuardNode()) { 6334 Res = getLoadStackGuard(DAG, sdl, Chain); 6335 } else { 6336 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6337 const Value *Global = TLI.getSDagStackGuard(M); 6338 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6339 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6340 MachinePointerInfo(Global, 0), Align, 6341 MachineMemOperand::MOVolatile); 6342 } 6343 if (TLI.useStackGuardXorFP()) 6344 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6345 DAG.setRoot(Chain); 6346 setValue(&I, Res); 6347 return; 6348 } 6349 case Intrinsic::stackprotector: { 6350 // Emit code into the DAG to store the stack guard onto the stack. 6351 MachineFunction &MF = DAG.getMachineFunction(); 6352 MachineFrameInfo &MFI = MF.getFrameInfo(); 6353 SDValue Src, Chain = getRoot(); 6354 6355 if (TLI.useLoadStackGuardNode()) 6356 Src = getLoadStackGuard(DAG, sdl, Chain); 6357 else 6358 Src = getValue(I.getArgOperand(0)); // The guard's value. 6359 6360 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6361 6362 int FI = FuncInfo.StaticAllocaMap[Slot]; 6363 MFI.setStackProtectorIndex(FI); 6364 EVT PtrTy = Src.getValueType(); 6365 6366 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6367 6368 // Store the stack protector onto the stack. 6369 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6370 DAG.getMachineFunction(), FI), 6371 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6372 setValue(&I, Res); 6373 DAG.setRoot(Res); 6374 return; 6375 } 6376 case Intrinsic::objectsize: 6377 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6378 6379 case Intrinsic::is_constant: 6380 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6381 6382 case Intrinsic::annotation: 6383 case Intrinsic::ptr_annotation: 6384 case Intrinsic::launder_invariant_group: 6385 case Intrinsic::strip_invariant_group: 6386 // Drop the intrinsic, but forward the value 6387 setValue(&I, getValue(I.getOperand(0))); 6388 return; 6389 case Intrinsic::assume: 6390 case Intrinsic::var_annotation: 6391 case Intrinsic::sideeffect: 6392 // Discard annotate attributes, assumptions, and artificial side-effects. 6393 return; 6394 6395 case Intrinsic::codeview_annotation: { 6396 // Emit a label associated with this metadata. 6397 MachineFunction &MF = DAG.getMachineFunction(); 6398 MCSymbol *Label = 6399 MF.getMMI().getContext().createTempSymbol("annotation", true); 6400 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6401 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6402 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6403 DAG.setRoot(Res); 6404 return; 6405 } 6406 6407 case Intrinsic::init_trampoline: { 6408 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6409 6410 SDValue Ops[6]; 6411 Ops[0] = getRoot(); 6412 Ops[1] = getValue(I.getArgOperand(0)); 6413 Ops[2] = getValue(I.getArgOperand(1)); 6414 Ops[3] = getValue(I.getArgOperand(2)); 6415 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6416 Ops[5] = DAG.getSrcValue(F); 6417 6418 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6419 6420 DAG.setRoot(Res); 6421 return; 6422 } 6423 case Intrinsic::adjust_trampoline: 6424 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6425 TLI.getPointerTy(DAG.getDataLayout()), 6426 getValue(I.getArgOperand(0)))); 6427 return; 6428 case Intrinsic::gcroot: { 6429 assert(DAG.getMachineFunction().getFunction().hasGC() && 6430 "only valid in functions with gc specified, enforced by Verifier"); 6431 assert(GFI && "implied by previous"); 6432 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6433 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6434 6435 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6436 GFI->addStackRoot(FI->getIndex(), TypeMap); 6437 return; 6438 } 6439 case Intrinsic::gcread: 6440 case Intrinsic::gcwrite: 6441 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6442 case Intrinsic::flt_rounds: 6443 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6444 setValue(&I, Res); 6445 DAG.setRoot(Res.getValue(1)); 6446 return; 6447 6448 case Intrinsic::expect: 6449 // Just replace __builtin_expect(exp, c) with EXP. 6450 setValue(&I, getValue(I.getArgOperand(0))); 6451 return; 6452 6453 case Intrinsic::debugtrap: 6454 case Intrinsic::trap: { 6455 StringRef TrapFuncName = 6456 I.getAttributes() 6457 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6458 .getValueAsString(); 6459 if (TrapFuncName.empty()) { 6460 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6461 ISD::TRAP : ISD::DEBUGTRAP; 6462 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6463 return; 6464 } 6465 TargetLowering::ArgListTy Args; 6466 6467 TargetLowering::CallLoweringInfo CLI(DAG); 6468 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6469 CallingConv::C, I.getType(), 6470 DAG.getExternalSymbol(TrapFuncName.data(), 6471 TLI.getPointerTy(DAG.getDataLayout())), 6472 std::move(Args)); 6473 6474 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6475 DAG.setRoot(Result.second); 6476 return; 6477 } 6478 6479 case Intrinsic::uadd_with_overflow: 6480 case Intrinsic::sadd_with_overflow: 6481 case Intrinsic::usub_with_overflow: 6482 case Intrinsic::ssub_with_overflow: 6483 case Intrinsic::umul_with_overflow: 6484 case Intrinsic::smul_with_overflow: { 6485 ISD::NodeType Op; 6486 switch (Intrinsic) { 6487 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6488 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6489 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6490 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6491 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6492 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6493 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6494 } 6495 SDValue Op1 = getValue(I.getArgOperand(0)); 6496 SDValue Op2 = getValue(I.getArgOperand(1)); 6497 6498 EVT ResultVT = Op1.getValueType(); 6499 EVT OverflowVT = MVT::i1; 6500 if (ResultVT.isVector()) 6501 OverflowVT = EVT::getVectorVT( 6502 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6503 6504 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6505 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6506 return; 6507 } 6508 case Intrinsic::prefetch: { 6509 SDValue Ops[5]; 6510 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6511 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6512 Ops[0] = DAG.getRoot(); 6513 Ops[1] = getValue(I.getArgOperand(0)); 6514 Ops[2] = getValue(I.getArgOperand(1)); 6515 Ops[3] = getValue(I.getArgOperand(2)); 6516 Ops[4] = getValue(I.getArgOperand(3)); 6517 SDValue Result = DAG.getMemIntrinsicNode( 6518 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6519 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6520 /* align */ None, Flags); 6521 6522 // Chain the prefetch in parallell with any pending loads, to stay out of 6523 // the way of later optimizations. 6524 PendingLoads.push_back(Result); 6525 Result = getRoot(); 6526 DAG.setRoot(Result); 6527 return; 6528 } 6529 case Intrinsic::lifetime_start: 6530 case Intrinsic::lifetime_end: { 6531 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6532 // Stack coloring is not enabled in O0, discard region information. 6533 if (TM.getOptLevel() == CodeGenOpt::None) 6534 return; 6535 6536 const int64_t ObjectSize = 6537 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6538 Value *const ObjectPtr = I.getArgOperand(1); 6539 SmallVector<const Value *, 4> Allocas; 6540 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6541 6542 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6543 E = Allocas.end(); Object != E; ++Object) { 6544 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6545 6546 // Could not find an Alloca. 6547 if (!LifetimeObject) 6548 continue; 6549 6550 // First check that the Alloca is static, otherwise it won't have a 6551 // valid frame index. 6552 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6553 if (SI == FuncInfo.StaticAllocaMap.end()) 6554 return; 6555 6556 const int FrameIndex = SI->second; 6557 int64_t Offset; 6558 if (GetPointerBaseWithConstantOffset( 6559 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6560 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6561 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6562 Offset); 6563 DAG.setRoot(Res); 6564 } 6565 return; 6566 } 6567 case Intrinsic::invariant_start: 6568 // Discard region information. 6569 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6570 return; 6571 case Intrinsic::invariant_end: 6572 // Discard region information. 6573 return; 6574 case Intrinsic::clear_cache: 6575 /// FunctionName may be null. 6576 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6577 lowerCallToExternalSymbol(I, FunctionName); 6578 return; 6579 case Intrinsic::donothing: 6580 // ignore 6581 return; 6582 case Intrinsic::experimental_stackmap: 6583 visitStackmap(I); 6584 return; 6585 case Intrinsic::experimental_patchpoint_void: 6586 case Intrinsic::experimental_patchpoint_i64: 6587 visitPatchpoint(I); 6588 return; 6589 case Intrinsic::experimental_gc_statepoint: 6590 LowerStatepoint(ImmutableStatepoint(&I)); 6591 return; 6592 case Intrinsic::experimental_gc_result: 6593 visitGCResult(cast<GCResultInst>(I)); 6594 return; 6595 case Intrinsic::experimental_gc_relocate: 6596 visitGCRelocate(cast<GCRelocateInst>(I)); 6597 return; 6598 case Intrinsic::instrprof_increment: 6599 llvm_unreachable("instrprof failed to lower an increment"); 6600 case Intrinsic::instrprof_value_profile: 6601 llvm_unreachable("instrprof failed to lower a value profiling call"); 6602 case Intrinsic::localescape: { 6603 MachineFunction &MF = DAG.getMachineFunction(); 6604 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6605 6606 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6607 // is the same on all targets. 6608 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6609 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6610 if (isa<ConstantPointerNull>(Arg)) 6611 continue; // Skip null pointers. They represent a hole in index space. 6612 AllocaInst *Slot = cast<AllocaInst>(Arg); 6613 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6614 "can only escape static allocas"); 6615 int FI = FuncInfo.StaticAllocaMap[Slot]; 6616 MCSymbol *FrameAllocSym = 6617 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6618 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6620 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6621 .addSym(FrameAllocSym) 6622 .addFrameIndex(FI); 6623 } 6624 6625 return; 6626 } 6627 6628 case Intrinsic::localrecover: { 6629 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6630 MachineFunction &MF = DAG.getMachineFunction(); 6631 6632 // Get the symbol that defines the frame offset. 6633 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6634 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6635 unsigned IdxVal = 6636 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6637 MCSymbol *FrameAllocSym = 6638 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6639 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6640 6641 Value *FP = I.getArgOperand(1); 6642 SDValue FPVal = getValue(FP); 6643 EVT PtrVT = FPVal.getValueType(); 6644 6645 // Create a MCSymbol for the label to avoid any target lowering 6646 // that would make this PC relative. 6647 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6648 SDValue OffsetVal = 6649 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6650 6651 // Add the offset to the FP. 6652 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6653 setValue(&I, Add); 6654 6655 return; 6656 } 6657 6658 case Intrinsic::eh_exceptionpointer: 6659 case Intrinsic::eh_exceptioncode: { 6660 // Get the exception pointer vreg, copy from it, and resize it to fit. 6661 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6662 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6663 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6664 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6665 SDValue N = 6666 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6667 if (Intrinsic == Intrinsic::eh_exceptioncode) 6668 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6669 setValue(&I, N); 6670 return; 6671 } 6672 case Intrinsic::xray_customevent: { 6673 // Here we want to make sure that the intrinsic behaves as if it has a 6674 // specific calling convention, and only for x86_64. 6675 // FIXME: Support other platforms later. 6676 const auto &Triple = DAG.getTarget().getTargetTriple(); 6677 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6678 return; 6679 6680 SDLoc DL = getCurSDLoc(); 6681 SmallVector<SDValue, 8> Ops; 6682 6683 // We want to say that we always want the arguments in registers. 6684 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6685 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6686 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6687 SDValue Chain = getRoot(); 6688 Ops.push_back(LogEntryVal); 6689 Ops.push_back(StrSizeVal); 6690 Ops.push_back(Chain); 6691 6692 // We need to enforce the calling convention for the callsite, so that 6693 // argument ordering is enforced correctly, and that register allocation can 6694 // see that some registers may be assumed clobbered and have to preserve 6695 // them across calls to the intrinsic. 6696 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6697 DL, NodeTys, Ops); 6698 SDValue patchableNode = SDValue(MN, 0); 6699 DAG.setRoot(patchableNode); 6700 setValue(&I, patchableNode); 6701 return; 6702 } 6703 case Intrinsic::xray_typedevent: { 6704 // Here we want to make sure that the intrinsic behaves as if it has a 6705 // specific calling convention, and only for x86_64. 6706 // FIXME: Support other platforms later. 6707 const auto &Triple = DAG.getTarget().getTargetTriple(); 6708 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6709 return; 6710 6711 SDLoc DL = getCurSDLoc(); 6712 SmallVector<SDValue, 8> Ops; 6713 6714 // We want to say that we always want the arguments in registers. 6715 // It's unclear to me how manipulating the selection DAG here forces callers 6716 // to provide arguments in registers instead of on the stack. 6717 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6718 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6719 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6720 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6721 SDValue Chain = getRoot(); 6722 Ops.push_back(LogTypeId); 6723 Ops.push_back(LogEntryVal); 6724 Ops.push_back(StrSizeVal); 6725 Ops.push_back(Chain); 6726 6727 // We need to enforce the calling convention for the callsite, so that 6728 // argument ordering is enforced correctly, and that register allocation can 6729 // see that some registers may be assumed clobbered and have to preserve 6730 // them across calls to the intrinsic. 6731 MachineSDNode *MN = DAG.getMachineNode( 6732 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6733 SDValue patchableNode = SDValue(MN, 0); 6734 DAG.setRoot(patchableNode); 6735 setValue(&I, patchableNode); 6736 return; 6737 } 6738 case Intrinsic::experimental_deoptimize: 6739 LowerDeoptimizeCall(&I); 6740 return; 6741 6742 case Intrinsic::experimental_vector_reduce_v2_fadd: 6743 case Intrinsic::experimental_vector_reduce_v2_fmul: 6744 case Intrinsic::experimental_vector_reduce_add: 6745 case Intrinsic::experimental_vector_reduce_mul: 6746 case Intrinsic::experimental_vector_reduce_and: 6747 case Intrinsic::experimental_vector_reduce_or: 6748 case Intrinsic::experimental_vector_reduce_xor: 6749 case Intrinsic::experimental_vector_reduce_smax: 6750 case Intrinsic::experimental_vector_reduce_smin: 6751 case Intrinsic::experimental_vector_reduce_umax: 6752 case Intrinsic::experimental_vector_reduce_umin: 6753 case Intrinsic::experimental_vector_reduce_fmax: 6754 case Intrinsic::experimental_vector_reduce_fmin: 6755 visitVectorReduce(I, Intrinsic); 6756 return; 6757 6758 case Intrinsic::icall_branch_funnel: { 6759 SmallVector<SDValue, 16> Ops; 6760 Ops.push_back(getValue(I.getArgOperand(0))); 6761 6762 int64_t Offset; 6763 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6764 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6765 if (!Base) 6766 report_fatal_error( 6767 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6768 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6769 6770 struct BranchFunnelTarget { 6771 int64_t Offset; 6772 SDValue Target; 6773 }; 6774 SmallVector<BranchFunnelTarget, 8> Targets; 6775 6776 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6777 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6778 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6779 if (ElemBase != Base) 6780 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6781 "to the same GlobalValue"); 6782 6783 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6784 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6785 if (!GA) 6786 report_fatal_error( 6787 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6788 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6789 GA->getGlobal(), getCurSDLoc(), 6790 Val.getValueType(), GA->getOffset())}); 6791 } 6792 llvm::sort(Targets, 6793 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6794 return T1.Offset < T2.Offset; 6795 }); 6796 6797 for (auto &T : Targets) { 6798 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6799 Ops.push_back(T.Target); 6800 } 6801 6802 Ops.push_back(DAG.getRoot()); // Chain 6803 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6804 getCurSDLoc(), MVT::Other, Ops), 6805 0); 6806 DAG.setRoot(N); 6807 setValue(&I, N); 6808 HasTailCall = true; 6809 return; 6810 } 6811 6812 case Intrinsic::wasm_landingpad_index: 6813 // Information this intrinsic contained has been transferred to 6814 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6815 // delete it now. 6816 return; 6817 6818 case Intrinsic::aarch64_settag: 6819 case Intrinsic::aarch64_settag_zero: { 6820 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6821 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6822 SDValue Val = TSI.EmitTargetCodeForSetTag( 6823 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6824 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6825 ZeroMemory); 6826 DAG.setRoot(Val); 6827 setValue(&I, Val); 6828 return; 6829 } 6830 case Intrinsic::ptrmask: { 6831 SDValue Ptr = getValue(I.getOperand(0)); 6832 SDValue Const = getValue(I.getOperand(1)); 6833 6834 EVT DestVT = 6835 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6836 6837 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6838 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6839 return; 6840 } 6841 } 6842 } 6843 6844 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6845 const ConstrainedFPIntrinsic &FPI) { 6846 SDLoc sdl = getCurSDLoc(); 6847 6848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6849 SmallVector<EVT, 4> ValueVTs; 6850 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6851 ValueVTs.push_back(MVT::Other); // Out chain 6852 6853 // We do not need to serialize constrained FP intrinsics against 6854 // each other or against (nonvolatile) loads, so they can be 6855 // chained like loads. 6856 SDValue Chain = DAG.getRoot(); 6857 SmallVector<SDValue, 4> Opers; 6858 Opers.push_back(Chain); 6859 if (FPI.isUnaryOp()) { 6860 Opers.push_back(getValue(FPI.getArgOperand(0))); 6861 } else if (FPI.isTernaryOp()) { 6862 Opers.push_back(getValue(FPI.getArgOperand(0))); 6863 Opers.push_back(getValue(FPI.getArgOperand(1))); 6864 Opers.push_back(getValue(FPI.getArgOperand(2))); 6865 } else { 6866 Opers.push_back(getValue(FPI.getArgOperand(0))); 6867 Opers.push_back(getValue(FPI.getArgOperand(1))); 6868 } 6869 6870 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6871 assert(Result.getNode()->getNumValues() == 2); 6872 6873 // Push node to the appropriate list so that future instructions can be 6874 // chained up correctly. 6875 SDValue OutChain = Result.getValue(1); 6876 switch (EB) { 6877 case fp::ExceptionBehavior::ebIgnore: 6878 // The only reason why ebIgnore nodes still need to be chained is that 6879 // they might depend on the current rounding mode, and therefore must 6880 // not be moved across instruction that may change that mode. 6881 LLVM_FALLTHROUGH; 6882 case fp::ExceptionBehavior::ebMayTrap: 6883 // These must not be moved across calls or instructions that may change 6884 // floating-point exception masks. 6885 PendingConstrainedFP.push_back(OutChain); 6886 break; 6887 case fp::ExceptionBehavior::ebStrict: 6888 // These must not be moved across calls or instructions that may change 6889 // floating-point exception masks or read floating-point exception flags. 6890 // In addition, they cannot be optimized out even if unused. 6891 PendingConstrainedFPStrict.push_back(OutChain); 6892 break; 6893 } 6894 }; 6895 6896 SDVTList VTs = DAG.getVTList(ValueVTs); 6897 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6898 6899 SDNodeFlags Flags; 6900 if (EB == fp::ExceptionBehavior::ebIgnore) 6901 Flags.setNoFPExcept(true); 6902 6903 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6904 Flags.copyFMF(*FPOp); 6905 6906 unsigned Opcode; 6907 switch (FPI.getIntrinsicID()) { 6908 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6909 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6910 case Intrinsic::INTRINSIC: \ 6911 Opcode = ISD::STRICT_##DAGN; \ 6912 break; 6913 #include "llvm/IR/ConstrainedOps.def" 6914 case Intrinsic::experimental_constrained_fmuladd: { 6915 Opcode = ISD::STRICT_FMA; 6916 // Break fmuladd into fmul and fadd. 6917 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6918 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6919 ValueVTs[0])) { 6920 Opers.pop_back(); 6921 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6922 pushOutChain(Mul, EB); 6923 Opcode = ISD::STRICT_FADD; 6924 Opers.clear(); 6925 Opers.push_back(Mul.getValue(1)); 6926 Opers.push_back(Mul.getValue(0)); 6927 Opers.push_back(getValue(FPI.getArgOperand(2))); 6928 } 6929 break; 6930 } 6931 } 6932 6933 // A few strict DAG nodes carry additional operands that are not 6934 // set up by the default code above. 6935 switch (Opcode) { 6936 default: break; 6937 case ISD::STRICT_FP_ROUND: 6938 Opers.push_back( 6939 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6940 break; 6941 case ISD::STRICT_FSETCC: 6942 case ISD::STRICT_FSETCCS: { 6943 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6944 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6945 break; 6946 } 6947 } 6948 6949 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6950 pushOutChain(Result, EB); 6951 6952 SDValue FPResult = Result.getValue(0); 6953 setValue(&FPI, FPResult); 6954 } 6955 6956 std::pair<SDValue, SDValue> 6957 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6958 const BasicBlock *EHPadBB) { 6959 MachineFunction &MF = DAG.getMachineFunction(); 6960 MachineModuleInfo &MMI = MF.getMMI(); 6961 MCSymbol *BeginLabel = nullptr; 6962 6963 if (EHPadBB) { 6964 // Insert a label before the invoke call to mark the try range. This can be 6965 // used to detect deletion of the invoke via the MachineModuleInfo. 6966 BeginLabel = MMI.getContext().createTempSymbol(); 6967 6968 // For SjLj, keep track of which landing pads go with which invokes 6969 // so as to maintain the ordering of pads in the LSDA. 6970 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6971 if (CallSiteIndex) { 6972 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6973 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6974 6975 // Now that the call site is handled, stop tracking it. 6976 MMI.setCurrentCallSite(0); 6977 } 6978 6979 // Both PendingLoads and PendingExports must be flushed here; 6980 // this call might not return. 6981 (void)getRoot(); 6982 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6983 6984 CLI.setChain(getRoot()); 6985 } 6986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6987 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6988 6989 assert((CLI.IsTailCall || Result.second.getNode()) && 6990 "Non-null chain expected with non-tail call!"); 6991 assert((Result.second.getNode() || !Result.first.getNode()) && 6992 "Null value expected with tail call!"); 6993 6994 if (!Result.second.getNode()) { 6995 // As a special case, a null chain means that a tail call has been emitted 6996 // and the DAG root is already updated. 6997 HasTailCall = true; 6998 6999 // Since there's no actual continuation from this block, nothing can be 7000 // relying on us setting vregs for them. 7001 PendingExports.clear(); 7002 } else { 7003 DAG.setRoot(Result.second); 7004 } 7005 7006 if (EHPadBB) { 7007 // Insert a label at the end of the invoke call to mark the try range. This 7008 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7009 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7010 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7011 7012 // Inform MachineModuleInfo of range. 7013 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7014 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7015 // actually use outlined funclets and their LSDA info style. 7016 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7017 assert(CLI.CB); 7018 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7019 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7020 } else if (!isScopedEHPersonality(Pers)) { 7021 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7022 } 7023 } 7024 7025 return Result; 7026 } 7027 7028 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7029 bool isTailCall, 7030 const BasicBlock *EHPadBB) { 7031 auto &DL = DAG.getDataLayout(); 7032 FunctionType *FTy = CB.getFunctionType(); 7033 Type *RetTy = CB.getType(); 7034 7035 TargetLowering::ArgListTy Args; 7036 Args.reserve(CB.arg_size()); 7037 7038 const Value *SwiftErrorVal = nullptr; 7039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7040 7041 if (isTailCall) { 7042 // Avoid emitting tail calls in functions with the disable-tail-calls 7043 // attribute. 7044 auto *Caller = CB.getParent()->getParent(); 7045 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7046 "true") 7047 isTailCall = false; 7048 7049 // We can't tail call inside a function with a swifterror argument. Lowering 7050 // does not support this yet. It would have to move into the swifterror 7051 // register before the call. 7052 if (TLI.supportSwiftError() && 7053 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7054 isTailCall = false; 7055 } 7056 7057 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7058 TargetLowering::ArgListEntry Entry; 7059 const Value *V = *I; 7060 7061 // Skip empty types 7062 if (V->getType()->isEmptyTy()) 7063 continue; 7064 7065 SDValue ArgNode = getValue(V); 7066 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7067 7068 Entry.setAttributes(&CB, I - CB.arg_begin()); 7069 7070 // Use swifterror virtual register as input to the call. 7071 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7072 SwiftErrorVal = V; 7073 // We find the virtual register for the actual swifterror argument. 7074 // Instead of using the Value, we use the virtual register instead. 7075 Entry.Node = 7076 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7077 EVT(TLI.getPointerTy(DL))); 7078 } 7079 7080 Args.push_back(Entry); 7081 7082 // If we have an explicit sret argument that is an Instruction, (i.e., it 7083 // might point to function-local memory), we can't meaningfully tail-call. 7084 if (Entry.IsSRet && isa<Instruction>(V)) 7085 isTailCall = false; 7086 } 7087 7088 // If call site has a cfguardtarget operand bundle, create and add an 7089 // additional ArgListEntry. 7090 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7091 TargetLowering::ArgListEntry Entry; 7092 Value *V = Bundle->Inputs[0]; 7093 SDValue ArgNode = getValue(V); 7094 Entry.Node = ArgNode; 7095 Entry.Ty = V->getType(); 7096 Entry.IsCFGuardTarget = true; 7097 Args.push_back(Entry); 7098 } 7099 7100 // Check if target-independent constraints permit a tail call here. 7101 // Target-dependent constraints are checked within TLI->LowerCallTo. 7102 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7103 isTailCall = false; 7104 7105 // Disable tail calls if there is an swifterror argument. Targets have not 7106 // been updated to support tail calls. 7107 if (TLI.supportSwiftError() && SwiftErrorVal) 7108 isTailCall = false; 7109 7110 TargetLowering::CallLoweringInfo CLI(DAG); 7111 CLI.setDebugLoc(getCurSDLoc()) 7112 .setChain(getRoot()) 7113 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7114 .setTailCall(isTailCall) 7115 .setConvergent(CB.isConvergent()); 7116 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7117 7118 if (Result.first.getNode()) { 7119 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7120 setValue(&CB, Result.first); 7121 } 7122 7123 // The last element of CLI.InVals has the SDValue for swifterror return. 7124 // Here we copy it to a virtual register and update SwiftErrorMap for 7125 // book-keeping. 7126 if (SwiftErrorVal && TLI.supportSwiftError()) { 7127 // Get the last element of InVals. 7128 SDValue Src = CLI.InVals.back(); 7129 Register VReg = 7130 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7131 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7132 DAG.setRoot(CopyNode); 7133 } 7134 } 7135 7136 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7137 SelectionDAGBuilder &Builder) { 7138 // Check to see if this load can be trivially constant folded, e.g. if the 7139 // input is from a string literal. 7140 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7141 // Cast pointer to the type we really want to load. 7142 Type *LoadTy = 7143 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7144 if (LoadVT.isVector()) 7145 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7146 7147 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7148 PointerType::getUnqual(LoadTy)); 7149 7150 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7151 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7152 return Builder.getValue(LoadCst); 7153 } 7154 7155 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7156 // still constant memory, the input chain can be the entry node. 7157 SDValue Root; 7158 bool ConstantMemory = false; 7159 7160 // Do not serialize (non-volatile) loads of constant memory with anything. 7161 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7162 Root = Builder.DAG.getEntryNode(); 7163 ConstantMemory = true; 7164 } else { 7165 // Do not serialize non-volatile loads against each other. 7166 Root = Builder.DAG.getRoot(); 7167 } 7168 7169 SDValue Ptr = Builder.getValue(PtrVal); 7170 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7171 Ptr, MachinePointerInfo(PtrVal), 7172 /* Alignment = */ 1); 7173 7174 if (!ConstantMemory) 7175 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7176 return LoadVal; 7177 } 7178 7179 /// Record the value for an instruction that produces an integer result, 7180 /// converting the type where necessary. 7181 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7182 SDValue Value, 7183 bool IsSigned) { 7184 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7185 I.getType(), true); 7186 if (IsSigned) 7187 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7188 else 7189 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7190 setValue(&I, Value); 7191 } 7192 7193 /// See if we can lower a memcmp call into an optimized form. If so, return 7194 /// true and lower it. Otherwise return false, and it will be lowered like a 7195 /// normal call. 7196 /// The caller already checked that \p I calls the appropriate LibFunc with a 7197 /// correct prototype. 7198 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7199 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7200 const Value *Size = I.getArgOperand(2); 7201 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7202 if (CSize && CSize->getZExtValue() == 0) { 7203 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7204 I.getType(), true); 7205 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7206 return true; 7207 } 7208 7209 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7210 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7211 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7212 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7213 if (Res.first.getNode()) { 7214 processIntegerCallValue(I, Res.first, true); 7215 PendingLoads.push_back(Res.second); 7216 return true; 7217 } 7218 7219 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7220 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7221 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7222 return false; 7223 7224 // If the target has a fast compare for the given size, it will return a 7225 // preferred load type for that size. Require that the load VT is legal and 7226 // that the target supports unaligned loads of that type. Otherwise, return 7227 // INVALID. 7228 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7230 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7231 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7232 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7233 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7234 // TODO: Check alignment of src and dest ptrs. 7235 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7236 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7237 if (!TLI.isTypeLegal(LVT) || 7238 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7239 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7240 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7241 } 7242 7243 return LVT; 7244 }; 7245 7246 // This turns into unaligned loads. We only do this if the target natively 7247 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7248 // we'll only produce a small number of byte loads. 7249 MVT LoadVT; 7250 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7251 switch (NumBitsToCompare) { 7252 default: 7253 return false; 7254 case 16: 7255 LoadVT = MVT::i16; 7256 break; 7257 case 32: 7258 LoadVT = MVT::i32; 7259 break; 7260 case 64: 7261 case 128: 7262 case 256: 7263 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7264 break; 7265 } 7266 7267 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7268 return false; 7269 7270 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7271 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7272 7273 // Bitcast to a wide integer type if the loads are vectors. 7274 if (LoadVT.isVector()) { 7275 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7276 LoadL = DAG.getBitcast(CmpVT, LoadL); 7277 LoadR = DAG.getBitcast(CmpVT, LoadR); 7278 } 7279 7280 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7281 processIntegerCallValue(I, Cmp, false); 7282 return true; 7283 } 7284 7285 /// See if we can lower a memchr call into an optimized form. If so, return 7286 /// true and lower it. Otherwise return false, and it will be lowered like a 7287 /// normal call. 7288 /// The caller already checked that \p I calls the appropriate LibFunc with a 7289 /// correct prototype. 7290 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7291 const Value *Src = I.getArgOperand(0); 7292 const Value *Char = I.getArgOperand(1); 7293 const Value *Length = I.getArgOperand(2); 7294 7295 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7296 std::pair<SDValue, SDValue> Res = 7297 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7298 getValue(Src), getValue(Char), getValue(Length), 7299 MachinePointerInfo(Src)); 7300 if (Res.first.getNode()) { 7301 setValue(&I, Res.first); 7302 PendingLoads.push_back(Res.second); 7303 return true; 7304 } 7305 7306 return false; 7307 } 7308 7309 /// See if we can lower a mempcpy call into an optimized form. If so, return 7310 /// true and lower it. Otherwise return false, and it will be lowered like a 7311 /// normal call. 7312 /// The caller already checked that \p I calls the appropriate LibFunc with a 7313 /// correct prototype. 7314 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7315 SDValue Dst = getValue(I.getArgOperand(0)); 7316 SDValue Src = getValue(I.getArgOperand(1)); 7317 SDValue Size = getValue(I.getArgOperand(2)); 7318 7319 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7320 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7321 // DAG::getMemcpy needs Alignment to be defined. 7322 Align Alignment = std::min(DstAlign, SrcAlign); 7323 7324 bool isVol = false; 7325 SDLoc sdl = getCurSDLoc(); 7326 7327 // In the mempcpy context we need to pass in a false value for isTailCall 7328 // because the return pointer needs to be adjusted by the size of 7329 // the copied memory. 7330 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7331 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7332 /*isTailCall=*/false, 7333 MachinePointerInfo(I.getArgOperand(0)), 7334 MachinePointerInfo(I.getArgOperand(1))); 7335 assert(MC.getNode() != nullptr && 7336 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7337 DAG.setRoot(MC); 7338 7339 // Check if Size needs to be truncated or extended. 7340 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7341 7342 // Adjust return pointer to point just past the last dst byte. 7343 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7344 Dst, Size); 7345 setValue(&I, DstPlusSize); 7346 return true; 7347 } 7348 7349 /// See if we can lower a strcpy call into an optimized form. If so, return 7350 /// true and lower it, otherwise return false and it will be lowered like a 7351 /// normal call. 7352 /// The caller already checked that \p I calls the appropriate LibFunc with a 7353 /// correct prototype. 7354 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7355 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7356 7357 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7358 std::pair<SDValue, SDValue> Res = 7359 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7360 getValue(Arg0), getValue(Arg1), 7361 MachinePointerInfo(Arg0), 7362 MachinePointerInfo(Arg1), isStpcpy); 7363 if (Res.first.getNode()) { 7364 setValue(&I, Res.first); 7365 DAG.setRoot(Res.second); 7366 return true; 7367 } 7368 7369 return false; 7370 } 7371 7372 /// See if we can lower a strcmp call into an optimized form. If so, return 7373 /// true and lower it, otherwise return false and it will be lowered like a 7374 /// normal call. 7375 /// The caller already checked that \p I calls the appropriate LibFunc with a 7376 /// correct prototype. 7377 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7378 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7379 7380 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7381 std::pair<SDValue, SDValue> Res = 7382 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7383 getValue(Arg0), getValue(Arg1), 7384 MachinePointerInfo(Arg0), 7385 MachinePointerInfo(Arg1)); 7386 if (Res.first.getNode()) { 7387 processIntegerCallValue(I, Res.first, true); 7388 PendingLoads.push_back(Res.second); 7389 return true; 7390 } 7391 7392 return false; 7393 } 7394 7395 /// See if we can lower a strlen call into an optimized form. If so, return 7396 /// true and lower it, otherwise return false and it will be lowered like a 7397 /// normal call. 7398 /// The caller already checked that \p I calls the appropriate LibFunc with a 7399 /// correct prototype. 7400 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7401 const Value *Arg0 = I.getArgOperand(0); 7402 7403 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7404 std::pair<SDValue, SDValue> Res = 7405 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7406 getValue(Arg0), MachinePointerInfo(Arg0)); 7407 if (Res.first.getNode()) { 7408 processIntegerCallValue(I, Res.first, false); 7409 PendingLoads.push_back(Res.second); 7410 return true; 7411 } 7412 7413 return false; 7414 } 7415 7416 /// See if we can lower a strnlen call into an optimized form. If so, return 7417 /// true and lower it, otherwise return false and it will be lowered like a 7418 /// normal call. 7419 /// The caller already checked that \p I calls the appropriate LibFunc with a 7420 /// correct prototype. 7421 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7422 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7423 7424 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7425 std::pair<SDValue, SDValue> Res = 7426 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7427 getValue(Arg0), getValue(Arg1), 7428 MachinePointerInfo(Arg0)); 7429 if (Res.first.getNode()) { 7430 processIntegerCallValue(I, Res.first, false); 7431 PendingLoads.push_back(Res.second); 7432 return true; 7433 } 7434 7435 return false; 7436 } 7437 7438 /// See if we can lower a unary floating-point operation into an SDNode with 7439 /// the specified Opcode. If so, return true and lower it, otherwise return 7440 /// false and it will be lowered like a normal call. 7441 /// The caller already checked that \p I calls the appropriate LibFunc with a 7442 /// correct prototype. 7443 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7444 unsigned Opcode) { 7445 // We already checked this call's prototype; verify it doesn't modify errno. 7446 if (!I.onlyReadsMemory()) 7447 return false; 7448 7449 SDValue Tmp = getValue(I.getArgOperand(0)); 7450 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7451 return true; 7452 } 7453 7454 /// See if we can lower a binary floating-point operation into an SDNode with 7455 /// the specified Opcode. If so, return true and lower it. Otherwise return 7456 /// false, and it will be lowered like a normal call. 7457 /// The caller already checked that \p I calls the appropriate LibFunc with a 7458 /// correct prototype. 7459 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7460 unsigned Opcode) { 7461 // We already checked this call's prototype; verify it doesn't modify errno. 7462 if (!I.onlyReadsMemory()) 7463 return false; 7464 7465 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7466 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7467 EVT VT = Tmp0.getValueType(); 7468 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7469 return true; 7470 } 7471 7472 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7473 // Handle inline assembly differently. 7474 if (isa<InlineAsm>(I.getCalledValue())) { 7475 visitInlineAsm(I); 7476 return; 7477 } 7478 7479 if (Function *F = I.getCalledFunction()) { 7480 if (F->isDeclaration()) { 7481 // Is this an LLVM intrinsic or a target-specific intrinsic? 7482 unsigned IID = F->getIntrinsicID(); 7483 if (!IID) 7484 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7485 IID = II->getIntrinsicID(F); 7486 7487 if (IID) { 7488 visitIntrinsicCall(I, IID); 7489 return; 7490 } 7491 } 7492 7493 // Check for well-known libc/libm calls. If the function is internal, it 7494 // can't be a library call. Don't do the check if marked as nobuiltin for 7495 // some reason or the call site requires strict floating point semantics. 7496 LibFunc Func; 7497 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7498 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7499 LibInfo->hasOptimizedCodeGen(Func)) { 7500 switch (Func) { 7501 default: break; 7502 case LibFunc_copysign: 7503 case LibFunc_copysignf: 7504 case LibFunc_copysignl: 7505 // We already checked this call's prototype; verify it doesn't modify 7506 // errno. 7507 if (I.onlyReadsMemory()) { 7508 SDValue LHS = getValue(I.getArgOperand(0)); 7509 SDValue RHS = getValue(I.getArgOperand(1)); 7510 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7511 LHS.getValueType(), LHS, RHS)); 7512 return; 7513 } 7514 break; 7515 case LibFunc_fabs: 7516 case LibFunc_fabsf: 7517 case LibFunc_fabsl: 7518 if (visitUnaryFloatCall(I, ISD::FABS)) 7519 return; 7520 break; 7521 case LibFunc_fmin: 7522 case LibFunc_fminf: 7523 case LibFunc_fminl: 7524 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7525 return; 7526 break; 7527 case LibFunc_fmax: 7528 case LibFunc_fmaxf: 7529 case LibFunc_fmaxl: 7530 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7531 return; 7532 break; 7533 case LibFunc_sin: 7534 case LibFunc_sinf: 7535 case LibFunc_sinl: 7536 if (visitUnaryFloatCall(I, ISD::FSIN)) 7537 return; 7538 break; 7539 case LibFunc_cos: 7540 case LibFunc_cosf: 7541 case LibFunc_cosl: 7542 if (visitUnaryFloatCall(I, ISD::FCOS)) 7543 return; 7544 break; 7545 case LibFunc_sqrt: 7546 case LibFunc_sqrtf: 7547 case LibFunc_sqrtl: 7548 case LibFunc_sqrt_finite: 7549 case LibFunc_sqrtf_finite: 7550 case LibFunc_sqrtl_finite: 7551 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7552 return; 7553 break; 7554 case LibFunc_floor: 7555 case LibFunc_floorf: 7556 case LibFunc_floorl: 7557 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7558 return; 7559 break; 7560 case LibFunc_nearbyint: 7561 case LibFunc_nearbyintf: 7562 case LibFunc_nearbyintl: 7563 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7564 return; 7565 break; 7566 case LibFunc_ceil: 7567 case LibFunc_ceilf: 7568 case LibFunc_ceill: 7569 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7570 return; 7571 break; 7572 case LibFunc_rint: 7573 case LibFunc_rintf: 7574 case LibFunc_rintl: 7575 if (visitUnaryFloatCall(I, ISD::FRINT)) 7576 return; 7577 break; 7578 case LibFunc_round: 7579 case LibFunc_roundf: 7580 case LibFunc_roundl: 7581 if (visitUnaryFloatCall(I, ISD::FROUND)) 7582 return; 7583 break; 7584 case LibFunc_trunc: 7585 case LibFunc_truncf: 7586 case LibFunc_truncl: 7587 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7588 return; 7589 break; 7590 case LibFunc_log2: 7591 case LibFunc_log2f: 7592 case LibFunc_log2l: 7593 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7594 return; 7595 break; 7596 case LibFunc_exp2: 7597 case LibFunc_exp2f: 7598 case LibFunc_exp2l: 7599 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7600 return; 7601 break; 7602 case LibFunc_memcmp: 7603 if (visitMemCmpCall(I)) 7604 return; 7605 break; 7606 case LibFunc_mempcpy: 7607 if (visitMemPCpyCall(I)) 7608 return; 7609 break; 7610 case LibFunc_memchr: 7611 if (visitMemChrCall(I)) 7612 return; 7613 break; 7614 case LibFunc_strcpy: 7615 if (visitStrCpyCall(I, false)) 7616 return; 7617 break; 7618 case LibFunc_stpcpy: 7619 if (visitStrCpyCall(I, true)) 7620 return; 7621 break; 7622 case LibFunc_strcmp: 7623 if (visitStrCmpCall(I)) 7624 return; 7625 break; 7626 case LibFunc_strlen: 7627 if (visitStrLenCall(I)) 7628 return; 7629 break; 7630 case LibFunc_strnlen: 7631 if (visitStrNLenCall(I)) 7632 return; 7633 break; 7634 } 7635 } 7636 } 7637 7638 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7639 // have to do anything here to lower funclet bundles. 7640 // CFGuardTarget bundles are lowered in LowerCallTo. 7641 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7642 LLVMContext::OB_funclet, 7643 LLVMContext::OB_cfguardtarget}) && 7644 "Cannot lower calls with arbitrary operand bundles!"); 7645 7646 SDValue Callee = getValue(I.getCalledValue()); 7647 7648 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7649 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7650 else 7651 // Check if we can potentially perform a tail call. More detailed checking 7652 // is be done within LowerCallTo, after more information about the call is 7653 // known. 7654 LowerCallTo(I, Callee, I.isTailCall()); 7655 } 7656 7657 namespace { 7658 7659 /// AsmOperandInfo - This contains information for each constraint that we are 7660 /// lowering. 7661 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7662 public: 7663 /// CallOperand - If this is the result output operand or a clobber 7664 /// this is null, otherwise it is the incoming operand to the CallInst. 7665 /// This gets modified as the asm is processed. 7666 SDValue CallOperand; 7667 7668 /// AssignedRegs - If this is a register or register class operand, this 7669 /// contains the set of register corresponding to the operand. 7670 RegsForValue AssignedRegs; 7671 7672 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7673 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7674 } 7675 7676 /// Whether or not this operand accesses memory 7677 bool hasMemory(const TargetLowering &TLI) const { 7678 // Indirect operand accesses access memory. 7679 if (isIndirect) 7680 return true; 7681 7682 for (const auto &Code : Codes) 7683 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7684 return true; 7685 7686 return false; 7687 } 7688 7689 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7690 /// corresponds to. If there is no Value* for this operand, it returns 7691 /// MVT::Other. 7692 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7693 const DataLayout &DL) const { 7694 if (!CallOperandVal) return MVT::Other; 7695 7696 if (isa<BasicBlock>(CallOperandVal)) 7697 return TLI.getProgramPointerTy(DL); 7698 7699 llvm::Type *OpTy = CallOperandVal->getType(); 7700 7701 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7702 // If this is an indirect operand, the operand is a pointer to the 7703 // accessed type. 7704 if (isIndirect) { 7705 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7706 if (!PtrTy) 7707 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7708 OpTy = PtrTy->getElementType(); 7709 } 7710 7711 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7712 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7713 if (STy->getNumElements() == 1) 7714 OpTy = STy->getElementType(0); 7715 7716 // If OpTy is not a single value, it may be a struct/union that we 7717 // can tile with integers. 7718 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7719 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7720 switch (BitSize) { 7721 default: break; 7722 case 1: 7723 case 8: 7724 case 16: 7725 case 32: 7726 case 64: 7727 case 128: 7728 OpTy = IntegerType::get(Context, BitSize); 7729 break; 7730 } 7731 } 7732 7733 return TLI.getValueType(DL, OpTy, true); 7734 } 7735 }; 7736 7737 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7738 7739 } // end anonymous namespace 7740 7741 /// Make sure that the output operand \p OpInfo and its corresponding input 7742 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7743 /// out). 7744 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7745 SDISelAsmOperandInfo &MatchingOpInfo, 7746 SelectionDAG &DAG) { 7747 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7748 return; 7749 7750 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7751 const auto &TLI = DAG.getTargetLoweringInfo(); 7752 7753 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7754 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7755 OpInfo.ConstraintVT); 7756 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7757 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7758 MatchingOpInfo.ConstraintVT); 7759 if ((OpInfo.ConstraintVT.isInteger() != 7760 MatchingOpInfo.ConstraintVT.isInteger()) || 7761 (MatchRC.second != InputRC.second)) { 7762 // FIXME: error out in a more elegant fashion 7763 report_fatal_error("Unsupported asm: input constraint" 7764 " with a matching output constraint of" 7765 " incompatible type!"); 7766 } 7767 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7768 } 7769 7770 /// Get a direct memory input to behave well as an indirect operand. 7771 /// This may introduce stores, hence the need for a \p Chain. 7772 /// \return The (possibly updated) chain. 7773 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7774 SDISelAsmOperandInfo &OpInfo, 7775 SelectionDAG &DAG) { 7776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7777 7778 // If we don't have an indirect input, put it in the constpool if we can, 7779 // otherwise spill it to a stack slot. 7780 // TODO: This isn't quite right. We need to handle these according to 7781 // the addressing mode that the constraint wants. Also, this may take 7782 // an additional register for the computation and we don't want that 7783 // either. 7784 7785 // If the operand is a float, integer, or vector constant, spill to a 7786 // constant pool entry to get its address. 7787 const Value *OpVal = OpInfo.CallOperandVal; 7788 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7789 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7790 OpInfo.CallOperand = DAG.getConstantPool( 7791 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7792 return Chain; 7793 } 7794 7795 // Otherwise, create a stack slot and emit a store to it before the asm. 7796 Type *Ty = OpVal->getType(); 7797 auto &DL = DAG.getDataLayout(); 7798 uint64_t TySize = DL.getTypeAllocSize(Ty); 7799 unsigned Align = DL.getPrefTypeAlignment(Ty); 7800 MachineFunction &MF = DAG.getMachineFunction(); 7801 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7802 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7803 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7804 MachinePointerInfo::getFixedStack(MF, SSFI), 7805 TLI.getMemValueType(DL, Ty)); 7806 OpInfo.CallOperand = StackSlot; 7807 7808 return Chain; 7809 } 7810 7811 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7812 /// specified operand. We prefer to assign virtual registers, to allow the 7813 /// register allocator to handle the assignment process. However, if the asm 7814 /// uses features that we can't model on machineinstrs, we have SDISel do the 7815 /// allocation. This produces generally horrible, but correct, code. 7816 /// 7817 /// OpInfo describes the operand 7818 /// RefOpInfo describes the matching operand if any, the operand otherwise 7819 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7820 SDISelAsmOperandInfo &OpInfo, 7821 SDISelAsmOperandInfo &RefOpInfo) { 7822 LLVMContext &Context = *DAG.getContext(); 7823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7824 7825 MachineFunction &MF = DAG.getMachineFunction(); 7826 SmallVector<unsigned, 4> Regs; 7827 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7828 7829 // No work to do for memory operations. 7830 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7831 return; 7832 7833 // If this is a constraint for a single physreg, or a constraint for a 7834 // register class, find it. 7835 unsigned AssignedReg; 7836 const TargetRegisterClass *RC; 7837 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7838 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7839 // RC is unset only on failure. Return immediately. 7840 if (!RC) 7841 return; 7842 7843 // Get the actual register value type. This is important, because the user 7844 // may have asked for (e.g.) the AX register in i32 type. We need to 7845 // remember that AX is actually i16 to get the right extension. 7846 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7847 7848 if (OpInfo.ConstraintVT != MVT::Other) { 7849 // If this is an FP operand in an integer register (or visa versa), or more 7850 // generally if the operand value disagrees with the register class we plan 7851 // to stick it in, fix the operand type. 7852 // 7853 // If this is an input value, the bitcast to the new type is done now. 7854 // Bitcast for output value is done at the end of visitInlineAsm(). 7855 if ((OpInfo.Type == InlineAsm::isOutput || 7856 OpInfo.Type == InlineAsm::isInput) && 7857 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7858 // Try to convert to the first EVT that the reg class contains. If the 7859 // types are identical size, use a bitcast to convert (e.g. two differing 7860 // vector types). Note: output bitcast is done at the end of 7861 // visitInlineAsm(). 7862 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7863 // Exclude indirect inputs while they are unsupported because the code 7864 // to perform the load is missing and thus OpInfo.CallOperand still 7865 // refers to the input address rather than the pointed-to value. 7866 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7867 OpInfo.CallOperand = 7868 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7869 OpInfo.ConstraintVT = RegVT; 7870 // If the operand is an FP value and we want it in integer registers, 7871 // use the corresponding integer type. This turns an f64 value into 7872 // i64, which can be passed with two i32 values on a 32-bit machine. 7873 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7874 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7875 if (OpInfo.Type == InlineAsm::isInput) 7876 OpInfo.CallOperand = 7877 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7878 OpInfo.ConstraintVT = VT; 7879 } 7880 } 7881 } 7882 7883 // No need to allocate a matching input constraint since the constraint it's 7884 // matching to has already been allocated. 7885 if (OpInfo.isMatchingInputConstraint()) 7886 return; 7887 7888 EVT ValueVT = OpInfo.ConstraintVT; 7889 if (OpInfo.ConstraintVT == MVT::Other) 7890 ValueVT = RegVT; 7891 7892 // Initialize NumRegs. 7893 unsigned NumRegs = 1; 7894 if (OpInfo.ConstraintVT != MVT::Other) 7895 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7896 7897 // If this is a constraint for a specific physical register, like {r17}, 7898 // assign it now. 7899 7900 // If this associated to a specific register, initialize iterator to correct 7901 // place. If virtual, make sure we have enough registers 7902 7903 // Initialize iterator if necessary 7904 TargetRegisterClass::iterator I = RC->begin(); 7905 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7906 7907 // Do not check for single registers. 7908 if (AssignedReg) { 7909 for (; *I != AssignedReg; ++I) 7910 assert(I != RC->end() && "AssignedReg should be member of RC"); 7911 } 7912 7913 for (; NumRegs; --NumRegs, ++I) { 7914 assert(I != RC->end() && "Ran out of registers to allocate!"); 7915 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7916 Regs.push_back(R); 7917 } 7918 7919 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7920 } 7921 7922 static unsigned 7923 findMatchingInlineAsmOperand(unsigned OperandNo, 7924 const std::vector<SDValue> &AsmNodeOperands) { 7925 // Scan until we find the definition we already emitted of this operand. 7926 unsigned CurOp = InlineAsm::Op_FirstOperand; 7927 for (; OperandNo; --OperandNo) { 7928 // Advance to the next operand. 7929 unsigned OpFlag = 7930 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7931 assert((InlineAsm::isRegDefKind(OpFlag) || 7932 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7933 InlineAsm::isMemKind(OpFlag)) && 7934 "Skipped past definitions?"); 7935 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7936 } 7937 return CurOp; 7938 } 7939 7940 namespace { 7941 7942 class ExtraFlags { 7943 unsigned Flags = 0; 7944 7945 public: 7946 explicit ExtraFlags(const CallBase &Call) { 7947 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue()); 7948 if (IA->hasSideEffects()) 7949 Flags |= InlineAsm::Extra_HasSideEffects; 7950 if (IA->isAlignStack()) 7951 Flags |= InlineAsm::Extra_IsAlignStack; 7952 if (Call.isConvergent()) 7953 Flags |= InlineAsm::Extra_IsConvergent; 7954 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7955 } 7956 7957 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7958 // Ideally, we would only check against memory constraints. However, the 7959 // meaning of an Other constraint can be target-specific and we can't easily 7960 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7961 // for Other constraints as well. 7962 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7963 OpInfo.ConstraintType == TargetLowering::C_Other) { 7964 if (OpInfo.Type == InlineAsm::isInput) 7965 Flags |= InlineAsm::Extra_MayLoad; 7966 else if (OpInfo.Type == InlineAsm::isOutput) 7967 Flags |= InlineAsm::Extra_MayStore; 7968 else if (OpInfo.Type == InlineAsm::isClobber) 7969 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7970 } 7971 } 7972 7973 unsigned get() const { return Flags; } 7974 }; 7975 7976 } // end anonymous namespace 7977 7978 /// visitInlineAsm - Handle a call to an InlineAsm object. 7979 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 7980 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue()); 7981 7982 /// ConstraintOperands - Information about all of the constraints. 7983 SDISelAsmOperandInfoVector ConstraintOperands; 7984 7985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7986 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7987 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 7988 7989 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7990 // AsmDialect, MayLoad, MayStore). 7991 bool HasSideEffect = IA->hasSideEffects(); 7992 ExtraFlags ExtraInfo(Call); 7993 7994 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7995 unsigned ResNo = 0; // ResNo - The result number of the next output. 7996 unsigned NumMatchingOps = 0; 7997 for (auto &T : TargetConstraints) { 7998 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7999 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8000 8001 // Compute the value type for each operand. 8002 if (OpInfo.Type == InlineAsm::isInput || 8003 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8004 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8005 8006 // Process the call argument. BasicBlocks are labels, currently appearing 8007 // only in asm's. 8008 if (isa<CallBrInst>(Call) && 8009 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8010 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8011 NumMatchingOps) && 8012 (NumMatchingOps == 0 || 8013 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8014 NumMatchingOps))) { 8015 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8016 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8017 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8018 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8019 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8020 } else { 8021 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8022 } 8023 8024 OpInfo.ConstraintVT = 8025 OpInfo 8026 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8027 .getSimpleVT(); 8028 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8029 // The return value of the call is this value. As such, there is no 8030 // corresponding argument. 8031 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8032 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8033 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8034 DAG.getDataLayout(), STy->getElementType(ResNo)); 8035 } else { 8036 assert(ResNo == 0 && "Asm only has one result!"); 8037 OpInfo.ConstraintVT = 8038 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8039 } 8040 ++ResNo; 8041 } else { 8042 OpInfo.ConstraintVT = MVT::Other; 8043 } 8044 8045 if (OpInfo.hasMatchingInput()) 8046 ++NumMatchingOps; 8047 8048 if (!HasSideEffect) 8049 HasSideEffect = OpInfo.hasMemory(TLI); 8050 8051 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8052 // FIXME: Could we compute this on OpInfo rather than T? 8053 8054 // Compute the constraint code and ConstraintType to use. 8055 TLI.ComputeConstraintToUse(T, SDValue()); 8056 8057 if (T.ConstraintType == TargetLowering::C_Immediate && 8058 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8059 // We've delayed emitting a diagnostic like the "n" constraint because 8060 // inlining could cause an integer showing up. 8061 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8062 "' expects an integer constant " 8063 "expression"); 8064 8065 ExtraInfo.update(T); 8066 } 8067 8068 8069 // We won't need to flush pending loads if this asm doesn't touch 8070 // memory and is nonvolatile. 8071 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8072 8073 bool IsCallBr = isa<CallBrInst>(Call); 8074 if (IsCallBr) { 8075 // If this is a callbr we need to flush pending exports since inlineasm_br 8076 // is a terminator. We need to do this before nodes are glued to 8077 // the inlineasm_br node. 8078 Chain = getControlRoot(); 8079 } 8080 8081 // Second pass over the constraints: compute which constraint option to use. 8082 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8083 // If this is an output operand with a matching input operand, look up the 8084 // matching input. If their types mismatch, e.g. one is an integer, the 8085 // other is floating point, or their sizes are different, flag it as an 8086 // error. 8087 if (OpInfo.hasMatchingInput()) { 8088 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8089 patchMatchingInput(OpInfo, Input, DAG); 8090 } 8091 8092 // Compute the constraint code and ConstraintType to use. 8093 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8094 8095 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8096 OpInfo.Type == InlineAsm::isClobber) 8097 continue; 8098 8099 // If this is a memory input, and if the operand is not indirect, do what we 8100 // need to provide an address for the memory input. 8101 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8102 !OpInfo.isIndirect) { 8103 assert((OpInfo.isMultipleAlternative || 8104 (OpInfo.Type == InlineAsm::isInput)) && 8105 "Can only indirectify direct input operands!"); 8106 8107 // Memory operands really want the address of the value. 8108 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8109 8110 // There is no longer a Value* corresponding to this operand. 8111 OpInfo.CallOperandVal = nullptr; 8112 8113 // It is now an indirect operand. 8114 OpInfo.isIndirect = true; 8115 } 8116 8117 } 8118 8119 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8120 std::vector<SDValue> AsmNodeOperands; 8121 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8122 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8123 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8124 8125 // If we have a !srcloc metadata node associated with it, we want to attach 8126 // this to the ultimately generated inline asm machineinstr. To do this, we 8127 // pass in the third operand as this (potentially null) inline asm MDNode. 8128 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8129 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8130 8131 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8132 // bits as operand 3. 8133 AsmNodeOperands.push_back(DAG.getTargetConstant( 8134 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8135 8136 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8137 // this, assign virtual and physical registers for inputs and otput. 8138 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8139 // Assign Registers. 8140 SDISelAsmOperandInfo &RefOpInfo = 8141 OpInfo.isMatchingInputConstraint() 8142 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8143 : OpInfo; 8144 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8145 8146 auto DetectWriteToReservedRegister = [&]() { 8147 const MachineFunction &MF = DAG.getMachineFunction(); 8148 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8149 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8150 if (Register::isPhysicalRegister(Reg) && 8151 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8152 const char *RegName = TRI.getName(Reg); 8153 emitInlineAsmError(Call, "write to reserved register '" + 8154 Twine(RegName) + "'"); 8155 return true; 8156 } 8157 } 8158 return false; 8159 }; 8160 8161 switch (OpInfo.Type) { 8162 case InlineAsm::isOutput: 8163 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8164 unsigned ConstraintID = 8165 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8166 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8167 "Failed to convert memory constraint code to constraint id."); 8168 8169 // Add information to the INLINEASM node to know about this output. 8170 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8171 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8172 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8173 MVT::i32)); 8174 AsmNodeOperands.push_back(OpInfo.CallOperand); 8175 } else { 8176 // Otherwise, this outputs to a register (directly for C_Register / 8177 // C_RegisterClass, and a target-defined fashion for 8178 // C_Immediate/C_Other). Find a register that we can use. 8179 if (OpInfo.AssignedRegs.Regs.empty()) { 8180 emitInlineAsmError( 8181 Call, "couldn't allocate output register for constraint '" + 8182 Twine(OpInfo.ConstraintCode) + "'"); 8183 return; 8184 } 8185 8186 if (DetectWriteToReservedRegister()) 8187 return; 8188 8189 // Add information to the INLINEASM node to know that this register is 8190 // set. 8191 OpInfo.AssignedRegs.AddInlineAsmOperands( 8192 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8193 : InlineAsm::Kind_RegDef, 8194 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8195 } 8196 break; 8197 8198 case InlineAsm::isInput: { 8199 SDValue InOperandVal = OpInfo.CallOperand; 8200 8201 if (OpInfo.isMatchingInputConstraint()) { 8202 // If this is required to match an output register we have already set, 8203 // just use its register. 8204 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8205 AsmNodeOperands); 8206 unsigned OpFlag = 8207 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8208 if (InlineAsm::isRegDefKind(OpFlag) || 8209 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8210 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8211 if (OpInfo.isIndirect) { 8212 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8213 emitInlineAsmError(Call, "inline asm not supported yet: " 8214 "don't know how to handle tied " 8215 "indirect register inputs"); 8216 return; 8217 } 8218 8219 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8220 SmallVector<unsigned, 4> Regs; 8221 8222 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8223 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8224 MachineRegisterInfo &RegInfo = 8225 DAG.getMachineFunction().getRegInfo(); 8226 for (unsigned i = 0; i != NumRegs; ++i) 8227 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8228 } else { 8229 emitInlineAsmError(Call, 8230 "inline asm error: This value type register " 8231 "class is not natively supported!"); 8232 return; 8233 } 8234 8235 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8236 8237 SDLoc dl = getCurSDLoc(); 8238 // Use the produced MatchedRegs object to 8239 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8240 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8241 true, OpInfo.getMatchedOperand(), dl, 8242 DAG, AsmNodeOperands); 8243 break; 8244 } 8245 8246 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8247 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8248 "Unexpected number of operands"); 8249 // Add information to the INLINEASM node to know about this input. 8250 // See InlineAsm.h isUseOperandTiedToDef. 8251 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8252 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8253 OpInfo.getMatchedOperand()); 8254 AsmNodeOperands.push_back(DAG.getTargetConstant( 8255 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8256 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8257 break; 8258 } 8259 8260 // Treat indirect 'X' constraint as memory. 8261 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8262 OpInfo.isIndirect) 8263 OpInfo.ConstraintType = TargetLowering::C_Memory; 8264 8265 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8266 OpInfo.ConstraintType == TargetLowering::C_Other) { 8267 std::vector<SDValue> Ops; 8268 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8269 Ops, DAG); 8270 if (Ops.empty()) { 8271 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8272 if (isa<ConstantSDNode>(InOperandVal)) { 8273 emitInlineAsmError(Call, "value out of range for constraint '" + 8274 Twine(OpInfo.ConstraintCode) + "'"); 8275 return; 8276 } 8277 8278 emitInlineAsmError(Call, 8279 "invalid operand for inline asm constraint '" + 8280 Twine(OpInfo.ConstraintCode) + "'"); 8281 return; 8282 } 8283 8284 // Add information to the INLINEASM node to know about this input. 8285 unsigned ResOpType = 8286 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8287 AsmNodeOperands.push_back(DAG.getTargetConstant( 8288 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8289 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8290 break; 8291 } 8292 8293 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8294 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8295 assert(InOperandVal.getValueType() == 8296 TLI.getPointerTy(DAG.getDataLayout()) && 8297 "Memory operands expect pointer values"); 8298 8299 unsigned ConstraintID = 8300 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8301 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8302 "Failed to convert memory constraint code to constraint id."); 8303 8304 // Add information to the INLINEASM node to know about this input. 8305 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8306 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8307 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8308 getCurSDLoc(), 8309 MVT::i32)); 8310 AsmNodeOperands.push_back(InOperandVal); 8311 break; 8312 } 8313 8314 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8315 OpInfo.ConstraintType == TargetLowering::C_Register) && 8316 "Unknown constraint type!"); 8317 8318 // TODO: Support this. 8319 if (OpInfo.isIndirect) { 8320 emitInlineAsmError( 8321 Call, "Don't know how to handle indirect register inputs yet " 8322 "for constraint '" + 8323 Twine(OpInfo.ConstraintCode) + "'"); 8324 return; 8325 } 8326 8327 // Copy the input into the appropriate registers. 8328 if (OpInfo.AssignedRegs.Regs.empty()) { 8329 emitInlineAsmError(Call, 8330 "couldn't allocate input reg for constraint '" + 8331 Twine(OpInfo.ConstraintCode) + "'"); 8332 return; 8333 } 8334 8335 if (DetectWriteToReservedRegister()) 8336 return; 8337 8338 SDLoc dl = getCurSDLoc(); 8339 8340 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8341 &Call); 8342 8343 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8344 dl, DAG, AsmNodeOperands); 8345 break; 8346 } 8347 case InlineAsm::isClobber: 8348 // Add the clobbered value to the operand list, so that the register 8349 // allocator is aware that the physreg got clobbered. 8350 if (!OpInfo.AssignedRegs.Regs.empty()) 8351 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8352 false, 0, getCurSDLoc(), DAG, 8353 AsmNodeOperands); 8354 break; 8355 } 8356 } 8357 8358 // Finish up input operands. Set the input chain and add the flag last. 8359 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8360 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8361 8362 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8363 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8364 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8365 Flag = Chain.getValue(1); 8366 8367 // Do additional work to generate outputs. 8368 8369 SmallVector<EVT, 1> ResultVTs; 8370 SmallVector<SDValue, 1> ResultValues; 8371 SmallVector<SDValue, 8> OutChains; 8372 8373 llvm::Type *CallResultType = Call.getType(); 8374 ArrayRef<Type *> ResultTypes; 8375 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8376 ResultTypes = StructResult->elements(); 8377 else if (!CallResultType->isVoidTy()) 8378 ResultTypes = makeArrayRef(CallResultType); 8379 8380 auto CurResultType = ResultTypes.begin(); 8381 auto handleRegAssign = [&](SDValue V) { 8382 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8383 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8384 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8385 ++CurResultType; 8386 // If the type of the inline asm call site return value is different but has 8387 // same size as the type of the asm output bitcast it. One example of this 8388 // is for vectors with different width / number of elements. This can 8389 // happen for register classes that can contain multiple different value 8390 // types. The preg or vreg allocated may not have the same VT as was 8391 // expected. 8392 // 8393 // This can also happen for a return value that disagrees with the register 8394 // class it is put in, eg. a double in a general-purpose register on a 8395 // 32-bit machine. 8396 if (ResultVT != V.getValueType() && 8397 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8398 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8399 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8400 V.getValueType().isInteger()) { 8401 // If a result value was tied to an input value, the computed result 8402 // may have a wider width than the expected result. Extract the 8403 // relevant portion. 8404 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8405 } 8406 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8407 ResultVTs.push_back(ResultVT); 8408 ResultValues.push_back(V); 8409 }; 8410 8411 // Deal with output operands. 8412 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8413 if (OpInfo.Type == InlineAsm::isOutput) { 8414 SDValue Val; 8415 // Skip trivial output operands. 8416 if (OpInfo.AssignedRegs.Regs.empty()) 8417 continue; 8418 8419 switch (OpInfo.ConstraintType) { 8420 case TargetLowering::C_Register: 8421 case TargetLowering::C_RegisterClass: 8422 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8423 Chain, &Flag, &Call); 8424 break; 8425 case TargetLowering::C_Immediate: 8426 case TargetLowering::C_Other: 8427 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8428 OpInfo, DAG); 8429 break; 8430 case TargetLowering::C_Memory: 8431 break; // Already handled. 8432 case TargetLowering::C_Unknown: 8433 assert(false && "Unexpected unknown constraint"); 8434 } 8435 8436 // Indirect output manifest as stores. Record output chains. 8437 if (OpInfo.isIndirect) { 8438 const Value *Ptr = OpInfo.CallOperandVal; 8439 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8440 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8441 MachinePointerInfo(Ptr)); 8442 OutChains.push_back(Store); 8443 } else { 8444 // generate CopyFromRegs to associated registers. 8445 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8446 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8447 for (const SDValue &V : Val->op_values()) 8448 handleRegAssign(V); 8449 } else 8450 handleRegAssign(Val); 8451 } 8452 } 8453 } 8454 8455 // Set results. 8456 if (!ResultValues.empty()) { 8457 assert(CurResultType == ResultTypes.end() && 8458 "Mismatch in number of ResultTypes"); 8459 assert(ResultValues.size() == ResultTypes.size() && 8460 "Mismatch in number of output operands in asm result"); 8461 8462 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8463 DAG.getVTList(ResultVTs), ResultValues); 8464 setValue(&Call, V); 8465 } 8466 8467 // Collect store chains. 8468 if (!OutChains.empty()) 8469 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8470 8471 // Only Update Root if inline assembly has a memory effect. 8472 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8473 DAG.setRoot(Chain); 8474 } 8475 8476 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8477 const Twine &Message) { 8478 LLVMContext &Ctx = *DAG.getContext(); 8479 Ctx.emitError(&Call, Message); 8480 8481 // Make sure we leave the DAG in a valid state 8482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8483 SmallVector<EVT, 1> ValueVTs; 8484 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8485 8486 if (ValueVTs.empty()) 8487 return; 8488 8489 SmallVector<SDValue, 1> Ops; 8490 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8491 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8492 8493 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8494 } 8495 8496 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8497 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8498 MVT::Other, getRoot(), 8499 getValue(I.getArgOperand(0)), 8500 DAG.getSrcValue(I.getArgOperand(0)))); 8501 } 8502 8503 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8504 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8505 const DataLayout &DL = DAG.getDataLayout(); 8506 SDValue V = DAG.getVAArg( 8507 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8508 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8509 DL.getABITypeAlignment(I.getType())); 8510 DAG.setRoot(V.getValue(1)); 8511 8512 if (I.getType()->isPointerTy()) 8513 V = DAG.getPtrExtOrTrunc( 8514 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8515 setValue(&I, V); 8516 } 8517 8518 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8519 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8520 MVT::Other, getRoot(), 8521 getValue(I.getArgOperand(0)), 8522 DAG.getSrcValue(I.getArgOperand(0)))); 8523 } 8524 8525 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8526 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8527 MVT::Other, getRoot(), 8528 getValue(I.getArgOperand(0)), 8529 getValue(I.getArgOperand(1)), 8530 DAG.getSrcValue(I.getArgOperand(0)), 8531 DAG.getSrcValue(I.getArgOperand(1)))); 8532 } 8533 8534 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8535 const Instruction &I, 8536 SDValue Op) { 8537 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8538 if (!Range) 8539 return Op; 8540 8541 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8542 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8543 return Op; 8544 8545 APInt Lo = CR.getUnsignedMin(); 8546 if (!Lo.isMinValue()) 8547 return Op; 8548 8549 APInt Hi = CR.getUnsignedMax(); 8550 unsigned Bits = std::max(Hi.getActiveBits(), 8551 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8552 8553 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8554 8555 SDLoc SL = getCurSDLoc(); 8556 8557 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8558 DAG.getValueType(SmallVT)); 8559 unsigned NumVals = Op.getNode()->getNumValues(); 8560 if (NumVals == 1) 8561 return ZExt; 8562 8563 SmallVector<SDValue, 4> Ops; 8564 8565 Ops.push_back(ZExt); 8566 for (unsigned I = 1; I != NumVals; ++I) 8567 Ops.push_back(Op.getValue(I)); 8568 8569 return DAG.getMergeValues(Ops, SL); 8570 } 8571 8572 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8573 /// the call being lowered. 8574 /// 8575 /// This is a helper for lowering intrinsics that follow a target calling 8576 /// convention or require stack pointer adjustment. Only a subset of the 8577 /// intrinsic's operands need to participate in the calling convention. 8578 void SelectionDAGBuilder::populateCallLoweringInfo( 8579 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8580 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8581 bool IsPatchPoint) { 8582 TargetLowering::ArgListTy Args; 8583 Args.reserve(NumArgs); 8584 8585 // Populate the argument list. 8586 // Attributes for args start at offset 1, after the return attribute. 8587 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8588 ArgI != ArgE; ++ArgI) { 8589 const Value *V = Call->getOperand(ArgI); 8590 8591 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8592 8593 TargetLowering::ArgListEntry Entry; 8594 Entry.Node = getValue(V); 8595 Entry.Ty = V->getType(); 8596 Entry.setAttributes(Call, ArgI); 8597 Args.push_back(Entry); 8598 } 8599 8600 CLI.setDebugLoc(getCurSDLoc()) 8601 .setChain(getRoot()) 8602 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8603 .setDiscardResult(Call->use_empty()) 8604 .setIsPatchPoint(IsPatchPoint); 8605 } 8606 8607 /// Add a stack map intrinsic call's live variable operands to a stackmap 8608 /// or patchpoint target node's operand list. 8609 /// 8610 /// Constants are converted to TargetConstants purely as an optimization to 8611 /// avoid constant materialization and register allocation. 8612 /// 8613 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8614 /// generate addess computation nodes, and so FinalizeISel can convert the 8615 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8616 /// address materialization and register allocation, but may also be required 8617 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8618 /// alloca in the entry block, then the runtime may assume that the alloca's 8619 /// StackMap location can be read immediately after compilation and that the 8620 /// location is valid at any point during execution (this is similar to the 8621 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8622 /// only available in a register, then the runtime would need to trap when 8623 /// execution reaches the StackMap in order to read the alloca's location. 8624 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8625 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8626 SelectionDAGBuilder &Builder) { 8627 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8628 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8629 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8630 Ops.push_back( 8631 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8632 Ops.push_back( 8633 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8634 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8635 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8636 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8637 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8638 } else 8639 Ops.push_back(OpVal); 8640 } 8641 } 8642 8643 /// Lower llvm.experimental.stackmap directly to its target opcode. 8644 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8645 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8646 // [live variables...]) 8647 8648 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8649 8650 SDValue Chain, InFlag, Callee, NullPtr; 8651 SmallVector<SDValue, 32> Ops; 8652 8653 SDLoc DL = getCurSDLoc(); 8654 Callee = getValue(CI.getCalledValue()); 8655 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8656 8657 // The stackmap intrinsic only records the live variables (the arguments 8658 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8659 // intrinsic, this won't be lowered to a function call. This means we don't 8660 // have to worry about calling conventions and target specific lowering code. 8661 // Instead we perform the call lowering right here. 8662 // 8663 // chain, flag = CALLSEQ_START(chain, 0, 0) 8664 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8665 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8666 // 8667 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8668 InFlag = Chain.getValue(1); 8669 8670 // Add the <id> and <numBytes> constants. 8671 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8672 Ops.push_back(DAG.getTargetConstant( 8673 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8674 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8675 Ops.push_back(DAG.getTargetConstant( 8676 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8677 MVT::i32)); 8678 8679 // Push live variables for the stack map. 8680 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8681 8682 // We are not pushing any register mask info here on the operands list, 8683 // because the stackmap doesn't clobber anything. 8684 8685 // Push the chain and the glue flag. 8686 Ops.push_back(Chain); 8687 Ops.push_back(InFlag); 8688 8689 // Create the STACKMAP node. 8690 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8691 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8692 Chain = SDValue(SM, 0); 8693 InFlag = Chain.getValue(1); 8694 8695 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8696 8697 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8698 8699 // Set the root to the target-lowered call chain. 8700 DAG.setRoot(Chain); 8701 8702 // Inform the Frame Information that we have a stackmap in this function. 8703 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8704 } 8705 8706 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8707 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8708 const BasicBlock *EHPadBB) { 8709 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8710 // i32 <numBytes>, 8711 // i8* <target>, 8712 // i32 <numArgs>, 8713 // [Args...], 8714 // [live variables...]) 8715 8716 CallingConv::ID CC = CB.getCallingConv(); 8717 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8718 bool HasDef = !CB.getType()->isVoidTy(); 8719 SDLoc dl = getCurSDLoc(); 8720 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8721 8722 // Handle immediate and symbolic callees. 8723 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8724 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8725 /*isTarget=*/true); 8726 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8727 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8728 SDLoc(SymbolicCallee), 8729 SymbolicCallee->getValueType(0)); 8730 8731 // Get the real number of arguments participating in the call <numArgs> 8732 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8733 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8734 8735 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8736 // Intrinsics include all meta-operands up to but not including CC. 8737 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8738 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8739 "Not enough arguments provided to the patchpoint intrinsic"); 8740 8741 // For AnyRegCC the arguments are lowered later on manually. 8742 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8743 Type *ReturnTy = 8744 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8745 8746 TargetLowering::CallLoweringInfo CLI(DAG); 8747 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8748 ReturnTy, true); 8749 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8750 8751 SDNode *CallEnd = Result.second.getNode(); 8752 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8753 CallEnd = CallEnd->getOperand(0).getNode(); 8754 8755 /// Get a call instruction from the call sequence chain. 8756 /// Tail calls are not allowed. 8757 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8758 "Expected a callseq node."); 8759 SDNode *Call = CallEnd->getOperand(0).getNode(); 8760 bool HasGlue = Call->getGluedNode(); 8761 8762 // Replace the target specific call node with the patchable intrinsic. 8763 SmallVector<SDValue, 8> Ops; 8764 8765 // Add the <id> and <numBytes> constants. 8766 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8767 Ops.push_back(DAG.getTargetConstant( 8768 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8769 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8770 Ops.push_back(DAG.getTargetConstant( 8771 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8772 MVT::i32)); 8773 8774 // Add the callee. 8775 Ops.push_back(Callee); 8776 8777 // Adjust <numArgs> to account for any arguments that have been passed on the 8778 // stack instead. 8779 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8780 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8781 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8782 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8783 8784 // Add the calling convention 8785 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8786 8787 // Add the arguments we omitted previously. The register allocator should 8788 // place these in any free register. 8789 if (IsAnyRegCC) 8790 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8791 Ops.push_back(getValue(CB.getArgOperand(i))); 8792 8793 // Push the arguments from the call instruction up to the register mask. 8794 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8795 Ops.append(Call->op_begin() + 2, e); 8796 8797 // Push live variables for the stack map. 8798 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8799 8800 // Push the register mask info. 8801 if (HasGlue) 8802 Ops.push_back(*(Call->op_end()-2)); 8803 else 8804 Ops.push_back(*(Call->op_end()-1)); 8805 8806 // Push the chain (this is originally the first operand of the call, but 8807 // becomes now the last or second to last operand). 8808 Ops.push_back(*(Call->op_begin())); 8809 8810 // Push the glue flag (last operand). 8811 if (HasGlue) 8812 Ops.push_back(*(Call->op_end()-1)); 8813 8814 SDVTList NodeTys; 8815 if (IsAnyRegCC && HasDef) { 8816 // Create the return types based on the intrinsic definition 8817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8818 SmallVector<EVT, 3> ValueVTs; 8819 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8820 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8821 8822 // There is always a chain and a glue type at the end 8823 ValueVTs.push_back(MVT::Other); 8824 ValueVTs.push_back(MVT::Glue); 8825 NodeTys = DAG.getVTList(ValueVTs); 8826 } else 8827 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8828 8829 // Replace the target specific call node with a PATCHPOINT node. 8830 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8831 dl, NodeTys, Ops); 8832 8833 // Update the NodeMap. 8834 if (HasDef) { 8835 if (IsAnyRegCC) 8836 setValue(&CB, SDValue(MN, 0)); 8837 else 8838 setValue(&CB, Result.first); 8839 } 8840 8841 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8842 // call sequence. Furthermore the location of the chain and glue can change 8843 // when the AnyReg calling convention is used and the intrinsic returns a 8844 // value. 8845 if (IsAnyRegCC && HasDef) { 8846 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8847 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8848 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8849 } else 8850 DAG.ReplaceAllUsesWith(Call, MN); 8851 DAG.DeleteNode(Call); 8852 8853 // Inform the Frame Information that we have a patchpoint in this function. 8854 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8855 } 8856 8857 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8858 unsigned Intrinsic) { 8859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8860 SDValue Op1 = getValue(I.getArgOperand(0)); 8861 SDValue Op2; 8862 if (I.getNumArgOperands() > 1) 8863 Op2 = getValue(I.getArgOperand(1)); 8864 SDLoc dl = getCurSDLoc(); 8865 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8866 SDValue Res; 8867 FastMathFlags FMF; 8868 if (isa<FPMathOperator>(I)) 8869 FMF = I.getFastMathFlags(); 8870 8871 switch (Intrinsic) { 8872 case Intrinsic::experimental_vector_reduce_v2_fadd: 8873 if (FMF.allowReassoc()) 8874 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8875 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8876 else 8877 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8878 break; 8879 case Intrinsic::experimental_vector_reduce_v2_fmul: 8880 if (FMF.allowReassoc()) 8881 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8882 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8883 else 8884 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8885 break; 8886 case Intrinsic::experimental_vector_reduce_add: 8887 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8888 break; 8889 case Intrinsic::experimental_vector_reduce_mul: 8890 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8891 break; 8892 case Intrinsic::experimental_vector_reduce_and: 8893 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8894 break; 8895 case Intrinsic::experimental_vector_reduce_or: 8896 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8897 break; 8898 case Intrinsic::experimental_vector_reduce_xor: 8899 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8900 break; 8901 case Intrinsic::experimental_vector_reduce_smax: 8902 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8903 break; 8904 case Intrinsic::experimental_vector_reduce_smin: 8905 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8906 break; 8907 case Intrinsic::experimental_vector_reduce_umax: 8908 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8909 break; 8910 case Intrinsic::experimental_vector_reduce_umin: 8911 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8912 break; 8913 case Intrinsic::experimental_vector_reduce_fmax: 8914 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8915 break; 8916 case Intrinsic::experimental_vector_reduce_fmin: 8917 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8918 break; 8919 default: 8920 llvm_unreachable("Unhandled vector reduce intrinsic"); 8921 } 8922 setValue(&I, Res); 8923 } 8924 8925 /// Returns an AttributeList representing the attributes applied to the return 8926 /// value of the given call. 8927 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8928 SmallVector<Attribute::AttrKind, 2> Attrs; 8929 if (CLI.RetSExt) 8930 Attrs.push_back(Attribute::SExt); 8931 if (CLI.RetZExt) 8932 Attrs.push_back(Attribute::ZExt); 8933 if (CLI.IsInReg) 8934 Attrs.push_back(Attribute::InReg); 8935 8936 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8937 Attrs); 8938 } 8939 8940 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8941 /// implementation, which just calls LowerCall. 8942 /// FIXME: When all targets are 8943 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8944 std::pair<SDValue, SDValue> 8945 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8946 // Handle the incoming return values from the call. 8947 CLI.Ins.clear(); 8948 Type *OrigRetTy = CLI.RetTy; 8949 SmallVector<EVT, 4> RetTys; 8950 SmallVector<uint64_t, 4> Offsets; 8951 auto &DL = CLI.DAG.getDataLayout(); 8952 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8953 8954 if (CLI.IsPostTypeLegalization) { 8955 // If we are lowering a libcall after legalization, split the return type. 8956 SmallVector<EVT, 4> OldRetTys; 8957 SmallVector<uint64_t, 4> OldOffsets; 8958 RetTys.swap(OldRetTys); 8959 Offsets.swap(OldOffsets); 8960 8961 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8962 EVT RetVT = OldRetTys[i]; 8963 uint64_t Offset = OldOffsets[i]; 8964 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8965 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8966 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8967 RetTys.append(NumRegs, RegisterVT); 8968 for (unsigned j = 0; j != NumRegs; ++j) 8969 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8970 } 8971 } 8972 8973 SmallVector<ISD::OutputArg, 4> Outs; 8974 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8975 8976 bool CanLowerReturn = 8977 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8978 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8979 8980 SDValue DemoteStackSlot; 8981 int DemoteStackIdx = -100; 8982 if (!CanLowerReturn) { 8983 // FIXME: equivalent assert? 8984 // assert(!CS.hasInAllocaArgument() && 8985 // "sret demotion is incompatible with inalloca"); 8986 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8987 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 8988 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8989 DemoteStackIdx = 8990 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 8991 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8992 DL.getAllocaAddrSpace()); 8993 8994 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8995 ArgListEntry Entry; 8996 Entry.Node = DemoteStackSlot; 8997 Entry.Ty = StackSlotPtrType; 8998 Entry.IsSExt = false; 8999 Entry.IsZExt = false; 9000 Entry.IsInReg = false; 9001 Entry.IsSRet = true; 9002 Entry.IsNest = false; 9003 Entry.IsByVal = false; 9004 Entry.IsReturned = false; 9005 Entry.IsSwiftSelf = false; 9006 Entry.IsSwiftError = false; 9007 Entry.IsCFGuardTarget = false; 9008 Entry.Alignment = Alignment; 9009 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9010 CLI.NumFixedArgs += 1; 9011 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9012 9013 // sret demotion isn't compatible with tail-calls, since the sret argument 9014 // points into the callers stack frame. 9015 CLI.IsTailCall = false; 9016 } else { 9017 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9018 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9019 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9020 ISD::ArgFlagsTy Flags; 9021 if (NeedsRegBlock) { 9022 Flags.setInConsecutiveRegs(); 9023 if (I == RetTys.size() - 1) 9024 Flags.setInConsecutiveRegsLast(); 9025 } 9026 EVT VT = RetTys[I]; 9027 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9028 CLI.CallConv, VT); 9029 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9030 CLI.CallConv, VT); 9031 for (unsigned i = 0; i != NumRegs; ++i) { 9032 ISD::InputArg MyFlags; 9033 MyFlags.Flags = Flags; 9034 MyFlags.VT = RegisterVT; 9035 MyFlags.ArgVT = VT; 9036 MyFlags.Used = CLI.IsReturnValueUsed; 9037 if (CLI.RetTy->isPointerTy()) { 9038 MyFlags.Flags.setPointer(); 9039 MyFlags.Flags.setPointerAddrSpace( 9040 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9041 } 9042 if (CLI.RetSExt) 9043 MyFlags.Flags.setSExt(); 9044 if (CLI.RetZExt) 9045 MyFlags.Flags.setZExt(); 9046 if (CLI.IsInReg) 9047 MyFlags.Flags.setInReg(); 9048 CLI.Ins.push_back(MyFlags); 9049 } 9050 } 9051 } 9052 9053 // We push in swifterror return as the last element of CLI.Ins. 9054 ArgListTy &Args = CLI.getArgs(); 9055 if (supportSwiftError()) { 9056 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9057 if (Args[i].IsSwiftError) { 9058 ISD::InputArg MyFlags; 9059 MyFlags.VT = getPointerTy(DL); 9060 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9061 MyFlags.Flags.setSwiftError(); 9062 CLI.Ins.push_back(MyFlags); 9063 } 9064 } 9065 } 9066 9067 // Handle all of the outgoing arguments. 9068 CLI.Outs.clear(); 9069 CLI.OutVals.clear(); 9070 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9071 SmallVector<EVT, 4> ValueVTs; 9072 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9073 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9074 Type *FinalType = Args[i].Ty; 9075 if (Args[i].IsByVal) 9076 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9077 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9078 FinalType, CLI.CallConv, CLI.IsVarArg); 9079 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9080 ++Value) { 9081 EVT VT = ValueVTs[Value]; 9082 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9083 SDValue Op = SDValue(Args[i].Node.getNode(), 9084 Args[i].Node.getResNo() + Value); 9085 ISD::ArgFlagsTy Flags; 9086 9087 // Certain targets (such as MIPS), may have a different ABI alignment 9088 // for a type depending on the context. Give the target a chance to 9089 // specify the alignment it wants. 9090 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9091 9092 if (Args[i].Ty->isPointerTy()) { 9093 Flags.setPointer(); 9094 Flags.setPointerAddrSpace( 9095 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9096 } 9097 if (Args[i].IsZExt) 9098 Flags.setZExt(); 9099 if (Args[i].IsSExt) 9100 Flags.setSExt(); 9101 if (Args[i].IsInReg) { 9102 // If we are using vectorcall calling convention, a structure that is 9103 // passed InReg - is surely an HVA 9104 if (CLI.CallConv == CallingConv::X86_VectorCall && 9105 isa<StructType>(FinalType)) { 9106 // The first value of a structure is marked 9107 if (0 == Value) 9108 Flags.setHvaStart(); 9109 Flags.setHva(); 9110 } 9111 // Set InReg Flag 9112 Flags.setInReg(); 9113 } 9114 if (Args[i].IsSRet) 9115 Flags.setSRet(); 9116 if (Args[i].IsSwiftSelf) 9117 Flags.setSwiftSelf(); 9118 if (Args[i].IsSwiftError) 9119 Flags.setSwiftError(); 9120 if (Args[i].IsCFGuardTarget) 9121 Flags.setCFGuardTarget(); 9122 if (Args[i].IsByVal) 9123 Flags.setByVal(); 9124 if (Args[i].IsInAlloca) { 9125 Flags.setInAlloca(); 9126 // Set the byval flag for CCAssignFn callbacks that don't know about 9127 // inalloca. This way we can know how many bytes we should've allocated 9128 // and how many bytes a callee cleanup function will pop. If we port 9129 // inalloca to more targets, we'll have to add custom inalloca handling 9130 // in the various CC lowering callbacks. 9131 Flags.setByVal(); 9132 } 9133 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9134 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9135 Type *ElementTy = Ty->getElementType(); 9136 9137 unsigned FrameSize = DL.getTypeAllocSize( 9138 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9139 Flags.setByValSize(FrameSize); 9140 9141 // info is not there but there are cases it cannot get right. 9142 Align FrameAlign; 9143 if (auto MA = Args[i].Alignment) 9144 FrameAlign = *MA; 9145 else 9146 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9147 Flags.setByValAlign(FrameAlign); 9148 } 9149 if (Args[i].IsNest) 9150 Flags.setNest(); 9151 if (NeedsRegBlock) 9152 Flags.setInConsecutiveRegs(); 9153 Flags.setOrigAlign(OriginalAlignment); 9154 9155 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9156 CLI.CallConv, VT); 9157 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9158 CLI.CallConv, VT); 9159 SmallVector<SDValue, 4> Parts(NumParts); 9160 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9161 9162 if (Args[i].IsSExt) 9163 ExtendKind = ISD::SIGN_EXTEND; 9164 else if (Args[i].IsZExt) 9165 ExtendKind = ISD::ZERO_EXTEND; 9166 9167 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9168 // for now. 9169 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9170 CanLowerReturn) { 9171 assert((CLI.RetTy == Args[i].Ty || 9172 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9173 CLI.RetTy->getPointerAddressSpace() == 9174 Args[i].Ty->getPointerAddressSpace())) && 9175 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9176 // Before passing 'returned' to the target lowering code, ensure that 9177 // either the register MVT and the actual EVT are the same size or that 9178 // the return value and argument are extended in the same way; in these 9179 // cases it's safe to pass the argument register value unchanged as the 9180 // return register value (although it's at the target's option whether 9181 // to do so) 9182 // TODO: allow code generation to take advantage of partially preserved 9183 // registers rather than clobbering the entire register when the 9184 // parameter extension method is not compatible with the return 9185 // extension method 9186 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9187 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9188 CLI.RetZExt == Args[i].IsZExt)) 9189 Flags.setReturned(); 9190 } 9191 9192 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9193 CLI.CallConv, ExtendKind); 9194 9195 for (unsigned j = 0; j != NumParts; ++j) { 9196 // if it isn't first piece, alignment must be 1 9197 // For scalable vectors the scalable part is currently handled 9198 // by individual targets, so we just use the known minimum size here. 9199 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9200 i < CLI.NumFixedArgs, i, 9201 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9202 if (NumParts > 1 && j == 0) 9203 MyFlags.Flags.setSplit(); 9204 else if (j != 0) { 9205 MyFlags.Flags.setOrigAlign(Align(1)); 9206 if (j == NumParts - 1) 9207 MyFlags.Flags.setSplitEnd(); 9208 } 9209 9210 CLI.Outs.push_back(MyFlags); 9211 CLI.OutVals.push_back(Parts[j]); 9212 } 9213 9214 if (NeedsRegBlock && Value == NumValues - 1) 9215 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9216 } 9217 } 9218 9219 SmallVector<SDValue, 4> InVals; 9220 CLI.Chain = LowerCall(CLI, InVals); 9221 9222 // Update CLI.InVals to use outside of this function. 9223 CLI.InVals = InVals; 9224 9225 // Verify that the target's LowerCall behaved as expected. 9226 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9227 "LowerCall didn't return a valid chain!"); 9228 assert((!CLI.IsTailCall || InVals.empty()) && 9229 "LowerCall emitted a return value for a tail call!"); 9230 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9231 "LowerCall didn't emit the correct number of values!"); 9232 9233 // For a tail call, the return value is merely live-out and there aren't 9234 // any nodes in the DAG representing it. Return a special value to 9235 // indicate that a tail call has been emitted and no more Instructions 9236 // should be processed in the current block. 9237 if (CLI.IsTailCall) { 9238 CLI.DAG.setRoot(CLI.Chain); 9239 return std::make_pair(SDValue(), SDValue()); 9240 } 9241 9242 #ifndef NDEBUG 9243 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9244 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9245 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9246 "LowerCall emitted a value with the wrong type!"); 9247 } 9248 #endif 9249 9250 SmallVector<SDValue, 4> ReturnValues; 9251 if (!CanLowerReturn) { 9252 // The instruction result is the result of loading from the 9253 // hidden sret parameter. 9254 SmallVector<EVT, 1> PVTs; 9255 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9256 9257 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9258 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9259 EVT PtrVT = PVTs[0]; 9260 9261 unsigned NumValues = RetTys.size(); 9262 ReturnValues.resize(NumValues); 9263 SmallVector<SDValue, 4> Chains(NumValues); 9264 9265 // An aggregate return value cannot wrap around the address space, so 9266 // offsets to its parts don't wrap either. 9267 SDNodeFlags Flags; 9268 Flags.setNoUnsignedWrap(true); 9269 9270 for (unsigned i = 0; i < NumValues; ++i) { 9271 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9272 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9273 PtrVT), Flags); 9274 SDValue L = CLI.DAG.getLoad( 9275 RetTys[i], CLI.DL, CLI.Chain, Add, 9276 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9277 DemoteStackIdx, Offsets[i]), 9278 /* Alignment = */ 1); 9279 ReturnValues[i] = L; 9280 Chains[i] = L.getValue(1); 9281 } 9282 9283 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9284 } else { 9285 // Collect the legal value parts into potentially illegal values 9286 // that correspond to the original function's return values. 9287 Optional<ISD::NodeType> AssertOp; 9288 if (CLI.RetSExt) 9289 AssertOp = ISD::AssertSext; 9290 else if (CLI.RetZExt) 9291 AssertOp = ISD::AssertZext; 9292 unsigned CurReg = 0; 9293 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9294 EVT VT = RetTys[I]; 9295 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9296 CLI.CallConv, VT); 9297 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9298 CLI.CallConv, VT); 9299 9300 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9301 NumRegs, RegisterVT, VT, nullptr, 9302 CLI.CallConv, AssertOp)); 9303 CurReg += NumRegs; 9304 } 9305 9306 // For a function returning void, there is no return value. We can't create 9307 // such a node, so we just return a null return value in that case. In 9308 // that case, nothing will actually look at the value. 9309 if (ReturnValues.empty()) 9310 return std::make_pair(SDValue(), CLI.Chain); 9311 } 9312 9313 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9314 CLI.DAG.getVTList(RetTys), ReturnValues); 9315 return std::make_pair(Res, CLI.Chain); 9316 } 9317 9318 void TargetLowering::LowerOperationWrapper(SDNode *N, 9319 SmallVectorImpl<SDValue> &Results, 9320 SelectionDAG &DAG) const { 9321 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9322 Results.push_back(Res); 9323 } 9324 9325 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9326 llvm_unreachable("LowerOperation not implemented for this target!"); 9327 } 9328 9329 void 9330 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9331 SDValue Op = getNonRegisterValue(V); 9332 assert((Op.getOpcode() != ISD::CopyFromReg || 9333 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9334 "Copy from a reg to the same reg!"); 9335 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9336 9337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9338 // If this is an InlineAsm we have to match the registers required, not the 9339 // notional registers required by the type. 9340 9341 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9342 None); // This is not an ABI copy. 9343 SDValue Chain = DAG.getEntryNode(); 9344 9345 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9346 FuncInfo.PreferredExtendType.end()) 9347 ? ISD::ANY_EXTEND 9348 : FuncInfo.PreferredExtendType[V]; 9349 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9350 PendingExports.push_back(Chain); 9351 } 9352 9353 #include "llvm/CodeGen/SelectionDAGISel.h" 9354 9355 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9356 /// entry block, return true. This includes arguments used by switches, since 9357 /// the switch may expand into multiple basic blocks. 9358 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9359 // With FastISel active, we may be splitting blocks, so force creation 9360 // of virtual registers for all non-dead arguments. 9361 if (FastISel) 9362 return A->use_empty(); 9363 9364 const BasicBlock &Entry = A->getParent()->front(); 9365 for (const User *U : A->users()) 9366 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9367 return false; // Use not in entry block. 9368 9369 return true; 9370 } 9371 9372 using ArgCopyElisionMapTy = 9373 DenseMap<const Argument *, 9374 std::pair<const AllocaInst *, const StoreInst *>>; 9375 9376 /// Scan the entry block of the function in FuncInfo for arguments that look 9377 /// like copies into a local alloca. Record any copied arguments in 9378 /// ArgCopyElisionCandidates. 9379 static void 9380 findArgumentCopyElisionCandidates(const DataLayout &DL, 9381 FunctionLoweringInfo *FuncInfo, 9382 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9383 // Record the state of every static alloca used in the entry block. Argument 9384 // allocas are all used in the entry block, so we need approximately as many 9385 // entries as we have arguments. 9386 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9387 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9388 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9389 StaticAllocas.reserve(NumArgs * 2); 9390 9391 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9392 if (!V) 9393 return nullptr; 9394 V = V->stripPointerCasts(); 9395 const auto *AI = dyn_cast<AllocaInst>(V); 9396 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9397 return nullptr; 9398 auto Iter = StaticAllocas.insert({AI, Unknown}); 9399 return &Iter.first->second; 9400 }; 9401 9402 // Look for stores of arguments to static allocas. Look through bitcasts and 9403 // GEPs to handle type coercions, as long as the alloca is fully initialized 9404 // by the store. Any non-store use of an alloca escapes it and any subsequent 9405 // unanalyzed store might write it. 9406 // FIXME: Handle structs initialized with multiple stores. 9407 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9408 // Look for stores, and handle non-store uses conservatively. 9409 const auto *SI = dyn_cast<StoreInst>(&I); 9410 if (!SI) { 9411 // We will look through cast uses, so ignore them completely. 9412 if (I.isCast()) 9413 continue; 9414 // Ignore debug info intrinsics, they don't escape or store to allocas. 9415 if (isa<DbgInfoIntrinsic>(I)) 9416 continue; 9417 // This is an unknown instruction. Assume it escapes or writes to all 9418 // static alloca operands. 9419 for (const Use &U : I.operands()) { 9420 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9421 *Info = StaticAllocaInfo::Clobbered; 9422 } 9423 continue; 9424 } 9425 9426 // If the stored value is a static alloca, mark it as escaped. 9427 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9428 *Info = StaticAllocaInfo::Clobbered; 9429 9430 // Check if the destination is a static alloca. 9431 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9432 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9433 if (!Info) 9434 continue; 9435 const AllocaInst *AI = cast<AllocaInst>(Dst); 9436 9437 // Skip allocas that have been initialized or clobbered. 9438 if (*Info != StaticAllocaInfo::Unknown) 9439 continue; 9440 9441 // Check if the stored value is an argument, and that this store fully 9442 // initializes the alloca. Don't elide copies from the same argument twice. 9443 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9444 const auto *Arg = dyn_cast<Argument>(Val); 9445 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9446 Arg->getType()->isEmptyTy() || 9447 DL.getTypeStoreSize(Arg->getType()) != 9448 DL.getTypeAllocSize(AI->getAllocatedType()) || 9449 ArgCopyElisionCandidates.count(Arg)) { 9450 *Info = StaticAllocaInfo::Clobbered; 9451 continue; 9452 } 9453 9454 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9455 << '\n'); 9456 9457 // Mark this alloca and store for argument copy elision. 9458 *Info = StaticAllocaInfo::Elidable; 9459 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9460 9461 // Stop scanning if we've seen all arguments. This will happen early in -O0 9462 // builds, which is useful, because -O0 builds have large entry blocks and 9463 // many allocas. 9464 if (ArgCopyElisionCandidates.size() == NumArgs) 9465 break; 9466 } 9467 } 9468 9469 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9470 /// ArgVal is a load from a suitable fixed stack object. 9471 static void tryToElideArgumentCopy( 9472 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9473 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9474 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9475 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9476 SDValue ArgVal, bool &ArgHasUses) { 9477 // Check if this is a load from a fixed stack object. 9478 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9479 if (!LNode) 9480 return; 9481 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9482 if (!FINode) 9483 return; 9484 9485 // Check that the fixed stack object is the right size and alignment. 9486 // Look at the alignment that the user wrote on the alloca instead of looking 9487 // at the stack object. 9488 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9489 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9490 const AllocaInst *AI = ArgCopyIter->second.first; 9491 int FixedIndex = FINode->getIndex(); 9492 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9493 int OldIndex = AllocaIndex; 9494 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9495 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9496 LLVM_DEBUG( 9497 dbgs() << " argument copy elision failed due to bad fixed stack " 9498 "object size\n"); 9499 return; 9500 } 9501 Align RequiredAlignment = AI->getAlign().getValueOr( 9502 FuncInfo.MF->getDataLayout().getABITypeAlign(AI->getAllocatedType())); 9503 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9504 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9505 "greater than stack argument alignment (" 9506 << DebugStr(RequiredAlignment) << " vs " 9507 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9508 return; 9509 } 9510 9511 // Perform the elision. Delete the old stack object and replace its only use 9512 // in the variable info map. Mark the stack object as mutable. 9513 LLVM_DEBUG({ 9514 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9515 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9516 << '\n'; 9517 }); 9518 MFI.RemoveStackObject(OldIndex); 9519 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9520 AllocaIndex = FixedIndex; 9521 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9522 Chains.push_back(ArgVal.getValue(1)); 9523 9524 // Avoid emitting code for the store implementing the copy. 9525 const StoreInst *SI = ArgCopyIter->second.second; 9526 ElidedArgCopyInstrs.insert(SI); 9527 9528 // Check for uses of the argument again so that we can avoid exporting ArgVal 9529 // if it is't used by anything other than the store. 9530 for (const Value *U : Arg.users()) { 9531 if (U != SI) { 9532 ArgHasUses = true; 9533 break; 9534 } 9535 } 9536 } 9537 9538 void SelectionDAGISel::LowerArguments(const Function &F) { 9539 SelectionDAG &DAG = SDB->DAG; 9540 SDLoc dl = SDB->getCurSDLoc(); 9541 const DataLayout &DL = DAG.getDataLayout(); 9542 SmallVector<ISD::InputArg, 16> Ins; 9543 9544 if (!FuncInfo->CanLowerReturn) { 9545 // Put in an sret pointer parameter before all the other parameters. 9546 SmallVector<EVT, 1> ValueVTs; 9547 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9548 F.getReturnType()->getPointerTo( 9549 DAG.getDataLayout().getAllocaAddrSpace()), 9550 ValueVTs); 9551 9552 // NOTE: Assuming that a pointer will never break down to more than one VT 9553 // or one register. 9554 ISD::ArgFlagsTy Flags; 9555 Flags.setSRet(); 9556 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9557 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9558 ISD::InputArg::NoArgIndex, 0); 9559 Ins.push_back(RetArg); 9560 } 9561 9562 // Look for stores of arguments to static allocas. Mark such arguments with a 9563 // flag to ask the target to give us the memory location of that argument if 9564 // available. 9565 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9566 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9567 ArgCopyElisionCandidates); 9568 9569 // Set up the incoming argument description vector. 9570 for (const Argument &Arg : F.args()) { 9571 unsigned ArgNo = Arg.getArgNo(); 9572 SmallVector<EVT, 4> ValueVTs; 9573 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9574 bool isArgValueUsed = !Arg.use_empty(); 9575 unsigned PartBase = 0; 9576 Type *FinalType = Arg.getType(); 9577 if (Arg.hasAttribute(Attribute::ByVal)) 9578 FinalType = Arg.getParamByValType(); 9579 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9580 FinalType, F.getCallingConv(), F.isVarArg()); 9581 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9582 Value != NumValues; ++Value) { 9583 EVT VT = ValueVTs[Value]; 9584 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9585 ISD::ArgFlagsTy Flags; 9586 9587 // Certain targets (such as MIPS), may have a different ABI alignment 9588 // for a type depending on the context. Give the target a chance to 9589 // specify the alignment it wants. 9590 const Align OriginalAlignment( 9591 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9592 9593 if (Arg.getType()->isPointerTy()) { 9594 Flags.setPointer(); 9595 Flags.setPointerAddrSpace( 9596 cast<PointerType>(Arg.getType())->getAddressSpace()); 9597 } 9598 if (Arg.hasAttribute(Attribute::ZExt)) 9599 Flags.setZExt(); 9600 if (Arg.hasAttribute(Attribute::SExt)) 9601 Flags.setSExt(); 9602 if (Arg.hasAttribute(Attribute::InReg)) { 9603 // If we are using vectorcall calling convention, a structure that is 9604 // passed InReg - is surely an HVA 9605 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9606 isa<StructType>(Arg.getType())) { 9607 // The first value of a structure is marked 9608 if (0 == Value) 9609 Flags.setHvaStart(); 9610 Flags.setHva(); 9611 } 9612 // Set InReg Flag 9613 Flags.setInReg(); 9614 } 9615 if (Arg.hasAttribute(Attribute::StructRet)) 9616 Flags.setSRet(); 9617 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9618 Flags.setSwiftSelf(); 9619 if (Arg.hasAttribute(Attribute::SwiftError)) 9620 Flags.setSwiftError(); 9621 if (Arg.hasAttribute(Attribute::ByVal)) 9622 Flags.setByVal(); 9623 if (Arg.hasAttribute(Attribute::InAlloca)) { 9624 Flags.setInAlloca(); 9625 // Set the byval flag for CCAssignFn callbacks that don't know about 9626 // inalloca. This way we can know how many bytes we should've allocated 9627 // and how many bytes a callee cleanup function will pop. If we port 9628 // inalloca to more targets, we'll have to add custom inalloca handling 9629 // in the various CC lowering callbacks. 9630 Flags.setByVal(); 9631 } 9632 if (F.getCallingConv() == CallingConv::X86_INTR) { 9633 // IA Interrupt passes frame (1st parameter) by value in the stack. 9634 if (ArgNo == 0) 9635 Flags.setByVal(); 9636 } 9637 if (Flags.isByVal() || Flags.isInAlloca()) { 9638 Type *ElementTy = Arg.getParamByValType(); 9639 9640 // For ByVal, size and alignment should be passed from FE. BE will 9641 // guess if this info is not there but there are cases it cannot get 9642 // right. 9643 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9644 Flags.setByValSize(FrameSize); 9645 9646 unsigned FrameAlign; 9647 if (Arg.getParamAlignment()) 9648 FrameAlign = Arg.getParamAlignment(); 9649 else 9650 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9651 Flags.setByValAlign(Align(FrameAlign)); 9652 } 9653 if (Arg.hasAttribute(Attribute::Nest)) 9654 Flags.setNest(); 9655 if (NeedsRegBlock) 9656 Flags.setInConsecutiveRegs(); 9657 Flags.setOrigAlign(OriginalAlignment); 9658 if (ArgCopyElisionCandidates.count(&Arg)) 9659 Flags.setCopyElisionCandidate(); 9660 if (Arg.hasAttribute(Attribute::Returned)) 9661 Flags.setReturned(); 9662 9663 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9664 *CurDAG->getContext(), F.getCallingConv(), VT); 9665 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9666 *CurDAG->getContext(), F.getCallingConv(), VT); 9667 for (unsigned i = 0; i != NumRegs; ++i) { 9668 // For scalable vectors, use the minimum size; individual targets 9669 // are responsible for handling scalable vector arguments and 9670 // return values. 9671 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9672 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9673 if (NumRegs > 1 && i == 0) 9674 MyFlags.Flags.setSplit(); 9675 // if it isn't first piece, alignment must be 1 9676 else if (i > 0) { 9677 MyFlags.Flags.setOrigAlign(Align(1)); 9678 if (i == NumRegs - 1) 9679 MyFlags.Flags.setSplitEnd(); 9680 } 9681 Ins.push_back(MyFlags); 9682 } 9683 if (NeedsRegBlock && Value == NumValues - 1) 9684 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9685 PartBase += VT.getStoreSize().getKnownMinSize(); 9686 } 9687 } 9688 9689 // Call the target to set up the argument values. 9690 SmallVector<SDValue, 8> InVals; 9691 SDValue NewRoot = TLI->LowerFormalArguments( 9692 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9693 9694 // Verify that the target's LowerFormalArguments behaved as expected. 9695 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9696 "LowerFormalArguments didn't return a valid chain!"); 9697 assert(InVals.size() == Ins.size() && 9698 "LowerFormalArguments didn't emit the correct number of values!"); 9699 LLVM_DEBUG({ 9700 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9701 assert(InVals[i].getNode() && 9702 "LowerFormalArguments emitted a null value!"); 9703 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9704 "LowerFormalArguments emitted a value with the wrong type!"); 9705 } 9706 }); 9707 9708 // Update the DAG with the new chain value resulting from argument lowering. 9709 DAG.setRoot(NewRoot); 9710 9711 // Set up the argument values. 9712 unsigned i = 0; 9713 if (!FuncInfo->CanLowerReturn) { 9714 // Create a virtual register for the sret pointer, and put in a copy 9715 // from the sret argument into it. 9716 SmallVector<EVT, 1> ValueVTs; 9717 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9718 F.getReturnType()->getPointerTo( 9719 DAG.getDataLayout().getAllocaAddrSpace()), 9720 ValueVTs); 9721 MVT VT = ValueVTs[0].getSimpleVT(); 9722 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9723 Optional<ISD::NodeType> AssertOp = None; 9724 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9725 nullptr, F.getCallingConv(), AssertOp); 9726 9727 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9728 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9729 Register SRetReg = 9730 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9731 FuncInfo->DemoteRegister = SRetReg; 9732 NewRoot = 9733 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9734 DAG.setRoot(NewRoot); 9735 9736 // i indexes lowered arguments. Bump it past the hidden sret argument. 9737 ++i; 9738 } 9739 9740 SmallVector<SDValue, 4> Chains; 9741 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9742 for (const Argument &Arg : F.args()) { 9743 SmallVector<SDValue, 4> ArgValues; 9744 SmallVector<EVT, 4> ValueVTs; 9745 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9746 unsigned NumValues = ValueVTs.size(); 9747 if (NumValues == 0) 9748 continue; 9749 9750 bool ArgHasUses = !Arg.use_empty(); 9751 9752 // Elide the copying store if the target loaded this argument from a 9753 // suitable fixed stack object. 9754 if (Ins[i].Flags.isCopyElisionCandidate()) { 9755 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9756 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9757 InVals[i], ArgHasUses); 9758 } 9759 9760 // If this argument is unused then remember its value. It is used to generate 9761 // debugging information. 9762 bool isSwiftErrorArg = 9763 TLI->supportSwiftError() && 9764 Arg.hasAttribute(Attribute::SwiftError); 9765 if (!ArgHasUses && !isSwiftErrorArg) { 9766 SDB->setUnusedArgValue(&Arg, InVals[i]); 9767 9768 // Also remember any frame index for use in FastISel. 9769 if (FrameIndexSDNode *FI = 9770 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9771 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9772 } 9773 9774 for (unsigned Val = 0; Val != NumValues; ++Val) { 9775 EVT VT = ValueVTs[Val]; 9776 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9777 F.getCallingConv(), VT); 9778 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9779 *CurDAG->getContext(), F.getCallingConv(), VT); 9780 9781 // Even an apparent 'unused' swifterror argument needs to be returned. So 9782 // we do generate a copy for it that can be used on return from the 9783 // function. 9784 if (ArgHasUses || isSwiftErrorArg) { 9785 Optional<ISD::NodeType> AssertOp; 9786 if (Arg.hasAttribute(Attribute::SExt)) 9787 AssertOp = ISD::AssertSext; 9788 else if (Arg.hasAttribute(Attribute::ZExt)) 9789 AssertOp = ISD::AssertZext; 9790 9791 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9792 PartVT, VT, nullptr, 9793 F.getCallingConv(), AssertOp)); 9794 } 9795 9796 i += NumParts; 9797 } 9798 9799 // We don't need to do anything else for unused arguments. 9800 if (ArgValues.empty()) 9801 continue; 9802 9803 // Note down frame index. 9804 if (FrameIndexSDNode *FI = 9805 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9806 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9807 9808 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9809 SDB->getCurSDLoc()); 9810 9811 SDB->setValue(&Arg, Res); 9812 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9813 // We want to associate the argument with the frame index, among 9814 // involved operands, that correspond to the lowest address. The 9815 // getCopyFromParts function, called earlier, is swapping the order of 9816 // the operands to BUILD_PAIR depending on endianness. The result of 9817 // that swapping is that the least significant bits of the argument will 9818 // be in the first operand of the BUILD_PAIR node, and the most 9819 // significant bits will be in the second operand. 9820 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9821 if (LoadSDNode *LNode = 9822 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9823 if (FrameIndexSDNode *FI = 9824 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9825 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9826 } 9827 9828 // Analyses past this point are naive and don't expect an assertion. 9829 if (Res.getOpcode() == ISD::AssertZext) 9830 Res = Res.getOperand(0); 9831 9832 // Update the SwiftErrorVRegDefMap. 9833 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9834 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9835 if (Register::isVirtualRegister(Reg)) 9836 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9837 Reg); 9838 } 9839 9840 // If this argument is live outside of the entry block, insert a copy from 9841 // wherever we got it to the vreg that other BB's will reference it as. 9842 if (Res.getOpcode() == ISD::CopyFromReg) { 9843 // If we can, though, try to skip creating an unnecessary vreg. 9844 // FIXME: This isn't very clean... it would be nice to make this more 9845 // general. 9846 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9847 if (Register::isVirtualRegister(Reg)) { 9848 FuncInfo->ValueMap[&Arg] = Reg; 9849 continue; 9850 } 9851 } 9852 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9853 FuncInfo->InitializeRegForValue(&Arg); 9854 SDB->CopyToExportRegsIfNeeded(&Arg); 9855 } 9856 } 9857 9858 if (!Chains.empty()) { 9859 Chains.push_back(NewRoot); 9860 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9861 } 9862 9863 DAG.setRoot(NewRoot); 9864 9865 assert(i == InVals.size() && "Argument register count mismatch!"); 9866 9867 // If any argument copy elisions occurred and we have debug info, update the 9868 // stale frame indices used in the dbg.declare variable info table. 9869 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9870 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9871 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9872 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9873 if (I != ArgCopyElisionFrameIndexMap.end()) 9874 VI.Slot = I->second; 9875 } 9876 } 9877 9878 // Finally, if the target has anything special to do, allow it to do so. 9879 emitFunctionEntryCode(); 9880 } 9881 9882 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9883 /// ensure constants are generated when needed. Remember the virtual registers 9884 /// that need to be added to the Machine PHI nodes as input. We cannot just 9885 /// directly add them, because expansion might result in multiple MBB's for one 9886 /// BB. As such, the start of the BB might correspond to a different MBB than 9887 /// the end. 9888 void 9889 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9890 const Instruction *TI = LLVMBB->getTerminator(); 9891 9892 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9893 9894 // Check PHI nodes in successors that expect a value to be available from this 9895 // block. 9896 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9897 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9898 if (!isa<PHINode>(SuccBB->begin())) continue; 9899 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9900 9901 // If this terminator has multiple identical successors (common for 9902 // switches), only handle each succ once. 9903 if (!SuccsHandled.insert(SuccMBB).second) 9904 continue; 9905 9906 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9907 9908 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9909 // nodes and Machine PHI nodes, but the incoming operands have not been 9910 // emitted yet. 9911 for (const PHINode &PN : SuccBB->phis()) { 9912 // Ignore dead phi's. 9913 if (PN.use_empty()) 9914 continue; 9915 9916 // Skip empty types 9917 if (PN.getType()->isEmptyTy()) 9918 continue; 9919 9920 unsigned Reg; 9921 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9922 9923 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9924 unsigned &RegOut = ConstantsOut[C]; 9925 if (RegOut == 0) { 9926 RegOut = FuncInfo.CreateRegs(C); 9927 CopyValueToVirtualRegister(C, RegOut); 9928 } 9929 Reg = RegOut; 9930 } else { 9931 DenseMap<const Value *, Register>::iterator I = 9932 FuncInfo.ValueMap.find(PHIOp); 9933 if (I != FuncInfo.ValueMap.end()) 9934 Reg = I->second; 9935 else { 9936 assert(isa<AllocaInst>(PHIOp) && 9937 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9938 "Didn't codegen value into a register!??"); 9939 Reg = FuncInfo.CreateRegs(PHIOp); 9940 CopyValueToVirtualRegister(PHIOp, Reg); 9941 } 9942 } 9943 9944 // Remember that this register needs to added to the machine PHI node as 9945 // the input for this MBB. 9946 SmallVector<EVT, 4> ValueVTs; 9947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9948 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9949 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9950 EVT VT = ValueVTs[vti]; 9951 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9952 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9953 FuncInfo.PHINodesToUpdate.push_back( 9954 std::make_pair(&*MBBI++, Reg + i)); 9955 Reg += NumRegisters; 9956 } 9957 } 9958 } 9959 9960 ConstantsOut.clear(); 9961 } 9962 9963 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9964 /// is 0. 9965 MachineBasicBlock * 9966 SelectionDAGBuilder::StackProtectorDescriptor:: 9967 AddSuccessorMBB(const BasicBlock *BB, 9968 MachineBasicBlock *ParentMBB, 9969 bool IsLikely, 9970 MachineBasicBlock *SuccMBB) { 9971 // If SuccBB has not been created yet, create it. 9972 if (!SuccMBB) { 9973 MachineFunction *MF = ParentMBB->getParent(); 9974 MachineFunction::iterator BBI(ParentMBB); 9975 SuccMBB = MF->CreateMachineBasicBlock(BB); 9976 MF->insert(++BBI, SuccMBB); 9977 } 9978 // Add it as a successor of ParentMBB. 9979 ParentMBB->addSuccessor( 9980 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9981 return SuccMBB; 9982 } 9983 9984 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9985 MachineFunction::iterator I(MBB); 9986 if (++I == FuncInfo.MF->end()) 9987 return nullptr; 9988 return &*I; 9989 } 9990 9991 /// During lowering new call nodes can be created (such as memset, etc.). 9992 /// Those will become new roots of the current DAG, but complications arise 9993 /// when they are tail calls. In such cases, the call lowering will update 9994 /// the root, but the builder still needs to know that a tail call has been 9995 /// lowered in order to avoid generating an additional return. 9996 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9997 // If the node is null, we do have a tail call. 9998 if (MaybeTC.getNode() != nullptr) 9999 DAG.setRoot(MaybeTC); 10000 else 10001 HasTailCall = true; 10002 } 10003 10004 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10005 MachineBasicBlock *SwitchMBB, 10006 MachineBasicBlock *DefaultMBB) { 10007 MachineFunction *CurMF = FuncInfo.MF; 10008 MachineBasicBlock *NextMBB = nullptr; 10009 MachineFunction::iterator BBI(W.MBB); 10010 if (++BBI != FuncInfo.MF->end()) 10011 NextMBB = &*BBI; 10012 10013 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10014 10015 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10016 10017 if (Size == 2 && W.MBB == SwitchMBB) { 10018 // If any two of the cases has the same destination, and if one value 10019 // is the same as the other, but has one bit unset that the other has set, 10020 // use bit manipulation to do two compares at once. For example: 10021 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10022 // TODO: This could be extended to merge any 2 cases in switches with 3 10023 // cases. 10024 // TODO: Handle cases where W.CaseBB != SwitchBB. 10025 CaseCluster &Small = *W.FirstCluster; 10026 CaseCluster &Big = *W.LastCluster; 10027 10028 if (Small.Low == Small.High && Big.Low == Big.High && 10029 Small.MBB == Big.MBB) { 10030 const APInt &SmallValue = Small.Low->getValue(); 10031 const APInt &BigValue = Big.Low->getValue(); 10032 10033 // Check that there is only one bit different. 10034 APInt CommonBit = BigValue ^ SmallValue; 10035 if (CommonBit.isPowerOf2()) { 10036 SDValue CondLHS = getValue(Cond); 10037 EVT VT = CondLHS.getValueType(); 10038 SDLoc DL = getCurSDLoc(); 10039 10040 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10041 DAG.getConstant(CommonBit, DL, VT)); 10042 SDValue Cond = DAG.getSetCC( 10043 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10044 ISD::SETEQ); 10045 10046 // Update successor info. 10047 // Both Small and Big will jump to Small.BB, so we sum up the 10048 // probabilities. 10049 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10050 if (BPI) 10051 addSuccessorWithProb( 10052 SwitchMBB, DefaultMBB, 10053 // The default destination is the first successor in IR. 10054 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10055 else 10056 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10057 10058 // Insert the true branch. 10059 SDValue BrCond = 10060 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10061 DAG.getBasicBlock(Small.MBB)); 10062 // Insert the false branch. 10063 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10064 DAG.getBasicBlock(DefaultMBB)); 10065 10066 DAG.setRoot(BrCond); 10067 return; 10068 } 10069 } 10070 } 10071 10072 if (TM.getOptLevel() != CodeGenOpt::None) { 10073 // Here, we order cases by probability so the most likely case will be 10074 // checked first. However, two clusters can have the same probability in 10075 // which case their relative ordering is non-deterministic. So we use Low 10076 // as a tie-breaker as clusters are guaranteed to never overlap. 10077 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10078 [](const CaseCluster &a, const CaseCluster &b) { 10079 return a.Prob != b.Prob ? 10080 a.Prob > b.Prob : 10081 a.Low->getValue().slt(b.Low->getValue()); 10082 }); 10083 10084 // Rearrange the case blocks so that the last one falls through if possible 10085 // without changing the order of probabilities. 10086 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10087 --I; 10088 if (I->Prob > W.LastCluster->Prob) 10089 break; 10090 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10091 std::swap(*I, *W.LastCluster); 10092 break; 10093 } 10094 } 10095 } 10096 10097 // Compute total probability. 10098 BranchProbability DefaultProb = W.DefaultProb; 10099 BranchProbability UnhandledProbs = DefaultProb; 10100 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10101 UnhandledProbs += I->Prob; 10102 10103 MachineBasicBlock *CurMBB = W.MBB; 10104 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10105 bool FallthroughUnreachable = false; 10106 MachineBasicBlock *Fallthrough; 10107 if (I == W.LastCluster) { 10108 // For the last cluster, fall through to the default destination. 10109 Fallthrough = DefaultMBB; 10110 FallthroughUnreachable = isa<UnreachableInst>( 10111 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10112 } else { 10113 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10114 CurMF->insert(BBI, Fallthrough); 10115 // Put Cond in a virtual register to make it available from the new blocks. 10116 ExportFromCurrentBlock(Cond); 10117 } 10118 UnhandledProbs -= I->Prob; 10119 10120 switch (I->Kind) { 10121 case CC_JumpTable: { 10122 // FIXME: Optimize away range check based on pivot comparisons. 10123 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10124 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10125 10126 // The jump block hasn't been inserted yet; insert it here. 10127 MachineBasicBlock *JumpMBB = JT->MBB; 10128 CurMF->insert(BBI, JumpMBB); 10129 10130 auto JumpProb = I->Prob; 10131 auto FallthroughProb = UnhandledProbs; 10132 10133 // If the default statement is a target of the jump table, we evenly 10134 // distribute the default probability to successors of CurMBB. Also 10135 // update the probability on the edge from JumpMBB to Fallthrough. 10136 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10137 SE = JumpMBB->succ_end(); 10138 SI != SE; ++SI) { 10139 if (*SI == DefaultMBB) { 10140 JumpProb += DefaultProb / 2; 10141 FallthroughProb -= DefaultProb / 2; 10142 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10143 JumpMBB->normalizeSuccProbs(); 10144 break; 10145 } 10146 } 10147 10148 if (FallthroughUnreachable) { 10149 // Skip the range check if the fallthrough block is unreachable. 10150 JTH->OmitRangeCheck = true; 10151 } 10152 10153 if (!JTH->OmitRangeCheck) 10154 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10155 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10156 CurMBB->normalizeSuccProbs(); 10157 10158 // The jump table header will be inserted in our current block, do the 10159 // range check, and fall through to our fallthrough block. 10160 JTH->HeaderBB = CurMBB; 10161 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10162 10163 // If we're in the right place, emit the jump table header right now. 10164 if (CurMBB == SwitchMBB) { 10165 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10166 JTH->Emitted = true; 10167 } 10168 break; 10169 } 10170 case CC_BitTests: { 10171 // FIXME: Optimize away range check based on pivot comparisons. 10172 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10173 10174 // The bit test blocks haven't been inserted yet; insert them here. 10175 for (BitTestCase &BTC : BTB->Cases) 10176 CurMF->insert(BBI, BTC.ThisBB); 10177 10178 // Fill in fields of the BitTestBlock. 10179 BTB->Parent = CurMBB; 10180 BTB->Default = Fallthrough; 10181 10182 BTB->DefaultProb = UnhandledProbs; 10183 // If the cases in bit test don't form a contiguous range, we evenly 10184 // distribute the probability on the edge to Fallthrough to two 10185 // successors of CurMBB. 10186 if (!BTB->ContiguousRange) { 10187 BTB->Prob += DefaultProb / 2; 10188 BTB->DefaultProb -= DefaultProb / 2; 10189 } 10190 10191 if (FallthroughUnreachable) { 10192 // Skip the range check if the fallthrough block is unreachable. 10193 BTB->OmitRangeCheck = true; 10194 } 10195 10196 // If we're in the right place, emit the bit test header right now. 10197 if (CurMBB == SwitchMBB) { 10198 visitBitTestHeader(*BTB, SwitchMBB); 10199 BTB->Emitted = true; 10200 } 10201 break; 10202 } 10203 case CC_Range: { 10204 const Value *RHS, *LHS, *MHS; 10205 ISD::CondCode CC; 10206 if (I->Low == I->High) { 10207 // Check Cond == I->Low. 10208 CC = ISD::SETEQ; 10209 LHS = Cond; 10210 RHS=I->Low; 10211 MHS = nullptr; 10212 } else { 10213 // Check I->Low <= Cond <= I->High. 10214 CC = ISD::SETLE; 10215 LHS = I->Low; 10216 MHS = Cond; 10217 RHS = I->High; 10218 } 10219 10220 // If Fallthrough is unreachable, fold away the comparison. 10221 if (FallthroughUnreachable) 10222 CC = ISD::SETTRUE; 10223 10224 // The false probability is the sum of all unhandled cases. 10225 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10226 getCurSDLoc(), I->Prob, UnhandledProbs); 10227 10228 if (CurMBB == SwitchMBB) 10229 visitSwitchCase(CB, SwitchMBB); 10230 else 10231 SL->SwitchCases.push_back(CB); 10232 10233 break; 10234 } 10235 } 10236 CurMBB = Fallthrough; 10237 } 10238 } 10239 10240 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10241 CaseClusterIt First, 10242 CaseClusterIt Last) { 10243 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10244 if (X.Prob != CC.Prob) 10245 return X.Prob > CC.Prob; 10246 10247 // Ties are broken by comparing the case value. 10248 return X.Low->getValue().slt(CC.Low->getValue()); 10249 }); 10250 } 10251 10252 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10253 const SwitchWorkListItem &W, 10254 Value *Cond, 10255 MachineBasicBlock *SwitchMBB) { 10256 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10257 "Clusters not sorted?"); 10258 10259 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10260 10261 // Balance the tree based on branch probabilities to create a near-optimal (in 10262 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10263 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10264 CaseClusterIt LastLeft = W.FirstCluster; 10265 CaseClusterIt FirstRight = W.LastCluster; 10266 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10267 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10268 10269 // Move LastLeft and FirstRight towards each other from opposite directions to 10270 // find a partitioning of the clusters which balances the probability on both 10271 // sides. If LeftProb and RightProb are equal, alternate which side is 10272 // taken to ensure 0-probability nodes are distributed evenly. 10273 unsigned I = 0; 10274 while (LastLeft + 1 < FirstRight) { 10275 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10276 LeftProb += (++LastLeft)->Prob; 10277 else 10278 RightProb += (--FirstRight)->Prob; 10279 I++; 10280 } 10281 10282 while (true) { 10283 // Our binary search tree differs from a typical BST in that ours can have up 10284 // to three values in each leaf. The pivot selection above doesn't take that 10285 // into account, which means the tree might require more nodes and be less 10286 // efficient. We compensate for this here. 10287 10288 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10289 unsigned NumRight = W.LastCluster - FirstRight + 1; 10290 10291 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10292 // If one side has less than 3 clusters, and the other has more than 3, 10293 // consider taking a cluster from the other side. 10294 10295 if (NumLeft < NumRight) { 10296 // Consider moving the first cluster on the right to the left side. 10297 CaseCluster &CC = *FirstRight; 10298 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10299 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10300 if (LeftSideRank <= RightSideRank) { 10301 // Moving the cluster to the left does not demote it. 10302 ++LastLeft; 10303 ++FirstRight; 10304 continue; 10305 } 10306 } else { 10307 assert(NumRight < NumLeft); 10308 // Consider moving the last element on the left to the right side. 10309 CaseCluster &CC = *LastLeft; 10310 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10311 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10312 if (RightSideRank <= LeftSideRank) { 10313 // Moving the cluster to the right does not demot it. 10314 --LastLeft; 10315 --FirstRight; 10316 continue; 10317 } 10318 } 10319 } 10320 break; 10321 } 10322 10323 assert(LastLeft + 1 == FirstRight); 10324 assert(LastLeft >= W.FirstCluster); 10325 assert(FirstRight <= W.LastCluster); 10326 10327 // Use the first element on the right as pivot since we will make less-than 10328 // comparisons against it. 10329 CaseClusterIt PivotCluster = FirstRight; 10330 assert(PivotCluster > W.FirstCluster); 10331 assert(PivotCluster <= W.LastCluster); 10332 10333 CaseClusterIt FirstLeft = W.FirstCluster; 10334 CaseClusterIt LastRight = W.LastCluster; 10335 10336 const ConstantInt *Pivot = PivotCluster->Low; 10337 10338 // New blocks will be inserted immediately after the current one. 10339 MachineFunction::iterator BBI(W.MBB); 10340 ++BBI; 10341 10342 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10343 // we can branch to its destination directly if it's squeezed exactly in 10344 // between the known lower bound and Pivot - 1. 10345 MachineBasicBlock *LeftMBB; 10346 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10347 FirstLeft->Low == W.GE && 10348 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10349 LeftMBB = FirstLeft->MBB; 10350 } else { 10351 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10352 FuncInfo.MF->insert(BBI, LeftMBB); 10353 WorkList.push_back( 10354 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10355 // Put Cond in a virtual register to make it available from the new blocks. 10356 ExportFromCurrentBlock(Cond); 10357 } 10358 10359 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10360 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10361 // directly if RHS.High equals the current upper bound. 10362 MachineBasicBlock *RightMBB; 10363 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10364 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10365 RightMBB = FirstRight->MBB; 10366 } else { 10367 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10368 FuncInfo.MF->insert(BBI, RightMBB); 10369 WorkList.push_back( 10370 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10371 // Put Cond in a virtual register to make it available from the new blocks. 10372 ExportFromCurrentBlock(Cond); 10373 } 10374 10375 // Create the CaseBlock record that will be used to lower the branch. 10376 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10377 getCurSDLoc(), LeftProb, RightProb); 10378 10379 if (W.MBB == SwitchMBB) 10380 visitSwitchCase(CB, SwitchMBB); 10381 else 10382 SL->SwitchCases.push_back(CB); 10383 } 10384 10385 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10386 // from the swith statement. 10387 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10388 BranchProbability PeeledCaseProb) { 10389 if (PeeledCaseProb == BranchProbability::getOne()) 10390 return BranchProbability::getZero(); 10391 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10392 10393 uint32_t Numerator = CaseProb.getNumerator(); 10394 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10395 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10396 } 10397 10398 // Try to peel the top probability case if it exceeds the threshold. 10399 // Return current MachineBasicBlock for the switch statement if the peeling 10400 // does not occur. 10401 // If the peeling is performed, return the newly created MachineBasicBlock 10402 // for the peeled switch statement. Also update Clusters to remove the peeled 10403 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10404 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10405 const SwitchInst &SI, CaseClusterVector &Clusters, 10406 BranchProbability &PeeledCaseProb) { 10407 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10408 // Don't perform if there is only one cluster or optimizing for size. 10409 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10410 TM.getOptLevel() == CodeGenOpt::None || 10411 SwitchMBB->getParent()->getFunction().hasMinSize()) 10412 return SwitchMBB; 10413 10414 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10415 unsigned PeeledCaseIndex = 0; 10416 bool SwitchPeeled = false; 10417 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10418 CaseCluster &CC = Clusters[Index]; 10419 if (CC.Prob < TopCaseProb) 10420 continue; 10421 TopCaseProb = CC.Prob; 10422 PeeledCaseIndex = Index; 10423 SwitchPeeled = true; 10424 } 10425 if (!SwitchPeeled) 10426 return SwitchMBB; 10427 10428 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10429 << TopCaseProb << "\n"); 10430 10431 // Record the MBB for the peeled switch statement. 10432 MachineFunction::iterator BBI(SwitchMBB); 10433 ++BBI; 10434 MachineBasicBlock *PeeledSwitchMBB = 10435 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10436 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10437 10438 ExportFromCurrentBlock(SI.getCondition()); 10439 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10440 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10441 nullptr, nullptr, TopCaseProb.getCompl()}; 10442 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10443 10444 Clusters.erase(PeeledCaseIt); 10445 for (CaseCluster &CC : Clusters) { 10446 LLVM_DEBUG( 10447 dbgs() << "Scale the probablity for one cluster, before scaling: " 10448 << CC.Prob << "\n"); 10449 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10450 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10451 } 10452 PeeledCaseProb = TopCaseProb; 10453 return PeeledSwitchMBB; 10454 } 10455 10456 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10457 // Extract cases from the switch. 10458 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10459 CaseClusterVector Clusters; 10460 Clusters.reserve(SI.getNumCases()); 10461 for (auto I : SI.cases()) { 10462 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10463 const ConstantInt *CaseVal = I.getCaseValue(); 10464 BranchProbability Prob = 10465 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10466 : BranchProbability(1, SI.getNumCases() + 1); 10467 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10468 } 10469 10470 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10471 10472 // Cluster adjacent cases with the same destination. We do this at all 10473 // optimization levels because it's cheap to do and will make codegen faster 10474 // if there are many clusters. 10475 sortAndRangeify(Clusters); 10476 10477 // The branch probablity of the peeled case. 10478 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10479 MachineBasicBlock *PeeledSwitchMBB = 10480 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10481 10482 // If there is only the default destination, jump there directly. 10483 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10484 if (Clusters.empty()) { 10485 assert(PeeledSwitchMBB == SwitchMBB); 10486 SwitchMBB->addSuccessor(DefaultMBB); 10487 if (DefaultMBB != NextBlock(SwitchMBB)) { 10488 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10489 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10490 } 10491 return; 10492 } 10493 10494 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10495 SL->findBitTestClusters(Clusters, &SI); 10496 10497 LLVM_DEBUG({ 10498 dbgs() << "Case clusters: "; 10499 for (const CaseCluster &C : Clusters) { 10500 if (C.Kind == CC_JumpTable) 10501 dbgs() << "JT:"; 10502 if (C.Kind == CC_BitTests) 10503 dbgs() << "BT:"; 10504 10505 C.Low->getValue().print(dbgs(), true); 10506 if (C.Low != C.High) { 10507 dbgs() << '-'; 10508 C.High->getValue().print(dbgs(), true); 10509 } 10510 dbgs() << ' '; 10511 } 10512 dbgs() << '\n'; 10513 }); 10514 10515 assert(!Clusters.empty()); 10516 SwitchWorkList WorkList; 10517 CaseClusterIt First = Clusters.begin(); 10518 CaseClusterIt Last = Clusters.end() - 1; 10519 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10520 // Scale the branchprobability for DefaultMBB if the peel occurs and 10521 // DefaultMBB is not replaced. 10522 if (PeeledCaseProb != BranchProbability::getZero() && 10523 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10524 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10525 WorkList.push_back( 10526 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10527 10528 while (!WorkList.empty()) { 10529 SwitchWorkListItem W = WorkList.back(); 10530 WorkList.pop_back(); 10531 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10532 10533 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10534 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10535 // For optimized builds, lower large range as a balanced binary tree. 10536 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10537 continue; 10538 } 10539 10540 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10541 } 10542 } 10543 10544 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10545 SmallVector<EVT, 4> ValueVTs; 10546 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10547 ValueVTs); 10548 unsigned NumValues = ValueVTs.size(); 10549 if (NumValues == 0) return; 10550 10551 SmallVector<SDValue, 4> Values(NumValues); 10552 SDValue Op = getValue(I.getOperand(0)); 10553 10554 for (unsigned i = 0; i != NumValues; ++i) 10555 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10556 SDValue(Op.getNode(), Op.getResNo() + i)); 10557 10558 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10559 DAG.getVTList(ValueVTs), Values)); 10560 } 10561