xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 92ce6db9ee7666a347fccf0f72ba3225b199d6d1)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // Vector/Vector bitcast.
403     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
404       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
405 
406     // If the element type of the source/dest vectors are the same, but the
407     // parts vector has more elements than the value vector, then we have a
408     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
409     // elements we want.
410     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
411       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
412               ValueVT.getVectorElementCount().getKnownMinValue()) &&
413              (PartEVT.getVectorElementCount().isScalable() ==
414               ValueVT.getVectorElementCount().isScalable()) &&
415              "Cannot narrow, it would be a lossy transformation");
416       PartEVT =
417           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
418                            ValueVT.getVectorElementCount());
419       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
420                         DAG.getVectorIdxConstant(0, DL));
421       if (PartEVT == ValueVT)
422         return Val;
423     }
424 
425     // Promoted vector extract
426     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
427   }
428 
429   // Trivial bitcast if the types are the same size and the destination
430   // vector type is legal.
431   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
432       TLI.isTypeLegal(ValueVT))
433     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434 
435   if (ValueVT.getVectorNumElements() != 1) {
436      // Certain ABIs require that vectors are passed as integers. For vectors
437      // are the same size, this is an obvious bitcast.
438      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
439        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440      } else if (ValueVT.bitsLT(PartEVT)) {
441        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
442        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
443        // Drop the extra bits.
444        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
445        return DAG.getBitcast(ValueVT, Val);
446      }
447 
448      diagnosePossiblyInvalidConstraint(
449          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
450      return DAG.getUNDEF(ValueVT);
451   }
452 
453   // Handle cases such as i8 -> <1 x i1>
454   EVT ValueSVT = ValueVT.getVectorElementType();
455   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
456     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
457       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
458     else
459       Val = ValueVT.isFloatingPoint()
460                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
461                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
462   }
463 
464   return DAG.getBuildVector(ValueVT, DL, Val);
465 }
466 
467 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
468                                  SDValue Val, SDValue *Parts, unsigned NumParts,
469                                  MVT PartVT, const Value *V,
470                                  Optional<CallingConv::ID> CallConv);
471 
472 /// getCopyToParts - Create a series of nodes that contain the specified value
473 /// split into legal parts.  If the parts contain more bits than Val, then, for
474 /// integers, ExtendKind can be used to specify how to generate the extra bits.
475 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
476                            SDValue *Parts, unsigned NumParts, MVT PartVT,
477                            const Value *V,
478                            Optional<CallingConv::ID> CallConv = None,
479                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
480   // Let the target split the parts if it wants to
481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
482   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
483                                       CallConv))
484     return;
485   EVT ValueVT = Val.getValueType();
486 
487   // Handle the vector case separately.
488   if (ValueVT.isVector())
489     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
490                                 CallConv);
491 
492   unsigned PartBits = PartVT.getSizeInBits();
493   unsigned OrigNumParts = NumParts;
494   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
495          "Copying to an illegal type!");
496 
497   if (NumParts == 0)
498     return;
499 
500   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
501   EVT PartEVT = PartVT;
502   if (PartEVT == ValueVT) {
503     assert(NumParts == 1 && "No-op copy with multiple parts!");
504     Parts[0] = Val;
505     return;
506   }
507 
508   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
509     // If the parts cover more bits than the value has, promote the value.
510     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
511       assert(NumParts == 1 && "Do not know what to promote to!");
512       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
513     } else {
514       if (ValueVT.isFloatingPoint()) {
515         // FP values need to be bitcast, then extended if they are being put
516         // into a larger container.
517         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
518         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
519       }
520       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
521              ValueVT.isInteger() &&
522              "Unknown mismatch!");
523       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
524       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
525       if (PartVT == MVT::x86mmx)
526         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     }
528   } else if (PartBits == ValueVT.getSizeInBits()) {
529     // Different types of the same size.
530     assert(NumParts == 1 && PartEVT != ValueVT);
531     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
532   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
533     // If the parts cover less bits than value has, truncate the value.
534     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
535            ValueVT.isInteger() &&
536            "Unknown mismatch!");
537     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
538     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
539     if (PartVT == MVT::x86mmx)
540       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
541   }
542 
543   // The value may have changed - recompute ValueVT.
544   ValueVT = Val.getValueType();
545   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
546          "Failed to tile the value with PartVT!");
547 
548   if (NumParts == 1) {
549     if (PartEVT != ValueVT) {
550       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
551                                         "scalar-to-vector conversion failed");
552       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553     }
554 
555     Parts[0] = Val;
556     return;
557   }
558 
559   // Expand the value into multiple parts.
560   if (NumParts & (NumParts - 1)) {
561     // The number of parts is not a power of 2.  Split off and copy the tail.
562     assert(PartVT.isInteger() && ValueVT.isInteger() &&
563            "Do not know what to expand to!");
564     unsigned RoundParts = 1 << Log2_32(NumParts);
565     unsigned RoundBits = RoundParts * PartBits;
566     unsigned OddParts = NumParts - RoundParts;
567     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
568       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
569 
570     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
571                    CallConv);
572 
573     if (DAG.getDataLayout().isBigEndian())
574       // The odd parts were reversed by getCopyToParts - unreverse them.
575       std::reverse(Parts + RoundParts, Parts + NumParts);
576 
577     NumParts = RoundParts;
578     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
579     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
580   }
581 
582   // The number of parts is a power of 2.  Repeatedly bisect the value using
583   // EXTRACT_ELEMENT.
584   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
585                          EVT::getIntegerVT(*DAG.getContext(),
586                                            ValueVT.getSizeInBits()),
587                          Val);
588 
589   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
590     for (unsigned i = 0; i < NumParts; i += StepSize) {
591       unsigned ThisBits = StepSize * PartBits / 2;
592       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
593       SDValue &Part0 = Parts[i];
594       SDValue &Part1 = Parts[i+StepSize/2];
595 
596       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
598       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
599                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
600 
601       if (ThisBits == PartBits && ThisVT != PartVT) {
602         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
603         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
604       }
605     }
606   }
607 
608   if (DAG.getDataLayout().isBigEndian())
609     std::reverse(Parts, Parts + OrigNumParts);
610 }
611 
612 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
613                                      const SDLoc &DL, EVT PartVT) {
614   if (!PartVT.isVector())
615     return SDValue();
616 
617   EVT ValueVT = Val.getValueType();
618   ElementCount PartNumElts = PartVT.getVectorElementCount();
619   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
620 
621   // We only support widening vectors with equivalent element types and
622   // fixed/scalable properties. If a target needs to widen a fixed-length type
623   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
624   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
625       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
626       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
627     return SDValue();
628 
629   // Widening a scalable vector to another scalable vector is done by inserting
630   // the vector into a larger undef one.
631   if (PartNumElts.isScalable())
632     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
633                        Val, DAG.getVectorIdxConstant(0, DL));
634 
635   EVT ElementVT = PartVT.getVectorElementType();
636   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
637   // undef elements.
638   SmallVector<SDValue, 16> Ops;
639   DAG.ExtractVectorElements(Val, Ops);
640   SDValue EltUndef = DAG.getUNDEF(ElementVT);
641   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
642 
643   // FIXME: Use CONCAT for 2x -> 4x.
644   return DAG.getBuildVector(PartVT, DL, Ops);
645 }
646 
647 /// getCopyToPartsVector - Create a series of nodes that contain the specified
648 /// value split into legal parts.
649 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
650                                  SDValue Val, SDValue *Parts, unsigned NumParts,
651                                  MVT PartVT, const Value *V,
652                                  Optional<CallingConv::ID> CallConv) {
653   EVT ValueVT = Val.getValueType();
654   assert(ValueVT.isVector() && "Not a vector");
655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
656   const bool IsABIRegCopy = CallConv.hasValue();
657 
658   if (NumParts == 1) {
659     EVT PartEVT = PartVT;
660     if (PartEVT == ValueVT) {
661       // Nothing to do.
662     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
663       // Bitconvert vector->vector case.
664       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
665     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
666       Val = Widened;
667     } else if (PartVT.isVector() &&
668                PartEVT.getVectorElementType().bitsGE(
669                    ValueVT.getVectorElementType()) &&
670                PartEVT.getVectorElementCount() ==
671                    ValueVT.getVectorElementCount()) {
672 
673       // Promoted vector extract
674       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
675     } else {
676       if (ValueVT.getVectorElementCount().isScalar()) {
677         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
678                           DAG.getVectorIdxConstant(0, DL));
679       } else {
680         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
681         assert(PartVT.getFixedSizeInBits() > ValueSize &&
682                "lossy conversion of vector to scalar type");
683         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
684         Val = DAG.getBitcast(IntermediateType, Val);
685         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
686       }
687     }
688 
689     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
690     Parts[0] = Val;
691     return;
692   }
693 
694   // Handle a multi-element vector.
695   EVT IntermediateVT;
696   MVT RegisterVT;
697   unsigned NumIntermediates;
698   unsigned NumRegs;
699   if (IsABIRegCopy) {
700     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
701         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
702         NumIntermediates, RegisterVT);
703   } else {
704     NumRegs =
705         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
706                                    NumIntermediates, RegisterVT);
707   }
708 
709   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
710   NumParts = NumRegs; // Silence a compiler warning.
711   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
712 
713   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
714          "Mixing scalable and fixed vectors when copying in parts");
715 
716   Optional<ElementCount> DestEltCnt;
717 
718   if (IntermediateVT.isVector())
719     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
720   else
721     DestEltCnt = ElementCount::getFixed(NumIntermediates);
722 
723   EVT BuiltVectorTy = EVT::getVectorVT(
724       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
725 
726   if (ValueVT == BuiltVectorTy) {
727     // Nothing to do.
728   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
729     // Bitconvert vector->vector case.
730     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
731   } else {
732     if (BuiltVectorTy.getVectorElementType().bitsGT(
733             ValueVT.getVectorElementType())) {
734       // Integer promotion.
735       ValueVT = EVT::getVectorVT(*DAG.getContext(),
736                                  BuiltVectorTy.getVectorElementType(),
737                                  ValueVT.getVectorElementCount());
738       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
739     }
740 
741     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
742       Val = Widened;
743     }
744   }
745 
746   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
747 
748   // Split the vector into intermediate operands.
749   SmallVector<SDValue, 8> Ops(NumIntermediates);
750   for (unsigned i = 0; i != NumIntermediates; ++i) {
751     if (IntermediateVT.isVector()) {
752       // This does something sensible for scalable vectors - see the
753       // definition of EXTRACT_SUBVECTOR for further details.
754       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
755       Ops[i] =
756           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
757                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
758     } else {
759       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
760                            DAG.getVectorIdxConstant(i, DL));
761     }
762   }
763 
764   // Split the intermediate operands into legal parts.
765   if (NumParts == NumIntermediates) {
766     // If the register was not expanded, promote or copy the value,
767     // as appropriate.
768     for (unsigned i = 0; i != NumParts; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
770   } else if (NumParts > 0) {
771     // If the intermediate type was expanded, split each the value into
772     // legal parts.
773     assert(NumIntermediates != 0 && "division by zero");
774     assert(NumParts % NumIntermediates == 0 &&
775            "Must expand into a divisible number of parts!");
776     unsigned Factor = NumParts / NumIntermediates;
777     for (unsigned i = 0; i != NumIntermediates; ++i)
778       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
779                      CallConv);
780   }
781 }
782 
783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
784                            EVT valuevt, Optional<CallingConv::ID> CC)
785     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
786       RegCount(1, regs.size()), CallConv(CC) {}
787 
788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
789                            const DataLayout &DL, unsigned Reg, Type *Ty,
790                            Optional<CallingConv::ID> CC) {
791   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
792 
793   CallConv = CC;
794 
795   for (EVT ValueVT : ValueVTs) {
796     unsigned NumRegs =
797         isABIMangled()
798             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
799             : TLI.getNumRegisters(Context, ValueVT);
800     MVT RegisterVT =
801         isABIMangled()
802             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
803             : TLI.getRegisterType(Context, ValueVT);
804     for (unsigned i = 0; i != NumRegs; ++i)
805       Regs.push_back(Reg + i);
806     RegVTs.push_back(RegisterVT);
807     RegCount.push_back(NumRegs);
808     Reg += NumRegs;
809   }
810 }
811 
812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
813                                       FunctionLoweringInfo &FuncInfo,
814                                       const SDLoc &dl, SDValue &Chain,
815                                       SDValue *Flag, const Value *V) const {
816   // A Value with type {} or [0 x %t] needs no registers.
817   if (ValueVTs.empty())
818     return SDValue();
819 
820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821 
822   // Assemble the legal parts into the final values.
823   SmallVector<SDValue, 4> Values(ValueVTs.size());
824   SmallVector<SDValue, 8> Parts;
825   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
826     // Copy the legal parts from the registers.
827     EVT ValueVT = ValueVTs[Value];
828     unsigned NumRegs = RegCount[Value];
829     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
830                                           *DAG.getContext(),
831                                           CallConv.getValue(), RegVTs[Value])
832                                     : RegVTs[Value];
833 
834     Parts.resize(NumRegs);
835     for (unsigned i = 0; i != NumRegs; ++i) {
836       SDValue P;
837       if (!Flag) {
838         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
839       } else {
840         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
841         *Flag = P.getValue(2);
842       }
843 
844       Chain = P.getValue(1);
845       Parts[i] = P;
846 
847       // If the source register was virtual and if we know something about it,
848       // add an assert node.
849       if (!Register::isVirtualRegister(Regs[Part + i]) ||
850           !RegisterVT.isInteger())
851         continue;
852 
853       const FunctionLoweringInfo::LiveOutInfo *LOI =
854         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
855       if (!LOI)
856         continue;
857 
858       unsigned RegSize = RegisterVT.getScalarSizeInBits();
859       unsigned NumSignBits = LOI->NumSignBits;
860       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
861 
862       if (NumZeroBits == RegSize) {
863         // The current value is a zero.
864         // Explicitly express that as it would be easier for
865         // optimizations to kick in.
866         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
867         continue;
868       }
869 
870       // FIXME: We capture more information than the dag can represent.  For
871       // now, just use the tightest assertzext/assertsext possible.
872       bool isSExt;
873       EVT FromVT(MVT::Other);
874       if (NumZeroBits) {
875         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
876         isSExt = false;
877       } else if (NumSignBits > 1) {
878         FromVT =
879             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
880         isSExt = true;
881       } else {
882         continue;
883       }
884       // Add an assertion node.
885       assert(FromVT != MVT::Other);
886       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
887                              RegisterVT, P, DAG.getValueType(FromVT));
888     }
889 
890     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
891                                      RegisterVT, ValueVT, V, CallConv);
892     Part += NumRegs;
893     Parts.clear();
894   }
895 
896   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
897 }
898 
899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
900                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
901                                  const Value *V,
902                                  ISD::NodeType PreferredExtendType) const {
903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
904   ISD::NodeType ExtendKind = PreferredExtendType;
905 
906   // Get the list of the values's legal parts.
907   unsigned NumRegs = Regs.size();
908   SmallVector<SDValue, 8> Parts(NumRegs);
909   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
910     unsigned NumParts = RegCount[Value];
911 
912     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
913                                           *DAG.getContext(),
914                                           CallConv.getValue(), RegVTs[Value])
915                                     : RegVTs[Value];
916 
917     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
918       ExtendKind = ISD::ZERO_EXTEND;
919 
920     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
921                    NumParts, RegisterVT, V, CallConv, ExtendKind);
922     Part += NumParts;
923   }
924 
925   // Copy the parts into the registers.
926   SmallVector<SDValue, 8> Chains(NumRegs);
927   for (unsigned i = 0; i != NumRegs; ++i) {
928     SDValue Part;
929     if (!Flag) {
930       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
931     } else {
932       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
933       *Flag = Part.getValue(1);
934     }
935 
936     Chains[i] = Part.getValue(0);
937   }
938 
939   if (NumRegs == 1 || Flag)
940     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
941     // flagged to it. That is the CopyToReg nodes and the user are considered
942     // a single scheduling unit. If we create a TokenFactor and return it as
943     // chain, then the TokenFactor is both a predecessor (operand) of the
944     // user as well as a successor (the TF operands are flagged to the user).
945     // c1, f1 = CopyToReg
946     // c2, f2 = CopyToReg
947     // c3     = TokenFactor c1, c2
948     // ...
949     //        = op c3, ..., f2
950     Chain = Chains[NumRegs-1];
951   else
952     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
953 }
954 
955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
956                                         unsigned MatchingIdx, const SDLoc &dl,
957                                         SelectionDAG &DAG,
958                                         std::vector<SDValue> &Ops) const {
959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
960 
961   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
962   if (HasMatching)
963     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
964   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
965     // Put the register class of the virtual registers in the flag word.  That
966     // way, later passes can recompute register class constraints for inline
967     // assembly as well as normal instructions.
968     // Don't do this for tied operands that can use the regclass information
969     // from the def.
970     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
971     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
972     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
973   }
974 
975   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
976   Ops.push_back(Res);
977 
978   if (Code == InlineAsm::Kind_Clobber) {
979     // Clobbers should always have a 1:1 mapping with registers, and may
980     // reference registers that have illegal (e.g. vector) types. Hence, we
981     // shouldn't try to apply any sort of splitting logic to them.
982     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
983            "No 1:1 mapping from clobbers to regs?");
984     Register SP = TLI.getStackPointerRegisterToSaveRestore();
985     (void)SP;
986     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
987       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
988       assert(
989           (Regs[I] != SP ||
990            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
991           "If we clobbered the stack pointer, MFI should know about it.");
992     }
993     return;
994   }
995 
996   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
997     MVT RegisterVT = RegVTs[Value];
998     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
999                                            RegisterVT);
1000     for (unsigned i = 0; i != NumRegs; ++i) {
1001       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1002       unsigned TheReg = Regs[Reg++];
1003       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1004     }
1005   }
1006 }
1007 
1008 SmallVector<std::pair<unsigned, TypeSize>, 4>
1009 RegsForValue::getRegsAndSizes() const {
1010   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1011   unsigned I = 0;
1012   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1013     unsigned RegCount = std::get<0>(CountAndVT);
1014     MVT RegisterVT = std::get<1>(CountAndVT);
1015     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1016     for (unsigned E = I + RegCount; I != E; ++I)
1017       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1018   }
1019   return OutVec;
1020 }
1021 
1022 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1023                                const TargetLibraryInfo *li) {
1024   AA = aa;
1025   GFI = gfi;
1026   LibInfo = li;
1027   DL = &DAG.getDataLayout();
1028   Context = DAG.getContext();
1029   LPadToCallSiteMap.clear();
1030   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1031 }
1032 
1033 void SelectionDAGBuilder::clear() {
1034   NodeMap.clear();
1035   UnusedArgNodeMap.clear();
1036   PendingLoads.clear();
1037   PendingExports.clear();
1038   PendingConstrainedFP.clear();
1039   PendingConstrainedFPStrict.clear();
1040   CurInst = nullptr;
1041   HasTailCall = false;
1042   SDNodeOrder = LowestSDNodeOrder;
1043   StatepointLowering.clear();
1044 }
1045 
1046 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1047   DanglingDebugInfoMap.clear();
1048 }
1049 
1050 // Update DAG root to include dependencies on Pending chains.
1051 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1052   SDValue Root = DAG.getRoot();
1053 
1054   if (Pending.empty())
1055     return Root;
1056 
1057   // Add current root to PendingChains, unless we already indirectly
1058   // depend on it.
1059   if (Root.getOpcode() != ISD::EntryToken) {
1060     unsigned i = 0, e = Pending.size();
1061     for (; i != e; ++i) {
1062       assert(Pending[i].getNode()->getNumOperands() > 1);
1063       if (Pending[i].getNode()->getOperand(0) == Root)
1064         break;  // Don't add the root if we already indirectly depend on it.
1065     }
1066 
1067     if (i == e)
1068       Pending.push_back(Root);
1069   }
1070 
1071   if (Pending.size() == 1)
1072     Root = Pending[0];
1073   else
1074     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1075 
1076   DAG.setRoot(Root);
1077   Pending.clear();
1078   return Root;
1079 }
1080 
1081 SDValue SelectionDAGBuilder::getMemoryRoot() {
1082   return updateRoot(PendingLoads);
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getRoot() {
1086   // Chain up all pending constrained intrinsics together with all
1087   // pending loads, by simply appending them to PendingLoads and
1088   // then calling getMemoryRoot().
1089   PendingLoads.reserve(PendingLoads.size() +
1090                        PendingConstrainedFP.size() +
1091                        PendingConstrainedFPStrict.size());
1092   PendingLoads.append(PendingConstrainedFP.begin(),
1093                       PendingConstrainedFP.end());
1094   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1095                       PendingConstrainedFPStrict.end());
1096   PendingConstrainedFP.clear();
1097   PendingConstrainedFPStrict.clear();
1098   return getMemoryRoot();
1099 }
1100 
1101 SDValue SelectionDAGBuilder::getControlRoot() {
1102   // We need to emit pending fpexcept.strict constrained intrinsics,
1103   // so append them to the PendingExports list.
1104   PendingExports.append(PendingConstrainedFPStrict.begin(),
1105                         PendingConstrainedFPStrict.end());
1106   PendingConstrainedFPStrict.clear();
1107   return updateRoot(PendingExports);
1108 }
1109 
1110 void SelectionDAGBuilder::visit(const Instruction &I) {
1111   // Set up outgoing PHI node register values before emitting the terminator.
1112   if (I.isTerminator()) {
1113     HandlePHINodesInSuccessorBlocks(I.getParent());
1114   }
1115 
1116   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1117   if (!isa<DbgInfoIntrinsic>(I))
1118     ++SDNodeOrder;
1119 
1120   CurInst = &I;
1121 
1122   visit(I.getOpcode(), I);
1123 
1124   if (!I.isTerminator() && !HasTailCall &&
1125       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1126     CopyToExportRegsIfNeeded(&I);
1127 
1128   CurInst = nullptr;
1129 }
1130 
1131 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1132   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1133 }
1134 
1135 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1136   // Note: this doesn't use InstVisitor, because it has to work with
1137   // ConstantExpr's in addition to instructions.
1138   switch (Opcode) {
1139   default: llvm_unreachable("Unknown instruction type encountered!");
1140     // Build the switch statement using the Instruction.def file.
1141 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1142     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1143 #include "llvm/IR/Instruction.def"
1144   }
1145 }
1146 
1147 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1148                                                DebugLoc DL, unsigned Order) {
1149   // We treat variadic dbg_values differently at this stage.
1150   if (DI->hasArgList()) {
1151     // For variadic dbg_values we will now insert an undef.
1152     // FIXME: We can potentially recover these!
1153     SmallVector<SDDbgOperand, 2> Locs;
1154     for (const Value *V : DI->getValues()) {
1155       auto Undef = UndefValue::get(V->getType());
1156       Locs.push_back(SDDbgOperand::fromConst(Undef));
1157     }
1158     SDDbgValue *SDV = DAG.getDbgValueList(
1159         DI->getVariable(), DI->getExpression(), Locs, {},
1160         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1161     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1162   } else {
1163     // TODO: Dangling debug info will eventually either be resolved or produce
1164     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1165     // between the original dbg.value location and its resolved DBG_VALUE,
1166     // which we should ideally fill with an extra Undef DBG_VALUE.
1167     assert(DI->getNumVariableLocationOps() == 1 &&
1168            "DbgValueInst without an ArgList should have a single location "
1169            "operand.");
1170     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1171   }
1172 }
1173 
1174 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1175                                                 const DIExpression *Expr) {
1176   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1177     const DbgValueInst *DI = DDI.getDI();
1178     DIVariable *DanglingVariable = DI->getVariable();
1179     DIExpression *DanglingExpr = DI->getExpression();
1180     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1181       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1182       return true;
1183     }
1184     return false;
1185   };
1186 
1187   for (auto &DDIMI : DanglingDebugInfoMap) {
1188     DanglingDebugInfoVector &DDIV = DDIMI.second;
1189 
1190     // If debug info is to be dropped, run it through final checks to see
1191     // whether it can be salvaged.
1192     for (auto &DDI : DDIV)
1193       if (isMatchingDbgValue(DDI))
1194         salvageUnresolvedDbgValue(DDI);
1195 
1196     erase_if(DDIV, isMatchingDbgValue);
1197   }
1198 }
1199 
1200 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1201 // generate the debug data structures now that we've seen its definition.
1202 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1203                                                    SDValue Val) {
1204   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1205   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1206     return;
1207 
1208   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1209   for (auto &DDI : DDIV) {
1210     const DbgValueInst *DI = DDI.getDI();
1211     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1212     assert(DI && "Ill-formed DanglingDebugInfo");
1213     DebugLoc dl = DDI.getdl();
1214     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1215     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1216     DILocalVariable *Variable = DI->getVariable();
1217     DIExpression *Expr = DI->getExpression();
1218     assert(Variable->isValidLocationForIntrinsic(dl) &&
1219            "Expected inlined-at fields to agree");
1220     SDDbgValue *SDV;
1221     if (Val.getNode()) {
1222       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1223       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1224       // we couldn't resolve it directly when examining the DbgValue intrinsic
1225       // in the first place we should not be more successful here). Unless we
1226       // have some test case that prove this to be correct we should avoid
1227       // calling EmitFuncArgumentDbgValue here.
1228       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1229         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1230                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1231         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1232         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1233         // inserted after the definition of Val when emitting the instructions
1234         // after ISel. An alternative could be to teach
1235         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1236         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1237                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1238                    << ValSDNodeOrder << "\n");
1239         SDV = getDbgValue(Val, Variable, Expr, dl,
1240                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1241         DAG.AddDbgValue(SDV, false);
1242       } else
1243         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1244                           << "in EmitFuncArgumentDbgValue\n");
1245     } else {
1246       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1247       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1248       auto SDV =
1249           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1250       DAG.AddDbgValue(SDV, false);
1251     }
1252   }
1253   DDIV.clear();
1254 }
1255 
1256 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1257   // TODO: For the variadic implementation, instead of only checking the fail
1258   // state of `handleDebugValue`, we need know specifically which values were
1259   // invalid, so that we attempt to salvage only those values when processing
1260   // a DIArgList.
1261   assert(!DDI.getDI()->hasArgList() &&
1262          "Not implemented for variadic dbg_values");
1263   Value *V = DDI.getDI()->getValue(0);
1264   DILocalVariable *Var = DDI.getDI()->getVariable();
1265   DIExpression *Expr = DDI.getDI()->getExpression();
1266   DebugLoc DL = DDI.getdl();
1267   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1268   unsigned SDOrder = DDI.getSDNodeOrder();
1269   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1270   // that DW_OP_stack_value is desired.
1271   assert(isa<DbgValueInst>(DDI.getDI()));
1272   bool StackValue = true;
1273 
1274   // Can this Value can be encoded without any further work?
1275   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1276     return;
1277 
1278   // Attempt to salvage back through as many instructions as possible. Bail if
1279   // a non-instruction is seen, such as a constant expression or global
1280   // variable. FIXME: Further work could recover those too.
1281   while (isa<Instruction>(V)) {
1282     Instruction &VAsInst = *cast<Instruction>(V);
1283     // Temporary "0", awaiting real implementation.
1284     SmallVector<uint64_t, 16> Ops;
1285     SmallVector<Value *, 4> AdditionalValues;
1286     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1287                              AdditionalValues);
1288     // If we cannot salvage any further, and haven't yet found a suitable debug
1289     // expression, bail out.
1290     if (!V)
1291       break;
1292 
1293     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1294     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1295     // here for variadic dbg_values, remove that condition.
1296     if (!AdditionalValues.empty())
1297       break;
1298 
1299     // New value and expr now represent this debuginfo.
1300     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1301 
1302     // Some kind of simplification occurred: check whether the operand of the
1303     // salvaged debug expression can be encoded in this DAG.
1304     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1305                          /*IsVariadic=*/false)) {
1306       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1307                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1308       return;
1309     }
1310   }
1311 
1312   // This was the final opportunity to salvage this debug information, and it
1313   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1314   // any earlier variable location.
1315   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1316   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1317   DAG.AddDbgValue(SDV, false);
1318 
1319   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1320                     << "\n");
1321   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1322                     << "\n");
1323 }
1324 
1325 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1326                                            DILocalVariable *Var,
1327                                            DIExpression *Expr, DebugLoc dl,
1328                                            DebugLoc InstDL, unsigned Order,
1329                                            bool IsVariadic) {
1330   if (Values.empty())
1331     return true;
1332   SmallVector<SDDbgOperand> LocationOps;
1333   SmallVector<SDNode *> Dependencies;
1334   for (const Value *V : Values) {
1335     // Constant value.
1336     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1337         isa<ConstantPointerNull>(V)) {
1338       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1339       continue;
1340     }
1341 
1342     // If the Value is a frame index, we can create a FrameIndex debug value
1343     // without relying on the DAG at all.
1344     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1345       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1346       if (SI != FuncInfo.StaticAllocaMap.end()) {
1347         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1348         continue;
1349       }
1350     }
1351 
1352     // Do not use getValue() in here; we don't want to generate code at
1353     // this point if it hasn't been done yet.
1354     SDValue N = NodeMap[V];
1355     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1356       N = UnusedArgNodeMap[V];
1357     if (N.getNode()) {
1358       // Only emit func arg dbg value for non-variadic dbg.values for now.
1359       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1360         return true;
1361       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1362         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1363         // describe stack slot locations.
1364         //
1365         // Consider "int x = 0; int *px = &x;". There are two kinds of
1366         // interesting debug values here after optimization:
1367         //
1368         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1369         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1370         //
1371         // Both describe the direct values of their associated variables.
1372         Dependencies.push_back(N.getNode());
1373         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1374         continue;
1375       }
1376       LocationOps.emplace_back(
1377           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1378       continue;
1379     }
1380 
1381     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1382     // Special rules apply for the first dbg.values of parameter variables in a
1383     // function. Identify them by the fact they reference Argument Values, that
1384     // they're parameters, and they are parameters of the current function. We
1385     // need to let them dangle until they get an SDNode.
1386     bool IsParamOfFunc =
1387         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1388     if (IsParamOfFunc)
1389       return false;
1390 
1391     // The value is not used in this block yet (or it would have an SDNode).
1392     // We still want the value to appear for the user if possible -- if it has
1393     // an associated VReg, we can refer to that instead.
1394     auto VMI = FuncInfo.ValueMap.find(V);
1395     if (VMI != FuncInfo.ValueMap.end()) {
1396       unsigned Reg = VMI->second;
1397       // If this is a PHI node, it may be split up into several MI PHI nodes
1398       // (in FunctionLoweringInfo::set).
1399       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1400                        V->getType(), None);
1401       if (RFV.occupiesMultipleRegs()) {
1402         // FIXME: We could potentially support variadic dbg_values here.
1403         if (IsVariadic)
1404           return false;
1405         unsigned Offset = 0;
1406         unsigned BitsToDescribe = 0;
1407         if (auto VarSize = Var->getSizeInBits())
1408           BitsToDescribe = *VarSize;
1409         if (auto Fragment = Expr->getFragmentInfo())
1410           BitsToDescribe = Fragment->SizeInBits;
1411         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1412           // Bail out if all bits are described already.
1413           if (Offset >= BitsToDescribe)
1414             break;
1415           // TODO: handle scalable vectors.
1416           unsigned RegisterSize = RegAndSize.second;
1417           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1418                                       ? BitsToDescribe - Offset
1419                                       : RegisterSize;
1420           auto FragmentExpr = DIExpression::createFragmentExpression(
1421               Expr, Offset, FragmentSize);
1422           if (!FragmentExpr)
1423             continue;
1424           SDDbgValue *SDV = DAG.getVRegDbgValue(
1425               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1426           DAG.AddDbgValue(SDV, false);
1427           Offset += RegisterSize;
1428         }
1429         return true;
1430       }
1431       // We can use simple vreg locations for variadic dbg_values as well.
1432       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1433       continue;
1434     }
1435     // We failed to create a SDDbgOperand for V.
1436     return false;
1437   }
1438 
1439   // We have created a SDDbgOperand for each Value in Values.
1440   // Should use Order instead of SDNodeOrder?
1441   assert(!LocationOps.empty());
1442   SDDbgValue *SDV =
1443       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1444                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1445   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1446   return true;
1447 }
1448 
1449 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1450   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1451   for (auto &Pair : DanglingDebugInfoMap)
1452     for (auto &DDI : Pair.second)
1453       salvageUnresolvedDbgValue(DDI);
1454   clearDanglingDebugInfo();
1455 }
1456 
1457 /// getCopyFromRegs - If there was virtual register allocated for the value V
1458 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1459 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1460   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1461   SDValue Result;
1462 
1463   if (It != FuncInfo.ValueMap.end()) {
1464     Register InReg = It->second;
1465 
1466     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1467                      DAG.getDataLayout(), InReg, Ty,
1468                      None); // This is not an ABI copy.
1469     SDValue Chain = DAG.getEntryNode();
1470     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1471                                  V);
1472     resolveDanglingDebugInfo(V, Result);
1473   }
1474 
1475   return Result;
1476 }
1477 
1478 /// getValue - Return an SDValue for the given Value.
1479 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1480   // If we already have an SDValue for this value, use it. It's important
1481   // to do this first, so that we don't create a CopyFromReg if we already
1482   // have a regular SDValue.
1483   SDValue &N = NodeMap[V];
1484   if (N.getNode()) return N;
1485 
1486   // If there's a virtual register allocated and initialized for this
1487   // value, use it.
1488   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1489     return copyFromReg;
1490 
1491   // Otherwise create a new SDValue and remember it.
1492   SDValue Val = getValueImpl(V);
1493   NodeMap[V] = Val;
1494   resolveDanglingDebugInfo(V, Val);
1495   return Val;
1496 }
1497 
1498 /// getNonRegisterValue - Return an SDValue for the given Value, but
1499 /// don't look in FuncInfo.ValueMap for a virtual register.
1500 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1501   // If we already have an SDValue for this value, use it.
1502   SDValue &N = NodeMap[V];
1503   if (N.getNode()) {
1504     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1505       // Remove the debug location from the node as the node is about to be used
1506       // in a location which may differ from the original debug location.  This
1507       // is relevant to Constant and ConstantFP nodes because they can appear
1508       // as constant expressions inside PHI nodes.
1509       N->setDebugLoc(DebugLoc());
1510     }
1511     return N;
1512   }
1513 
1514   // Otherwise create a new SDValue and remember it.
1515   SDValue Val = getValueImpl(V);
1516   NodeMap[V] = Val;
1517   resolveDanglingDebugInfo(V, Val);
1518   return Val;
1519 }
1520 
1521 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1522 /// Create an SDValue for the given value.
1523 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1525 
1526   if (const Constant *C = dyn_cast<Constant>(V)) {
1527     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1528 
1529     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1530       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1531 
1532     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1533       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1534 
1535     if (isa<ConstantPointerNull>(C)) {
1536       unsigned AS = V->getType()->getPointerAddressSpace();
1537       return DAG.getConstant(0, getCurSDLoc(),
1538                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1539     }
1540 
1541     if (match(C, m_VScale(DAG.getDataLayout())))
1542       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1543 
1544     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1545       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1546 
1547     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1548       return DAG.getUNDEF(VT);
1549 
1550     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1551       visit(CE->getOpcode(), *CE);
1552       SDValue N1 = NodeMap[V];
1553       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1554       return N1;
1555     }
1556 
1557     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1558       SmallVector<SDValue, 4> Constants;
1559       for (const Use &U : C->operands()) {
1560         SDNode *Val = getValue(U).getNode();
1561         // If the operand is an empty aggregate, there are no values.
1562         if (!Val) continue;
1563         // Add each leaf value from the operand to the Constants list
1564         // to form a flattened list of all the values.
1565         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1566           Constants.push_back(SDValue(Val, i));
1567       }
1568 
1569       return DAG.getMergeValues(Constants, getCurSDLoc());
1570     }
1571 
1572     if (const ConstantDataSequential *CDS =
1573           dyn_cast<ConstantDataSequential>(C)) {
1574       SmallVector<SDValue, 4> Ops;
1575       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1576         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1577         // Add each leaf value from the operand to the Constants list
1578         // to form a flattened list of all the values.
1579         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1580           Ops.push_back(SDValue(Val, i));
1581       }
1582 
1583       if (isa<ArrayType>(CDS->getType()))
1584         return DAG.getMergeValues(Ops, getCurSDLoc());
1585       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1586     }
1587 
1588     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1589       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1590              "Unknown struct or array constant!");
1591 
1592       SmallVector<EVT, 4> ValueVTs;
1593       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1594       unsigned NumElts = ValueVTs.size();
1595       if (NumElts == 0)
1596         return SDValue(); // empty struct
1597       SmallVector<SDValue, 4> Constants(NumElts);
1598       for (unsigned i = 0; i != NumElts; ++i) {
1599         EVT EltVT = ValueVTs[i];
1600         if (isa<UndefValue>(C))
1601           Constants[i] = DAG.getUNDEF(EltVT);
1602         else if (EltVT.isFloatingPoint())
1603           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1604         else
1605           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1606       }
1607 
1608       return DAG.getMergeValues(Constants, getCurSDLoc());
1609     }
1610 
1611     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1612       return DAG.getBlockAddress(BA, VT);
1613 
1614     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1615       return getValue(Equiv->getGlobalValue());
1616 
1617     VectorType *VecTy = cast<VectorType>(V->getType());
1618 
1619     // Now that we know the number and type of the elements, get that number of
1620     // elements into the Ops array based on what kind of constant it is.
1621     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1622       SmallVector<SDValue, 16> Ops;
1623       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1624       for (unsigned i = 0; i != NumElements; ++i)
1625         Ops.push_back(getValue(CV->getOperand(i)));
1626 
1627       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1628     } else if (isa<ConstantAggregateZero>(C)) {
1629       EVT EltVT =
1630           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1631 
1632       SDValue Op;
1633       if (EltVT.isFloatingPoint())
1634         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1635       else
1636         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1637 
1638       if (isa<ScalableVectorType>(VecTy))
1639         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1640       else {
1641         SmallVector<SDValue, 16> Ops;
1642         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1643         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1644       }
1645     }
1646     llvm_unreachable("Unknown vector constant");
1647   }
1648 
1649   // If this is a static alloca, generate it as the frameindex instead of
1650   // computation.
1651   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1652     DenseMap<const AllocaInst*, int>::iterator SI =
1653       FuncInfo.StaticAllocaMap.find(AI);
1654     if (SI != FuncInfo.StaticAllocaMap.end())
1655       return DAG.getFrameIndex(SI->second,
1656                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1657   }
1658 
1659   // If this is an instruction which fast-isel has deferred, select it now.
1660   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1661     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1662 
1663     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1664                      Inst->getType(), None);
1665     SDValue Chain = DAG.getEntryNode();
1666     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1667   }
1668 
1669   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1670     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1671   }
1672   llvm_unreachable("Can't get register for value!");
1673 }
1674 
1675 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1676   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1677   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1678   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1679   bool IsSEH = isAsynchronousEHPersonality(Pers);
1680   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1681   if (!IsSEH)
1682     CatchPadMBB->setIsEHScopeEntry();
1683   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1684   if (IsMSVCCXX || IsCoreCLR)
1685     CatchPadMBB->setIsEHFuncletEntry();
1686 }
1687 
1688 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1689   // Update machine-CFG edge.
1690   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1691   FuncInfo.MBB->addSuccessor(TargetMBB);
1692   TargetMBB->setIsEHCatchretTarget(true);
1693   DAG.getMachineFunction().setHasEHCatchret(true);
1694 
1695   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1696   bool IsSEH = isAsynchronousEHPersonality(Pers);
1697   if (IsSEH) {
1698     // If this is not a fall-through branch or optimizations are switched off,
1699     // emit the branch.
1700     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1701         TM.getOptLevel() == CodeGenOpt::None)
1702       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1703                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1704     return;
1705   }
1706 
1707   // Figure out the funclet membership for the catchret's successor.
1708   // This will be used by the FuncletLayout pass to determine how to order the
1709   // BB's.
1710   // A 'catchret' returns to the outer scope's color.
1711   Value *ParentPad = I.getCatchSwitchParentPad();
1712   const BasicBlock *SuccessorColor;
1713   if (isa<ConstantTokenNone>(ParentPad))
1714     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1715   else
1716     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1717   assert(SuccessorColor && "No parent funclet for catchret!");
1718   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1719   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1720 
1721   // Create the terminator node.
1722   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1723                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1724                             DAG.getBasicBlock(SuccessorColorMBB));
1725   DAG.setRoot(Ret);
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1729   // Don't emit any special code for the cleanuppad instruction. It just marks
1730   // the start of an EH scope/funclet.
1731   FuncInfo.MBB->setIsEHScopeEntry();
1732   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1733   if (Pers != EHPersonality::Wasm_CXX) {
1734     FuncInfo.MBB->setIsEHFuncletEntry();
1735     FuncInfo.MBB->setIsCleanupFuncletEntry();
1736   }
1737 }
1738 
1739 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1740 // not match, it is OK to add only the first unwind destination catchpad to the
1741 // successors, because there will be at least one invoke instruction within the
1742 // catch scope that points to the next unwind destination, if one exists, so
1743 // CFGSort cannot mess up with BB sorting order.
1744 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1745 // call within them, and catchpads only consisting of 'catch (...)' have a
1746 // '__cxa_end_catch' call within them, both of which generate invokes in case
1747 // the next unwind destination exists, i.e., the next unwind destination is not
1748 // the caller.)
1749 //
1750 // Having at most one EH pad successor is also simpler and helps later
1751 // transformations.
1752 //
1753 // For example,
1754 // current:
1755 //   invoke void @foo to ... unwind label %catch.dispatch
1756 // catch.dispatch:
1757 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1758 // catch.start:
1759 //   ...
1760 //   ... in this BB or some other child BB dominated by this BB there will be an
1761 //   invoke that points to 'next' BB as an unwind destination
1762 //
1763 // next: ; We don't need to add this to 'current' BB's successor
1764 //   ...
1765 static void findWasmUnwindDestinations(
1766     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1767     BranchProbability Prob,
1768     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1769         &UnwindDests) {
1770   while (EHPadBB) {
1771     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1772     if (isa<CleanupPadInst>(Pad)) {
1773       // Stop on cleanup pads.
1774       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1775       UnwindDests.back().first->setIsEHScopeEntry();
1776       break;
1777     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1778       // Add the catchpad handlers to the possible destinations. We don't
1779       // continue to the unwind destination of the catchswitch for wasm.
1780       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1781         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1782         UnwindDests.back().first->setIsEHScopeEntry();
1783       }
1784       break;
1785     } else {
1786       continue;
1787     }
1788   }
1789 }
1790 
1791 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1792 /// many places it could ultimately go. In the IR, we have a single unwind
1793 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1794 /// This function skips over imaginary basic blocks that hold catchswitch
1795 /// instructions, and finds all the "real" machine
1796 /// basic block destinations. As those destinations may not be successors of
1797 /// EHPadBB, here we also calculate the edge probability to those destinations.
1798 /// The passed-in Prob is the edge probability to EHPadBB.
1799 static void findUnwindDestinations(
1800     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1801     BranchProbability Prob,
1802     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1803         &UnwindDests) {
1804   EHPersonality Personality =
1805     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1806   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1807   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1808   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1809   bool IsSEH = isAsynchronousEHPersonality(Personality);
1810 
1811   if (IsWasmCXX) {
1812     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1813     assert(UnwindDests.size() <= 1 &&
1814            "There should be at most one unwind destination for wasm");
1815     return;
1816   }
1817 
1818   while (EHPadBB) {
1819     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1820     BasicBlock *NewEHPadBB = nullptr;
1821     if (isa<LandingPadInst>(Pad)) {
1822       // Stop on landingpads. They are not funclets.
1823       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1824       break;
1825     } else if (isa<CleanupPadInst>(Pad)) {
1826       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1827       // personalities.
1828       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1829       UnwindDests.back().first->setIsEHScopeEntry();
1830       UnwindDests.back().first->setIsEHFuncletEntry();
1831       break;
1832     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1833       // Add the catchpad handlers to the possible destinations.
1834       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1835         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1836         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1837         if (IsMSVCCXX || IsCoreCLR)
1838           UnwindDests.back().first->setIsEHFuncletEntry();
1839         if (!IsSEH)
1840           UnwindDests.back().first->setIsEHScopeEntry();
1841       }
1842       NewEHPadBB = CatchSwitch->getUnwindDest();
1843     } else {
1844       continue;
1845     }
1846 
1847     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1848     if (BPI && NewEHPadBB)
1849       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1850     EHPadBB = NewEHPadBB;
1851   }
1852 }
1853 
1854 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1855   // Update successor info.
1856   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1857   auto UnwindDest = I.getUnwindDest();
1858   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1859   BranchProbability UnwindDestProb =
1860       (BPI && UnwindDest)
1861           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1862           : BranchProbability::getZero();
1863   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1864   for (auto &UnwindDest : UnwindDests) {
1865     UnwindDest.first->setIsEHPad();
1866     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1867   }
1868   FuncInfo.MBB->normalizeSuccProbs();
1869 
1870   // Create the terminator node.
1871   SDValue Ret =
1872       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1873   DAG.setRoot(Ret);
1874 }
1875 
1876 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1877   report_fatal_error("visitCatchSwitch not yet implemented!");
1878 }
1879 
1880 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1881   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1882   auto &DL = DAG.getDataLayout();
1883   SDValue Chain = getControlRoot();
1884   SmallVector<ISD::OutputArg, 8> Outs;
1885   SmallVector<SDValue, 8> OutVals;
1886 
1887   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1888   // lower
1889   //
1890   //   %val = call <ty> @llvm.experimental.deoptimize()
1891   //   ret <ty> %val
1892   //
1893   // differently.
1894   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1895     LowerDeoptimizingReturn();
1896     return;
1897   }
1898 
1899   if (!FuncInfo.CanLowerReturn) {
1900     unsigned DemoteReg = FuncInfo.DemoteRegister;
1901     const Function *F = I.getParent()->getParent();
1902 
1903     // Emit a store of the return value through the virtual register.
1904     // Leave Outs empty so that LowerReturn won't try to load return
1905     // registers the usual way.
1906     SmallVector<EVT, 1> PtrValueVTs;
1907     ComputeValueVTs(TLI, DL,
1908                     F->getReturnType()->getPointerTo(
1909                         DAG.getDataLayout().getAllocaAddrSpace()),
1910                     PtrValueVTs);
1911 
1912     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1913                                         DemoteReg, PtrValueVTs[0]);
1914     SDValue RetOp = getValue(I.getOperand(0));
1915 
1916     SmallVector<EVT, 4> ValueVTs, MemVTs;
1917     SmallVector<uint64_t, 4> Offsets;
1918     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1919                     &Offsets);
1920     unsigned NumValues = ValueVTs.size();
1921 
1922     SmallVector<SDValue, 4> Chains(NumValues);
1923     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1924     for (unsigned i = 0; i != NumValues; ++i) {
1925       // An aggregate return value cannot wrap around the address space, so
1926       // offsets to its parts don't wrap either.
1927       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1928                                            TypeSize::Fixed(Offsets[i]));
1929 
1930       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1931       if (MemVTs[i] != ValueVTs[i])
1932         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1933       Chains[i] = DAG.getStore(
1934           Chain, getCurSDLoc(), Val,
1935           // FIXME: better loc info would be nice.
1936           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1937           commonAlignment(BaseAlign, Offsets[i]));
1938     }
1939 
1940     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1941                         MVT::Other, Chains);
1942   } else if (I.getNumOperands() != 0) {
1943     SmallVector<EVT, 4> ValueVTs;
1944     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1945     unsigned NumValues = ValueVTs.size();
1946     if (NumValues) {
1947       SDValue RetOp = getValue(I.getOperand(0));
1948 
1949       const Function *F = I.getParent()->getParent();
1950 
1951       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1952           I.getOperand(0)->getType(), F->getCallingConv(),
1953           /*IsVarArg*/ false, DL);
1954 
1955       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1956       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1957                                           Attribute::SExt))
1958         ExtendKind = ISD::SIGN_EXTEND;
1959       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1960                                                Attribute::ZExt))
1961         ExtendKind = ISD::ZERO_EXTEND;
1962 
1963       LLVMContext &Context = F->getContext();
1964       bool RetInReg = F->getAttributes().hasAttribute(
1965           AttributeList::ReturnIndex, Attribute::InReg);
1966 
1967       for (unsigned j = 0; j != NumValues; ++j) {
1968         EVT VT = ValueVTs[j];
1969 
1970         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1971           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1972 
1973         CallingConv::ID CC = F->getCallingConv();
1974 
1975         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1976         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1977         SmallVector<SDValue, 4> Parts(NumParts);
1978         getCopyToParts(DAG, getCurSDLoc(),
1979                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1980                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1981 
1982         // 'inreg' on function refers to return value
1983         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1984         if (RetInReg)
1985           Flags.setInReg();
1986 
1987         if (I.getOperand(0)->getType()->isPointerTy()) {
1988           Flags.setPointer();
1989           Flags.setPointerAddrSpace(
1990               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1991         }
1992 
1993         if (NeedsRegBlock) {
1994           Flags.setInConsecutiveRegs();
1995           if (j == NumValues - 1)
1996             Flags.setInConsecutiveRegsLast();
1997         }
1998 
1999         // Propagate extension type if any
2000         if (ExtendKind == ISD::SIGN_EXTEND)
2001           Flags.setSExt();
2002         else if (ExtendKind == ISD::ZERO_EXTEND)
2003           Flags.setZExt();
2004 
2005         for (unsigned i = 0; i < NumParts; ++i) {
2006           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
2007                                         VT, /*isfixed=*/true, 0, 0));
2008           OutVals.push_back(Parts[i]);
2009         }
2010       }
2011     }
2012   }
2013 
2014   // Push in swifterror virtual register as the last element of Outs. This makes
2015   // sure swifterror virtual register will be returned in the swifterror
2016   // physical register.
2017   const Function *F = I.getParent()->getParent();
2018   if (TLI.supportSwiftError() &&
2019       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2020     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2021     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2022     Flags.setSwiftError();
2023     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
2024                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
2025                                   true /*isfixed*/, 1 /*origidx*/,
2026                                   0 /*partOffs*/));
2027     // Create SDNode for the swifterror virtual register.
2028     OutVals.push_back(
2029         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2030                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2031                         EVT(TLI.getPointerTy(DL))));
2032   }
2033 
2034   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2035   CallingConv::ID CallConv =
2036     DAG.getMachineFunction().getFunction().getCallingConv();
2037   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2038       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2039 
2040   // Verify that the target's LowerReturn behaved as expected.
2041   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2042          "LowerReturn didn't return a valid chain!");
2043 
2044   // Update the DAG with the new chain value resulting from return lowering.
2045   DAG.setRoot(Chain);
2046 }
2047 
2048 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2049 /// created for it, emit nodes to copy the value into the virtual
2050 /// registers.
2051 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2052   // Skip empty types
2053   if (V->getType()->isEmptyTy())
2054     return;
2055 
2056   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2057   if (VMI != FuncInfo.ValueMap.end()) {
2058     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2059     CopyValueToVirtualRegister(V, VMI->second);
2060   }
2061 }
2062 
2063 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2064 /// the current basic block, add it to ValueMap now so that we'll get a
2065 /// CopyTo/FromReg.
2066 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2067   // No need to export constants.
2068   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2069 
2070   // Already exported?
2071   if (FuncInfo.isExportedInst(V)) return;
2072 
2073   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2074   CopyValueToVirtualRegister(V, Reg);
2075 }
2076 
2077 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2078                                                      const BasicBlock *FromBB) {
2079   // The operands of the setcc have to be in this block.  We don't know
2080   // how to export them from some other block.
2081   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2082     // Can export from current BB.
2083     if (VI->getParent() == FromBB)
2084       return true;
2085 
2086     // Is already exported, noop.
2087     return FuncInfo.isExportedInst(V);
2088   }
2089 
2090   // If this is an argument, we can export it if the BB is the entry block or
2091   // if it is already exported.
2092   if (isa<Argument>(V)) {
2093     if (FromBB->isEntryBlock())
2094       return true;
2095 
2096     // Otherwise, can only export this if it is already exported.
2097     return FuncInfo.isExportedInst(V);
2098   }
2099 
2100   // Otherwise, constants can always be exported.
2101   return true;
2102 }
2103 
2104 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2105 BranchProbability
2106 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2107                                         const MachineBasicBlock *Dst) const {
2108   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2109   const BasicBlock *SrcBB = Src->getBasicBlock();
2110   const BasicBlock *DstBB = Dst->getBasicBlock();
2111   if (!BPI) {
2112     // If BPI is not available, set the default probability as 1 / N, where N is
2113     // the number of successors.
2114     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2115     return BranchProbability(1, SuccSize);
2116   }
2117   return BPI->getEdgeProbability(SrcBB, DstBB);
2118 }
2119 
2120 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2121                                                MachineBasicBlock *Dst,
2122                                                BranchProbability Prob) {
2123   if (!FuncInfo.BPI)
2124     Src->addSuccessorWithoutProb(Dst);
2125   else {
2126     if (Prob.isUnknown())
2127       Prob = getEdgeProbability(Src, Dst);
2128     Src->addSuccessor(Dst, Prob);
2129   }
2130 }
2131 
2132 static bool InBlock(const Value *V, const BasicBlock *BB) {
2133   if (const Instruction *I = dyn_cast<Instruction>(V))
2134     return I->getParent() == BB;
2135   return true;
2136 }
2137 
2138 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2139 /// This function emits a branch and is used at the leaves of an OR or an
2140 /// AND operator tree.
2141 void
2142 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2143                                                   MachineBasicBlock *TBB,
2144                                                   MachineBasicBlock *FBB,
2145                                                   MachineBasicBlock *CurBB,
2146                                                   MachineBasicBlock *SwitchBB,
2147                                                   BranchProbability TProb,
2148                                                   BranchProbability FProb,
2149                                                   bool InvertCond) {
2150   const BasicBlock *BB = CurBB->getBasicBlock();
2151 
2152   // If the leaf of the tree is a comparison, merge the condition into
2153   // the caseblock.
2154   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2155     // The operands of the cmp have to be in this block.  We don't know
2156     // how to export them from some other block.  If this is the first block
2157     // of the sequence, no exporting is needed.
2158     if (CurBB == SwitchBB ||
2159         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2160          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2161       ISD::CondCode Condition;
2162       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2163         ICmpInst::Predicate Pred =
2164             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2165         Condition = getICmpCondCode(Pred);
2166       } else {
2167         const FCmpInst *FC = cast<FCmpInst>(Cond);
2168         FCmpInst::Predicate Pred =
2169             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2170         Condition = getFCmpCondCode(Pred);
2171         if (TM.Options.NoNaNsFPMath)
2172           Condition = getFCmpCodeWithoutNaN(Condition);
2173       }
2174 
2175       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2176                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2177       SL->SwitchCases.push_back(CB);
2178       return;
2179     }
2180   }
2181 
2182   // Create a CaseBlock record representing this branch.
2183   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2184   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2185                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2186   SL->SwitchCases.push_back(CB);
2187 }
2188 
2189 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2190                                                MachineBasicBlock *TBB,
2191                                                MachineBasicBlock *FBB,
2192                                                MachineBasicBlock *CurBB,
2193                                                MachineBasicBlock *SwitchBB,
2194                                                Instruction::BinaryOps Opc,
2195                                                BranchProbability TProb,
2196                                                BranchProbability FProb,
2197                                                bool InvertCond) {
2198   // Skip over not part of the tree and remember to invert op and operands at
2199   // next level.
2200   Value *NotCond;
2201   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2202       InBlock(NotCond, CurBB->getBasicBlock())) {
2203     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2204                          !InvertCond);
2205     return;
2206   }
2207 
2208   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2209   const Value *BOpOp0, *BOpOp1;
2210   // Compute the effective opcode for Cond, taking into account whether it needs
2211   // to be inverted, e.g.
2212   //   and (not (or A, B)), C
2213   // gets lowered as
2214   //   and (and (not A, not B), C)
2215   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2216   if (BOp) {
2217     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2218                ? Instruction::And
2219                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2220                       ? Instruction::Or
2221                       : (Instruction::BinaryOps)0);
2222     if (InvertCond) {
2223       if (BOpc == Instruction::And)
2224         BOpc = Instruction::Or;
2225       else if (BOpc == Instruction::Or)
2226         BOpc = Instruction::And;
2227     }
2228   }
2229 
2230   // If this node is not part of the or/and tree, emit it as a branch.
2231   // Note that all nodes in the tree should have same opcode.
2232   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2233   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2234       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2235       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2236     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2237                                  TProb, FProb, InvertCond);
2238     return;
2239   }
2240 
2241   //  Create TmpBB after CurBB.
2242   MachineFunction::iterator BBI(CurBB);
2243   MachineFunction &MF = DAG.getMachineFunction();
2244   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2245   CurBB->getParent()->insert(++BBI, TmpBB);
2246 
2247   if (Opc == Instruction::Or) {
2248     // Codegen X | Y as:
2249     // BB1:
2250     //   jmp_if_X TBB
2251     //   jmp TmpBB
2252     // TmpBB:
2253     //   jmp_if_Y TBB
2254     //   jmp FBB
2255     //
2256 
2257     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2258     // The requirement is that
2259     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2260     //     = TrueProb for original BB.
2261     // Assuming the original probabilities are A and B, one choice is to set
2262     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2263     // A/(1+B) and 2B/(1+B). This choice assumes that
2264     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2265     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2266     // TmpBB, but the math is more complicated.
2267 
2268     auto NewTrueProb = TProb / 2;
2269     auto NewFalseProb = TProb / 2 + FProb;
2270     // Emit the LHS condition.
2271     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2272                          NewFalseProb, InvertCond);
2273 
2274     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2275     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2276     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2277     // Emit the RHS condition into TmpBB.
2278     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2279                          Probs[1], InvertCond);
2280   } else {
2281     assert(Opc == Instruction::And && "Unknown merge op!");
2282     // Codegen X & Y as:
2283     // BB1:
2284     //   jmp_if_X TmpBB
2285     //   jmp FBB
2286     // TmpBB:
2287     //   jmp_if_Y TBB
2288     //   jmp FBB
2289     //
2290     //  This requires creation of TmpBB after CurBB.
2291 
2292     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2293     // The requirement is that
2294     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2295     //     = FalseProb for original BB.
2296     // Assuming the original probabilities are A and B, one choice is to set
2297     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2298     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2299     // TrueProb for BB1 * FalseProb for TmpBB.
2300 
2301     auto NewTrueProb = TProb + FProb / 2;
2302     auto NewFalseProb = FProb / 2;
2303     // Emit the LHS condition.
2304     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2305                          NewFalseProb, InvertCond);
2306 
2307     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2308     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2309     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2310     // Emit the RHS condition into TmpBB.
2311     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2312                          Probs[1], InvertCond);
2313   }
2314 }
2315 
2316 /// If the set of cases should be emitted as a series of branches, return true.
2317 /// If we should emit this as a bunch of and/or'd together conditions, return
2318 /// false.
2319 bool
2320 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2321   if (Cases.size() != 2) return true;
2322 
2323   // If this is two comparisons of the same values or'd or and'd together, they
2324   // will get folded into a single comparison, so don't emit two blocks.
2325   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2326        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2327       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2328        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2329     return false;
2330   }
2331 
2332   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2333   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2334   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2335       Cases[0].CC == Cases[1].CC &&
2336       isa<Constant>(Cases[0].CmpRHS) &&
2337       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2338     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2339       return false;
2340     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2341       return false;
2342   }
2343 
2344   return true;
2345 }
2346 
2347 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2348   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2349 
2350   // Update machine-CFG edges.
2351   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2352 
2353   if (I.isUnconditional()) {
2354     // Update machine-CFG edges.
2355     BrMBB->addSuccessor(Succ0MBB);
2356 
2357     // If this is not a fall-through branch or optimizations are switched off,
2358     // emit the branch.
2359     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2360       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2361                               MVT::Other, getControlRoot(),
2362                               DAG.getBasicBlock(Succ0MBB)));
2363 
2364     return;
2365   }
2366 
2367   // If this condition is one of the special cases we handle, do special stuff
2368   // now.
2369   const Value *CondVal = I.getCondition();
2370   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2371 
2372   // If this is a series of conditions that are or'd or and'd together, emit
2373   // this as a sequence of branches instead of setcc's with and/or operations.
2374   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2375   // unpredictable branches, and vector extracts because those jumps are likely
2376   // expensive for any target), this should improve performance.
2377   // For example, instead of something like:
2378   //     cmp A, B
2379   //     C = seteq
2380   //     cmp D, E
2381   //     F = setle
2382   //     or C, F
2383   //     jnz foo
2384   // Emit:
2385   //     cmp A, B
2386   //     je foo
2387   //     cmp D, E
2388   //     jle foo
2389   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2390   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2391       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2392     Value *Vec;
2393     const Value *BOp0, *BOp1;
2394     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2395     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2396       Opcode = Instruction::And;
2397     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2398       Opcode = Instruction::Or;
2399 
2400     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2401                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2402       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2403                            getEdgeProbability(BrMBB, Succ0MBB),
2404                            getEdgeProbability(BrMBB, Succ1MBB),
2405                            /*InvertCond=*/false);
2406       // If the compares in later blocks need to use values not currently
2407       // exported from this block, export them now.  This block should always
2408       // be the first entry.
2409       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2410 
2411       // Allow some cases to be rejected.
2412       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2413         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2414           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2415           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2416         }
2417 
2418         // Emit the branch for this block.
2419         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2420         SL->SwitchCases.erase(SL->SwitchCases.begin());
2421         return;
2422       }
2423 
2424       // Okay, we decided not to do this, remove any inserted MBB's and clear
2425       // SwitchCases.
2426       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2427         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2428 
2429       SL->SwitchCases.clear();
2430     }
2431   }
2432 
2433   // Create a CaseBlock record representing this branch.
2434   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2435                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2436 
2437   // Use visitSwitchCase to actually insert the fast branch sequence for this
2438   // cond branch.
2439   visitSwitchCase(CB, BrMBB);
2440 }
2441 
2442 /// visitSwitchCase - Emits the necessary code to represent a single node in
2443 /// the binary search tree resulting from lowering a switch instruction.
2444 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2445                                           MachineBasicBlock *SwitchBB) {
2446   SDValue Cond;
2447   SDValue CondLHS = getValue(CB.CmpLHS);
2448   SDLoc dl = CB.DL;
2449 
2450   if (CB.CC == ISD::SETTRUE) {
2451     // Branch or fall through to TrueBB.
2452     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2453     SwitchBB->normalizeSuccProbs();
2454     if (CB.TrueBB != NextBlock(SwitchBB)) {
2455       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2456                               DAG.getBasicBlock(CB.TrueBB)));
2457     }
2458     return;
2459   }
2460 
2461   auto &TLI = DAG.getTargetLoweringInfo();
2462   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2463 
2464   // Build the setcc now.
2465   if (!CB.CmpMHS) {
2466     // Fold "(X == true)" to X and "(X == false)" to !X to
2467     // handle common cases produced by branch lowering.
2468     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2469         CB.CC == ISD::SETEQ)
2470       Cond = CondLHS;
2471     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2472              CB.CC == ISD::SETEQ) {
2473       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2474       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2475     } else {
2476       SDValue CondRHS = getValue(CB.CmpRHS);
2477 
2478       // If a pointer's DAG type is larger than its memory type then the DAG
2479       // values are zero-extended. This breaks signed comparisons so truncate
2480       // back to the underlying type before doing the compare.
2481       if (CondLHS.getValueType() != MemVT) {
2482         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2483         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2484       }
2485       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2486     }
2487   } else {
2488     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2489 
2490     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2491     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2492 
2493     SDValue CmpOp = getValue(CB.CmpMHS);
2494     EVT VT = CmpOp.getValueType();
2495 
2496     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2497       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2498                           ISD::SETLE);
2499     } else {
2500       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2501                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2502       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2503                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2504     }
2505   }
2506 
2507   // Update successor info
2508   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2509   // TrueBB and FalseBB are always different unless the incoming IR is
2510   // degenerate. This only happens when running llc on weird IR.
2511   if (CB.TrueBB != CB.FalseBB)
2512     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2513   SwitchBB->normalizeSuccProbs();
2514 
2515   // If the lhs block is the next block, invert the condition so that we can
2516   // fall through to the lhs instead of the rhs block.
2517   if (CB.TrueBB == NextBlock(SwitchBB)) {
2518     std::swap(CB.TrueBB, CB.FalseBB);
2519     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2520     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2521   }
2522 
2523   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2524                                MVT::Other, getControlRoot(), Cond,
2525                                DAG.getBasicBlock(CB.TrueBB));
2526 
2527   // Insert the false branch. Do this even if it's a fall through branch,
2528   // this makes it easier to do DAG optimizations which require inverting
2529   // the branch condition.
2530   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2531                        DAG.getBasicBlock(CB.FalseBB));
2532 
2533   DAG.setRoot(BrCond);
2534 }
2535 
2536 /// visitJumpTable - Emit JumpTable node in the current MBB
2537 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2538   // Emit the code for the jump table
2539   assert(JT.Reg != -1U && "Should lower JT Header first!");
2540   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2541   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2542                                      JT.Reg, PTy);
2543   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2544   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2545                                     MVT::Other, Index.getValue(1),
2546                                     Table, Index);
2547   DAG.setRoot(BrJumpTable);
2548 }
2549 
2550 /// visitJumpTableHeader - This function emits necessary code to produce index
2551 /// in the JumpTable from switch case.
2552 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2553                                                JumpTableHeader &JTH,
2554                                                MachineBasicBlock *SwitchBB) {
2555   SDLoc dl = getCurSDLoc();
2556 
2557   // Subtract the lowest switch case value from the value being switched on.
2558   SDValue SwitchOp = getValue(JTH.SValue);
2559   EVT VT = SwitchOp.getValueType();
2560   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2561                             DAG.getConstant(JTH.First, dl, VT));
2562 
2563   // The SDNode we just created, which holds the value being switched on minus
2564   // the smallest case value, needs to be copied to a virtual register so it
2565   // can be used as an index into the jump table in a subsequent basic block.
2566   // This value may be smaller or larger than the target's pointer type, and
2567   // therefore require extension or truncating.
2568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2569   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2570 
2571   unsigned JumpTableReg =
2572       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2573   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2574                                     JumpTableReg, SwitchOp);
2575   JT.Reg = JumpTableReg;
2576 
2577   if (!JTH.OmitRangeCheck) {
2578     // Emit the range check for the jump table, and branch to the default block
2579     // for the switch statement if the value being switched on exceeds the
2580     // largest case in the switch.
2581     SDValue CMP = DAG.getSetCC(
2582         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2583                                    Sub.getValueType()),
2584         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2585 
2586     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2587                                  MVT::Other, CopyTo, CMP,
2588                                  DAG.getBasicBlock(JT.Default));
2589 
2590     // Avoid emitting unnecessary branches to the next block.
2591     if (JT.MBB != NextBlock(SwitchBB))
2592       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2593                            DAG.getBasicBlock(JT.MBB));
2594 
2595     DAG.setRoot(BrCond);
2596   } else {
2597     // Avoid emitting unnecessary branches to the next block.
2598     if (JT.MBB != NextBlock(SwitchBB))
2599       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2600                               DAG.getBasicBlock(JT.MBB)));
2601     else
2602       DAG.setRoot(CopyTo);
2603   }
2604 }
2605 
2606 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2607 /// variable if there exists one.
2608 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2609                                  SDValue &Chain) {
2610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2611   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2612   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2613   MachineFunction &MF = DAG.getMachineFunction();
2614   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2615   MachineSDNode *Node =
2616       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2617   if (Global) {
2618     MachinePointerInfo MPInfo(Global);
2619     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2620                  MachineMemOperand::MODereferenceable;
2621     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2622         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2623     DAG.setNodeMemRefs(Node, {MemRef});
2624   }
2625   if (PtrTy != PtrMemTy)
2626     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2627   return SDValue(Node, 0);
2628 }
2629 
2630 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2631 /// tail spliced into a stack protector check success bb.
2632 ///
2633 /// For a high level explanation of how this fits into the stack protector
2634 /// generation see the comment on the declaration of class
2635 /// StackProtectorDescriptor.
2636 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2637                                                   MachineBasicBlock *ParentBB) {
2638 
2639   // First create the loads to the guard/stack slot for the comparison.
2640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2641   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2642   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2643 
2644   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2645   int FI = MFI.getStackProtectorIndex();
2646 
2647   SDValue Guard;
2648   SDLoc dl = getCurSDLoc();
2649   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2650   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2651   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2652 
2653   // Generate code to load the content of the guard slot.
2654   SDValue GuardVal = DAG.getLoad(
2655       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2656       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2657       MachineMemOperand::MOVolatile);
2658 
2659   if (TLI.useStackGuardXorFP())
2660     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2661 
2662   // Retrieve guard check function, nullptr if instrumentation is inlined.
2663   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2664     // The target provides a guard check function to validate the guard value.
2665     // Generate a call to that function with the content of the guard slot as
2666     // argument.
2667     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2668     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2669 
2670     TargetLowering::ArgListTy Args;
2671     TargetLowering::ArgListEntry Entry;
2672     Entry.Node = GuardVal;
2673     Entry.Ty = FnTy->getParamType(0);
2674     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2675       Entry.IsInReg = true;
2676     Args.push_back(Entry);
2677 
2678     TargetLowering::CallLoweringInfo CLI(DAG);
2679     CLI.setDebugLoc(getCurSDLoc())
2680         .setChain(DAG.getEntryNode())
2681         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2682                    getValue(GuardCheckFn), std::move(Args));
2683 
2684     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2685     DAG.setRoot(Result.second);
2686     return;
2687   }
2688 
2689   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2690   // Otherwise, emit a volatile load to retrieve the stack guard value.
2691   SDValue Chain = DAG.getEntryNode();
2692   if (TLI.useLoadStackGuardNode()) {
2693     Guard = getLoadStackGuard(DAG, dl, Chain);
2694   } else {
2695     const Value *IRGuard = TLI.getSDagStackGuard(M);
2696     SDValue GuardPtr = getValue(IRGuard);
2697 
2698     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2699                         MachinePointerInfo(IRGuard, 0), Align,
2700                         MachineMemOperand::MOVolatile);
2701   }
2702 
2703   // Perform the comparison via a getsetcc.
2704   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2705                                                         *DAG.getContext(),
2706                                                         Guard.getValueType()),
2707                              Guard, GuardVal, ISD::SETNE);
2708 
2709   // If the guard/stackslot do not equal, branch to failure MBB.
2710   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2711                                MVT::Other, GuardVal.getOperand(0),
2712                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2713   // Otherwise branch to success MBB.
2714   SDValue Br = DAG.getNode(ISD::BR, dl,
2715                            MVT::Other, BrCond,
2716                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2717 
2718   DAG.setRoot(Br);
2719 }
2720 
2721 /// Codegen the failure basic block for a stack protector check.
2722 ///
2723 /// A failure stack protector machine basic block consists simply of a call to
2724 /// __stack_chk_fail().
2725 ///
2726 /// For a high level explanation of how this fits into the stack protector
2727 /// generation see the comment on the declaration of class
2728 /// StackProtectorDescriptor.
2729 void
2730 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2731   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2732   TargetLowering::MakeLibCallOptions CallOptions;
2733   CallOptions.setDiscardResult(true);
2734   SDValue Chain =
2735       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2736                       None, CallOptions, getCurSDLoc()).second;
2737   // On PS4, the "return address" must still be within the calling function,
2738   // even if it's at the very end, so emit an explicit TRAP here.
2739   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2740   if (TM.getTargetTriple().isPS4CPU())
2741     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2742   // WebAssembly needs an unreachable instruction after a non-returning call,
2743   // because the function return type can be different from __stack_chk_fail's
2744   // return type (void).
2745   if (TM.getTargetTriple().isWasm())
2746     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2747 
2748   DAG.setRoot(Chain);
2749 }
2750 
2751 /// visitBitTestHeader - This function emits necessary code to produce value
2752 /// suitable for "bit tests"
2753 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2754                                              MachineBasicBlock *SwitchBB) {
2755   SDLoc dl = getCurSDLoc();
2756 
2757   // Subtract the minimum value.
2758   SDValue SwitchOp = getValue(B.SValue);
2759   EVT VT = SwitchOp.getValueType();
2760   SDValue RangeSub =
2761       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2762 
2763   // Determine the type of the test operands.
2764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2765   bool UsePtrType = false;
2766   if (!TLI.isTypeLegal(VT)) {
2767     UsePtrType = true;
2768   } else {
2769     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2770       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2771         // Switch table case range are encoded into series of masks.
2772         // Just use pointer type, it's guaranteed to fit.
2773         UsePtrType = true;
2774         break;
2775       }
2776   }
2777   SDValue Sub = RangeSub;
2778   if (UsePtrType) {
2779     VT = TLI.getPointerTy(DAG.getDataLayout());
2780     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2781   }
2782 
2783   B.RegVT = VT.getSimpleVT();
2784   B.Reg = FuncInfo.CreateReg(B.RegVT);
2785   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2786 
2787   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2788 
2789   if (!B.OmitRangeCheck)
2790     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2791   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2792   SwitchBB->normalizeSuccProbs();
2793 
2794   SDValue Root = CopyTo;
2795   if (!B.OmitRangeCheck) {
2796     // Conditional branch to the default block.
2797     SDValue RangeCmp = DAG.getSetCC(dl,
2798         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2799                                RangeSub.getValueType()),
2800         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2801         ISD::SETUGT);
2802 
2803     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2804                        DAG.getBasicBlock(B.Default));
2805   }
2806 
2807   // Avoid emitting unnecessary branches to the next block.
2808   if (MBB != NextBlock(SwitchBB))
2809     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2810 
2811   DAG.setRoot(Root);
2812 }
2813 
2814 /// visitBitTestCase - this function produces one "bit test"
2815 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2816                                            MachineBasicBlock* NextMBB,
2817                                            BranchProbability BranchProbToNext,
2818                                            unsigned Reg,
2819                                            BitTestCase &B,
2820                                            MachineBasicBlock *SwitchBB) {
2821   SDLoc dl = getCurSDLoc();
2822   MVT VT = BB.RegVT;
2823   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2824   SDValue Cmp;
2825   unsigned PopCount = countPopulation(B.Mask);
2826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2827   if (PopCount == 1) {
2828     // Testing for a single bit; just compare the shift count with what it
2829     // would need to be to shift a 1 bit in that position.
2830     Cmp = DAG.getSetCC(
2831         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2832         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2833         ISD::SETEQ);
2834   } else if (PopCount == BB.Range) {
2835     // There is only one zero bit in the range, test for it directly.
2836     Cmp = DAG.getSetCC(
2837         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2838         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2839         ISD::SETNE);
2840   } else {
2841     // Make desired shift
2842     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2843                                     DAG.getConstant(1, dl, VT), ShiftOp);
2844 
2845     // Emit bit tests and jumps
2846     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2847                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2848     Cmp = DAG.getSetCC(
2849         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2850         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2851   }
2852 
2853   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2854   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2855   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2856   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2857   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2858   // one as they are relative probabilities (and thus work more like weights),
2859   // and hence we need to normalize them to let the sum of them become one.
2860   SwitchBB->normalizeSuccProbs();
2861 
2862   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2863                               MVT::Other, getControlRoot(),
2864                               Cmp, DAG.getBasicBlock(B.TargetBB));
2865 
2866   // Avoid emitting unnecessary branches to the next block.
2867   if (NextMBB != NextBlock(SwitchBB))
2868     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2869                         DAG.getBasicBlock(NextMBB));
2870 
2871   DAG.setRoot(BrAnd);
2872 }
2873 
2874 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2875   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2876 
2877   // Retrieve successors. Look through artificial IR level blocks like
2878   // catchswitch for successors.
2879   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2880   const BasicBlock *EHPadBB = I.getSuccessor(1);
2881 
2882   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2883   // have to do anything here to lower funclet bundles.
2884   assert(!I.hasOperandBundlesOtherThan(
2885              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2886               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2887               LLVMContext::OB_cfguardtarget,
2888               LLVMContext::OB_clang_arc_attachedcall}) &&
2889          "Cannot lower invokes with arbitrary operand bundles yet!");
2890 
2891   const Value *Callee(I.getCalledOperand());
2892   const Function *Fn = dyn_cast<Function>(Callee);
2893   if (isa<InlineAsm>(Callee))
2894     visitInlineAsm(I, EHPadBB);
2895   else if (Fn && Fn->isIntrinsic()) {
2896     switch (Fn->getIntrinsicID()) {
2897     default:
2898       llvm_unreachable("Cannot invoke this intrinsic");
2899     case Intrinsic::donothing:
2900       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2901     case Intrinsic::seh_try_begin:
2902     case Intrinsic::seh_scope_begin:
2903     case Intrinsic::seh_try_end:
2904     case Intrinsic::seh_scope_end:
2905       break;
2906     case Intrinsic::experimental_patchpoint_void:
2907     case Intrinsic::experimental_patchpoint_i64:
2908       visitPatchpoint(I, EHPadBB);
2909       break;
2910     case Intrinsic::experimental_gc_statepoint:
2911       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2912       break;
2913     case Intrinsic::wasm_rethrow: {
2914       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2915       // special because it can be invoked, so we manually lower it to a DAG
2916       // node here.
2917       SmallVector<SDValue, 8> Ops;
2918       Ops.push_back(getRoot()); // inchain
2919       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2920       Ops.push_back(
2921           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2922                                 TLI.getPointerTy(DAG.getDataLayout())));
2923       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2924       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2925       break;
2926     }
2927     }
2928   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2929     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2930     // Eventually we will support lowering the @llvm.experimental.deoptimize
2931     // intrinsic, and right now there are no plans to support other intrinsics
2932     // with deopt state.
2933     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2934   } else {
2935     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2936   }
2937 
2938   // If the value of the invoke is used outside of its defining block, make it
2939   // available as a virtual register.
2940   // We already took care of the exported value for the statepoint instruction
2941   // during call to the LowerStatepoint.
2942   if (!isa<GCStatepointInst>(I)) {
2943     CopyToExportRegsIfNeeded(&I);
2944   }
2945 
2946   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2947   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2948   BranchProbability EHPadBBProb =
2949       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2950           : BranchProbability::getZero();
2951   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2952 
2953   // Update successor info.
2954   addSuccessorWithProb(InvokeMBB, Return);
2955   for (auto &UnwindDest : UnwindDests) {
2956     UnwindDest.first->setIsEHPad();
2957     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2958   }
2959   InvokeMBB->normalizeSuccProbs();
2960 
2961   // Drop into normal successor.
2962   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2963                           DAG.getBasicBlock(Return)));
2964 }
2965 
2966 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2967   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2968 
2969   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2970   // have to do anything here to lower funclet bundles.
2971   assert(!I.hasOperandBundlesOtherThan(
2972              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2973          "Cannot lower callbrs with arbitrary operand bundles yet!");
2974 
2975   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2976   visitInlineAsm(I);
2977   CopyToExportRegsIfNeeded(&I);
2978 
2979   // Retrieve successors.
2980   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2981 
2982   // Update successor info.
2983   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2984   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2985     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2986     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2987     Target->setIsInlineAsmBrIndirectTarget();
2988   }
2989   CallBrMBB->normalizeSuccProbs();
2990 
2991   // Drop into default successor.
2992   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2993                           MVT::Other, getControlRoot(),
2994                           DAG.getBasicBlock(Return)));
2995 }
2996 
2997 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2998   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2999 }
3000 
3001 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3002   assert(FuncInfo.MBB->isEHPad() &&
3003          "Call to landingpad not in landing pad!");
3004 
3005   // If there aren't registers to copy the values into (e.g., during SjLj
3006   // exceptions), then don't bother to create these DAG nodes.
3007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3008   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3009   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3010       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3011     return;
3012 
3013   // If landingpad's return type is token type, we don't create DAG nodes
3014   // for its exception pointer and selector value. The extraction of exception
3015   // pointer or selector value from token type landingpads is not currently
3016   // supported.
3017   if (LP.getType()->isTokenTy())
3018     return;
3019 
3020   SmallVector<EVT, 2> ValueVTs;
3021   SDLoc dl = getCurSDLoc();
3022   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3023   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3024 
3025   // Get the two live-in registers as SDValues. The physregs have already been
3026   // copied into virtual registers.
3027   SDValue Ops[2];
3028   if (FuncInfo.ExceptionPointerVirtReg) {
3029     Ops[0] = DAG.getZExtOrTrunc(
3030         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3031                            FuncInfo.ExceptionPointerVirtReg,
3032                            TLI.getPointerTy(DAG.getDataLayout())),
3033         dl, ValueVTs[0]);
3034   } else {
3035     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3036   }
3037   Ops[1] = DAG.getZExtOrTrunc(
3038       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3039                          FuncInfo.ExceptionSelectorVirtReg,
3040                          TLI.getPointerTy(DAG.getDataLayout())),
3041       dl, ValueVTs[1]);
3042 
3043   // Merge into one.
3044   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3045                             DAG.getVTList(ValueVTs), Ops);
3046   setValue(&LP, Res);
3047 }
3048 
3049 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3050                                            MachineBasicBlock *Last) {
3051   // Update JTCases.
3052   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3053     if (SL->JTCases[i].first.HeaderBB == First)
3054       SL->JTCases[i].first.HeaderBB = Last;
3055 
3056   // Update BitTestCases.
3057   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3058     if (SL->BitTestCases[i].Parent == First)
3059       SL->BitTestCases[i].Parent = Last;
3060 }
3061 
3062 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3063   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3064 
3065   // Update machine-CFG edges with unique successors.
3066   SmallSet<BasicBlock*, 32> Done;
3067   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3068     BasicBlock *BB = I.getSuccessor(i);
3069     bool Inserted = Done.insert(BB).second;
3070     if (!Inserted)
3071         continue;
3072 
3073     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3074     addSuccessorWithProb(IndirectBrMBB, Succ);
3075   }
3076   IndirectBrMBB->normalizeSuccProbs();
3077 
3078   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3079                           MVT::Other, getControlRoot(),
3080                           getValue(I.getAddress())));
3081 }
3082 
3083 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3084   if (!DAG.getTarget().Options.TrapUnreachable)
3085     return;
3086 
3087   // We may be able to ignore unreachable behind a noreturn call.
3088   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3089     const BasicBlock &BB = *I.getParent();
3090     if (&I != &BB.front()) {
3091       BasicBlock::const_iterator PredI =
3092         std::prev(BasicBlock::const_iterator(&I));
3093       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3094         if (Call->doesNotReturn())
3095           return;
3096       }
3097     }
3098   }
3099 
3100   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3101 }
3102 
3103 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3104   SDNodeFlags Flags;
3105 
3106   SDValue Op = getValue(I.getOperand(0));
3107   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3108                                     Op, Flags);
3109   setValue(&I, UnNodeValue);
3110 }
3111 
3112 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3113   SDNodeFlags Flags;
3114   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3115     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3116     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3117   }
3118   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3119     Flags.setExact(ExactOp->isExact());
3120   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3121     Flags.copyFMF(*FPOp);
3122 
3123   SDValue Op1 = getValue(I.getOperand(0));
3124   SDValue Op2 = getValue(I.getOperand(1));
3125   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3126                                      Op1, Op2, Flags);
3127   setValue(&I, BinNodeValue);
3128 }
3129 
3130 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3131   SDValue Op1 = getValue(I.getOperand(0));
3132   SDValue Op2 = getValue(I.getOperand(1));
3133 
3134   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3135       Op1.getValueType(), DAG.getDataLayout());
3136 
3137   // Coerce the shift amount to the right type if we can.
3138   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3139     unsigned ShiftSize = ShiftTy.getSizeInBits();
3140     unsigned Op2Size = Op2.getValueSizeInBits();
3141     SDLoc DL = getCurSDLoc();
3142 
3143     // If the operand is smaller than the shift count type, promote it.
3144     if (ShiftSize > Op2Size)
3145       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3146 
3147     // If the operand is larger than the shift count type but the shift
3148     // count type has enough bits to represent any shift value, truncate
3149     // it now. This is a common case and it exposes the truncate to
3150     // optimization early.
3151     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3152       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3153     // Otherwise we'll need to temporarily settle for some other convenient
3154     // type.  Type legalization will make adjustments once the shiftee is split.
3155     else
3156       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3157   }
3158 
3159   bool nuw = false;
3160   bool nsw = false;
3161   bool exact = false;
3162 
3163   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3164 
3165     if (const OverflowingBinaryOperator *OFBinOp =
3166             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3167       nuw = OFBinOp->hasNoUnsignedWrap();
3168       nsw = OFBinOp->hasNoSignedWrap();
3169     }
3170     if (const PossiblyExactOperator *ExactOp =
3171             dyn_cast<const PossiblyExactOperator>(&I))
3172       exact = ExactOp->isExact();
3173   }
3174   SDNodeFlags Flags;
3175   Flags.setExact(exact);
3176   Flags.setNoSignedWrap(nsw);
3177   Flags.setNoUnsignedWrap(nuw);
3178   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3179                             Flags);
3180   setValue(&I, Res);
3181 }
3182 
3183 void SelectionDAGBuilder::visitSDiv(const User &I) {
3184   SDValue Op1 = getValue(I.getOperand(0));
3185   SDValue Op2 = getValue(I.getOperand(1));
3186 
3187   SDNodeFlags Flags;
3188   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3189                  cast<PossiblyExactOperator>(&I)->isExact());
3190   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3191                            Op2, Flags));
3192 }
3193 
3194 void SelectionDAGBuilder::visitICmp(const User &I) {
3195   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3196   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3197     predicate = IC->getPredicate();
3198   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3199     predicate = ICmpInst::Predicate(IC->getPredicate());
3200   SDValue Op1 = getValue(I.getOperand(0));
3201   SDValue Op2 = getValue(I.getOperand(1));
3202   ISD::CondCode Opcode = getICmpCondCode(predicate);
3203 
3204   auto &TLI = DAG.getTargetLoweringInfo();
3205   EVT MemVT =
3206       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3207 
3208   // If a pointer's DAG type is larger than its memory type then the DAG values
3209   // are zero-extended. This breaks signed comparisons so truncate back to the
3210   // underlying type before doing the compare.
3211   if (Op1.getValueType() != MemVT) {
3212     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3213     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3214   }
3215 
3216   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3217                                                         I.getType());
3218   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3219 }
3220 
3221 void SelectionDAGBuilder::visitFCmp(const User &I) {
3222   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3223   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3224     predicate = FC->getPredicate();
3225   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3226     predicate = FCmpInst::Predicate(FC->getPredicate());
3227   SDValue Op1 = getValue(I.getOperand(0));
3228   SDValue Op2 = getValue(I.getOperand(1));
3229 
3230   ISD::CondCode Condition = getFCmpCondCode(predicate);
3231   auto *FPMO = cast<FPMathOperator>(&I);
3232   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3233     Condition = getFCmpCodeWithoutNaN(Condition);
3234 
3235   SDNodeFlags Flags;
3236   Flags.copyFMF(*FPMO);
3237   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3238 
3239   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3240                                                         I.getType());
3241   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3242 }
3243 
3244 // Check if the condition of the select has one use or two users that are both
3245 // selects with the same condition.
3246 static bool hasOnlySelectUsers(const Value *Cond) {
3247   return llvm::all_of(Cond->users(), [](const Value *V) {
3248     return isa<SelectInst>(V);
3249   });
3250 }
3251 
3252 void SelectionDAGBuilder::visitSelect(const User &I) {
3253   SmallVector<EVT, 4> ValueVTs;
3254   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3255                   ValueVTs);
3256   unsigned NumValues = ValueVTs.size();
3257   if (NumValues == 0) return;
3258 
3259   SmallVector<SDValue, 4> Values(NumValues);
3260   SDValue Cond     = getValue(I.getOperand(0));
3261   SDValue LHSVal   = getValue(I.getOperand(1));
3262   SDValue RHSVal   = getValue(I.getOperand(2));
3263   SmallVector<SDValue, 1> BaseOps(1, Cond);
3264   ISD::NodeType OpCode =
3265       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3266 
3267   bool IsUnaryAbs = false;
3268   bool Negate = false;
3269 
3270   SDNodeFlags Flags;
3271   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3272     Flags.copyFMF(*FPOp);
3273 
3274   // Min/max matching is only viable if all output VTs are the same.
3275   if (is_splat(ValueVTs)) {
3276     EVT VT = ValueVTs[0];
3277     LLVMContext &Ctx = *DAG.getContext();
3278     auto &TLI = DAG.getTargetLoweringInfo();
3279 
3280     // We care about the legality of the operation after it has been type
3281     // legalized.
3282     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3283       VT = TLI.getTypeToTransformTo(Ctx, VT);
3284 
3285     // If the vselect is legal, assume we want to leave this as a vector setcc +
3286     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3287     // min/max is legal on the scalar type.
3288     bool UseScalarMinMax = VT.isVector() &&
3289       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3290 
3291     Value *LHS, *RHS;
3292     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3293     ISD::NodeType Opc = ISD::DELETED_NODE;
3294     switch (SPR.Flavor) {
3295     case SPF_UMAX:    Opc = ISD::UMAX; break;
3296     case SPF_UMIN:    Opc = ISD::UMIN; break;
3297     case SPF_SMAX:    Opc = ISD::SMAX; break;
3298     case SPF_SMIN:    Opc = ISD::SMIN; break;
3299     case SPF_FMINNUM:
3300       switch (SPR.NaNBehavior) {
3301       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3302       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3303       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3304       case SPNB_RETURNS_ANY: {
3305         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3306           Opc = ISD::FMINNUM;
3307         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3308           Opc = ISD::FMINIMUM;
3309         else if (UseScalarMinMax)
3310           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3311             ISD::FMINNUM : ISD::FMINIMUM;
3312         break;
3313       }
3314       }
3315       break;
3316     case SPF_FMAXNUM:
3317       switch (SPR.NaNBehavior) {
3318       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3319       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3320       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3321       case SPNB_RETURNS_ANY:
3322 
3323         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3324           Opc = ISD::FMAXNUM;
3325         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3326           Opc = ISD::FMAXIMUM;
3327         else if (UseScalarMinMax)
3328           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3329             ISD::FMAXNUM : ISD::FMAXIMUM;
3330         break;
3331       }
3332       break;
3333     case SPF_NABS:
3334       Negate = true;
3335       LLVM_FALLTHROUGH;
3336     case SPF_ABS:
3337       IsUnaryAbs = true;
3338       Opc = ISD::ABS;
3339       break;
3340     default: break;
3341     }
3342 
3343     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3344         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3345          (UseScalarMinMax &&
3346           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3347         // If the underlying comparison instruction is used by any other
3348         // instruction, the consumed instructions won't be destroyed, so it is
3349         // not profitable to convert to a min/max.
3350         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3351       OpCode = Opc;
3352       LHSVal = getValue(LHS);
3353       RHSVal = getValue(RHS);
3354       BaseOps.clear();
3355     }
3356 
3357     if (IsUnaryAbs) {
3358       OpCode = Opc;
3359       LHSVal = getValue(LHS);
3360       BaseOps.clear();
3361     }
3362   }
3363 
3364   if (IsUnaryAbs) {
3365     for (unsigned i = 0; i != NumValues; ++i) {
3366       SDLoc dl = getCurSDLoc();
3367       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3368       Values[i] =
3369           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3370       if (Negate)
3371         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3372                                 Values[i]);
3373     }
3374   } else {
3375     for (unsigned i = 0; i != NumValues; ++i) {
3376       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3377       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3378       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3379       Values[i] = DAG.getNode(
3380           OpCode, getCurSDLoc(),
3381           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3382     }
3383   }
3384 
3385   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3386                            DAG.getVTList(ValueVTs), Values));
3387 }
3388 
3389 void SelectionDAGBuilder::visitTrunc(const User &I) {
3390   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3391   SDValue N = getValue(I.getOperand(0));
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3395 }
3396 
3397 void SelectionDAGBuilder::visitZExt(const User &I) {
3398   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3399   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3400   SDValue N = getValue(I.getOperand(0));
3401   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3402                                                         I.getType());
3403   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3404 }
3405 
3406 void SelectionDAGBuilder::visitSExt(const User &I) {
3407   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3408   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3409   SDValue N = getValue(I.getOperand(0));
3410   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3411                                                         I.getType());
3412   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3413 }
3414 
3415 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3416   // FPTrunc is never a no-op cast, no need to check
3417   SDValue N = getValue(I.getOperand(0));
3418   SDLoc dl = getCurSDLoc();
3419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3420   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3421   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3422                            DAG.getTargetConstant(
3423                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3424 }
3425 
3426 void SelectionDAGBuilder::visitFPExt(const User &I) {
3427   // FPExt is never a no-op cast, no need to check
3428   SDValue N = getValue(I.getOperand(0));
3429   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3430                                                         I.getType());
3431   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3432 }
3433 
3434 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3435   // FPToUI is never a no-op cast, no need to check
3436   SDValue N = getValue(I.getOperand(0));
3437   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3438                                                         I.getType());
3439   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3440 }
3441 
3442 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3443   // FPToSI is never a no-op cast, no need to check
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3451   // UIToFP is never a no-op cast, no need to check
3452   SDValue N = getValue(I.getOperand(0));
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3456 }
3457 
3458 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3459   // SIToFP is never a no-op cast, no need to check
3460   SDValue N = getValue(I.getOperand(0));
3461   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3462                                                         I.getType());
3463   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3464 }
3465 
3466 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3467   // What to do depends on the size of the integer and the size of the pointer.
3468   // We can either truncate, zero extend, or no-op, accordingly.
3469   SDValue N = getValue(I.getOperand(0));
3470   auto &TLI = DAG.getTargetLoweringInfo();
3471   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3472                                                         I.getType());
3473   EVT PtrMemVT =
3474       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3475   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3476   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3477   setValue(&I, N);
3478 }
3479 
3480 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3481   // What to do depends on the size of the integer and the size of the pointer.
3482   // We can either truncate, zero extend, or no-op, accordingly.
3483   SDValue N = getValue(I.getOperand(0));
3484   auto &TLI = DAG.getTargetLoweringInfo();
3485   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3486   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3487   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3488   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3489   setValue(&I, N);
3490 }
3491 
3492 void SelectionDAGBuilder::visitBitCast(const User &I) {
3493   SDValue N = getValue(I.getOperand(0));
3494   SDLoc dl = getCurSDLoc();
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497 
3498   // BitCast assures us that source and destination are the same size so this is
3499   // either a BITCAST or a no-op.
3500   if (DestVT != N.getValueType())
3501     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3502                              DestVT, N)); // convert types.
3503   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3504   // might fold any kind of constant expression to an integer constant and that
3505   // is not what we are looking for. Only recognize a bitcast of a genuine
3506   // constant integer as an opaque constant.
3507   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3508     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3509                                  /*isOpaque*/true));
3510   else
3511     setValue(&I, N);            // noop cast.
3512 }
3513 
3514 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3515   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516   const Value *SV = I.getOperand(0);
3517   SDValue N = getValue(SV);
3518   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3519 
3520   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3521   unsigned DestAS = I.getType()->getPointerAddressSpace();
3522 
3523   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3524     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3525 
3526   setValue(&I, N);
3527 }
3528 
3529 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3531   SDValue InVec = getValue(I.getOperand(0));
3532   SDValue InVal = getValue(I.getOperand(1));
3533   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3534                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3535   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3536                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3537                            InVec, InVal, InIdx));
3538 }
3539 
3540 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   SDValue InVec = getValue(I.getOperand(0));
3543   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3544                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3545   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3546                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3547                            InVec, InIdx));
3548 }
3549 
3550 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3551   SDValue Src1 = getValue(I.getOperand(0));
3552   SDValue Src2 = getValue(I.getOperand(1));
3553   ArrayRef<int> Mask;
3554   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3555     Mask = SVI->getShuffleMask();
3556   else
3557     Mask = cast<ConstantExpr>(I).getShuffleMask();
3558   SDLoc DL = getCurSDLoc();
3559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3560   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3561   EVT SrcVT = Src1.getValueType();
3562 
3563   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3564       VT.isScalableVector()) {
3565     // Canonical splat form of first element of first input vector.
3566     SDValue FirstElt =
3567         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3568                     DAG.getVectorIdxConstant(0, DL));
3569     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3570     return;
3571   }
3572 
3573   // For now, we only handle splats for scalable vectors.
3574   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3575   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3576   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3577 
3578   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3579   unsigned MaskNumElts = Mask.size();
3580 
3581   if (SrcNumElts == MaskNumElts) {
3582     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3583     return;
3584   }
3585 
3586   // Normalize the shuffle vector since mask and vector length don't match.
3587   if (SrcNumElts < MaskNumElts) {
3588     // Mask is longer than the source vectors. We can use concatenate vector to
3589     // make the mask and vectors lengths match.
3590 
3591     if (MaskNumElts % SrcNumElts == 0) {
3592       // Mask length is a multiple of the source vector length.
3593       // Check if the shuffle is some kind of concatenation of the input
3594       // vectors.
3595       unsigned NumConcat = MaskNumElts / SrcNumElts;
3596       bool IsConcat = true;
3597       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3598       for (unsigned i = 0; i != MaskNumElts; ++i) {
3599         int Idx = Mask[i];
3600         if (Idx < 0)
3601           continue;
3602         // Ensure the indices in each SrcVT sized piece are sequential and that
3603         // the same source is used for the whole piece.
3604         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3605             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3606              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3607           IsConcat = false;
3608           break;
3609         }
3610         // Remember which source this index came from.
3611         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3612       }
3613 
3614       // The shuffle is concatenating multiple vectors together. Just emit
3615       // a CONCAT_VECTORS operation.
3616       if (IsConcat) {
3617         SmallVector<SDValue, 8> ConcatOps;
3618         for (auto Src : ConcatSrcs) {
3619           if (Src < 0)
3620             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3621           else if (Src == 0)
3622             ConcatOps.push_back(Src1);
3623           else
3624             ConcatOps.push_back(Src2);
3625         }
3626         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3627         return;
3628       }
3629     }
3630 
3631     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3632     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3633     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3634                                     PaddedMaskNumElts);
3635 
3636     // Pad both vectors with undefs to make them the same length as the mask.
3637     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3638 
3639     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3640     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3641     MOps1[0] = Src1;
3642     MOps2[0] = Src2;
3643 
3644     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3645     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3646 
3647     // Readjust mask for new input vector length.
3648     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3649     for (unsigned i = 0; i != MaskNumElts; ++i) {
3650       int Idx = Mask[i];
3651       if (Idx >= (int)SrcNumElts)
3652         Idx -= SrcNumElts - PaddedMaskNumElts;
3653       MappedOps[i] = Idx;
3654     }
3655 
3656     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3657 
3658     // If the concatenated vector was padded, extract a subvector with the
3659     // correct number of elements.
3660     if (MaskNumElts != PaddedMaskNumElts)
3661       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3662                            DAG.getVectorIdxConstant(0, DL));
3663 
3664     setValue(&I, Result);
3665     return;
3666   }
3667 
3668   if (SrcNumElts > MaskNumElts) {
3669     // Analyze the access pattern of the vector to see if we can extract
3670     // two subvectors and do the shuffle.
3671     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3672     bool CanExtract = true;
3673     for (int Idx : Mask) {
3674       unsigned Input = 0;
3675       if (Idx < 0)
3676         continue;
3677 
3678       if (Idx >= (int)SrcNumElts) {
3679         Input = 1;
3680         Idx -= SrcNumElts;
3681       }
3682 
3683       // If all the indices come from the same MaskNumElts sized portion of
3684       // the sources we can use extract. Also make sure the extract wouldn't
3685       // extract past the end of the source.
3686       int NewStartIdx = alignDown(Idx, MaskNumElts);
3687       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3688           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3689         CanExtract = false;
3690       // Make sure we always update StartIdx as we use it to track if all
3691       // elements are undef.
3692       StartIdx[Input] = NewStartIdx;
3693     }
3694 
3695     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3696       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3697       return;
3698     }
3699     if (CanExtract) {
3700       // Extract appropriate subvector and generate a vector shuffle
3701       for (unsigned Input = 0; Input < 2; ++Input) {
3702         SDValue &Src = Input == 0 ? Src1 : Src2;
3703         if (StartIdx[Input] < 0)
3704           Src = DAG.getUNDEF(VT);
3705         else {
3706           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3707                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3708         }
3709       }
3710 
3711       // Calculate new mask.
3712       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3713       for (int &Idx : MappedOps) {
3714         if (Idx >= (int)SrcNumElts)
3715           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3716         else if (Idx >= 0)
3717           Idx -= StartIdx[0];
3718       }
3719 
3720       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3721       return;
3722     }
3723   }
3724 
3725   // We can't use either concat vectors or extract subvectors so fall back to
3726   // replacing the shuffle with extract and build vector.
3727   // to insert and build vector.
3728   EVT EltVT = VT.getVectorElementType();
3729   SmallVector<SDValue,8> Ops;
3730   for (int Idx : Mask) {
3731     SDValue Res;
3732 
3733     if (Idx < 0) {
3734       Res = DAG.getUNDEF(EltVT);
3735     } else {
3736       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3737       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3738 
3739       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3740                         DAG.getVectorIdxConstant(Idx, DL));
3741     }
3742 
3743     Ops.push_back(Res);
3744   }
3745 
3746   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3747 }
3748 
3749 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3750   ArrayRef<unsigned> Indices;
3751   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3752     Indices = IV->getIndices();
3753   else
3754     Indices = cast<ConstantExpr>(&I)->getIndices();
3755 
3756   const Value *Op0 = I.getOperand(0);
3757   const Value *Op1 = I.getOperand(1);
3758   Type *AggTy = I.getType();
3759   Type *ValTy = Op1->getType();
3760   bool IntoUndef = isa<UndefValue>(Op0);
3761   bool FromUndef = isa<UndefValue>(Op1);
3762 
3763   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3764 
3765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3766   SmallVector<EVT, 4> AggValueVTs;
3767   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3768   SmallVector<EVT, 4> ValValueVTs;
3769   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3770 
3771   unsigned NumAggValues = AggValueVTs.size();
3772   unsigned NumValValues = ValValueVTs.size();
3773   SmallVector<SDValue, 4> Values(NumAggValues);
3774 
3775   // Ignore an insertvalue that produces an empty object
3776   if (!NumAggValues) {
3777     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3778     return;
3779   }
3780 
3781   SDValue Agg = getValue(Op0);
3782   unsigned i = 0;
3783   // Copy the beginning value(s) from the original aggregate.
3784   for (; i != LinearIndex; ++i)
3785     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3786                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3787   // Copy values from the inserted value(s).
3788   if (NumValValues) {
3789     SDValue Val = getValue(Op1);
3790     for (; i != LinearIndex + NumValValues; ++i)
3791       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3792                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3793   }
3794   // Copy remaining value(s) from the original aggregate.
3795   for (; i != NumAggValues; ++i)
3796     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3797                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3798 
3799   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3800                            DAG.getVTList(AggValueVTs), Values));
3801 }
3802 
3803 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3804   ArrayRef<unsigned> Indices;
3805   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3806     Indices = EV->getIndices();
3807   else
3808     Indices = cast<ConstantExpr>(&I)->getIndices();
3809 
3810   const Value *Op0 = I.getOperand(0);
3811   Type *AggTy = Op0->getType();
3812   Type *ValTy = I.getType();
3813   bool OutOfUndef = isa<UndefValue>(Op0);
3814 
3815   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3816 
3817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3818   SmallVector<EVT, 4> ValValueVTs;
3819   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3820 
3821   unsigned NumValValues = ValValueVTs.size();
3822 
3823   // Ignore a extractvalue that produces an empty object
3824   if (!NumValValues) {
3825     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3826     return;
3827   }
3828 
3829   SmallVector<SDValue, 4> Values(NumValValues);
3830 
3831   SDValue Agg = getValue(Op0);
3832   // Copy out the selected value(s).
3833   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3834     Values[i - LinearIndex] =
3835       OutOfUndef ?
3836         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3837         SDValue(Agg.getNode(), Agg.getResNo() + i);
3838 
3839   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3840                            DAG.getVTList(ValValueVTs), Values));
3841 }
3842 
3843 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3844   Value *Op0 = I.getOperand(0);
3845   // Note that the pointer operand may be a vector of pointers. Take the scalar
3846   // element which holds a pointer.
3847   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3848   SDValue N = getValue(Op0);
3849   SDLoc dl = getCurSDLoc();
3850   auto &TLI = DAG.getTargetLoweringInfo();
3851 
3852   // Normalize Vector GEP - all scalar operands should be converted to the
3853   // splat vector.
3854   bool IsVectorGEP = I.getType()->isVectorTy();
3855   ElementCount VectorElementCount =
3856       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3857                   : ElementCount::getFixed(0);
3858 
3859   if (IsVectorGEP && !N.getValueType().isVector()) {
3860     LLVMContext &Context = *DAG.getContext();
3861     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3862     if (VectorElementCount.isScalable())
3863       N = DAG.getSplatVector(VT, dl, N);
3864     else
3865       N = DAG.getSplatBuildVector(VT, dl, N);
3866   }
3867 
3868   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3869        GTI != E; ++GTI) {
3870     const Value *Idx = GTI.getOperand();
3871     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3872       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3873       if (Field) {
3874         // N = N + Offset
3875         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3876 
3877         // In an inbounds GEP with an offset that is nonnegative even when
3878         // interpreted as signed, assume there is no unsigned overflow.
3879         SDNodeFlags Flags;
3880         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3881           Flags.setNoUnsignedWrap(true);
3882 
3883         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3884                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3885       }
3886     } else {
3887       // IdxSize is the width of the arithmetic according to IR semantics.
3888       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3889       // (and fix up the result later).
3890       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3891       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3892       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3893       // We intentionally mask away the high bits here; ElementSize may not
3894       // fit in IdxTy.
3895       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3896       bool ElementScalable = ElementSize.isScalable();
3897 
3898       // If this is a scalar constant or a splat vector of constants,
3899       // handle it quickly.
3900       const auto *C = dyn_cast<Constant>(Idx);
3901       if (C && isa<VectorType>(C->getType()))
3902         C = C->getSplatValue();
3903 
3904       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3905       if (CI && CI->isZero())
3906         continue;
3907       if (CI && !ElementScalable) {
3908         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3909         LLVMContext &Context = *DAG.getContext();
3910         SDValue OffsVal;
3911         if (IsVectorGEP)
3912           OffsVal = DAG.getConstant(
3913               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3914         else
3915           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3916 
3917         // In an inbounds GEP with an offset that is nonnegative even when
3918         // interpreted as signed, assume there is no unsigned overflow.
3919         SDNodeFlags Flags;
3920         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3921           Flags.setNoUnsignedWrap(true);
3922 
3923         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3924 
3925         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3926         continue;
3927       }
3928 
3929       // N = N + Idx * ElementMul;
3930       SDValue IdxN = getValue(Idx);
3931 
3932       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3933         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3934                                   VectorElementCount);
3935         if (VectorElementCount.isScalable())
3936           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3937         else
3938           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3939       }
3940 
3941       // If the index is smaller or larger than intptr_t, truncate or extend
3942       // it.
3943       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3944 
3945       if (ElementScalable) {
3946         EVT VScaleTy = N.getValueType().getScalarType();
3947         SDValue VScale = DAG.getNode(
3948             ISD::VSCALE, dl, VScaleTy,
3949             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3950         if (IsVectorGEP)
3951           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3952         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3953       } else {
3954         // If this is a multiply by a power of two, turn it into a shl
3955         // immediately.  This is a very common case.
3956         if (ElementMul != 1) {
3957           if (ElementMul.isPowerOf2()) {
3958             unsigned Amt = ElementMul.logBase2();
3959             IdxN = DAG.getNode(ISD::SHL, dl,
3960                                N.getValueType(), IdxN,
3961                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3962           } else {
3963             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3964                                             IdxN.getValueType());
3965             IdxN = DAG.getNode(ISD::MUL, dl,
3966                                N.getValueType(), IdxN, Scale);
3967           }
3968         }
3969       }
3970 
3971       N = DAG.getNode(ISD::ADD, dl,
3972                       N.getValueType(), N, IdxN);
3973     }
3974   }
3975 
3976   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3977   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3978   if (IsVectorGEP) {
3979     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3980     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3981   }
3982 
3983   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3984     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3985 
3986   setValue(&I, N);
3987 }
3988 
3989 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3990   // If this is a fixed sized alloca in the entry block of the function,
3991   // allocate it statically on the stack.
3992   if (FuncInfo.StaticAllocaMap.count(&I))
3993     return;   // getValue will auto-populate this.
3994 
3995   SDLoc dl = getCurSDLoc();
3996   Type *Ty = I.getAllocatedType();
3997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3998   auto &DL = DAG.getDataLayout();
3999   uint64_t TySize = DL.getTypeAllocSize(Ty);
4000   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4001 
4002   SDValue AllocSize = getValue(I.getArraySize());
4003 
4004   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4005   if (AllocSize.getValueType() != IntPtr)
4006     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4007 
4008   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4009                           AllocSize,
4010                           DAG.getConstant(TySize, dl, IntPtr));
4011 
4012   // Handle alignment.  If the requested alignment is less than or equal to
4013   // the stack alignment, ignore it.  If the size is greater than or equal to
4014   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4015   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4016   if (*Alignment <= StackAlign)
4017     Alignment = None;
4018 
4019   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4020   // Round the size of the allocation up to the stack alignment size
4021   // by add SA-1 to the size. This doesn't overflow because we're computing
4022   // an address inside an alloca.
4023   SDNodeFlags Flags;
4024   Flags.setNoUnsignedWrap(true);
4025   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4026                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4027 
4028   // Mask out the low bits for alignment purposes.
4029   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4030                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4031 
4032   SDValue Ops[] = {
4033       getRoot(), AllocSize,
4034       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4035   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4036   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4037   setValue(&I, DSA);
4038   DAG.setRoot(DSA.getValue(1));
4039 
4040   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4041 }
4042 
4043 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4044   if (I.isAtomic())
4045     return visitAtomicLoad(I);
4046 
4047   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4048   const Value *SV = I.getOperand(0);
4049   if (TLI.supportSwiftError()) {
4050     // Swifterror values can come from either a function parameter with
4051     // swifterror attribute or an alloca with swifterror attribute.
4052     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4053       if (Arg->hasSwiftErrorAttr())
4054         return visitLoadFromSwiftError(I);
4055     }
4056 
4057     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4058       if (Alloca->isSwiftError())
4059         return visitLoadFromSwiftError(I);
4060     }
4061   }
4062 
4063   SDValue Ptr = getValue(SV);
4064 
4065   Type *Ty = I.getType();
4066   Align Alignment = I.getAlign();
4067 
4068   AAMDNodes AAInfo;
4069   I.getAAMetadata(AAInfo);
4070   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4071 
4072   SmallVector<EVT, 4> ValueVTs, MemVTs;
4073   SmallVector<uint64_t, 4> Offsets;
4074   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4075   unsigned NumValues = ValueVTs.size();
4076   if (NumValues == 0)
4077     return;
4078 
4079   bool isVolatile = I.isVolatile();
4080 
4081   SDValue Root;
4082   bool ConstantMemory = false;
4083   if (isVolatile)
4084     // Serialize volatile loads with other side effects.
4085     Root = getRoot();
4086   else if (NumValues > MaxParallelChains)
4087     Root = getMemoryRoot();
4088   else if (AA &&
4089            AA->pointsToConstantMemory(MemoryLocation(
4090                SV,
4091                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4092                AAInfo))) {
4093     // Do not serialize (non-volatile) loads of constant memory with anything.
4094     Root = DAG.getEntryNode();
4095     ConstantMemory = true;
4096   } else {
4097     // Do not serialize non-volatile loads against each other.
4098     Root = DAG.getRoot();
4099   }
4100 
4101   SDLoc dl = getCurSDLoc();
4102 
4103   if (isVolatile)
4104     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4105 
4106   // An aggregate load cannot wrap around the address space, so offsets to its
4107   // parts don't wrap either.
4108   SDNodeFlags Flags;
4109   Flags.setNoUnsignedWrap(true);
4110 
4111   SmallVector<SDValue, 4> Values(NumValues);
4112   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4113   EVT PtrVT = Ptr.getValueType();
4114 
4115   MachineMemOperand::Flags MMOFlags
4116     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4117 
4118   unsigned ChainI = 0;
4119   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4120     // Serializing loads here may result in excessive register pressure, and
4121     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4122     // could recover a bit by hoisting nodes upward in the chain by recognizing
4123     // they are side-effect free or do not alias. The optimizer should really
4124     // avoid this case by converting large object/array copies to llvm.memcpy
4125     // (MaxParallelChains should always remain as failsafe).
4126     if (ChainI == MaxParallelChains) {
4127       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4128       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4129                                   makeArrayRef(Chains.data(), ChainI));
4130       Root = Chain;
4131       ChainI = 0;
4132     }
4133     SDValue A = DAG.getNode(ISD::ADD, dl,
4134                             PtrVT, Ptr,
4135                             DAG.getConstant(Offsets[i], dl, PtrVT),
4136                             Flags);
4137 
4138     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4139                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4140                             MMOFlags, AAInfo, Ranges);
4141     Chains[ChainI] = L.getValue(1);
4142 
4143     if (MemVTs[i] != ValueVTs[i])
4144       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4145 
4146     Values[i] = L;
4147   }
4148 
4149   if (!ConstantMemory) {
4150     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4151                                 makeArrayRef(Chains.data(), ChainI));
4152     if (isVolatile)
4153       DAG.setRoot(Chain);
4154     else
4155       PendingLoads.push_back(Chain);
4156   }
4157 
4158   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4159                            DAG.getVTList(ValueVTs), Values));
4160 }
4161 
4162 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4163   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4164          "call visitStoreToSwiftError when backend supports swifterror");
4165 
4166   SmallVector<EVT, 4> ValueVTs;
4167   SmallVector<uint64_t, 4> Offsets;
4168   const Value *SrcV = I.getOperand(0);
4169   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4170                   SrcV->getType(), ValueVTs, &Offsets);
4171   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4172          "expect a single EVT for swifterror");
4173 
4174   SDValue Src = getValue(SrcV);
4175   // Create a virtual register, then update the virtual register.
4176   Register VReg =
4177       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4178   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4179   // Chain can be getRoot or getControlRoot.
4180   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4181                                       SDValue(Src.getNode(), Src.getResNo()));
4182   DAG.setRoot(CopyNode);
4183 }
4184 
4185 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4186   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4187          "call visitLoadFromSwiftError when backend supports swifterror");
4188 
4189   assert(!I.isVolatile() &&
4190          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4191          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4192          "Support volatile, non temporal, invariant for load_from_swift_error");
4193 
4194   const Value *SV = I.getOperand(0);
4195   Type *Ty = I.getType();
4196   AAMDNodes AAInfo;
4197   I.getAAMetadata(AAInfo);
4198   assert(
4199       (!AA ||
4200        !AA->pointsToConstantMemory(MemoryLocation(
4201            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4202            AAInfo))) &&
4203       "load_from_swift_error should not be constant memory");
4204 
4205   SmallVector<EVT, 4> ValueVTs;
4206   SmallVector<uint64_t, 4> Offsets;
4207   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4208                   ValueVTs, &Offsets);
4209   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4210          "expect a single EVT for swifterror");
4211 
4212   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4213   SDValue L = DAG.getCopyFromReg(
4214       getRoot(), getCurSDLoc(),
4215       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4216 
4217   setValue(&I, L);
4218 }
4219 
4220 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4221   if (I.isAtomic())
4222     return visitAtomicStore(I);
4223 
4224   const Value *SrcV = I.getOperand(0);
4225   const Value *PtrV = I.getOperand(1);
4226 
4227   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4228   if (TLI.supportSwiftError()) {
4229     // Swifterror values can come from either a function parameter with
4230     // swifterror attribute or an alloca with swifterror attribute.
4231     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4232       if (Arg->hasSwiftErrorAttr())
4233         return visitStoreToSwiftError(I);
4234     }
4235 
4236     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4237       if (Alloca->isSwiftError())
4238         return visitStoreToSwiftError(I);
4239     }
4240   }
4241 
4242   SmallVector<EVT, 4> ValueVTs, MemVTs;
4243   SmallVector<uint64_t, 4> Offsets;
4244   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4245                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4246   unsigned NumValues = ValueVTs.size();
4247   if (NumValues == 0)
4248     return;
4249 
4250   // Get the lowered operands. Note that we do this after
4251   // checking if NumResults is zero, because with zero results
4252   // the operands won't have values in the map.
4253   SDValue Src = getValue(SrcV);
4254   SDValue Ptr = getValue(PtrV);
4255 
4256   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4257   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4258   SDLoc dl = getCurSDLoc();
4259   Align Alignment = I.getAlign();
4260   AAMDNodes AAInfo;
4261   I.getAAMetadata(AAInfo);
4262 
4263   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4264 
4265   // An aggregate load cannot wrap around the address space, so offsets to its
4266   // parts don't wrap either.
4267   SDNodeFlags Flags;
4268   Flags.setNoUnsignedWrap(true);
4269 
4270   unsigned ChainI = 0;
4271   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4272     // See visitLoad comments.
4273     if (ChainI == MaxParallelChains) {
4274       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4275                                   makeArrayRef(Chains.data(), ChainI));
4276       Root = Chain;
4277       ChainI = 0;
4278     }
4279     SDValue Add =
4280         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4281     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4282     if (MemVTs[i] != ValueVTs[i])
4283       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4284     SDValue St =
4285         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4286                      Alignment, MMOFlags, AAInfo);
4287     Chains[ChainI] = St;
4288   }
4289 
4290   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4291                                   makeArrayRef(Chains.data(), ChainI));
4292   DAG.setRoot(StoreNode);
4293 }
4294 
4295 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4296                                            bool IsCompressing) {
4297   SDLoc sdl = getCurSDLoc();
4298 
4299   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4300                                MaybeAlign &Alignment) {
4301     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4302     Src0 = I.getArgOperand(0);
4303     Ptr = I.getArgOperand(1);
4304     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4305     Mask = I.getArgOperand(3);
4306   };
4307   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4308                                     MaybeAlign &Alignment) {
4309     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4310     Src0 = I.getArgOperand(0);
4311     Ptr = I.getArgOperand(1);
4312     Mask = I.getArgOperand(2);
4313     Alignment = None;
4314   };
4315 
4316   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4317   MaybeAlign Alignment;
4318   if (IsCompressing)
4319     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4320   else
4321     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4322 
4323   SDValue Ptr = getValue(PtrOperand);
4324   SDValue Src0 = getValue(Src0Operand);
4325   SDValue Mask = getValue(MaskOperand);
4326   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4327 
4328   EVT VT = Src0.getValueType();
4329   if (!Alignment)
4330     Alignment = DAG.getEVTAlign(VT);
4331 
4332   AAMDNodes AAInfo;
4333   I.getAAMetadata(AAInfo);
4334 
4335   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4336       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4337       // TODO: Make MachineMemOperands aware of scalable
4338       // vectors.
4339       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4340   SDValue StoreNode =
4341       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4342                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4343   DAG.setRoot(StoreNode);
4344   setValue(&I, StoreNode);
4345 }
4346 
4347 // Get a uniform base for the Gather/Scatter intrinsic.
4348 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4349 // We try to represent it as a base pointer + vector of indices.
4350 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4351 // The first operand of the GEP may be a single pointer or a vector of pointers
4352 // Example:
4353 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4354 //  or
4355 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4356 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4357 //
4358 // When the first GEP operand is a single pointer - it is the uniform base we
4359 // are looking for. If first operand of the GEP is a splat vector - we
4360 // extract the splat value and use it as a uniform base.
4361 // In all other cases the function returns 'false'.
4362 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4363                            ISD::MemIndexType &IndexType, SDValue &Scale,
4364                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4365   SelectionDAG& DAG = SDB->DAG;
4366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4367   const DataLayout &DL = DAG.getDataLayout();
4368 
4369   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4370 
4371   // Handle splat constant pointer.
4372   if (auto *C = dyn_cast<Constant>(Ptr)) {
4373     C = C->getSplatValue();
4374     if (!C)
4375       return false;
4376 
4377     Base = SDB->getValue(C);
4378 
4379     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4380     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4381     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4382     IndexType = ISD::SIGNED_SCALED;
4383     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4384     return true;
4385   }
4386 
4387   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4388   if (!GEP || GEP->getParent() != CurBB)
4389     return false;
4390 
4391   if (GEP->getNumOperands() != 2)
4392     return false;
4393 
4394   const Value *BasePtr = GEP->getPointerOperand();
4395   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4396 
4397   // Make sure the base is scalar and the index is a vector.
4398   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4399     return false;
4400 
4401   Base = SDB->getValue(BasePtr);
4402   Index = SDB->getValue(IndexVal);
4403   IndexType = ISD::SIGNED_SCALED;
4404   Scale = DAG.getTargetConstant(
4405               DL.getTypeAllocSize(GEP->getResultElementType()),
4406               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4407   return true;
4408 }
4409 
4410 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4411   SDLoc sdl = getCurSDLoc();
4412 
4413   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4414   const Value *Ptr = I.getArgOperand(1);
4415   SDValue Src0 = getValue(I.getArgOperand(0));
4416   SDValue Mask = getValue(I.getArgOperand(3));
4417   EVT VT = Src0.getValueType();
4418   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4419                         ->getMaybeAlignValue()
4420                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4421   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4422 
4423   AAMDNodes AAInfo;
4424   I.getAAMetadata(AAInfo);
4425 
4426   SDValue Base;
4427   SDValue Index;
4428   ISD::MemIndexType IndexType;
4429   SDValue Scale;
4430   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4431                                     I.getParent());
4432 
4433   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4434   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4435       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4436       // TODO: Make MachineMemOperands aware of scalable
4437       // vectors.
4438       MemoryLocation::UnknownSize, Alignment, AAInfo);
4439   if (!UniformBase) {
4440     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4441     Index = getValue(Ptr);
4442     IndexType = ISD::SIGNED_UNSCALED;
4443     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4444   }
4445 
4446   EVT IdxVT = Index.getValueType();
4447   EVT EltTy = IdxVT.getVectorElementType();
4448   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4449     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4450     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4451   }
4452 
4453   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4454   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4455                                          Ops, MMO, IndexType, false);
4456   DAG.setRoot(Scatter);
4457   setValue(&I, Scatter);
4458 }
4459 
4460 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4461   SDLoc sdl = getCurSDLoc();
4462 
4463   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4464                               MaybeAlign &Alignment) {
4465     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4466     Ptr = I.getArgOperand(0);
4467     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4468     Mask = I.getArgOperand(2);
4469     Src0 = I.getArgOperand(3);
4470   };
4471   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4472                                  MaybeAlign &Alignment) {
4473     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4474     Ptr = I.getArgOperand(0);
4475     Alignment = None;
4476     Mask = I.getArgOperand(1);
4477     Src0 = I.getArgOperand(2);
4478   };
4479 
4480   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4481   MaybeAlign Alignment;
4482   if (IsExpanding)
4483     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4484   else
4485     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4486 
4487   SDValue Ptr = getValue(PtrOperand);
4488   SDValue Src0 = getValue(Src0Operand);
4489   SDValue Mask = getValue(MaskOperand);
4490   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4491 
4492   EVT VT = Src0.getValueType();
4493   if (!Alignment)
4494     Alignment = DAG.getEVTAlign(VT);
4495 
4496   AAMDNodes AAInfo;
4497   I.getAAMetadata(AAInfo);
4498   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4499 
4500   // Do not serialize masked loads of constant memory with anything.
4501   MemoryLocation ML;
4502   if (VT.isScalableVector())
4503     ML = MemoryLocation::getAfter(PtrOperand);
4504   else
4505     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4506                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4507                            AAInfo);
4508   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4509 
4510   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4511 
4512   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4513       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4514       // TODO: Make MachineMemOperands aware of scalable
4515       // vectors.
4516       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4517 
4518   SDValue Load =
4519       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4520                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4521   if (AddToChain)
4522     PendingLoads.push_back(Load.getValue(1));
4523   setValue(&I, Load);
4524 }
4525 
4526 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4527   SDLoc sdl = getCurSDLoc();
4528 
4529   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4530   const Value *Ptr = I.getArgOperand(0);
4531   SDValue Src0 = getValue(I.getArgOperand(3));
4532   SDValue Mask = getValue(I.getArgOperand(2));
4533 
4534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4535   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4536   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4537                         ->getMaybeAlignValue()
4538                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4539 
4540   AAMDNodes AAInfo;
4541   I.getAAMetadata(AAInfo);
4542   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4543 
4544   SDValue Root = DAG.getRoot();
4545   SDValue Base;
4546   SDValue Index;
4547   ISD::MemIndexType IndexType;
4548   SDValue Scale;
4549   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4550                                     I.getParent());
4551   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4552   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4553       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4554       // TODO: Make MachineMemOperands aware of scalable
4555       // vectors.
4556       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4557 
4558   if (!UniformBase) {
4559     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4560     Index = getValue(Ptr);
4561     IndexType = ISD::SIGNED_UNSCALED;
4562     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4563   }
4564 
4565   EVT IdxVT = Index.getValueType();
4566   EVT EltTy = IdxVT.getVectorElementType();
4567   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4568     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4569     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4570   }
4571 
4572   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4573   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4574                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4575 
4576   PendingLoads.push_back(Gather.getValue(1));
4577   setValue(&I, Gather);
4578 }
4579 
4580 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4581   SDLoc dl = getCurSDLoc();
4582   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4583   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4584   SyncScope::ID SSID = I.getSyncScopeID();
4585 
4586   SDValue InChain = getRoot();
4587 
4588   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4589   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4590 
4591   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4592   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4593 
4594   MachineFunction &MF = DAG.getMachineFunction();
4595   MachineMemOperand *MMO = MF.getMachineMemOperand(
4596       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4597       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4598       FailureOrdering);
4599 
4600   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4601                                    dl, MemVT, VTs, InChain,
4602                                    getValue(I.getPointerOperand()),
4603                                    getValue(I.getCompareOperand()),
4604                                    getValue(I.getNewValOperand()), MMO);
4605 
4606   SDValue OutChain = L.getValue(2);
4607 
4608   setValue(&I, L);
4609   DAG.setRoot(OutChain);
4610 }
4611 
4612 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4613   SDLoc dl = getCurSDLoc();
4614   ISD::NodeType NT;
4615   switch (I.getOperation()) {
4616   default: llvm_unreachable("Unknown atomicrmw operation");
4617   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4618   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4619   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4620   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4621   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4622   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4623   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4624   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4625   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4626   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4627   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4628   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4629   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4630   }
4631   AtomicOrdering Ordering = I.getOrdering();
4632   SyncScope::ID SSID = I.getSyncScopeID();
4633 
4634   SDValue InChain = getRoot();
4635 
4636   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4638   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4639 
4640   MachineFunction &MF = DAG.getMachineFunction();
4641   MachineMemOperand *MMO = MF.getMachineMemOperand(
4642       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4643       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4644 
4645   SDValue L =
4646     DAG.getAtomic(NT, dl, MemVT, InChain,
4647                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4648                   MMO);
4649 
4650   SDValue OutChain = L.getValue(1);
4651 
4652   setValue(&I, L);
4653   DAG.setRoot(OutChain);
4654 }
4655 
4656 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4657   SDLoc dl = getCurSDLoc();
4658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4659   SDValue Ops[3];
4660   Ops[0] = getRoot();
4661   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4662                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4663   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4664                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4665   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4666 }
4667 
4668 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4669   SDLoc dl = getCurSDLoc();
4670   AtomicOrdering Order = I.getOrdering();
4671   SyncScope::ID SSID = I.getSyncScopeID();
4672 
4673   SDValue InChain = getRoot();
4674 
4675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4676   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4677   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4678 
4679   if (!TLI.supportsUnalignedAtomics() &&
4680       I.getAlignment() < MemVT.getSizeInBits() / 8)
4681     report_fatal_error("Cannot generate unaligned atomic load");
4682 
4683   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4684 
4685   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4686       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4687       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4688 
4689   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4690 
4691   SDValue Ptr = getValue(I.getPointerOperand());
4692 
4693   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4694     // TODO: Once this is better exercised by tests, it should be merged with
4695     // the normal path for loads to prevent future divergence.
4696     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4697     if (MemVT != VT)
4698       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4699 
4700     setValue(&I, L);
4701     SDValue OutChain = L.getValue(1);
4702     if (!I.isUnordered())
4703       DAG.setRoot(OutChain);
4704     else
4705       PendingLoads.push_back(OutChain);
4706     return;
4707   }
4708 
4709   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4710                             Ptr, MMO);
4711 
4712   SDValue OutChain = L.getValue(1);
4713   if (MemVT != VT)
4714     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4715 
4716   setValue(&I, L);
4717   DAG.setRoot(OutChain);
4718 }
4719 
4720 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4721   SDLoc dl = getCurSDLoc();
4722 
4723   AtomicOrdering Ordering = I.getOrdering();
4724   SyncScope::ID SSID = I.getSyncScopeID();
4725 
4726   SDValue InChain = getRoot();
4727 
4728   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4729   EVT MemVT =
4730       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4731 
4732   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4733     report_fatal_error("Cannot generate unaligned atomic store");
4734 
4735   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4736 
4737   MachineFunction &MF = DAG.getMachineFunction();
4738   MachineMemOperand *MMO = MF.getMachineMemOperand(
4739       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4740       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4741 
4742   SDValue Val = getValue(I.getValueOperand());
4743   if (Val.getValueType() != MemVT)
4744     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4745   SDValue Ptr = getValue(I.getPointerOperand());
4746 
4747   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4748     // TODO: Once this is better exercised by tests, it should be merged with
4749     // the normal path for stores to prevent future divergence.
4750     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4751     DAG.setRoot(S);
4752     return;
4753   }
4754   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4755                                    Ptr, Val, MMO);
4756 
4757 
4758   DAG.setRoot(OutChain);
4759 }
4760 
4761 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4762 /// node.
4763 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4764                                                unsigned Intrinsic) {
4765   // Ignore the callsite's attributes. A specific call site may be marked with
4766   // readnone, but the lowering code will expect the chain based on the
4767   // definition.
4768   const Function *F = I.getCalledFunction();
4769   bool HasChain = !F->doesNotAccessMemory();
4770   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4771 
4772   // Build the operand list.
4773   SmallVector<SDValue, 8> Ops;
4774   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4775     if (OnlyLoad) {
4776       // We don't need to serialize loads against other loads.
4777       Ops.push_back(DAG.getRoot());
4778     } else {
4779       Ops.push_back(getRoot());
4780     }
4781   }
4782 
4783   // Info is set by getTgtMemInstrinsic
4784   TargetLowering::IntrinsicInfo Info;
4785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4786   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4787                                                DAG.getMachineFunction(),
4788                                                Intrinsic);
4789 
4790   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4791   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4792       Info.opc == ISD::INTRINSIC_W_CHAIN)
4793     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4794                                         TLI.getPointerTy(DAG.getDataLayout())));
4795 
4796   // Add all operands of the call to the operand list.
4797   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4798     const Value *Arg = I.getArgOperand(i);
4799     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4800       Ops.push_back(getValue(Arg));
4801       continue;
4802     }
4803 
4804     // Use TargetConstant instead of a regular constant for immarg.
4805     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4806     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4807       assert(CI->getBitWidth() <= 64 &&
4808              "large intrinsic immediates not handled");
4809       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4810     } else {
4811       Ops.push_back(
4812           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4813     }
4814   }
4815 
4816   SmallVector<EVT, 4> ValueVTs;
4817   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4818 
4819   if (HasChain)
4820     ValueVTs.push_back(MVT::Other);
4821 
4822   SDVTList VTs = DAG.getVTList(ValueVTs);
4823 
4824   // Propagate fast-math-flags from IR to node(s).
4825   SDNodeFlags Flags;
4826   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4827     Flags.copyFMF(*FPMO);
4828   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4829 
4830   // Create the node.
4831   SDValue Result;
4832   if (IsTgtIntrinsic) {
4833     // This is target intrinsic that touches memory
4834     AAMDNodes AAInfo;
4835     I.getAAMetadata(AAInfo);
4836     Result =
4837         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4838                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4839                                 Info.align, Info.flags, Info.size, AAInfo);
4840   } else if (!HasChain) {
4841     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4842   } else if (!I.getType()->isVoidTy()) {
4843     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4844   } else {
4845     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4846   }
4847 
4848   if (HasChain) {
4849     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4850     if (OnlyLoad)
4851       PendingLoads.push_back(Chain);
4852     else
4853       DAG.setRoot(Chain);
4854   }
4855 
4856   if (!I.getType()->isVoidTy()) {
4857     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4858       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4859       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4860     } else
4861       Result = lowerRangeToAssertZExt(DAG, I, Result);
4862 
4863     MaybeAlign Alignment = I.getRetAlign();
4864     if (!Alignment)
4865       Alignment = F->getAttributes().getRetAlignment();
4866     // Insert `assertalign` node if there's an alignment.
4867     if (InsertAssertAlign && Alignment) {
4868       Result =
4869           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4870     }
4871 
4872     setValue(&I, Result);
4873   }
4874 }
4875 
4876 /// GetSignificand - Get the significand and build it into a floating-point
4877 /// number with exponent of 1:
4878 ///
4879 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4880 ///
4881 /// where Op is the hexadecimal representation of floating point value.
4882 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4883   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4884                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4885   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4886                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4887   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4888 }
4889 
4890 /// GetExponent - Get the exponent:
4891 ///
4892 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4893 ///
4894 /// where Op is the hexadecimal representation of floating point value.
4895 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4896                            const TargetLowering &TLI, const SDLoc &dl) {
4897   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4898                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4899   SDValue t1 = DAG.getNode(
4900       ISD::SRL, dl, MVT::i32, t0,
4901       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4902   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4903                            DAG.getConstant(127, dl, MVT::i32));
4904   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4905 }
4906 
4907 /// getF32Constant - Get 32-bit floating point constant.
4908 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4909                               const SDLoc &dl) {
4910   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4911                            MVT::f32);
4912 }
4913 
4914 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4915                                        SelectionDAG &DAG) {
4916   // TODO: What fast-math-flags should be set on the floating-point nodes?
4917 
4918   //   IntegerPartOfX = ((int32_t)(t0);
4919   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4920 
4921   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4922   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4923   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4924 
4925   //   IntegerPartOfX <<= 23;
4926   IntegerPartOfX = DAG.getNode(
4927       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4928       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4929                                   DAG.getDataLayout())));
4930 
4931   SDValue TwoToFractionalPartOfX;
4932   if (LimitFloatPrecision <= 6) {
4933     // For floating-point precision of 6:
4934     //
4935     //   TwoToFractionalPartOfX =
4936     //     0.997535578f +
4937     //       (0.735607626f + 0.252464424f * x) * x;
4938     //
4939     // error 0.0144103317, which is 6 bits
4940     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4941                              getF32Constant(DAG, 0x3e814304, dl));
4942     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4943                              getF32Constant(DAG, 0x3f3c50c8, dl));
4944     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4945     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4946                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4947   } else if (LimitFloatPrecision <= 12) {
4948     // For floating-point precision of 12:
4949     //
4950     //   TwoToFractionalPartOfX =
4951     //     0.999892986f +
4952     //       (0.696457318f +
4953     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4954     //
4955     // error 0.000107046256, which is 13 to 14 bits
4956     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4957                              getF32Constant(DAG, 0x3da235e3, dl));
4958     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4959                              getF32Constant(DAG, 0x3e65b8f3, dl));
4960     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4961     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4962                              getF32Constant(DAG, 0x3f324b07, dl));
4963     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4964     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4965                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4966   } else { // LimitFloatPrecision <= 18
4967     // For floating-point precision of 18:
4968     //
4969     //   TwoToFractionalPartOfX =
4970     //     0.999999982f +
4971     //       (0.693148872f +
4972     //         (0.240227044f +
4973     //           (0.554906021e-1f +
4974     //             (0.961591928e-2f +
4975     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4976     // error 2.47208000*10^(-7), which is better than 18 bits
4977     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4978                              getF32Constant(DAG, 0x3924b03e, dl));
4979     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4980                              getF32Constant(DAG, 0x3ab24b87, dl));
4981     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4982     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4983                              getF32Constant(DAG, 0x3c1d8c17, dl));
4984     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4985     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4986                              getF32Constant(DAG, 0x3d634a1d, dl));
4987     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4988     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4989                              getF32Constant(DAG, 0x3e75fe14, dl));
4990     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4991     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4992                               getF32Constant(DAG, 0x3f317234, dl));
4993     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4994     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4995                                          getF32Constant(DAG, 0x3f800000, dl));
4996   }
4997 
4998   // Add the exponent into the result in integer domain.
4999   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5000   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5001                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5002 }
5003 
5004 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5005 /// limited-precision mode.
5006 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5007                          const TargetLowering &TLI, SDNodeFlags Flags) {
5008   if (Op.getValueType() == MVT::f32 &&
5009       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5010 
5011     // Put the exponent in the right bit position for later addition to the
5012     // final result:
5013     //
5014     // t0 = Op * log2(e)
5015 
5016     // TODO: What fast-math-flags should be set here?
5017     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5018                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5019     return getLimitedPrecisionExp2(t0, dl, DAG);
5020   }
5021 
5022   // No special expansion.
5023   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5024 }
5025 
5026 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5027 /// limited-precision mode.
5028 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5029                          const TargetLowering &TLI, SDNodeFlags Flags) {
5030   // TODO: What fast-math-flags should be set on the floating-point nodes?
5031 
5032   if (Op.getValueType() == MVT::f32 &&
5033       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5034     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5035 
5036     // Scale the exponent by log(2).
5037     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5038     SDValue LogOfExponent =
5039         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5040                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5041 
5042     // Get the significand and build it into a floating-point number with
5043     // exponent of 1.
5044     SDValue X = GetSignificand(DAG, Op1, dl);
5045 
5046     SDValue LogOfMantissa;
5047     if (LimitFloatPrecision <= 6) {
5048       // For floating-point precision of 6:
5049       //
5050       //   LogofMantissa =
5051       //     -1.1609546f +
5052       //       (1.4034025f - 0.23903021f * x) * x;
5053       //
5054       // error 0.0034276066, which is better than 8 bits
5055       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5056                                getF32Constant(DAG, 0xbe74c456, dl));
5057       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5058                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5059       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5060       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5061                                   getF32Constant(DAG, 0x3f949a29, dl));
5062     } else if (LimitFloatPrecision <= 12) {
5063       // For floating-point precision of 12:
5064       //
5065       //   LogOfMantissa =
5066       //     -1.7417939f +
5067       //       (2.8212026f +
5068       //         (-1.4699568f +
5069       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5070       //
5071       // error 0.000061011436, which is 14 bits
5072       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5073                                getF32Constant(DAG, 0xbd67b6d6, dl));
5074       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5075                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5076       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5077       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5078                                getF32Constant(DAG, 0x3fbc278b, dl));
5079       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5080       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5081                                getF32Constant(DAG, 0x40348e95, dl));
5082       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5083       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5084                                   getF32Constant(DAG, 0x3fdef31a, dl));
5085     } else { // LimitFloatPrecision <= 18
5086       // For floating-point precision of 18:
5087       //
5088       //   LogOfMantissa =
5089       //     -2.1072184f +
5090       //       (4.2372794f +
5091       //         (-3.7029485f +
5092       //           (2.2781945f +
5093       //             (-0.87823314f +
5094       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5095       //
5096       // error 0.0000023660568, which is better than 18 bits
5097       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5098                                getF32Constant(DAG, 0xbc91e5ac, dl));
5099       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5100                                getF32Constant(DAG, 0x3e4350aa, dl));
5101       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5102       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5103                                getF32Constant(DAG, 0x3f60d3e3, dl));
5104       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5105       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5106                                getF32Constant(DAG, 0x4011cdf0, dl));
5107       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5108       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5109                                getF32Constant(DAG, 0x406cfd1c, dl));
5110       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5111       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5112                                getF32Constant(DAG, 0x408797cb, dl));
5113       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5114       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5115                                   getF32Constant(DAG, 0x4006dcab, dl));
5116     }
5117 
5118     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5119   }
5120 
5121   // No special expansion.
5122   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5123 }
5124 
5125 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5126 /// limited-precision mode.
5127 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5128                           const TargetLowering &TLI, SDNodeFlags Flags) {
5129   // TODO: What fast-math-flags should be set on the floating-point nodes?
5130 
5131   if (Op.getValueType() == MVT::f32 &&
5132       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5133     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5134 
5135     // Get the exponent.
5136     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5137 
5138     // Get the significand and build it into a floating-point number with
5139     // exponent of 1.
5140     SDValue X = GetSignificand(DAG, Op1, dl);
5141 
5142     // Different possible minimax approximations of significand in
5143     // floating-point for various degrees of accuracy over [1,2].
5144     SDValue Log2ofMantissa;
5145     if (LimitFloatPrecision <= 6) {
5146       // For floating-point precision of 6:
5147       //
5148       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5149       //
5150       // error 0.0049451742, which is more than 7 bits
5151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5152                                getF32Constant(DAG, 0xbeb08fe0, dl));
5153       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5154                                getF32Constant(DAG, 0x40019463, dl));
5155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5156       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5157                                    getF32Constant(DAG, 0x3fd6633d, dl));
5158     } else if (LimitFloatPrecision <= 12) {
5159       // For floating-point precision of 12:
5160       //
5161       //   Log2ofMantissa =
5162       //     -2.51285454f +
5163       //       (4.07009056f +
5164       //         (-2.12067489f +
5165       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5166       //
5167       // error 0.0000876136000, which is better than 13 bits
5168       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5169                                getF32Constant(DAG, 0xbda7262e, dl));
5170       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5171                                getF32Constant(DAG, 0x3f25280b, dl));
5172       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5173       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5174                                getF32Constant(DAG, 0x4007b923, dl));
5175       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5176       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5177                                getF32Constant(DAG, 0x40823e2f, dl));
5178       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5179       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5180                                    getF32Constant(DAG, 0x4020d29c, dl));
5181     } else { // LimitFloatPrecision <= 18
5182       // For floating-point precision of 18:
5183       //
5184       //   Log2ofMantissa =
5185       //     -3.0400495f +
5186       //       (6.1129976f +
5187       //         (-5.3420409f +
5188       //           (3.2865683f +
5189       //             (-1.2669343f +
5190       //               (0.27515199f -
5191       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5192       //
5193       // error 0.0000018516, which is better than 18 bits
5194       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5195                                getF32Constant(DAG, 0xbcd2769e, dl));
5196       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5197                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5198       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5199       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5200                                getF32Constant(DAG, 0x3fa22ae7, dl));
5201       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5202       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5203                                getF32Constant(DAG, 0x40525723, dl));
5204       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5205       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5206                                getF32Constant(DAG, 0x40aaf200, dl));
5207       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5208       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5209                                getF32Constant(DAG, 0x40c39dad, dl));
5210       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5211       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5212                                    getF32Constant(DAG, 0x4042902c, dl));
5213     }
5214 
5215     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5216   }
5217 
5218   // No special expansion.
5219   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5220 }
5221 
5222 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5223 /// limited-precision mode.
5224 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5225                            const TargetLowering &TLI, SDNodeFlags Flags) {
5226   // TODO: What fast-math-flags should be set on the floating-point nodes?
5227 
5228   if (Op.getValueType() == MVT::f32 &&
5229       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5230     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5231 
5232     // Scale the exponent by log10(2) [0.30102999f].
5233     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5234     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5235                                         getF32Constant(DAG, 0x3e9a209a, dl));
5236 
5237     // Get the significand and build it into a floating-point number with
5238     // exponent of 1.
5239     SDValue X = GetSignificand(DAG, Op1, dl);
5240 
5241     SDValue Log10ofMantissa;
5242     if (LimitFloatPrecision <= 6) {
5243       // For floating-point precision of 6:
5244       //
5245       //   Log10ofMantissa =
5246       //     -0.50419619f +
5247       //       (0.60948995f - 0.10380950f * x) * x;
5248       //
5249       // error 0.0014886165, which is 6 bits
5250       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5251                                getF32Constant(DAG, 0xbdd49a13, dl));
5252       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5253                                getF32Constant(DAG, 0x3f1c0789, dl));
5254       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5255       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5256                                     getF32Constant(DAG, 0x3f011300, dl));
5257     } else if (LimitFloatPrecision <= 12) {
5258       // For floating-point precision of 12:
5259       //
5260       //   Log10ofMantissa =
5261       //     -0.64831180f +
5262       //       (0.91751397f +
5263       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5264       //
5265       // error 0.00019228036, which is better than 12 bits
5266       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5267                                getF32Constant(DAG, 0x3d431f31, dl));
5268       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5269                                getF32Constant(DAG, 0x3ea21fb2, dl));
5270       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5271       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5272                                getF32Constant(DAG, 0x3f6ae232, dl));
5273       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5274       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5275                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5276     } else { // LimitFloatPrecision <= 18
5277       // For floating-point precision of 18:
5278       //
5279       //   Log10ofMantissa =
5280       //     -0.84299375f +
5281       //       (1.5327582f +
5282       //         (-1.0688956f +
5283       //           (0.49102474f +
5284       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5285       //
5286       // error 0.0000037995730, which is better than 18 bits
5287       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5288                                getF32Constant(DAG, 0x3c5d51ce, dl));
5289       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5290                                getF32Constant(DAG, 0x3e00685a, dl));
5291       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5292       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5293                                getF32Constant(DAG, 0x3efb6798, dl));
5294       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5295       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5296                                getF32Constant(DAG, 0x3f88d192, dl));
5297       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5298       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5299                                getF32Constant(DAG, 0x3fc4316c, dl));
5300       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5301       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5302                                     getF32Constant(DAG, 0x3f57ce70, dl));
5303     }
5304 
5305     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5306   }
5307 
5308   // No special expansion.
5309   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5310 }
5311 
5312 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5313 /// limited-precision mode.
5314 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5315                           const TargetLowering &TLI, SDNodeFlags Flags) {
5316   if (Op.getValueType() == MVT::f32 &&
5317       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5318     return getLimitedPrecisionExp2(Op, dl, DAG);
5319 
5320   // No special expansion.
5321   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5322 }
5323 
5324 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5325 /// limited-precision mode with x == 10.0f.
5326 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5327                          SelectionDAG &DAG, const TargetLowering &TLI,
5328                          SDNodeFlags Flags) {
5329   bool IsExp10 = false;
5330   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5331       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5332     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5333       APFloat Ten(10.0f);
5334       IsExp10 = LHSC->isExactlyValue(Ten);
5335     }
5336   }
5337 
5338   // TODO: What fast-math-flags should be set on the FMUL node?
5339   if (IsExp10) {
5340     // Put the exponent in the right bit position for later addition to the
5341     // final result:
5342     //
5343     //   #define LOG2OF10 3.3219281f
5344     //   t0 = Op * LOG2OF10;
5345     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5346                              getF32Constant(DAG, 0x40549a78, dl));
5347     return getLimitedPrecisionExp2(t0, dl, DAG);
5348   }
5349 
5350   // No special expansion.
5351   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5352 }
5353 
5354 /// ExpandPowI - Expand a llvm.powi intrinsic.
5355 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5356                           SelectionDAG &DAG) {
5357   // If RHS is a constant, we can expand this out to a multiplication tree,
5358   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5359   // optimizing for size, we only want to do this if the expansion would produce
5360   // a small number of multiplies, otherwise we do the full expansion.
5361   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5362     // Get the exponent as a positive value.
5363     unsigned Val = RHSC->getSExtValue();
5364     if ((int)Val < 0) Val = -Val;
5365 
5366     // powi(x, 0) -> 1.0
5367     if (Val == 0)
5368       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5369 
5370     bool OptForSize = DAG.shouldOptForSize();
5371     if (!OptForSize ||
5372         // If optimizing for size, don't insert too many multiplies.
5373         // This inserts up to 5 multiplies.
5374         countPopulation(Val) + Log2_32(Val) < 7) {
5375       // We use the simple binary decomposition method to generate the multiply
5376       // sequence.  There are more optimal ways to do this (for example,
5377       // powi(x,15) generates one more multiply than it should), but this has
5378       // the benefit of being both really simple and much better than a libcall.
5379       SDValue Res;  // Logically starts equal to 1.0
5380       SDValue CurSquare = LHS;
5381       // TODO: Intrinsics should have fast-math-flags that propagate to these
5382       // nodes.
5383       while (Val) {
5384         if (Val & 1) {
5385           if (Res.getNode())
5386             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5387           else
5388             Res = CurSquare;  // 1.0*CurSquare.
5389         }
5390 
5391         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5392                                 CurSquare, CurSquare);
5393         Val >>= 1;
5394       }
5395 
5396       // If the original was negative, invert the result, producing 1/(x*x*x).
5397       if (RHSC->getSExtValue() < 0)
5398         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5399                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5400       return Res;
5401     }
5402   }
5403 
5404   // Otherwise, expand to a libcall.
5405   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5406 }
5407 
5408 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5409                             SDValue LHS, SDValue RHS, SDValue Scale,
5410                             SelectionDAG &DAG, const TargetLowering &TLI) {
5411   EVT VT = LHS.getValueType();
5412   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5413   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5414   LLVMContext &Ctx = *DAG.getContext();
5415 
5416   // If the type is legal but the operation isn't, this node might survive all
5417   // the way to operation legalization. If we end up there and we do not have
5418   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5419   // node.
5420 
5421   // Coax the legalizer into expanding the node during type legalization instead
5422   // by bumping the size by one bit. This will force it to Promote, enabling the
5423   // early expansion and avoiding the need to expand later.
5424 
5425   // We don't have to do this if Scale is 0; that can always be expanded, unless
5426   // it's a saturating signed operation. Those can experience true integer
5427   // division overflow, a case which we must avoid.
5428 
5429   // FIXME: We wouldn't have to do this (or any of the early
5430   // expansion/promotion) if it was possible to expand a libcall of an
5431   // illegal type during operation legalization. But it's not, so things
5432   // get a bit hacky.
5433   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5434   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5435       (TLI.isTypeLegal(VT) ||
5436        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5437     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5438         Opcode, VT, ScaleInt);
5439     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5440       EVT PromVT;
5441       if (VT.isScalarInteger())
5442         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5443       else if (VT.isVector()) {
5444         PromVT = VT.getVectorElementType();
5445         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5446         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5447       } else
5448         llvm_unreachable("Wrong VT for DIVFIX?");
5449       if (Signed) {
5450         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5451         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5452       } else {
5453         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5454         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5455       }
5456       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5457       // For saturating operations, we need to shift up the LHS to get the
5458       // proper saturation width, and then shift down again afterwards.
5459       if (Saturating)
5460         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5461                           DAG.getConstant(1, DL, ShiftTy));
5462       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5463       if (Saturating)
5464         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5465                           DAG.getConstant(1, DL, ShiftTy));
5466       return DAG.getZExtOrTrunc(Res, DL, VT);
5467     }
5468   }
5469 
5470   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5471 }
5472 
5473 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5474 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5475 static void
5476 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5477                      const SDValue &N) {
5478   switch (N.getOpcode()) {
5479   case ISD::CopyFromReg: {
5480     SDValue Op = N.getOperand(1);
5481     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5482                       Op.getValueType().getSizeInBits());
5483     return;
5484   }
5485   case ISD::BITCAST:
5486   case ISD::AssertZext:
5487   case ISD::AssertSext:
5488   case ISD::TRUNCATE:
5489     getUnderlyingArgRegs(Regs, N.getOperand(0));
5490     return;
5491   case ISD::BUILD_PAIR:
5492   case ISD::BUILD_VECTOR:
5493   case ISD::CONCAT_VECTORS:
5494     for (SDValue Op : N->op_values())
5495       getUnderlyingArgRegs(Regs, Op);
5496     return;
5497   default:
5498     return;
5499   }
5500 }
5501 
5502 /// If the DbgValueInst is a dbg_value of a function argument, create the
5503 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5504 /// instruction selection, they will be inserted to the entry BB.
5505 /// We don't currently support this for variadic dbg_values, as they shouldn't
5506 /// appear for function arguments or in the prologue.
5507 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5508     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5509     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5510   const Argument *Arg = dyn_cast<Argument>(V);
5511   if (!Arg)
5512     return false;
5513 
5514   MachineFunction &MF = DAG.getMachineFunction();
5515   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5516 
5517   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5518   // we've been asked to pursue.
5519   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5520                               bool Indirect) {
5521     if (Reg.isVirtual() && TM.Options.ValueTrackingVariableLocations) {
5522       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5523       // pointing at the VReg, which will be patched up later.
5524       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5525       auto MIB = BuildMI(MF, DL, Inst);
5526       MIB.addReg(Reg, RegState::Debug);
5527       MIB.addImm(0);
5528       MIB.addMetadata(Variable);
5529       auto *NewDIExpr = FragExpr;
5530       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5531       // the DIExpression.
5532       if (Indirect)
5533         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5534       MIB.addMetadata(NewDIExpr);
5535       return MIB;
5536     } else {
5537       // Create a completely standard DBG_VALUE.
5538       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5539       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5540     }
5541   };
5542 
5543   if (!IsDbgDeclare) {
5544     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5545     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5546     // the entry block.
5547     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5548     if (!IsInEntryBlock)
5549       return false;
5550 
5551     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5552     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5553     // variable that also is a param.
5554     //
5555     // Although, if we are at the top of the entry block already, we can still
5556     // emit using ArgDbgValue. This might catch some situations when the
5557     // dbg.value refers to an argument that isn't used in the entry block, so
5558     // any CopyToReg node would be optimized out and the only way to express
5559     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5560     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5561     // we should only emit as ArgDbgValue if the Variable is an argument to the
5562     // current function, and the dbg.value intrinsic is found in the entry
5563     // block.
5564     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5565         !DL->getInlinedAt();
5566     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5567     if (!IsInPrologue && !VariableIsFunctionInputArg)
5568       return false;
5569 
5570     // Here we assume that a function argument on IR level only can be used to
5571     // describe one input parameter on source level. If we for example have
5572     // source code like this
5573     //
5574     //    struct A { long x, y; };
5575     //    void foo(struct A a, long b) {
5576     //      ...
5577     //      b = a.x;
5578     //      ...
5579     //    }
5580     //
5581     // and IR like this
5582     //
5583     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5584     //  entry:
5585     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5586     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5587     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5588     //    ...
5589     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5590     //    ...
5591     //
5592     // then the last dbg.value is describing a parameter "b" using a value that
5593     // is an argument. But since we already has used %a1 to describe a parameter
5594     // we should not handle that last dbg.value here (that would result in an
5595     // incorrect hoisting of the DBG_VALUE to the function entry).
5596     // Notice that we allow one dbg.value per IR level argument, to accommodate
5597     // for the situation with fragments above.
5598     if (VariableIsFunctionInputArg) {
5599       unsigned ArgNo = Arg->getArgNo();
5600       if (ArgNo >= FuncInfo.DescribedArgs.size())
5601         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5602       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5603         return false;
5604       FuncInfo.DescribedArgs.set(ArgNo);
5605     }
5606   }
5607 
5608   bool IsIndirect = false;
5609   Optional<MachineOperand> Op;
5610   // Some arguments' frame index is recorded during argument lowering.
5611   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5612   if (FI != std::numeric_limits<int>::max())
5613     Op = MachineOperand::CreateFI(FI);
5614 
5615   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5616   if (!Op && N.getNode()) {
5617     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5618     Register Reg;
5619     if (ArgRegsAndSizes.size() == 1)
5620       Reg = ArgRegsAndSizes.front().first;
5621 
5622     if (Reg && Reg.isVirtual()) {
5623       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5624       Register PR = RegInfo.getLiveInPhysReg(Reg);
5625       if (PR)
5626         Reg = PR;
5627     }
5628     if (Reg) {
5629       Op = MachineOperand::CreateReg(Reg, false);
5630       IsIndirect = IsDbgDeclare;
5631     }
5632   }
5633 
5634   if (!Op && N.getNode()) {
5635     // Check if frame index is available.
5636     SDValue LCandidate = peekThroughBitcasts(N);
5637     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5638       if (FrameIndexSDNode *FINode =
5639           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5640         Op = MachineOperand::CreateFI(FINode->getIndex());
5641   }
5642 
5643   if (!Op) {
5644     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5645     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5646                                          SplitRegs) {
5647       unsigned Offset = 0;
5648       for (auto RegAndSize : SplitRegs) {
5649         // If the expression is already a fragment, the current register
5650         // offset+size might extend beyond the fragment. In this case, only
5651         // the register bits that are inside the fragment are relevant.
5652         int RegFragmentSizeInBits = RegAndSize.second;
5653         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5654           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5655           // The register is entirely outside the expression fragment,
5656           // so is irrelevant for debug info.
5657           if (Offset >= ExprFragmentSizeInBits)
5658             break;
5659           // The register is partially outside the expression fragment, only
5660           // the low bits within the fragment are relevant for debug info.
5661           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5662             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5663           }
5664         }
5665 
5666         auto FragmentExpr = DIExpression::createFragmentExpression(
5667             Expr, Offset, RegFragmentSizeInBits);
5668         Offset += RegAndSize.second;
5669         // If a valid fragment expression cannot be created, the variable's
5670         // correct value cannot be determined and so it is set as Undef.
5671         if (!FragmentExpr) {
5672           SDDbgValue *SDV = DAG.getConstantDbgValue(
5673               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5674           DAG.AddDbgValue(SDV, false);
5675           continue;
5676         }
5677         MachineInstr *NewMI =
5678             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare);
5679         FuncInfo.ArgDbgValues.push_back(NewMI);
5680       }
5681     };
5682 
5683     // Check if ValueMap has reg number.
5684     DenseMap<const Value *, Register>::const_iterator
5685       VMI = FuncInfo.ValueMap.find(V);
5686     if (VMI != FuncInfo.ValueMap.end()) {
5687       const auto &TLI = DAG.getTargetLoweringInfo();
5688       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5689                        V->getType(), None);
5690       if (RFV.occupiesMultipleRegs()) {
5691         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5692         return true;
5693       }
5694 
5695       Op = MachineOperand::CreateReg(VMI->second, false);
5696       IsIndirect = IsDbgDeclare;
5697     } else if (ArgRegsAndSizes.size() > 1) {
5698       // This was split due to the calling convention, and no virtual register
5699       // mapping exists for the value.
5700       splitMultiRegDbgValue(ArgRegsAndSizes);
5701       return true;
5702     }
5703   }
5704 
5705   if (!Op)
5706     return false;
5707 
5708   assert(Variable->isValidLocationForIntrinsic(DL) &&
5709          "Expected inlined-at fields to agree");
5710   MachineInstr *NewMI = nullptr;
5711 
5712   if (Op->isReg())
5713     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5714   else
5715     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5716                     Variable, Expr);
5717 
5718   FuncInfo.ArgDbgValues.push_back(NewMI);
5719   return true;
5720 }
5721 
5722 /// Return the appropriate SDDbgValue based on N.
5723 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5724                                              DILocalVariable *Variable,
5725                                              DIExpression *Expr,
5726                                              const DebugLoc &dl,
5727                                              unsigned DbgSDNodeOrder) {
5728   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5729     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5730     // stack slot locations.
5731     //
5732     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5733     // debug values here after optimization:
5734     //
5735     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5736     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5737     //
5738     // Both describe the direct values of their associated variables.
5739     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5740                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5741   }
5742   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5743                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5744 }
5745 
5746 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5747   switch (Intrinsic) {
5748   case Intrinsic::smul_fix:
5749     return ISD::SMULFIX;
5750   case Intrinsic::umul_fix:
5751     return ISD::UMULFIX;
5752   case Intrinsic::smul_fix_sat:
5753     return ISD::SMULFIXSAT;
5754   case Intrinsic::umul_fix_sat:
5755     return ISD::UMULFIXSAT;
5756   case Intrinsic::sdiv_fix:
5757     return ISD::SDIVFIX;
5758   case Intrinsic::udiv_fix:
5759     return ISD::UDIVFIX;
5760   case Intrinsic::sdiv_fix_sat:
5761     return ISD::SDIVFIXSAT;
5762   case Intrinsic::udiv_fix_sat:
5763     return ISD::UDIVFIXSAT;
5764   default:
5765     llvm_unreachable("Unhandled fixed point intrinsic");
5766   }
5767 }
5768 
5769 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5770                                            const char *FunctionName) {
5771   assert(FunctionName && "FunctionName must not be nullptr");
5772   SDValue Callee = DAG.getExternalSymbol(
5773       FunctionName,
5774       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5775   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5776 }
5777 
5778 /// Given a @llvm.call.preallocated.setup, return the corresponding
5779 /// preallocated call.
5780 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5781   assert(cast<CallBase>(PreallocatedSetup)
5782                  ->getCalledFunction()
5783                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5784          "expected call_preallocated_setup Value");
5785   for (auto *U : PreallocatedSetup->users()) {
5786     auto *UseCall = cast<CallBase>(U);
5787     const Function *Fn = UseCall->getCalledFunction();
5788     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5789       return UseCall;
5790     }
5791   }
5792   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5793 }
5794 
5795 /// Lower the call to the specified intrinsic function.
5796 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5797                                              unsigned Intrinsic) {
5798   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5799   SDLoc sdl = getCurSDLoc();
5800   DebugLoc dl = getCurDebugLoc();
5801   SDValue Res;
5802 
5803   SDNodeFlags Flags;
5804   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5805     Flags.copyFMF(*FPOp);
5806 
5807   switch (Intrinsic) {
5808   default:
5809     // By default, turn this into a target intrinsic node.
5810     visitTargetIntrinsic(I, Intrinsic);
5811     return;
5812   case Intrinsic::vscale: {
5813     match(&I, m_VScale(DAG.getDataLayout()));
5814     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5815     setValue(&I,
5816              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5817     return;
5818   }
5819   case Intrinsic::vastart:  visitVAStart(I); return;
5820   case Intrinsic::vaend:    visitVAEnd(I); return;
5821   case Intrinsic::vacopy:   visitVACopy(I); return;
5822   case Intrinsic::returnaddress:
5823     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5824                              TLI.getPointerTy(DAG.getDataLayout()),
5825                              getValue(I.getArgOperand(0))));
5826     return;
5827   case Intrinsic::addressofreturnaddress:
5828     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5829                              TLI.getPointerTy(DAG.getDataLayout())));
5830     return;
5831   case Intrinsic::sponentry:
5832     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5833                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5834     return;
5835   case Intrinsic::frameaddress:
5836     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5837                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5838                              getValue(I.getArgOperand(0))));
5839     return;
5840   case Intrinsic::read_volatile_register:
5841   case Intrinsic::read_register: {
5842     Value *Reg = I.getArgOperand(0);
5843     SDValue Chain = getRoot();
5844     SDValue RegName =
5845         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5846     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5847     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5848       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5849     setValue(&I, Res);
5850     DAG.setRoot(Res.getValue(1));
5851     return;
5852   }
5853   case Intrinsic::write_register: {
5854     Value *Reg = I.getArgOperand(0);
5855     Value *RegValue = I.getArgOperand(1);
5856     SDValue Chain = getRoot();
5857     SDValue RegName =
5858         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5859     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5860                             RegName, getValue(RegValue)));
5861     return;
5862   }
5863   case Intrinsic::memcpy: {
5864     const auto &MCI = cast<MemCpyInst>(I);
5865     SDValue Op1 = getValue(I.getArgOperand(0));
5866     SDValue Op2 = getValue(I.getArgOperand(1));
5867     SDValue Op3 = getValue(I.getArgOperand(2));
5868     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5869     Align DstAlign = MCI.getDestAlign().valueOrOne();
5870     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5871     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5872     bool isVol = MCI.isVolatile();
5873     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5874     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5875     // node.
5876     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5877     AAMDNodes AAInfo;
5878     I.getAAMetadata(AAInfo);
5879     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5880                                /* AlwaysInline */ false, isTC,
5881                                MachinePointerInfo(I.getArgOperand(0)),
5882                                MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5883     updateDAGForMaybeTailCall(MC);
5884     return;
5885   }
5886   case Intrinsic::memcpy_inline: {
5887     const auto &MCI = cast<MemCpyInlineInst>(I);
5888     SDValue Dst = getValue(I.getArgOperand(0));
5889     SDValue Src = getValue(I.getArgOperand(1));
5890     SDValue Size = getValue(I.getArgOperand(2));
5891     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5892     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5893     Align DstAlign = MCI.getDestAlign().valueOrOne();
5894     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5895     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5896     bool isVol = MCI.isVolatile();
5897     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5898     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5899     // node.
5900     AAMDNodes AAInfo;
5901     I.getAAMetadata(AAInfo);
5902     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5903                                /* AlwaysInline */ true, isTC,
5904                                MachinePointerInfo(I.getArgOperand(0)),
5905                                MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5906     updateDAGForMaybeTailCall(MC);
5907     return;
5908   }
5909   case Intrinsic::memset: {
5910     const auto &MSI = cast<MemSetInst>(I);
5911     SDValue Op1 = getValue(I.getArgOperand(0));
5912     SDValue Op2 = getValue(I.getArgOperand(1));
5913     SDValue Op3 = getValue(I.getArgOperand(2));
5914     // @llvm.memset defines 0 and 1 to both mean no alignment.
5915     Align Alignment = MSI.getDestAlign().valueOrOne();
5916     bool isVol = MSI.isVolatile();
5917     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5918     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5919     AAMDNodes AAInfo;
5920     I.getAAMetadata(AAInfo);
5921     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5922                                MachinePointerInfo(I.getArgOperand(0)), AAInfo);
5923     updateDAGForMaybeTailCall(MS);
5924     return;
5925   }
5926   case Intrinsic::memmove: {
5927     const auto &MMI = cast<MemMoveInst>(I);
5928     SDValue Op1 = getValue(I.getArgOperand(0));
5929     SDValue Op2 = getValue(I.getArgOperand(1));
5930     SDValue Op3 = getValue(I.getArgOperand(2));
5931     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5932     Align DstAlign = MMI.getDestAlign().valueOrOne();
5933     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5934     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5935     bool isVol = MMI.isVolatile();
5936     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5937     // FIXME: Support passing different dest/src alignments to the memmove DAG
5938     // node.
5939     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5940     AAMDNodes AAInfo;
5941     I.getAAMetadata(AAInfo);
5942     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5943                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5944                                 MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5945     updateDAGForMaybeTailCall(MM);
5946     return;
5947   }
5948   case Intrinsic::memcpy_element_unordered_atomic: {
5949     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5950     SDValue Dst = getValue(MI.getRawDest());
5951     SDValue Src = getValue(MI.getRawSource());
5952     SDValue Length = getValue(MI.getLength());
5953 
5954     unsigned DstAlign = MI.getDestAlignment();
5955     unsigned SrcAlign = MI.getSourceAlignment();
5956     Type *LengthTy = MI.getLength()->getType();
5957     unsigned ElemSz = MI.getElementSizeInBytes();
5958     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5959     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5960                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5961                                      MachinePointerInfo(MI.getRawDest()),
5962                                      MachinePointerInfo(MI.getRawSource()));
5963     updateDAGForMaybeTailCall(MC);
5964     return;
5965   }
5966   case Intrinsic::memmove_element_unordered_atomic: {
5967     auto &MI = cast<AtomicMemMoveInst>(I);
5968     SDValue Dst = getValue(MI.getRawDest());
5969     SDValue Src = getValue(MI.getRawSource());
5970     SDValue Length = getValue(MI.getLength());
5971 
5972     unsigned DstAlign = MI.getDestAlignment();
5973     unsigned SrcAlign = MI.getSourceAlignment();
5974     Type *LengthTy = MI.getLength()->getType();
5975     unsigned ElemSz = MI.getElementSizeInBytes();
5976     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5977     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5978                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5979                                       MachinePointerInfo(MI.getRawDest()),
5980                                       MachinePointerInfo(MI.getRawSource()));
5981     updateDAGForMaybeTailCall(MC);
5982     return;
5983   }
5984   case Intrinsic::memset_element_unordered_atomic: {
5985     auto &MI = cast<AtomicMemSetInst>(I);
5986     SDValue Dst = getValue(MI.getRawDest());
5987     SDValue Val = getValue(MI.getValue());
5988     SDValue Length = getValue(MI.getLength());
5989 
5990     unsigned DstAlign = MI.getDestAlignment();
5991     Type *LengthTy = MI.getLength()->getType();
5992     unsigned ElemSz = MI.getElementSizeInBytes();
5993     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5994     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5995                                      LengthTy, ElemSz, isTC,
5996                                      MachinePointerInfo(MI.getRawDest()));
5997     updateDAGForMaybeTailCall(MC);
5998     return;
5999   }
6000   case Intrinsic::call_preallocated_setup: {
6001     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6002     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6003     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6004                               getRoot(), SrcValue);
6005     setValue(&I, Res);
6006     DAG.setRoot(Res);
6007     return;
6008   }
6009   case Intrinsic::call_preallocated_arg: {
6010     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6011     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6012     SDValue Ops[3];
6013     Ops[0] = getRoot();
6014     Ops[1] = SrcValue;
6015     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6016                                    MVT::i32); // arg index
6017     SDValue Res = DAG.getNode(
6018         ISD::PREALLOCATED_ARG, sdl,
6019         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6020     setValue(&I, Res);
6021     DAG.setRoot(Res.getValue(1));
6022     return;
6023   }
6024   case Intrinsic::dbg_addr:
6025   case Intrinsic::dbg_declare: {
6026     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6027     // they are non-variadic.
6028     const auto &DI = cast<DbgVariableIntrinsic>(I);
6029     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6030     DILocalVariable *Variable = DI.getVariable();
6031     DIExpression *Expression = DI.getExpression();
6032     dropDanglingDebugInfo(Variable, Expression);
6033     assert(Variable && "Missing variable");
6034     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6035                       << "\n");
6036     // Check if address has undef value.
6037     const Value *Address = DI.getVariableLocationOp(0);
6038     if (!Address || isa<UndefValue>(Address) ||
6039         (Address->use_empty() && !isa<Argument>(Address))) {
6040       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6041                         << " (bad/undef/unused-arg address)\n");
6042       return;
6043     }
6044 
6045     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6046 
6047     // Check if this variable can be described by a frame index, typically
6048     // either as a static alloca or a byval parameter.
6049     int FI = std::numeric_limits<int>::max();
6050     if (const auto *AI =
6051             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6052       if (AI->isStaticAlloca()) {
6053         auto I = FuncInfo.StaticAllocaMap.find(AI);
6054         if (I != FuncInfo.StaticAllocaMap.end())
6055           FI = I->second;
6056       }
6057     } else if (const auto *Arg = dyn_cast<Argument>(
6058                    Address->stripInBoundsConstantOffsets())) {
6059       FI = FuncInfo.getArgumentFrameIndex(Arg);
6060     }
6061 
6062     // llvm.dbg.addr is control dependent and always generates indirect
6063     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6064     // the MachineFunction variable table.
6065     if (FI != std::numeric_limits<int>::max()) {
6066       if (Intrinsic == Intrinsic::dbg_addr) {
6067         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6068             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6069             dl, SDNodeOrder);
6070         DAG.AddDbgValue(SDV, isParameter);
6071       } else {
6072         LLVM_DEBUG(dbgs() << "Skipping " << DI
6073                           << " (variable info stashed in MF side table)\n");
6074       }
6075       return;
6076     }
6077 
6078     SDValue &N = NodeMap[Address];
6079     if (!N.getNode() && isa<Argument>(Address))
6080       // Check unused arguments map.
6081       N = UnusedArgNodeMap[Address];
6082     SDDbgValue *SDV;
6083     if (N.getNode()) {
6084       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6085         Address = BCI->getOperand(0);
6086       // Parameters are handled specially.
6087       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6088       if (isParameter && FINode) {
6089         // Byval parameter. We have a frame index at this point.
6090         SDV =
6091             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6092                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6093       } else if (isa<Argument>(Address)) {
6094         // Address is an argument, so try to emit its dbg value using
6095         // virtual register info from the FuncInfo.ValueMap.
6096         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6097         return;
6098       } else {
6099         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6100                               true, dl, SDNodeOrder);
6101       }
6102       DAG.AddDbgValue(SDV, isParameter);
6103     } else {
6104       // If Address is an argument then try to emit its dbg value using
6105       // virtual register info from the FuncInfo.ValueMap.
6106       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6107                                     N)) {
6108         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6109                           << " (could not emit func-arg dbg_value)\n");
6110       }
6111     }
6112     return;
6113   }
6114   case Intrinsic::dbg_label: {
6115     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6116     DILabel *Label = DI.getLabel();
6117     assert(Label && "Missing label");
6118 
6119     SDDbgLabel *SDV;
6120     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6121     DAG.AddDbgLabel(SDV);
6122     return;
6123   }
6124   case Intrinsic::dbg_value: {
6125     const DbgValueInst &DI = cast<DbgValueInst>(I);
6126     assert(DI.getVariable() && "Missing variable");
6127 
6128     DILocalVariable *Variable = DI.getVariable();
6129     DIExpression *Expression = DI.getExpression();
6130     dropDanglingDebugInfo(Variable, Expression);
6131     SmallVector<Value *, 4> Values(DI.getValues());
6132     if (Values.empty())
6133       return;
6134 
6135     if (std::count(Values.begin(), Values.end(), nullptr))
6136       return;
6137 
6138     bool IsVariadic = DI.hasArgList();
6139     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6140                           SDNodeOrder, IsVariadic))
6141       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6142     return;
6143   }
6144 
6145   case Intrinsic::eh_typeid_for: {
6146     // Find the type id for the given typeinfo.
6147     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6148     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6149     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6150     setValue(&I, Res);
6151     return;
6152   }
6153 
6154   case Intrinsic::eh_return_i32:
6155   case Intrinsic::eh_return_i64:
6156     DAG.getMachineFunction().setCallsEHReturn(true);
6157     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6158                             MVT::Other,
6159                             getControlRoot(),
6160                             getValue(I.getArgOperand(0)),
6161                             getValue(I.getArgOperand(1))));
6162     return;
6163   case Intrinsic::eh_unwind_init:
6164     DAG.getMachineFunction().setCallsUnwindInit(true);
6165     return;
6166   case Intrinsic::eh_dwarf_cfa:
6167     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6168                              TLI.getPointerTy(DAG.getDataLayout()),
6169                              getValue(I.getArgOperand(0))));
6170     return;
6171   case Intrinsic::eh_sjlj_callsite: {
6172     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6173     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6174     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6175     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6176 
6177     MMI.setCurrentCallSite(CI->getZExtValue());
6178     return;
6179   }
6180   case Intrinsic::eh_sjlj_functioncontext: {
6181     // Get and store the index of the function context.
6182     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6183     AllocaInst *FnCtx =
6184       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6185     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6186     MFI.setFunctionContextIndex(FI);
6187     return;
6188   }
6189   case Intrinsic::eh_sjlj_setjmp: {
6190     SDValue Ops[2];
6191     Ops[0] = getRoot();
6192     Ops[1] = getValue(I.getArgOperand(0));
6193     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6194                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6195     setValue(&I, Op.getValue(0));
6196     DAG.setRoot(Op.getValue(1));
6197     return;
6198   }
6199   case Intrinsic::eh_sjlj_longjmp:
6200     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6201                             getRoot(), getValue(I.getArgOperand(0))));
6202     return;
6203   case Intrinsic::eh_sjlj_setup_dispatch:
6204     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6205                             getRoot()));
6206     return;
6207   case Intrinsic::masked_gather:
6208     visitMaskedGather(I);
6209     return;
6210   case Intrinsic::masked_load:
6211     visitMaskedLoad(I);
6212     return;
6213   case Intrinsic::masked_scatter:
6214     visitMaskedScatter(I);
6215     return;
6216   case Intrinsic::masked_store:
6217     visitMaskedStore(I);
6218     return;
6219   case Intrinsic::masked_expandload:
6220     visitMaskedLoad(I, true /* IsExpanding */);
6221     return;
6222   case Intrinsic::masked_compressstore:
6223     visitMaskedStore(I, true /* IsCompressing */);
6224     return;
6225   case Intrinsic::powi:
6226     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6227                             getValue(I.getArgOperand(1)), DAG));
6228     return;
6229   case Intrinsic::log:
6230     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6231     return;
6232   case Intrinsic::log2:
6233     setValue(&I,
6234              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6235     return;
6236   case Intrinsic::log10:
6237     setValue(&I,
6238              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6239     return;
6240   case Intrinsic::exp:
6241     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6242     return;
6243   case Intrinsic::exp2:
6244     setValue(&I,
6245              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6246     return;
6247   case Intrinsic::pow:
6248     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6249                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6250     return;
6251   case Intrinsic::sqrt:
6252   case Intrinsic::fabs:
6253   case Intrinsic::sin:
6254   case Intrinsic::cos:
6255   case Intrinsic::floor:
6256   case Intrinsic::ceil:
6257   case Intrinsic::trunc:
6258   case Intrinsic::rint:
6259   case Intrinsic::nearbyint:
6260   case Intrinsic::round:
6261   case Intrinsic::roundeven:
6262   case Intrinsic::canonicalize: {
6263     unsigned Opcode;
6264     switch (Intrinsic) {
6265     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6266     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6267     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6268     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6269     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6270     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6271     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6272     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6273     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6274     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6275     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6276     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6277     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6278     }
6279 
6280     setValue(&I, DAG.getNode(Opcode, sdl,
6281                              getValue(I.getArgOperand(0)).getValueType(),
6282                              getValue(I.getArgOperand(0)), Flags));
6283     return;
6284   }
6285   case Intrinsic::lround:
6286   case Intrinsic::llround:
6287   case Intrinsic::lrint:
6288   case Intrinsic::llrint: {
6289     unsigned Opcode;
6290     switch (Intrinsic) {
6291     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6292     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6293     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6294     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6295     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6296     }
6297 
6298     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6299     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6300                              getValue(I.getArgOperand(0))));
6301     return;
6302   }
6303   case Intrinsic::minnum:
6304     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6305                              getValue(I.getArgOperand(0)).getValueType(),
6306                              getValue(I.getArgOperand(0)),
6307                              getValue(I.getArgOperand(1)), Flags));
6308     return;
6309   case Intrinsic::maxnum:
6310     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6311                              getValue(I.getArgOperand(0)).getValueType(),
6312                              getValue(I.getArgOperand(0)),
6313                              getValue(I.getArgOperand(1)), Flags));
6314     return;
6315   case Intrinsic::minimum:
6316     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6317                              getValue(I.getArgOperand(0)).getValueType(),
6318                              getValue(I.getArgOperand(0)),
6319                              getValue(I.getArgOperand(1)), Flags));
6320     return;
6321   case Intrinsic::maximum:
6322     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6323                              getValue(I.getArgOperand(0)).getValueType(),
6324                              getValue(I.getArgOperand(0)),
6325                              getValue(I.getArgOperand(1)), Flags));
6326     return;
6327   case Intrinsic::copysign:
6328     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6329                              getValue(I.getArgOperand(0)).getValueType(),
6330                              getValue(I.getArgOperand(0)),
6331                              getValue(I.getArgOperand(1)), Flags));
6332     return;
6333   case Intrinsic::arithmetic_fence: {
6334     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6335                              getValue(I.getArgOperand(0)).getValueType(),
6336                              getValue(I.getArgOperand(0)), Flags));
6337     return;
6338   }
6339   case Intrinsic::fma:
6340     setValue(&I, DAG.getNode(
6341                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6342                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6343                      getValue(I.getArgOperand(2)), Flags));
6344     return;
6345 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6346   case Intrinsic::INTRINSIC:
6347 #include "llvm/IR/ConstrainedOps.def"
6348     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6349     return;
6350 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6351 #include "llvm/IR/VPIntrinsics.def"
6352     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6353     return;
6354   case Intrinsic::fmuladd: {
6355     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6356     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6357         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6358       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6359                                getValue(I.getArgOperand(0)).getValueType(),
6360                                getValue(I.getArgOperand(0)),
6361                                getValue(I.getArgOperand(1)),
6362                                getValue(I.getArgOperand(2)), Flags));
6363     } else {
6364       // TODO: Intrinsic calls should have fast-math-flags.
6365       SDValue Mul = DAG.getNode(
6366           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6367           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6368       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6369                                 getValue(I.getArgOperand(0)).getValueType(),
6370                                 Mul, getValue(I.getArgOperand(2)), Flags);
6371       setValue(&I, Add);
6372     }
6373     return;
6374   }
6375   case Intrinsic::convert_to_fp16:
6376     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6377                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6378                                          getValue(I.getArgOperand(0)),
6379                                          DAG.getTargetConstant(0, sdl,
6380                                                                MVT::i32))));
6381     return;
6382   case Intrinsic::convert_from_fp16:
6383     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6384                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6385                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6386                                          getValue(I.getArgOperand(0)))));
6387     return;
6388   case Intrinsic::fptosi_sat: {
6389     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6390     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6391                              getValue(I.getArgOperand(0)),
6392                              DAG.getValueType(VT.getScalarType())));
6393     return;
6394   }
6395   case Intrinsic::fptoui_sat: {
6396     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6397     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6398                              getValue(I.getArgOperand(0)),
6399                              DAG.getValueType(VT.getScalarType())));
6400     return;
6401   }
6402   case Intrinsic::set_rounding:
6403     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6404                       {getRoot(), getValue(I.getArgOperand(0))});
6405     setValue(&I, Res);
6406     DAG.setRoot(Res.getValue(0));
6407     return;
6408   case Intrinsic::pcmarker: {
6409     SDValue Tmp = getValue(I.getArgOperand(0));
6410     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6411     return;
6412   }
6413   case Intrinsic::isnan: {
6414     const DataLayout DLayout = DAG.getDataLayout();
6415     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6416     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6417     MachineFunction &MF = DAG.getMachineFunction();
6418     const Function &F = MF.getFunction();
6419     SDValue Op = getValue(I.getArgOperand(0));
6420     SDNodeFlags Flags;
6421     Flags.setNoFPExcept(
6422         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6423 
6424     // If ISD::ISNAN should be expanded, do it right now, because the expansion
6425     // can use illegal types. Making expansion early allows to legalize these
6426     // types prior to selection.
6427     if (!TLI.isOperationLegalOrCustom(ISD::ISNAN, ArgVT)) {
6428       SDValue Result = TLI.expandISNAN(DestVT, Op, Flags, sdl, DAG);
6429       setValue(&I, Result);
6430       return;
6431     }
6432 
6433     SDValue V = DAG.getNode(ISD::ISNAN, sdl, DestVT, Op, Flags);
6434     setValue(&I, V);
6435     return;
6436   }
6437   case Intrinsic::readcyclecounter: {
6438     SDValue Op = getRoot();
6439     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6440                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6441     setValue(&I, Res);
6442     DAG.setRoot(Res.getValue(1));
6443     return;
6444   }
6445   case Intrinsic::bitreverse:
6446     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6447                              getValue(I.getArgOperand(0)).getValueType(),
6448                              getValue(I.getArgOperand(0))));
6449     return;
6450   case Intrinsic::bswap:
6451     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6452                              getValue(I.getArgOperand(0)).getValueType(),
6453                              getValue(I.getArgOperand(0))));
6454     return;
6455   case Intrinsic::cttz: {
6456     SDValue Arg = getValue(I.getArgOperand(0));
6457     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6458     EVT Ty = Arg.getValueType();
6459     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6460                              sdl, Ty, Arg));
6461     return;
6462   }
6463   case Intrinsic::ctlz: {
6464     SDValue Arg = getValue(I.getArgOperand(0));
6465     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6466     EVT Ty = Arg.getValueType();
6467     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6468                              sdl, Ty, Arg));
6469     return;
6470   }
6471   case Intrinsic::ctpop: {
6472     SDValue Arg = getValue(I.getArgOperand(0));
6473     EVT Ty = Arg.getValueType();
6474     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6475     return;
6476   }
6477   case Intrinsic::fshl:
6478   case Intrinsic::fshr: {
6479     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6480     SDValue X = getValue(I.getArgOperand(0));
6481     SDValue Y = getValue(I.getArgOperand(1));
6482     SDValue Z = getValue(I.getArgOperand(2));
6483     EVT VT = X.getValueType();
6484 
6485     if (X == Y) {
6486       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6487       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6488     } else {
6489       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6490       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6491     }
6492     return;
6493   }
6494   case Intrinsic::sadd_sat: {
6495     SDValue Op1 = getValue(I.getArgOperand(0));
6496     SDValue Op2 = getValue(I.getArgOperand(1));
6497     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6498     return;
6499   }
6500   case Intrinsic::uadd_sat: {
6501     SDValue Op1 = getValue(I.getArgOperand(0));
6502     SDValue Op2 = getValue(I.getArgOperand(1));
6503     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6504     return;
6505   }
6506   case Intrinsic::ssub_sat: {
6507     SDValue Op1 = getValue(I.getArgOperand(0));
6508     SDValue Op2 = getValue(I.getArgOperand(1));
6509     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6510     return;
6511   }
6512   case Intrinsic::usub_sat: {
6513     SDValue Op1 = getValue(I.getArgOperand(0));
6514     SDValue Op2 = getValue(I.getArgOperand(1));
6515     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6516     return;
6517   }
6518   case Intrinsic::sshl_sat: {
6519     SDValue Op1 = getValue(I.getArgOperand(0));
6520     SDValue Op2 = getValue(I.getArgOperand(1));
6521     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6522     return;
6523   }
6524   case Intrinsic::ushl_sat: {
6525     SDValue Op1 = getValue(I.getArgOperand(0));
6526     SDValue Op2 = getValue(I.getArgOperand(1));
6527     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6528     return;
6529   }
6530   case Intrinsic::smul_fix:
6531   case Intrinsic::umul_fix:
6532   case Intrinsic::smul_fix_sat:
6533   case Intrinsic::umul_fix_sat: {
6534     SDValue Op1 = getValue(I.getArgOperand(0));
6535     SDValue Op2 = getValue(I.getArgOperand(1));
6536     SDValue Op3 = getValue(I.getArgOperand(2));
6537     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6538                              Op1.getValueType(), Op1, Op2, Op3));
6539     return;
6540   }
6541   case Intrinsic::sdiv_fix:
6542   case Intrinsic::udiv_fix:
6543   case Intrinsic::sdiv_fix_sat:
6544   case Intrinsic::udiv_fix_sat: {
6545     SDValue Op1 = getValue(I.getArgOperand(0));
6546     SDValue Op2 = getValue(I.getArgOperand(1));
6547     SDValue Op3 = getValue(I.getArgOperand(2));
6548     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6549                               Op1, Op2, Op3, DAG, TLI));
6550     return;
6551   }
6552   case Intrinsic::smax: {
6553     SDValue Op1 = getValue(I.getArgOperand(0));
6554     SDValue Op2 = getValue(I.getArgOperand(1));
6555     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6556     return;
6557   }
6558   case Intrinsic::smin: {
6559     SDValue Op1 = getValue(I.getArgOperand(0));
6560     SDValue Op2 = getValue(I.getArgOperand(1));
6561     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6562     return;
6563   }
6564   case Intrinsic::umax: {
6565     SDValue Op1 = getValue(I.getArgOperand(0));
6566     SDValue Op2 = getValue(I.getArgOperand(1));
6567     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6568     return;
6569   }
6570   case Intrinsic::umin: {
6571     SDValue Op1 = getValue(I.getArgOperand(0));
6572     SDValue Op2 = getValue(I.getArgOperand(1));
6573     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6574     return;
6575   }
6576   case Intrinsic::abs: {
6577     // TODO: Preserve "int min is poison" arg in SDAG?
6578     SDValue Op1 = getValue(I.getArgOperand(0));
6579     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6580     return;
6581   }
6582   case Intrinsic::stacksave: {
6583     SDValue Op = getRoot();
6584     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6585     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6586     setValue(&I, Res);
6587     DAG.setRoot(Res.getValue(1));
6588     return;
6589   }
6590   case Intrinsic::stackrestore:
6591     Res = getValue(I.getArgOperand(0));
6592     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6593     return;
6594   case Intrinsic::get_dynamic_area_offset: {
6595     SDValue Op = getRoot();
6596     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6597     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6598     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6599     // target.
6600     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6601       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6602                          " intrinsic!");
6603     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6604                       Op);
6605     DAG.setRoot(Op);
6606     setValue(&I, Res);
6607     return;
6608   }
6609   case Intrinsic::stackguard: {
6610     MachineFunction &MF = DAG.getMachineFunction();
6611     const Module &M = *MF.getFunction().getParent();
6612     SDValue Chain = getRoot();
6613     if (TLI.useLoadStackGuardNode()) {
6614       Res = getLoadStackGuard(DAG, sdl, Chain);
6615     } else {
6616       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6617       const Value *Global = TLI.getSDagStackGuard(M);
6618       Align Align = DL->getPrefTypeAlign(Global->getType());
6619       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6620                         MachinePointerInfo(Global, 0), Align,
6621                         MachineMemOperand::MOVolatile);
6622     }
6623     if (TLI.useStackGuardXorFP())
6624       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6625     DAG.setRoot(Chain);
6626     setValue(&I, Res);
6627     return;
6628   }
6629   case Intrinsic::stackprotector: {
6630     // Emit code into the DAG to store the stack guard onto the stack.
6631     MachineFunction &MF = DAG.getMachineFunction();
6632     MachineFrameInfo &MFI = MF.getFrameInfo();
6633     SDValue Src, Chain = getRoot();
6634 
6635     if (TLI.useLoadStackGuardNode())
6636       Src = getLoadStackGuard(DAG, sdl, Chain);
6637     else
6638       Src = getValue(I.getArgOperand(0));   // The guard's value.
6639 
6640     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6641 
6642     int FI = FuncInfo.StaticAllocaMap[Slot];
6643     MFI.setStackProtectorIndex(FI);
6644     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6645 
6646     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6647 
6648     // Store the stack protector onto the stack.
6649     Res = DAG.getStore(
6650         Chain, sdl, Src, FIN,
6651         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6652         MaybeAlign(), MachineMemOperand::MOVolatile);
6653     setValue(&I, Res);
6654     DAG.setRoot(Res);
6655     return;
6656   }
6657   case Intrinsic::objectsize:
6658     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6659 
6660   case Intrinsic::is_constant:
6661     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6662 
6663   case Intrinsic::annotation:
6664   case Intrinsic::ptr_annotation:
6665   case Intrinsic::launder_invariant_group:
6666   case Intrinsic::strip_invariant_group:
6667     // Drop the intrinsic, but forward the value
6668     setValue(&I, getValue(I.getOperand(0)));
6669     return;
6670 
6671   case Intrinsic::assume:
6672   case Intrinsic::experimental_noalias_scope_decl:
6673   case Intrinsic::var_annotation:
6674   case Intrinsic::sideeffect:
6675     // Discard annotate attributes, noalias scope declarations, assumptions, and
6676     // artificial side-effects.
6677     return;
6678 
6679   case Intrinsic::codeview_annotation: {
6680     // Emit a label associated with this metadata.
6681     MachineFunction &MF = DAG.getMachineFunction();
6682     MCSymbol *Label =
6683         MF.getMMI().getContext().createTempSymbol("annotation", true);
6684     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6685     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6686     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6687     DAG.setRoot(Res);
6688     return;
6689   }
6690 
6691   case Intrinsic::init_trampoline: {
6692     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6693 
6694     SDValue Ops[6];
6695     Ops[0] = getRoot();
6696     Ops[1] = getValue(I.getArgOperand(0));
6697     Ops[2] = getValue(I.getArgOperand(1));
6698     Ops[3] = getValue(I.getArgOperand(2));
6699     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6700     Ops[5] = DAG.getSrcValue(F);
6701 
6702     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6703 
6704     DAG.setRoot(Res);
6705     return;
6706   }
6707   case Intrinsic::adjust_trampoline:
6708     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6709                              TLI.getPointerTy(DAG.getDataLayout()),
6710                              getValue(I.getArgOperand(0))));
6711     return;
6712   case Intrinsic::gcroot: {
6713     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6714            "only valid in functions with gc specified, enforced by Verifier");
6715     assert(GFI && "implied by previous");
6716     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6717     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6718 
6719     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6720     GFI->addStackRoot(FI->getIndex(), TypeMap);
6721     return;
6722   }
6723   case Intrinsic::gcread:
6724   case Intrinsic::gcwrite:
6725     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6726   case Intrinsic::flt_rounds:
6727     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6728     setValue(&I, Res);
6729     DAG.setRoot(Res.getValue(1));
6730     return;
6731 
6732   case Intrinsic::expect:
6733     // Just replace __builtin_expect(exp, c) with EXP.
6734     setValue(&I, getValue(I.getArgOperand(0)));
6735     return;
6736 
6737   case Intrinsic::ubsantrap:
6738   case Intrinsic::debugtrap:
6739   case Intrinsic::trap: {
6740     StringRef TrapFuncName =
6741         I.getAttributes()
6742             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6743             .getValueAsString();
6744     if (TrapFuncName.empty()) {
6745       switch (Intrinsic) {
6746       case Intrinsic::trap:
6747         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6748         break;
6749       case Intrinsic::debugtrap:
6750         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6751         break;
6752       case Intrinsic::ubsantrap:
6753         DAG.setRoot(DAG.getNode(
6754             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6755             DAG.getTargetConstant(
6756                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6757                 MVT::i32)));
6758         break;
6759       default: llvm_unreachable("unknown trap intrinsic");
6760       }
6761       return;
6762     }
6763     TargetLowering::ArgListTy Args;
6764     if (Intrinsic == Intrinsic::ubsantrap) {
6765       Args.push_back(TargetLoweringBase::ArgListEntry());
6766       Args[0].Val = I.getArgOperand(0);
6767       Args[0].Node = getValue(Args[0].Val);
6768       Args[0].Ty = Args[0].Val->getType();
6769     }
6770 
6771     TargetLowering::CallLoweringInfo CLI(DAG);
6772     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6773         CallingConv::C, I.getType(),
6774         DAG.getExternalSymbol(TrapFuncName.data(),
6775                               TLI.getPointerTy(DAG.getDataLayout())),
6776         std::move(Args));
6777 
6778     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6779     DAG.setRoot(Result.second);
6780     return;
6781   }
6782 
6783   case Intrinsic::uadd_with_overflow:
6784   case Intrinsic::sadd_with_overflow:
6785   case Intrinsic::usub_with_overflow:
6786   case Intrinsic::ssub_with_overflow:
6787   case Intrinsic::umul_with_overflow:
6788   case Intrinsic::smul_with_overflow: {
6789     ISD::NodeType Op;
6790     switch (Intrinsic) {
6791     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6792     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6793     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6794     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6795     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6796     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6797     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6798     }
6799     SDValue Op1 = getValue(I.getArgOperand(0));
6800     SDValue Op2 = getValue(I.getArgOperand(1));
6801 
6802     EVT ResultVT = Op1.getValueType();
6803     EVT OverflowVT = MVT::i1;
6804     if (ResultVT.isVector())
6805       OverflowVT = EVT::getVectorVT(
6806           *Context, OverflowVT, ResultVT.getVectorElementCount());
6807 
6808     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6809     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6810     return;
6811   }
6812   case Intrinsic::prefetch: {
6813     SDValue Ops[5];
6814     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6815     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6816     Ops[0] = DAG.getRoot();
6817     Ops[1] = getValue(I.getArgOperand(0));
6818     Ops[2] = getValue(I.getArgOperand(1));
6819     Ops[3] = getValue(I.getArgOperand(2));
6820     Ops[4] = getValue(I.getArgOperand(3));
6821     SDValue Result = DAG.getMemIntrinsicNode(
6822         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6823         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6824         /* align */ None, Flags);
6825 
6826     // Chain the prefetch in parallell with any pending loads, to stay out of
6827     // the way of later optimizations.
6828     PendingLoads.push_back(Result);
6829     Result = getRoot();
6830     DAG.setRoot(Result);
6831     return;
6832   }
6833   case Intrinsic::lifetime_start:
6834   case Intrinsic::lifetime_end: {
6835     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6836     // Stack coloring is not enabled in O0, discard region information.
6837     if (TM.getOptLevel() == CodeGenOpt::None)
6838       return;
6839 
6840     const int64_t ObjectSize =
6841         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6842     Value *const ObjectPtr = I.getArgOperand(1);
6843     SmallVector<const Value *, 4> Allocas;
6844     getUnderlyingObjects(ObjectPtr, Allocas);
6845 
6846     for (const Value *Alloca : Allocas) {
6847       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6848 
6849       // Could not find an Alloca.
6850       if (!LifetimeObject)
6851         continue;
6852 
6853       // First check that the Alloca is static, otherwise it won't have a
6854       // valid frame index.
6855       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6856       if (SI == FuncInfo.StaticAllocaMap.end())
6857         return;
6858 
6859       const int FrameIndex = SI->second;
6860       int64_t Offset;
6861       if (GetPointerBaseWithConstantOffset(
6862               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6863         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6864       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6865                                 Offset);
6866       DAG.setRoot(Res);
6867     }
6868     return;
6869   }
6870   case Intrinsic::pseudoprobe: {
6871     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6872     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6873     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6874     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6875     DAG.setRoot(Res);
6876     return;
6877   }
6878   case Intrinsic::invariant_start:
6879     // Discard region information.
6880     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6881     return;
6882   case Intrinsic::invariant_end:
6883     // Discard region information.
6884     return;
6885   case Intrinsic::clear_cache:
6886     /// FunctionName may be null.
6887     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6888       lowerCallToExternalSymbol(I, FunctionName);
6889     return;
6890   case Intrinsic::donothing:
6891   case Intrinsic::seh_try_begin:
6892   case Intrinsic::seh_scope_begin:
6893   case Intrinsic::seh_try_end:
6894   case Intrinsic::seh_scope_end:
6895     // ignore
6896     return;
6897   case Intrinsic::experimental_stackmap:
6898     visitStackmap(I);
6899     return;
6900   case Intrinsic::experimental_patchpoint_void:
6901   case Intrinsic::experimental_patchpoint_i64:
6902     visitPatchpoint(I);
6903     return;
6904   case Intrinsic::experimental_gc_statepoint:
6905     LowerStatepoint(cast<GCStatepointInst>(I));
6906     return;
6907   case Intrinsic::experimental_gc_result:
6908     visitGCResult(cast<GCResultInst>(I));
6909     return;
6910   case Intrinsic::experimental_gc_relocate:
6911     visitGCRelocate(cast<GCRelocateInst>(I));
6912     return;
6913   case Intrinsic::instrprof_increment:
6914     llvm_unreachable("instrprof failed to lower an increment");
6915   case Intrinsic::instrprof_value_profile:
6916     llvm_unreachable("instrprof failed to lower a value profiling call");
6917   case Intrinsic::localescape: {
6918     MachineFunction &MF = DAG.getMachineFunction();
6919     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6920 
6921     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6922     // is the same on all targets.
6923     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6924       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6925       if (isa<ConstantPointerNull>(Arg))
6926         continue; // Skip null pointers. They represent a hole in index space.
6927       AllocaInst *Slot = cast<AllocaInst>(Arg);
6928       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6929              "can only escape static allocas");
6930       int FI = FuncInfo.StaticAllocaMap[Slot];
6931       MCSymbol *FrameAllocSym =
6932           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6933               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6934       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6935               TII->get(TargetOpcode::LOCAL_ESCAPE))
6936           .addSym(FrameAllocSym)
6937           .addFrameIndex(FI);
6938     }
6939 
6940     return;
6941   }
6942 
6943   case Intrinsic::localrecover: {
6944     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6945     MachineFunction &MF = DAG.getMachineFunction();
6946 
6947     // Get the symbol that defines the frame offset.
6948     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6949     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6950     unsigned IdxVal =
6951         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6952     MCSymbol *FrameAllocSym =
6953         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6954             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6955 
6956     Value *FP = I.getArgOperand(1);
6957     SDValue FPVal = getValue(FP);
6958     EVT PtrVT = FPVal.getValueType();
6959 
6960     // Create a MCSymbol for the label to avoid any target lowering
6961     // that would make this PC relative.
6962     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6963     SDValue OffsetVal =
6964         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6965 
6966     // Add the offset to the FP.
6967     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6968     setValue(&I, Add);
6969 
6970     return;
6971   }
6972 
6973   case Intrinsic::eh_exceptionpointer:
6974   case Intrinsic::eh_exceptioncode: {
6975     // Get the exception pointer vreg, copy from it, and resize it to fit.
6976     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6977     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6978     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6979     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6980     SDValue N =
6981         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6982     if (Intrinsic == Intrinsic::eh_exceptioncode)
6983       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6984     setValue(&I, N);
6985     return;
6986   }
6987   case Intrinsic::xray_customevent: {
6988     // Here we want to make sure that the intrinsic behaves as if it has a
6989     // specific calling convention, and only for x86_64.
6990     // FIXME: Support other platforms later.
6991     const auto &Triple = DAG.getTarget().getTargetTriple();
6992     if (Triple.getArch() != Triple::x86_64)
6993       return;
6994 
6995     SDLoc DL = getCurSDLoc();
6996     SmallVector<SDValue, 8> Ops;
6997 
6998     // We want to say that we always want the arguments in registers.
6999     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7000     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7001     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7002     SDValue Chain = getRoot();
7003     Ops.push_back(LogEntryVal);
7004     Ops.push_back(StrSizeVal);
7005     Ops.push_back(Chain);
7006 
7007     // We need to enforce the calling convention for the callsite, so that
7008     // argument ordering is enforced correctly, and that register allocation can
7009     // see that some registers may be assumed clobbered and have to preserve
7010     // them across calls to the intrinsic.
7011     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7012                                            DL, NodeTys, Ops);
7013     SDValue patchableNode = SDValue(MN, 0);
7014     DAG.setRoot(patchableNode);
7015     setValue(&I, patchableNode);
7016     return;
7017   }
7018   case Intrinsic::xray_typedevent: {
7019     // Here we want to make sure that the intrinsic behaves as if it has a
7020     // specific calling convention, and only for x86_64.
7021     // FIXME: Support other platforms later.
7022     const auto &Triple = DAG.getTarget().getTargetTriple();
7023     if (Triple.getArch() != Triple::x86_64)
7024       return;
7025 
7026     SDLoc DL = getCurSDLoc();
7027     SmallVector<SDValue, 8> Ops;
7028 
7029     // We want to say that we always want the arguments in registers.
7030     // It's unclear to me how manipulating the selection DAG here forces callers
7031     // to provide arguments in registers instead of on the stack.
7032     SDValue LogTypeId = getValue(I.getArgOperand(0));
7033     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7034     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7035     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7036     SDValue Chain = getRoot();
7037     Ops.push_back(LogTypeId);
7038     Ops.push_back(LogEntryVal);
7039     Ops.push_back(StrSizeVal);
7040     Ops.push_back(Chain);
7041 
7042     // We need to enforce the calling convention for the callsite, so that
7043     // argument ordering is enforced correctly, and that register allocation can
7044     // see that some registers may be assumed clobbered and have to preserve
7045     // them across calls to the intrinsic.
7046     MachineSDNode *MN = DAG.getMachineNode(
7047         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
7048     SDValue patchableNode = SDValue(MN, 0);
7049     DAG.setRoot(patchableNode);
7050     setValue(&I, patchableNode);
7051     return;
7052   }
7053   case Intrinsic::experimental_deoptimize:
7054     LowerDeoptimizeCall(&I);
7055     return;
7056   case Intrinsic::experimental_stepvector:
7057     visitStepVector(I);
7058     return;
7059   case Intrinsic::vector_reduce_fadd:
7060   case Intrinsic::vector_reduce_fmul:
7061   case Intrinsic::vector_reduce_add:
7062   case Intrinsic::vector_reduce_mul:
7063   case Intrinsic::vector_reduce_and:
7064   case Intrinsic::vector_reduce_or:
7065   case Intrinsic::vector_reduce_xor:
7066   case Intrinsic::vector_reduce_smax:
7067   case Intrinsic::vector_reduce_smin:
7068   case Intrinsic::vector_reduce_umax:
7069   case Intrinsic::vector_reduce_umin:
7070   case Intrinsic::vector_reduce_fmax:
7071   case Intrinsic::vector_reduce_fmin:
7072     visitVectorReduce(I, Intrinsic);
7073     return;
7074 
7075   case Intrinsic::icall_branch_funnel: {
7076     SmallVector<SDValue, 16> Ops;
7077     Ops.push_back(getValue(I.getArgOperand(0)));
7078 
7079     int64_t Offset;
7080     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7081         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7082     if (!Base)
7083       report_fatal_error(
7084           "llvm.icall.branch.funnel operand must be a GlobalValue");
7085     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
7086 
7087     struct BranchFunnelTarget {
7088       int64_t Offset;
7089       SDValue Target;
7090     };
7091     SmallVector<BranchFunnelTarget, 8> Targets;
7092 
7093     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
7094       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7095           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7096       if (ElemBase != Base)
7097         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7098                            "to the same GlobalValue");
7099 
7100       SDValue Val = getValue(I.getArgOperand(Op + 1));
7101       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7102       if (!GA)
7103         report_fatal_error(
7104             "llvm.icall.branch.funnel operand must be a GlobalValue");
7105       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7106                                      GA->getGlobal(), getCurSDLoc(),
7107                                      Val.getValueType(), GA->getOffset())});
7108     }
7109     llvm::sort(Targets,
7110                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7111                  return T1.Offset < T2.Offset;
7112                });
7113 
7114     for (auto &T : Targets) {
7115       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7116       Ops.push_back(T.Target);
7117     }
7118 
7119     Ops.push_back(DAG.getRoot()); // Chain
7120     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7121                                  getCurSDLoc(), MVT::Other, Ops),
7122               0);
7123     DAG.setRoot(N);
7124     setValue(&I, N);
7125     HasTailCall = true;
7126     return;
7127   }
7128 
7129   case Intrinsic::wasm_landingpad_index:
7130     // Information this intrinsic contained has been transferred to
7131     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7132     // delete it now.
7133     return;
7134 
7135   case Intrinsic::aarch64_settag:
7136   case Intrinsic::aarch64_settag_zero: {
7137     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7138     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7139     SDValue Val = TSI.EmitTargetCodeForSetTag(
7140         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7141         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7142         ZeroMemory);
7143     DAG.setRoot(Val);
7144     setValue(&I, Val);
7145     return;
7146   }
7147   case Intrinsic::ptrmask: {
7148     SDValue Ptr = getValue(I.getOperand(0));
7149     SDValue Const = getValue(I.getOperand(1));
7150 
7151     EVT PtrVT = Ptr.getValueType();
7152     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7153                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7154     return;
7155   }
7156   case Intrinsic::get_active_lane_mask: {
7157     auto DL = getCurSDLoc();
7158     SDValue Index = getValue(I.getOperand(0));
7159     SDValue TripCount = getValue(I.getOperand(1));
7160     Type *ElementTy = I.getOperand(0)->getType();
7161     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7162     unsigned VecWidth = VT.getVectorNumElements();
7163 
7164     SmallVector<SDValue, 16> OpsTripCount;
7165     SmallVector<SDValue, 16> OpsIndex;
7166     SmallVector<SDValue, 16> OpsStepConstants;
7167     for (unsigned i = 0; i < VecWidth; i++) {
7168       OpsTripCount.push_back(TripCount);
7169       OpsIndex.push_back(Index);
7170       OpsStepConstants.push_back(
7171           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7172     }
7173 
7174     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7175 
7176     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7177     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7178     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7179     SDValue VectorInduction = DAG.getNode(
7180        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7181     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7182     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7183                                  VectorTripCount, ISD::CondCode::SETULT);
7184     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7185                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7186                              SetCC));
7187     return;
7188   }
7189   case Intrinsic::experimental_vector_insert: {
7190     auto DL = getCurSDLoc();
7191 
7192     SDValue Vec = getValue(I.getOperand(0));
7193     SDValue SubVec = getValue(I.getOperand(1));
7194     SDValue Index = getValue(I.getOperand(2));
7195 
7196     // The intrinsic's index type is i64, but the SDNode requires an index type
7197     // suitable for the target. Convert the index as required.
7198     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7199     if (Index.getValueType() != VectorIdxTy)
7200       Index = DAG.getVectorIdxConstant(
7201           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7202 
7203     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7204     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7205                              Index));
7206     return;
7207   }
7208   case Intrinsic::experimental_vector_extract: {
7209     auto DL = getCurSDLoc();
7210 
7211     SDValue Vec = getValue(I.getOperand(0));
7212     SDValue Index = getValue(I.getOperand(1));
7213     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7214 
7215     // The intrinsic's index type is i64, but the SDNode requires an index type
7216     // suitable for the target. Convert the index as required.
7217     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7218     if (Index.getValueType() != VectorIdxTy)
7219       Index = DAG.getVectorIdxConstant(
7220           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7221 
7222     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7223     return;
7224   }
7225   case Intrinsic::experimental_vector_reverse:
7226     visitVectorReverse(I);
7227     return;
7228   case Intrinsic::experimental_vector_splice:
7229     visitVectorSplice(I);
7230     return;
7231   }
7232 }
7233 
7234 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7235     const ConstrainedFPIntrinsic &FPI) {
7236   SDLoc sdl = getCurSDLoc();
7237 
7238   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7239   SmallVector<EVT, 4> ValueVTs;
7240   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7241   ValueVTs.push_back(MVT::Other); // Out chain
7242 
7243   // We do not need to serialize constrained FP intrinsics against
7244   // each other or against (nonvolatile) loads, so they can be
7245   // chained like loads.
7246   SDValue Chain = DAG.getRoot();
7247   SmallVector<SDValue, 4> Opers;
7248   Opers.push_back(Chain);
7249   if (FPI.isUnaryOp()) {
7250     Opers.push_back(getValue(FPI.getArgOperand(0)));
7251   } else if (FPI.isTernaryOp()) {
7252     Opers.push_back(getValue(FPI.getArgOperand(0)));
7253     Opers.push_back(getValue(FPI.getArgOperand(1)));
7254     Opers.push_back(getValue(FPI.getArgOperand(2)));
7255   } else {
7256     Opers.push_back(getValue(FPI.getArgOperand(0)));
7257     Opers.push_back(getValue(FPI.getArgOperand(1)));
7258   }
7259 
7260   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7261     assert(Result.getNode()->getNumValues() == 2);
7262 
7263     // Push node to the appropriate list so that future instructions can be
7264     // chained up correctly.
7265     SDValue OutChain = Result.getValue(1);
7266     switch (EB) {
7267     case fp::ExceptionBehavior::ebIgnore:
7268       // The only reason why ebIgnore nodes still need to be chained is that
7269       // they might depend on the current rounding mode, and therefore must
7270       // not be moved across instruction that may change that mode.
7271       LLVM_FALLTHROUGH;
7272     case fp::ExceptionBehavior::ebMayTrap:
7273       // These must not be moved across calls or instructions that may change
7274       // floating-point exception masks.
7275       PendingConstrainedFP.push_back(OutChain);
7276       break;
7277     case fp::ExceptionBehavior::ebStrict:
7278       // These must not be moved across calls or instructions that may change
7279       // floating-point exception masks or read floating-point exception flags.
7280       // In addition, they cannot be optimized out even if unused.
7281       PendingConstrainedFPStrict.push_back(OutChain);
7282       break;
7283     }
7284   };
7285 
7286   SDVTList VTs = DAG.getVTList(ValueVTs);
7287   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7288 
7289   SDNodeFlags Flags;
7290   if (EB == fp::ExceptionBehavior::ebIgnore)
7291     Flags.setNoFPExcept(true);
7292 
7293   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7294     Flags.copyFMF(*FPOp);
7295 
7296   unsigned Opcode;
7297   switch (FPI.getIntrinsicID()) {
7298   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7299 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7300   case Intrinsic::INTRINSIC:                                                   \
7301     Opcode = ISD::STRICT_##DAGN;                                               \
7302     break;
7303 #include "llvm/IR/ConstrainedOps.def"
7304   case Intrinsic::experimental_constrained_fmuladd: {
7305     Opcode = ISD::STRICT_FMA;
7306     // Break fmuladd into fmul and fadd.
7307     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7308         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7309                                         ValueVTs[0])) {
7310       Opers.pop_back();
7311       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7312       pushOutChain(Mul, EB);
7313       Opcode = ISD::STRICT_FADD;
7314       Opers.clear();
7315       Opers.push_back(Mul.getValue(1));
7316       Opers.push_back(Mul.getValue(0));
7317       Opers.push_back(getValue(FPI.getArgOperand(2)));
7318     }
7319     break;
7320   }
7321   }
7322 
7323   // A few strict DAG nodes carry additional operands that are not
7324   // set up by the default code above.
7325   switch (Opcode) {
7326   default: break;
7327   case ISD::STRICT_FP_ROUND:
7328     Opers.push_back(
7329         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7330     break;
7331   case ISD::STRICT_FSETCC:
7332   case ISD::STRICT_FSETCCS: {
7333     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7334     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7335     if (TM.Options.NoNaNsFPMath)
7336       Condition = getFCmpCodeWithoutNaN(Condition);
7337     Opers.push_back(DAG.getCondCode(Condition));
7338     break;
7339   }
7340   }
7341 
7342   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7343   pushOutChain(Result, EB);
7344 
7345   SDValue FPResult = Result.getValue(0);
7346   setValue(&FPI, FPResult);
7347 }
7348 
7349 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7350   Optional<unsigned> ResOPC;
7351   switch (VPIntrin.getIntrinsicID()) {
7352 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7353 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7354 #define END_REGISTER_VP_INTRINSIC(...) break;
7355 #include "llvm/IR/VPIntrinsics.def"
7356   }
7357 
7358   if (!ResOPC.hasValue())
7359     llvm_unreachable(
7360         "Inconsistency: no SDNode available for this VPIntrinsic!");
7361 
7362   return ResOPC.getValue();
7363 }
7364 
7365 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7366     const VPIntrinsic &VPIntrin) {
7367   SDLoc DL = getCurSDLoc();
7368   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7369 
7370   SmallVector<EVT, 4> ValueVTs;
7371   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7372   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7373   SDVTList VTs = DAG.getVTList(ValueVTs);
7374 
7375   auto EVLParamPos =
7376       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7377 
7378   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7379   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7380          "Unexpected target EVL type");
7381 
7382   // Request operands.
7383   SmallVector<SDValue, 7> OpValues;
7384   for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) {
7385     auto Op = getValue(VPIntrin.getArgOperand(I));
7386     if (I == EVLParamPos)
7387       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7388     OpValues.push_back(Op);
7389   }
7390 
7391   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7392   setValue(&VPIntrin, Result);
7393 }
7394 
7395 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7396                                           const BasicBlock *EHPadBB,
7397                                           MCSymbol *&BeginLabel) {
7398   MachineFunction &MF = DAG.getMachineFunction();
7399   MachineModuleInfo &MMI = MF.getMMI();
7400 
7401   // Insert a label before the invoke call to mark the try range.  This can be
7402   // used to detect deletion of the invoke via the MachineModuleInfo.
7403   BeginLabel = MMI.getContext().createTempSymbol();
7404 
7405   // For SjLj, keep track of which landing pads go with which invokes
7406   // so as to maintain the ordering of pads in the LSDA.
7407   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7408   if (CallSiteIndex) {
7409     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7410     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7411 
7412     // Now that the call site is handled, stop tracking it.
7413     MMI.setCurrentCallSite(0);
7414   }
7415 
7416   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7417 }
7418 
7419 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7420                                         const BasicBlock *EHPadBB,
7421                                         MCSymbol *BeginLabel) {
7422   assert(BeginLabel && "BeginLabel should've been set");
7423 
7424   MachineFunction &MF = DAG.getMachineFunction();
7425   MachineModuleInfo &MMI = MF.getMMI();
7426 
7427   // Insert a label at the end of the invoke call to mark the try range.  This
7428   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7429   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7430   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7431 
7432   // Inform MachineModuleInfo of range.
7433   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7434   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7435   // actually use outlined funclets and their LSDA info style.
7436   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7437     assert(II && "II should've been set");
7438     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7439     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7440   } else if (!isScopedEHPersonality(Pers)) {
7441     assert(EHPadBB);
7442     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7443   }
7444 
7445   return Chain;
7446 }
7447 
7448 std::pair<SDValue, SDValue>
7449 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7450                                     const BasicBlock *EHPadBB) {
7451   MCSymbol *BeginLabel = nullptr;
7452 
7453   if (EHPadBB) {
7454     // Both PendingLoads and PendingExports must be flushed here;
7455     // this call might not return.
7456     (void)getRoot();
7457     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7458     CLI.setChain(getRoot());
7459   }
7460 
7461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7462   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7463 
7464   assert((CLI.IsTailCall || Result.second.getNode()) &&
7465          "Non-null chain expected with non-tail call!");
7466   assert((Result.second.getNode() || !Result.first.getNode()) &&
7467          "Null value expected with tail call!");
7468 
7469   if (!Result.second.getNode()) {
7470     // As a special case, a null chain means that a tail call has been emitted
7471     // and the DAG root is already updated.
7472     HasTailCall = true;
7473 
7474     // Since there's no actual continuation from this block, nothing can be
7475     // relying on us setting vregs for them.
7476     PendingExports.clear();
7477   } else {
7478     DAG.setRoot(Result.second);
7479   }
7480 
7481   if (EHPadBB) {
7482     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7483                            BeginLabel));
7484   }
7485 
7486   return Result;
7487 }
7488 
7489 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7490                                       bool isTailCall,
7491                                       bool isMustTailCall,
7492                                       const BasicBlock *EHPadBB) {
7493   auto &DL = DAG.getDataLayout();
7494   FunctionType *FTy = CB.getFunctionType();
7495   Type *RetTy = CB.getType();
7496 
7497   TargetLowering::ArgListTy Args;
7498   Args.reserve(CB.arg_size());
7499 
7500   const Value *SwiftErrorVal = nullptr;
7501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7502 
7503   if (isTailCall) {
7504     // Avoid emitting tail calls in functions with the disable-tail-calls
7505     // attribute.
7506     auto *Caller = CB.getParent()->getParent();
7507     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7508         "true" && !isMustTailCall)
7509       isTailCall = false;
7510 
7511     // We can't tail call inside a function with a swifterror argument. Lowering
7512     // does not support this yet. It would have to move into the swifterror
7513     // register before the call.
7514     if (TLI.supportSwiftError() &&
7515         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7516       isTailCall = false;
7517   }
7518 
7519   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7520     TargetLowering::ArgListEntry Entry;
7521     const Value *V = *I;
7522 
7523     // Skip empty types
7524     if (V->getType()->isEmptyTy())
7525       continue;
7526 
7527     SDValue ArgNode = getValue(V);
7528     Entry.Node = ArgNode; Entry.Ty = V->getType();
7529 
7530     Entry.setAttributes(&CB, I - CB.arg_begin());
7531 
7532     // Use swifterror virtual register as input to the call.
7533     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7534       SwiftErrorVal = V;
7535       // We find the virtual register for the actual swifterror argument.
7536       // Instead of using the Value, we use the virtual register instead.
7537       Entry.Node =
7538           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7539                           EVT(TLI.getPointerTy(DL)));
7540     }
7541 
7542     Args.push_back(Entry);
7543 
7544     // If we have an explicit sret argument that is an Instruction, (i.e., it
7545     // might point to function-local memory), we can't meaningfully tail-call.
7546     if (Entry.IsSRet && isa<Instruction>(V))
7547       isTailCall = false;
7548   }
7549 
7550   // If call site has a cfguardtarget operand bundle, create and add an
7551   // additional ArgListEntry.
7552   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7553     TargetLowering::ArgListEntry Entry;
7554     Value *V = Bundle->Inputs[0];
7555     SDValue ArgNode = getValue(V);
7556     Entry.Node = ArgNode;
7557     Entry.Ty = V->getType();
7558     Entry.IsCFGuardTarget = true;
7559     Args.push_back(Entry);
7560   }
7561 
7562   // Check if target-independent constraints permit a tail call here.
7563   // Target-dependent constraints are checked within TLI->LowerCallTo.
7564   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7565     isTailCall = false;
7566 
7567   // Disable tail calls if there is an swifterror argument. Targets have not
7568   // been updated to support tail calls.
7569   if (TLI.supportSwiftError() && SwiftErrorVal)
7570     isTailCall = false;
7571 
7572   TargetLowering::CallLoweringInfo CLI(DAG);
7573   CLI.setDebugLoc(getCurSDLoc())
7574       .setChain(getRoot())
7575       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7576       .setTailCall(isTailCall)
7577       .setConvergent(CB.isConvergent())
7578       .setIsPreallocated(
7579           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7580   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7581 
7582   if (Result.first.getNode()) {
7583     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7584     setValue(&CB, Result.first);
7585   }
7586 
7587   // The last element of CLI.InVals has the SDValue for swifterror return.
7588   // Here we copy it to a virtual register and update SwiftErrorMap for
7589   // book-keeping.
7590   if (SwiftErrorVal && TLI.supportSwiftError()) {
7591     // Get the last element of InVals.
7592     SDValue Src = CLI.InVals.back();
7593     Register VReg =
7594         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7595     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7596     DAG.setRoot(CopyNode);
7597   }
7598 }
7599 
7600 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7601                              SelectionDAGBuilder &Builder) {
7602   // Check to see if this load can be trivially constant folded, e.g. if the
7603   // input is from a string literal.
7604   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7605     // Cast pointer to the type we really want to load.
7606     Type *LoadTy =
7607         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7608     if (LoadVT.isVector())
7609       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7610 
7611     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7612                                          PointerType::getUnqual(LoadTy));
7613 
7614     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7615             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7616       return Builder.getValue(LoadCst);
7617   }
7618 
7619   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7620   // still constant memory, the input chain can be the entry node.
7621   SDValue Root;
7622   bool ConstantMemory = false;
7623 
7624   // Do not serialize (non-volatile) loads of constant memory with anything.
7625   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7626     Root = Builder.DAG.getEntryNode();
7627     ConstantMemory = true;
7628   } else {
7629     // Do not serialize non-volatile loads against each other.
7630     Root = Builder.DAG.getRoot();
7631   }
7632 
7633   SDValue Ptr = Builder.getValue(PtrVal);
7634   SDValue LoadVal =
7635       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7636                           MachinePointerInfo(PtrVal), Align(1));
7637 
7638   if (!ConstantMemory)
7639     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7640   return LoadVal;
7641 }
7642 
7643 /// Record the value for an instruction that produces an integer result,
7644 /// converting the type where necessary.
7645 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7646                                                   SDValue Value,
7647                                                   bool IsSigned) {
7648   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7649                                                     I.getType(), true);
7650   if (IsSigned)
7651     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7652   else
7653     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7654   setValue(&I, Value);
7655 }
7656 
7657 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7658 /// true and lower it. Otherwise return false, and it will be lowered like a
7659 /// normal call.
7660 /// The caller already checked that \p I calls the appropriate LibFunc with a
7661 /// correct prototype.
7662 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7663   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7664   const Value *Size = I.getArgOperand(2);
7665   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7666   if (CSize && CSize->getZExtValue() == 0) {
7667     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7668                                                           I.getType(), true);
7669     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7670     return true;
7671   }
7672 
7673   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7674   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7675       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7676       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7677   if (Res.first.getNode()) {
7678     processIntegerCallValue(I, Res.first, true);
7679     PendingLoads.push_back(Res.second);
7680     return true;
7681   }
7682 
7683   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7684   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7685   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7686     return false;
7687 
7688   // If the target has a fast compare for the given size, it will return a
7689   // preferred load type for that size. Require that the load VT is legal and
7690   // that the target supports unaligned loads of that type. Otherwise, return
7691   // INVALID.
7692   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7693     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7694     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7695     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7696       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7697       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7698       // TODO: Check alignment of src and dest ptrs.
7699       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7700       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7701       if (!TLI.isTypeLegal(LVT) ||
7702           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7703           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7704         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7705     }
7706 
7707     return LVT;
7708   };
7709 
7710   // This turns into unaligned loads. We only do this if the target natively
7711   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7712   // we'll only produce a small number of byte loads.
7713   MVT LoadVT;
7714   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7715   switch (NumBitsToCompare) {
7716   default:
7717     return false;
7718   case 16:
7719     LoadVT = MVT::i16;
7720     break;
7721   case 32:
7722     LoadVT = MVT::i32;
7723     break;
7724   case 64:
7725   case 128:
7726   case 256:
7727     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7728     break;
7729   }
7730 
7731   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7732     return false;
7733 
7734   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7735   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7736 
7737   // Bitcast to a wide integer type if the loads are vectors.
7738   if (LoadVT.isVector()) {
7739     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7740     LoadL = DAG.getBitcast(CmpVT, LoadL);
7741     LoadR = DAG.getBitcast(CmpVT, LoadR);
7742   }
7743 
7744   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7745   processIntegerCallValue(I, Cmp, false);
7746   return true;
7747 }
7748 
7749 /// See if we can lower a memchr call into an optimized form. If so, return
7750 /// true and lower it. Otherwise return false, and it will be lowered like a
7751 /// normal call.
7752 /// The caller already checked that \p I calls the appropriate LibFunc with a
7753 /// correct prototype.
7754 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7755   const Value *Src = I.getArgOperand(0);
7756   const Value *Char = I.getArgOperand(1);
7757   const Value *Length = I.getArgOperand(2);
7758 
7759   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7760   std::pair<SDValue, SDValue> Res =
7761     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7762                                 getValue(Src), getValue(Char), getValue(Length),
7763                                 MachinePointerInfo(Src));
7764   if (Res.first.getNode()) {
7765     setValue(&I, Res.first);
7766     PendingLoads.push_back(Res.second);
7767     return true;
7768   }
7769 
7770   return false;
7771 }
7772 
7773 /// See if we can lower a mempcpy call into an optimized form. If so, return
7774 /// true and lower it. Otherwise return false, and it will be lowered like a
7775 /// normal call.
7776 /// The caller already checked that \p I calls the appropriate LibFunc with a
7777 /// correct prototype.
7778 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7779   SDValue Dst = getValue(I.getArgOperand(0));
7780   SDValue Src = getValue(I.getArgOperand(1));
7781   SDValue Size = getValue(I.getArgOperand(2));
7782 
7783   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7784   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7785   // DAG::getMemcpy needs Alignment to be defined.
7786   Align Alignment = std::min(DstAlign, SrcAlign);
7787 
7788   bool isVol = false;
7789   SDLoc sdl = getCurSDLoc();
7790 
7791   // In the mempcpy context we need to pass in a false value for isTailCall
7792   // because the return pointer needs to be adjusted by the size of
7793   // the copied memory.
7794   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7795   AAMDNodes AAInfo;
7796   I.getAAMetadata(AAInfo);
7797   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7798                              /*isTailCall=*/false,
7799                              MachinePointerInfo(I.getArgOperand(0)),
7800                              MachinePointerInfo(I.getArgOperand(1)), AAInfo);
7801   assert(MC.getNode() != nullptr &&
7802          "** memcpy should not be lowered as TailCall in mempcpy context **");
7803   DAG.setRoot(MC);
7804 
7805   // Check if Size needs to be truncated or extended.
7806   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7807 
7808   // Adjust return pointer to point just past the last dst byte.
7809   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7810                                     Dst, Size);
7811   setValue(&I, DstPlusSize);
7812   return true;
7813 }
7814 
7815 /// See if we can lower a strcpy call into an optimized form.  If so, return
7816 /// true and lower it, otherwise return false and it will be lowered like a
7817 /// normal call.
7818 /// The caller already checked that \p I calls the appropriate LibFunc with a
7819 /// correct prototype.
7820 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7821   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7822 
7823   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7824   std::pair<SDValue, SDValue> Res =
7825     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7826                                 getValue(Arg0), getValue(Arg1),
7827                                 MachinePointerInfo(Arg0),
7828                                 MachinePointerInfo(Arg1), isStpcpy);
7829   if (Res.first.getNode()) {
7830     setValue(&I, Res.first);
7831     DAG.setRoot(Res.second);
7832     return true;
7833   }
7834 
7835   return false;
7836 }
7837 
7838 /// See if we can lower a strcmp call into an optimized form.  If so, return
7839 /// true and lower it, otherwise return false and it will be lowered like a
7840 /// normal call.
7841 /// The caller already checked that \p I calls the appropriate LibFunc with a
7842 /// correct prototype.
7843 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7844   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7845 
7846   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7847   std::pair<SDValue, SDValue> Res =
7848     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7849                                 getValue(Arg0), getValue(Arg1),
7850                                 MachinePointerInfo(Arg0),
7851                                 MachinePointerInfo(Arg1));
7852   if (Res.first.getNode()) {
7853     processIntegerCallValue(I, Res.first, true);
7854     PendingLoads.push_back(Res.second);
7855     return true;
7856   }
7857 
7858   return false;
7859 }
7860 
7861 /// See if we can lower a strlen call into an optimized form.  If so, return
7862 /// true and lower it, otherwise return false and it will be lowered like a
7863 /// normal call.
7864 /// The caller already checked that \p I calls the appropriate LibFunc with a
7865 /// correct prototype.
7866 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7867   const Value *Arg0 = I.getArgOperand(0);
7868 
7869   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7870   std::pair<SDValue, SDValue> Res =
7871     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7872                                 getValue(Arg0), MachinePointerInfo(Arg0));
7873   if (Res.first.getNode()) {
7874     processIntegerCallValue(I, Res.first, false);
7875     PendingLoads.push_back(Res.second);
7876     return true;
7877   }
7878 
7879   return false;
7880 }
7881 
7882 /// See if we can lower a strnlen call into an optimized form.  If so, return
7883 /// true and lower it, otherwise return false and it will be lowered like a
7884 /// normal call.
7885 /// The caller already checked that \p I calls the appropriate LibFunc with a
7886 /// correct prototype.
7887 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7888   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7889 
7890   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7891   std::pair<SDValue, SDValue> Res =
7892     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7893                                  getValue(Arg0), getValue(Arg1),
7894                                  MachinePointerInfo(Arg0));
7895   if (Res.first.getNode()) {
7896     processIntegerCallValue(I, Res.first, false);
7897     PendingLoads.push_back(Res.second);
7898     return true;
7899   }
7900 
7901   return false;
7902 }
7903 
7904 /// See if we can lower a unary floating-point operation into an SDNode with
7905 /// the specified Opcode.  If so, return true and lower it, otherwise return
7906 /// false and it will be lowered like a normal call.
7907 /// The caller already checked that \p I calls the appropriate LibFunc with a
7908 /// correct prototype.
7909 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7910                                               unsigned Opcode) {
7911   // We already checked this call's prototype; verify it doesn't modify errno.
7912   if (!I.onlyReadsMemory())
7913     return false;
7914 
7915   SDNodeFlags Flags;
7916   Flags.copyFMF(cast<FPMathOperator>(I));
7917 
7918   SDValue Tmp = getValue(I.getArgOperand(0));
7919   setValue(&I,
7920            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7921   return true;
7922 }
7923 
7924 /// See if we can lower a binary floating-point operation into an SDNode with
7925 /// the specified Opcode. If so, return true and lower it. Otherwise return
7926 /// false, and it will be lowered like a normal call.
7927 /// The caller already checked that \p I calls the appropriate LibFunc with a
7928 /// correct prototype.
7929 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7930                                                unsigned Opcode) {
7931   // We already checked this call's prototype; verify it doesn't modify errno.
7932   if (!I.onlyReadsMemory())
7933     return false;
7934 
7935   SDNodeFlags Flags;
7936   Flags.copyFMF(cast<FPMathOperator>(I));
7937 
7938   SDValue Tmp0 = getValue(I.getArgOperand(0));
7939   SDValue Tmp1 = getValue(I.getArgOperand(1));
7940   EVT VT = Tmp0.getValueType();
7941   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7942   return true;
7943 }
7944 
7945 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7946   // Handle inline assembly differently.
7947   if (I.isInlineAsm()) {
7948     visitInlineAsm(I);
7949     return;
7950   }
7951 
7952   if (Function *F = I.getCalledFunction()) {
7953     if (F->isDeclaration()) {
7954       // Is this an LLVM intrinsic or a target-specific intrinsic?
7955       unsigned IID = F->getIntrinsicID();
7956       if (!IID)
7957         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7958           IID = II->getIntrinsicID(F);
7959 
7960       if (IID) {
7961         visitIntrinsicCall(I, IID);
7962         return;
7963       }
7964     }
7965 
7966     // Check for well-known libc/libm calls.  If the function is internal, it
7967     // can't be a library call.  Don't do the check if marked as nobuiltin for
7968     // some reason or the call site requires strict floating point semantics.
7969     LibFunc Func;
7970     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7971         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7972         LibInfo->hasOptimizedCodeGen(Func)) {
7973       switch (Func) {
7974       default: break;
7975       case LibFunc_bcmp:
7976         if (visitMemCmpBCmpCall(I))
7977           return;
7978         break;
7979       case LibFunc_copysign:
7980       case LibFunc_copysignf:
7981       case LibFunc_copysignl:
7982         // We already checked this call's prototype; verify it doesn't modify
7983         // errno.
7984         if (I.onlyReadsMemory()) {
7985           SDValue LHS = getValue(I.getArgOperand(0));
7986           SDValue RHS = getValue(I.getArgOperand(1));
7987           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7988                                    LHS.getValueType(), LHS, RHS));
7989           return;
7990         }
7991         break;
7992       case LibFunc_fabs:
7993       case LibFunc_fabsf:
7994       case LibFunc_fabsl:
7995         if (visitUnaryFloatCall(I, ISD::FABS))
7996           return;
7997         break;
7998       case LibFunc_fmin:
7999       case LibFunc_fminf:
8000       case LibFunc_fminl:
8001         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8002           return;
8003         break;
8004       case LibFunc_fmax:
8005       case LibFunc_fmaxf:
8006       case LibFunc_fmaxl:
8007         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8008           return;
8009         break;
8010       case LibFunc_sin:
8011       case LibFunc_sinf:
8012       case LibFunc_sinl:
8013         if (visitUnaryFloatCall(I, ISD::FSIN))
8014           return;
8015         break;
8016       case LibFunc_cos:
8017       case LibFunc_cosf:
8018       case LibFunc_cosl:
8019         if (visitUnaryFloatCall(I, ISD::FCOS))
8020           return;
8021         break;
8022       case LibFunc_sqrt:
8023       case LibFunc_sqrtf:
8024       case LibFunc_sqrtl:
8025       case LibFunc_sqrt_finite:
8026       case LibFunc_sqrtf_finite:
8027       case LibFunc_sqrtl_finite:
8028         if (visitUnaryFloatCall(I, ISD::FSQRT))
8029           return;
8030         break;
8031       case LibFunc_floor:
8032       case LibFunc_floorf:
8033       case LibFunc_floorl:
8034         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8035           return;
8036         break;
8037       case LibFunc_nearbyint:
8038       case LibFunc_nearbyintf:
8039       case LibFunc_nearbyintl:
8040         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8041           return;
8042         break;
8043       case LibFunc_ceil:
8044       case LibFunc_ceilf:
8045       case LibFunc_ceill:
8046         if (visitUnaryFloatCall(I, ISD::FCEIL))
8047           return;
8048         break;
8049       case LibFunc_rint:
8050       case LibFunc_rintf:
8051       case LibFunc_rintl:
8052         if (visitUnaryFloatCall(I, ISD::FRINT))
8053           return;
8054         break;
8055       case LibFunc_round:
8056       case LibFunc_roundf:
8057       case LibFunc_roundl:
8058         if (visitUnaryFloatCall(I, ISD::FROUND))
8059           return;
8060         break;
8061       case LibFunc_trunc:
8062       case LibFunc_truncf:
8063       case LibFunc_truncl:
8064         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8065           return;
8066         break;
8067       case LibFunc_log2:
8068       case LibFunc_log2f:
8069       case LibFunc_log2l:
8070         if (visitUnaryFloatCall(I, ISD::FLOG2))
8071           return;
8072         break;
8073       case LibFunc_exp2:
8074       case LibFunc_exp2f:
8075       case LibFunc_exp2l:
8076         if (visitUnaryFloatCall(I, ISD::FEXP2))
8077           return;
8078         break;
8079       case LibFunc_memcmp:
8080         if (visitMemCmpBCmpCall(I))
8081           return;
8082         break;
8083       case LibFunc_mempcpy:
8084         if (visitMemPCpyCall(I))
8085           return;
8086         break;
8087       case LibFunc_memchr:
8088         if (visitMemChrCall(I))
8089           return;
8090         break;
8091       case LibFunc_strcpy:
8092         if (visitStrCpyCall(I, false))
8093           return;
8094         break;
8095       case LibFunc_stpcpy:
8096         if (visitStrCpyCall(I, true))
8097           return;
8098         break;
8099       case LibFunc_strcmp:
8100         if (visitStrCmpCall(I))
8101           return;
8102         break;
8103       case LibFunc_strlen:
8104         if (visitStrLenCall(I))
8105           return;
8106         break;
8107       case LibFunc_strnlen:
8108         if (visitStrNLenCall(I))
8109           return;
8110         break;
8111       }
8112     }
8113   }
8114 
8115   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8116   // have to do anything here to lower funclet bundles.
8117   // CFGuardTarget bundles are lowered in LowerCallTo.
8118   assert(!I.hasOperandBundlesOtherThan(
8119              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8120               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8121               LLVMContext::OB_clang_arc_attachedcall}) &&
8122          "Cannot lower calls with arbitrary operand bundles!");
8123 
8124   SDValue Callee = getValue(I.getCalledOperand());
8125 
8126   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8127     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8128   else
8129     // Check if we can potentially perform a tail call. More detailed checking
8130     // is be done within LowerCallTo, after more information about the call is
8131     // known.
8132     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8133 }
8134 
8135 namespace {
8136 
8137 /// AsmOperandInfo - This contains information for each constraint that we are
8138 /// lowering.
8139 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8140 public:
8141   /// CallOperand - If this is the result output operand or a clobber
8142   /// this is null, otherwise it is the incoming operand to the CallInst.
8143   /// This gets modified as the asm is processed.
8144   SDValue CallOperand;
8145 
8146   /// AssignedRegs - If this is a register or register class operand, this
8147   /// contains the set of register corresponding to the operand.
8148   RegsForValue AssignedRegs;
8149 
8150   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8151     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8152   }
8153 
8154   /// Whether or not this operand accesses memory
8155   bool hasMemory(const TargetLowering &TLI) const {
8156     // Indirect operand accesses access memory.
8157     if (isIndirect)
8158       return true;
8159 
8160     for (const auto &Code : Codes)
8161       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8162         return true;
8163 
8164     return false;
8165   }
8166 
8167   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8168   /// corresponds to.  If there is no Value* for this operand, it returns
8169   /// MVT::Other.
8170   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8171                            const DataLayout &DL) const {
8172     if (!CallOperandVal) return MVT::Other;
8173 
8174     if (isa<BasicBlock>(CallOperandVal))
8175       return TLI.getProgramPointerTy(DL);
8176 
8177     llvm::Type *OpTy = CallOperandVal->getType();
8178 
8179     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8180     // If this is an indirect operand, the operand is a pointer to the
8181     // accessed type.
8182     if (isIndirect) {
8183       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8184       if (!PtrTy)
8185         report_fatal_error("Indirect operand for inline asm not a pointer!");
8186       OpTy = PtrTy->getElementType();
8187     }
8188 
8189     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8190     if (StructType *STy = dyn_cast<StructType>(OpTy))
8191       if (STy->getNumElements() == 1)
8192         OpTy = STy->getElementType(0);
8193 
8194     // If OpTy is not a single value, it may be a struct/union that we
8195     // can tile with integers.
8196     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8197       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8198       switch (BitSize) {
8199       default: break;
8200       case 1:
8201       case 8:
8202       case 16:
8203       case 32:
8204       case 64:
8205       case 128:
8206         OpTy = IntegerType::get(Context, BitSize);
8207         break;
8208       }
8209     }
8210 
8211     return TLI.getAsmOperandValueType(DL, OpTy, true);
8212   }
8213 };
8214 
8215 
8216 } // end anonymous namespace
8217 
8218 /// Make sure that the output operand \p OpInfo and its corresponding input
8219 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8220 /// out).
8221 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8222                                SDISelAsmOperandInfo &MatchingOpInfo,
8223                                SelectionDAG &DAG) {
8224   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8225     return;
8226 
8227   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8228   const auto &TLI = DAG.getTargetLoweringInfo();
8229 
8230   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8231       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8232                                        OpInfo.ConstraintVT);
8233   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8234       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8235                                        MatchingOpInfo.ConstraintVT);
8236   if ((OpInfo.ConstraintVT.isInteger() !=
8237        MatchingOpInfo.ConstraintVT.isInteger()) ||
8238       (MatchRC.second != InputRC.second)) {
8239     // FIXME: error out in a more elegant fashion
8240     report_fatal_error("Unsupported asm: input constraint"
8241                        " with a matching output constraint of"
8242                        " incompatible type!");
8243   }
8244   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8245 }
8246 
8247 /// Get a direct memory input to behave well as an indirect operand.
8248 /// This may introduce stores, hence the need for a \p Chain.
8249 /// \return The (possibly updated) chain.
8250 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8251                                         SDISelAsmOperandInfo &OpInfo,
8252                                         SelectionDAG &DAG) {
8253   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8254 
8255   // If we don't have an indirect input, put it in the constpool if we can,
8256   // otherwise spill it to a stack slot.
8257   // TODO: This isn't quite right. We need to handle these according to
8258   // the addressing mode that the constraint wants. Also, this may take
8259   // an additional register for the computation and we don't want that
8260   // either.
8261 
8262   // If the operand is a float, integer, or vector constant, spill to a
8263   // constant pool entry to get its address.
8264   const Value *OpVal = OpInfo.CallOperandVal;
8265   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8266       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8267     OpInfo.CallOperand = DAG.getConstantPool(
8268         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8269     return Chain;
8270   }
8271 
8272   // Otherwise, create a stack slot and emit a store to it before the asm.
8273   Type *Ty = OpVal->getType();
8274   auto &DL = DAG.getDataLayout();
8275   uint64_t TySize = DL.getTypeAllocSize(Ty);
8276   MachineFunction &MF = DAG.getMachineFunction();
8277   int SSFI = MF.getFrameInfo().CreateStackObject(
8278       TySize, DL.getPrefTypeAlign(Ty), false);
8279   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8280   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8281                             MachinePointerInfo::getFixedStack(MF, SSFI),
8282                             TLI.getMemValueType(DL, Ty));
8283   OpInfo.CallOperand = StackSlot;
8284 
8285   return Chain;
8286 }
8287 
8288 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8289 /// specified operand.  We prefer to assign virtual registers, to allow the
8290 /// register allocator to handle the assignment process.  However, if the asm
8291 /// uses features that we can't model on machineinstrs, we have SDISel do the
8292 /// allocation.  This produces generally horrible, but correct, code.
8293 ///
8294 ///   OpInfo describes the operand
8295 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8296 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8297                                  SDISelAsmOperandInfo &OpInfo,
8298                                  SDISelAsmOperandInfo &RefOpInfo) {
8299   LLVMContext &Context = *DAG.getContext();
8300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8301 
8302   MachineFunction &MF = DAG.getMachineFunction();
8303   SmallVector<unsigned, 4> Regs;
8304   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8305 
8306   // No work to do for memory operations.
8307   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8308     return;
8309 
8310   // If this is a constraint for a single physreg, or a constraint for a
8311   // register class, find it.
8312   unsigned AssignedReg;
8313   const TargetRegisterClass *RC;
8314   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8315       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8316   // RC is unset only on failure. Return immediately.
8317   if (!RC)
8318     return;
8319 
8320   // Get the actual register value type.  This is important, because the user
8321   // may have asked for (e.g.) the AX register in i32 type.  We need to
8322   // remember that AX is actually i16 to get the right extension.
8323   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8324 
8325   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8326     // If this is an FP operand in an integer register (or visa versa), or more
8327     // generally if the operand value disagrees with the register class we plan
8328     // to stick it in, fix the operand type.
8329     //
8330     // If this is an input value, the bitcast to the new type is done now.
8331     // Bitcast for output value is done at the end of visitInlineAsm().
8332     if ((OpInfo.Type == InlineAsm::isOutput ||
8333          OpInfo.Type == InlineAsm::isInput) &&
8334         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8335       // Try to convert to the first EVT that the reg class contains.  If the
8336       // types are identical size, use a bitcast to convert (e.g. two differing
8337       // vector types).  Note: output bitcast is done at the end of
8338       // visitInlineAsm().
8339       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8340         // Exclude indirect inputs while they are unsupported because the code
8341         // to perform the load is missing and thus OpInfo.CallOperand still
8342         // refers to the input address rather than the pointed-to value.
8343         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8344           OpInfo.CallOperand =
8345               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8346         OpInfo.ConstraintVT = RegVT;
8347         // If the operand is an FP value and we want it in integer registers,
8348         // use the corresponding integer type. This turns an f64 value into
8349         // i64, which can be passed with two i32 values on a 32-bit machine.
8350       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8351         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8352         if (OpInfo.Type == InlineAsm::isInput)
8353           OpInfo.CallOperand =
8354               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8355         OpInfo.ConstraintVT = VT;
8356       }
8357     }
8358   }
8359 
8360   // No need to allocate a matching input constraint since the constraint it's
8361   // matching to has already been allocated.
8362   if (OpInfo.isMatchingInputConstraint())
8363     return;
8364 
8365   EVT ValueVT = OpInfo.ConstraintVT;
8366   if (OpInfo.ConstraintVT == MVT::Other)
8367     ValueVT = RegVT;
8368 
8369   // Initialize NumRegs.
8370   unsigned NumRegs = 1;
8371   if (OpInfo.ConstraintVT != MVT::Other)
8372     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8373 
8374   // If this is a constraint for a specific physical register, like {r17},
8375   // assign it now.
8376 
8377   // If this associated to a specific register, initialize iterator to correct
8378   // place. If virtual, make sure we have enough registers
8379 
8380   // Initialize iterator if necessary
8381   TargetRegisterClass::iterator I = RC->begin();
8382   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8383 
8384   // Do not check for single registers.
8385   if (AssignedReg) {
8386       for (; *I != AssignedReg; ++I)
8387         assert(I != RC->end() && "AssignedReg should be member of RC");
8388   }
8389 
8390   for (; NumRegs; --NumRegs, ++I) {
8391     assert(I != RC->end() && "Ran out of registers to allocate!");
8392     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8393     Regs.push_back(R);
8394   }
8395 
8396   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8397 }
8398 
8399 static unsigned
8400 findMatchingInlineAsmOperand(unsigned OperandNo,
8401                              const std::vector<SDValue> &AsmNodeOperands) {
8402   // Scan until we find the definition we already emitted of this operand.
8403   unsigned CurOp = InlineAsm::Op_FirstOperand;
8404   for (; OperandNo; --OperandNo) {
8405     // Advance to the next operand.
8406     unsigned OpFlag =
8407         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8408     assert((InlineAsm::isRegDefKind(OpFlag) ||
8409             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8410             InlineAsm::isMemKind(OpFlag)) &&
8411            "Skipped past definitions?");
8412     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8413   }
8414   return CurOp;
8415 }
8416 
8417 namespace {
8418 
8419 class ExtraFlags {
8420   unsigned Flags = 0;
8421 
8422 public:
8423   explicit ExtraFlags(const CallBase &Call) {
8424     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8425     if (IA->hasSideEffects())
8426       Flags |= InlineAsm::Extra_HasSideEffects;
8427     if (IA->isAlignStack())
8428       Flags |= InlineAsm::Extra_IsAlignStack;
8429     if (Call.isConvergent())
8430       Flags |= InlineAsm::Extra_IsConvergent;
8431     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8432   }
8433 
8434   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8435     // Ideally, we would only check against memory constraints.  However, the
8436     // meaning of an Other constraint can be target-specific and we can't easily
8437     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8438     // for Other constraints as well.
8439     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8440         OpInfo.ConstraintType == TargetLowering::C_Other) {
8441       if (OpInfo.Type == InlineAsm::isInput)
8442         Flags |= InlineAsm::Extra_MayLoad;
8443       else if (OpInfo.Type == InlineAsm::isOutput)
8444         Flags |= InlineAsm::Extra_MayStore;
8445       else if (OpInfo.Type == InlineAsm::isClobber)
8446         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8447     }
8448   }
8449 
8450   unsigned get() const { return Flags; }
8451 };
8452 
8453 } // end anonymous namespace
8454 
8455 /// visitInlineAsm - Handle a call to an InlineAsm object.
8456 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8457                                          const BasicBlock *EHPadBB) {
8458   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8459 
8460   /// ConstraintOperands - Information about all of the constraints.
8461   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8462 
8463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8464   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8465       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8466 
8467   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8468   // AsmDialect, MayLoad, MayStore).
8469   bool HasSideEffect = IA->hasSideEffects();
8470   ExtraFlags ExtraInfo(Call);
8471 
8472   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8473   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8474   unsigned NumMatchingOps = 0;
8475   for (auto &T : TargetConstraints) {
8476     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8477     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8478 
8479     // Compute the value type for each operand.
8480     if (OpInfo.Type == InlineAsm::isInput ||
8481         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8482       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8483 
8484       // Process the call argument. BasicBlocks are labels, currently appearing
8485       // only in asm's.
8486       if (isa<CallBrInst>(Call) &&
8487           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8488                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8489                         NumMatchingOps) &&
8490           (NumMatchingOps == 0 ||
8491            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8492                         NumMatchingOps))) {
8493         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8494         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8495         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8496       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8497         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8498       } else {
8499         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8500       }
8501 
8502       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8503                                            DAG.getDataLayout());
8504       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8505     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8506       // The return value of the call is this value.  As such, there is no
8507       // corresponding argument.
8508       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8509       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8510         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8511             DAG.getDataLayout(), STy->getElementType(ResNo));
8512       } else {
8513         assert(ResNo == 0 && "Asm only has one result!");
8514         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8515             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8516       }
8517       ++ResNo;
8518     } else {
8519       OpInfo.ConstraintVT = MVT::Other;
8520     }
8521 
8522     if (OpInfo.hasMatchingInput())
8523       ++NumMatchingOps;
8524 
8525     if (!HasSideEffect)
8526       HasSideEffect = OpInfo.hasMemory(TLI);
8527 
8528     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8529     // FIXME: Could we compute this on OpInfo rather than T?
8530 
8531     // Compute the constraint code and ConstraintType to use.
8532     TLI.ComputeConstraintToUse(T, SDValue());
8533 
8534     if (T.ConstraintType == TargetLowering::C_Immediate &&
8535         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8536       // We've delayed emitting a diagnostic like the "n" constraint because
8537       // inlining could cause an integer showing up.
8538       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8539                                           "' expects an integer constant "
8540                                           "expression");
8541 
8542     ExtraInfo.update(T);
8543   }
8544 
8545   // We won't need to flush pending loads if this asm doesn't touch
8546   // memory and is nonvolatile.
8547   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8548 
8549   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8550   if (EmitEHLabels) {
8551     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8552   }
8553   bool IsCallBr = isa<CallBrInst>(Call);
8554 
8555   if (IsCallBr || EmitEHLabels) {
8556     // If this is a callbr or invoke we need to flush pending exports since
8557     // inlineasm_br and invoke are terminators.
8558     // We need to do this before nodes are glued to the inlineasm_br node.
8559     Chain = getControlRoot();
8560   }
8561 
8562   MCSymbol *BeginLabel = nullptr;
8563   if (EmitEHLabels) {
8564     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8565   }
8566 
8567   // Second pass over the constraints: compute which constraint option to use.
8568   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8569     // If this is an output operand with a matching input operand, look up the
8570     // matching input. If their types mismatch, e.g. one is an integer, the
8571     // other is floating point, or their sizes are different, flag it as an
8572     // error.
8573     if (OpInfo.hasMatchingInput()) {
8574       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8575       patchMatchingInput(OpInfo, Input, DAG);
8576     }
8577 
8578     // Compute the constraint code and ConstraintType to use.
8579     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8580 
8581     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8582         OpInfo.Type == InlineAsm::isClobber)
8583       continue;
8584 
8585     // If this is a memory input, and if the operand is not indirect, do what we
8586     // need to provide an address for the memory input.
8587     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8588         !OpInfo.isIndirect) {
8589       assert((OpInfo.isMultipleAlternative ||
8590               (OpInfo.Type == InlineAsm::isInput)) &&
8591              "Can only indirectify direct input operands!");
8592 
8593       // Memory operands really want the address of the value.
8594       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8595 
8596       // There is no longer a Value* corresponding to this operand.
8597       OpInfo.CallOperandVal = nullptr;
8598 
8599       // It is now an indirect operand.
8600       OpInfo.isIndirect = true;
8601     }
8602 
8603   }
8604 
8605   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8606   std::vector<SDValue> AsmNodeOperands;
8607   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8608   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8609       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8610 
8611   // If we have a !srcloc metadata node associated with it, we want to attach
8612   // this to the ultimately generated inline asm machineinstr.  To do this, we
8613   // pass in the third operand as this (potentially null) inline asm MDNode.
8614   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8615   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8616 
8617   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8618   // bits as operand 3.
8619   AsmNodeOperands.push_back(DAG.getTargetConstant(
8620       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8621 
8622   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8623   // this, assign virtual and physical registers for inputs and otput.
8624   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8625     // Assign Registers.
8626     SDISelAsmOperandInfo &RefOpInfo =
8627         OpInfo.isMatchingInputConstraint()
8628             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8629             : OpInfo;
8630     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8631 
8632     auto DetectWriteToReservedRegister = [&]() {
8633       const MachineFunction &MF = DAG.getMachineFunction();
8634       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8635       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8636         if (Register::isPhysicalRegister(Reg) &&
8637             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8638           const char *RegName = TRI.getName(Reg);
8639           emitInlineAsmError(Call, "write to reserved register '" +
8640                                        Twine(RegName) + "'");
8641           return true;
8642         }
8643       }
8644       return false;
8645     };
8646 
8647     switch (OpInfo.Type) {
8648     case InlineAsm::isOutput:
8649       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8650         unsigned ConstraintID =
8651             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8652         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8653                "Failed to convert memory constraint code to constraint id.");
8654 
8655         // Add information to the INLINEASM node to know about this output.
8656         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8657         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8658         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8659                                                         MVT::i32));
8660         AsmNodeOperands.push_back(OpInfo.CallOperand);
8661       } else {
8662         // Otherwise, this outputs to a register (directly for C_Register /
8663         // C_RegisterClass, and a target-defined fashion for
8664         // C_Immediate/C_Other). Find a register that we can use.
8665         if (OpInfo.AssignedRegs.Regs.empty()) {
8666           emitInlineAsmError(
8667               Call, "couldn't allocate output register for constraint '" +
8668                         Twine(OpInfo.ConstraintCode) + "'");
8669           return;
8670         }
8671 
8672         if (DetectWriteToReservedRegister())
8673           return;
8674 
8675         // Add information to the INLINEASM node to know that this register is
8676         // set.
8677         OpInfo.AssignedRegs.AddInlineAsmOperands(
8678             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8679                                   : InlineAsm::Kind_RegDef,
8680             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8681       }
8682       break;
8683 
8684     case InlineAsm::isInput: {
8685       SDValue InOperandVal = OpInfo.CallOperand;
8686 
8687       if (OpInfo.isMatchingInputConstraint()) {
8688         // If this is required to match an output register we have already set,
8689         // just use its register.
8690         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8691                                                   AsmNodeOperands);
8692         unsigned OpFlag =
8693           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8694         if (InlineAsm::isRegDefKind(OpFlag) ||
8695             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8696           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8697           if (OpInfo.isIndirect) {
8698             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8699             emitInlineAsmError(Call, "inline asm not supported yet: "
8700                                      "don't know how to handle tied "
8701                                      "indirect register inputs");
8702             return;
8703           }
8704 
8705           SmallVector<unsigned, 4> Regs;
8706           MachineFunction &MF = DAG.getMachineFunction();
8707           MachineRegisterInfo &MRI = MF.getRegInfo();
8708           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8709           RegisterSDNode *R = dyn_cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8710           Register TiedReg = R->getReg();
8711           MVT RegVT = R->getSimpleValueType(0);
8712           const TargetRegisterClass *RC = TiedReg.isVirtual() ?
8713             MRI.getRegClass(TiedReg) : TRI.getMinimalPhysRegClass(TiedReg);
8714           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8715           for (unsigned i = 0; i != NumRegs; ++i)
8716             Regs.push_back(MRI.createVirtualRegister(RC));
8717 
8718           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8719 
8720           SDLoc dl = getCurSDLoc();
8721           // Use the produced MatchedRegs object to
8722           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8723           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8724                                            true, OpInfo.getMatchedOperand(), dl,
8725                                            DAG, AsmNodeOperands);
8726           break;
8727         }
8728 
8729         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8730         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8731                "Unexpected number of operands");
8732         // Add information to the INLINEASM node to know about this input.
8733         // See InlineAsm.h isUseOperandTiedToDef.
8734         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8735         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8736                                                     OpInfo.getMatchedOperand());
8737         AsmNodeOperands.push_back(DAG.getTargetConstant(
8738             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8739         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8740         break;
8741       }
8742 
8743       // Treat indirect 'X' constraint as memory.
8744       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8745           OpInfo.isIndirect)
8746         OpInfo.ConstraintType = TargetLowering::C_Memory;
8747 
8748       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8749           OpInfo.ConstraintType == TargetLowering::C_Other) {
8750         std::vector<SDValue> Ops;
8751         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8752                                           Ops, DAG);
8753         if (Ops.empty()) {
8754           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8755             if (isa<ConstantSDNode>(InOperandVal)) {
8756               emitInlineAsmError(Call, "value out of range for constraint '" +
8757                                            Twine(OpInfo.ConstraintCode) + "'");
8758               return;
8759             }
8760 
8761           emitInlineAsmError(Call,
8762                              "invalid operand for inline asm constraint '" +
8763                                  Twine(OpInfo.ConstraintCode) + "'");
8764           return;
8765         }
8766 
8767         // Add information to the INLINEASM node to know about this input.
8768         unsigned ResOpType =
8769           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8770         AsmNodeOperands.push_back(DAG.getTargetConstant(
8771             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8772         llvm::append_range(AsmNodeOperands, Ops);
8773         break;
8774       }
8775 
8776       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8777         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8778         assert(InOperandVal.getValueType() ==
8779                    TLI.getPointerTy(DAG.getDataLayout()) &&
8780                "Memory operands expect pointer values");
8781 
8782         unsigned ConstraintID =
8783             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8784         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8785                "Failed to convert memory constraint code to constraint id.");
8786 
8787         // Add information to the INLINEASM node to know about this input.
8788         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8789         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8790         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8791                                                         getCurSDLoc(),
8792                                                         MVT::i32));
8793         AsmNodeOperands.push_back(InOperandVal);
8794         break;
8795       }
8796 
8797       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8798               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8799              "Unknown constraint type!");
8800 
8801       // TODO: Support this.
8802       if (OpInfo.isIndirect) {
8803         emitInlineAsmError(
8804             Call, "Don't know how to handle indirect register inputs yet "
8805                   "for constraint '" +
8806                       Twine(OpInfo.ConstraintCode) + "'");
8807         return;
8808       }
8809 
8810       // Copy the input into the appropriate registers.
8811       if (OpInfo.AssignedRegs.Regs.empty()) {
8812         emitInlineAsmError(Call,
8813                            "couldn't allocate input reg for constraint '" +
8814                                Twine(OpInfo.ConstraintCode) + "'");
8815         return;
8816       }
8817 
8818       if (DetectWriteToReservedRegister())
8819         return;
8820 
8821       SDLoc dl = getCurSDLoc();
8822 
8823       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8824                                         &Call);
8825 
8826       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8827                                                dl, DAG, AsmNodeOperands);
8828       break;
8829     }
8830     case InlineAsm::isClobber:
8831       // Add the clobbered value to the operand list, so that the register
8832       // allocator is aware that the physreg got clobbered.
8833       if (!OpInfo.AssignedRegs.Regs.empty())
8834         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8835                                                  false, 0, getCurSDLoc(), DAG,
8836                                                  AsmNodeOperands);
8837       break;
8838     }
8839   }
8840 
8841   // Finish up input operands.  Set the input chain and add the flag last.
8842   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8843   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8844 
8845   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8846   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8847                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8848   Flag = Chain.getValue(1);
8849 
8850   // Do additional work to generate outputs.
8851 
8852   SmallVector<EVT, 1> ResultVTs;
8853   SmallVector<SDValue, 1> ResultValues;
8854   SmallVector<SDValue, 8> OutChains;
8855 
8856   llvm::Type *CallResultType = Call.getType();
8857   ArrayRef<Type *> ResultTypes;
8858   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8859     ResultTypes = StructResult->elements();
8860   else if (!CallResultType->isVoidTy())
8861     ResultTypes = makeArrayRef(CallResultType);
8862 
8863   auto CurResultType = ResultTypes.begin();
8864   auto handleRegAssign = [&](SDValue V) {
8865     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8866     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8867     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8868     ++CurResultType;
8869     // If the type of the inline asm call site return value is different but has
8870     // same size as the type of the asm output bitcast it.  One example of this
8871     // is for vectors with different width / number of elements.  This can
8872     // happen for register classes that can contain multiple different value
8873     // types.  The preg or vreg allocated may not have the same VT as was
8874     // expected.
8875     //
8876     // This can also happen for a return value that disagrees with the register
8877     // class it is put in, eg. a double in a general-purpose register on a
8878     // 32-bit machine.
8879     if (ResultVT != V.getValueType() &&
8880         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8881       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8882     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8883              V.getValueType().isInteger()) {
8884       // If a result value was tied to an input value, the computed result
8885       // may have a wider width than the expected result.  Extract the
8886       // relevant portion.
8887       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8888     }
8889     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8890     ResultVTs.push_back(ResultVT);
8891     ResultValues.push_back(V);
8892   };
8893 
8894   // Deal with output operands.
8895   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8896     if (OpInfo.Type == InlineAsm::isOutput) {
8897       SDValue Val;
8898       // Skip trivial output operands.
8899       if (OpInfo.AssignedRegs.Regs.empty())
8900         continue;
8901 
8902       switch (OpInfo.ConstraintType) {
8903       case TargetLowering::C_Register:
8904       case TargetLowering::C_RegisterClass:
8905         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8906                                                   Chain, &Flag, &Call);
8907         break;
8908       case TargetLowering::C_Immediate:
8909       case TargetLowering::C_Other:
8910         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8911                                               OpInfo, DAG);
8912         break;
8913       case TargetLowering::C_Memory:
8914         break; // Already handled.
8915       case TargetLowering::C_Unknown:
8916         assert(false && "Unexpected unknown constraint");
8917       }
8918 
8919       // Indirect output manifest as stores. Record output chains.
8920       if (OpInfo.isIndirect) {
8921         const Value *Ptr = OpInfo.CallOperandVal;
8922         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8923         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8924                                      MachinePointerInfo(Ptr));
8925         OutChains.push_back(Store);
8926       } else {
8927         // generate CopyFromRegs to associated registers.
8928         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8929         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8930           for (const SDValue &V : Val->op_values())
8931             handleRegAssign(V);
8932         } else
8933           handleRegAssign(Val);
8934       }
8935     }
8936   }
8937 
8938   // Set results.
8939   if (!ResultValues.empty()) {
8940     assert(CurResultType == ResultTypes.end() &&
8941            "Mismatch in number of ResultTypes");
8942     assert(ResultValues.size() == ResultTypes.size() &&
8943            "Mismatch in number of output operands in asm result");
8944 
8945     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8946                             DAG.getVTList(ResultVTs), ResultValues);
8947     setValue(&Call, V);
8948   }
8949 
8950   // Collect store chains.
8951   if (!OutChains.empty())
8952     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8953 
8954   if (EmitEHLabels) {
8955     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
8956   }
8957 
8958   // Only Update Root if inline assembly has a memory effect.
8959   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
8960       EmitEHLabels)
8961     DAG.setRoot(Chain);
8962 }
8963 
8964 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8965                                              const Twine &Message) {
8966   LLVMContext &Ctx = *DAG.getContext();
8967   Ctx.emitError(&Call, Message);
8968 
8969   // Make sure we leave the DAG in a valid state
8970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8971   SmallVector<EVT, 1> ValueVTs;
8972   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8973 
8974   if (ValueVTs.empty())
8975     return;
8976 
8977   SmallVector<SDValue, 1> Ops;
8978   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8979     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8980 
8981   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8982 }
8983 
8984 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8985   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8986                           MVT::Other, getRoot(),
8987                           getValue(I.getArgOperand(0)),
8988                           DAG.getSrcValue(I.getArgOperand(0))));
8989 }
8990 
8991 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8992   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8993   const DataLayout &DL = DAG.getDataLayout();
8994   SDValue V = DAG.getVAArg(
8995       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8996       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8997       DL.getABITypeAlign(I.getType()).value());
8998   DAG.setRoot(V.getValue(1));
8999 
9000   if (I.getType()->isPointerTy())
9001     V = DAG.getPtrExtOrTrunc(
9002         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9003   setValue(&I, V);
9004 }
9005 
9006 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9007   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9008                           MVT::Other, getRoot(),
9009                           getValue(I.getArgOperand(0)),
9010                           DAG.getSrcValue(I.getArgOperand(0))));
9011 }
9012 
9013 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9014   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9015                           MVT::Other, getRoot(),
9016                           getValue(I.getArgOperand(0)),
9017                           getValue(I.getArgOperand(1)),
9018                           DAG.getSrcValue(I.getArgOperand(0)),
9019                           DAG.getSrcValue(I.getArgOperand(1))));
9020 }
9021 
9022 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9023                                                     const Instruction &I,
9024                                                     SDValue Op) {
9025   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9026   if (!Range)
9027     return Op;
9028 
9029   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9030   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9031     return Op;
9032 
9033   APInt Lo = CR.getUnsignedMin();
9034   if (!Lo.isMinValue())
9035     return Op;
9036 
9037   APInt Hi = CR.getUnsignedMax();
9038   unsigned Bits = std::max(Hi.getActiveBits(),
9039                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9040 
9041   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9042 
9043   SDLoc SL = getCurSDLoc();
9044 
9045   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9046                              DAG.getValueType(SmallVT));
9047   unsigned NumVals = Op.getNode()->getNumValues();
9048   if (NumVals == 1)
9049     return ZExt;
9050 
9051   SmallVector<SDValue, 4> Ops;
9052 
9053   Ops.push_back(ZExt);
9054   for (unsigned I = 1; I != NumVals; ++I)
9055     Ops.push_back(Op.getValue(I));
9056 
9057   return DAG.getMergeValues(Ops, SL);
9058 }
9059 
9060 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9061 /// the call being lowered.
9062 ///
9063 /// This is a helper for lowering intrinsics that follow a target calling
9064 /// convention or require stack pointer adjustment. Only a subset of the
9065 /// intrinsic's operands need to participate in the calling convention.
9066 void SelectionDAGBuilder::populateCallLoweringInfo(
9067     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9068     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9069     bool IsPatchPoint) {
9070   TargetLowering::ArgListTy Args;
9071   Args.reserve(NumArgs);
9072 
9073   // Populate the argument list.
9074   // Attributes for args start at offset 1, after the return attribute.
9075   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9076        ArgI != ArgE; ++ArgI) {
9077     const Value *V = Call->getOperand(ArgI);
9078 
9079     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9080 
9081     TargetLowering::ArgListEntry Entry;
9082     Entry.Node = getValue(V);
9083     Entry.Ty = V->getType();
9084     Entry.setAttributes(Call, ArgI);
9085     Args.push_back(Entry);
9086   }
9087 
9088   CLI.setDebugLoc(getCurSDLoc())
9089       .setChain(getRoot())
9090       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9091       .setDiscardResult(Call->use_empty())
9092       .setIsPatchPoint(IsPatchPoint)
9093       .setIsPreallocated(
9094           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9095 }
9096 
9097 /// Add a stack map intrinsic call's live variable operands to a stackmap
9098 /// or patchpoint target node's operand list.
9099 ///
9100 /// Constants are converted to TargetConstants purely as an optimization to
9101 /// avoid constant materialization and register allocation.
9102 ///
9103 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9104 /// generate addess computation nodes, and so FinalizeISel can convert the
9105 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9106 /// address materialization and register allocation, but may also be required
9107 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9108 /// alloca in the entry block, then the runtime may assume that the alloca's
9109 /// StackMap location can be read immediately after compilation and that the
9110 /// location is valid at any point during execution (this is similar to the
9111 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9112 /// only available in a register, then the runtime would need to trap when
9113 /// execution reaches the StackMap in order to read the alloca's location.
9114 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9115                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9116                                 SelectionDAGBuilder &Builder) {
9117   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9118     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9119     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9120       Ops.push_back(
9121         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9122       Ops.push_back(
9123         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9124     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9125       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9126       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9127           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9128     } else
9129       Ops.push_back(OpVal);
9130   }
9131 }
9132 
9133 /// Lower llvm.experimental.stackmap directly to its target opcode.
9134 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9135   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9136   //                                  [live variables...])
9137 
9138   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9139 
9140   SDValue Chain, InFlag, Callee, NullPtr;
9141   SmallVector<SDValue, 32> Ops;
9142 
9143   SDLoc DL = getCurSDLoc();
9144   Callee = getValue(CI.getCalledOperand());
9145   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9146 
9147   // The stackmap intrinsic only records the live variables (the arguments
9148   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9149   // intrinsic, this won't be lowered to a function call. This means we don't
9150   // have to worry about calling conventions and target specific lowering code.
9151   // Instead we perform the call lowering right here.
9152   //
9153   // chain, flag = CALLSEQ_START(chain, 0, 0)
9154   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9155   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9156   //
9157   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9158   InFlag = Chain.getValue(1);
9159 
9160   // Add the <id> and <numBytes> constants.
9161   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9162   Ops.push_back(DAG.getTargetConstant(
9163                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9164   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9165   Ops.push_back(DAG.getTargetConstant(
9166                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9167                   MVT::i32));
9168 
9169   // Push live variables for the stack map.
9170   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9171 
9172   // We are not pushing any register mask info here on the operands list,
9173   // because the stackmap doesn't clobber anything.
9174 
9175   // Push the chain and the glue flag.
9176   Ops.push_back(Chain);
9177   Ops.push_back(InFlag);
9178 
9179   // Create the STACKMAP node.
9180   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9181   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9182   Chain = SDValue(SM, 0);
9183   InFlag = Chain.getValue(1);
9184 
9185   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9186 
9187   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9188 
9189   // Set the root to the target-lowered call chain.
9190   DAG.setRoot(Chain);
9191 
9192   // Inform the Frame Information that we have a stackmap in this function.
9193   FuncInfo.MF->getFrameInfo().setHasStackMap();
9194 }
9195 
9196 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9197 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9198                                           const BasicBlock *EHPadBB) {
9199   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9200   //                                                 i32 <numBytes>,
9201   //                                                 i8* <target>,
9202   //                                                 i32 <numArgs>,
9203   //                                                 [Args...],
9204   //                                                 [live variables...])
9205 
9206   CallingConv::ID CC = CB.getCallingConv();
9207   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9208   bool HasDef = !CB.getType()->isVoidTy();
9209   SDLoc dl = getCurSDLoc();
9210   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9211 
9212   // Handle immediate and symbolic callees.
9213   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9214     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9215                                    /*isTarget=*/true);
9216   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9217     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9218                                          SDLoc(SymbolicCallee),
9219                                          SymbolicCallee->getValueType(0));
9220 
9221   // Get the real number of arguments participating in the call <numArgs>
9222   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9223   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9224 
9225   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9226   // Intrinsics include all meta-operands up to but not including CC.
9227   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9228   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9229          "Not enough arguments provided to the patchpoint intrinsic");
9230 
9231   // For AnyRegCC the arguments are lowered later on manually.
9232   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9233   Type *ReturnTy =
9234       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9235 
9236   TargetLowering::CallLoweringInfo CLI(DAG);
9237   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9238                            ReturnTy, true);
9239   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9240 
9241   SDNode *CallEnd = Result.second.getNode();
9242   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9243     CallEnd = CallEnd->getOperand(0).getNode();
9244 
9245   /// Get a call instruction from the call sequence chain.
9246   /// Tail calls are not allowed.
9247   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9248          "Expected a callseq node.");
9249   SDNode *Call = CallEnd->getOperand(0).getNode();
9250   bool HasGlue = Call->getGluedNode();
9251 
9252   // Replace the target specific call node with the patchable intrinsic.
9253   SmallVector<SDValue, 8> Ops;
9254 
9255   // Add the <id> and <numBytes> constants.
9256   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9257   Ops.push_back(DAG.getTargetConstant(
9258                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9259   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9260   Ops.push_back(DAG.getTargetConstant(
9261                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9262                   MVT::i32));
9263 
9264   // Add the callee.
9265   Ops.push_back(Callee);
9266 
9267   // Adjust <numArgs> to account for any arguments that have been passed on the
9268   // stack instead.
9269   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9270   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9271   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9272   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9273 
9274   // Add the calling convention
9275   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9276 
9277   // Add the arguments we omitted previously. The register allocator should
9278   // place these in any free register.
9279   if (IsAnyRegCC)
9280     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9281       Ops.push_back(getValue(CB.getArgOperand(i)));
9282 
9283   // Push the arguments from the call instruction up to the register mask.
9284   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9285   Ops.append(Call->op_begin() + 2, e);
9286 
9287   // Push live variables for the stack map.
9288   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9289 
9290   // Push the register mask info.
9291   if (HasGlue)
9292     Ops.push_back(*(Call->op_end()-2));
9293   else
9294     Ops.push_back(*(Call->op_end()-1));
9295 
9296   // Push the chain (this is originally the first operand of the call, but
9297   // becomes now the last or second to last operand).
9298   Ops.push_back(*(Call->op_begin()));
9299 
9300   // Push the glue flag (last operand).
9301   if (HasGlue)
9302     Ops.push_back(*(Call->op_end()-1));
9303 
9304   SDVTList NodeTys;
9305   if (IsAnyRegCC && HasDef) {
9306     // Create the return types based on the intrinsic definition
9307     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9308     SmallVector<EVT, 3> ValueVTs;
9309     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9310     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9311 
9312     // There is always a chain and a glue type at the end
9313     ValueVTs.push_back(MVT::Other);
9314     ValueVTs.push_back(MVT::Glue);
9315     NodeTys = DAG.getVTList(ValueVTs);
9316   } else
9317     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9318 
9319   // Replace the target specific call node with a PATCHPOINT node.
9320   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9321                                          dl, NodeTys, Ops);
9322 
9323   // Update the NodeMap.
9324   if (HasDef) {
9325     if (IsAnyRegCC)
9326       setValue(&CB, SDValue(MN, 0));
9327     else
9328       setValue(&CB, Result.first);
9329   }
9330 
9331   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9332   // call sequence. Furthermore the location of the chain and glue can change
9333   // when the AnyReg calling convention is used and the intrinsic returns a
9334   // value.
9335   if (IsAnyRegCC && HasDef) {
9336     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9337     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9338     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9339   } else
9340     DAG.ReplaceAllUsesWith(Call, MN);
9341   DAG.DeleteNode(Call);
9342 
9343   // Inform the Frame Information that we have a patchpoint in this function.
9344   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9345 }
9346 
9347 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9348                                             unsigned Intrinsic) {
9349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9350   SDValue Op1 = getValue(I.getArgOperand(0));
9351   SDValue Op2;
9352   if (I.getNumArgOperands() > 1)
9353     Op2 = getValue(I.getArgOperand(1));
9354   SDLoc dl = getCurSDLoc();
9355   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9356   SDValue Res;
9357   SDNodeFlags SDFlags;
9358   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9359     SDFlags.copyFMF(*FPMO);
9360 
9361   switch (Intrinsic) {
9362   case Intrinsic::vector_reduce_fadd:
9363     if (SDFlags.hasAllowReassociation())
9364       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9365                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9366                         SDFlags);
9367     else
9368       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9369     break;
9370   case Intrinsic::vector_reduce_fmul:
9371     if (SDFlags.hasAllowReassociation())
9372       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9373                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9374                         SDFlags);
9375     else
9376       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9377     break;
9378   case Intrinsic::vector_reduce_add:
9379     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9380     break;
9381   case Intrinsic::vector_reduce_mul:
9382     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9383     break;
9384   case Intrinsic::vector_reduce_and:
9385     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9386     break;
9387   case Intrinsic::vector_reduce_or:
9388     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9389     break;
9390   case Intrinsic::vector_reduce_xor:
9391     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9392     break;
9393   case Intrinsic::vector_reduce_smax:
9394     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9395     break;
9396   case Intrinsic::vector_reduce_smin:
9397     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9398     break;
9399   case Intrinsic::vector_reduce_umax:
9400     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9401     break;
9402   case Intrinsic::vector_reduce_umin:
9403     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9404     break;
9405   case Intrinsic::vector_reduce_fmax:
9406     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9407     break;
9408   case Intrinsic::vector_reduce_fmin:
9409     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9410     break;
9411   default:
9412     llvm_unreachable("Unhandled vector reduce intrinsic");
9413   }
9414   setValue(&I, Res);
9415 }
9416 
9417 /// Returns an AttributeList representing the attributes applied to the return
9418 /// value of the given call.
9419 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9420   SmallVector<Attribute::AttrKind, 2> Attrs;
9421   if (CLI.RetSExt)
9422     Attrs.push_back(Attribute::SExt);
9423   if (CLI.RetZExt)
9424     Attrs.push_back(Attribute::ZExt);
9425   if (CLI.IsInReg)
9426     Attrs.push_back(Attribute::InReg);
9427 
9428   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9429                             Attrs);
9430 }
9431 
9432 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9433 /// implementation, which just calls LowerCall.
9434 /// FIXME: When all targets are
9435 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9436 std::pair<SDValue, SDValue>
9437 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9438   // Handle the incoming return values from the call.
9439   CLI.Ins.clear();
9440   Type *OrigRetTy = CLI.RetTy;
9441   SmallVector<EVT, 4> RetTys;
9442   SmallVector<uint64_t, 4> Offsets;
9443   auto &DL = CLI.DAG.getDataLayout();
9444   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9445 
9446   if (CLI.IsPostTypeLegalization) {
9447     // If we are lowering a libcall after legalization, split the return type.
9448     SmallVector<EVT, 4> OldRetTys;
9449     SmallVector<uint64_t, 4> OldOffsets;
9450     RetTys.swap(OldRetTys);
9451     Offsets.swap(OldOffsets);
9452 
9453     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9454       EVT RetVT = OldRetTys[i];
9455       uint64_t Offset = OldOffsets[i];
9456       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9457       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9458       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9459       RetTys.append(NumRegs, RegisterVT);
9460       for (unsigned j = 0; j != NumRegs; ++j)
9461         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9462     }
9463   }
9464 
9465   SmallVector<ISD::OutputArg, 4> Outs;
9466   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9467 
9468   bool CanLowerReturn =
9469       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9470                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9471 
9472   SDValue DemoteStackSlot;
9473   int DemoteStackIdx = -100;
9474   if (!CanLowerReturn) {
9475     // FIXME: equivalent assert?
9476     // assert(!CS.hasInAllocaArgument() &&
9477     //        "sret demotion is incompatible with inalloca");
9478     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9479     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9480     MachineFunction &MF = CLI.DAG.getMachineFunction();
9481     DemoteStackIdx =
9482         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9483     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9484                                               DL.getAllocaAddrSpace());
9485 
9486     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9487     ArgListEntry Entry;
9488     Entry.Node = DemoteStackSlot;
9489     Entry.Ty = StackSlotPtrType;
9490     Entry.IsSExt = false;
9491     Entry.IsZExt = false;
9492     Entry.IsInReg = false;
9493     Entry.IsSRet = true;
9494     Entry.IsNest = false;
9495     Entry.IsByVal = false;
9496     Entry.IsByRef = false;
9497     Entry.IsReturned = false;
9498     Entry.IsSwiftSelf = false;
9499     Entry.IsSwiftAsync = false;
9500     Entry.IsSwiftError = false;
9501     Entry.IsCFGuardTarget = false;
9502     Entry.Alignment = Alignment;
9503     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9504     CLI.NumFixedArgs += 1;
9505     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9506 
9507     // sret demotion isn't compatible with tail-calls, since the sret argument
9508     // points into the callers stack frame.
9509     CLI.IsTailCall = false;
9510   } else {
9511     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9512         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9513     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9514       ISD::ArgFlagsTy Flags;
9515       if (NeedsRegBlock) {
9516         Flags.setInConsecutiveRegs();
9517         if (I == RetTys.size() - 1)
9518           Flags.setInConsecutiveRegsLast();
9519       }
9520       EVT VT = RetTys[I];
9521       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9522                                                      CLI.CallConv, VT);
9523       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9524                                                        CLI.CallConv, VT);
9525       for (unsigned i = 0; i != NumRegs; ++i) {
9526         ISD::InputArg MyFlags;
9527         MyFlags.Flags = Flags;
9528         MyFlags.VT = RegisterVT;
9529         MyFlags.ArgVT = VT;
9530         MyFlags.Used = CLI.IsReturnValueUsed;
9531         if (CLI.RetTy->isPointerTy()) {
9532           MyFlags.Flags.setPointer();
9533           MyFlags.Flags.setPointerAddrSpace(
9534               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9535         }
9536         if (CLI.RetSExt)
9537           MyFlags.Flags.setSExt();
9538         if (CLI.RetZExt)
9539           MyFlags.Flags.setZExt();
9540         if (CLI.IsInReg)
9541           MyFlags.Flags.setInReg();
9542         CLI.Ins.push_back(MyFlags);
9543       }
9544     }
9545   }
9546 
9547   // We push in swifterror return as the last element of CLI.Ins.
9548   ArgListTy &Args = CLI.getArgs();
9549   if (supportSwiftError()) {
9550     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9551       if (Args[i].IsSwiftError) {
9552         ISD::InputArg MyFlags;
9553         MyFlags.VT = getPointerTy(DL);
9554         MyFlags.ArgVT = EVT(getPointerTy(DL));
9555         MyFlags.Flags.setSwiftError();
9556         CLI.Ins.push_back(MyFlags);
9557       }
9558     }
9559   }
9560 
9561   // Handle all of the outgoing arguments.
9562   CLI.Outs.clear();
9563   CLI.OutVals.clear();
9564   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9565     SmallVector<EVT, 4> ValueVTs;
9566     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9567     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9568     Type *FinalType = Args[i].Ty;
9569     if (Args[i].IsByVal)
9570       FinalType = Args[i].IndirectType;
9571     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9572         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9573     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9574          ++Value) {
9575       EVT VT = ValueVTs[Value];
9576       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9577       SDValue Op = SDValue(Args[i].Node.getNode(),
9578                            Args[i].Node.getResNo() + Value);
9579       ISD::ArgFlagsTy Flags;
9580 
9581       // Certain targets (such as MIPS), may have a different ABI alignment
9582       // for a type depending on the context. Give the target a chance to
9583       // specify the alignment it wants.
9584       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9585       Flags.setOrigAlign(OriginalAlignment);
9586 
9587       if (Args[i].Ty->isPointerTy()) {
9588         Flags.setPointer();
9589         Flags.setPointerAddrSpace(
9590             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9591       }
9592       if (Args[i].IsZExt)
9593         Flags.setZExt();
9594       if (Args[i].IsSExt)
9595         Flags.setSExt();
9596       if (Args[i].IsInReg) {
9597         // If we are using vectorcall calling convention, a structure that is
9598         // passed InReg - is surely an HVA
9599         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9600             isa<StructType>(FinalType)) {
9601           // The first value of a structure is marked
9602           if (0 == Value)
9603             Flags.setHvaStart();
9604           Flags.setHva();
9605         }
9606         // Set InReg Flag
9607         Flags.setInReg();
9608       }
9609       if (Args[i].IsSRet)
9610         Flags.setSRet();
9611       if (Args[i].IsSwiftSelf)
9612         Flags.setSwiftSelf();
9613       if (Args[i].IsSwiftAsync)
9614         Flags.setSwiftAsync();
9615       if (Args[i].IsSwiftError)
9616         Flags.setSwiftError();
9617       if (Args[i].IsCFGuardTarget)
9618         Flags.setCFGuardTarget();
9619       if (Args[i].IsByVal)
9620         Flags.setByVal();
9621       if (Args[i].IsByRef)
9622         Flags.setByRef();
9623       if (Args[i].IsPreallocated) {
9624         Flags.setPreallocated();
9625         // Set the byval flag for CCAssignFn callbacks that don't know about
9626         // preallocated.  This way we can know how many bytes we should've
9627         // allocated and how many bytes a callee cleanup function will pop.  If
9628         // we port preallocated to more targets, we'll have to add custom
9629         // preallocated handling in the various CC lowering callbacks.
9630         Flags.setByVal();
9631       }
9632       if (Args[i].IsInAlloca) {
9633         Flags.setInAlloca();
9634         // Set the byval flag for CCAssignFn callbacks that don't know about
9635         // inalloca.  This way we can know how many bytes we should've allocated
9636         // and how many bytes a callee cleanup function will pop.  If we port
9637         // inalloca to more targets, we'll have to add custom inalloca handling
9638         // in the various CC lowering callbacks.
9639         Flags.setByVal();
9640       }
9641       Align MemAlign;
9642       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9643         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9644         Flags.setByValSize(FrameSize);
9645 
9646         // info is not there but there are cases it cannot get right.
9647         if (auto MA = Args[i].Alignment)
9648           MemAlign = *MA;
9649         else
9650           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9651       } else if (auto MA = Args[i].Alignment) {
9652         MemAlign = *MA;
9653       } else {
9654         MemAlign = OriginalAlignment;
9655       }
9656       Flags.setMemAlign(MemAlign);
9657       if (Args[i].IsNest)
9658         Flags.setNest();
9659       if (NeedsRegBlock)
9660         Flags.setInConsecutiveRegs();
9661 
9662       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9663                                                  CLI.CallConv, VT);
9664       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9665                                                         CLI.CallConv, VT);
9666       SmallVector<SDValue, 4> Parts(NumParts);
9667       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9668 
9669       if (Args[i].IsSExt)
9670         ExtendKind = ISD::SIGN_EXTEND;
9671       else if (Args[i].IsZExt)
9672         ExtendKind = ISD::ZERO_EXTEND;
9673 
9674       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9675       // for now.
9676       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9677           CanLowerReturn) {
9678         assert((CLI.RetTy == Args[i].Ty ||
9679                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9680                  CLI.RetTy->getPointerAddressSpace() ==
9681                      Args[i].Ty->getPointerAddressSpace())) &&
9682                RetTys.size() == NumValues && "unexpected use of 'returned'");
9683         // Before passing 'returned' to the target lowering code, ensure that
9684         // either the register MVT and the actual EVT are the same size or that
9685         // the return value and argument are extended in the same way; in these
9686         // cases it's safe to pass the argument register value unchanged as the
9687         // return register value (although it's at the target's option whether
9688         // to do so)
9689         // TODO: allow code generation to take advantage of partially preserved
9690         // registers rather than clobbering the entire register when the
9691         // parameter extension method is not compatible with the return
9692         // extension method
9693         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9694             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9695              CLI.RetZExt == Args[i].IsZExt))
9696           Flags.setReturned();
9697       }
9698 
9699       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9700                      CLI.CallConv, ExtendKind);
9701 
9702       for (unsigned j = 0; j != NumParts; ++j) {
9703         // if it isn't first piece, alignment must be 1
9704         // For scalable vectors the scalable part is currently handled
9705         // by individual targets, so we just use the known minimum size here.
9706         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9707                     i < CLI.NumFixedArgs, i,
9708                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9709         if (NumParts > 1 && j == 0)
9710           MyFlags.Flags.setSplit();
9711         else if (j != 0) {
9712           MyFlags.Flags.setOrigAlign(Align(1));
9713           if (j == NumParts - 1)
9714             MyFlags.Flags.setSplitEnd();
9715         }
9716 
9717         CLI.Outs.push_back(MyFlags);
9718         CLI.OutVals.push_back(Parts[j]);
9719       }
9720 
9721       if (NeedsRegBlock && Value == NumValues - 1)
9722         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9723     }
9724   }
9725 
9726   SmallVector<SDValue, 4> InVals;
9727   CLI.Chain = LowerCall(CLI, InVals);
9728 
9729   // Update CLI.InVals to use outside of this function.
9730   CLI.InVals = InVals;
9731 
9732   // Verify that the target's LowerCall behaved as expected.
9733   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9734          "LowerCall didn't return a valid chain!");
9735   assert((!CLI.IsTailCall || InVals.empty()) &&
9736          "LowerCall emitted a return value for a tail call!");
9737   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9738          "LowerCall didn't emit the correct number of values!");
9739 
9740   // For a tail call, the return value is merely live-out and there aren't
9741   // any nodes in the DAG representing it. Return a special value to
9742   // indicate that a tail call has been emitted and no more Instructions
9743   // should be processed in the current block.
9744   if (CLI.IsTailCall) {
9745     CLI.DAG.setRoot(CLI.Chain);
9746     return std::make_pair(SDValue(), SDValue());
9747   }
9748 
9749 #ifndef NDEBUG
9750   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9751     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9752     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9753            "LowerCall emitted a value with the wrong type!");
9754   }
9755 #endif
9756 
9757   SmallVector<SDValue, 4> ReturnValues;
9758   if (!CanLowerReturn) {
9759     // The instruction result is the result of loading from the
9760     // hidden sret parameter.
9761     SmallVector<EVT, 1> PVTs;
9762     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9763 
9764     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9765     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9766     EVT PtrVT = PVTs[0];
9767 
9768     unsigned NumValues = RetTys.size();
9769     ReturnValues.resize(NumValues);
9770     SmallVector<SDValue, 4> Chains(NumValues);
9771 
9772     // An aggregate return value cannot wrap around the address space, so
9773     // offsets to its parts don't wrap either.
9774     SDNodeFlags Flags;
9775     Flags.setNoUnsignedWrap(true);
9776 
9777     MachineFunction &MF = CLI.DAG.getMachineFunction();
9778     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9779     for (unsigned i = 0; i < NumValues; ++i) {
9780       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9781                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9782                                                         PtrVT), Flags);
9783       SDValue L = CLI.DAG.getLoad(
9784           RetTys[i], CLI.DL, CLI.Chain, Add,
9785           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9786                                             DemoteStackIdx, Offsets[i]),
9787           HiddenSRetAlign);
9788       ReturnValues[i] = L;
9789       Chains[i] = L.getValue(1);
9790     }
9791 
9792     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9793   } else {
9794     // Collect the legal value parts into potentially illegal values
9795     // that correspond to the original function's return values.
9796     Optional<ISD::NodeType> AssertOp;
9797     if (CLI.RetSExt)
9798       AssertOp = ISD::AssertSext;
9799     else if (CLI.RetZExt)
9800       AssertOp = ISD::AssertZext;
9801     unsigned CurReg = 0;
9802     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9803       EVT VT = RetTys[I];
9804       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9805                                                      CLI.CallConv, VT);
9806       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9807                                                        CLI.CallConv, VT);
9808 
9809       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9810                                               NumRegs, RegisterVT, VT, nullptr,
9811                                               CLI.CallConv, AssertOp));
9812       CurReg += NumRegs;
9813     }
9814 
9815     // For a function returning void, there is no return value. We can't create
9816     // such a node, so we just return a null return value in that case. In
9817     // that case, nothing will actually look at the value.
9818     if (ReturnValues.empty())
9819       return std::make_pair(SDValue(), CLI.Chain);
9820   }
9821 
9822   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9823                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9824   return std::make_pair(Res, CLI.Chain);
9825 }
9826 
9827 /// Places new result values for the node in Results (their number
9828 /// and types must exactly match those of the original return values of
9829 /// the node), or leaves Results empty, which indicates that the node is not
9830 /// to be custom lowered after all.
9831 void TargetLowering::LowerOperationWrapper(SDNode *N,
9832                                            SmallVectorImpl<SDValue> &Results,
9833                                            SelectionDAG &DAG) const {
9834   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9835 
9836   if (!Res.getNode())
9837     return;
9838 
9839   // If the original node has one result, take the return value from
9840   // LowerOperation as is. It might not be result number 0.
9841   if (N->getNumValues() == 1) {
9842     Results.push_back(Res);
9843     return;
9844   }
9845 
9846   // If the original node has multiple results, then the return node should
9847   // have the same number of results.
9848   assert((N->getNumValues() == Res->getNumValues()) &&
9849       "Lowering returned the wrong number of results!");
9850 
9851   // Places new result values base on N result number.
9852   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9853     Results.push_back(Res.getValue(I));
9854 }
9855 
9856 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9857   llvm_unreachable("LowerOperation not implemented for this target!");
9858 }
9859 
9860 void
9861 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9862   SDValue Op = getNonRegisterValue(V);
9863   assert((Op.getOpcode() != ISD::CopyFromReg ||
9864           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9865          "Copy from a reg to the same reg!");
9866   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9867 
9868   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9869   // If this is an InlineAsm we have to match the registers required, not the
9870   // notional registers required by the type.
9871 
9872   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9873                    None); // This is not an ABI copy.
9874   SDValue Chain = DAG.getEntryNode();
9875 
9876   ISD::NodeType ExtendType = ISD::ANY_EXTEND;
9877   auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
9878   if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
9879     ExtendType = PreferredExtendIt->second;
9880   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9881   PendingExports.push_back(Chain);
9882 }
9883 
9884 #include "llvm/CodeGen/SelectionDAGISel.h"
9885 
9886 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9887 /// entry block, return true.  This includes arguments used by switches, since
9888 /// the switch may expand into multiple basic blocks.
9889 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9890   // With FastISel active, we may be splitting blocks, so force creation
9891   // of virtual registers for all non-dead arguments.
9892   if (FastISel)
9893     return A->use_empty();
9894 
9895   const BasicBlock &Entry = A->getParent()->front();
9896   for (const User *U : A->users())
9897     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9898       return false;  // Use not in entry block.
9899 
9900   return true;
9901 }
9902 
9903 using ArgCopyElisionMapTy =
9904     DenseMap<const Argument *,
9905              std::pair<const AllocaInst *, const StoreInst *>>;
9906 
9907 /// Scan the entry block of the function in FuncInfo for arguments that look
9908 /// like copies into a local alloca. Record any copied arguments in
9909 /// ArgCopyElisionCandidates.
9910 static void
9911 findArgumentCopyElisionCandidates(const DataLayout &DL,
9912                                   FunctionLoweringInfo *FuncInfo,
9913                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9914   // Record the state of every static alloca used in the entry block. Argument
9915   // allocas are all used in the entry block, so we need approximately as many
9916   // entries as we have arguments.
9917   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9918   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9919   unsigned NumArgs = FuncInfo->Fn->arg_size();
9920   StaticAllocas.reserve(NumArgs * 2);
9921 
9922   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9923     if (!V)
9924       return nullptr;
9925     V = V->stripPointerCasts();
9926     const auto *AI = dyn_cast<AllocaInst>(V);
9927     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9928       return nullptr;
9929     auto Iter = StaticAllocas.insert({AI, Unknown});
9930     return &Iter.first->second;
9931   };
9932 
9933   // Look for stores of arguments to static allocas. Look through bitcasts and
9934   // GEPs to handle type coercions, as long as the alloca is fully initialized
9935   // by the store. Any non-store use of an alloca escapes it and any subsequent
9936   // unanalyzed store might write it.
9937   // FIXME: Handle structs initialized with multiple stores.
9938   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9939     // Look for stores, and handle non-store uses conservatively.
9940     const auto *SI = dyn_cast<StoreInst>(&I);
9941     if (!SI) {
9942       // We will look through cast uses, so ignore them completely.
9943       if (I.isCast())
9944         continue;
9945       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9946       // to allocas.
9947       if (I.isDebugOrPseudoInst())
9948         continue;
9949       // This is an unknown instruction. Assume it escapes or writes to all
9950       // static alloca operands.
9951       for (const Use &U : I.operands()) {
9952         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9953           *Info = StaticAllocaInfo::Clobbered;
9954       }
9955       continue;
9956     }
9957 
9958     // If the stored value is a static alloca, mark it as escaped.
9959     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9960       *Info = StaticAllocaInfo::Clobbered;
9961 
9962     // Check if the destination is a static alloca.
9963     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9964     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9965     if (!Info)
9966       continue;
9967     const AllocaInst *AI = cast<AllocaInst>(Dst);
9968 
9969     // Skip allocas that have been initialized or clobbered.
9970     if (*Info != StaticAllocaInfo::Unknown)
9971       continue;
9972 
9973     // Check if the stored value is an argument, and that this store fully
9974     // initializes the alloca.
9975     // If the argument type has padding bits we can't directly forward a pointer
9976     // as the upper bits may contain garbage.
9977     // Don't elide copies from the same argument twice.
9978     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9979     const auto *Arg = dyn_cast<Argument>(Val);
9980     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9981         Arg->getType()->isEmptyTy() ||
9982         DL.getTypeStoreSize(Arg->getType()) !=
9983             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9984         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
9985         ArgCopyElisionCandidates.count(Arg)) {
9986       *Info = StaticAllocaInfo::Clobbered;
9987       continue;
9988     }
9989 
9990     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9991                       << '\n');
9992 
9993     // Mark this alloca and store for argument copy elision.
9994     *Info = StaticAllocaInfo::Elidable;
9995     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9996 
9997     // Stop scanning if we've seen all arguments. This will happen early in -O0
9998     // builds, which is useful, because -O0 builds have large entry blocks and
9999     // many allocas.
10000     if (ArgCopyElisionCandidates.size() == NumArgs)
10001       break;
10002   }
10003 }
10004 
10005 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10006 /// ArgVal is a load from a suitable fixed stack object.
10007 static void tryToElideArgumentCopy(
10008     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10009     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10010     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10011     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10012     SDValue ArgVal, bool &ArgHasUses) {
10013   // Check if this is a load from a fixed stack object.
10014   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10015   if (!LNode)
10016     return;
10017   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10018   if (!FINode)
10019     return;
10020 
10021   // Check that the fixed stack object is the right size and alignment.
10022   // Look at the alignment that the user wrote on the alloca instead of looking
10023   // at the stack object.
10024   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10025   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10026   const AllocaInst *AI = ArgCopyIter->second.first;
10027   int FixedIndex = FINode->getIndex();
10028   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10029   int OldIndex = AllocaIndex;
10030   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10031   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10032     LLVM_DEBUG(
10033         dbgs() << "  argument copy elision failed due to bad fixed stack "
10034                   "object size\n");
10035     return;
10036   }
10037   Align RequiredAlignment = AI->getAlign();
10038   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10039     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10040                          "greater than stack argument alignment ("
10041                       << DebugStr(RequiredAlignment) << " vs "
10042                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10043     return;
10044   }
10045 
10046   // Perform the elision. Delete the old stack object and replace its only use
10047   // in the variable info map. Mark the stack object as mutable.
10048   LLVM_DEBUG({
10049     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10050            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10051            << '\n';
10052   });
10053   MFI.RemoveStackObject(OldIndex);
10054   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10055   AllocaIndex = FixedIndex;
10056   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10057   Chains.push_back(ArgVal.getValue(1));
10058 
10059   // Avoid emitting code for the store implementing the copy.
10060   const StoreInst *SI = ArgCopyIter->second.second;
10061   ElidedArgCopyInstrs.insert(SI);
10062 
10063   // Check for uses of the argument again so that we can avoid exporting ArgVal
10064   // if it is't used by anything other than the store.
10065   for (const Value *U : Arg.users()) {
10066     if (U != SI) {
10067       ArgHasUses = true;
10068       break;
10069     }
10070   }
10071 }
10072 
10073 void SelectionDAGISel::LowerArguments(const Function &F) {
10074   SelectionDAG &DAG = SDB->DAG;
10075   SDLoc dl = SDB->getCurSDLoc();
10076   const DataLayout &DL = DAG.getDataLayout();
10077   SmallVector<ISD::InputArg, 16> Ins;
10078 
10079   // In Naked functions we aren't going to save any registers.
10080   if (F.hasFnAttribute(Attribute::Naked))
10081     return;
10082 
10083   if (!FuncInfo->CanLowerReturn) {
10084     // Put in an sret pointer parameter before all the other parameters.
10085     SmallVector<EVT, 1> ValueVTs;
10086     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10087                     F.getReturnType()->getPointerTo(
10088                         DAG.getDataLayout().getAllocaAddrSpace()),
10089                     ValueVTs);
10090 
10091     // NOTE: Assuming that a pointer will never break down to more than one VT
10092     // or one register.
10093     ISD::ArgFlagsTy Flags;
10094     Flags.setSRet();
10095     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10096     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10097                          ISD::InputArg::NoArgIndex, 0);
10098     Ins.push_back(RetArg);
10099   }
10100 
10101   // Look for stores of arguments to static allocas. Mark such arguments with a
10102   // flag to ask the target to give us the memory location of that argument if
10103   // available.
10104   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10105   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10106                                     ArgCopyElisionCandidates);
10107 
10108   // Set up the incoming argument description vector.
10109   for (const Argument &Arg : F.args()) {
10110     unsigned ArgNo = Arg.getArgNo();
10111     SmallVector<EVT, 4> ValueVTs;
10112     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10113     bool isArgValueUsed = !Arg.use_empty();
10114     unsigned PartBase = 0;
10115     Type *FinalType = Arg.getType();
10116     if (Arg.hasAttribute(Attribute::ByVal))
10117       FinalType = Arg.getParamByValType();
10118     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10119         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10120     for (unsigned Value = 0, NumValues = ValueVTs.size();
10121          Value != NumValues; ++Value) {
10122       EVT VT = ValueVTs[Value];
10123       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10124       ISD::ArgFlagsTy Flags;
10125 
10126 
10127       if (Arg.getType()->isPointerTy()) {
10128         Flags.setPointer();
10129         Flags.setPointerAddrSpace(
10130             cast<PointerType>(Arg.getType())->getAddressSpace());
10131       }
10132       if (Arg.hasAttribute(Attribute::ZExt))
10133         Flags.setZExt();
10134       if (Arg.hasAttribute(Attribute::SExt))
10135         Flags.setSExt();
10136       if (Arg.hasAttribute(Attribute::InReg)) {
10137         // If we are using vectorcall calling convention, a structure that is
10138         // passed InReg - is surely an HVA
10139         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10140             isa<StructType>(Arg.getType())) {
10141           // The first value of a structure is marked
10142           if (0 == Value)
10143             Flags.setHvaStart();
10144           Flags.setHva();
10145         }
10146         // Set InReg Flag
10147         Flags.setInReg();
10148       }
10149       if (Arg.hasAttribute(Attribute::StructRet))
10150         Flags.setSRet();
10151       if (Arg.hasAttribute(Attribute::SwiftSelf))
10152         Flags.setSwiftSelf();
10153       if (Arg.hasAttribute(Attribute::SwiftAsync))
10154         Flags.setSwiftAsync();
10155       if (Arg.hasAttribute(Attribute::SwiftError))
10156         Flags.setSwiftError();
10157       if (Arg.hasAttribute(Attribute::ByVal))
10158         Flags.setByVal();
10159       if (Arg.hasAttribute(Attribute::ByRef))
10160         Flags.setByRef();
10161       if (Arg.hasAttribute(Attribute::InAlloca)) {
10162         Flags.setInAlloca();
10163         // Set the byval flag for CCAssignFn callbacks that don't know about
10164         // inalloca.  This way we can know how many bytes we should've allocated
10165         // and how many bytes a callee cleanup function will pop.  If we port
10166         // inalloca to more targets, we'll have to add custom inalloca handling
10167         // in the various CC lowering callbacks.
10168         Flags.setByVal();
10169       }
10170       if (Arg.hasAttribute(Attribute::Preallocated)) {
10171         Flags.setPreallocated();
10172         // Set the byval flag for CCAssignFn callbacks that don't know about
10173         // preallocated.  This way we can know how many bytes we should've
10174         // allocated and how many bytes a callee cleanup function will pop.  If
10175         // we port preallocated to more targets, we'll have to add custom
10176         // preallocated handling in the various CC lowering callbacks.
10177         Flags.setByVal();
10178       }
10179 
10180       // Certain targets (such as MIPS), may have a different ABI alignment
10181       // for a type depending on the context. Give the target a chance to
10182       // specify the alignment it wants.
10183       const Align OriginalAlignment(
10184           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10185       Flags.setOrigAlign(OriginalAlignment);
10186 
10187       Align MemAlign;
10188       Type *ArgMemTy = nullptr;
10189       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10190           Flags.isByRef()) {
10191         if (!ArgMemTy)
10192           ArgMemTy = Arg.getPointeeInMemoryValueType();
10193 
10194         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10195 
10196         // For in-memory arguments, size and alignment should be passed from FE.
10197         // BE will guess if this info is not there but there are cases it cannot
10198         // get right.
10199         if (auto ParamAlign = Arg.getParamStackAlign())
10200           MemAlign = *ParamAlign;
10201         else if ((ParamAlign = Arg.getParamAlign()))
10202           MemAlign = *ParamAlign;
10203         else
10204           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10205         if (Flags.isByRef())
10206           Flags.setByRefSize(MemSize);
10207         else
10208           Flags.setByValSize(MemSize);
10209       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10210         MemAlign = *ParamAlign;
10211       } else {
10212         MemAlign = OriginalAlignment;
10213       }
10214       Flags.setMemAlign(MemAlign);
10215 
10216       if (Arg.hasAttribute(Attribute::Nest))
10217         Flags.setNest();
10218       if (NeedsRegBlock)
10219         Flags.setInConsecutiveRegs();
10220       if (ArgCopyElisionCandidates.count(&Arg))
10221         Flags.setCopyElisionCandidate();
10222       if (Arg.hasAttribute(Attribute::Returned))
10223         Flags.setReturned();
10224 
10225       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10226           *CurDAG->getContext(), F.getCallingConv(), VT);
10227       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10228           *CurDAG->getContext(), F.getCallingConv(), VT);
10229       for (unsigned i = 0; i != NumRegs; ++i) {
10230         // For scalable vectors, use the minimum size; individual targets
10231         // are responsible for handling scalable vector arguments and
10232         // return values.
10233         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10234                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10235         if (NumRegs > 1 && i == 0)
10236           MyFlags.Flags.setSplit();
10237         // if it isn't first piece, alignment must be 1
10238         else if (i > 0) {
10239           MyFlags.Flags.setOrigAlign(Align(1));
10240           if (i == NumRegs - 1)
10241             MyFlags.Flags.setSplitEnd();
10242         }
10243         Ins.push_back(MyFlags);
10244       }
10245       if (NeedsRegBlock && Value == NumValues - 1)
10246         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10247       PartBase += VT.getStoreSize().getKnownMinSize();
10248     }
10249   }
10250 
10251   // Call the target to set up the argument values.
10252   SmallVector<SDValue, 8> InVals;
10253   SDValue NewRoot = TLI->LowerFormalArguments(
10254       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10255 
10256   // Verify that the target's LowerFormalArguments behaved as expected.
10257   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10258          "LowerFormalArguments didn't return a valid chain!");
10259   assert(InVals.size() == Ins.size() &&
10260          "LowerFormalArguments didn't emit the correct number of values!");
10261   LLVM_DEBUG({
10262     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10263       assert(InVals[i].getNode() &&
10264              "LowerFormalArguments emitted a null value!");
10265       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10266              "LowerFormalArguments emitted a value with the wrong type!");
10267     }
10268   });
10269 
10270   // Update the DAG with the new chain value resulting from argument lowering.
10271   DAG.setRoot(NewRoot);
10272 
10273   // Set up the argument values.
10274   unsigned i = 0;
10275   if (!FuncInfo->CanLowerReturn) {
10276     // Create a virtual register for the sret pointer, and put in a copy
10277     // from the sret argument into it.
10278     SmallVector<EVT, 1> ValueVTs;
10279     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10280                     F.getReturnType()->getPointerTo(
10281                         DAG.getDataLayout().getAllocaAddrSpace()),
10282                     ValueVTs);
10283     MVT VT = ValueVTs[0].getSimpleVT();
10284     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10285     Optional<ISD::NodeType> AssertOp = None;
10286     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10287                                         nullptr, F.getCallingConv(), AssertOp);
10288 
10289     MachineFunction& MF = SDB->DAG.getMachineFunction();
10290     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10291     Register SRetReg =
10292         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10293     FuncInfo->DemoteRegister = SRetReg;
10294     NewRoot =
10295         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10296     DAG.setRoot(NewRoot);
10297 
10298     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10299     ++i;
10300   }
10301 
10302   SmallVector<SDValue, 4> Chains;
10303   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10304   for (const Argument &Arg : F.args()) {
10305     SmallVector<SDValue, 4> ArgValues;
10306     SmallVector<EVT, 4> ValueVTs;
10307     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10308     unsigned NumValues = ValueVTs.size();
10309     if (NumValues == 0)
10310       continue;
10311 
10312     bool ArgHasUses = !Arg.use_empty();
10313 
10314     // Elide the copying store if the target loaded this argument from a
10315     // suitable fixed stack object.
10316     if (Ins[i].Flags.isCopyElisionCandidate()) {
10317       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10318                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10319                              InVals[i], ArgHasUses);
10320     }
10321 
10322     // If this argument is unused then remember its value. It is used to generate
10323     // debugging information.
10324     bool isSwiftErrorArg =
10325         TLI->supportSwiftError() &&
10326         Arg.hasAttribute(Attribute::SwiftError);
10327     if (!ArgHasUses && !isSwiftErrorArg) {
10328       SDB->setUnusedArgValue(&Arg, InVals[i]);
10329 
10330       // Also remember any frame index for use in FastISel.
10331       if (FrameIndexSDNode *FI =
10332           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10333         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10334     }
10335 
10336     for (unsigned Val = 0; Val != NumValues; ++Val) {
10337       EVT VT = ValueVTs[Val];
10338       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10339                                                       F.getCallingConv(), VT);
10340       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10341           *CurDAG->getContext(), F.getCallingConv(), VT);
10342 
10343       // Even an apparent 'unused' swifterror argument needs to be returned. So
10344       // we do generate a copy for it that can be used on return from the
10345       // function.
10346       if (ArgHasUses || isSwiftErrorArg) {
10347         Optional<ISD::NodeType> AssertOp;
10348         if (Arg.hasAttribute(Attribute::SExt))
10349           AssertOp = ISD::AssertSext;
10350         else if (Arg.hasAttribute(Attribute::ZExt))
10351           AssertOp = ISD::AssertZext;
10352 
10353         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10354                                              PartVT, VT, nullptr,
10355                                              F.getCallingConv(), AssertOp));
10356       }
10357 
10358       i += NumParts;
10359     }
10360 
10361     // We don't need to do anything else for unused arguments.
10362     if (ArgValues.empty())
10363       continue;
10364 
10365     // Note down frame index.
10366     if (FrameIndexSDNode *FI =
10367         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10368       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10369 
10370     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10371                                      SDB->getCurSDLoc());
10372 
10373     SDB->setValue(&Arg, Res);
10374     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10375       // We want to associate the argument with the frame index, among
10376       // involved operands, that correspond to the lowest address. The
10377       // getCopyFromParts function, called earlier, is swapping the order of
10378       // the operands to BUILD_PAIR depending on endianness. The result of
10379       // that swapping is that the least significant bits of the argument will
10380       // be in the first operand of the BUILD_PAIR node, and the most
10381       // significant bits will be in the second operand.
10382       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10383       if (LoadSDNode *LNode =
10384           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10385         if (FrameIndexSDNode *FI =
10386             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10387           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10388     }
10389 
10390     // Analyses past this point are naive and don't expect an assertion.
10391     if (Res.getOpcode() == ISD::AssertZext)
10392       Res = Res.getOperand(0);
10393 
10394     // Update the SwiftErrorVRegDefMap.
10395     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10396       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10397       if (Register::isVirtualRegister(Reg))
10398         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10399                                    Reg);
10400     }
10401 
10402     // If this argument is live outside of the entry block, insert a copy from
10403     // wherever we got it to the vreg that other BB's will reference it as.
10404     if (Res.getOpcode() == ISD::CopyFromReg) {
10405       // If we can, though, try to skip creating an unnecessary vreg.
10406       // FIXME: This isn't very clean... it would be nice to make this more
10407       // general.
10408       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10409       if (Register::isVirtualRegister(Reg)) {
10410         FuncInfo->ValueMap[&Arg] = Reg;
10411         continue;
10412       }
10413     }
10414     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10415       FuncInfo->InitializeRegForValue(&Arg);
10416       SDB->CopyToExportRegsIfNeeded(&Arg);
10417     }
10418   }
10419 
10420   if (!Chains.empty()) {
10421     Chains.push_back(NewRoot);
10422     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10423   }
10424 
10425   DAG.setRoot(NewRoot);
10426 
10427   assert(i == InVals.size() && "Argument register count mismatch!");
10428 
10429   // If any argument copy elisions occurred and we have debug info, update the
10430   // stale frame indices used in the dbg.declare variable info table.
10431   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10432   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10433     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10434       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10435       if (I != ArgCopyElisionFrameIndexMap.end())
10436         VI.Slot = I->second;
10437     }
10438   }
10439 
10440   // Finally, if the target has anything special to do, allow it to do so.
10441   emitFunctionEntryCode();
10442 }
10443 
10444 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10445 /// ensure constants are generated when needed.  Remember the virtual registers
10446 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10447 /// directly add them, because expansion might result in multiple MBB's for one
10448 /// BB.  As such, the start of the BB might correspond to a different MBB than
10449 /// the end.
10450 void
10451 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10452   const Instruction *TI = LLVMBB->getTerminator();
10453 
10454   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10455 
10456   // Check PHI nodes in successors that expect a value to be available from this
10457   // block.
10458   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10459     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10460     if (!isa<PHINode>(SuccBB->begin())) continue;
10461     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10462 
10463     // If this terminator has multiple identical successors (common for
10464     // switches), only handle each succ once.
10465     if (!SuccsHandled.insert(SuccMBB).second)
10466       continue;
10467 
10468     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10469 
10470     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10471     // nodes and Machine PHI nodes, but the incoming operands have not been
10472     // emitted yet.
10473     for (const PHINode &PN : SuccBB->phis()) {
10474       // Ignore dead phi's.
10475       if (PN.use_empty())
10476         continue;
10477 
10478       // Skip empty types
10479       if (PN.getType()->isEmptyTy())
10480         continue;
10481 
10482       unsigned Reg;
10483       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10484 
10485       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10486         unsigned &RegOut = ConstantsOut[C];
10487         if (RegOut == 0) {
10488           RegOut = FuncInfo.CreateRegs(C);
10489           CopyValueToVirtualRegister(C, RegOut);
10490         }
10491         Reg = RegOut;
10492       } else {
10493         DenseMap<const Value *, Register>::iterator I =
10494           FuncInfo.ValueMap.find(PHIOp);
10495         if (I != FuncInfo.ValueMap.end())
10496           Reg = I->second;
10497         else {
10498           assert(isa<AllocaInst>(PHIOp) &&
10499                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10500                  "Didn't codegen value into a register!??");
10501           Reg = FuncInfo.CreateRegs(PHIOp);
10502           CopyValueToVirtualRegister(PHIOp, Reg);
10503         }
10504       }
10505 
10506       // Remember that this register needs to added to the machine PHI node as
10507       // the input for this MBB.
10508       SmallVector<EVT, 4> ValueVTs;
10509       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10510       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10511       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10512         EVT VT = ValueVTs[vti];
10513         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10514         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10515           FuncInfo.PHINodesToUpdate.push_back(
10516               std::make_pair(&*MBBI++, Reg + i));
10517         Reg += NumRegisters;
10518       }
10519     }
10520   }
10521 
10522   ConstantsOut.clear();
10523 }
10524 
10525 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10526 /// is 0.
10527 MachineBasicBlock *
10528 SelectionDAGBuilder::StackProtectorDescriptor::
10529 AddSuccessorMBB(const BasicBlock *BB,
10530                 MachineBasicBlock *ParentMBB,
10531                 bool IsLikely,
10532                 MachineBasicBlock *SuccMBB) {
10533   // If SuccBB has not been created yet, create it.
10534   if (!SuccMBB) {
10535     MachineFunction *MF = ParentMBB->getParent();
10536     MachineFunction::iterator BBI(ParentMBB);
10537     SuccMBB = MF->CreateMachineBasicBlock(BB);
10538     MF->insert(++BBI, SuccMBB);
10539   }
10540   // Add it as a successor of ParentMBB.
10541   ParentMBB->addSuccessor(
10542       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10543   return SuccMBB;
10544 }
10545 
10546 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10547   MachineFunction::iterator I(MBB);
10548   if (++I == FuncInfo.MF->end())
10549     return nullptr;
10550   return &*I;
10551 }
10552 
10553 /// During lowering new call nodes can be created (such as memset, etc.).
10554 /// Those will become new roots of the current DAG, but complications arise
10555 /// when they are tail calls. In such cases, the call lowering will update
10556 /// the root, but the builder still needs to know that a tail call has been
10557 /// lowered in order to avoid generating an additional return.
10558 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10559   // If the node is null, we do have a tail call.
10560   if (MaybeTC.getNode() != nullptr)
10561     DAG.setRoot(MaybeTC);
10562   else
10563     HasTailCall = true;
10564 }
10565 
10566 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10567                                         MachineBasicBlock *SwitchMBB,
10568                                         MachineBasicBlock *DefaultMBB) {
10569   MachineFunction *CurMF = FuncInfo.MF;
10570   MachineBasicBlock *NextMBB = nullptr;
10571   MachineFunction::iterator BBI(W.MBB);
10572   if (++BBI != FuncInfo.MF->end())
10573     NextMBB = &*BBI;
10574 
10575   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10576 
10577   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10578 
10579   if (Size == 2 && W.MBB == SwitchMBB) {
10580     // If any two of the cases has the same destination, and if one value
10581     // is the same as the other, but has one bit unset that the other has set,
10582     // use bit manipulation to do two compares at once.  For example:
10583     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10584     // TODO: This could be extended to merge any 2 cases in switches with 3
10585     // cases.
10586     // TODO: Handle cases where W.CaseBB != SwitchBB.
10587     CaseCluster &Small = *W.FirstCluster;
10588     CaseCluster &Big = *W.LastCluster;
10589 
10590     if (Small.Low == Small.High && Big.Low == Big.High &&
10591         Small.MBB == Big.MBB) {
10592       const APInt &SmallValue = Small.Low->getValue();
10593       const APInt &BigValue = Big.Low->getValue();
10594 
10595       // Check that there is only one bit different.
10596       APInt CommonBit = BigValue ^ SmallValue;
10597       if (CommonBit.isPowerOf2()) {
10598         SDValue CondLHS = getValue(Cond);
10599         EVT VT = CondLHS.getValueType();
10600         SDLoc DL = getCurSDLoc();
10601 
10602         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10603                                  DAG.getConstant(CommonBit, DL, VT));
10604         SDValue Cond = DAG.getSetCC(
10605             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10606             ISD::SETEQ);
10607 
10608         // Update successor info.
10609         // Both Small and Big will jump to Small.BB, so we sum up the
10610         // probabilities.
10611         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10612         if (BPI)
10613           addSuccessorWithProb(
10614               SwitchMBB, DefaultMBB,
10615               // The default destination is the first successor in IR.
10616               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10617         else
10618           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10619 
10620         // Insert the true branch.
10621         SDValue BrCond =
10622             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10623                         DAG.getBasicBlock(Small.MBB));
10624         // Insert the false branch.
10625         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10626                              DAG.getBasicBlock(DefaultMBB));
10627 
10628         DAG.setRoot(BrCond);
10629         return;
10630       }
10631     }
10632   }
10633 
10634   if (TM.getOptLevel() != CodeGenOpt::None) {
10635     // Here, we order cases by probability so the most likely case will be
10636     // checked first. However, two clusters can have the same probability in
10637     // which case their relative ordering is non-deterministic. So we use Low
10638     // as a tie-breaker as clusters are guaranteed to never overlap.
10639     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10640                [](const CaseCluster &a, const CaseCluster &b) {
10641       return a.Prob != b.Prob ?
10642              a.Prob > b.Prob :
10643              a.Low->getValue().slt(b.Low->getValue());
10644     });
10645 
10646     // Rearrange the case blocks so that the last one falls through if possible
10647     // without changing the order of probabilities.
10648     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10649       --I;
10650       if (I->Prob > W.LastCluster->Prob)
10651         break;
10652       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10653         std::swap(*I, *W.LastCluster);
10654         break;
10655       }
10656     }
10657   }
10658 
10659   // Compute total probability.
10660   BranchProbability DefaultProb = W.DefaultProb;
10661   BranchProbability UnhandledProbs = DefaultProb;
10662   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10663     UnhandledProbs += I->Prob;
10664 
10665   MachineBasicBlock *CurMBB = W.MBB;
10666   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10667     bool FallthroughUnreachable = false;
10668     MachineBasicBlock *Fallthrough;
10669     if (I == W.LastCluster) {
10670       // For the last cluster, fall through to the default destination.
10671       Fallthrough = DefaultMBB;
10672       FallthroughUnreachable = isa<UnreachableInst>(
10673           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10674     } else {
10675       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10676       CurMF->insert(BBI, Fallthrough);
10677       // Put Cond in a virtual register to make it available from the new blocks.
10678       ExportFromCurrentBlock(Cond);
10679     }
10680     UnhandledProbs -= I->Prob;
10681 
10682     switch (I->Kind) {
10683       case CC_JumpTable: {
10684         // FIXME: Optimize away range check based on pivot comparisons.
10685         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10686         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10687 
10688         // The jump block hasn't been inserted yet; insert it here.
10689         MachineBasicBlock *JumpMBB = JT->MBB;
10690         CurMF->insert(BBI, JumpMBB);
10691 
10692         auto JumpProb = I->Prob;
10693         auto FallthroughProb = UnhandledProbs;
10694 
10695         // If the default statement is a target of the jump table, we evenly
10696         // distribute the default probability to successors of CurMBB. Also
10697         // update the probability on the edge from JumpMBB to Fallthrough.
10698         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10699                                               SE = JumpMBB->succ_end();
10700              SI != SE; ++SI) {
10701           if (*SI == DefaultMBB) {
10702             JumpProb += DefaultProb / 2;
10703             FallthroughProb -= DefaultProb / 2;
10704             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10705             JumpMBB->normalizeSuccProbs();
10706             break;
10707           }
10708         }
10709 
10710         if (FallthroughUnreachable) {
10711           // Skip the range check if the fallthrough block is unreachable.
10712           JTH->OmitRangeCheck = true;
10713         }
10714 
10715         if (!JTH->OmitRangeCheck)
10716           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10717         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10718         CurMBB->normalizeSuccProbs();
10719 
10720         // The jump table header will be inserted in our current block, do the
10721         // range check, and fall through to our fallthrough block.
10722         JTH->HeaderBB = CurMBB;
10723         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10724 
10725         // If we're in the right place, emit the jump table header right now.
10726         if (CurMBB == SwitchMBB) {
10727           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10728           JTH->Emitted = true;
10729         }
10730         break;
10731       }
10732       case CC_BitTests: {
10733         // FIXME: Optimize away range check based on pivot comparisons.
10734         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10735 
10736         // The bit test blocks haven't been inserted yet; insert them here.
10737         for (BitTestCase &BTC : BTB->Cases)
10738           CurMF->insert(BBI, BTC.ThisBB);
10739 
10740         // Fill in fields of the BitTestBlock.
10741         BTB->Parent = CurMBB;
10742         BTB->Default = Fallthrough;
10743 
10744         BTB->DefaultProb = UnhandledProbs;
10745         // If the cases in bit test don't form a contiguous range, we evenly
10746         // distribute the probability on the edge to Fallthrough to two
10747         // successors of CurMBB.
10748         if (!BTB->ContiguousRange) {
10749           BTB->Prob += DefaultProb / 2;
10750           BTB->DefaultProb -= DefaultProb / 2;
10751         }
10752 
10753         if (FallthroughUnreachable) {
10754           // Skip the range check if the fallthrough block is unreachable.
10755           BTB->OmitRangeCheck = true;
10756         }
10757 
10758         // If we're in the right place, emit the bit test header right now.
10759         if (CurMBB == SwitchMBB) {
10760           visitBitTestHeader(*BTB, SwitchMBB);
10761           BTB->Emitted = true;
10762         }
10763         break;
10764       }
10765       case CC_Range: {
10766         const Value *RHS, *LHS, *MHS;
10767         ISD::CondCode CC;
10768         if (I->Low == I->High) {
10769           // Check Cond == I->Low.
10770           CC = ISD::SETEQ;
10771           LHS = Cond;
10772           RHS=I->Low;
10773           MHS = nullptr;
10774         } else {
10775           // Check I->Low <= Cond <= I->High.
10776           CC = ISD::SETLE;
10777           LHS = I->Low;
10778           MHS = Cond;
10779           RHS = I->High;
10780         }
10781 
10782         // If Fallthrough is unreachable, fold away the comparison.
10783         if (FallthroughUnreachable)
10784           CC = ISD::SETTRUE;
10785 
10786         // The false probability is the sum of all unhandled cases.
10787         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10788                      getCurSDLoc(), I->Prob, UnhandledProbs);
10789 
10790         if (CurMBB == SwitchMBB)
10791           visitSwitchCase(CB, SwitchMBB);
10792         else
10793           SL->SwitchCases.push_back(CB);
10794 
10795         break;
10796       }
10797     }
10798     CurMBB = Fallthrough;
10799   }
10800 }
10801 
10802 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10803                                               CaseClusterIt First,
10804                                               CaseClusterIt Last) {
10805   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10806     if (X.Prob != CC.Prob)
10807       return X.Prob > CC.Prob;
10808 
10809     // Ties are broken by comparing the case value.
10810     return X.Low->getValue().slt(CC.Low->getValue());
10811   });
10812 }
10813 
10814 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10815                                         const SwitchWorkListItem &W,
10816                                         Value *Cond,
10817                                         MachineBasicBlock *SwitchMBB) {
10818   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10819          "Clusters not sorted?");
10820 
10821   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10822 
10823   // Balance the tree based on branch probabilities to create a near-optimal (in
10824   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10825   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10826   CaseClusterIt LastLeft = W.FirstCluster;
10827   CaseClusterIt FirstRight = W.LastCluster;
10828   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10829   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10830 
10831   // Move LastLeft and FirstRight towards each other from opposite directions to
10832   // find a partitioning of the clusters which balances the probability on both
10833   // sides. If LeftProb and RightProb are equal, alternate which side is
10834   // taken to ensure 0-probability nodes are distributed evenly.
10835   unsigned I = 0;
10836   while (LastLeft + 1 < FirstRight) {
10837     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10838       LeftProb += (++LastLeft)->Prob;
10839     else
10840       RightProb += (--FirstRight)->Prob;
10841     I++;
10842   }
10843 
10844   while (true) {
10845     // Our binary search tree differs from a typical BST in that ours can have up
10846     // to three values in each leaf. The pivot selection above doesn't take that
10847     // into account, which means the tree might require more nodes and be less
10848     // efficient. We compensate for this here.
10849 
10850     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10851     unsigned NumRight = W.LastCluster - FirstRight + 1;
10852 
10853     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10854       // If one side has less than 3 clusters, and the other has more than 3,
10855       // consider taking a cluster from the other side.
10856 
10857       if (NumLeft < NumRight) {
10858         // Consider moving the first cluster on the right to the left side.
10859         CaseCluster &CC = *FirstRight;
10860         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10861         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10862         if (LeftSideRank <= RightSideRank) {
10863           // Moving the cluster to the left does not demote it.
10864           ++LastLeft;
10865           ++FirstRight;
10866           continue;
10867         }
10868       } else {
10869         assert(NumRight < NumLeft);
10870         // Consider moving the last element on the left to the right side.
10871         CaseCluster &CC = *LastLeft;
10872         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10873         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10874         if (RightSideRank <= LeftSideRank) {
10875           // Moving the cluster to the right does not demot it.
10876           --LastLeft;
10877           --FirstRight;
10878           continue;
10879         }
10880       }
10881     }
10882     break;
10883   }
10884 
10885   assert(LastLeft + 1 == FirstRight);
10886   assert(LastLeft >= W.FirstCluster);
10887   assert(FirstRight <= W.LastCluster);
10888 
10889   // Use the first element on the right as pivot since we will make less-than
10890   // comparisons against it.
10891   CaseClusterIt PivotCluster = FirstRight;
10892   assert(PivotCluster > W.FirstCluster);
10893   assert(PivotCluster <= W.LastCluster);
10894 
10895   CaseClusterIt FirstLeft = W.FirstCluster;
10896   CaseClusterIt LastRight = W.LastCluster;
10897 
10898   const ConstantInt *Pivot = PivotCluster->Low;
10899 
10900   // New blocks will be inserted immediately after the current one.
10901   MachineFunction::iterator BBI(W.MBB);
10902   ++BBI;
10903 
10904   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10905   // we can branch to its destination directly if it's squeezed exactly in
10906   // between the known lower bound and Pivot - 1.
10907   MachineBasicBlock *LeftMBB;
10908   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10909       FirstLeft->Low == W.GE &&
10910       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10911     LeftMBB = FirstLeft->MBB;
10912   } else {
10913     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10914     FuncInfo.MF->insert(BBI, LeftMBB);
10915     WorkList.push_back(
10916         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10917     // Put Cond in a virtual register to make it available from the new blocks.
10918     ExportFromCurrentBlock(Cond);
10919   }
10920 
10921   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10922   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10923   // directly if RHS.High equals the current upper bound.
10924   MachineBasicBlock *RightMBB;
10925   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10926       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10927     RightMBB = FirstRight->MBB;
10928   } else {
10929     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10930     FuncInfo.MF->insert(BBI, RightMBB);
10931     WorkList.push_back(
10932         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10933     // Put Cond in a virtual register to make it available from the new blocks.
10934     ExportFromCurrentBlock(Cond);
10935   }
10936 
10937   // Create the CaseBlock record that will be used to lower the branch.
10938   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10939                getCurSDLoc(), LeftProb, RightProb);
10940 
10941   if (W.MBB == SwitchMBB)
10942     visitSwitchCase(CB, SwitchMBB);
10943   else
10944     SL->SwitchCases.push_back(CB);
10945 }
10946 
10947 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10948 // from the swith statement.
10949 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10950                                             BranchProbability PeeledCaseProb) {
10951   if (PeeledCaseProb == BranchProbability::getOne())
10952     return BranchProbability::getZero();
10953   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10954 
10955   uint32_t Numerator = CaseProb.getNumerator();
10956   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10957   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10958 }
10959 
10960 // Try to peel the top probability case if it exceeds the threshold.
10961 // Return current MachineBasicBlock for the switch statement if the peeling
10962 // does not occur.
10963 // If the peeling is performed, return the newly created MachineBasicBlock
10964 // for the peeled switch statement. Also update Clusters to remove the peeled
10965 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10966 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10967     const SwitchInst &SI, CaseClusterVector &Clusters,
10968     BranchProbability &PeeledCaseProb) {
10969   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10970   // Don't perform if there is only one cluster or optimizing for size.
10971   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10972       TM.getOptLevel() == CodeGenOpt::None ||
10973       SwitchMBB->getParent()->getFunction().hasMinSize())
10974     return SwitchMBB;
10975 
10976   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10977   unsigned PeeledCaseIndex = 0;
10978   bool SwitchPeeled = false;
10979   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10980     CaseCluster &CC = Clusters[Index];
10981     if (CC.Prob < TopCaseProb)
10982       continue;
10983     TopCaseProb = CC.Prob;
10984     PeeledCaseIndex = Index;
10985     SwitchPeeled = true;
10986   }
10987   if (!SwitchPeeled)
10988     return SwitchMBB;
10989 
10990   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10991                     << TopCaseProb << "\n");
10992 
10993   // Record the MBB for the peeled switch statement.
10994   MachineFunction::iterator BBI(SwitchMBB);
10995   ++BBI;
10996   MachineBasicBlock *PeeledSwitchMBB =
10997       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10998   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10999 
11000   ExportFromCurrentBlock(SI.getCondition());
11001   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11002   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11003                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11004   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11005 
11006   Clusters.erase(PeeledCaseIt);
11007   for (CaseCluster &CC : Clusters) {
11008     LLVM_DEBUG(
11009         dbgs() << "Scale the probablity for one cluster, before scaling: "
11010                << CC.Prob << "\n");
11011     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11012     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11013   }
11014   PeeledCaseProb = TopCaseProb;
11015   return PeeledSwitchMBB;
11016 }
11017 
11018 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11019   // Extract cases from the switch.
11020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11021   CaseClusterVector Clusters;
11022   Clusters.reserve(SI.getNumCases());
11023   for (auto I : SI.cases()) {
11024     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11025     const ConstantInt *CaseVal = I.getCaseValue();
11026     BranchProbability Prob =
11027         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11028             : BranchProbability(1, SI.getNumCases() + 1);
11029     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11030   }
11031 
11032   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11033 
11034   // Cluster adjacent cases with the same destination. We do this at all
11035   // optimization levels because it's cheap to do and will make codegen faster
11036   // if there are many clusters.
11037   sortAndRangeify(Clusters);
11038 
11039   // The branch probablity of the peeled case.
11040   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11041   MachineBasicBlock *PeeledSwitchMBB =
11042       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11043 
11044   // If there is only the default destination, jump there directly.
11045   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11046   if (Clusters.empty()) {
11047     assert(PeeledSwitchMBB == SwitchMBB);
11048     SwitchMBB->addSuccessor(DefaultMBB);
11049     if (DefaultMBB != NextBlock(SwitchMBB)) {
11050       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11051                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11052     }
11053     return;
11054   }
11055 
11056   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11057   SL->findBitTestClusters(Clusters, &SI);
11058 
11059   LLVM_DEBUG({
11060     dbgs() << "Case clusters: ";
11061     for (const CaseCluster &C : Clusters) {
11062       if (C.Kind == CC_JumpTable)
11063         dbgs() << "JT:";
11064       if (C.Kind == CC_BitTests)
11065         dbgs() << "BT:";
11066 
11067       C.Low->getValue().print(dbgs(), true);
11068       if (C.Low != C.High) {
11069         dbgs() << '-';
11070         C.High->getValue().print(dbgs(), true);
11071       }
11072       dbgs() << ' ';
11073     }
11074     dbgs() << '\n';
11075   });
11076 
11077   assert(!Clusters.empty());
11078   SwitchWorkList WorkList;
11079   CaseClusterIt First = Clusters.begin();
11080   CaseClusterIt Last = Clusters.end() - 1;
11081   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11082   // Scale the branchprobability for DefaultMBB if the peel occurs and
11083   // DefaultMBB is not replaced.
11084   if (PeeledCaseProb != BranchProbability::getZero() &&
11085       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11086     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11087   WorkList.push_back(
11088       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11089 
11090   while (!WorkList.empty()) {
11091     SwitchWorkListItem W = WorkList.pop_back_val();
11092     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11093 
11094     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11095         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11096       // For optimized builds, lower large range as a balanced binary tree.
11097       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11098       continue;
11099     }
11100 
11101     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11102   }
11103 }
11104 
11105 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11107   auto DL = getCurSDLoc();
11108   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11109   setValue(&I, DAG.getStepVector(DL, ResultVT));
11110 }
11111 
11112 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11113   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11114   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11115 
11116   SDLoc DL = getCurSDLoc();
11117   SDValue V = getValue(I.getOperand(0));
11118   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11119 
11120   if (VT.isScalableVector()) {
11121     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11122     return;
11123   }
11124 
11125   // Use VECTOR_SHUFFLE for the fixed-length vector
11126   // to maintain existing behavior.
11127   SmallVector<int, 8> Mask;
11128   unsigned NumElts = VT.getVectorMinNumElements();
11129   for (unsigned i = 0; i != NumElts; ++i)
11130     Mask.push_back(NumElts - 1 - i);
11131 
11132   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11133 }
11134 
11135 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11136   SmallVector<EVT, 4> ValueVTs;
11137   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11138                   ValueVTs);
11139   unsigned NumValues = ValueVTs.size();
11140   if (NumValues == 0) return;
11141 
11142   SmallVector<SDValue, 4> Values(NumValues);
11143   SDValue Op = getValue(I.getOperand(0));
11144 
11145   for (unsigned i = 0; i != NumValues; ++i)
11146     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11147                             SDValue(Op.getNode(), Op.getResNo() + i));
11148 
11149   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11150                            DAG.getVTList(ValueVTs), Values));
11151 }
11152 
11153 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11154   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11155   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11156 
11157   SDLoc DL = getCurSDLoc();
11158   SDValue V1 = getValue(I.getOperand(0));
11159   SDValue V2 = getValue(I.getOperand(1));
11160   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11161 
11162   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11163   if (VT.isScalableVector()) {
11164     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11165     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11166                              DAG.getConstant(Imm, DL, IdxVT)));
11167     return;
11168   }
11169 
11170   unsigned NumElts = VT.getVectorNumElements();
11171 
11172   if ((-Imm > NumElts) || (Imm >= NumElts)) {
11173     // Result is undefined if immediate is out-of-bounds.
11174     setValue(&I, DAG.getUNDEF(VT));
11175     return;
11176   }
11177 
11178   uint64_t Idx = (NumElts + Imm) % NumElts;
11179 
11180   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11181   SmallVector<int, 8> Mask;
11182   for (unsigned i = 0; i < NumElts; ++i)
11183     Mask.push_back(Idx + i);
11184   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11185 }
11186